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Abstract
Blockchain systems suffer from high storage costs as ev-
ery node needs to store and maintain the entire blockchain
data. After investigating Ethereum’s storage, we find that
the storage cost mostly comes from the index, i.e., Merkle
Patricia Trie (MPT). To support provenance queries, MPT
persists the index nodes during the data update, which adds
too much storage overhead. To reduce the storage size, an
initial idea is to leverage the emerging learned index tech-
nique, which has been shown to have a smaller index size
and more efficient query performance. However, directly ap-
plying it to the blockchain storage results in even higher
overhead owing to the requirement of persisting index nodes
and the learned index’s large node size. To tackle this, we
propose COLE, a novel column-based learned storage for
blockchain systems. We follow the column-based database
design to contiguously store each state’s historical values,
which are indexed by learned models to facilitate efficient
data retrieval and provenance queries. We develop a series
of write-optimized strategies to realize COLE in disk envi-
ronments. Extensive experiments are conducted to validate
the performance of the proposed COLE system. Compared
with MPT, COLE reduces the storage size by up to 94% while
improving the system throughput by 1.4×-5.4×.

1 Introduction

Blockchain, as the backbone of cryptocurrencies and decen-
tralized applications [38,52], is an immutable ledger built on a
set of transactions agreed upon by untrusted nodes. It employs
cryptographic hash chains and consensus protocols for data
integrity. Users can retrieve historical data from blockchain
nodes with integrity assurance, also known as provenance
queries. However, all nodes are required to store the complete
transactions and ledger states, leading to amplified storage ex-
penses, particularly as the blockchain continues to grow. For
example, the Ethereum blockchain requires about 16TB stor-
age as of December 2023, with an annual growth of around
4TB [1]. This storage requirement may compel the resource-
limited nodes to retain only the data of a few recent blocks,
which restricts the ability to support data provenance. The
nodes that maintain the complete data may also leave the
network due to the rapidly increasing storage size, which
potentially affects system security.

Extension Node
Branch Node
Leaf Node

addr value

Figure 1: An Example of Merkle Patricia Trie

To tackle the storage issue, we investigate Ethereum’s
index, Merkle Patricia Trie (MPT), to identify the storage
bottleneck. MPT combines Patricia Trie with Merkle Hash
Tree (MHT) [37] to ensure data integrity. During data up-
dates, its index nodes are persisted to support provenance
queries. Figure 1 shows an example of an MPT storing
three state addresses across two blocks. Each node is aug-
mented with a digest from its content and child nodes (e.g.,
h(n1) = h(a1|h(n2))). The root hash secures data integrity
through the collision-resistance of the cryptographic hash
function and the hierarchical structure. With each new block,
MPT retains obsolete nodes from the preceding block. For
example, in block i + 1, updating address a11e67 with v′3
introduces new nodes n′1,n

′
2,n
′
4, while old nodes n1,n2,n4

endure. This setup allows historical data retrieval from any
block (e.g., for address a11e67 in block i, value v3 is retrieved
by traversing nodes n1, n2, and n4).

However, this approach adds too much storage overhead
due to duplicating nodes along the update path (e.g., n1,n2,n4
and n′1,n

′
2,n
′
4 in Figure 1). Consequently, most storage over-

head comes from the index rather than the underlying data. In
a preliminary experiment with 10 million transactions under
the SmallBank workload [17], we observed that the underly-
ing data contributes only 2.8% of the total storage. Thus, a
more compact index supporting data integrity and provenance
queries is imperative.

Recently, a novel indexing technique, learned index [15,20,
26, 54], has emerged and shows notably smaller index size
and faster query speed. The improved performance comes
from the substitution of the directing keys in index nodes with
a learned model. For instance, consider a key-value database
with linear key distribution: (1,v1),(2,v2), · · · ,(n,vn). In a
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traditional B+-tree with fanout f , this leads to O( n
f ) nodes

and O(log f n) levels, resulting in O(n) storage costs and
O(log f n · log2 f ) query times. Conversely, using a simple
linear model y = x enables accurate data positioning with just
O(1) storage and O(1) query times. Although this example
may not perfectly reflect real-world applications, it highlights
that the learned index outperforms traditional indexes signifi-
cantly when the model effectively learns the data.

In view of the advantages of the learned index, one may
want to apply it to blockchain storage to improve performance.
However, the current learned indexes do not support both
data integrity and provenance queries required by blockchain
systems. A naive approach is to combine the learned index
with MHT [37] and make the index nodes persistent, as in
MPT. Nonetheless, this is not feasible due to the larger node
size of the learned index. The fanout of such a node is mainly
dictated by data distribution. In favorable cases, only a few
models are needed to index data, leading to a node fanout
comparable to data magnitude. Thus, persisting learned index
nodes might incur even higher storage overhead than MPT.
Our evaluation in Section 8 shows that a learned index with
persistent nodes is 5× to 31× larger than MPT. Furthermore,
as blockchain systems require durable disk-based storage and
often involve frequent data updates, the learned index should
be optimized for both disk and write operations. Therefore, a
blockchain-friendly learned index needs to be proposed.

In this paper, we propose COLE, a novel column-based
learned storage for blockchain systems that overcomes the
limitations of current learned indexes and supports prove-
nance queries. The key challenge in adapting learned indexes
to blockchains is the need for node persistence, which may
lead to substantial storage overhead. COLE tackles this issue
with an innovative column-based design, inspired by column-
based databases [4, 36]. In this design, each ledger state is
treated as a “column”, with different versions of a state stored
contiguously and indexed using learned models within the
latest block’s index. This enables efficient data updates as ap-
pend operations with associated version numbers (i.e., state’s
block heights). Moreover, historical data queries no longer
traverse previous block indexes, but utilize the learned in-
dex in the most recent block. The column-based design also
simplifies model learning and reduces disk IOs.

To handle frequent data updates and enhance write effi-
ciency in COLE, we propose adopting the log-structured
merge-tree (LSM-tree) [33,41] maintenance approach to man-
age the learned models. This involves inserting updates into
an in-memory index before merging them into on-disk levels
that grow exponentially. For each on-disk level, we design
a disk-optimized learned model that can be constructed in
a streaming way, which enables efficient data retrieval with
minimal IO cost. To guarantee data integrity, we construct
an m-ary complete MHT for the blockchain data in each on-
disk level. The root hashes of the in-memory index and all
MHTs combine to create a root digest that attests to the en-

tire blockchain data. However, recursive merges during write
operations can lead to long-tail latency in the LSM-tree ap-
proach. To alleviate this issue, we further develop a novel
checkpoint-based asynchronous merge strategy to ensure the
synchronization of the storage among blockchain nodes.

To summarize, this paper makes the following contribu-
tions:

• To the best of our knowledge, COLE is the first column-
based learned storage that combines learned models with
the column-based design to reduce storage costs for
blockchain systems.

• We propose novel write-optimized and disk-optimized de-
signs to store blockchain data, learned models, and Merkle
files for realizing COLE.

• We develop a new checkpoint-based asynchronous merge
strategy to address the long-tail latency problem for data
writes in COLE.

• We conduct extensive experiments to evaluate COLE’s
performance. The results show that compared with MPT,
COLE reduces storage size by up to 94% and improves
system throughput by 1.4×-5.4×. Additionally, the pro-
posed asynchronous merge decreases long-tail latency by
1-2 orders of magnitude while maintaining a comparable
storage size.

The rest of the paper is organized as follows. We present
some preliminaries about blockchain storage in Section 2.
Section 3 gives a system overview of COLE. Section 4 designs
the write operation of COLE, followed by an asynchronous
merge strategy in Section 5. Section 6 describes the read
operations of COLE. Section 7 presents a complexity analysis.
The experimental evaluation results are shown in Section 8.
Section 9 discusses the related work. Finally, we conclude
our paper in Section 10.

