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Motivation

§ Linux’s default I/O mode is buffered I/O utilizing the page cache
§ The alternative direct I/O bypasses the Linux page cache and can be more beneficial

Local ldiskfs performance for various I/O sizes
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Motivation

§ Various challenges hinder higher direct I/O adoption
§ Users tend to use the familiar I/O mode
§ Alignment constraints can be difficult to accommodate
§ It is often unclear which I/O mode performs better

Local ldiskfs performance for various I/O sizes
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Goals and contributions

We propose combining the benefits of buffered I/O and direct I/O

Key points and contributions:
§ Transparent I/O mode decision within the file system
§ Decision are based on I/O size, lock contention, and cache usage
§ Additional optimizations, e.g., adaptive server-side write-back, and others
§ Implemented in the Lustre parallel file system
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Background The cost of page caching in buffered I/O

§ Only about 20% of the overall time is spent copying data
§ More than 40% of the overall time is spent on page cache management
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Background Lustre basic architecture

Terminology
§ MDS: Metadata Server

ØProcesses metadata requests

§ MDT: Metadata Target
ØStores metadata content
ØManages file access

§ OSS: Object Storage Server
ØProcesses I/O requests

§ OST: Object Storage Target
ØStores data content
ØFile sizes, blocks count, mtime

Lustre clientLustre clientLustre clients
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Background Lustre Distributed Lock Manager (DLM)

§ Lustre DLM is used for file synchronization and metadata access
§ A lock corresponds to a certain resource ID in a namespace (NS)

§ Each Lustre target (OST, MDT, MGT) has a DLM namespace
§ Each Lustre target has full authority about its namespace

§ Clients have a copy of a server lock for locally-accessed resources (shadow namespaces)

4 LDLM: LOCK MANAGER 25

Type Field Description

is this a client-side lock tree?

__u32

resources without any locks

int number of unused resources

atomic_t
__u64

ldlm_side_t ns_client
struct list_head *ns_hash hash table for all resources in this namespace

ns_refcount number of resources in the namespace

struct list_head ns_list_chain circular list of all namespaces

struct list_head ns_unused_list
ns_nr_unused
ns_locks number of locks in this namespace

ns_resources number of resources in this namespace

ldlm_res_policy ns_policy callback function when you have a lock request with 
intent

Figure 7: The fields of ldlm namespace data structure.

Some additional notes on ns_client: Each client only needs access to some por-
tions of a namespace, but not all of them. So each client carries a so-called shadow
namespace. ns_client is a flag that says this namespace is for client only and is not
complete (see Figure 8 for an illustration). ns_hash is a hash table for all resources
in this namespace. Notice that this is a pointer to the linked list, not just the linked list
itself.

Client 1 NS
Client 2 NS

Server NS

Lock A

Lock B

Lock C

Lock A

Lock B
Lock C

Figure 8: Shadow namespaces on clients.

4.2 Resource

A lock is for protecting resources. In Lustre, the most common type of resources
are files. A local lock refers to a lock that is private, known only to the local entity.
Correspondingly, a global lock is visible to the others. Note that “global” in this case
may be a misnomer – it doesn’t mean the lock is actually broadcast and known by all
parties. In Lustre, it means you have a client copy of the lock, but server also got a
copy through client request.10

10The lock on the server may be called the master lock.

UNDERSTANDING LUSTRE INTERNALS

Shadow namespaces on clients
Wang et al. "Understanding Lustre filesystem internals.”, 2009
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Weighing I/O modes in Lustre

Areas of improvement:
§ Use best of both worlds in a given situation
§ Remove direct I/O alignment contraints
§ Improve many small file performance and reduce file fragmentation

Feature Abbreviation
Original Lustre vanilla

Unaligned direct I/O support -
Client-side I/O mode decision autoIO

Server-side write-back svrWB

Cross-file batching for 
buffered writes XBatch

Delayed allocation delalloc

I/O case Buffered I/O Direct I/O
Small I/O size
High latency storage
Unaligned I/O
Large sequential I/O
Many running processes/nodes
System under memory pressure
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AutoIO

