
Symbiosis: The Art of Application
and Kernel Cache Cooperation

Yifan Dai, Jing Liu,

Andrea Arpaci-Dusseau and Remzi Arpaci-Dusseau

Database Systems and Storage Engines

Large scale database systems

MongoDB / MySQL / CockroachDB

2

Database Systems and Storage Engines

Large scale database systems

MongoDB / MySQL / CockroachDB

Storage engines within DB to interact with filesystems

RocksDB / WiredTiger / InnoDB

3

Caching in Storage Engine

Cache within the application

An implicit layer of kernel caching

Kernel Page CacheApp Cache
Device

Data

4

Caching in Storage Engine

Cache within the application

An implicit layer of kernel caching

Stores compressed data

Kernel Cache
(Compressed)

App Cache
(Uncompressed)

Device

Data
(Compressed)

5

Memory Quota

Caching in Storage Engine

Forms a special two-layer cache structure

Sharing of memory quota

Optimal cache partitioning is important and not trivial

Yields great benefit

Depends on various factors

Kernel Cache
(Compressed)

App Cache
(Uncompressed)

Device

Data
(Compressed)

6

Optimal Cache Partitioning is Hard

App Cache Kernel Cache

Configuration

#1: All to app cache

Memory Quota

#2: All to kernel cache

Memory Quota

7

Performance with

small working set size

Performance with

large working set size

Optimal Cache Partitioning is Hard

App Cache Kernel Cache

Configuration

#1: All to app cache

Memory Quota

#2: All to kernel cache

Memory Quota

8

Performance with

small working set size 2
Performance with

large working set size

1

Optimal Cache Partitioning is Hard

App Cache Kernel Cache

Configuration

#1: All to app cache

Memory Quota

#2: All to kernel cache

Memory Quota

Performance with

small working set size 2
Performance with

large working set size 51

1

9

The best partition could be arbitrary percentage in the middle

Symbiosis

Symbiosis - Adapt Cache Sizes by Simulation

KernelApp Cache Cache

Device
10

Symbiosis

Embedded in the storage engine

Symbiosis - Adapt Cache Sizes by Simulation

KernelApp

Cache Cache

Symbiosis

Device
11

Symbiosis

Embedded in the storage engine

Optimizes cache partitioning automatically

Symbiosis - Adapt Cache Sizes by Simulation

KernelApp

Device<- Cache -> Cache

Symbiosis

12

Symbiosis

Embedded in the storage engine

Optimizes cache partitioning automatically

Adapts cache sizes to dynamic workloads

Symbiosis - Adapt Cache Sizes by Simulation

KernelApp

DeviceCache-> Cache <-

Symbiosis

Working set grows ->

Decrease app cache!

13

Integrated into production systems with <1000 LoC

LevelDB, RocksDB, WiredTiger

Performance improvements

1.5x on average for read-heavy workloads

Online cache simulation with high accuracy and negligible overhead

~0.1% space overhead and ~1% time overhead

Symbiosis - Adapt Cache Sizes by Simulation

KernelApp

Cache Cache

Symbiosis

Device
14

Overview of Symbiosis

Key Challenge

Simulate accurately with low overhead

Optimization Techniques

Incremental reuse of a single ghost cache

Misalignment-aware sampling

Guard against unmodeled

Evaluation

Static workloads

Dynamic (changing) workloads

Outline

15

Detects workload change

Symbiosis - Overview

16

Detects workload change

Simulates multiple candidate cache size configurations

Symbiosis - Overview

App Cache Kernel Cache

Candidate Configuration 1

Candidate Configuration 2

Candidate Configuration 3

Candidate Configuration 4
17

Detects workload change

Simulates multiple candidate cache size configurations

Finds the configuration with the best expected performance

Symbiosis - Overview

App Cache Kernel Cache

Candidate Configuration 1

Candidate Configuration 2

Candidate Configuration 3

Candidate Configuration 4

Exp. Performance: 4

Exp. Performance: 3

Exp. Performance: 5

Exp. Performance: 6
18

Detects workload change

Simulates multiple candidate cache size configurations

Finds the configuration with the best expected performance

Applies the best configuration if it yields enough benefit

Symbiosis - Overview

App Cache Kernel Cache

Candidate Configuration 1

Candidate Configuration 2

Candidate Configuration 3

Candidate Configuration 4

Exp. Performance: 4

Exp. Performance: 3

Exp. Performance: 5

Exp. Performance: 6
19

How to simulate accurately?