2 Blockchain Storage Basics

In this section, we give some necessary preliminaries to intro-
duce the proposed COLE. Blockchain is a chain of blocks that
maintains a set of states and records the transactions that mod-
ify these states. To establish a consistent view of the states
among mutually untrusted blockchain nodes, a consensus pro-
tocol is utilized to globally order the transactions [7, 38, 45].
The transaction’s execution program is known as smart con-
tract. A smart contract can store states, each of which is iden-
tified by a state address addr. In Ethereum [52], both the
state address addr and the state value value are fixed-sized
strings. Figure 2 shows an example of the block data struc-
ture. The header of a block consists of (i) Hprev_blk, the hash
of the previous block; (ii) T S, the timestamp; (iii) πcons, the
consensus protocol related data; (iv) Htx, the root digest of
the transactions in the current block; (v) Hstate, the root digest
of the states. The block body includes the transactions, states,
and their corresponding Merkle Hash Tree (MHTs).

MHT is a prevalent hierarchical structure to ensure data
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Figure 2: Block Data Structure

integrity [37]. In the context of blockchain, MHT is built
for the transactions of each block and the ledger states. Fig-
ure 2 shows an example of an MHT of a block’s transac-
tions. The leaf nodes are the hash values of the transactions
(e.g., h1 = h(tx1)). The internal nodes are the hash values
of their child nodes (e.g., h5 = h(h1||h2)). MHT enables the
proof of existence for a given transaction. For example, to
prove tx3, the sibling hashes along the search path (i.e., h4
and h5, shaded in Figure 2) are returned as the proof. One
can verify tx3 by reconstructing the root hash using the proof
(i.e., h(h5||h(h(tx3)||h4))) and comparing it with the one in
the block header (i.e., Htx). Apart from being used in the
blockchain, MHT has also been extended to database indexes
to support result integrity verification for different queries.
For example, MHT has been extended to Merkle B+-tree
(MB-tree) by combining the Merkle structure with B+-tree,
to support trustworthy queries in relational databases [29].

The blockchain storage uses an index to efficiently main-
tain and access the states [50, 52]. Besides the write and
read operations that a normal index supports, the index of the
blockchain storage should also fulfill the two requirements
we mentioned before: (i) ensuring the integrity of the indexed
blockchain states, (ii) supporting provenance queries that en-
able blockchain users to retrieve historical state values with
integrity assurance. With these requirements, the index of the
blockchain storage should support the following functions:

• Put(addr,value): insert the state with the address addr
and the value value to the current block;

• Get(addr): return the latest value of the state at address
addr if it exists, or returns nil otherwise;

• ProvQuery(addr, [blkl ,blku]): return the provenance
query results {value} and a proof π, given the address
addr and the block height range [blkl ,blku];

• VerifyProv(addr, [blkl ,blku],{value},π,Hstate): verify
the provenance query results {value} w.r.t. the address,
the block height range, the proof, and Hstate, where Hstate
is the root digest of the states.

Ethereum employs Merkle Patricia Trie (MPT) to index
blockchain states. In Section 1, we have shown how MPT
implements Put(·) and ProvQuery(·) using Figure 1 and the
address a11e67. We now explain the other two functions
using the same example. Get(a11e67) finds a11e67’s latest
value v′3 by traversing n′1,n

′
2,n
′
4 under the latest block i +

addr value
Merkle FileValue File Index File

MB-treeIn-Mem:

On-Disk:
blk

Figure 3: Overview of COLE

1. After ProvQuery(a11e67, [i, i]) gets v3 and the proof π =
{n1,n2,n4,h(n3)} in block i, VerifyProv(·) is used to verify
the integrity of v3 by reconstructing the root digest using the
nodes from n4 to n1 in π and checks whether the reconstructed
one matches the public digest Hi in block i and whether the
search path in π corresponds to the address a11e67.

3 COLE Overview

This section presents COLE, our proposed column-based
learned storage for blockchain systems. We first give the
design goals and then show how COLE achieves these goals.

3.1 Design Goals
We aim to achieve the following design goals for COLE:

• Minimizing storage size. To scale up the blockchain sys-
tem, it is important to reduce the storage size by leveraging
the learned index and column-based design.

• Supporting the requirements of blockchain storage.
As blockchain storage, it should ensure data integrity and
support provenance queries as mentioned in Section 2.

• Achieving efficient writes in a disk environment. Since
blockchain is write-intensive and all data needs to be
preserved on disk, the system should be write-optimized
and disk-optimized to achieve better performance.

3.2 Design Overview
Figure 3 shows the overview of COLE. Following the column-
based design [4,36], we adopt an analogy between blockchain
states and database columns. Each state’s historical versions
are contiguously stored in the index of the latest block. When
a state is updated in a new block, the state and its version
number (i.e., block height) are appended to the index where
all of the state’s historical versions are stored. For indexing
historical state values, we use a compound key K in the form
of ⟨addr,blk⟩, where blk is the block height when the value of
addr was updated. In Figure 3, when block i+1 updates the
state at address k3 (highlighted in red), a new compound key
of k3, K ′3 ← ⟨k3, i+1⟩, is created. Then, the updated value v′3
indexed by K ′3 is inserted into COLE. With the column-based
design, v′3 is stored next to k3’s old version v3. Compared with
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the MPT in Figure 1, the cumbersome node duplication along
the update path (e.g., n1,n2,n4 and n′1,n

′
2,n
′
4) is avoided to

save the storage overhead.
To mitigate the high write cost associated with learned

models for indexing blockchain data in a column-based de-
sign, we propose using the LSM-tree maintenance strategy in
COLE. It structures index storage into levels of exponentially
increasing sizes. New data is initially added to the first level.
When the level reaches its pre-defined maximum capacity,
all the data in that level is merged into a sorted run in the
next level. This merge operation can occur recursively until
the capacity requirement is no longer violated. The first level,
often highly dynamic, is typically stored in memory, while
other levels reside on disk. COLE employs Merkle B+-tree
(MB-tree) [29] for the first level and disk-optimized learned
indexes for subsequent levels. We choose MB-tree over MPT
for the in-memory level due to its better efficiency in com-
pacting data into sorted runs and flushing them to the first
on-disk level.

Each on-disk level contains a fixed number of sorted runs,
each of which is associated with a value file, an index file, and
a Merkle file:

• Value file stores blockchain states as compound key-value
pairs, which are ordered by their compound keys to facili-
tate the learned index.

• Index file helps locate blockchain states in the value file
during read operations. It uses a disk-optimized learned
index, inspired by PGM-index [20], for efficient data re-
trieval with minimal IO cost.

• Merkle file authenticates the data stored in the value file.
It is an m-ary complete MHT built on the compound key-
value pairs.

Note that since the model construction and utilization require
numerical data types, we convert a compound key into a big
integer using the binary representation of the address and
the block height. For example, given a compound key K ←
⟨addr,blk⟩, its big integer is computed as binary(addr)×
264 + blk, where blk is a 64-bit value. Moreover, to ensure
data integrity, root hashes of both the in-memory MB-tree
and the Merkle files of each on-disk run are combined to
create a root_hash_list. The root digest of states, stored in the
block header, is computed from this list. This list is cached in
memory to expedite root digest computation.