§ Automatic alignment of unaligned direct I/O
§ Primary I/O mode decision based on I/O size
§ Two I/O thresholds allow a decision window for

§ Lock contention
§ Memory pressure and low cache reusage
§ Default decision window: [32 KiB, 2 MiB)

DIO always 
performs better

BIO always 
performs better

Decision window

Feature Abbreviation
Unaligned direct I/O support -

Client-side I/O mode decision autoIO
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I/O modes under lock contention

§ Lock contention workload: Strided I/O over 10 nodes
ØUnder extreme lock contention, direct I/O becomes beneficial earlier
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I/O modes under cache overusage

§ Over caching workload: Cached pages are not reused
ØUnder memory restrictions, direct I/O becomes beneficial earlier
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Further optimizations

§ Server-side write-back
§ Vanilla Lustre uses write-through
ØLustre servers can switch to write-back at a threshold

§ Cross-file batching for buffered writes
§ Vanilla batches dirty pages into large bulk RPCs (1 MiB)
ØThis can improve network and disk efficiency
§ But, it can prolong flush operations of many small files
ØBatch dirty pages of multiple files into one large bulk RPC

§ Delayed allocation
§ Improves svrWB further to reduce file fragmentation
§ File fragmentation can be caused during strided writes to a single file from many clients
ØDelayed allocation collects and merges small and non-contiguous I/O requests

Feature Abbreviation
Server-side write-back svrWB

Cross-file batching for 
buffered writes XBatch

Delayed allocation delalloc
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Consistency and usage

Potential for consistency conflicts
§ Data regions from buffered and direct I/O can overlap
§ Unaligned direct I/O may need a file region cached on another node
§ DLM protects against such conflicts 
ØNo impact on Lustre’s strong consistency guarantees
Usage and configuration options
§ All features and (most) individual thresholds are controlled via lctl
§ Enable autoIO: lctl set_param llite.*.bio_as_dio=1

§ Enable svrWB: lctl set_param osd-ldiskfs.*.writeback_max_io_kb=64

§ Refer to our Artifacts1 for further usage options 

1https://zenodo.org/doi/10.5281/zenodo.10425915

https://zenodo.org/doi/10.5281/zenodo.10425915
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Evaluation Test bed

§ Lustre 2.15.58 cluster with CentOS 8.7
§ 4 Meta Data Target (MDT)
§ 8 Object Storage Targets (OSTs)
§ Servers using DDN AI400X Appliance (20x Samsung 3.84 TiB NVMe, 4×IB-HDR100)
§ 32 client nodes using Intel Gold 5218 processor, 96 GiB DDR4 RAM, IB-HDR 100, 1 Gbps Ethernet

§ BeeGFS 7.4.0
§ Offers two client-side file cache modes
1. buffered (default): Write-back and read-ahead using static buffers
2. native: Relies on the Linux page cache - switches to direct I/O on a set I/O threshold (512 KiB)

§ OrangeFS 2.10.0
§ Offers two server-side I/O modes
1. alt-aio (default): Buffered asynchronous I/O 
2. directio: Direct I/O mode

Kindly refer to our paper for further experiments
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§ Represents the main use case of autoIO: sequential I/O for a single process

02/27/24Combining Buffered I/O and Direct I/O in Distributed File Systems 22

Single process I/O streaming Lustre I/O throughput

Write Read
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IO500 (10-node challenge) mdtest-hard

§ mdtest-hard generates many small files (3091 bytes in size) in a single directory
§ No impact of client-side autoIO: All I/O is buffered

Workload for 10 clients (16 proc each) across file systems and configurations
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IO500 (10-node challenge) mdtest-hard

§ mdtest-hard generates many small files (3091 bytes in size) in a single directory
§ No impact of client-side autoIO: All I/O is buffered

Workload for 10 clients (16 proc each) across file systems and configurations
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IO500 (10-node challenge) mdtest-hard

§ mdtest-hard generates many small files (3091 bytes in size) in a single directory
§ No impact of client-side autoIO: All I/O is buffered

