
ELECT: Enabling Erasure Coding Tiering for

LSM-tree-based Storage

Yanjing Ren1, Yuanming Ren1, Xiaolu Li2, Yuchong Hu2, Jingwei Li3, Patrick P. C. Lee1

1The Chinese University of Hong Kong
2Huazhong University of Science and Technology

3University of Electronic Science and Technology of China

USENIX FAST 2024

1

Storage Tiering

➢Storage tiering balances the trade-off between access

performance and storage persistence

• Hot tier: high performance but limited storage space

• Cold tier: abundant storage space but lower performance

2

Cloudflare CDN AWS Cloud Volumes

Storage Tiering

➢A primary use case of storage tiering: edge-cloud storage

• IoT applications will generate over 79.4 ZB data in 2025 [*]

➢Edge storage mainly builds on distributed key-value (KV) stores

➢Our goal: Extend a distributed KV store with storage tiering for

edge-cloud and general tiered storage environments

3[*] https://blogs.idc.com/2019/11/04/how-you-contribute-to-todays-growing-datasphere-and-its-enterprise-impact/

Edge Storage Cloud Storage

In
te

rn
et

Io
T

D
ev

ic
es

Distributed KV Store

➢Use Cassandra as an example for edge storage

• Cassandra is decentralized, high-performance, and fault-tolerant

4

Disk

Mem

L𝟎

L𝟏

Lℓ

K1 K0 K5
N1

N0

N1

N2

N3

N4

N5

Hash ring

K0 K5 K4
N0

Data distribution

K2 K1 K0
N2

K0 K1

K2

K3K4

K5

Replication

group

LSM-Tree

Data

<K, V>

Compaction⋅
⋅

⋅

⋯

Metadata

WAL

ImmuT MemT

Flush

⋯

⋯
SSTable Internal KV storage via

Log-structured Merge

tree (LSM-tree)

KV partitioning via

consistent hashing

➢Drawback: Replication has high storage overhead

Erasure Coding

➢ (n, k) Reed-Solomon (RS) codes:

• Encode k data chunks to n-k parity chunks

• Each collection of n data/parity chunks forms a coding group

• With a redundancy of n/k, any k out of n chunks can recover lost data

➢Compared with replication, erasure coding

• Saves significant storage overhead

• Incurs higher degraded read and full-node recovery overhead

➢Can we maintain storage efficiency via erasure coding, while

preserving high performance, in tiered storage?

5

Skewed Access Patterns

➢Practical KV workloads have skewed access patterns

6

10-node Cassandra cluster

- Load 100M 1-KiB KV pairs

- Issue 1M reads

- Keys accessed under Zipf (0.99)

• 56.2% of SSTables are stored in L4, but only have 10.2% of accesses

• Only 18.2% of SSTables in L4 are accessed

Our Contributions

➢ Extends LSM-tree with hybrid redundancy

• Replicates hot KV pairs and erasure-codes cold KV pairs in hot tier

• Offloads (selectively) cold KV pairs to cold tier for further hot-tier storage savings

➢ Key techniques

• LSM-tree-based redundancy transitioning

• Hotness-aware redundancy transitioning and cold-data offloading

• Tunable configuration for balancing storage-performance trade-off

➢ Results: 56.1% less hot-tier storage overhead than replication, with similar

normal read/write performance
7

ELECT: a distributed LSM-tree-based KV store that

enables erasure coding tiering

Design Considerations

➢Q1: At what granularity should KV pairs be encoded?

➢Q2: Should erasure coding be performed on or off the write path?

➢Q3: How should skewed access patterns be addressed?

➢Q4: How should the access overhead in the cold tier be

mitigated?

➢Q5: How should ELECT address the trade-off between storage

savings and access performance?

8

Design Overview

9

K1 K0 K5
N1

N0

N1

N2

N3

N4

N5

Hash ring

K0 K5 K4
N0

LSM-Tree

Data

Disk

Mem
<K, V>

Compaction⋅
⋅

⋅

⋯L𝟎

Metadata

WAL

ImmuT MemT

Flush

⋯

⋯

L𝟏

Lℓ

Data distribution

K2 K1 K0
N2

K0 K1

K2

K3K4

K5

SSTable

Redundancy transitioning for

last LSM-tree level

Hotness-aware offloading

Tunable configuration of storage-performance trade-off

Cloud Storage

LSM-tree-based Redundancy Transitioning

➢Q1: At what granularity should KV pairs be encoded?

➢Decoupled replication management [DEPART, FAST’22; Tebis, EuroSys’22]:

• Each node separates R replicas into a primary LSM-tree and R-1

secondary LSM-trees → facilitates secondary replica removal
10

Parity SSTable

Apply cross-encoding to SSTables in last LSM-tree level

LSM-tree-based Redundancy Transitioning

➢Q2: Should erasure coding be performed on or off the write path?