With this design, to retrieve the state value of address addrq
at a block height blkq, a compound key Kq←⟨addrq,blkq⟩ is
employed. The process entails a level-wise search within
COLE, initiated from the first level. The MB-tree or the
learned indexes in other levels are traversed. The search ceases
upon encountering a compound key Kr ← ⟨addrr,blkr⟩
where addrr = addrq and blkr ≤ blkq, at which point the cor-
responding value is returned. For retrieving the latest value
of a state, the procedure remains similar but with the search
key set to ⟨addrq,max_int⟩, where max_int is the maximum
integer. That is, the search is stopped as long as a state value

Algorithm 1: Write Algorithm

1 Function Put(addr,value)
Input: State address addr, value value

2 blk← current block height; K ← ⟨addr,blk⟩;
3 Insert ⟨K ,value⟩ into the MB-tree in L0;
4 if L0 contains B compound key-value pairs then
5 Flush the leaf nodes in L0 to L1 as a sorted run;
6 Generate files FV ,FI ,FH for this run;
7 i← 1;
8 while Li contains T runs do
9 Sort-merge all the runs in Li to Li+1 as a new run;

10 Generate files FV ,FI ,FH for the new run;
11 Remove all the runs in Li;
12 i← i+1;
13 Update Hstate when finalizing the current block;

with the queried address addrq is found.

4 Write Operation of COLE

We now detail the write operation of COLE. As mentioned in
Section 3.2, COLE organizes the storage using an LSM-tree,
which consists of an in-memory level and multiple on-disk
levels. The in-memory level has a capacity of B states in
the form of compound key-value pairs. Once this capacity is
reached, the in-memory level is flushed to the disk as a sorted
run. Similarly, when the first on-disk level reaches its capacity
of T sorted runs, they are merged into a new run in the next
level. This merging process continues for subsequent disk
levels, with the size of each run growing exponentially with a
ratio of T . That is, level i has a maximum of B ·T i states.

Algorithm 1 shows COLE’s write operation. It starts by
calculating a compound key for the state using the address
and the current block height (Line 2). The compound key-
value pair is inserted into the in-memory level L0 indexed by
the MB-tree (Line 3). As L0 fills up, it is flushed to the first
on-disk level L1 as a sorted run (Line 5). The value file FV
is generated by scanning compound key-value pairs in the
MB-tree’s leaf nodes (Line 6). At the same time, the index
file FI and the Merkle file FH are constructed in a streaming
manner (see Section 4.1, Section 4.2 for details). When on-
disk level Li fills up (i.e., with T runs), all the runs in Li
are merge-sorted as a new run in the next level Li+1, with
corresponding three files generated (Lines 8 to 11). This level-
merge process continues recursively until a level does not fill
up. The blockchain’s state root digest Hstate is computed by
hashing the concatenation of the root hash of L0’s MB-tree
and root hashes of runs in other levels, stored in root_hash_list,
when finalizing the current block (Line 13).

Example. Figure 4 shows an example of the insertion of
s10. For clarity, we show only the states and the value files but
omit the index files and Merkle files. Assume B = 2 and T = 3.
The sizes of the runs in L1 and L2 are 2 and 6, respectively.
After s10 is inserted into in-memory level L0, the level is full
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Figure 4: An Example of Write Operation

and its states are flushed to L1 as a sorted run (step 1⃝). This
incurs L1 reaching the maximum number of runs. Thus, all
the runs in L1 are next sort-merged as a new run, placed in L2
(step 2⃝). Finally, L0 and L1 are empty and L2 has two runs,
each of which contains six states.

A common optimization technique to speed up read opera-
tions is to integrate a Bloom filter into the in-memory MB-tree
and each run in the on-disk levels. We incorporate the Bloom
filter into COLE with careful consideration. First, they should
be built upon the addresses of the underlying states rather
than their compound keys to facilitate read operations. Sec-
ond, since the Bloom filters may produce false positives, if
they indicate that an address exists, we further resort to the
normal read process of the corresponding MB-tree or the disk
run to ensure the search correctness. We will elaborate on
their usage during the read operation in Section 6. Moreover,
the Bloom filters should be incorporated alongside the root
hashes of each run when computing the states’ root digest.
This is needed to verify the result integrity during provenance
queries.

4.1 Index File Construction
An index file consists of the models that can be used to locate
the positions of the states’ compound keys in the value file. In-
spired by PGM-index [20], we start by defining an ε-bounded
piecewise linear model (or model for short) as follows.

Definition 1 (ε-Bounded Piecewise Linear Model). The
model is a tuple of M = ⟨sl, ic,kmin, pmax⟩, where sl and ic
are the slope and intercept of the linear model, kmin is the
first key in the model, and pmax is the last position of the data
covered by the model.

Given a model, one can predict a compound key K ’s posi-
tion preal in a file, if K ≥ kmin. The predicted position ppred
is calculated as ppred = min(K · sl+ ic, pmax), which satisfies
|ppred− preal | ≤ ε. Since files are often organized into pages,
we set ε as half the number of models that can fit into a single
disk page to generate the models in a disk-friendly manner.
As will be shown, this reduces the IO cost by ensuring that
at most two pages need to be accessed per model during read
operations.

Algorithm 2: Learn Models from a Stream

1 Function BuildModel(S ,ε)
Input: Input stream S , error bound ε

Output: A stream of models {M }
2 kmin← /0, pmax← /0, glast ← /0;
3 Init an empty convex hull H ;
4 foreach ⟨K , preal⟩ ← S do
5 if kmin = /0 then kmin←K ;
6 Add ⟨BigNum(K ), preal⟩ to H ;
7 Compute the minimum parallelogram G that covers H ;
8 if G .height ≤ 2ε then
9 pmax← preal ,glast ← G ;

10 else
11 Compute slope sl and intercept ic from glast ;
12 M ← ⟨sl, ic,kmin, pmax⟩;
13 yield M ;
14 kmin←K ;
15 Init a new convex hull H with ⟨BigNum(K ), preal⟩;

Po
si

tio
n

Enclosed parallelogramEdge of convex hull

Po
si

tio
n

Figure 5: An Example of Model Learning

To compute models from a stream of compound keys and
their corresponding positions, we treat each compound key
and its position as a point’s coordinates. Upon the arrival of a
new compound key, we convert it into a big integer using the
binary representation of the address and the block height as
mentioned in Section 3.2. Next, we find the smallest convex
shape containing all the existing input points, which is known
as a convex hull. Note that this convex hull can be computed
incrementally in a streaming fashion [40]. Then, we find the
minimal parallelogram that covers the convex hull, with one
side aligned to the vertical axis (i.e., the position axis). If the
parallelogram’s height stays under 2ε, all existing inputs can
fit into a single model. In this case, we try to include the next
compound key in the stream for model construction. However,
if the current parallelogram fails to meet the height criteria, the
slope and intercept of the central line in the parallelogram will
be used to build a model that covers all existing compound
keys except the current one. After this, a new model will be
built, starting from the current compound key. We summarize
the algorithm in Algorithm 2.

Example. Figure 5 shows an example of model learning
from a stream. Assume states s1 to s3 form a convex hull, with
its minimal parallelogram satisfying the height criterion (i.e.,
below 2ε). After state s4 is added, the parallelogram’s height
remains within 2ε (see Figure 5(a)), indicating that states
s1 to s4 can be fit into one model. However, after the next
state s5 is added, the parallelogram’s height exceeds 2ε (see
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Algorithm 3: Index File Construction

1 Function ConstructIndexFile(S ,ε)
Input: Input stream S of compound key-position pairs
Output: Index file FI

2 Create an empty index file FI ;
3 Invoke BuildModel(S ,ε) and write to FI ;
4 n← # of pages in FI ;
5 while n > 1 do
6 S ←{⟨M .kmin, pos⟩ | foreach ⟨M , pos⟩ ∈ FI [−n :]};
7 Invoke BuildModel(S ,ε) and append to FI ;
8 n← # of pages in FI −n;
9 return FI ;

Figure 5(b)). Thus, the slope and intercept of the previous
parallelogram’s central line (highlighted in red) are used to
build a model for s1 to s4, with s5 reserved for the next model.

