
Tao Li†, Yongkun Li†, Wenzhe Zhu†, Yinlong Xu†, John C. S. Lui‡
†University of Science and Technology of China

‡The Chinese University of Hong Kong

USENIX FAST 2024
1

Ø Serverless computing benefits
• Low operational overhead
• Fine-grained "pay-as-you-go" billing (1ms)
• Fast scaling (<1s)

Ø Serverless computing framework
• Separate computation and storage
• FaaS: containerized functions; BaaS: cloud storage (typically S3)

2

AWS Lambda Google Cloud Functions

Azure Functions IBM Cloud Functions

ØData analytics is a critical class of applications

3

• Adopt the BSP model

• Shuffle operation: all-to-all connection

• Facebook: More than 50% involve at least one shuffle

 (Riffle@Eurosys’18)

Ø Serverless computing passes data via remote storage

4

• Shuffle: lots of read/write requests

• Remote storage: I/O request rate is limited

u S3 request rate: 3.5k and 5.5k req/s for writes and reads

u S3 request cost: 0.005/0.0004 USD$ per 1k PUTs/GETs

Ø Serverless computing passes data via remote storage

5

• Shuffle: lots of read/write requests

• Remote storage: I/O request rate is limited

u S3 request rate: 3.5k and 5.5k req/s for writes and reads

u S3 request cost: 0.005/0.0004 USD$ per 1k PUTs/GETs

Data passing severely impedes the elasticity and economy of
serverless analytics

74%86% 89%94%

2%

6

ØHow to improve the efficiency of data passing?
• DAG topology, function scheduling, and transmission media

How to optimize the topology
to reduce data passing requests?

How to decide the funct ion
scheduling plan to leverage over-
provisioned local memory?

H o w t o b u i l d t h e h i g h -
performance and cost-effcient
remote storage?

Ø Two-level Shuffle

7

• Use mesh-based two-level Shuffle to decrease
the number of data passing requests

• Starling@SIGMOD’20,Lambada@SIGMOD’20

How to optimize the topology to
reduce data passing requests?

Ø Two-level Shuffle
• Use mesh-based two-level Shuffle to decrease the number of data passing requests

(Starling@SIGMOD’20,Lambada@SIGMOD’20)

8
TeraSort Shuffle Time under Different Configurations

Limitations:
I. Bring about multiplied extra data volume due to the additional level
II. Cannot extend to a general multi-level network algorithm

1.9X

Ø Shuffle via intra-worker memory

9

• Reclaim over-provisioned memory in workers to
localize intra-worker traffic

• Wukong@SoCC’20,FaaSFlow@ASPLOS’22

H o w t o d e c i d e t h e f u n c t i o n
scheduling plan to leverage over-
provisioned local memory?

Ø Shuffle via intra-worker memory
• Reclaim over-provisioned memory in workers to localize intra-worker traffic

(Wukong@SoCC’20,FaaSFlow@ASPLOS’22)

10
TeraSort Shuffle Time under Different Configurations

Only
9.94%

Only
11.39%

Limitations:
I. Cross-worker traffic dominates and cannot be accelerated
II. Stragglers caused by slower remote storage

Ø Shuffle via private storage

11

• Combine high-end and cheap remote storage
media to achieve better trade-offs between per-
formance and cost

• Pocket@OSDI’18, Locus@NSDI’19

How to build the high-performance
and cost-effcient remote storage?

Ø Shuffle via private storage
• Combine high-end and cheap remote storage media to achieve better trade-offs

between performance and cost (Pocket@OSDI’18, Locus@NSDI’19)

TeraSort Shuffle Time under Different Configurations
12

Limitations:
I. Entail high costs due to extra high-end storage
II. The network bandwidth of VMs is limited

13.5X

13

Ø Existing approaches: independent optimizations in different components
• performance/cost/ease-of-use degradation

Two-level
Shuffle

Intra-worker
memory Shuffle

Private storage
Shuffle

 Optimize DAG topo, function scheduling, transmission media in a unified way

14

Unified optimization ➊ Construct multi-level shuffle topology candidates

➋ Generate scheduling plan and optimize transmission media
 for each candidate topology and output config candidates

➌ Model configs to select the optimal one
 form config candidates

Decrease requests Facilitate scheduling

Maximize traffic localization Balance load
Avoid stragglers

Optimal configuration

ØHow to construct the complete multi-level network topo space?

Step1. Divide functions in the ������ � into �� groups

Step2. Progressively converge groups
➊ Function linking:

keep all-to-all connection

15

Progressively converging multi-level shuffle

ØHow to construct the complete multi-level network topo space?

Step1. Divide functions in the ������ � into �� groups

Step2. Progressively converge groups
➊ Function linking:

keep all-to-all connection
➋ Data passing:
 shard data into continuous and equal-sized parts

16

Progressively converging multi-level shuffle

ØHow to construct the complete multi-level network topo space?

Step1. Divide functions in the ������ � into �� groups

Step2. Progressively converge groups
➊ Function linking:

keep all-to-all connection
➋ Data passing:
 shard data into continuous and equal-sized parts

17

Progressively converging multi-level shuffle

All-to-all
connection

ØHow to select candidates among massive topologies?

