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Abstract
RDMA-based in-memory storage systems offer high perfor-
mance but are restricted by the capacity of physical memory.
In this paper, we propose TeRM to extend RDMA-attached
memory with SSD. TeRM achieves fast remote access on the
SSD-extended memory by eliminating page faults of RDMA
NIC and CPU from the critical path. We also introduce a set
of techniques to reduce the consumption of CPU and network
resources. Evaluation shows that TeRM performs close to
the performance of the ideal upper bound where all pages
are pinned in the physical memory. Compared with existing
approaches TeRM significantly improves the performance of
unmodified RDMA-based storage systems, including a file
system and a key-value system.

1 Introduction

RDMA networks are catalyzing innovative designs for a
wide range of in-memory storage systems, including file sys-
tems [12, 25, 41], key-value stores [26, 27, 37], and transac-
tional databases [14, 15, 34, 38]. Unlike traditional TCP/IP
networks, RDMA can expose server-side memory regions,
i.e., RDMA-attached memory, to clients in the form of virtual
addresses. Clients can directly access data in these regions
via one-sided requests. The execution of one-sided requests
at the server side bypasses the CPU: the RDMA NIC (RNIC)
performs virtual-to-physical address translation using RNIC
page table, and then DMAs data to physical memory. In this
way, RDMA provides low latency and high CPU efficiency.

However, memory is an expensive and limited resource
in datacenters [23, 39]. To improve cost-efficiency and ac-
commodate larger-than-memory data sets for RDMA-based
systems, it is desirable to exploit SSD to extend the space of
RDMA-attached memory by performing demand paging with
the physical memory and the SSD. A hardware mechanism
called ODP (On-Demand Paging) MR (memory region) [22]
is proposed to support it. When handling an RDMA request
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with the ODP MR, the RNIC will trigger a page fault interrupt
for SSD-resident data, then the CPU promotes data from SSD
to memory and updates the RNIC page table.

Unfortunately, our experiments demonstrate that ODP MR
is not the silver bullet to extend RDMA-attached memory
with SSD. As an RDMA READ consumes only 3.66µs on
an in-memory page, the latency grows to 570.74µs on an
SSD-resident page. The root cause is that the RNIC hardware
has limited compute and memory resources [22], so it can
only handle exceptions of RNIC page faults in a simple but
inefficient manner (e.g., discard the received data and notify
the client-side RNIC to retransmit it).

Motivated by the analysis above, we propose TeRM, an ef-
ficient approach to extending RDMA-attached memory with
SSD. The key idea is to onload exception handling (i.e.,
RNIC page fault) from hardware to software. For all the
SSD-resident pages, TeRM makes the RNIC page table point
to a reserved physical page containing a predefined magic
pattern. In this way, the RNIC page fault is eliminated. For a
read request, the client first fetches data through an RDMA
READ and identifies whether the page is on the SSD. Then,
the client resorts to RPCs to retrieve an SSD-resident page
from the server, but does not require any additional operation
for memory-resident pages, ensuring fast remote accesses in
common cases. Meanwhile, we introduce a set of techniques
to reduce the network traffic.

The TeRM-induced RPCs will access SSD-extended virtual
memory. To eliminate the heavy CPU page fault [11, 30, 42]
from the critical path of RPC execution, we propose tiering IO.
The key idea is to access the SSD-extended virtual memory
via file IO interfaces instead of memory load/store inter-
faces. It reads/writes the SSD-extended virtual memory via
buffer IO when the data is cached in the physical memory,
and otherwise via direct IO that bypasses the page cache.

With the design techniques above, TeRM eschews both
RNIC and CPU page faults from the critical path. However,
it freezes data placement on the server, unfortunately. If a
hotspot is on the SSD, it will always be accessed by RPC
with direct IO. Therefore, TeRM designs a dynamic hotspot
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promotion mechanism, which relies on collaborative effort
from clients and the server.

We implement TeRM by building a userspace library
tLib with about 6,100 LoC, and modifying the Mellanox
RNIC driver with about 300 LoC. tLib overrides the APIs of
libibverbs and is compatible with existing RDMA applica-
tions. Using a microbenchmark, we demonstrate that TeRM
achieves 98.13% throughput of the ideal upper bound with
half physical memory. We also evaluate unmodified RDMA-
based storage systems, a file system, Octopus [25], and a
key-value system, XStore [37]. The results show that TeRM
outperforms the ODP MR and the software-only RPC ap-
proach by up to 642.23× and 7.68×. We open source TeRM
at https://github.com/thustorage/TeRM.

To sum up, we make the following contributions.
• We conduct an in-depth breakdown and analysis of the end-

to-end latency to access the ODP MR.
• We propose TeRM, an efficient approach to extending

RDMA-attached memory with SSD. It onloads exception
handling (i.e., RNIC page fault) from hardware to software.
We also introduce a set of techniques to reduce network
traffic and CPU overhead.

• We use microbenchmarks and unmodified RDMA-based
storage systems to demonstrate the effectiveness of TeRM.

2 Background

2.1 RDMA
RDMA registers and initializes two important resources on
the control path, queue pair (QP) and memory region (MR).
QP is the communication endpoint with another peer. MR
exposes an area in the application’s virtual memory, for the
RNIC to access. Atop the initialized QP and MR, RDMA
supports two types of requests on the data path, one-sided and
two-sided. READ and WRITE are typical one-sided requests.
RDMA applications leverage them to access data on a remote
MR, without involving the remote CPU. SEND and RECV
(receive) are typical two-sided requests that offer a message-
passing abstraction. They are usually used to build RPC.

MR plays an indispensable role in freeing the remote CPU
from being interrupted by a one-sided request. While initial-
izing an MR, the driver pins all the pages in the physical
memory, retrieves the virtual-to-physical mappings from the
CPU page table, and stores them in the RNIC page table. We
call the MR initialized in this way a pinned MR in the paper.
With the pinned MR, the RNIC finds the physical addresses of
the target virtual addresses in a one-sided request and accesses
the data directly on the physical memory.

Although the pinned MR is prevalent in RDMA applica-
tions, it has several limitations. It pins a large number of pages
in the physical memory (e.g., tens or hundreds of GBs), occu-
pying valuable DRAM resources. The application can only
initialize an MR no larger than the available physical memory.

v0 v1 v2 v3 v4 v5 v6

CPU 
Page Table

RNIC 
Page Table

Physical 
Memory

p0 p1 p2 p3
invalid virtual page

valid virtual page
v0 v1 v2 v3 v4 v5 v6

virt-to-phys mapping

physical page

Figure 1: ODP MR. We show the RNIC page table of an
ODP MR and compare it with the CPU page table. A valid
virtual page is mapped to a physical page in the page table.
An invalid virtual page is not mapped. v5 is valid in the CPU
page table but invalid in the RNIC page table. We explain the
figure detailedly in §2.2.
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Figure 2: Flows to Synchronize CPU and RNIC Page Tables.

Meanwhile, it loses the opportunities for overcommitment,
page migration, transparent huge-page, etc. Facing these limi-
tations, ODP (On-Demand Paging) MR is proposed [22].