Algorithm 3 shows the overall procedure of index file gen-
eration. During flush or sort-merge operations in Algorithm 1,
ordered compound keys and state values are generated and
written streamingly into the value file. Meanwhile, another
stream consisting of compound keys and their positions is cre-
ated and used to generate models with Algorithm 2 (Line 3).
Once the models are yielded by Algorithm 2, they are immedi-
ately written to the index file, constituting the bottom layer of
the run’s learned index. Then, we recursively build the upper
layers of the index until the top layer can fit into a single disk
page (Lines 4 to 8). Specifically, for each layer, we scan lower-
layer models (denoted as FI [−n :]) to create a compound key
stream using kmin in each model and their index file positions
(Line 6). Similar to the bottom layer, we use Algorithm 2
on the stream to create models and instantly write them to
the index file (Line 7). This results in the sequential storage
of models across layers in a bottom-up manner. The index
file remains valid from its construction until the next level
merge operation thanks to the LSM-tree-based maintenance
approach, which avoids costly model retraining.

4.2 Merkle File Construction
A Merkle file stores an m-ary complete MHT that authen-
ticates the compound key-value pairs in the corresponding
value file. The related index file’s learned models are excluded
from authentication, as they solely enhance query efficiency
and do not affect blockchain data integrity. For the m-ary com-
plete MHT, the bottom layer consists of hash values of every
compound key-value pair in the value file. The hash values in
an upper layer are recursively computed from every m hash
values in the lower layer, except that the last one might be
computed from less than m hash values in the lower layer.

Definition 2 (Hash Value). A hash value in the bottom layer of
the MHT is computed as hi = h(Ki∥valuei), where Ki,valuei
are the corresponding compound key and value, ∥ is the con-
catenation operator, and h(·) is a cryptographic hash function
such as SHA-256. A hash value in an upper layer of the MHT

Algorithm 4: Merkle File Construction

1 Function ConstructMerkleFile(S ,n,m)
Input: Input stream S of compound key-value pairs,

stream size n, fanout m
Output: Merkle file FH

2 Nnodes← [n,⌈ n
m ⌉,⌈

n
m2 ⌉, · · · ,1], d← |Nnodes|;

3 layer_offset[0]← 0;
4 layer_offset[i]← ∑

i−1
0 Nnodes[i−1], ∀i ∈ [1,d−1];

5 Create a merkle file FH with size ∑
d−1
i=0 Nnodes[i];

6 Create a cache C with d number of buffers;
7 foreach ⟨K ,value⟩ ← S do
8 h′← h(K ∥value), append h′ to C [0];
9 foreach i in 0 to d−2 do

10 if |C [i]|= m then
11 h′← h(C [i]), append h′ to C [i+1];
12 Flush C [i] to FH at offset layer_offset[i];
13 layer_offset[i]← layer_offset[i]+m;
14 else break;
15 foreach i in 0 to d−1 do
16 if C [i] is not empty then
17 h′← h(C [i]), append h′ to C [i+1];
18 Flush C [i] to FH at offset layer_offset[i];
19 return FH ;

is computed as hi = h(h1
i ∥h2

i ∥· · ·∥hm∗
i ), where m∗ ≤ m and

h j
i is the corresponding j-th hash in the lower layer.

Similar to Algorithm 3, we streamingly generate the Merkle
file. However, instead of layer-wise construction, we concur-
rently build all MHT layers to reduce IO costs, as shown in
Algorithm 4. Note that the size of the input stream of com-
pound key-value pairs n is known in advance since the size
of a value file is determined by the level of its correspond-
ing run. Thus, the MHT has ⌈logm n⌉+1 layers, containing
n,⌈ n

m⌉,⌈
n

m2 ⌉, · · · ,1 hash values (Line 2). Layer offsets can
also be computed (Lines 3 to 4). For concurrent construction,
⌈logm n⌉+1 buffers are maintained, one per layer. Upon the
arrival of a new compound key-value pair, its hash value is
computed and added to the bottom layer’s buffer (Line 8).
When a buffer fills with m hash values, an upper layer’s hash
value is created and added to its buffer (Line 11). Next, the
buffered hash values in the current layer are flushed to the
Merkle file, followed by incrementing the offset (Lines 12
to 13). This process recurs in upper layers until a layer with
less than m buffered hash values is encountered. Once the
input stream is fully processed, any remaining non-empty
buffers will hold fewer than m hash values. If so, we’ll initi-
ate this process by taking a buffer from the lowest layer and
iteratively generating hash values. Each hash value is added
to the upper layer before flushing the buffer to the Merkle file
(Lines 15 to 18).

Example. Figure 6 shows an example of a 2-ary MHT with
states s1 to s4. According to the MHT’s structure, Nnodes =
[4,2,1] and layer_offset = [0,4,6]. Assume that s1,s2 are al-
ready added. In this case, FH has h1,h2 and cache C[1] con-
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Figure 6: An Example of Merkle File Construction

tains h12, where h1,h2 are the hash values of s1,s2 and h12 is
derived from h1,h2 (Figure 6(a)). Meanwhile, layer_offset[0]
has been updated to 2. After s3,s4 are added, their hashes
h3,h4 will be inserted to cache C[0], resulting in C[0] having
2 hash values. Thus, h34 derived from h3,h4 will be added
into cache C[1] and h3,h4 are then flushed to FH at offset 2
(step 1⃝). Since C[1] also has 2 hash values so the derived h14
is added to cache C[2] and h12,h34 are flushed to FH at offset
layer_offset[1] = 4 (step 2⃝). Finally, h14 in C[2] is flushed to
FH at offset layer_offset[2] = 6 (step 3⃝).

4.3 Discussions

As discussed earlier, COLE adopts the LSM-tree-based main-
tenance approach to optimize data writes and disk operations
under the column-based design. However, it also comes with
some tradeoffs. The presence of multiple levels can impact
read performance, as retrieving a state requires traversing mul-
tiple levels until a satisfactory result is found. Additionally,
the merge operation complicates the process of state rewind,
as data cannot be deleted in-place. Therefore, COLE does
not support blockchain forking and is designed to work with
blockchains that do not fork [5, 22, 53].

We next discuss the ACID properties in COLE. COLE
achieves atomicity by maintaining root_hash_list in an atomic
manner. During the level merge process, root_hash_list is
updated atomically only after constructing all three files in
the new level, followed by removing the old level files. This
ensures data consistency as the old level files remain in-
tact and are referenced by root_hash_list even during a node
crash. Concurrency control is not required due to the write-
serializability guarantee of the consensus protocol. Data in-
tegrity is ensured using Merkle-based structures for each level.
For durability, COLE uses transaction logs as the Write Ahead
Log since they are agreed upon by the consensus protocol.
In case of a crash, COLE recovers by replaying transactions
since the last checkpoint. A checkpoint is created when the in-
memory MB-tree is flushed to the first disk level and cleared.
At this time point, all the data in the system is safely stored
on the disk. After a crash, COLE reverts to the last check-
point, discards all the files in the unfinished merge levels,

and starts fresh with an empty in-memory MB-tree. It then
replays all unprocessed transactions and restarts the aborted
level merges.

