ELECT: Enabling Erasure Coding Tiering for
LSM-tree-based Storage

Yanjing Ren?, Yuanming Ren?, Xiaolu Li?, Yuchong Hu?, Jingwei Li3, Patrick P. C. Leel

The Chinese University of Hong Kong
Huazhong University of Science and Technology
3University of Electronic Science and Technology of China

USENIX FAST 2024

Storage Tiering

» Storage tiering balances the trade-off between access
performance and storage persistence

« Hot tier: high performance but limited storage space
« Cold tier: abundant storage space but lower performance

aws

Cloud Volumes ONTAP

Y

Hot <« @ P Cold

Smart Tiered Cache

Cloudflare CDN AWS Cloud Volumes

Storage Tiering

» A primary use case of storage tiering. edge-cloud storage
 |oT applications will generate over 79.4 ZB data in 2025 I’

@ o
) — -
O 3
> £
2 -
S -—
@ Edge Storage Cloud Storage

» Edge storage mainly builds on distributed key-value (KV) stores

» Our goal: Extend a distributed KV store with storage tiering for
edge-cloud and general tiered storage environments

[l https://blogs.idc.com/2019/11/04/how-you-contribute-to-todays-growing-datasphere-and-its-enterprise-impact/

Distributed KV Store

» Use Cassandra as an example for edge storage
« Cassandra is decentralized, high-performance, and fault-tolerant

KV partitioning via
consistent hashing

al’s

No

L IS
\

\,
\\ ~o
AY

. -\\
Hashring %)
1
Y.

N3

Replication
group

\
\
\
No [\‘K (N Ky
\

KZ»%T\b

\ \
Nl KI\\ \J\<5
\

N, | K, \‘J&;‘

Data distribution

R ittt ilyplestesieslentsiei ey N

{ [ImmuT]«[MemT]« <K, V>
I Mem
= Fms_h_______l_

o L1 - WAL
=l

= e e e e e b e e #

Internal KV storage via
1| Log-structured Merge

1

1

1

1

1

1

i .

i . SSTable Compaction
I L
\

Data Metadata

N . /| tree (LSM-tree)

LSM-Tree

» Drawback: Replication has high storage overhead

Erasure Coding

» (n, k) Reed-Solomon (RS) codes:
* Encode k data chunks to n-k parity chunks
« Each collection of n data/parity chunks forms a coding group
« With a redundancy of n/k, any k out of n chunks can recover lost data

» Compared with replication, erasure coding
« / Saves significant storage overhead
« X Incurs higher degraded read and full-node recovery overhead

» Can we maintain storage efficiency via erasure coding, while
preserving high performance, in tiered storage?

Skewed Access Patterns

» Practical KV workloads have skewed access patterns

—
~N O
a3

100+

I_
—

L2 B L3] L4
A

O
Te}

10-node Cassandra cluster

- Load 100M 1-KiB KV pairs
- Issue 1M reads
- Keys accessed under Zipf (0.99)

~
63

Fraction (%)
N O
o g o
39.7
9.2
33.7
10.2
Cum. access (%)
N
O O

46.9

o
n 9

S o 0 25 50 75 100
SSTables # accesses # SSTables (%)
(a) Statistics across levels (b) Access distributions in L4

* 56.2% of SSTables are stored in L,, but only have 10.2% of accesses
* Only 18.2% of SSTables in L, are accessed

Our Contributions

ELECT: a distributed LSM-tree-based KV store that
enables erasure coding tiering

» Extends LSM-tree with hybrid redundancy
* Replicates hot KV pairs and erasure-codes cold KV pairs in hot tier
» Offloads (selectively) cold KV pairs to cold tier for further hot-tier storage savings

» Key techniques
* LSM-tree-based redundancy transitioning
« Hotness-aware redundancy transitioning and cold-data offloading
« Tunable configuration for balancing storage-performance trade-off

» Results: 56.1% less hot-tier storage overhead than replication, with similar
normal read/write performance

Design Considerations

» Q1: At what granularity should KV pairs be encoded?
» Q2: Should erasure coding be performed on or off the write path?
» Q3: How should skewed access patterns be addressed?

» Q4: How should the access overhead in the cold tier be
mitigated?

» Q5: How should ELECT address the trade-off between storage
savings and access performance?

Design Overview

Tunable configuration of storage-performance trade-off

| 1
Kg N0 K, i [lmmuT]«[MemT]h <K, V> , :
i s yMem —— T _ _l__i Hotness-aware offloading
N , N, NolK, ~ K,|JI i
T : :
Ks Hash ring \ Ky B —— i i
Y Np[K, 0 Kgf | !
N, N, i
P ———— :
NG JTe M

Data distribution —
Redundancy transitioning for

last LSM-tree level

LSM-tree-based Redundancy Transitioning

» Q1: At what granularity should KV pairs be encoded?