2.2 ODP MR
An ODP MR differs from a pinned MR in that it does not
pin pages in the physical memory, as we depict in Figure 1.
The RNIC page table maps some virtual pages to physical
pages — we call them valid virtual pages — and leaves the
rest unmapped, i.e., invalid virtual pages. Since the pages
are no longer pinned, the OS kernel can swap and migrate
pages. The application is able to expose an MR larger than the
physical memory. As the virtual-to-physical mappings may
be changed, CPU and RNIC page tables are synchronized by
three flows illustrated in Figure 2.

1) Faulting. When an RDMA request accesses data on
invalid virtual pages, (1a) the RNIC stalls the QP and
raises an RNIC page fault1 interrupt. (1b) The driver re-
quests the OS kernel for virtual-to-physical mappings via
hmm_range_fault [2]. The OS kernel triggers CPU page
faults on these virtual pages and fills the CPU page table if
necessary. (1c) The driver updates the mappings on the RNIC
page table and (1d) resumes the QP.

2) Invalidation. When the OS kernel tries to unmap virtual

1we call the RNIC-triggered page fault an RNIC page fault in this paper,
to distinguish it from a CPU page fault triggered by load/store in this paper
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pages in scenarios like swapping out or page migration, (2a)
it notifies the RNIC driver to invalidate virtual pages via
mmu_interval_notifier [2]. (2b) The RNIC driver erases
the virtual-to-physical mapping from the RNIC page table.
(2c) The driver notifies the kernel that the physical pages are
no longer used by the RNIC. Then, the OS kernel modifies
the CPU page table and reuses the physical pages.

ODP MR relies on faulting and invalidation flows to syn-
chronize CPU and RNIC page tables. All the valid virtual
pages in the RNIC page table are guaranteed valid in the CPU
page table, but not vice versa. When the kernel changes an
invalid virtual page to a valid one, it does not inform the driver.
As we illustrate in Figure 1, v5 is valid in the CPU page table
but still left invalid in the RNIC page table.

3) Advising flow tackles the issue above. An application
can proactively request the RNIC driver to populate a range
in the RNIC page table. The RNIC driver completes advising
by steps (3a) – (3b), which are identical to steps (1b) – (1c).

3 Motivation

In this section, we introduce RDMA-attached memory and
analyze how ODP MR performs in extending it with SSD.
We summarize two principles for designing TeRM.

3.1 RDMA-Attached Memory
An RDMA cluster includes several server and client machines
that are equipped with RNICs and connected by RDMA net-
work. By exposing the server’s virtual memory with an MR,
clients can directly read and write the RDMA-attached mem-
ory through RDMA READ/WRITE. Clients and servers may
also exchange messages and data through RPC based on
RDMA SEND/RECV. The RDMA-attached memory targets
storage systems, e.g., file system and key-value system.

Note that the server’s virtual memory is accessed both
locally and remotely. Local accesses are from the CPU via
load/store. Remote accesses are from clients via RDMA
READ/WRITE. We take Octopus [25], an RDMA-based file
system, as an example. The Octopus server initializes memory
layout, maintains file metadata, and boots an RPC service for
receiving and handling metadata requests. After retrieving file
metadata (e.g., data addresses) via RPC, the Octopus client
directly reads/writes the server-side MR to access file data.

As the server typically registers a pinned MR, it is restricted
by the capacity of physical memory, as we explain in §2.1.
To improve cost-efficiency and accommodate larger-than-
memory data sets, we explore extending the RDMA-attached
memory with SSD in this paper.

3.2 ODP MR Is Not the Silver Bullet
ODP MR enables a straightforward approach to extending
RDMA-attached memory with SSD. The server-side applica-
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Figure 3: Read Throughput with (a) One Client Thread and
(b) 64 Client Threads. PIN: pinned MR. ODP: ODP MR.
Read size: 4KB. MR size: 64GB. Physical memory for ODP
MR: 32GB. SSD: Intel Optane P5800X. More detailed experi-
mental setups are listed in §6.1.
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Figure 4: Time Breakdown of Read 4KB on an ODP MR.
(1a) – (1d): the steps introduced in Figure 2. HW: the step is
executed by the RNIC hardware. SW: the step is executed by
the software on the CPU.

tion mmap-s an SSD to get a virtual memory area that exceeds
the physical memory. Then it initializes an ODP MR for
clients to access remotely.

We use a microbenchmark to evaluate the performance of
accessing a server-side ODP MR from the client. We mmap
64GB virtual memory from an Intel Optane P5800X SSD, and
initialize a pinned MR (annotated as PIN) and an ODP MR
(annotated as ODP) respectively; physical memory is limited
to 32GB for the ODP MR. We evaluate the throughput of
reading 4KB data on the MR. §6.1 offers more details about
experimental setups. Figure 3 reports the results. The pinned
MR outperforms the ODP MR by 66.64× with one client
thread. The gap grows greatly to 290.76× with 64 client
threads. The experiment shows that ODP MR exhibits poor
performance, which is also reported by other works [16, 36].
Therefore, ODP MR is not the silver bullet for extending
RDMA-attached with SSD.

We break down the end-to-end time to read 4KB on an ODP
MR that triggers the RNIC page fault. Figure 4 depicts the
time of four steps we introduce in §2.2. We do not draw the
time of transferring 4KB data after resolving the RNIC page
fault, because it occupies less than 5µs, which is negligible
in the whole time. Notably, the CPU page fault (step(1b))
in our experiment is a major one where the OS kernel swaps
data between the physical memory and the SSD, instead of a
minor one [32]. We also evaluate the end-to-end latency with
a minor page fault for comparison, which is 431.22µs. The
latency difference stems from the software overhead of page
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cache mechanisms to access the SSD, as the Intel Optane
P5800X SSD has a read/write latency of only about 10µs.

The end-to-end time is composed of hardware time on the
RNIC (steps (1a), (1c), and (1d)) and software time on the
CPU (step (1b)). As shown in the figure, hardware steps take
up more than half of the whole. When identifying an invalid
virtual page during processing an RDMA request (step (1a)),
the server-side RNIC returns a receiver-not-ready (RNR)
negative acknowledgment packet (NACK) to the client-side
RNIC [16, 22]. Then the QP is stalled on the request until
it is resumed by step (1d). We presume that the latency of
steps (1a) and (1d) arises from changing the QP state, which
is reported to take up about 100µs [10, 40].

The root cause of the hardware’s long latency is its ineffi-
ciency in handling exception cases. The limited compute and
memory resources of the RNIC result in the simple approach
of stalling the transmission. The RNIC circuitry of handling
exception path operates relatively slowly, compared to the
fast path of processing a normal RDMA request. Therefore,
complex handling logic is too difficult to implement, as re-
ported by researchers from Mellanox [22]. Given the above,
we propose the first principle for designing TeRM. Principle
#1: onload exception handling from hardware to software.

