
Optimizing File Systems on Heterogeneous Memory by
Integrating DRAM Cache with Virtual Memory Management

Yubo Liu1, Yuxin Ren1, Mingrui Liu1, Hongbo Li1, Hanjun Guo1, Xie Miao1,
Xinwei Hu1, and Haibo Chen1,2

1 Huawei Technologies Co., Ltd. 2 Shanghai Jiao Tong University

File Systems meet Heterogeneous Memory

20192009

DRAM-Block
Era

Simulated PM
Era

2024
Optane

Era
Diversified PM

Era

Cache is important
• Large latency gap
• Large bandwidth gap
• Different semantics

BPFS
[SOSP’09]

NOVA
[FAST’16]

EXT4
XFS

Btrfs
…

PMFS
[EuroSys’14]

SplitFS
[SOSP’19]

Strata
[SOSP’17] …

KucoFS
[FAST’21]

ctFS
[FAST’22]

…

DAX is the truth
• Performance closes to DRAM
• Memory semantics
• Software cost is significant

PM is not perfect
• Latency fluctuates
• Limited bandwidth
• Limited concurrency

FLAC / FlacFS
(our work)

Cache is still valuable
• Performance of future PM

(e.g., CXL PM) is diverse
• The potential has not yet

been fully exploited

Feb. 27 @ FAST’24

Cache? or Direct Access (DAX)?

Feb. 27 @ FAST’24

• Cache-based FS: EXT4

• DAX-based FS: EXT4-DAX, NOVA

• Experiment Setup: 10GB data; 2MB I/O; 1 thread

Cache? or Direct Access (DAX)?

Observation 1:
Existing DAX and cache solutions are suboptimal,
but DRAM cache still has great value

There is no winner between Cache and DAX
• Performance gap between PM and DRAM cannot

be ignored

• Data locality is important for performance
optimization

• DAX is an overkill in many real-world scenarios

Feb. 27 @ FAST’24

DAX
win

Cache
win

Cache? or Direct Access (DAX)?

Observation 1:
Existing DAX and cache solutions are suboptimal,
but DRAM cache still has great value

Observation 2:
Data transfer overhead between the file system
and application buffer is significant • Takes up more than 23% of the total overhead

in cache-based file systems

• Takes up more than 96% of the total overhead
in DAX-based file systems

Feb. 27 @ FAST’24

Cache? or Direct Access (DAX)?

Observation 1:
Existing DAX and cache solutions are suboptimal,
but DRAM cache still has great value

Observation 2:
Data transfer overhead between the file system
and application buffer is significant

Observation 3:
“Cache Tax” is heavy, and it mainly includes the
overhead of data synchronization and migration

• Data synchronization (background dirty flushing)
lead to 37% performance declines

• Data migration (cache miss handling) lead to
65% performance declines

Feb. 27 @ FAST’24

Motivation

Lookup PM
index

Load page to
cache

App-Cache
page copy

Cache
hit

Wait for dirty
page flushing

Cache
hit

Flushi
ng

Build cache
index

Lock Persist to PM Unlock

read

write

N

Y

N

Y

Y

Can be eliminated
in FLAC

Can be asynchronous
in FLAC

N

Flushing

Thread

Principle 2:
Reducing the impact of “cache tax”
by hiding the data synchronization
/migration overhead

Principle 1:
Optimizing data transfer between
application and cache by zero-
copy and reducing two-level index
overhead

Feb. 27 @ FAST’24

Integrating Cache with Virtual Memory Management

FLAC Design

Feb. 27 @ FAST’24

APP Memory
Space FLAC Space (Kernel Memory Space)

Data
Space

Meta
Space

File
System

write()read()

zcopy_to_flac() zcopy_from_flac()

Overview and APIs of FLAC (FLAt Cache)

DRAM Cache

PM

init_flac()

pflush_add()
+

pflush_commit()

