
Santa Clara, CA

Combining Buffered I/O and Direct I/O
in Distributed File Systems
Yingjin Qian1, Marc-André Vef2, Patrick Farrell3, Andreas Dilger3, Xi Li1, Shuichi Ihara1,
Yinjin Fu4, Wei Xue5, André Brinkmann2

1Data Direct Networks (DDN)
2Johannes Gutenberg University Mainz
3Whamcloud Inc.
4Sun Yat-Sen University
5Tsinghua University & Qinghai University 02/27/24

Santa Clara, CA 02/27/24Combining Buffered I/O and Direct I/O in Distributed File Systems 3

Motivation

§ Linux’s default I/O mode is buffered I/O utilizing the page cache
§ The alternative direct I/O bypasses the Linux page cache and can be more beneficial

Local ldiskfs performance for various I/O sizes

4K 16K 64K 256K 1M 4M 16M 64M 256M

I/O req est size

0

4000

8000

12000

16000

20000

24000

I/
O
 t
h
r
o

g
h
p

t
 (
M
iB
/s
)

BIO write

DIO write

BIO read

DIO read

Santa Clara, CA 02/27/24Combining Buffered I/O and Direct I/O in Distributed File Systems 4

Motivation

§ Various challenges hinder higher direct I/O adoption
§ Users tend to use the familiar I/O mode
§ Alignment constraints can be difficult to accommodate
§ It is often unclear which I/O mode performs better

Local ldiskfs performance for various I/O sizes

4K 16K 64K 256K 1M 4M 16M 64M 256M

I/O req est size

0

4000

8000

12000

16000

20000

24000

I/
O
 t
h
r
o

g
h
p

t
 (
M
iB
/s
)

BIO write

DIO write

BIO read

DIO read

Santa Clara, CA 02/27/24Combining Buffered I/O and Direct I/O in Distributed File Systems 5

Goals and contributions

We propose combining the benefits of buffered I/O and direct I/O

Key points and contributions:
§ Transparent I/O mode decision within the file system
§ Decision are based on I/O size, lock contention, and cache usage
§ Additional optimizations, e.g., adaptive server-side write-back, and others
§ Implemented in the Lustre parallel file system

Santa Clara, CA 02/27/24Combining Buffered I/O and Direct I/O in Distributed File Systems 6

Background The cost of page caching in buffered I/O

§ Only about 20% of the overall time is spent copying data
§ More than 40% of the overall time is spent on page cache management

Ex(4 BeeGFS L)s(re
0

25

50

75

100

T
im
e
 o
v
e
r

e
a
d
 p
e
r
c
e
n
(
a
g
e

Da(a copy Page cac e O(ers

0

2000

4000

6000

8000

I/
O
 (

r
o
)
g

p
)
(
 (
M
iB
/s
)

BIO

DIO

I/O time breakdown for buffered I/O writes (16 MiB I/O size) via perf

Santa Clara, CA 02/27/24Combining Buffered I/O and Direct I/O in Distributed File Systems 7

Background Lustre basic architecture

Terminology
§ MDS: Metadata Server

ØProcesses metadata requests

§ MDT: Metadata Target
ØStores metadata content
ØManages file access

§ OSS: Object Storage Server
ØProcesses I/O requests

§ OST: Object Storage Target
ØStores data content
ØFile sizes, blocks count, mtime

Lustre clientLustre clientLustre clients

HPC network
MGS

HAMDS MDS

MGT

OSSOSS

OST

HA

OSTOST

RA
ID

po

ol

RA
ID

po

ol

RA
ID

po

ol

OSSOSS

OST

HA

OSTOST

RA
ID

po

ol

RA
ID

po

ol

RA
ID

po

ol

MDT MDTMDT

RA
ID

po

ol

RA
ID

po

ol

RA
ID

po

ol

RA
ID

po

ol

Metadata

ManagementCompute nodes

Data

Santa Clara, CA 02/27/24Combining Buffered I/O and Direct I/O in Distributed File Systems 8

Background Lustre Distributed Lock Manager (DLM)

§ Lustre DLM is used for file synchronization and metadata access
§ A lock corresponds to a certain resource ID in a namespace (NS)

§ Each Lustre target (OST, MDT, MGT) has a DLM namespace
§ Each Lustre target has full authority about its namespace

§ Clients have a copy of a server lock for locally-accessed resources (shadow namespaces)

4 LDLM: LOCK MANAGER 25

Type Field Description

is this a client-side lock tree?

