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Abstract

Block-level distributed storage systems (e.g., SAN,
iSCSI) are commonly used in the emerging cloud com-
puting systems to provide virtual machine (VM) storage,
for fast VM migration and improved availability. How-
ever, as the size of cloud systems and the number of
hosted VMs rapidly grow, the scalability of shared block-
level storage systems becomes a serious issue. Client-
side solid-state-based caching has the potential to im-
prove the performance of cloud VM storage by em-
ploying solid-state drives (SSDs) available on the client-
side of the storage system to exploit the locality inher-
ent in VM IOs. However, there are several key ques-
tions to effectively use SSD caches in clouds. First, be-
cause of the limited capacity and high cost of SSDs, it
is important to determine the proper size and configu-
ration of the caches. Second, because of the diversity of
cloud workloads, it is also critical to properly allocate the
limited SSD cache capacity among concurrently hosted
VMs. This project provides answers to these questions
by studying hundreds of GBs of and months long block
IO traces collected from real-world private (FIU) and
public (CloudVPS) cloud systems.

1 Introduction

System virtualization is the key enabling technology of
the emerging cloud computing systems. It enables flex-
ible server consolidation and allows applications to be
conveniently deployed along with their required execu-
tion environment through virtual machines (VM). Ap-
plications hosted on VMs can be relocated across dif-
ferent physical servers to improve performance, reduce
resource usage, achieve better isolation, and save power
consumption. To enable fast VM migration and improve
data availability, cloud systems commonly employ stor-
age area networks (SAN) or IP-based SAN (e.g. iSCSI)
to store VM images for a set of VM hosts. As the size
of cloud systems and the number of hosted VMs rapidly
grow, the scalability of shared block-level storage sys-
tems becomes a serious issue. In order to overcome this
issue we usedm-cache[1], a block-level caching that en-
ables client-side storage and exploit data locality.

The feasibility of usingdm-cacheis supported by the
continuing deceasing cost of storage and the availability

of new, fast storage devices (e.g., SSD) on the VM hosts.
With local cache storage, each VM can improve the I/O
performance by doing I/O locally to the cache device.

However, there are several key questions that need
to be answered in order to make effective use of SSD
caches in cloud storage systems. First,how to size the
SSD caches?Given the capacity and cost constraints of
SSDs, there need to be enough locality in VM IOs in
order to make SSD-based caching cost effective. Other-
wise, cloud may not be a good target for SSD caching.
Second,how to configure the cache polices?Policies on
cache replacement and prefetching are important to the
cache performance; the policy of how to handle writes in
the cache has implications on not only write performance
but also data durability. Third,how to share the shared
cache capacity among concurrent VMs?A single SSD
cache may be shared by up to a hundred VMs running
on the same host, while the VM workloads vary in terms
of locality, read/write ratio, sequentiality, and burstiness.
The lack of understanding of all these characteristics may
lead to a cache sharing policy that unfairly treat the com-
peting workloads and underutilize the cache resources.
This project try to provide answers to the above ques-
tions by studying hundreds of GBs of block IO traces
collected from the Florida International University pri-
vate cloud and the Cloud VPS public cloud systems.

The rest of this work is organized as follow: Section 2
describe the trace analysis. Section 3 present the work-
ing set size analysis. Section 4 shows the study on pro-
portional cache allocation. Finally we present our future
work.

2 Block-IO Trace Analysis

We studied traces from two different locations, one col-
lected atcloudVPS(http://www.cloudvps.com/) and
the other collected at our servers here atFIU (web, moo-
dle, and file servers). The traces are divided into sets, and
summarized in Tables 1 and 2.

For every set of traces we conducted a thorough anal-
ysis to get the following data:
• The amount of read and write operations
• The amount of hits, using different cache policies

(write-back, write-through, write-allocate)
• The amount of IO operations per second (IOPS)
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Server Time Size
Name (days) (GB)

webserver 79 18.2
moodle 54 150
bear 64 62

Table 1:FIU traces

Host Number Size
Name of VMs (GB)

rhine 90 7
seine 18 3.3
heinen 62 4.5

Table 2:CloudVPS traces

• The amount of sequential reads and writes

Figure 1 shows a summary of the analysis for FIU web-
server traces. This analysis determines if the traces is
read or write intensive, and the hit ratio using different
policies (write-back, write-through, write-allocate). The
analysis shows that FIU-webserver is write intensive and
the best cache policy to use is write-back.
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Figure 1: FIU webserver trace analysis

3 Working Set Size Analysis

For the Working Set Size (WSS) analysis we performed
evaluation using different windows size “delta”, which
can be based on the number of accesses or based on time
elapsed. The analysis includes:

• WSS analysis with delta as “number of ac-
cesses”and “number of seconds”

• Predict next WSS using double exponential smooth-
ing mechanism

• Evaluate the accuracy of each predicted WSS

This analysis will give an understanding of VM’s cache
needs, and help us determine how to better collocate mul-
tiple VMs when all of them are sharing the same cache
device. Figure 2 shows the WSS calculated using adelta
specified based on the number of accesses, with adelta
of 1024. Here we can appreciate certain stability of WSS
throughout the entire three month of the trace and an ev-
ident change of WSS occurred in the middle of the trace.
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Figure 2: WSS-analysis using (delta accesses: 1024)
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Figure 3: Cache Allocation Policies

4 Proportional Cache Allocation

With the understanding of VMs’ cache needs, we further
investigate how to enforce the cache allocation among
the VMs sharing the same SSD cache. Cache allocation
can be enforced statically for competing VMs’ work-
loads; however, due the dynamism inherent in the work-
loads, the WSSes change over time, so the allocation
may also need to be updated dynamically.

4.1 Static Allocation

This approach enforces logical partitioning at replace-
ment time: if the cache is not full, a VM can use empty
slots in the cache beyond its allocated share; when it is
full, a VM that has not used up its share takes its space
back by replacing a block from another VM that has bor-
rowed its share. Figure 3a shows the results of replay day
long traces using static allocation.

4.2 Dynamic Allocation

We enhanceddm-cacheto analyze workloads online.
This wss-anlyzerkeeps track the information (block ad-
dress and time) of received IOs, and calculates WSSes
for each workload online. Based on the observed WSSes,
it also predict the WSSes of the workloads for the next
window. Using the predicted WSSes of all the work-
loads,dm-cachereallocates the cache among the compet-
ing VMs and enforce the allocation at replacement time.
Figure 3b shows the trace replay results for dynamic al-
location.

5 Conclusions and Future Work

The analysis performed on the traces definitively gives
us a better understanding of block-level cache for cloud
computing systems on its requirements and implications,
but also raise more questions. For example, how to uti-
lize the sequentiality in the workloads? How to combine
access-based and time-based WSS analysis? These ques-
tions will be addressed in our future work.
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