How to simulate with negligible overhead?

Key Challenge

20

How to simulate accurately?

How to simulate with negligible overhead?

Key Challenge

Tension!

21

How to simulate accurately?

How to simulate with negligible overhead?

Optimization Techniques

Incremental reuse of a single ghost cache

Misalignment-aware sampling

Guard against unmodeled

Key Challenge

Tension!

22

Classical Solution - Ghost Cache Simulation

Ghost cache - maintain only cache access metadata

Useful for cache statistics analysis

Ghost cache

Cache Metadata

Metadata

Data

23

Ghost Cache Simulation - Single Layer

1 2 3 4Ghost cache

(tail)

< size=2 >

< size=4 >

Use a single ghost cache instance

Largely reduces space and time overhead

Simulate caches of multiple sizes simultaneously

When the eviction policy has stack property

24

Ghost Cache Simulation - Two Layers

Simultaneous simulation of caches with different sizes is not feasible

The second layer sees different access patterns

25

Ghost Cache Simulation - Two Layers

Simultaneous simulation of caches with different sizes is not feasible

The second layer sees different access patterns

1st-layer access trace:

2 1 3 2 3 1 3 1 2 4

2 1 3 2 3 1 2 1 3 4

2 1 3 2 1 3 1 3 2 4

1st-layer Ghost cache 1

size = 1

26

Ghost Cache Simulation - Two Layers

Simultaneous simulation of caches with different sizes is not feasible

The second layer sees different access patterns

1st-layer access trace: 1st-layer Ghost cache 1

27

2 1 3 2 3 1 3 1 2 4

2 1 3 2 3 1 2 1 3 4

2 1 3 2 1 3 1 3 2 4

2nd-layer access trace:

2 1 3 2 3 1 3 1 2 4

2 1 3 2 3 1 2 1 3 4

2 1 3 2 1 3 1 3 2 4

size = 1

Ghost Cache Simulation - Two Layers

Simultaneous simulation of caches with different sizes is not feasible

The second layer sees different access patterns

1st-layer access trace:

4 3 4 2 4

11st-layer Ghost cache 2 3

28

2nd-layer access trace:

2 1 3 2 3 1 3 1 2 4

2 1 3 2 3 1 2 1 3 4

2 1 3 2 1 3 1 3 2 4

size = 3

Use a single ghost cache instance

Largely reduces space and time overhead

Incremental reuse of a single ghost cache

29

Use a single ghost cache instance

Largely reduces space and time overhead

Simulate candidates one at a time

Incremental reuse of a single ghost cache

App Cache Kernel Cache

Candidate Configuration 1

Candidate Configuration 2

Candidate Configuration 3
30

Full app cache

(for reuse)

Use a single ghost cache instance

Largely reduces space and time overhead

Simulate candidates one at a time

Incremental reuse of a single ghost cache

App Cache Kernel Cache

Candidate Configuration 1

Candidate Configuration 2

Candidate Configuration 3
31

Full app cache

(for reuse)

Use a single ghost cache instance

Largely reduces space and time overhead

Simulate candidates one at a time

Minimize warm-up before each simulation

Utilize the stack property for the first layer

Simulate in the order of increasing application cache size

Incremental reuse of a single ghost cache

32

App Cache Kernel Cache

Candidate Configuration 1

Candidate Configuration 2

Candidate Configuration 3

warm up

warm up

Use a single ghost cache instance

Largely reduces space and time overhead

Simulate candidates one at a time

Minimize warm-up before each simulation

Utilize the stack property for the first layer

Simulate in the order of increasing application cache size

Incremental reuse of a single ghost cache

33

App Cache Kernel Cache

Candidate Configuration 1

Candidate Configuration 2

Candidate Configuration 3

Simulation Order

Key-space sampling

Sample targets in key space and all accesses to the targets

Misalignment-aware Sampling

Key Space

Waldspurger et al. Efficient MRC Construction with SHARDS. 2015 (original key space sampling) 34