__u32

resources without any locks

int number of unused resources

atomic_t
__u64

ldlm_side_t ns_client
struct list_head *ns_hash hash table for all resources in this namespace

ns_refcount number of resources in the namespace

struct list_head ns_list_chain circular list of all namespaces

struct list_head ns_unused_list
ns_nr_unused
ns_locks number of locks in this namespace

ns_resources number of resources in this namespace

ldlm_res_policy ns_policy callback function when you have a lock request with
intent

Figure 7: The fields of ldlm namespace data structure.

Some additional notes on ns_client: Each client only needs access to some por-
tions of a namespace, but not all of them. So each client carries a so-called shadow
namespace. ns_client is a flag that says this namespace is for client only and is not
complete (see Figure 8 for an illustration). ns_hash is a hash table for all resources
in this namespace. Notice that this is a pointer to the linked list, not just the linked list
itself.

Client 1 NS
Client 2 NS

Server NS

Lock A

Lock B

Lock C

Lock A

Lock B
Lock C

Figure 8: Shadow namespaces on clients.

4.2 Resource

A lock is for protecting resources. In Lustre, the most common type of resources
are files. A local lock refers to a lock that is private, known only to the local entity.
Correspondingly, a global lock is visible to the others. Note that “global” in this case
may be a misnomer – it doesn’t mean the lock is actually broadcast and known by all
parties. In Lustre, it means you have a client copy of the lock, but server also got a
copy through client request.10

10The lock on the server may be called the master lock.

UNDERSTANDING LUSTRE INTERNALS

Shadow namespaces on clients
Wang et al. "Understanding Lustre filesystem internals.”, 2009

Santa Clara, CA 02/27/24Combining Buffered I/O and Direct I/O in Distributed File Systems 11

Weighing I/O modes in Lustre

Areas of improvement:
§ Use best of both worlds in a given situation
§ Remove direct I/O alignment contraints
§ Improve many small file performance and reduce file fragmentation

Feature Abbreviation
Original Lustre vanilla

Unaligned direct I/O support -
Client-side I/O mode decision autoIO

Server-side write-back svrWB

Cross-file batching for
buffered writes XBatch

Delayed allocation delalloc

I/O case Buffered I/O Direct I/O
Small I/O size
High latency storage
Unaligned I/O
Large sequential I/O
Many running processes/nodes
System under memory pressure

Santa Clara, CA

4K 16K 64K 256K 1M 2M 4M 16M 64M 256M

I/O sizes

0

2

4

6

8

10

W
r
it
e
 t
h
r
o
u
g
h

u
t

(
G
iB
/s
)

Buffered I/O

(�_�	��< ���

_	�_������
�)
Direct I/O

(�_�	��≥
���_	�_������
�)

02/27/24Combining Buffered I/O and Direct I/O in Distributed File Systems 13

AutoIO

§ Automatic alignment of unaligned direct I/O
§ Primary I/O mode decision based on I/O size
§ Two I/O thresholds allow a decision window for

§ Lock contention
§ Memory pressure and low cache reusage
§ Default decision window: [32 KiB, 2 MiB)

DIO always
performs better

BIO always
performs better

Decision window

Feature Abbreviation
Unaligned direct I/O support -

Client-side I/O mode decision autoIO

Santa Clara, CA 02/27/24Combining Buffered I/O and Direct I/O in Distributed File Systems 14

I/O modes under lock contention

§ Lock contention workload: Strided I/O over 10 nodes
ØUnder extreme lock contention, direct I/O becomes beneficial earlier

4K 16K 64K 256K 1M 2M 4M 16M 64M 256M

I/O sizes

0

10

20

30

40

W
r
it
e
 t
h
r
o
u
g
h

u
t

(
G
iB
/s
)

Buffered I/O

(�_�	��< ���

_	�_������
�)
Direct I/O

(�_�	��≥
���_	�_������
�)

I/O throughput for various I/O sizes and I/O modes under lock contention

Santa Clara, CA 02/27/24Combining Buffered I/O and Direct I/O in Distributed File Systems 15

I/O modes under cache overusage

§ Over caching workload: Cached pages are not reused
ØUnder memory restrictions, direct I/O becomes beneficial earlier

4K 16K 64K 256K 1M 2M 4M 16M 64M 256M

I/O sizes

0

2

4

6

8

10

12

W
r
it
e
 t
h
r
o
u
g
h

u
t

(
G
iB
/s
)

Buffered I/O

(�_�	��< ���

_	�_������
�)
Direct I/O

(�_�	��≥
���_	�_������
�)