5 Write with Asynchronous Merge

Algorithm 1 may trigger recursive merge operations during
some writes (e.g., steps 1⃝ and 2⃝ in Figure 4). As a result, it
can introduce long-tail latency and cause all future operations
to stall. This issue is known as write stall, which leads to
periodic drops in application throughput to near-zero levels
and dramatic fluctuations in system performance. A com-
mon solution is to make the merge operations asynchronous
by moving them to separate threads. However, the existing
asynchronous merge solution is not suitable for blockchain
applications. Since different nodes in the blockchain network
could have drastically different computation capabilities, the
storage structure will become out-of-sync among nodes when
applying asynchronous merges. This will result in different
Hstate’s and break the requirement of the blockchain protocol.

To address these challenges, we design a novel asyn-
chronous merge algorithm for COLE, which ensures the syn-
chronization of the storage across blockchain nodes. The
algorithm introduces two checkpoints, start and commit,
within the asynchronous merge process for each on-disk
level. By synchronizing the checkpoints, we ensure consistent
blockchain storage and thus Hstate agreed by the network. To
further minimize the possibility of long-tail latency due to
delays at the commit checkpoint, we propose to make the
interval between the start checkpoint and the commit check-
point proportional to the size of the run. This ensures that the
majority of the nodes in the network can complete the merge
operation before reaching the commit checkpoint.

To realize our idea, we propose to have each level of COLE
contain two groups of runs as shown in Figure 7. Each group’s
design is identical to the one discussed in Section 4. Specifi-
cally, the in-memory level now contains two groups of MB-
tree, each with a capacity of B states. Similarly, each on-disk
level contains two groups of up to T sorted runs. Level i can
hold a maximum of 2 ·B ·T i states. The two groups in each
level have two mutually exclusive roles, namely writing and
merging. The writing group accepts newly created runs from
the upper level. On the other hand, the merging group gen-
erates a new run from its own data and adds to the writing
group of the next level in an asynchronous fashion.

Algorithm 5 shows the write operation in COLE with asyn-
chronous merge. First, new state values are inserted into the
current writing group of in-memory level L0 (Lines 2 to 4).
The levels in COLE are then traversed from smaller to larger.
When a level is full, we commit the previous merge operation
in the current level and start a new merge operation in a new
thread. To accommodate slow nodes in the network, we check
if the previous merging thread of the current level exists and is
still in progress, and wait for it to finish if necessary (Line 9).
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Algorithm 5: Write Algorithm with Asynchronous Merge

1 Function Put(addr,value)
Input: State address addr, value value

2 blk← current block height; K ← ⟨addr,blk⟩;
3 w0← Get L0’s writing group;
4 Insert ⟨K ,value⟩ into the MB-tree of w0;
5 i← 0;
6 while wi becomes full do
7 mi← Get Li’s merging group;
8 if mi.merge_thread exists then
9 Wait for mi.merge_thread to finish;

10 Add the root hash of the generated run from
mi.merge_thread to root_hash_list;

11 Remove the root hashes of the runs in mi from
root_hash_list;

12 Remove all the runs in mi;
13 Switch mi and wi;
14 mi.merge_thread← start thread do
15 if i = 0 then
16 Flush the leaf nodes in mi to Li+1’s writing group a

sorted run;
17 Generate files FV ,FI ,FH for the new run;
18 else
19 Sort-merge all the runs in mi to Li+1’s writing

group a new run;
20 Generate files FV ,FI ,FH for the new run;
21 i← i+1;
22 Update Hstate when finalizing the current block;

The previous merge operation is committed by adding the root
hash of the newly generated run to root_hash_list (Line 10),
while obsolete run hashes are removed from root_hash_list
(Line 11) and the obsolete runs in the merging group are
also removed (Line 12). The above procedure ensures the
commit checkpoint occurs simultaneously across nodes in
the network, which is essential to synchronize the blockchain
states and the corresponding root digest. Following this, the
roles between the two groups in the current level are switched
(Line 13). This means that future write operations will be di-
rected to the vacated space of the new writing group, whereas
the merge operation will be performed on the new merging
group, which is now full. The latter starts a new merge thread,
whose procedure is similar to that of Algorithm 1 (Lines 14
to 20). Lastly, when finalizing the current block, Hstate is

updated using stored root hashes in root_hash_list (Line 22).
Example. Figure 8 shows an example of the asynchronous

merge from level Li to Li+1, where T = 3. The uncommit-
ted files are denoted by dashed boxes. Figure 8(a) shows
COLE’s structure before Li’s commit checkpoint, when Li’s
writing group wi becomes full. In case mi’s merging thread
(denoted by the purple arrow) is not yet finished, we wait for
it to finish. Then, during Li’s commit checkpoint, wi+1.R1’s
root hash is added to root_hash_list and all runs in mi (i.e.,
mi.R0,mi.R1,mi.R2) are removed (Figure 8(b)). Next, mi and
wi’s roles are switched. Finally, a new thread will be started
(denoted by the blue arrow) to merge all runs in mi to Li+1’s
writing group as the third run wi+1.R2 (Figure 8(c)).

Soundness Analysis. Next, we show our proposed asyn-
chronous merge operation is sound. Specifically, the following
two requirements are satisfied.

• The blockchain states’ root digest Hstate is always synchro-
nized among nodes in the blockchain network regardless
of how long the underlying merge operation takes.

• The interval between the start checkpoint and the commit
checkpoint for each level is proportional to the size of the
runs to be merged.

The first requirement ensures blockchain states are solely
determined by the current committed states and are indepen-
dent of individual node performance variations. The second
requirement minimizes the likelihood of nodes waiting for
merge operations of longer runs. We now prove that our algo-
rithm complies with the requirements.

Proof Sketch. It is trivial to show that the first requirement is
satisfied as the update of root_hash_list (hence Hstate) occurs
outside the asynchronous merge thread, making the update
of Hstate fully synchronous and deterministic. For the second
requirement, the interval between the start checkpoint and
the commit checkpoint in any level equals the time taken to
fill up the writing group in the same level. Since the latter
contains those runs to be merged in this level, the interval is
proportional to the size of the runs.

6 Read Operations of COLE

In this section, we discuss the read operations of COLE, in-
cluding the get query and the provenance query with its veri-
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Algorithm 6: Get Query

1 Function Get(addr)
Input: State address addr
Output: State latest value value

2 Kq← ⟨addr,max_int⟩;
3 foreach g in {L0’s writing group, L0’s merging group} do
4 ⟨K′,state′⟩ ← SearchMBTree(g,Kq);
5 if K ′.addr = addr then return state′;
6 foreach level i in {1,2, . . .} do
7 RS←{Ri, j | Ri, j∈Li’s writing group∧ committed};
8 RS←RS+{Ri, j | Ri, j∈Li’s merging group};
9 foreach Ri, j in RS do

10 ⟨⟨K′,state′⟩, pos′⟩ ← SearchRun(Ri, j,Kq);
11 if K ′.addr = addr then return state′;
12 return nil;

fication function. We assume that COLE is implemented with
the asynchronous merge.

6.1 Get Query
Algorithm 6 shows the get query process. As mentioned in
Section 3.2, getting a state’s latest value requires a special
compound key Kq = ⟨addrq,max_int⟩. Owing to the tem-
poral order of COLE’s levels, we perform the search from
smaller levels to larger levels, until a satisfied state value is
found. This involves searching both the writing and merging
groups’ MB-trees in the in-memory level L0 as both of them
are committed (Lines 3 to 5). Then, in each on-disk level, a
search is performed in the committed writing group’s runs,
followed by the merging group’s runs (Lines 6 to 11). Note
that the runs in the same group will be searched in the order
of their freshness. For the example in Figure 7, we search
the MB-trees in w0 and m0, followed by the runs in the order
of w1.R1, w1.R0, m1.R2, m1.R1, m1.R0, w2.R0, · · · , while the
uncommitted w1.R2,w2.R1 are skipped. The search halts once
the satisfied state is found.