Key-space sampling

Samples targets in key space and all accesses to the targets

Works in normal multi-layer caching

Misalignment-aware Sampling

Waldspurger et al. Efficient MRC Construction with SHARDS. 2015 (original key space sampling)

Key Space

35

Misalignment - different caching units

The unit of app cache: app-defined blocks

The unit of kernel cache: pages

One unit in the 1st layer corresponds to multiple units in the 2nd layer

Misalignment-aware Sampling

App Cache Key Space
(uncompressed data)

Kernel Cache Key Space
(compressed data)

36

Key-space sampling with misalignment

Misalignment-aware Sampling

App Cache Key Space

Kernel Cache Key Space

37

Key-space sampling with misalignment

Hits in the 2nd layer due to accessed neighboring blocks in the 1st layer

Misalignment-aware Sampling

App Cache Key Space

Kernel Cache Key Space

38

Key-space sampling with misalignment

Hits in the 2nd layer due to accessed neighboring blocks in the 1st layer

Contiguous targets not all sampled so hits are not counted

Loses the effects of accessing contiguous pages

Misalignment-aware Sampling

App Cache Key Space

Kernel Cache Key Space

39

Key-space sampling with misalignment

Much lower kernel cache hit rate

Misalignment-aware Sampling

Waldspurger et al. Efficient MRC Construction with SHARDS. 2015 (original key-space sampling) 40

Misalignment-aware Sampling

Sample contiguous targets together to keep the effect of misalignment

Misalignment-aware Sampling

App Cache Key Space

Kernel Cache Key Space

41

Misalignment-aware Sampling

Sample contiguous targets together to keep the effect of misalignment

In Symbiosis, we samples in groups of 32 and the sampling rate is 1/64

Misalignment-aware sampling is much more accurate

Misalignment-aware Sampling

42

approximate no sampling better

Guard Against Unmodeled Cases

Some kernel features not modeled (e.g., read-ahead)

43

Guard Against Unmodeled Cases

Some kernel features not modeled (e.g., read-ahead)

When simulation is accurate

44

P
e
rf

o
rm

a
n

c
e

Application Cache Size

Current Performance

Simulated Performance
Adapt!

Guard Against Unmodeled Cases

Some kernel features not modeled (e.g., read-ahead)

When simulation is not accurate

Observation: omitting such features usually results in a worse perf.
P

e
rf

o
rm

a
n

c
e

Application Cache Size

Current Performance

Simulated Performance

45

Guard Against Unmodeled Cases

Some kernel features not modeled (e.g., read-ahead)

Observation: omitting such features usually results in a worse perf.

Policy: only adapts when predicted perf. is better than current perf.

Reject all configurationsP
e
rf

o
rm

a
n

c
e

Application Cache Size

Current Performance

Simulated Performance

46

Evaluation - Static Workloads

Experiments

Performance with various workloads and environments

Results

Improves performance in 98% of 190+ workloads by 1.5x on average

Factors Presented Space # of parameters

Workloads
Data Set Size 5, 2.5, 1.67, 1.24, 1 4

Access Pattern uniform, zipfian, hotspot{30,20,10} 5

Software
Compression Lib. snappy (default), zstd 2

Storage Engine LevelDB, RocksDB, WiredTiger 3

Hardware
CPU Frequency CPU1: 2.9GHz, CPU2: 2.0GHz 2

Device Latency SSD1: ~10us, SSD2: ~70us 2

47

Evaluation - Dynamic Workloads

Experiments

Performance with abrupt and gradual workload changes

Performance with real world workloads

Overhead and tail latency analysis

Results

Symbiosis properly reacts to all of 38 workloads

Symbiosis incurs 0.1% space overhead and 1% time overhead

48

Dynamic Workloads - Example

Consists of 2 static workloads

Workload 1 is very skewed, while workload 2 is less skewed

Data set fits in memory when compressed, but not when uncompressed

Workload 2Workload 1

(Skewed)