I/O throughput for various I/O sizes and I/O modes under cache over usage

Santa Clara, CA 02/27/24Combining Buffered I/O and Direct I/O in Distributed File Systems 17

Further optimizations

§ Server-side write-back
§ Vanilla Lustre uses write-through
ØLustre servers can switch to write-back at a threshold

§ Cross-file batching for buffered writes
§ Vanilla batches dirty pages into large bulk RPCs (1 MiB)
ØThis can improve network and disk efficiency
§ But, it can prolong flush operations of many small files
ØBatch dirty pages of multiple files into one large bulk RPC

§ Delayed allocation
§ Improves svrWB further to reduce file fragmentation
§ File fragmentation can be caused during strided writes to a single file from many clients
ØDelayed allocation collects and merges small and non-contiguous I/O requests

Feature Abbreviation
Server-side write-back svrWB

Cross-file batching for
buffered writes XBatch

Delayed allocation delalloc

Santa Clara, CA 02/27/24Combining Buffered I/O and Direct I/O in Distributed File Systems 19

Consistency and usage

Potential for consistency conflicts
§ Data regions from buffered and direct I/O can overlap
§ Unaligned direct I/O may need a file region cached on another node
§ DLM protects against such conflicts
ØNo impact on Lustre’s strong consistency guarantees
Usage and configuration options
§ All features and (most) individual thresholds are controlled via lctl
§ Enable autoIO: lctl set_param llite.*.bio_as_dio=1

§ Enable svrWB: lctl set_param osd-ldiskfs.*.writeback_max_io_kb=64

§ Refer to our Artifacts1 for further usage options

1https://zenodo.org/doi/10.5281/zenodo.10425915

https://zenodo.org/doi/10.5281/zenodo.10425915

Santa Clara, CA 02/27/24Combining Buffered I/O and Direct I/O in Distributed File Systems 21

Evaluation Test bed

§ Lustre 2.15.58 cluster with CentOS 8.7
§ 4 Meta Data Target (MDT)
§ 8 Object Storage Targets (OSTs)
§ Servers using DDN AI400X Appliance (20x Samsung 3.84 TiB NVMe, 4×IB-HDR100)
§ 32 client nodes using Intel Gold 5218 processor, 96 GiB DDR4 RAM, IB-HDR 100, 1 Gbps Ethernet

§ BeeGFS 7.4.0
§ Offers two client-side file cache modes
1. buffered (default): Write-back and read-ahead using static buffers
2. native: Relies on the Linux page cache - switches to direct I/O on a set I/O threshold (512 KiB)

§ OrangeFS 2.10.0
§ Offers two server-side I/O modes
1. alt-aio (default): Buffered asynchronous I/O
2. directio: Direct I/O mode

Kindly refer to our paper for further experiments

Santa Clara, CA

4K 16
K

64
K
25
6K 1M 4M 16

M
64
M
25
6M

I/O req est size

0

3

6

9

12

T
h
r
o

g
h
p

t
 (
G
iB
/s
)

4K 16
K

64
K
25
6K 1M 4M 16

M
64
M
25
6M

I/O request si)e

0

3

6

9

12

T
h
r
o
u
g
h
p
u
t
 (
G
iB
/s
)

Buffered I/O − (a illa

Direct I/O − (a illa

autoIO

§ Represents the main use case of autoIO: sequential I/O for a single process

02/27/24Combining Buffered I/O and Direct I/O in Distributed File Systems 22

Single process I/O streaming Lustre I/O throughput

Write Read

Santa Clara, CA 02/27/24Combining Buffered I/O and Direct I/O in Distributed File Systems 23

IO500 (10-node challenge) mdtest-hard

§ mdtest-hard generates many small files (3091 bytes in size) in a single directory
§ No impact of client-side autoIO: All I/O is buffered

Workload for 10 clients (16 proc each) across file systems and configurations
W)ite (hase Read (hase

0

50

100

150

200

250

300

m
d
t
e
s
t
-h
a
)
d
 I
/O
)
a
t
e

(
k
IO
P
S
)

O)an eFS − alt-aio

O)an eFS − di)ectio

BeeGFS − nati-e

BeeGFS − b,ffe)ed

L,st)e 1mnt − -anilla

L,st)e 1mnt − s-)WB

L,st)e 1mnt − s-)WB, XBatch

L,st)e 4mnts − -anilla

L,st)e 4mnts − s-)WB

L,st)e 4mnts − s-)WB, XBatch

Santa Clara, CA 02/27/24Combining Buffered I/O and Direct I/O in Distributed File Systems 24