The other source of the end-to-end latency is software, the
CPU page fault. The CPU page fault is known to perform
poorly [11, 21, 28, 29] and does not scale well with the num-
ber of threads [30]. However, ODP MR makes the case even
worse. During handling a CPU page fault, the kernel recycles
a physical page, invalidates the virtual page mapped to it, and
finally reuses it for the faulting virtual address. As we describe
in §2.2, the kernel triggers the invalidation flow when inval-
idating a virtual page, where the driver spends considerable
time updating the RNIC page table. Thus, the long latency
of CPU page fault shown in Figure 4 implicitly includes in-
validating the RNIC page table. Considering the above, we
propose the second principle for designing TeRM. Principle
#2: eliminate CPU page faults from the critical path.

4 Design

4.1 Overview
Figure 5 shows the overview of TeRM. We explain it below.

4.1.1 Architecture

Cluster infrastructure. The cluster has several servers and
clients; we draw one server and one client in Figure 5 due to
space limit. They are equipped with RNICs and connected via
RDMA network. tLib is TeRM’s userspace library (§5). It has
two instances on the server (tLib-S) and the client (tLib-C).
CPU VM serves local access, i.e., CPU load/store from the
server-side application. The server creates an area of virtual
memory larger than the physical memory through mmap-ing

Server

RNIC

Physical
Memory

SSD

TeRM MR RDMA App

CPUClient

RNIC

RDMA App

CPU
QP

QP

VM

tLib-C 

tLib-S 

 RDMA READ

 response

RPC READ/WRITE
Tiering IO

 response

Figure 5: TeRM Overview. Red ones are introduced by TeRM.
tLib is TeRM’s userspace library. We distinguish tLib on the
client and the server by tLib-C and tLib-S respectively.
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normal physical page

read
(address=10KB, length=8KB)

Figure 6: TeRM MR. We show the RNIC page table of TeRM
MR and compare it with the CPU page table. v0 – v6 are
virtual pages. p0 – p3 and M are physical pages. The read
request starts at the offset of 10KB with a length of 8KB.

an SSD. TeRM leverages the Linux kernel to do the demand
paging between the physical memory and the SSD, and man-
ages the virtual-to-physical mappings in the CPU page table.
In this way, the unmodified server-side application can access
the virtual memory to maintain in-memory runtime data.

TeRM MR serves remote access from the client-side applica-
tion. During initialization, the server-side application registers
a TeRM MR to expose the virtual memory. tLib-S cooper-
ates with the modified RNIC driver (§5) to manage the RNIC
page table of the TeRM MR. Recall principle #1: onload ex-
ception handling from hardware to software. We orchestrate
the RNIC page table and remove RNIC page faults, i.e., the
faulting flow (Figure 2) from the TeRM MR.

As illustrated in Figure 6, For all the valid virtual pages
(v0, v1, v3, v5), the RNIC page table maps them to normal
physical pages (p0 – p3), the same ones that the CPU page
table points to. When an RDMA READ accesses valid virtual
pages, it retrieves the true data on the correct physical pages.
For all the invalid virtual pages (v2, v4, v6), TeRM maps
them to one magic physical page (M). TeRM reserves the
magic physical page and populates it with a magic pattern.
When an RDMA READ accesses invalid virtual pages, the
server-side RNIC follows the mapping and retrieves the data
on the magic physical page. In this way, the RDMA READ
completes normally without triggering the RNIC page fault.
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4.1.2 Workflow

Read. A client reads data on the server-side TeRM MR by sub-
mitting a read request to tLib-C. The read request describes
the addresses of both sides and the length. In Figure 5, tLib-C
processes the read request in three steps. ❶ tLib-C generates
an RDMA READ according to the user-submitted read re-
quest and sends the RDMA READ via the client-side RNIC.
❷ The server-side RNIC returns the data without interacting
with the CPU. ❸ tLib-C checks whether the data contains the
predefined magic pattern. If no magic pattern is found, all the
data are on valid virtual pages. tLib-C has retrieved the valid
data and thus completes the read request. In this way, TeRM
completes the read request by a one-sided RDMA READ.

If the magic pattern is found, the client determines that it
accesses invalid virtual pages and data on these pages are
missing. The client fetches the missing data in three steps. ①
tLib-C submits an RPC to retrieve the missing data; we call it
RPC READ hereinafter. ② Receiving an RPC READ, tLib-S
reads the missing data to a preallocated and registered bounce
buffer. ③ tLib-S returns data to the client. As the bounce
buffer has been registered, tLib-S sends the data via RDMA
WRITE without triggering RNIC page faults. Afterward, the
server notifies the client of the completion. Finally, with all
the data fetched, tLib-C completes the read request.
Write. A client writes data to the server-side TeRM MR by
submitting a write request to tLib-C. tLib-C processes the
write request in three steps like processing a missing read
request. ① tLib-C submits an RPC to the server to write the
data; we call it RPC WRITE hereinafter. ② tLib-S fetches the
data from the client to the bounce buffer by RDMA READ.
Then it copies the data on the bounce buffer to the virtual
memory. ③ tLib-S notifies the client, and tLib-C completes
the write request to the application.

4.1.3 Challenges

There are several challenges in the design.
1) As a read request is in byte granularity but the virtual-

to-physical mapping of the TeRM MR is in page granularity,
precisely identifying invalid virtual pages becomes challeng-
ing. We tackle the challenge in a hierarchical manner, from
the request level to the page level. We also introduce a set of
techniques to reduce network traffic during identification. We
detail the design in §4.2.

2) As mentioned in the workflow, TeRM may introduce
internal RPCs, i.e., RPC READ and RPC WRITE that access
the SSD-extended virtual memory. An intuitive approach is
performing load/store, inducing heavy CPU page faults.
Following principle #2: eliminate CPU page faults from
the critical path, we propose tiering IO. Instead of memory
load/store interfaces, tiering IO resorts to file IO interfaces,
i.e., selectively uses buffer IO and direct IO to access the
SSD-extended virtual memory. We describe how tiering IO
operates at length in §4.3.

3) As TeRM MR and tiering IO eliminate RNIC and CPU
page faults from the critical path, it freezes the data placement
on the server, unfortunately. A fixed part of the virtual memory
is in the physical memory and mapped in the TeRM MR.
Without promotion on the critical path by the page faults,
a hotspot may be always on the SSD. Facing the challenge,
TeRM makes the client and the server collaborate to determine
and promote hotspots to physical memory in the background
dynamically (§4.4).