Workload for 10 clients (16 proc each) across file systems and configurations
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0

50

100

150

200

250

300

m
d
t
e
s
t
-h
a
)
d
 I
/O
 )
a
t
e

(
k
IO
P
S
)

O)an eFS − alt-aio

O)an eFS − di)ectio

BeeGFS − nati-e

BeeGFS − b,ffe)ed

L,st)e 1mnt − -anilla

L,st)e 1mnt − s-)WB

L,st)e 1mnt − s-)WB, XBatch

L,st)e 4mnts − -anilla

L,st)e 4mnts − s-)WB

L,st)e 4mnts − s-)WB, XBatch

4.3x

3.7x 11.3x

1.28x



Santa Clara, CA

Wr te phase Read phase
0

5

10

15

20

25

30

IO
5

0
0

  
o

r-
h

a
r
d

I/
O

 t
h

r
o

(
g

h
p

(
t
 (

G
 B

/s
)

OrangeFS − alt-a o

OrangeFS − d rect o

BeeGFS − nat )e

BeeGFS − b(ffered

L(stre BIO − )an lla

L(stre DIO − )an lla

L(stre BIO − sr)WB

L(stre DIO − sr)WB

L(stre BIO − a(toIO,

sr)WB, delalloc

02/27/24Combining Buffered I/O and Direct I/O in Distributed File Systems 26

IO500 (10-node challenge) ior-hard

§ ior-hard generates unaligned, strided I/O (47,008 bytes in size) to a single shared file
§ BeeGFS and OrangeFS don’t support unaligned DIO => fallback to BIO

Workload for 10 clients (16 processes each) across file systems and configurations
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IO500 (10-node challenge) ior-hard

§ ior-hard generates unaligned, strided I/O (47,008 bytes in size) to a single shared file
§ BeeGFS and OrangeFS don’t support unaligned DIO => fallback to BIO

Workload for 10 clients (16 processes each) across file systems and configurations

Server-side 
locking

Efficient allocation
AutoIO switches to DIO 
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IO500 (10-node challenge) ior-hard

§ ior-hard generates unaligned, strided I/O (47,008 bytes in size) to a single shared file
§ BeeGFS and OrangeFS don’t support unaligned DIO => fallback to BIO

Workload for 10 clients (16 processes each) across file systems and configurations

4.4x

No lock contention:
AutoIO stays in BIO
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Nek5000 turbPipe workload

§ Running the turbulent flow workload with the Nek5000 bulk-synchronous application
§ 512 processes (over 32 nodes), each writing one 600 MiB file per step boundary
§ 10 minute workload and a wide I/O size distribution => 600 GiB of data 
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Nek5000 turbPipe workload performance

§ Nek5000 turbPipe workload for 32 nodes (16 processes each)

Nek5000’s turbPipe I/O throughput

I/O statistics for autoIO Count
Buffered I/O - small threshold 327,281

Direct I/O - large threshold 128,000

Direct I/O - lock contention 132,000

Buffered I/O - default 65
6.1x

1.7x

1.4x
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Conclusion & future work

§ We have presented a transparent approach to combine buffered I/O and direct I/O
§ We integrated our approach into Lustre keeping its strong consistency guarantees
§ Key technologies: autoIO, server-side write-back, cross-file batching, and delayed alloc.
§ Productization is in progress

§ Unaligned direct I/O support merged in Lustre 2.16 (strictly opt-in; must use O_DIRECT)1
§ Hybrid I/O for Lustre 2.16 and 2.16+1

§ For issue tracking and the current status, refer to the JIRA links listed in our Artifacts’ Readme2

§ Future work
§ Extensive performance analysis of I/O sizes, thresholds, configurations, and application workloads
§ Automatic autoIO thresholds adjustments during runtime
§ Server-side algorithm which considers the server state

1LAD23: Buffered I/O, DIO & Unaligned DIO @ Lustre Admin & Dev Workshop 2023
2https://zenodo.org/doi/10.5281/zenodo.10425915

https://zenodo.org/doi/10.5281/zenodo.10425915
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