IO500 (10-node challenge) mdtest-hard

§ mdtest-hard generates many small files (3091 bytes in size) in a single directory
§ No impact of client-side autoIO: All I/O is buffered

Workload for 10 clients (16 proc each) across file systems and configurations
W)ite (hase Read (hase

0

50

100

150

200

250

300

m
d
t
e
s
t
-h
a
)
d
 I
/O
)
a
t
e

(
k
IO
P
S
)

O)an eFS − alt-aio

O)an eFS − di)ectio

BeeGFS − nati-e

BeeGFS − b,ffe)ed

L,st)e 1mnt − -anilla

L,st)e 1mnt − s-)WB

L,st)e 1mnt − s-)WB, XBatch

L,st)e 4mnts − -anilla

L,st)e 4mnts − s-)WB

L,st)e 4mnts − s-)WB, XBatch

VFS bottleneck

Santa Clara, CA 02/27/24Combining Buffered I/O and Direct I/O in Distributed File Systems 25

IO500 (10-node challenge) mdtest-hard

§ mdtest-hard generates many small files (3091 bytes in size) in a single directory
§ No impact of client-side autoIO: All I/O is buffered

Workload for 10 clients (16 proc each) across file systems and configurations
W)ite (hase Read (hase

0

50

100

150

200

250

300

m
d
t
e
s
t
-h
a
)
d
 I
/O
)
a
t
e

(
k
IO
P
S
)

O)an eFS − alt-aio

O)an eFS − di)ectio

BeeGFS − nati-e

BeeGFS − b,ffe)ed

L,st)e 1mnt − -anilla

L,st)e 1mnt − s-)WB

L,st)e 1mnt − s-)WB, XBatch

L,st)e 4mnts − -anilla

L,st)e 4mnts − s-)WB

L,st)e 4mnts − s-)WB, XBatch

4.3x

3.7x 11.3x

1.28x

Santa Clara, CA

Wr te phase Read phase
0

5

10

15

20

25

30

IO
5

0
0

o

r-
h

a
r
d

I/
O

 t
h

r
o

(
g

h
p

(
t
 (

G
 B

/s
)

OrangeFS − alt-a o

OrangeFS − d rect o

BeeGFS − nat)e

BeeGFS − b(ffered

L(stre BIO −)an lla

L(stre DIO −)an lla

L(stre BIO − sr)WB

L(stre DIO − sr)WB

L(stre BIO − a(toIO,

sr)WB, delalloc

02/27/24Combining Buffered I/O and Direct I/O in Distributed File Systems 26

IO500 (10-node challenge) ior-hard

§ ior-hard generates unaligned, strided I/O (47,008 bytes in size) to a single shared file
§ BeeGFS and OrangeFS don’t support unaligned DIO => fallback to BIO

Workload for 10 clients (16 processes each) across file systems and configurations

Santa Clara, CA

Wr te phase Read phase
0

5

10

15

20

25

30

IO
5

0
0

o

r-
h

a
r
d

I/
O

 t
h

r
o

(
g

h
p

(
t
 (

G
 B

/s
)

OrangeFS − alt-a o

OrangeFS − d rect o

BeeGFS − nat)e

BeeGFS − b(ffered

L(stre BIO −)an lla

L(stre DIO −)an lla

L(stre BIO − sr)WB

L(stre DIO − sr)WB

L(stre BIO − a(toIO,

sr)WB, delalloc

02/27/24Combining Buffered I/O and Direct I/O in Distributed File Systems 27

IO500 (10-node challenge) ior-hard

§ ior-hard generates unaligned, strided I/O (47,008 bytes in size) to a single shared file
§ BeeGFS and OrangeFS don’t support unaligned DIO => fallback to BIO

Workload for 10 clients (16 processes each) across file systems and configurations

Server-side
locking

Efficient allocation
AutoIO switches to DIO

Santa Clara, CA

Wr te phase Read phase
0

5

10

15

20

25

30

IO
5

0
0

o

r-
h

a
r
d

I/
O

 t
h

r
o

(
g

h
p

(
t
 (

G
 B

/s
)