4.2 Identifying Invalid Virtual Pages

As a read request is in byte granularity, it leads to two issues
during identifying invalid virtual pages, the inter-page issue at
the request level and the intra-page issue at the page level. The
inter-page issue is that a read request may span multiple vir-
tual pages, some of which are valid but others are invalid. For
efficiency, TeRM should identify and fetch only the missing
data on invalid virtual pages via RPC. The intra-page issue
is that a read request may access only part of a virtual page.
TeRM should be able to determine whether a virtual page
is valid with any part of the virtual page. Moreover, TeRM
should reduce network traffic in identification.
Page division. To tackle the inter-page issue, TeRM adopts
page division. It splits the received data at page boundaries
into several parts and checks each part separately. Take the
read request in Figure 6 as an example. TeRM cuts the data
into three parts (on v4 – v6) and checks them one by one.
Byte detection. To tackle the intra-page issue, TeRM adopts
byte detection. On the server side, the magic pattern covers all
the bytes — not just the beginning or the end — of the magic
physical page, e.g., setting every byte to a magic number. On
the client side, tLib-C compares the retrieved part of a virtual
page with the magic pattern byte by byte. If matched, tLib-
C assumes that the part belongs to an invalid virtual page.
The read request in Figure 6 accesses the first half of v4 and
the last half of v6, which match the magic pattern, so tLib-C
determines v4 and v6 are invalid. The data on v5 does not
match the magic pattern and thus v5 is valid.
Sparse fetching. After identifying all the invalid virtual pages
precisely, tLib-C fetches data sparsely. It submits an RPC
READ and tLib-S fetches only the missing data on them.
Apart from the addresses of both sides and the access length,
the RPC READ also contains a page bitmap to indicate
whether each page is valid. With the read request in Figure 6
as an example, the page bitmap is b’010, as the first (v4)
and the last (v6) virtual pages are invalid. Receiving the RPC
READ, tLib-S bypasses all the valid virtual pages. It parses
the bitmap to locate and read all the invalid virtual pages.

Combining page division, byte detection, and sparse fetch-
ing, TeRM identifies invalid virtual pages of a read request
and only fetches the missing data on these pages via RPC.
Compared with fetching all the data of a read request, of
which only some virtual pages are invalid, TeRM reduces the
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amount of data transfer and thus speeds up the miss path.

False positive cases. Identifying invalid virtual pages by the
magic pattern may lead to false positive cases. If the server-
side application fills a valid virtual page with the magic pat-
tern, the client will determine it as an invalid virtual page
falsely. TeRM overcomes the issue with three key insights.
First, for random data, the possibility of false positive cases
is low. For a single byte (i.e. 8 bits) of random data, the prob-
ability is only 1/28 = 1/256. As the data length grows to n
bytes, the probability drops exponentially to 1/256n, which
is negligible. Moreover, TeRM varies the magic pattern dy-
namically for different processes at different times, to prevent
an application from always producing the same data as one
specific magic pattern. Finally, even if a false positive case
occurs, TeRM handles it as accessing an invalid virtual page
and fetches the data again via an RPC READ, without com-
promising the correctness.

Page bitmap. As tLib-C identifies an invalid virtual page
from the magic pattern, RDMA READ for it consumes extra
network bandwidth. To reduce the network traffic, we pro-
pose a page bitmap to identify an invalid virtual page before
RDMA READ. tLib-S maintains a page bitmap for a TeRM
MR to indicate whether each virtual page is valid. tLib-C pulls
the page bitmap periodically, e.g., per second in our evalua-
tion. For a read request, tLib-C queries the page bitmap first
and only sends RDMA READ for valid virtual pages. After-
ward, tLib-C submits RPC READ for all invalid virtual pages
identified by both the page bitmap and the magic pattern.

Note that the client-side page bitmap may be inaccurate but
does not harm read correctness and the overhead is acceptable.
If an invalid virtual page is indicated as valid by the bitmap,
RDMA READ will return the magic pattern and thus tLib-C
can identify it correctly. In contrast, for a valid virtual page
indicated as invalid, RPC READ will retrieve the correct data.

One may wonder why we do not use the page bitmap to
guide a write request, i.e.,sending RDMA WRITE for a valid
virtual page and RPC WRITE for an invalid one. This is be-
cause the overhead due to inaccuracy is unacceptable. If an
invalid virtual page is indicated as valid, RDMA WRITE on
it will trigger an RNIC page fault, which stalls the transmis-
sion and consumes no less time than a read-triggered one
(hundreds of microseconds as shown in Figure 4).

We discuss the overhead of pulling the page bitmap. With
one bit for each 4KB page, the page bitmap size is only
0.003% of the MR. For a 64GB MR, each client pulls 2MB
each time, which is negligible against the RNIC bandwidth.

Although TeRM introduces extra network traffic in identi-
fying an invalid virtual page, we argue that the ODP MR also
causes additional network traffic due to the RNR NACK. It
stalls the QP and wastes more network resources (§3.2).

SSD
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Virtual Memory

TeRM MR
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Bounce Buffer

tiering IO
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Figure 7: Tiering IO.

4.3 Accessing Data via Tiering IO

As we state in the workflow (§4.1), tLib-S reads and writes
the virtual memory to/from the bounce buffer during han-
dling RPC READ/WRITE. Recall that TeRM mmaps an SSD
to create an area of virtual memory, so that the unmodified
server-side application on the CPU can load/store the SSD-
extended virtual memory. Therefore, tLib-S must also access
the virtual memory through a kernel-exposed interface, in-
stead of a kernel-unaware interface, e.g., SPDK [7].

Although memcpy between the virtual memory and the
bounce buffer is an intuitive choice, it triggers heavy CPU
page faults (Figure 4) on invalid virtual pages that have been
swapped out to the SSD. Following principle #2: eliminate
CPU page faults from the critical path (§3.2), we propose
tiering IO to access the SSD-extended virtual memory, as
illustrated in Figure 7. Our key idea is resorting to file IO
interfaces instead of memory load/store interfaces.

Tiering IO orchestrates two interfaces — buffer IO and
direct IO — to access different states of virtual pages. Buffer
IO invokes pread/pwrite to access the page cache. Direct
IO bypasses the page cache with the O_DIRECT flag.

Tiering IO selects the interface to access a virtual page
according to its state. 1) If the virtual page resides in the page
cache, tiering IO accesses it via buffer IO. The IO can be
completed fast by the page cache, without communicating
with the SSD. 2) If the virtual page is uncached, accessing the
data via buffer IO will incur the page replacement of the page
cache. The replacement is time-consuming [5, 8], especially
when the page cache is nearly full. Therefore, tiering IO
chooses direct IO to bypass the page cache.

We identify three issues to support tiering IO, virtual-to-
block mapping, virtual page state, and direct IO granularity.
We discuss and tackle them below.
Virtual-to-block mapping. RPC READ/WRITE provides
the virtual address to access, we have to convert it to a logical
block address (LBA) on SSD for invoking IO. Fortunately,
the Linux kernel offers an efficient static virtual-to-block
mapping. By mmap-ing a given LBA range [slba, slba +
length) of the SSD, we get a virtual address range [saddr,
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saddr + length). For a server-side virtual address addr,
tLib-S calculates its LBA by addr - saddr + slba.
Virtual page state. TeRM queries the page cache to learn
whether a page is cached. Notably, the page state may be
stale by the time invoking the IO call. For example, tiering
IO determines that a virtual page is uncached and then ac-
cesses it via direct IO, but the page may be cached just before
the call begins. We argue that the stale page state does not
compromise the correctness, because direct IO read and write
flushes and invalidates the page cache respectively, so as to
guarantee data consistency [1].
Direct IO granularity. The granularity of RPC READ-
/WRITE and direct IO does not match. The former is a byte,
while the latter is a block, typically 512B or 4KB. To bridge
the granularity gap for RPC READ, we pad offset and length
of pread to block boundaries. As for RPC WRITE unaligned
to a block, we adopt a read-modify-write operation. We use
an exclusive lock for each block to control the concurrent
read-modify-write operations on the same block.