APIs Parameters

init_flac

zcopy_from_flac
zcopy_to_flac

pflush_add

pflush_commit

pfree

pm_path

from_addr
to_addr
size

pflush_handle
addr
size

pflush_handle
fs_metalog

addr
size

fs_metalog

Tech 1: Zero-Copy Caching

• Heterogeneous Page Table
• Unified and contiguous virtual memory

address space
• Dynamically mapped to DRAM or PM as

the page is cached or evicted

• PTEs of FLAC space are replicated in
PM for fault recovery

• Page Attaching
• Map physical pages from the source

address to destination address
• Set pages to read-only to ensure security

FLAC Design

Feb. 27 @ FAST’24

Optimizing APP-Cache Data Transfer

P0v0 P1v0P0v1 P1v1

Persistent
PTEs

Log
Area

P2v0

D
R

A
M

PM

Virtual
Pages

Physical
Pages

Zero-Copy Write

……

FLAC Space
(Heterogeneous Page Table in Kernel)

Write Buf in APP0
(Userspace)

P3v0

Read-only

Tech 2: Parallel-Optimized
Cache Management

• 2-Phase Flushing
• Collection phase (lock)
• Persistence phase (lock-free)

• Async Cache Miss Handling
• Directly attach missed pages
• Async load missed pages

FLAC Design

Feb. 27 @ FAST’24

P0v0 P1v0P0v1 P1v1

Persistent
PTEs

Log
Area

P2v0

D
R

A
M

PM

Virtual
Pages

Physical
Pages

……

FLAC Space
(Heterogeneous Page Table in Kernel)

Write Buf in APP0
(Userspace)

P3v0

Reducing the Impact of “Cache Tax” (data synchronization & migration)

P0v0 P1v0

Persistence Phase

lock free

Read Buf in APP1
(Userspace)

P2v0

Async load

Tmp Buf

Collection Phase Zero-Copy Read

Feb. 27 @ FAST’24

FLAC Design
V

ir
tu

al

Pa
ge

s
Ph

ys
ic

al

Pa
ge

s

Application
Buffer

FLAC
Space

DRAM

PM

Shared-Persisted
(SP)

Shared-Cached
(SC)

Anonymous
(AM)

Out-of-Date
(OD) Virtual Page

S0: initial

Pv0

Page State/Version Transition: An Example

Feb. 27 @ FAST’24

FLAC Design
V

ir
tu

al

Pa
ge

s
Ph

ys
ic

al

Pa
ge

s

Application
Buffer

FLAC
Space

DRAM

PM Pv0

Pv0

Shared-Persisted
(SP)

Shared-Cached
(SC)

Anonymous
(AM)

Out-of-Date
(OD)

async
load

Virtual Page

S0: initial

Pv0

①

②

③

Page State/Version Transition: An Example

S1: read from FLAC

Feb. 27 @ FAST’24

FLAC Design
V

ir
tu

al

Pa
ge

s
Ph

ys
ic

al

Pa
ge

s

Application
Buffer

FLAC
Space

DRAM

PM Pv0

Pv0 Pv0Pv1

Pv0

Shared-Persisted
(SP)

Shared-Cached
(SC)

Anonymous
(AM)

Out-of-Date
(OD)

async
load

COW

Virtual Page

S0: initial

Pv0

①

②

③

①

②

updated

Page State/Version Transition: An Example

S1: read from FLAC S2: update buffer

Feb. 27 @ FAST’24

FLAC Design
V

ir
tu

al

Pa
ge

s
Ph

ys
ic

al

Pa
ge

s

Application
Buffer

FLAC
Space

DRAM

PM

Pv0Pv1

Pv0

Pv0Pv1

Pv0

Shared-Persisted
(SP)

Shared-Cached
(SC)

Anonymous
(AM)

Out-of-Date
(OD) Virtual Page

S0: initial

Pv0

①

②

①

②

updated

Page State/Version Transition: An Example

Pv0

Pv0

async
load

①

②

③

S1: read from FLAC

Pv0

S3: write to FLAC

COW

S2: update buffer

Feb. 27 @ FAST’24

FLAC Design
V

ir
tu

al

Pa
ge

s
Ph

ys
ic

al

Pa
ge

s

Application
Buffer

FLAC
Space

DRAM

PM

Pv0Pv1

Pv0

S4: flush

Pv1

Pv0Pv1

Shared-Persisted
(SP)

Shared-Cached
(SC)

