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Storage Tiering

» Storage tiering balances the trade-off between access
performance and storage persistence

« Hot tier: high performance but limited storage space
« Cold tier: abundant storage space but lower performance
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Storage Tiering

» A primary use case of storage tiering. edge-cloud storage
 |oT applications will generate over 79.4 ZB data in 2025 I’
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» Edge storage mainly builds on distributed key-value (KV) stores

» Our goal: Extend a distributed KV store with storage tiering for
edge-cloud and general tiered storage environments

[l https://blogs.idc.com/2019/11/04/how-you-contribute-to-todays-growing-datasphere-and-its-enterprise-impact/



Distributed KV Store

» Use Cassandra as an example for edge storage
« Cassandra is decentralized, high-performance, and fault-tolerant
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» Drawback: Replication has high storage overhead



Erasure Coding

» (n, k) Reed-Solomon (RS) codes:
* Encode k data chunks to n-k parity chunks
« Each collection of n data/parity chunks forms a coding group
« With a redundancy of n/k, any k out of n chunks can recover lost data

» Compared with replication, erasure coding
« / Saves significant storage overhead
« X Incurs higher degraded read and full-node recovery overhead

» Can we maintain storage efficiency via erasure coding, while
preserving high performance, in tiered storage?



Skewed Access Patterns

» Practical KV workloads have skewed access patterns
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10-node Cassandra cluster

- Load 100M 1-KiB KV pairs
- Issue 1M reads
- Keys accessed under Zipf (0.99)
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* 56.2% of SSTables are stored in L,, but only have 10.2% of accesses
* Only 18.2% of SSTables in L, are accessed



Our Contributions

ELECT: a distributed LSM-tree-based KV store that
enables erasure coding tiering

» Extends LSM-tree with hybrid redundancy
* Replicates hot KV pairs and erasure-codes cold KV pairs in hot tier
» Offloads (selectively) cold KV pairs to cold tier for further hot-tier storage savings

» Key techniques
* LSM-tree-based redundancy transitioning
« Hotness-aware redundancy transitioning and cold-data offloading
« Tunable configuration for balancing storage-performance trade-off

» Results: 56.1% less hot-tier storage overhead than replication, with similar
normal read/write performance



Design Considerations

» Q1: At what granularity should KV pairs be encoded?
» Q2: Should erasure coding be performed on or off the write path?
» Q3: How should skewed access patterns be addressed?

» Q4: How should the access overhead in the cold tier be
mitigated?

» Q5: How should ELECT address the trade-off between storage
savings and access performance?



Design Overview

Tunable configuration of storage-performance trade-off

| 1
Kg N0 K, i [lmmuT]«[ MemT ]h <K, V> , :
i s yMem —— T _ _l__i Hotness-aware offloading
N , N, NolK, ~ K,|JI i
T : :
Ks Hash ring \ Ky B —— i i
Y Np[K, 0 Kgf | !
N, N, i
P ———— :
NG JTe M

Data distribution —
Redundancy transitioning for

last LSM-tree level




LSM-tree-based Redundancy Transitioning

» Q1: At what granularity should KV pairs be encoded?

[ Apply cross-encoding to SSTables in last LSM-tree level }
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» Decoupled replication management [DEPART, FAST'22; Tebis, EuroSys'22]:

« Each node separates R replicas into a primary LSM-tree and R-1
secondary LSM-trees - facilitates secondary replica removal
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LSM-tree-based Redundancy Transitioning

» Q2: Should erasure coding be performed on or off the write path?

[ Apply erasure coding offline ]
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» Decentralized parity node selection:

« Maintains load balancing and fault tolerance for parity SSTables with
decentralized placement decisions



Hotness Awareness

» Q3: How should skewed access patterns be addressed?
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Hotness-aware redundancy transitioning }
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« Sort last-level SSTables by access frequency

. . D'@"C]i ___— Selected for redundancy transitioning
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» Q4: How should the access overhead in the cold tier be mitigated?
« Offload parity SSTables with long lifetime
« Offload data SSTables with low access frequency and long lifetime
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Balancing Storage-Performance Trade-off

» Q5: How should ELECT address the trade-off between storage
savings and access performance?