[Apply cross-encoding to SSTables in last LSM-tree level }

Replication group

L
- = = I —_—
=___ q_h= h-h

Key list N, N N, = N,
*
S |a Primary Secondary Secondary

LSM-trees

\ LSM-trees LSM-trees
= = - .
Leader parity node = T~ ~~. EEMeta Parity node
N, Encoding (S »|P -H» P’ N,
SSTables from N,, N,, N, Parity SSTable

» Decoupled replication management [DEPART, FAST'22; Tebis, EuroSys'22]:

« Each node separates R replicas into a primary LSM-tree and R-1
secondary LSM-trees - facilitates secondary replica removal

10

LSM-tree-based Redundancy Transitioning

» Q2: Should erasure coding be performed on or off the write path?

[Apply erasure coding offline]

— — —
____--- - — _____.
= —

. Replication grou
Secondary replica removal F P Broup iszzo--—--

based on key list Ke: list N, N, - ™
S |a UL Secondary Secondary

LSM-trees LSM-trees LSL\'/I-trees
Leader parity node Leader parity node ===~ @ ?’;rity node
encodes k data SSTables [~|n, Encoding [» (P) mepr (7 N,
Into m parity SSTables — I
SSTables from N,, N,, N, Parity SSTable

» Decentralized parity node selection:

« Maintains load balancing and fault tolerance for parity SSTables with
decentralized placement decisions

Hotness Awareness

» Q3: How should skewed access patterns be addressed?

Ve

Hotness-aware redundancy transitioning }

S

« Sort last-level SSTables by access frequency

. . D'@"C]i ___— Selected for redundancy transitioning
: A and data offloading

Access fre'quency

» Q4: How should the access overhead in the cold tier be mitigated?
« Offload parity SSTables with long lifetime
« Offload data SSTables with low access frequency and long lifetime

12

Balancing Storage-Performance Trade-off

» Q5: How should ELECT address the trade-off between storage
savings and access performance?

Control redundancy transitioning and cold-data offloading with
a user-specified storage saving target a

« Quantify storage overhead and control how many SSTables are encoded
and offloaded in a step-by-step manner

Redundancy Offloading of Offloading of
Transitioning | parity SSTables data SSTables ‘ High

I
. storage savin
0 Storage saving target a 1 J J

High access
performance

13

Experimental Setup

» Alibaba Cloud in an edge-cloud setting:
« 12 instances (10 edge nodes + 2 client nodes) with 3 Gb/s connectivity

« Alibaba Object Storage in a different region as cold-tier
« Edge-to-edge: 1ms; edge-to-cloud: 45ms
 Workloads: YCSB 0.17.0, 1-KiB KV pairs, Zipfian distribution (0.99)

« Default settings: 3-way replication, (6,4) encoding, storage saving target
a = 0.6, write consistency level ALL, read consistency level ONE

» Compare Cassandra (v4.1.0) and ELECT
» Average over 5 runs and 95% confidence interval under Student’s t-dist

» Summary of results: ELECT saves storage overhead of
Cassandra while maintaining high performance in normal mode

14

YCSB Core Workloads

o4 300 S%3 | |Cloud + 3i[] Cassandra] ELECT

G I Edge <

& 200 1852 32 2 8 L3

o 100 £ .

© o

D Cassandra ELECT B C D E F
(a) Storage size (b) Throughput

» ELECT achieves 56.1% edge storage saving from Cassandra
« 39.1% overall storage savings (in both edge and cloud)

» ELECT outperforms Cassandra in workload E (scan-intensive) by 2.84x due
to decoupled replication management
« Similar throughput for other workloads (up to 3% differences)
* Note that the improvement is less on Chameleon Cloud

15

Individual KV Operations

é“ 2] |] Cassandra] ELECT E_::‘;“ 61 | |Cassandra [l ELECT

g | o & “ & T4

T 1] = = A 2 o)

N Nol 2 3 & 3

TEn . c_g S S = S

Z Read Write Scan Update =2 Read Write Scan Update
(a) Normal mode (b) Degraded mode

» ELECT maintains performance in normal mode, but has high
latency in reads in degraded mode
* Due to retrieval of parity SSTables from the cold tier
« On Chameleon Cloud, the overhead is reduced from 5x to 1.2x