4.4 Determining and Promoting Hotspots

With the design of TeRM MR and tiering IO, TeRM eliminates
RNIC and CPU page faults form the critical path. Although
the elimination streamlines the critical path, it freezes the
data placement on the server, unfortunately. A fixed part of
the virtual memory is in the physical memory and mapped
in the TeRM MR. If a hotspot is on the SSD, it will always
be accessed by an RPC READ/WRITE with direct IO. Con-
sidering the server is unaware of one-sided RDMA accesses
from the client, we propose making the client and the server
collaborate to determine hotspots and then promote hotspots
dynamically, so as to improve the overall performance.
Determining hotspots. TeRM employs client-side tracking
and server-side accumulating to count the frequency of read-
/write requests and find the hotspots.

TeRM tracks requests at the client, because a hit read re-
quest finishes by a one-sided RDMA READ without involv-
ing the server-side CPU. tLib-C splits the address space of a
TeRM MR at the granularity of a sample unit and creates a
counter for each unit. When the application submits a read-
/write request, tLib-C locates all the requests’ spanning sam-
ple units and increases their counters. A smaller sample unit
results in finer counting, but the TeRM MR is divided into
more units and thus the counters occupy a larger memory
space. TeRM sets the sample unit to 1MB to achieve the
balance between the counting granularity and the counters’
memory footprint. With a 32-bit counter for each sample unit,
the counters take up only 0.00003% memory space compared
to a TeRM MR, which is negligible.

TeRM accumulates counters at the server, given that multi-
ple clients in the cluster may access one TeRM MR. In every
sample period, tLib-S pulls all the counters from the clients
and sums them up. Then it gets a global view of the counters

and knows how many times each unit has been accessed in
the latest period. A shorter sample period leads to a more
timely counting but consumes more network bandwidth dur-
ing transferring the counters. TeRM sets the sample period to
1 second to balance these two aspects.

The more times that a sample unit is accessed, the hotter
TeRM thinks it is. TeRM sorts the units by their counters in
descending order and determines the hottest units that can be
placed in the physical memory as hotspots.
Promoting hotspots. TeRM promotes hotspots one by one.
A unit is skipped if it has been promoted in an earlier period.
Otherwise, TeRM invokes the advising flow (Figure 2) to pro-
mote the unit. The unit is swapped into the physical memory
and mapped in the RNIC page table. Then a later read request
on the unit is completed via an RDMA READ and a write
one is done via buffer IO write in RPC WRITE.

The advising flow is also time-consuming due to triggering
the CPU page fault and updating the RNIC page table. Thus,
TeRM does not promote all the hotspots in one promotion.
Instead, TeRM promotes as many units as possible within the
time of a sample period. Then it begins the next period of
determining and promoting hotspots.

The promotion design balances effectiveness and flexibility.
If the hotspots remain stable for consecutive periods, TeRM
promotes the hottest proportion in the beginning periods and
then the less hot ones in the later periods. All the determined
hotspots are promoted eventually. However, if the hotspots
have changed since the last sample period, promotion for the
last period completes fast, and TeRM shifts to promote the
latest hotspots immediately. As the promotion is conducted
periodically, it occupies little CPU resources.
Consistency discussion. As the promotion and tiering IO
in RPC READ/WRITE may access the same page, we dis-
cuss the concurrency consistency here. As both trap into the
Linux kernel, TeRM reuses the concurrency control in the
Linux kernel to guarantee consistency. Note that the promo-
tion always accesses the page cache. If tiering IO performs
buffer IO, accesses are routed to the page cache, and hence
the concurrency consistency is maintained by the page cache.
If tiering IO performs direct IO, read requests do not raise any
consistency issue since the SSD always contains the newest
version of data. At the beginning and end of write requests
in direct IO, the kernel invalidates the page cache so as to
prevent old data in the cache and guarantees the consistency.

5 Implementation

We implement TeRM for the Mellanox RNIC. We build the
userspace library tLib with about 6,100 lines of C++ code and
modify the RNIC driver with about 300 lines of C code.
tLib. It overrides the APIs to manipulate the
MR (ibv_register_mr) and the RDMA request
(ibv_post_send, ibv_poll_cq). tLib is transparent
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to the upper-layer application via LD_PRELOAD and has two
instances tLib-S and tLib-C.

The server-side application invokes ibv_register_mr to
register an MR. In the overridden ibv_register_mr, tLib-S
interacts with the modified RNIC driver to create a TeRM
MR and starts an RPC service in the userspace to serve the
RPC READ/WRITE from clients. We adopt coroutine in
the RPC service and libaio to submit direct IO to the SSD
asynchronously, so as to enhance the CPU efficiency.

The client-side application calls ibv_post_send to sub-
mit a read/write request and polls the completion via
ibv_poll_cq. For a write request, tLib-C converts it to an
RPC WRITE in the overridden ibv_post_send and submits
it to the server. For a read request, tLib-C identifies invalid
virtual pages in the overridden ibv_poll_cq and submits an
RPC READ to the server if necessary.

Considering RDMA requests enjoy low latency, we aim
to make tLib execute efficiently. We employ multithreading-
friendly and cacheline-aware data structures and mechanisms
throughout the implementation, to reduce the extra running
overhead introduced by tLib.
RNIC driver. We modify the RNIC driver to support the
TeRM MR. We reuse the mechanisms of the ODP MR, in-
cluding the RNIC page table and the synchronization flows
with the CPU page table§2.2. When creating a TeRM MR,
the RNIC driver allocates a physical page from the kernel and
fills it with the magic pattern. TeRM eliminates the faulting
flow as we state in §4 and modifies the invalidation flow in
the driver. When the Linux kernel notifies the RNIC driver of
invalidating a virtual page, the RNIC driver does not clear the
virtual-to-physical mapping as it does for the ODP MR, but
instead makes the mapping point to the magic physical page.

6 Evaluation

We evaluate TeRM by microbenchmarks and RDMA-based
storage systems to answer the following questions.
• How does TeRM compare with existing approaches? (§6.2)
• How do the design techniques contribute to the end-to-end

performance of TeRM? (§6.3)
• How does TeRM perform on dynamic workloads? (§6.4)
• How do workload characteristics affect TeRM? (§6.5)
• How can RDMA-based storage systems benefit from

TeRM? (§6.6)

6.1 Experimental Setup
Testbed. We conduct the experiments on a cluster of one
server machine and two client machines. The server machine
has a 56-core Intel Xeon Gold 6330 CPU, 96GB DRAM, and
a 400GB Intel Optane 5800X SSD. The SSD has 1.25/1.16
Mops/s of 4KB random read/write and 4.21/0.69 Mops/s of
512B random read/write. Each client machine has a 36-core
Intel Xeon Gold 5220 CPU and 64GB DRAM. We equip the
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Figure 8: Read Throughput. The vertical axis is in a logarith-
mic scale.

machines with a ConnectX-5 RNIC on each and connect them
by a 100Gbps IB RDMA switch.
Comparing Targets. We compare TeRM with two ap-
proaches ODP and RPC. Moreover, we use PIN to show the
ideal upper bound of performance where all data pages are
pinned in the physical memory.
• PIN. Only in this approach, we do not restrict the available

physical memory. The server registers the virtual memory
as a pinned MR. The clients read and write the server-side
pinned MR by one-sided RDMA READ/WRITE through
the original libibverbs.