Control redundancy transitioning and cold-data offloading with
a user-specified storage saving target a

« Quantify storage overhead and control how many SSTables are encoded
and offloaded in a step-by-step manner

Redundancy Offloading of Offloading of
Transitioning | parity SSTables data SSTables ‘ High
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High access
performance
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Experimental Setup

» Alibaba Cloud in an edge-cloud setting:
« 12 instances (10 edge nodes + 2 client nodes) with 3 Gb/s connectivity

« Alibaba Object Storage in a different region as cold-tier
« Edge-to-edge: 1ms; edge-to-cloud: 45ms
 Workloads: YCSB 0.17.0, 1-KiB KV pairs, Zipfian distribution (0.99)

« Default settings: 3-way replication, (6,4) encoding, storage saving target
a = 0.6, write consistency level ALL, read consistency level ONE

» Compare Cassandra (v4.1.0) and ELECT
» Average over 5 runs and 95% confidence interval under Student’s t-dist

» Summary of results: ELECT saves storage overhead of
Cassandra while maintaining high performance in normal mode
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YCSB Core Workloads

o4 300 S%3 | |Cloud + 3i[] Cassandra ] ELECT

G I Edge <

& 200 1852 32 2 8 L3

o 100 £ .

© o

D Cassandra ELECT B C D E F
(a) Storage size (b) Throughput

» ELECT achieves 56.1% edge storage saving from Cassandra
« 39.1% overall storage savings (in both edge and cloud)

» ELECT outperforms Cassandra in workload E (scan-intensive) by 2.84x due
to decoupled replication management
« Similar throughput for other workloads (up to 3% differences)
* Note that the improvement is less on Chameleon Cloud
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Individual KV Operations
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» ELECT maintains performance in normal mode, but has high
latency in reads in degraded mode
* Due to retrieval of parity SSTables from the cold tier
« On Chameleon Cloud, the overhead is reduced from 5x to 1.2x
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Performance Breakdown

Steps Cassandra ELECT
Write
WAL 21.32 £ 0.76 ms 21.84 + 0.28 ms

MemTable 37.98 £ 1.73 ms 40.84 £+ 0.13 ms

» Redundancy transitioning and cold-data P 695 10 e 170 L0 TE

offloading have Iong processing time Com].)z.icti.on 205.87+ 2.21 ms 159.03 :I:3.23r_ns
Transitioning - 239.05 £ 2.691s
 Performed offline with limited overhead Offloading — d162-84 + 12.05ms
Read in normal mode
 ELECT maintains write performance as Cache 1705+£027ms | 1835:+0.34ms
MemTable 20.78 = 0.95 ms 23.20 £ 0.61 ms
Cassandra SSTables | 182.69 +2.53ms | 177.55 = 0.60 ms
Read in degraded mode
Cache 17.41 = 0.33 ms 18.75 = 0.18 ms

MemTable 21.54 £ 0.66 ms 23.38 £ 0.46 ms
SSTables 184.39 + 1.67 ms 184.14 = 2.35ms
Recovery - 1957.64 + 34.16 ms

Average latency of processing 1MiB of writes/reads and
95% confidence interval under Student’s t-distribution
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Full-node Recovery

o0 et . & [ Steps Time
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» ELECT incurs 50% higher recovery time than Cassandra

 ELECT retrieves data and parity SSTables to decode lost SSTables in
primary LSM-tree

* Recovery performance is network-bounded



Impact of «

Cassandra ELECT-Edge ==@== ELECT-Overall
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» ELECT reduces edge storage overhead by 9.2 - 86% over
Cassandra when « increases from 0.1 to 0.9

« ~4% difference from a due to metadata overhead

» ELECT maintains read latency in normal mode before offloading
data SSTables (i.e., a < 0.6)
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Consistency and Scalability

[] Cassandra [l]l ELECT Cassandra ==@== ELECT

%) L Q s 274 2.84 300 o 150
i s~ N8 8 g g - 2.5 2.35 o o
30 = 2 8§ & & T 179188 Q 200 S 100
o 20 ‘l O - =
< [ L o
= j—— — — — g —— — — 3 0 =
o 1 2 3 1 2 3 E 8 16 32 64 128 256 g 8 16 32 64 128 256
= Read consistency level Read consistency level [z # simulated clients — # simulated clients

(a) Read throughput (b) 99th-percentile latency (a) Reads in normal mode (b) Writes in normal mode

» ELECT maintains consistent read performance as Cassandra

» ELECT has 4% (5.7%) less normal read (write) throughput than
Cassandra due to redundancy transitioning and offloading

» More results in our paper: resource utilization, impact of KV sizes,
coding parameters
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Conclusions

» ELECT: a distributed KV store that enables erasure coding tiering

« LSM-tree-based redundancy transitioning (with decentralized parity node
selection)

« Hotness-aware redundancy transitioning and cold data offloading
« Tunable configuration for balancing storage-performance trade-off

» Source code: https://github.com/adslabcuhk/elect

ARTIFACT ARTIFACT ARTIFACT
EVALUATED EVALUATED EVALUATED

AVAILABLE REPRODUCED
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