To search an on-disk run, we use Algorithm 7. First, if the
queried address addrq is not in the run’s bloom filter B , the
run is skipped (Line 2). Otherwise, models in the index file
FI are used to find Kq. The search starts from the top layer of
models, stored on the last page of FI . The model covering Kq
is found by binary searching kmin of each model in this page
(Line 4). Then, a recursive query on models in subsequent
layers is conducted from top to bottom (Lines 5 to 7). Upon
reaching the bottom layer, the corresponding model is used
to locate the state value in the value file FV (Line 8).

Function QueryModel(·) in Algorithm 7 shows the pro-
cedure of using a learned model M to locate the queried
compound key Kq. If the model covers Kq, it predicts the
position pospred of the queried data (Line 12). With the error
bound of the model 2ε equaling the page size, the predicted
page id is computed as pospred/2ε (Line 13). The correspond-
ing page P is fetched and the first and last models are checked
whether they cover Kq. If not, the adjacent page is fetched as

Algorithm 7: Search a Run

1 Function SearchRun(FI ,FV ,B,Kq)
Input: Index file FI , value file FV , bloom filter B ,

compound key Kq = ⟨addrq,blkq⟩
Output: Queried state s and its position pos

2 if addrq /∈ B then return;
3 Kq← BigNum(Kq);
4 P ← FI’s last page; M ← BinarySearch(P ,Kq);
5 ⟨M , pos⟩ ← QueryModel(M ,FI ,Kq);
6 while pos is not pointing to the bottom models do
7 ⟨M , pos⟩ ← QueryModel(M ,FI ,Kq);
8 return QueryModel(M ,FV ,Kq);
9 Function QueryModel(M ,F ,Kq)

Input: Model M , query file F , compound key Kq
Output: Queried data and its position in F

10 ⟨sl, ic,kmin, pmax⟩ ←M ;
11 if Kq < kmin then return;
12 pospred ←min(Kq · sl + ic, pmax);
13 pagepred ← pospred/2ε;
14 P ← F ’s page at pagepred ;
15 if Kq < P [0].k then
16 P ← F ’s page at pagepred −1;
17 else if Kq > P [−1].k then
18 P ← F ’s page at pagepred +1;
19 return BinarySearch(P ,Kq);

P (Lines 15 to 18). This process involves at most two pages
for prediction, hence minimizing IO. Finally, a binary search
in P locates the queried data (Line 19).

6.2 Provenance Query

A provenance query resembles a get query but with no-
table distinctions. Unlike a get query, a provenance query
involves a range search based on the queried block height
range. This entails computing two boundary compound keys,
Kl = ⟨addr,blkl−1⟩ and Ku = ⟨addr,blku +1⟩, with offsets
adjusted by one to prevent the omission of valid results. More-
over, a provenance query provides Merkle proofs to authenti-
cate the results.

Specifically, during the search of MB-trees in L0, in ad-
dition to retrieving satisfactory results, Merkle paths are in-
cluded in the proof using a similar approach mentioned in
Section 2. For the runs of the on-disk levels, we search in the
same order as those described in Algorithm 6. Kl is used as
the search key when applying the learned models to find the
first query result in each run. Then, the value file is scanned
sequentially until a state beyond Ku is reached.1 Afterwards,
a Merkle proof is computed upon the first and last results’
positions posl , posu of each run. Since the states in the value
file and their hash values in the Merkle file share the same
position, the Merkle paths of the hash values at posl and posu
are used as the Merkle proof. To compute the Merkle path,

1For simplicity, we assume that addr is in the bloom filter B . If not, B is
also added as the proof to prove that addr is not in the run.
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Cost MPT COLE COLE w/ async-merge
Storage size O(n ·dMPT ) O(n)

Write IO cost O(dMPT ) O(dCOLE)

Write tail latency O(1) O(n) O(1)
Write memory footprint O(1) O(T +m ·dCOLE) O(T ·dCOLE +m ·d2

COLE)

Get query IO cost O(dMPT ) O(T ·dCOLE ·Cmodel)

Prov-query IO cost O(dMPT ) O(T ·dCOLE ·Cmodel +m ·d2
COLE)

Prov-query proof size O(dMPT ) O(m ·d2
COLE)

Table 1: Complexity Comparison

we traverse the MHT in the Merkle file from bottom to top.
Note that given a hash value’s position pos at layer i, we
can directly compute its parent hash value’s position in the
Merkle file as ⌊(pos−∑

i−1
0 ⌈

n
mi ⌉)/m⌋+∑

i
0⌈ n

mi ⌉. Due to the
space limitation, the detailed procedure of the provenance
query is given in our technical report [63] .

On the user’s side, the verification algorithm works as fol-
lows: (1) use each MB-tree’s results and their corresponding
Merkle proof to reconstruct the MB-tree’s root hash; (2) use
each searched run’s results and their corresponding Merkle
proof to reconstruct the run’s root hash; (3) use the recon-
structed root hashes to reconstruct the states’ root digest and
compare it with the published one, Hstate, in the block header;
(4) check the boundary results of each searched run against
the compound key range [Kl ,Ku] to ensure no missing results.
If all these checks pass, the results are verified.

7 Complexity Analysis

In this section, we analyze the complexity in terms of storage,
memory footprint, and IO cost. To ease the analysis, we as-
sume n as the total historical values, T as the level size ratio,
B as the in-memory level’s capacity, and m as COLE’s MHT
fanout. Table 1 shows the comparison of MPT, COLE, and
COLE with the asynchronous merge.

We first analyze the storage size. Since MPT duplicates
the nodes of the update path for each insertion, its storage
has a size of O(n · dMPT ), where dMPT is the height of the
MPT. COLE completely removes the node duplication, thus
achieving an O(n) storage size.

Next, we analyze the write IO cost. MPT takes O(dMPT )
to write the nodes in the update path, while COLE takes
O(dCOLE) for the worst case when all levels are merged,
where dCOLE is the number of levels in COLE. Similar to
the traditional LSM-tree’s write cost [13], the level merge in
COLE takes an amortized O(1) IO cost to write the value
file, the index file, and the Merkle file. The number of levels
dCOLE is ⌈logT (

n
B ·

T−1
T )⌉, which is logarithmic to n. Note that

normally dCOLE < dMPT since dMPT depends on the data’s
key size, which can be large (e.g., when having a 256-bit key,
maximum dMPT is 64 under hexadecimal base while COLE
has only a few levels following the LSM-tree).

Regarding the write tail latency, MPT has a constant cost
since there is no write stall during data writes. On the other
hand, COLE may experience the write stall in the worst case,
which requires waiting for the merge of all levels and results

in the reading and writing of O(n) states. The asynchronous
merge algorithm removes the write stall by merging the levels
in background threads and reduces the tail latency to O(1).

As for the write memory footprint, MPT has a constant
cost since the update nodes are computed on the fly and can
be removed from the memory after being flushed to the disk.
For COLE, we consider the case of merging the largest level
as this is the worst case. The sort-merge takes O(T ) memory
and the model construction takes constant memory [40]. Con-
structing the Merkle file takes O(m · dCOLE) since there are
logarithmic layers of cache buffers and each buffer contains
m hash values. To sum up, COLE takes O(T +m · dCOLE)
memory during a write operation. For COLE with the asyn-
chronous merge, the worst case is that each level has a merg-
ing thread, thus requiring dCOLE times of memory compared
with the synchronous merge, i.e., O(T ·dCOLE +m ·d2

COLE).
We finally analyze the read operations’ costs, including

the get query IO cost, the provenance query IO cost, and the
proof size of the provenance query. MPT’s costs are all linear
to the MPT’s height, O(dMPT ). For COLE, T runs in each
level should be queried, where we assume that each run takes
Cmodel to locate the state. Therefore, the cost of the get query
is O(T ·dCOLE ·Cmodel). To generate the Merkle proof during
the provenance query, an additional O(m ·d2

COLE) is required
since there are multiple layers of MHT in all levels and O(m)
hash values are retrieved for each MHT’s layer. The proof
size is O(m ·d2

COLE) for a similar reason.