• Find networks with the fewest edges under each possible number of levels L

 Step1. A series of optimization problems

 Step2. Bottom-up dynamic programming

• Solve all problems at once with low overhead

18

Lightweight candidates selection by dynamic programming

For L ∈ �, � ,
�������� � × �=�

�−� ��

 ������� �� �=�
�−� �� = �

Edges

ØHow to select candidates among massive topologies?

• Find networks with the fewest edges under each possible number of levels L

 Step1. A series of optimization problems

 Step2. Bottom-up dynamic programming

• Solve all problems at once with low overhead

19

Lightweight candidates selection by dynamic programming

For L ∈ �, � ,
�������� � × �=�

�−� ��

 ������� �� �=�
�−� �� = �

Edges

Conclusions:
I. Topology Optimizer outputs topology condidates, each has the fewest edges

under their corresponding number of levels L

ØHow to meet all the scheduling requirements?

Ø Scheduling requirements
• Maximize traffic localization

• Avoid transmission stragglers

• Ensure load balancing

20

Interleaved complete bipartite graphs partitioning

ØHow to meet all the scheduling requirements?

ØAdjacent function levels: complete bipartite graphs (CBG)
• Search the CBGs: schedule to the same worker

21

Interleaved complete bipartite graphs partitioning

Maximize traffic localization

Local
memory

ØHow to meet all the scheduling requirements?

ØAdjacent function levels: complete bipartite graphs
• Search the CBGs: schedule to the same worker

• Adopt the same transmission media: within a
communication level

• Employ interleaved local memory and remote
storage: across communication levels

22

Interleaved complete bipartite graphs partitioning

Maximize traffic localization

Balance load

Avoid stragglers

ØHow to meet all the scheduling requirements?

ØAdjacent function levels: complete bipartite graphs
• Search the CBGs: schedule to the same worker

• Adopt the same transmission media: within a
communication level

• Employ interleaved local memory and remote
storage: across communication levels

23

Interleaved complete bipartite graphs partitioning

Maximize traffic localization

Balance load

Avoid stragglers

Conclusions:
I. Function Scheduler outputs configuration candidates, each has the fewest edges

under their corresponding number of levels and meets all scheduling requirements

ØHow to select the optimal configuration from config condidates?

• Model application characteristics and platform features to data passing time
u Within a level: maximum of function and storage
u Across levels: S3-based and memory-based

24

Estimate data passing time of candidate configurations

function-side storage-side

ØHow to select the optimal configuration from L config condidates?

• Model data passing time for S3-based and memory-based level
• The volume of intermediate data ��: available at the runtime

u Input data size and ��: linear/non-linear but deterministic
u Sample and profile

25

Estimate candidate configuration’s data passing time

ØHow to select the optimal configuration from L config condidates?

• Model data passing time for S3-based and memory-based level
• The volume of intermediate data ��: available at the runtime

u Input data size and ��: linear/non-linear but deterministic
u Sample and profile

26

Estimate candidate configuration’s data passing time

Conclusions:
I. Configuration Modeler outputs the optimal configuration and dispatch it to

distributed coordinators

ØTestbed:
• 10 Amazon EC2 m6i.x24large instances

ØWorkloads
• TeraSort, TPC-DS, WordCount

ØComparisons:
• Baseline: use single-level shuffle and transfer all data via S3
• FaaSFlow: adopt the intra-worker memory shuffle
• Lambada: employ the mesh-based two-level shuffle

27

vCPU Memory/Gi
B

Network
bandwidth/Gib

96 384 37.5

ØThree workloads: 100GB/200GB input data size, 400/600 functions

28

Conclusions:
Under Terasort workload, compared to

Baseline, FaaSFlow, and Lambada

I. MinFlow improves the shuffle speed up to
14.1X, 12.4X, and 3X respectively;

II. MinFlow reduces the storage cost up to
98.84%, 98.71%, and 86%, respectively

29

ØThree workloads: 100GB/200GB input data size, 400/600 functions

Conclusions:
Under Terasort workload, compared to

Baseline, FaaSFlow, and Lambada

I. MinFlow reduces the job completion time
up to 85.16%, 83.25%, and 41.35%, respec
tively;

ØTerasort workload: 200GB input data size, 600 functions

30

Conclusions:
I. All types of resource (i.e., CPU

utilization, Memory utilization,
Receive throughput, and Sent
throughput) are load-balanced
among workers

ØMinFlow: High-performance and Cost-efficient Unified Data Passing
Framework for I/O-intensive Stateful Serverless Analytics
• Progressively converging multi-level shuffle: minimize data passing requests
• Interleaved complete bipartite graph scheduling: maximize traffic localization
• Estimate data passing time: select the optimal configuration

ØMore evaluation results and analysis are in the paper

ØThe source code is at https://github.com/lt2000/MinFlow
• Reproduce all results with Amazon cloud: tens of hours and thousands of dollars

31

https://github.com/lt2000/MinFlow

Q&A
Contact email:

little314@mail.ustc.edu.cn