• ODP. On the server machine, we register the virtual mem-
ory as an ODP MR. The clients also use the original
libibverbs to submit read/write requests. All the requests
are handled by one-sided RDMA READ/WRITE and trig-
ger RNIC page faults on invalid virtual pages.

• RPC. All the read/write requests are handled by RPC
READ/WRITE. The server-side RPC service accesses the
virtual memory via memcpy and thus triggers CPU page
faults when a virtual page is not mapped.

• TeRM. The server registers the virtual memory as a TeRM
MR. tLib-C interacts with tLib-S to handle read/write re-
quests submitted by the client, as we describe in the design
and implementation.

Workloads. We use a microbenchmark to evaluate the per-
formance. We run it for 60 seconds and report the average
throughput. It creates a 64GB virtual memory by mmap-ing the
SSD on the server machine. We limit the available physical
memory to 32GB, 50% size of the virtual memory. The mi-
crobenchmark runs 64 client threads, 32 threads on each client
machine. Each client thread issues read and write requests
to the server, where the accessing positions follow a skewed
distribution (Zipfian θ=0.99). For both the RPC approach
and TeRM, we create 16 threads for the RPC service on the
server machine and bind these threads on eight physical CPU
cores. We keep the settings above as the default throughout
the experiments unless stated otherwise.

6.2 Overall Performance

In this experiment, we evaluate the read and write perfor-
mance of access sizes from 64B to 16KB.
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Read 256B Read 4KB
p50 lat. p99 lat. p50 lat. p99 lat.

PIN 3.10 4.21 21.20 24.03
ODP 3.03 29,103.92 4.60 45,781.38
RPC 38.55 109.79 26.01 93.62
TeRM 3.50 30.07 16.51 52.02

Table 1: Read Latency (µs)

6.2.1 Read

We report read throughput in Figure 8 and latency in Table 1.
We analyze the performance of TeRM against ODP, RPC, and
PIN respectively in the following.
TeRM vs. ODP. The throughput of TeRM and ODP achieves
6.93Mops/s and 24.09Kops/s respectively. TeRM outperforms
ODP by 30.46× – 549.63×. ODP has the lowest p50 latency
of all four approaches. This is because most read requests are
hit in the physical memory. The RNIC on the ODP approach
is the least utilized in transferring data and thus shows the
lowest latency to finish a hit RDMA READ. However, the
long p99 latency demonstrates that ODP suffers from heavy
RNIC and CPU page faults on the miss path. TeRM reduces
the p99 latency by up to 967.74×, thanks to the much more
efficient miss path.

Notably, PART [32], a hardware solution like the ODP MR,
reports a 31µs latency of a faulting RDMA request, which is
lower than ODP in our experiment. The latency difference
mainly arises from the fact that PART evaluates a minor page
fault while we evaluate a major one. A major page fault has to
load data from the SSD. Nevertheless, TeRM incurs a lower
average latency of 26.61µs for a missed read request. This is
because TeRM leveragers tiering IO to build an efficient miss
path that bypasses the CPU page fault.
TeRM vs. RPC. The RPC approach reaches a throughput of
320.75Kops/s. It does not provide the maximum throughput,
because the RPC approach triggers CPU page faults when
pages are not mapped. The CPU page fault performs poorly
and does not scale well with more server threads, which is
also reported by previous studies [11, 21, 28–30]. The RPC
approach performs better than ODP because clients use two-
sided RDMA primitives to submit read requests. In this way,
the RPC approach avoids RNIC page faults. TeRM surpasses
the throughput of the RPC approach by 9.05× – 45.19×. It
decreases the p50 and p99 latency by 11.02× and 1.57×
respectively. TeRM has significant improvement because it
utilizes the server CPU more efficiently in two aspects. First,
TeRM tries one-sided RDMA READ and only handles the
missed read requests via the RPC service on the server CPU,
but the RPC approach involves the server CPU in processing
all the read requests. Moreover, TeRM proposes tiering IO
to avoid CPU page faults, while the RPC approach may still
trigger CPU page faults during memcpy.
TeRM vs. PIN. When the read size is less than 1KB, the
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Figure 9: Write Throughput.The vertical axis is in a logarith-
mic scale.

Write 256B Write 4KB
p50 lat. p99 lat. p50 lat. p99 lat.

PIN 2.91 3.89 21.29 23.40
ODP 56,158.64 71,006.89 19,884.87 41,636.82
RPC 43.89 131.52 317.12 1,772.35
TeRM 15.22 117.27 21.18 59.73

Table 2: Write Latency (µs)

throughput of TeRM is stable around 6.86Mops/s, achieving
up to 37.79% of the PIN throughput. With 256B as an exam-
ple, the hit ratio of read requests is 69.44%, and the latency is
as low as PIN. The slowdown of TeRM mainly arises from
the missed read requests, each of which costs about 19.26µs.
In this scenario, the RPC service becomes the bottleneck of
the overall performance.

For large read requests above 1KB, TeRM greatly narrows
the gap with PIN. It achieves 54.55% throughput of PIN at
1KB and the ratio goes up to 96.71% at 4KB. The narrowing
gap results from the shrinking latency difference between hit
(16.51µs) and missed (26.61µs) read requests. In this case,
TeRM saturates the RNIC bandwidth.

6.2.2 Write

We show write throughput in Figure 9 and latency in Table 2.
We compare TeRM with ODP, RPC, and PIN.
TeRM vs. ODP. TeRM and ODP have throughput up to
2.58Mops/s and 1.18Kops/s respectively. We output the
throughput second by second and find that ODP is unstable
and jitters sharply. It reaches a peak throughput of 4.28Kop-
s/s at some time but may also stall for more than a second.
Nevertheless, TeRM surpasses ODP’s peak throughput by up
to 1,195.81×. ODP performs worse on write than read, be-
cause write incurs higher swapping overhead. To swap out a
read-only page, the OS kernel just drops it from the physical
memory because it is clean. But to swap out a written page,
the OS kernel has to write the dirty page back to the SSD.
TeRM vs. RPC. The RPC approach reaches a throughput of
308.34Kops/s. Even though TeRM also handles write requests
via RPC WRITE, it outperforms the RPC approach by up to
12.60×. TeRM reduces the p50 and p99 latency by 14.97×
and 29.67×. The results demonstrate the effectiveness of
tiering IO and promoting hotspots compared to memcpy.
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Figure 10: Contribution of Each Technique.