8 Evaluation

In this section, we first describe the experiment setup, includ-
ing comparing baselines, implementation, parameter settings,
workloads, and evaluation metrics. Then, we present the ex-
periment results.

8.1 Experiment Setup
8.1.1 Baselines

We compare COLE with the following baselines:
• MPT: It is used by Ethereum to index the blockchain

storage. The structure is made persistent as mentioned in
Section 1.

• LIPP: It applies LIPP [54], the state-of-the-art learned
index supporting in-place data writes, to the blockchain
storage without our column-based design. LIPP retains the
node persistence strategy to support provenance queries.

• Column-based Merkle Index (CMI): It uses the column-
based design with traditional Merkle indexes rather than
the learned index. It adopts a two-level structure. The
upper index is a non-persistent MPT whose key is the
state address and the value is the root hash of the lower
index. The lower index follows the column-based design,
using an MB-tree to store the state’s historical values in a
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Parameters Value

# of generated blocks 102,103,104,105

Size ratio T 2,4,6,8,10,12
COLE’s MHT fanout m 2,4,8,16,32,64

Table 2: System Parameters

contiguous fashion [29].

8.1.2 Implementation and Parameter Setting

We implement COLE and the baselines in Rust program-
ming language. The source code is available at https:
//github.com/hkbudb/cole. We use the Rust Ethereum
Virtual Machine (EVM) to execute transactions, simulat-
ing blockchain data updates and reads [2]. Transactions are
packed into blocks, each containing 100 transactions. Ten
smart contracts are initially deployed and repeatedly invoked
with transactions. Big number operations mentioned in Sec-
tion 3.2 are implemented using the rug library [3]. Baselines
utilize RocksDB [18] as the underlying storage, while COLE
uses simple files for data storage as enabled by our design.

We set ε = 23 based on the page size (4KB) and the com-
pound key-pair size (88 bytes). By default, the size ratio T
and the MHT fanout m of COLE are set to 4. Following the
default configuration of RocksDB, its memory budget is set
to 64MB. The in-memory capacity B is set to the number of
states that can fit within the same memory budget. Table 2
shows all the parameters where the default settings are high-
lighted in bold font. All experiments are run on a machine
equipped with an Intel i7-10710U CPU, 16GB RAM, and
Samsung SSD 256GB.

8.1.3 Workloads and Evaluation Metrics

The experiment evaluation includes two parts: the overall per-
formance of transaction executions and the performance of
provenance queries. For the first part, SmallBank and KVS-
tore from Blockbench [17] are used as macro benchmarks to
generate the transaction workload. SmallBank simulates the
account transfers while KVStore uses YCSB [9] for read/write
tests. YCSB involves a loading phase where base data is gen-
erated and stored, followed by a running phase for read/update
operations. A transaction that reads/updates data is denoted
as a read/write transaction. We set 105 transactions as the
base data and vary read/update ratios to simulate different
scenarios: (i) Read-Write with equal read/write transactions;
(ii) Read-Only with only read transactions; and (iii) Write-
Only with all write transactions. The overall performance is
evaluated in terms of the average transaction throughput, the
tail latency, and the storage size.

To evaluate provenance queries, we use KVStore to simu-
late the workload including frequent data updates. We initially
write 100 states as the base data and then continuously gen-
erate write transactions to update the base data’s states. For
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Figure 9: Performance vs. Block Height (SmallBank)

10
−1

10
1

10
3

10
5

10
2

10
3

10
4

10
5

S
to

ra
g

e
 S

iz
e

 (
M

B
)

Block Height

MPT
COLE

LIPP
COLE*

CMI

✖ ✖ ✖✖
10

0
10

1
10

2
10

3
10

4
10

5

10
2

10
3

10
4

10
5

T
h

ro
u

g
h

p
u

t 
(T

P
S

)

Block Height

MPT
COLE

LIPP
COLE*

CMI

✖ ✖ ✖✖

Figure 10: Performance vs. Block Height (KVStore)

each query, we randomly select a key from the base data and
vary the block height range (e.g., 2,4, · · · ,128), which fol-
lows [44]’s setting. The evaluation metrics include (i) CPU
time of the query executed on the blockchain node and veri-
fied by the query user and (ii) proof size.

8.2 Experimental Results

8.2.1 Overall Performance

Figures 9 and 10 show the storage size and throughput of
COLE and all baselines under the SmallBank and KVStore
workloads, respectively. We denote COLE with the asyn-
chronous merge as COLE*.

We make several interesting observations. First, COLE
significantly reduces the storage size compared to MPT as
the blockchain grows. For example, at a block height of 105,
the storage size decreases by 94% and 93% for SmallBank
and KVStore, respectively. This is due to COLE’s elimina-
tion of the need to persist internal data structures via the
column-based design, and its use of storage-efficient learned
models for indexing. Moreover, COLE outperforms MPT in
throughput, achieving a 1.4×-5.4× improvement, thanks to
its learned index. COLE* performs slightly worse than COLE
due to the overhead of the asynchronous merge.

Second, using the learned index without the column-based
design (LIPP) even increases the blockchain storage. At a
block height of 102, the storage size of LIPP already exceeds
MPT’s by 5× (for SmallBank) and 31× (for KVStore). This
happens because the learned index often generates larger in-
dex nodes that must be persisted with each new block, leading
to increased storage and significant IO operations. Conse-
quently, LIPP’s throughput is significantly worse than MPT.
We are not able to report the results of LIPP for the block
height above 103 for SmallBank and 102 for KVStore as the
experiment could not be finished within 24 hours.
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Figure 11: Throughput vs. Workloads (KVStore)

Third, extending MPT with the column-based design (CMI)
does not significantly change the storage size. The addi-
tional storage of the lower-level MB-tree and the use of the
RocksDB backend largely negate the benefit of removing
node persistence. Additionally, refreshing Merkle hashes of
all nodes in the index update path, which entails both read
and write IOs, further impacts performance. Consequently,
the throughput of CMI is 7× and 22× worse than MPT for
SmallBank and KVStore, respectively, at a block height of
104. The experiments of CMI cannot scale beyond a block
height of 104.

Overall, with a unique combination of the learned index,
column-based design, and write-optimized strategies, COLE
and COLE* not only achieve the smallest storage requirement
but also gain the highest system throughput.

8.2.2 Impact of Workloads

We use KVStore to evaluate the impact of different workloads,
namely Read-Only (RO), Read-Write (RW), and Write-Only
(OW), in terms of the system throughput. As shown in Fig-
ure 11, the throughputs of all systems decrease with more
write operations in the workload. The performance of MPT
degrades by up to 93% while that of COLE and COLE* de-
grades by up to 87%. This shows that the LSM-tree-based
maintenance approach helps optimize the write operation.
We omit LIPP and CMI in Figure 11 since they cannot scale
beyond a block height of 103 and 104, respectively.