Anonymous
(AM)

Out-of-Date
(OD)

2-Phase
flush

Virtual Page

S0: initial

Pv0

①

② ①

②

Page State/Version Transition: An Example

S3: write to FLAC

Pv0

Pv0

async
load

①

②

③

S1: read from FLAC

Pv0

Pv0Pv1

Pv0

①

②

updated

COW

S2: update buffer

Feb. 27 @ FAST’24

FLAC Design

Challenge#1 Page Unaligned à Sliding Window Buffer

Page

SW

Bu
ff

er File

Copy the data
from file

Example: File write by sliding
window buffer

Page

Valid Data
Window

Challenge#2 COW Page Fault à bfault & detach
• Call bfault/detach before reusing the R/W buffer
• Batch fault (bfault) — For: Need to process data in the buffer

• Batching the data copies and TLB flushes
• Detach — For: Just reuse the space of the buffer

• Mapping to empty pages in batch

Requested
Data

• Use SWbuf to proxy buffer management in application
• Map all pages containing required data
• Use sliding window to denote valid data

Case Study: FlacFS

Feb. 27 @ FAST’24

FlacFSMetadata Area
(Userspace)

Data Area
(Kernel)

FLAC

DRAM
Cache

PM Data (Page) Area

DRAM
Meta Area

PM
Meta Area

Shared
Memory

inode: <……, FileSize, StartAddr, ……>

Adjustable
Cache Size

Meta File Data
(consecutive addr)Metadata & Data Management

• Inodes hash Table (DRAM+PM)
• File’s data is on consecutive address

(insighted by ctFS)

Architecture
• Metadata area is on shared memory
• Data area is on FLAC space

Consistency
• FS-FLAC collaboration logging

• Put FS-level & FLAC-level metadata
into the same log entry

• Data flushing is log-structured

Shared
Memory

Benchmark Performance

Feb. 27 @ FAST’24

Summary
• More than one order of magnitude

over other FSes in write/read
operations

• Better scalability

• Comparable to the best DAX FS and
better than EXT4 in fsync

Experiment Setup: 2MB I/O; 64GB data

NO
VA

Split
FS

ct
FS

EXT4-
DAX

EXT4 FlacFS

Mode sync POSIX

Cons. Meta Meta+Data

Cache
Flush

N/A 100
ms

10
ms

Design Analysis

Feb. 27 @ FAST’24

Impact of I/O Size

• 64 concurrent threads

• 64 files

• I/O sizes range from 4KB to 16MB

Summary
• FlacFS is more friendly to I/O >= 64KB

• I/O >= 64KB is common in production

Design Analysis

Feb. 27 @ FAST’24

Impact of DRAM Cache Size
• Append 16GB data to files
• The smaller the threshold, the

greater the number of eviction

Impact of Page Alignment (swbuf)
• Overwrite 1GB data in the file
• Use sliding window buffer

Impact of COW Page Fault
• Rewrite the buffer in different

proportions by memset after
each file access

Summary
Page eviction is efficient in FLAC

No
eviction

Almost
no impact

Summary
Unalignment has little impact on
I/O >= 64KB

Summary
bfault/detach significantly reduce
the COW page fault overhead

78.3%

Real-World Application

Feb. 27 @ FAST’24

Experiment Setup
• grep: read-intensive
• tar: read- & write-intensive
• bigsort: read- & write- & compute-intensive

(134 million integers)
• All optimizations (bfault/detach) are used

where appropriate

Summary
• Up to 6.7X improvement vs. DAX-based FS
• Up to 9.4X improvement vs. Cache-based FS

• bfault/detach is efficient in real-world scenarios

Conclusion

• Analysis of the cache/DAX solution on heterogeneous memory
• Cache has great value if designed properly
• Data transfer overhead is high
• “Cache Tax” is heavy

• FLAC, a flat cache framework for heterogeneous memory
• Zero-copy caching
• Parallel-optimized cache management

• FlacFS, a file system based on FLAC
• Orders of magnitude performance improvement in micro benchmark
• Several times performance improvement in real-world applications

Feb. 27 @ FAST’24

Thanks :)

Feb. 27 @ FAST’24