TeRM vs. PIN. When the write size is smaller than 512B,
the throughput is around 1.71Mops/s. Taking 256B as an
example, 72.53% of write requests hit the page cache and fin-
ished by buffer IO. The rest of write requests are completed
by the read-modify-write operation as we describe in §4.3,
which limits the overall performance. When the size grows
to 512B, the write throughput climbs to 2.19Mops/s. This is
because tiering IO writes uncached data simply by a direct
IO write rather than the time-consuming read-modify-write.
The SSD can provide 694Kops/s of 512B write operations
and becomes the bottleneck. As the write size goes up, the
SSD’s throughput increases and so does the write through-
put of TeRM. TeRM reaches the throughput of 2.38Mops/s
at 4KB, 78.69% of the PIN throughput, where the SSD ex-
hibits 1.16Mops/s of 4KB write. When the write size is even
larger, TeRM further reduces its gap with the PIN approach.
TeRM achieves 727.28Kops/s throughput at 16KB, 96.32%
of the PIN approach. In this scenario, the RNIC bandwidth
dominates the overall performance.

6.3 Contribution of Each Technique
In this experiment, we analyze how each technique contributes
to TeRM, as reported in Figure 10. We choose 256B and
4KB as representatives of small and large read/write sizes.
We use three baselines, RPC, RPC_buffer, and RPC_direct.
RPC_buffer and RPC_direct are the same as the RPC ap-
proach, except that we replace the server-side memcpy with
buffer IO and direct IO respectively. We introduce these
two baselines to study the advantage of tiering IO com-
pared with existing IO interfaces. Then we gradually en-
able tiering IO (§4.3), promoting hotspots (§4.4), and TeRM
MR (§4.1&§4.2) atop RPC_direct. Three techniques are an-
notated as +tiering, +hotspot, and +magic in Figure 10. We
test Read 4KB using eight RPC threads, which are enough for
TeRM in this case; we analyze server-side CPU usage in more
detail later in §6.5.4. We apply the TeRM MR last because it
can function better when hotspots are promoted. Notably, the
TeRM MR does not apply to write requests.

The experimental results demonstrate that all techniques
contribute to the performance improvement of TeRM.
Baselines. We first compare three baselines. RPC_buffer per-
forms as poorly as RPC. It avoids CPU page faults but cannot
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Figure 11: Performance of Dynamic Workloads. We change
the hotspots at the 60th second.

eschew the heavy page replacement [5, 8]. RPC_direct sur-
passes RPC_buffer by 1.90× – 12.05×. It bypasses the page
cache but loses the opportunity to access cached data fast.
+tiering. Tiering IO improves the performance by 1.16× –
3.10× over RPC_direct. It accesses data via the page cache
whenever possible. When the data is on the SSD, tiering IO
accesses it directly through the device. In this way, tiering IO
manages to exploit the high-performance physical memory
and avoid the heavy page cache maintenance simultaneously.
+hotspot. Determining and promoting hotspots further in-
creases the throughput by 1.16× – 2.31×. With the hotspots
promoted in the physical memory, tiering IO completes more
hot data requests from the page cache.
+magic. TeRM MR raises the throughput by 1.56× – 1.73×.
The hit read requests are handled through one RDMA READ
operation without bothering the server-side CPU. As the RPC
service only handles miss read requests instead of all read
requests, TeRM utilizes both the RNIC and the server-side
CPU more efficiently.

More specifically, the page bitmap also plays a remark-
able role in performance improvement. The hit ratio of read
4KB requests is about 73%. Without the page bitmap, the
remaining 27% read requests are transferred twice, the first
time via RDMA READ and the second time via RPC READ.
The end-to-end throughput is 2.37Mops/s, only 78.97% of
the PIN approach. With the page bitmap, less than 0.1% read
requests are transferred twice. The throughput is 2.90Mops/s,
achieving 96.71% of the PIN approach.

6.4 Dynamic Workloads

We evaluate how TeRM reacts to dynamic hotspots and plot
the results in Figure 11. We run the benchmark for 120 sec-
onds and change the hotspots at the 60th second. We have
two observations from the results. 1) TeRM performs more
stably than ODP and RPC. TeRM is stable at 2.89Mops/s and
drops by only 6.82% after switching hotspots. The through-
put of ODP and RPC jitters sharply and drops by 1.77× and
3.03× after the switching. 2) TeRM determines and promotes
hotspots effectively and efficiently. The throughput of TeRM
returns to the peak quickly in one second, while it takes ODP
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Figure 12: Performance with Varying (a) Skewness and (b)
Write Ratios.

and RPC six seconds.

6.5 Sensitivity Analysis

We evaluate how the characteristics of workloads impact the
performance of TeRM. We show the read performance of
4KB in these experiments by default, unless otherwise stated.

6.5.1 Skewness

Figure 12(a) plots the performance of approaches with vary-
ing skewness. For the uniform distribution (θ = 0), TeRM
exhibits more significant improvement against existing ap-
proaches, compared with the skewed distribution. It outper-
forms ODP and RPC by 265.24× and 40.40× respectively,
achieving 91.22% of PIN. The hotspots are more concentrated
when θ increases. The PIN approach is stable with varying
skewness. ODP, RPC, and TeRM show higher throughput as
the skewness grows, because more requests are within the
hotspots that reside in the physical memory.

6.5.2 Write Ratio

Figure 12(b) depicts the throughput with five different write
ratios, 0% (read-only), 25% (read-most), 50% (read-write),
75% (write-most), and 100% (write-only). The PIN approach
shows improvement on read-write-mixed requests because it
exploits the full-duplex performance of the RDMA network.
As for TeRM, mixing read and write slows down the direct
IO performance and restricts the overall throughput. ODP
and RPC do not perform better for read-write-mixed requests
compared with the read-only or write-only scenario.

6.5.3 Client Threads

Figure 13(a) reports the throughput with different numbers of
client threads. As the number of client threads goes up, the
throughput of TeRM grows linearly and reaches 2.48Mops/s
at 32 threads. The throughput of PIN also increases linearly
and hits the peak at 16 threads. ODP and RPC scale poorly
with the increasing number of client threads.
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Figure 13: Performance with Different Numbers of (a) Client
Threads and (b) Server Threads.
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6.5.4 Server Threads

Figure 13(b) shows the throughput with different numbers
of server threads for the RPC service. TeRM scales with the
increasing number of server threads and reaches the peak at
eight threads. The RPC approach does not scale well because
the CPU page fault scales poorly [30]. TeRM outperforms
the RPC approach by 2.84×– 10.76×. Even with one server
thread, TeRM exceeds the peak throughput of the RPC ap-
proach. The results demonstrate the CPU efficiency of TeRM.

6.5.5 DRAM Ratio

As shown in Figure 14, we evaluate the performance with dif-
ferent sizes of DRAM, i.e., available physical memory. TeRM
performs well with varying DRAM sizes. Even with only 20%
DRAM, TeRM provides 95.10% and 61.93% throughput of
the PIN approach on skewed and uniform workloads. It out-
performs ODP and RPC by up to 388.29× and 41.78×. The
enhancement is higher compared with the default 50% DRAM
setting in our experiments. This demonstrates that TeRM still
acts efficiently under a low DRAM ratio. All approaches have
higher throughput with more DRAM. With the 90% DRAM
ratio, the RPC approach increases to 1.95Mops/s.

