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Storage Tiering

➢Storage tiering balances the trade-off between access 

performance and storage persistence

• Hot tier: high performance but limited storage space

• Cold tier: abundant storage space but lower performance
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Storage Tiering

➢A primary use case of storage tiering: edge-cloud storage

• IoT applications will generate over 79.4 ZB data in 2025 [*]

➢Edge storage mainly builds on distributed key-value (KV) stores

➢Our goal: Extend a distributed KV store with storage tiering for 

edge-cloud and general tiered storage environments

3[*] https://blogs.idc.com/2019/11/04/how-you-contribute-to-todays-growing-datasphere-and-its-enterprise-impact/
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Distributed KV Store

➢Use Cassandra as an example for edge storage

• Cassandra is decentralized, high-performance, and fault-tolerant
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➢Drawback: Replication has high storage overhead



Erasure Coding

➢ (n, k) Reed-Solomon (RS) codes: 

• Encode k data chunks to n-k parity chunks

• Each collection of n data/parity chunks forms a coding group

• With a redundancy of n/k, any k out of n chunks can recover lost data

➢Compared with replication, erasure coding

• Saves significant storage overhead

• Incurs higher degraded read and full-node recovery overhead

➢Can we maintain storage efficiency via erasure coding, while 

preserving high performance, in tiered storage?
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Skewed Access Patterns

➢Practical KV workloads have skewed access patterns
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10-node Cassandra cluster

- Load 100M 1-KiB KV pairs

- Issue 1M reads

- Keys accessed under Zipf (0.99)

• 56.2% of SSTables are stored in L4, but only have 10.2% of accesses

• Only 18.2% of SSTables in L4 are accessed



Our Contributions

➢ Extends LSM-tree with hybrid redundancy

• Replicates hot KV pairs and erasure-codes cold KV pairs in hot tier

• Offloads (selectively) cold KV pairs to cold tier for further hot-tier storage savings

➢ Key techniques

• LSM-tree-based redundancy transitioning

• Hotness-aware redundancy transitioning and cold-data offloading

• Tunable configuration for balancing storage-performance trade-off

➢ Results: 56.1% less hot-tier storage overhead than replication, with similar 

normal read/write performance
7

ELECT: a distributed LSM-tree-based KV store that 

enables erasure coding tiering



Design Considerations

➢Q1: At what granularity should KV pairs be encoded?

➢Q2: Should erasure coding be performed on or off the write path?

➢Q3: How should skewed access patterns be addressed?

➢Q4: How should the access overhead in the cold tier be 

mitigated?

➢Q5: How should ELECT address the trade-off between storage 

savings and access performance?
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Design Overview
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LSM-tree-based Redundancy Transitioning

➢Q1: At what granularity should KV pairs be encoded?

➢Decoupled replication management [DEPART, FAST’22; Tebis, EuroSys’22]: 

• Each node separates R replicas into a primary LSM-tree and R-1

secondary LSM-trees → facilitates secondary replica removal
10
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LSM-tree-based Redundancy Transitioning

➢Q2: Should erasure coding be performed on or off the write path?

➢Decentralized parity node selection:

• Maintains load balancing and fault tolerance for parity SSTables with 

decentralized placement decisions
11
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Hotness Awareness

➢Q3: How should skewed access patterns be addressed?

• Sort last-level SSTables by access frequency

➢Q4: How should the access overhead in the cold tier be mitigated?

• Offload parity SSTables with long lifetime

• Offload data SSTables with low access frequency and long lifetime

12
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Balancing Storage-Performance Trade-off

➢Q5: How should ELECT address the trade-off between storage 

savings and access performance?

• Quantify storage overhead and control how many SSTables are encoded 

and offloaded in a step-by-step manner 
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Experimental Setup

➢Alibaba Cloud in an edge-cloud setting:

• 12 instances (10 edge nodes + 2 client nodes) with 3 Gb/s connectivity

• Alibaba Object Storage in a different region as cold-tier

• Edge-to-edge: 1ms; edge-to-cloud: 45ms

• Workloads: YCSB 0.17.0, 1-KiB KV pairs, Zipfian distribution (0.99)

• Default settings: 3-way replication, (6,4) encoding, storage saving target 

𝛼 = 0.6, write consistency level ALL, read consistency level ONE

➢Compare Cassandra (v4.1.0) and ELECT

• Average over 5 runs and 95% confidence interval under Student’s t-dist

➢Summary of results: ELECT saves storage overhead of 

Cassandra while maintaining high performance in normal mode
14



YCSB Core Workloads

➢ ELECT achieves 56.1% edge storage saving from Cassandra

• 39.1% overall storage savings (in both edge and cloud)

➢ ELECT outperforms Cassandra in workload E (scan-intensive) by 2.84x due 

to decoupled replication management

• Similar throughput for other workloads (up to 3% differences)

• Note that the improvement is less on Chameleon Cloud
15



Individual KV Operations

➢ELECT maintains performance in normal mode, but has high 

latency in reads in degraded mode

• Due to retrieval of parity SSTables from the cold tier

• On Chameleon Cloud, the overhead is reduced from 5x to 1.2x
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Performance Breakdown

➢Redundancy transitioning and cold-data 

offloading have long processing time

• Performed offline with limited overhead

• ELECT maintains write performance as 

Cassandra 

17

Average latency of processing 1MiB of writes/reads and 

95% confidence interval under Student’s t-distribution



Full-node Recovery

➢ELECT incurs 50% higher recovery time than Cassandra

• ELECT retrieves data and parity SSTables to decode lost SSTables in 

primary LSM-tree

• Recovery performance is network-bounded
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Impact of 𝛼

➢ELECT reduces edge storage overhead by 9.2 - 86% over 

Cassandra when 𝛼 increases from 0.1 to 0.9

• ~4% difference from 𝛼 due to metadata overhead

➢ELECT maintains read latency in normal mode before offloading 

data SSTables (i.e., 𝛼 ≤ 0.6)
19



Consistency and Scalability

➢ELECT maintains consistent read performance as Cassandra

➢ELECT has 4% (5.7%) less normal read (write) throughput than 

Cassandra due to redundancy transitioning and offloading

➢More results in our paper: resource utilization, impact of KV sizes, 

coding parameters
20



Conclusions

➢ELECT: a distributed KV store that enables erasure coding tiering

• LSM-tree-based redundancy transitioning (with decentralized parity node 

selection)

• Hotness-aware redundancy transitioning and cold data offloading

• Tunable configuration for balancing storage-performance trade-off

➢Source code: https://github.com/adslabcuhk/elect
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