8.2.3 Tail Latency

To assess the effect of the asynchronous merge, Figure 12
shows the box plot of the latency of SmallBank and KVStore
workloads at block heights of 104 and 105. The tail latency is
depicted as the maximum outlier. As the blockchain grows,
COLE* decreases the tail latency by 1-2 orders of magnitude
for both workloads. This shows that the asynchronous merge
strategy will become more effective when the system scales
up for real-world applications. Owing to the asynchronous
merge overhead, COLE* incurs slightly higher median latency
than COLE, but it still outperforms MPT.

8.2.4 Impact of Size Ratio

Figure 13 shows the system throughput and latency box plot
under 105 block height using the SmallBank benchmark with

10
0

10
1

10
2

10
3

10
4

10
5

10
4

10
5

L
a

te
n

c
y
 (

m
s
)

Block Height (SmallBank)

MPT COLE COLE*

10
0

10
1

10
2

10
3

10
4

10
5

10
4

10
5

L
a

te
n

c
y
 (

m
s
)

Block Height (KVStore)

MPT COLE COLE*

Figure 12: Latency Box Plot
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Figure 13: Impact of Size Ratio

varying size ratio T . As the size ratio increases, the through-
put remains stable, while the tail latency shows a U shape.
We observe that T = 6 and T = 4 are the best settings for
COLE and COLE*, respectively, with the lowest tail latency.
Meanwhile, with an increasing size ratio, the median latency
of both COLE and COLE* increases.

8.2.5 Provenance Query Performance

We now evaluate the performance of provenance queries by
querying historical state values of a random address within
the latest q blocks. With the current block height fixed at 105,
we vary q from 2 to 128. LIPP and CMI are omitted here since
they cannot scale at 105 block height. Figure 14 shows that
MPT’s CPU time and proof size grow linearly with q while
those of COLE and COLE* grow only sublinearly. This is
because MPT requires to query each block inside the queried
range. In contrast, COLE and COLE*’s column-based design
often locates query results within contiguous storage of each
run, hence reducing the number of index traversals during the
query and shrinking the proof size by sharing ancestor nodes
in the Merkle path. COLE and COLE*’s proof sizes surpass
that of MPT when the query range is small due to limited
sharing capabilities within a small query range.

9 Related Work

In this section, we briefly review the related works on learned
indexes and blockchain storage management.

9.1 Learned Index
Learned index has been extensively studied in recent years.
The original learned index [26] only supports static data while
PGM-index [20], Fiting-tree [21], ALEX [15], LIPP [54], and
LIFOSS [61] support dynamic data using different strate-
gies. All these works are designed and optimized for in-
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Figure 14: Prov-Query Performance vs. Query Range

memory databases. Bourbon [10] uses the PGM-based models
to speed up the lookup in the WiscKey system, which is a
persistent key-value store. [27] investigates how existing dy-
namic learned indexes perform on-disk and shows the design
choices. Some other learned indexes are proposed for more
complex application scenarios like spatial data [23, 32, 47],
multi-dimensional data [16, 39], and variable-length string
data [51]. Moreover, [30, 34] consider designing learned in-
dexes for concurrent systems. [65] proposes a persistent
learned index that is specifically designed for the NVM-only
architecture with concurrency control. More recently, [31] de-
signs a scalable RDMA-oridented learned key-value store for
disaggregated memory systems. Nevertheless, existing works
cannot be directly applied to blockchain storage since they do
not take into account disk-optimized storage, data integrity,
and provenance queries simultaneously.

9.2 Blockchain Storage Management

Pioneering blockchain systems, such as Bitcoin [38] and
Ethereum [52], use MPT and store it using simple key-value
storage like RocksDB [18], which implements the LSM-tree
structure. While many works propose to optimize the generic
LSM-tree for high throughput and low latency [12–14,46,60],
and some propose orthogonal designs that could potentially
be incorporated into COLE, they are not specifically designed
to meet the unique integrity and provenance requirements
of blockchain systems. On the other hand, a large body
of research has been carried out to study alternative solu-
tions to reduce blockchain storage overhead. Several stud-
ies [11, 19, 24, 25, 62] consider using sharding techniques to
horizontally partition the blockchain storage and each par-
tition is maintained by a subset of nodes, thus reducing the
overall storage overhead. Distributed data storage [43, 59] or
moving on-chain states to off-chain nodes [6, 8, 48, 56, 58]
has also been proposed to reduce each blockchain node’s stor-
age overhead. Besides, ForkBase [50] proposes to optimize
blockchain storage by deduplicating multi-versioned data and
supporting efficient fork operations. [28] employs a vector
commitment protocol and multi-level authenticated trees to
reduce I/O costs for blockchain storage. To the best of our
knowledge, COLE is the first work that targets the index itself
to address the blockchain storage overhead.

Another related topic is to support efficient queries in
blockchain systems. LineageChain [44] focuses on prove-

nance queries in the blockchain. Verifiable boolean range
queries are studied in vChain and vChain+ [49, 55], where
accumulator-based authenticated data structures are designed.
GEM2-tree [64] explores query processing in the context
of on-chain/off-chain hybrid storage. FalconDB [42] com-
bines the blockchain and the collaborative database to support
SQL queries with a strong security guarantee. [57] studies
the authenticated spatial and keyword queries in blockchain
databases. iQuery [35] supports intelligent blockchain analyti-
cal queries and guarantees the trustworthiness of query results
by using multiple service providers. While all these works fo-
cus on proposing additional data structures to process specific
queries, COLE focuses on improving the performance of the
general blockchain storage system.

10 Conclusion

In this paper, we have designed COLE, a novel column-based
learned storage for blockchain systems. COLE follows the
column-based database design to contiguously store each
state’s historical values using an LSM-tree approach. Within
each run of the LSM-tree, a disk-optimized learned index has
been designed to facilitate efficient data retrieval and prove-
nance queries. Moreover, a streaming algorithm has been
proposed to construct Merkle files that are used to ensure
blockchain data integrity. In addition, a new checkpoint-based
asynchronous merge strategy has been proposed to tackle the
long-tail latency issue for data writes in COLE. Extensive
experiments show that, compared with the existing systems,
the proposed COLE system reduces the storage size by up
to 94% and improves the system throughput by 1.4×-5.4×.
Additionally, the proposed asynchronous merge decreases the
long-tail latency by 1-2 orders of magnitude while maintain-
ing a comparable storage size.

For future work, we plan to extend COLE to support
blockchain systems that undergo forking, where the states of
a forked block can be rewound. We will investigate efficient
strategies to remove the rewound states from storage. Fur-
thermore, since the column-based design stores blockchain
states contiguously, compression techniques can be applied
to take advantage of similarities between adjacent data. We
will study how to incorporate compression strategies into the
learned index.
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A Artifact Appendix

Abstract
This artifact includes the source code of the proposed system
COLE, along with the source code of other baseline systems
used for comparison. Additionally, the artifact provides the
procedure for generating the dataset under the YCSB bench-
mark, which is used for evaluating the performance.

Scope
The artifact is an academic proof-of-concept prototype and
has not undergone thorough code review. It should be noted
that the implementation is not suitable for production use.

Contents
The artifact consists of the following essential directories:

• cole-index: This directory contains the implementation of
COLE.

• cole-star: This directory corresponds to the implementa-
tion of the asynchronous version of COLE.

• patricia-trie: The MPT implementation can be found in
this directory.

• lipp: The implementation of LIPP with node persistence
is located in this directory.

• non-learn-cmi: This directory contains the implementa-
tion of CMI, as mentioned in Section 8.

• exp: The evaluation backend for all systems is included in
this directory.

Hosting
The artifact is hosted on a GitHub repository with the master
branch and the latest commit version.

Requirements
The artifact has been evaluated on Ubuntu 20.04 LTS. Please
keep in mind that the scripts provided in the README file
for installing dependencies may differ for other platforms.
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