
In-Memory Key-Value Store Live 
Migration with NetMigrate

Zeying Zhu, Yibo Zhao, Alan Zaoxing Liu



In-Memory Key-Value Stores

• Key-value stores are widely used
• Feature store of machine learning inference
• In-memory caching
• Real-time analytics

• Data amount is large
• Store billions of records
• Retrieve millions of records under low latency constraints

2



Live Migration is A Key Technique
• No service downtime during key-value shard migration between nodes.
• Why migrate data?
• Load balancing

3
KV server 1

A B

KV server 2

C

Client 1 Client 2

Query

Load



Live Migration is A Key Technique
• No service downtime during key-value shard migration between nodes.
• Why migrate data?
• Load balancing
• Spatial locality 
• Horizontal scaling

4
KV server 1

A

KV server 2

C
B

Client 1 Client 2

Query

Load



Live Migration is A Key Technique

5
KV server 1

A

KV server 2

C DB

Client 1 Client 2

Query

• No service downtime during key-value shard migration between nodes.
• Why migrate data?
• Load balancing
• Spatial locality 
• Horizontal scaling

• Existing solutions
• Source-based
• Destination-based
• Hybrid



Source-based Migration

RAMCloud [TOCS ‘15], Remus [SIGMOD’22]

READ: served by source 
WRITE: served by source

Source KV

Migrate all data

Dirty data logs

Client 1 Client 2 Client n…

Destination KV

READ WRITEWRITE

Updated

6

Updated



Source-based Migration

Extra dirty data transfer from source to destination 

Downtime when terminating migration

Low query latency during migration because source node
already has the queried data

RAMCloud [TOCS ‘15], Remus [SIGMOD’22] 7

READ: served by source 
WRITE: served by source



Destination-based Migration
READ: served by destination
WRITE: served by destination

Source KV Destination KV

Migrate all data

PriorityPull not-migrated data

Client 1 Client 2 Client n…

READ WRITEREAD

Rocksteady [SOSP’17]
8

Not Migrated



Destination-based Migration

Low throughput (drop 66%)

High query latency due to missed data access in the 
destination (increase 100%~400%)

Quickly shift source node’s pressure, short migration time

Rocksteady [SOSP’17]
9

READ: served by destination
WRITE: served by destination



Hybrid Migration

Fulva [SRDS ‘19]

READ: served by both source and destination
WRITE: served by destination

Source KV Destination KV

Migrate all data

Client 1 Client 2 Client n…

Bookkeeping 
migration states: 

migrated keys

WRITEREAD
Double-READ Double-READ

10

Not Migrated



Hybrid Migration

Leverage both so performance is better when most of data 
is in the source.

Double-read incurs large bandwidth overhead between 
clients and servers (~50%) because of no fine-grained state 
tracking.

11

READ: served by both source and destination
WRITE: served by destination

Fulva [SRDS ‘19]



Design Goals of NetMigrate:
• Minimal query performance impact
• Low extra overhead from migration
• Acceptable and tunable migration time

Existing Live Migration Systems

migration time

Query performance

Rocksteady (Destination)

Fulva (Hybrid)

Source-based

NetMigrate

Tradeoff between query performance and migration time
12



Key Idea: Programmable 
Top-of-Rack switches to track 
the migration states.
• Centralized view of all 

data movement
• Real-time information of 

who owns the data

Existing solutions don’t know where the data is and pay cost 
of going to wrong places. 

13

Clients

…

ToR Switch Controller Key-Value Storage Rack

Storage Servers

Source 
KV

Destination 
KV

Migration Instance 1 Migration Instance 2

Destination 
KV

Source 
KV



14

Clients

…

ToR Switch Data Plane

ToR Switch Controller

Storage Servers
Migration Instance

Destination 
KV

Source 
KV

Key-Value Storage Rack
Look up migration state

Query



A Typical Programmable Switch Architecture
• Flexible programmability 

Ø Parse, read and update custom fields at line rate
• Registers 

Ø Store data
• High line-rate packet processing 12.4 Tbps

15

Match + Action 

Programmable Parser Programmable Match-Action Pipeline

Memory ALU

… … ……



Design Challenges of NetMigrate

• Challenge #1: How to track fine-grained migration states?
• On-switch resources are limited (e.g., 64MB SRAM vs. Millions of KV pairs)

• Challenge #2: How to query during migration?
• Maintain data consistency during migration.
• Read-After-Write, Write-After-Read, Write-After-Write.

• Challenge #3: How to support dynamic migration policies?

16



Design Challenges of NetMigrate

• Challenge #1: How to track fine-grained migration states?
• On-switch resources are limited (e.g., 64MB SRAM vs. Millions of KV pairs)

• Challenge #2: How to query during migration?
• Maintain data consistency during migration.
• Read-After-Write, Write-After-Read, Write-After-Write.

• Challenge #3: How to support dynamic migration policies?