OrangeFS − alt-a o

OrangeFS − d rect o

BeeGFS − nat)e

BeeGFS − b(ffered

L(stre BIO −)an lla

L(stre DIO −)an lla

L(stre BIO − sr)WB

L(stre DIO − sr)WB

L(stre BIO − a(toIO,

sr)WB, delalloc

02/27/24Combining Buffered I/O and Direct I/O in Distributed File Systems 28

IO500 (10-node challenge) ior-hard

§ ior-hard generates unaligned, strided I/O (47,008 bytes in size) to a single shared file
§ BeeGFS and OrangeFS don’t support unaligned DIO => fallback to BIO

Workload for 10 clients (16 processes each) across file systems and configurations

4.4x

No lock contention:
AutoIO stays in BIO

Santa Clara, CA 02/27/24Combining Buffered I/O and Direct I/O in Distributed File Systems 29

Nek5000 turbPipe workload

§ Running the turbulent flow workload with the Nek5000 bulk-synchronous application
§ 512 processes (over 32 nodes), each writing one 600 MiB file per step boundary
§ 10 minute workload and a wide I/O size distribution => 600 GiB of data

0-1
00

10
1-1

K

1K
-10

K

10
K-1

00
K

10
0K
-1M

1M
-4M

4M
-10

0M

I/O re#uest size distributio for workload

0

100K

200K

300K

#
 I
/O
 o
p
e
r
a
t
io

s

1,027 0 256 64 64 192 256

58,177

3,003

196,192

126,000

4,007

256,192

256

Read

Write

Nek5000’s turbPipe workload I/O access size distribution via Darshan

Santa Clara, CA

Vario(s fi e systems and I/O modes
0

1

2

3

4

I/
O

 t
h

r
o

(
g

h
p

(
t
 (

G
iB

/s
)

OrangeFS − a t-aio

OrangeFS − directio

BeeGFS − nati)e

BeeGFS − b(ffered

L(stre −)ani a

L(stre − a(toIO

L(stre − a(toIO,

sr)WB

02/27/24Combining Buffered I/O and Direct I/O in Distributed File Systems 31

Nek5000 turbPipe workload performance

§ Nek5000 turbPipe workload for 32 nodes (16 processes each)

Nek5000’s turbPipe I/O throughput

I/O statistics for autoIO Count
Buffered I/O - small threshold 327,281

Direct I/O - large threshold 128,000

Direct I/O - lock contention 132,000

Buffered I/O - default 65
6.1x

1.7x

1.4x

Santa Clara, CA 02/27/24Combining Buffered I/O and Direct I/O in Distributed File Systems 32

Conclusion & future work

§ We have presented a transparent approach to combine buffered I/O and direct I/O
§ We integrated our approach into Lustre keeping its strong consistency guarantees
§ Key technologies: autoIO, server-side write-back, cross-file batching, and delayed alloc.
§ Productization is in progress

§ Unaligned direct I/O support merged in Lustre 2.16 (strictly opt-in; must use O_DIRECT)1
§ Hybrid I/O for Lustre 2.16 and 2.16+1

§ For issue tracking and the current status, refer to the JIRA links listed in our Artifacts’ Readme2

§ Future work
§ Extensive performance analysis of I/O sizes, thresholds, configurations, and application workloads
§ Automatic autoIO thresholds adjustments during runtime
§ Server-side algorithm which considers the server state

1LAD23: Buffered I/O, DIO & Unaligned DIO @ Lustre Admin & Dev Workshop 2023
2https://zenodo.org/doi/10.5281/zenodo.10425915

https://zenodo.org/doi/10.5281/zenodo.10425915

Santa Clara, CA 3302/27/24Combining Buffered I/O and Direct I/O in Distributed File Systems

Thank You!
Yingjin Qian qian@ddn.com
Marc-André Vef vef@uni-mainz.de
Patrick Parrell pfarrell@whamcloud.com
Andreas Dilger adilger@whamcloud.com
Xi Li lixi@ddn.com
Shuichi Ihara sihara@ddn.com
Yinjin Fu fuyj27@mail.sysu.edu.cn
Wei Xue xuewei@tsinghua.edu.cn
André Brinkmann brinkman@uni-mainz.de

Acknowledgements:
We sincerely thank our shepherd Jinkyu Jeong and our
anonymous reviewers.

flaticon.com

mailto:qian@ddn.com
mailto:vef@uni-mainz.de
mailto:pfarrell@whamcloud.com
mailto:adilger@whamcloud.com
mailto:lixi@ddn.com
mailto:sihara@ddn.com
mailto:fuyj27@mail.sysu.edu.cn
mailto:xuewei@tsinghua.edu.cn
mailto:brinkman@uni-mainz.de