16

Performance Breakdown

Steps Cassandra ELECT
Write
WAL 21.32 £ 0.76 ms 21.84 + 0.28 ms

MemTable 37.98 £ 1.73 ms 40.84 £+ 0.13 ms

» Redundancy transitioning and cold-data P 695 10 e 170 L0 TE

offloading have Iong processing time Com].)z.icti.on 205.87+ 2.21 ms 159.03 :I:3.23r_ns
Transitioning - 239.05 £ 2.691s
 Performed offline with limited overhead Offloading — d162-84 + 12.05ms
Read in normal mode
 ELECT maintains write performance as Cache 1705+£027ms | 1835:+0.34ms
MemTable 20.78 = 0.95 ms 23.20 £ 0.61 ms
Cassandra SSTables | 182.69 +2.53ms | 177.55 = 0.60 ms
Read in degraded mode
Cache 17.41 = 0.33 ms 18.75 = 0.18 ms

MemTable 21.54 £ 0.66 ms 23.38 £ 0.46 ms
SSTables 184.39 + 1.67 ms 184.14 = 2.35ms
Recovery - 1957.64 + 34.16 ms

Average latency of processing 1MiB of writes/reads and
95% confidence interval under Student’s t-distribution

17

Full-node Recovery

o0 et . & [Steps Time
?.E?400 .3 5 R B [Copy 13.54+ 0.22s
=200 2 2 = . Retrieve | 373.98+ 11.61s
o il I . Decode | 13.34 + 0.48 s
10GIB 20 GiB 30 GiB

» ELECT incurs 50% higher recovery time than Cassandra

 ELECT retrieves data and parity SSTables to decode lost SSTables in
primary LSM-tree

* Recovery performance is network-bounded

Impact of «

Cassandra ELECT-Edge ==@== ELECT-Overall

m 30 a 5 2]
S S S E4
[31 5>
° 10/ I 32
¥ 2, e
£ 0103050709 0103050709 01030507 0.9
(04 x x
(a) Storage size (b) Reads in nor- (c¢) Reads in de-
mal mode graded mode

» ELECT reduces edge storage overhead by 9.2 - 86% over
Cassandra when « increases from 0.1 to 0.9

« ~4% difference from a due to metadata overhead

» ELECT maintains read latency in normal mode before offloading
data SSTables (i.e., a < 0.6)

19

Consistency and Scalability

[] Cassandra [l]l ELECT Cassandra ==@== ELECT

%) L Q s 274 2.84 300 o 150
i s~ N8 8 g g - 2.5 2.35 o o
30 = 2 8§ & & T 179188 Q 200 S 100
o 20 ‘l O - =
< [L o
= j—— — — — g —— — — 3 0 =
o 1 2 3 1 2 3 E 8 16 32 64 128 256 g 8 16 32 64 128 256
= Read consistency level Read consistency level [z # simulated clients — # simulated clients

(a) Read throughput (b) 99th-percentile latency (a) Reads in normal mode (b) Writes in normal mode

» ELECT maintains consistent read performance as Cassandra

» ELECT has 4% (5.7%) less normal read (write) throughput than
Cassandra due to redundancy transitioning and offloading

» More results in our paper: resource utilization, impact of KV sizes,
coding parameters

20

Conclusions

» ELECT: a distributed KV store that enables erasure coding tiering

« LSM-tree-based redundancy transitioning (with decentralized parity node
selection)

« Hotness-aware redundancy transitioning and cold data offloading
« Tunable configuration for balancing storage-performance trade-off

» Source code: https://github.com/adslabcuhk/elect

ARTIFACT ARTIFACT ARTIFACT
EVALUATED EVALUATED EVALUATED

AVAILABLE REPRODUCED

21

https://github.com/adslabcuhk/elect

	Slide 1: ELECT: Enabling Erasure Coding Tiering for LSM-tree-based Storage
	Slide 2: Storage Tiering
	Slide 3: Storage Tiering
	Slide 4: Distributed KV Store
	Slide 5: Erasure Coding
	Slide 6: Skewed Access Patterns
	Slide 7: Our Contributions
	Slide 8: Design Considerations
	Slide 9: Design Overview
	Slide 10: LSM-tree-based Redundancy Transitioning
	Slide 11: LSM-tree-based Redundancy Transitioning
	Slide 12: Hotness Awareness
	Slide 13: Balancing Storage-Performance Trade-off
	Slide 14: Experimental Setup
	Slide 15: YCSB Core Workloads
	Slide 16: Individual KV Operations
	Slide 17: Performance Breakdown
	Slide 18: Full-node Recovery
	Slide 19: Impact of alpha
	Slide 20: Consistency and Scalability
	Slide 21: Conclusions