17



Shrink Record Granularity for Limited Switch Resources

KVS data structure: hash table

Group 1 Group 2 …

Track migration in a coarser record granularity

18

On-switch resources are limited (e.g., 64MB SRAM vs. Millions of KV pairs)



Three States to Understand Data Location
Group migration states: migrated, ongoing-migration, not-migrated 

Group 1 Group 2 …

Source KV Destination KV

C

A B C D

D

A B
migrated

ongoing-migration
not-migrated

19



Probabilistic Ownership Tracking 

20Source KV Destination KV

ToR Switch

BF

CBF

A BGroup

Track ongoing-migration 
groups

Track migrated groups

Counting Bloom Filter

Bloom Filter 



Not Started Migration

21Source KV Destination KV

ToR Switch

BF 0 0

0 0CBF

A B

Track ongoing-migration 
groups

Track migrated groups

Counting Bloom Filter

Bloom Filter 

Group



Ongoing Migration

22Source KV Destination KV

ToR Switch

BF 0 0

1 1CBF

A
B

Track ongoing-migration 
groups

Track migrated groups

Counting Bloom Filter

Bloom Filter 

Group



Finished Migration

23Source KV Destination KV

ToR Switch

BF 1 1

0 0CBF

AB

Track ongoing-migration 
groups

Track migrated groups

Counting Bloom Filter

Bloom Filter 

Group



Design Challenges of NetMigrate

• Challenge #1: How to track fine-grained migration states?
• On-switch resources are limited (e.g., 64MB SRAM vs. Millions of KV 

pairs)

• Challenge #2: How to query during migration?
• Maintain data consistency during migration.
• Read-After-Write, Write-After-Read, Write-After-Write.

• Challenge #3: How to support dynamic migration policies?

24



Data is Consistent When Not Started Migration

Source KV

Migrate all data

Client 1

Destination KV

Clients

READ WRITE

25

BF 0 0

0 0CBF



Data is Consistent When Finished Migration

Source KV

Migrate all data

Client 1

Destination KV

Clients

READ WRITE

26

BF 1 1

0 0CBF



An Inconsistent Example When Ongoing Migration

27
Source KV

Migrate all data

Client 1

Destination KV

Clients

BF 0 0

1 1CBF WRITE

Read-After-Write

Updated

READ



An Inconsistent Example When Ongoing Migration

28
Source KV

Migrate all data

Client 1

Destination KV

Clients

BF 0 0

1 1CBF WRITE

Read-After-Write

Updated

READ

• Not sure where the key is located because of tracking at group level.
• Not sure whether there was a WRITE due to no tracking on every WRITE.



Data is Consistent When Ongoing Migration

Source KV

Migrate all data

Client 1

Destination KV

Clients

29

BF 0 0

1 1CBF Double-READ

WRITE

Double-READ



Data is Consistent When Ongoing Migration

Source KV

Migrate all data

Client 1

Destination KV

Clients

30

BF 0 0

1 1CBF Double-READ

WRITE

Double-READ

• Data consistency is maintained by Double-READ.
• Overhead caused by Double-READ is negligible. 



Data is Consistent even with False Positives

Source KV

Migrate all data

Client 1

Destination KV

Clients

31

BF 1 1

0 0CBF

Updated due to hash collision

PriorityPull

(check more details in our paper)

READ WRITEREAD

Not Migrated



Data is Consistent even with False Positives

Source KV

Migrate all data

Client 1

Destination KV

Clients

32

BF 1 1

0 0CBF

Updated due to hash collision

PriorityPull

(check more details in our paper)

READ WRITEREAD

Not Migrated

Overhead from false positives is negligible



Putting It Together: NetMigrate

33

ToR Switch Data Plane

Routing

ToR Switch Controller

Migration State
(Probabilistic Data Structures)

Migration 
Instance Table

Key-Value Storage Rack

Servers

Clients

• Leveraging probabilistic data structures on the switch to track 
three migration states.

• Query protocol guaranteeing consistency.
• The overhead caused by false positives and unsure states is small. 



Evaluation

• Testbed
• 6.5 Tbps Intel Tofino switch
• 3 servers each with an 8-core CPU, a 40G NIC, and 64GB memory

• Baselines
• Source-based migration protocol, Rocksteady, Fulva

• Workloads
• Migrating 256 million KV pairs (~16GB), with 4B key, 64B value
• YCSB with 0%, 5%, 10%, 20%, 30% write ratio
• Source CPU budgets: 100%, 70%, 40%

34



Overall performance -- Throughput

35

32% to 78% average throughput improvement compared to Source-based, 
Rocksteady, Fulva with similar migration time.

Setting: YCSB-B (5%) write ratio, source node is not overloaded (100%)



Overall performance – Median Latency

36

49% to 65% average median latency reduction.
Up to 39% average 99% tail-latency reduction.

Setting: YCSB-B (5%) write ratio, source node is not overloaded (100%)



Network Overhead

37

Protocols/Overhead Client-side Server-side

Rocksteady 7%~12% 0

Source-based 0 Proportional to write ratio

Fulva ~50% 0

NetMigrate <0.05% <5×10!"% 

Extra network bandwidth overhead 
between clients and servers (client-side) 

or between servers (server-side)



Conclusions

• Existing KV store live migration techniques still suffer from low query-
serving performance and high overhead. 

• We propose NetMigrate, a network-based hybrid live migration 
approach.
• Track fine-grained migration states in programmable data plane.
• Provide enhanced throughput and low migration overheads.

• Open-sourced at https://github.com/Froot-NetSys/NetMigrate.

38

Thank you! Q&A

https://github.com/Froot-NetSys/NetMigrate