Workload

Change

↓

49

20

15

10

5

0

L
a
te

n
c
y
 (

u
s
)

Workload Progress

Dynamic Workloads - Example

Workload 1

Workload 2Workload 1

50

20

15

10

5

0

L
a
te

n
c
y
 (

u
s
)

Workload Progress

Workload 2Workload 1

Dynamic Workloads - Example

Workload 1

100% app cache performs better due to high skewedness

51

20

15

10

5

0

L
a
te

n
c
y
 (

u
s
)

Workload Progress

Simulation

Workload 2Workload 1

Dynamic Workloads - Example

Workload 1

Symbiosis performs best after simulation

52

20

15

10

5

0

L
a
te

n
c
y
 (

u
s
)

Workload Progress

Simulation

Workload 2Workload 1

Dynamic Workloads - Example

Workload 1

Symbiosis incurs negligible overhead during simulation

negligible overhead

53

20

15

10

5

0

L
a
te

n
c
y
 (

u
s
)

Workload Progress

Dynamic Workloads - Example

Workload 1

Simulation

Workload 2Workload 1

54

20

15

10

5

0

L
a
te

n
c
y
 (

u
s
)

Workload Progress

Dynamic Workloads - Example

Workload 1

Simulation

Workload 2Workload 1

55

20

15

10

5

0

L
a
te

n
c
y
 (

u
s
)

Workload Progress

Simulation

Workload 2Workload 1

Dynamic Workloads - Example

Workload 1

Simulation result: giving ~40% of memory to app cache is the best

Adapt!

56

20

15

10

5

0

L
a
te

n
c
y
 (

u
s
)

Workload Progress

Dynamic Workloads - Example

Workload 2

100% kernel cache performs similarly

Workload 2Workload 1 Workload

Change

↓

57

20

15

10

5

0

L
a
te

n
c
y
 (

u
s
)

Workload Progress

Dynamic Workloads - Example

Workload 2

100% app cache performs worse due to less skewedness

Workload 2Workload 1

58

20

15

10

5

0

L
a
te

n
c
y
 (

u
s
)

Workload Progress

Dynamic Workloads - Example

Workload 2

Symbiosis maintains the best performance after simulation

Workload 2Workload 1

Simulation

59

20

15

10

5

0

L
a
te

n
c
y
 (

u
s
)

Workload Progress

Dynamic Workloads - Example

Workload 2

Symbiosis maintains the best performance after simulation

Workload 2Workload 1

Simulation Adapt!

60

20

15

10

5

0

L
a
te

n
c
y
 (

u
s
)

Workload Progress

Dynamic Workloads - Example

Workload 2

Symbiosis maintains the best performance after simulation

Workload 2Workload 1

Simulation

cache size change

Adapt!

61

20

15

10

5

0

L
a
te

n
c
y
 (

u
s
)

Workload Progress

Conclusion

Symbiosis: dynamic cache size adjustment via online simulation

Integrated into production systems within 1000 LoC

LevelDB, RocksDB, WiredTiger

Adapts to various workloads and reacts to workload changes

Performs well on 190+ static workloads and 38 dynamic workloads

Delivers excellent performance with negligible overhead

1.5x gain on average for read-heavy workloads

0.1% space overhead and 1% time overhead

62

Conclusion

Simulation-based online performance tuning

A tuning approach that does not rely on machine learning

Deep understanding and careful optimizations are necessary

Potential parameter tuning beyond cache sizes

63

Thank You for Listening!

See the paper for:

Offline simulation study

Detailed implementation and evaluation

Symbiosis source code

https://github.com/daiyifandanny/Symbiosis

64