It is worth noting the performance with a 100% DRAM
ratio, where all data fits in the physical memory. This scenario
shows the extra overhead of each approach. Compared with
PIN, TeRM introduces 2.63% overhead, which is negligible.
ODP and RPC also exhibit performance close to PIN.
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Figure 15: Performance with Different SSDs of (a) Read 256B
and (b) Read 4KB. The vertical axis is in a logarithmic scale.
SSD 1: Intel Optane P5800X. SSD 2: Intel Optane P4800X.
SSD 3: Samsung PM9A3. More details about SSDs are listed
in Table 3.

ID Product Model Read 512B Read 4KB
SSD 1 Intel Optane P5800X [4] 4,216 1,255
SSD 2 Intel Optane P4800X [3] 586 586
SSD 3 Samsung PM9A3 [6] 600 619

Table 3: Throughput of Different SSDs (Kops/s). We test
their random throughput on a 64GB area using fio with 16
threads and libaio (queue depth = 4). SSD 1 & 2 use Intel
Optane memory as the storage media. SSD 3 uses NAND flash
as the storage media.

6.5.6 SSD

We evaluate how different SSDs impact the performance and
plot the results in Figure 15. The details of the SSDs are listed
in Table 3. TeRM running on SSD 2 and SSD 3 achieves
close throughput at about 1.95Mops/s. It outperforms ODP
and RPC by up to 158.83× and 9.22×. SSD 2 and SSD 3
have similar IO throughput and limit the overall performance.
The experimental results show that TeRM acts effectively on
different SSDs with different types of storage media.

6.6 RDMA-based Storage Systems
We evaluate how existing RDMA-based storage systems can
benefit from TeRM. We choose an RDMA-based file system,
Octopus [25], and an RDMA-based key-value system, XStore
[37]. We keep the programs unmodified, except mmap-ing the
SSD to get a large area of virtual memory and registering it
as a pinned, ODP, or TeRM MR in their initialization stage.

6.6.1 Octopus: A File System

Octopus is an RDMA-based file system. The server initializes
a large area of virtual memory to store metadata and data,
and exposes it via an MR. Meanwhile, it runs an RPC service
for processing metadata. During accessing a file, the client
first communicates with the server via the metadata RPC, to
retrieve metadata of a file, e.g., data addresses. Then it reads
or writes the server-exposed MR to access file data.
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Figure 17: XStore Performance. The vertical axis is in a
logarithmic scale. We use the YCSB-C workload with 8B keys
and 128B values.

On the server machine, we boot 16 threads for metadata
service on 16 cores. We run 32 client processes. Each of
them reads/writes 4KB/16KB on a 1GB file, where the access
positions follow a skewed distribution (Zipfian θ= 0.99). The
metadata and data occupy about 35GB of virtual memory on
the server; we limit the available physical memory to 18GB.

Figure 16 reports the results. TeRM achieves 82.99–
642.23× ODP and 1.77–7.68× RPC. It performs almost the
same as PIN on Read 16KB and Write 4KB. Accessing 4KB
is slower than 16KB because the client fetches metadata be-
fore transferring data. In this scenario, the metadata service
bottlenecks the throughput.

6.6.2 XStore: A Key-Value System

XStore is an RDMA-based key-value system. The server
maintains a B+ tree and trains a learned index on the virtual
memory. It exposes the virtual memory via an MR. The client
leverages the learned index to predict the value’s address and
reads the server-side MR to get it. XStore handles put oper-
ations via RPC. The server runs an RPC service to process
put requests from the client.

In our experiment, the server initializes a B+ tree contain-
ing 8B keys and 128B values. XStore occupies 32GB of vir-
tual memory on the server and we limit the available physical
memory to 16GB. Since put operations are based on XStore’s
own RPC, we evaluate how TeRM benefits the get perfor-
mance. We use a YCSB-C workload and vary the skewness
of the keys’ distribution.

Figure 17 shows the experimental results. TeRM outper-
forms the ODP and RPC approach by up to 102.97× and
2.69× respectively. As the skewness increases, get through-
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put increases because hotspots are more concentrated in the
physical memory. TeRM achieves 30.07% throughput of the
PIN approach at Zipfian θ = 0.99.

The experiments of Octopus and XStore show that RDMA-
based storage systems can gain significant performance en-
hancement from TeRM compared to the ODP and RPC ap-
proaches. TeRM saves physical memory and achieves compa-
rable performance against the PIN approach.

7 Related Work

Extending local memory. With the advent of high-
performance SSD and network, a host of works focus on
extending local memory with the SSD or remote memory in
recent years. They extend local memory from different levels,
the application programming level [33,35], the virtual address
level [11,18,21,28–30,42], and the hardware level [9,13,31].
Then the application process can run on a memory space
larger than the physical memory and swap memory pages to
the SSD or remote memory.

TeRM differs from these works in target problems and ap-
plications. These works focus on extending the private virtual
memory of a CPU process and optimizing CPU page faults.
Local memory is not exposed and only accessible by the pro-
cess. Therefore, they target applications like in-memory graph
processing systems (e.g., PowerGraph [17]) and big data sys-
tems (e.g., Spark [43]). TeRM extends the RDMA-attached
memory exposed by the RNIC and tackles RNIC page faults.
The memory is shared in the cluster and can be concurrently
accessed by the server (via CPU) and multiple clients (via the
RNIC). TeRM mainly aims at RDMA-based storage systems,
e.g., Octopus [25] and XStore [37] in our evaluation.
ODP MR and RNIC page fault. Lesokhin et al. introduce
ODP MR and page fault support for the RNIC [22], so that
initializing an MR need not pin pages in physical memory.
PART [32] also builds a mechanism to handle RNIC page
faults on a prototype hardware platform. These works han-
dle the exception in the hardware and thus are restricted by
the limited hardware resources. TeRM proposes onloading
exception handling from hardware to software.
Onloading from RNIC. Researchers from system and net-
work communities also propose onloading functionalities
from the RNIC to the CPU. For example, FaSST [20] and
eRPC [19] reimplement reliability on the CPU, to address the
scalability issues of the RC connection. Flor [24] onloads flow
control from the RNIC to the CPU to support heterogeneous
RNIC deployment. In contrast, TeRM targets page fault.

8 Conclusion

We present TeRM in this paper, an efficient approach to ex-
tending RDMA-attached memory with SSD. It onloads ex-
ception handling (i.e., RNIC page fault) from hardware to

software. The experimental results on the microbenchmark
and unmodified RDMA-based storage systems demonstrate
the effectiveness of TeRM.
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A Artifact Appendix

Abstract
The artifact provides implementation source code and evalua-
tion scripts of TeRM. It overloads the APIs of libibverbs
and can be integrated with an existing RDMA application
transparently by LD_PRELOAD.

Scope
The artifact helps understanding our design and implemen-
tation details better, including those that we do not mention
in the paper due to space limit. It allows to reproduce the ex-
perimental results in the paper. It also provides examples for
developers to integrate TeRM with their RDMA applications.

Contents
The implementation source code in the artifact contains two
parts, the userspace shared library libterm (tLib) and the
modified RNIC driver. Moreover, the artifact provides evalua-
tion scripts and the third-party applications, including XStore
and Octopus.

Hosting
The artifact is available at https://github.com/thustor
age/TeRM. The main branch has the latest contents.
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