➢Decentralized parity node selection:

• Maintains load balancing and fault tolerance for parity SSTables with

decentralized placement decisions
11

Parity SSTable

Apply erasure coding offline

Leader parity node

encodes k data SSTables

into m parity SSTables

Secondary replica removal

based on key list

Hotness Awareness

➢Q3: How should skewed access patterns be addressed?

• Sort last-level SSTables by access frequency

➢Q4: How should the access overhead in the cold tier be mitigated?

• Offload parity SSTables with long lifetime

• Offload data SSTables with low access frequency and long lifetime

12

Hotness-aware redundancy transitioning

Access frequency
Higher Lower

Selected for redundancy transitioning

and data offloading

Balancing Storage-Performance Trade-off

➢Q5: How should ELECT address the trade-off between storage

savings and access performance?

• Quantify storage overhead and control how many SSTables are encoded

and offloaded in a step-by-step manner

13

Control redundancy transitioning and cold-data offloading with

a user-specified storage saving target 𝜶

Storage saving target 𝛼0 1

Redundancy

Transitioning

Offloading of

parity SSTables
Offloading of

data SSTablesHigh access

performance

High

storage saving

Experimental Setup

➢Alibaba Cloud in an edge-cloud setting:

• 12 instances (10 edge nodes + 2 client nodes) with 3 Gb/s connectivity

• Alibaba Object Storage in a different region as cold-tier

• Edge-to-edge: 1ms; edge-to-cloud: 45ms

• Workloads: YCSB 0.17.0, 1-KiB KV pairs, Zipfian distribution (0.99)

• Default settings: 3-way replication, (6,4) encoding, storage saving target

𝛼 = 0.6, write consistency level ALL, read consistency level ONE

➢Compare Cassandra (v4.1.0) and ELECT

• Average over 5 runs and 95% confidence interval under Student’s t-dist

➢Summary of results: ELECT saves storage overhead of

Cassandra while maintaining high performance in normal mode
14

YCSB Core Workloads

➢ ELECT achieves 56.1% edge storage saving from Cassandra

• 39.1% overall storage savings (in both edge and cloud)

➢ ELECT outperforms Cassandra in workload E (scan-intensive) by 2.84x due

to decoupled replication management

• Similar throughput for other workloads (up to 3% differences)

• Note that the improvement is less on Chameleon Cloud
15

Individual KV Operations

➢ELECT maintains performance in normal mode, but has high

latency in reads in degraded mode

• Due to retrieval of parity SSTables from the cold tier

• On Chameleon Cloud, the overhead is reduced from 5x to 1.2x

16

Performance Breakdown

➢Redundancy transitioning and cold-data

offloading have long processing time

• Performed offline with limited overhead

• ELECT maintains write performance as

Cassandra

17

Average latency of processing 1MiB of writes/reads and

95% confidence interval under Student’s t-distribution

Full-node Recovery

➢ELECT incurs 50% higher recovery time than Cassandra

• ELECT retrieves data and parity SSTables to decode lost SSTables in

primary LSM-tree

• Recovery performance is network-bounded

18

Impact of 𝛼

➢ELECT reduces edge storage overhead by 9.2 - 86% over

Cassandra when 𝛼 increases from 0.1 to 0.9

• ~4% difference from 𝛼 due to metadata overhead

➢ELECT maintains read latency in normal mode before offloading

data SSTables (i.e., 𝛼 ≤ 0.6)
19

Consistency and Scalability

➢ELECT maintains consistent read performance as Cassandra

➢ELECT has 4% (5.7%) less normal read (write) throughput than

Cassandra due to redundancy transitioning and offloading

➢More results in our paper: resource utilization, impact of KV sizes,

coding parameters
20

Conclusions

➢ELECT: a distributed KV store that enables erasure coding tiering

• LSM-tree-based redundancy transitioning (with decentralized parity node

selection)

• Hotness-aware redundancy transitioning and cold data offloading

• Tunable configuration for balancing storage-performance trade-off

➢Source code: https://github.com/adslabcuhk/elect

21

https://github.com/adslabcuhk/elect

	Slide 1: ELECT: Enabling Erasure Coding Tiering for LSM-tree-based Storage
	Slide 2: Storage Tiering
	Slide 3: Storage Tiering
	Slide 4: Distributed KV Store
	Slide 5: Erasure Coding
	Slide 6: Skewed Access Patterns
	Slide 7: Our Contributions
	Slide 8: Design Considerations
	Slide 9: Design Overview
	Slide 10: LSM-tree-based Redundancy Transitioning
	Slide 11: LSM-tree-based Redundancy Transitioning
	Slide 12: Hotness Awareness
	Slide 13: Balancing Storage-Performance Trade-off
	Slide 14: Experimental Setup
	Slide 15: YCSB Core Workloads
	Slide 16: Individual KV Operations
	Slide 17: Performance Breakdown
	Slide 18: Full-node Recovery
	Slide 19: Impact of alpha
	Slide 20: Consistency and Scalability
	Slide 21: Conclusions

