
This paper is included in the Proceedings of the
22nd USENIX Conference on File and Storage Technologies.

February 27–29, 2024 • Santa Clara, CA, USA
978-1-939133-38-0

Open access to the Proceedings
of the 22nd USENIX Conference on

File and Storage Technologies
is sponsored by

Combining Buffered I/O and Direct I/O
in Distributed File Systems

Yingjin Qian, Data Direct Networks; Marc-André Vef, Johannes Gutenberg
University Mainz; Patrick Farrell and Andreas Dilger, Whamcloud Inc.;

Xi Li and Shuichi Ihara, Data Direct Networks; Yinjin Fu, Sun Yat-Sen University;
Wei Xue, Tsinghua University and Qinghai University;

André Brinkmann, Johannes Gutenberg University Mainz

https://www.usenix.org/conference/fast24/presentation/qian

Combining Buffered I/O and Direct I/O in Distributed File Systems

Yingjin Qian
Data Direct Networks

Marc-André Vef
Johannes Gutenberg University Mainz

Patrick Farrell
Whamcloud Inc.

Andreas Dilger
Whamcloud Inc.

Xi Li
Data Direct Networks

Shuichi Ihara
Data Direct Networks

Yinjin Fu
Sun Yat-Sen University

Wei Xue
Tsinghua University & Qinghai University

André Brinkmann
Johannes Gutenberg University Mainz

Abstract
Direct I/O allows I/O requests to bypass the Linux page

cache and was introduced over 20 years ago as an alternative
to the default buffered I/O mode. However, high-performance
computing (HPC) applications still mostly rely on buffered
I/O, even if direct I/O could perform better in a given situation.
This is because users tend to use the I/O mode they are most
familiar with. Moreover, with complex distributed file systems
and applications, it is often unclear which I/O mode to use.

In this paper, we show under which conditions both I/O
modes are beneficial and present a new transparent approach
that dynamically switches to each I/O mode within the file sys-
tem. Its decision is based not only on the I/O size but also on
file lock contention and memory constraints. We exemplary
implemented our design into the Lustre client and server and
extended it with additional features, e.g., delayed allocation.
Under various conditions and real-world workloads, our ap-
proach achieved up to 3× higher throughput than the original
Lustre and outperformed other distributed file systems that
include varying degrees of direct I/O support by up to 13×.

1 Introduction

High-performance computing (HPC) clusters traditionally
store data on parallel file systems [4, 9, 14, 15, 49, 57]. They
export local file or object storage from a collection of server
nodes to clients, allowing applications on a client to access
files on remote servers as if they were stored locally. Exist-
ing applications constantly scale to higher core counts and
proportionally increase their I/O volume. New HPC applica-
tions from machine learning and AI are creating new access
patterns that challenge previous optimizations for parallel file
systems by increasing random accesses and heavy metadata
traffic. As a result, I/O is increasingly becoming a perfor-
mance bottleneck for many scientific applications.

File systems typically cache data and metadata in main
memory to reduce the number of required I/Os to the storage
backend. For example, Linux’s default I/O mode is buffered

I/O where the kernel caches read and write operations in the
Linux page cache to help optimize I/O submitted to storage.
Almost all standard applications running on a single server
can benefit from page caching during I/O. Buffered I/O also
improves the performance of many HPC applications that run
on large clusters and store data on parallel file systems.

An alternative to buffered I/O is direct I/O. Files opened
with the O_DIRECT flag bypass the caching layer in the kernel
and send I/Os directly to the storage system. This is particu-
larly useful when an application itself buffers read and write
operations, avoiding a “double buffer” situation, such as in
databases. To use direct I/O, an application must meet certain
alignment criteria. The alignment constraints are usually de-
termined by the disk driver, the disk controller, and the system
memory management hardware and software. This require-
ment severely limits the use of direct I/O by applications.

Intuitively, buffered I/O should perform better than direct
I/O because the read-ahead and write-back optimizations of
buffered I/O can bring the performance of buffered I/O mode
close to the level of memory access. Using direct I/O therefore
typically results in a prolonged process. However, this paper
shows that this is not always the case.

The reason is that caching data in the kernel page cache is
not free, especially if the cached data has poor reuse character-
istics. First, buffered I/O induces additional copy operations
to move data between the kernel cache and the application.
Second, the overhead of interacting with the kernel page cache
and page management is considerable. Moreover, when mem-
ory becomes scarce, page reclamation must free old pages to
allocate memory for the current I/O operation. The resulting
cache thrashing can then significantly degrade performance.

An additional cost of buffered I/O in parallel file systems
is the cost of managing complex distributed range locks to
support client-side caching with strong consistency. If the
file system locks only the necessary (small) portions of a
concurrently accessed file, it requires many remote procedure
calls (RPCs) between clients and the lock manager, while
using larger expanding locks may lead to false lock contention
between clients and many lock revocation messages [39].

USENIX Association 22nd USENIX Conference on File and Storage Technologies 17

4K 16K 64K 256K 1M 4M 16M 64M 256M
I/O request size

0
4000
8000

12000
16000
20000
24000

I/O
 th

ro
ug

hp
ut

 (M
iB

/s
) BIO write

DIO write
BIO read
DIO read

Figure 1: Local ldiskfs performance with various I/O sizes
for buffered I/O (BIO) and direct I/O (DIO).

The primary benefit of direct I/O is to reduce CPU utiliza-
tion for file reads and writes by eliminating the copy from
the cache to the user buffer and minimizing the number of
lock revocations. Therefore, the advantages and drawbacks
of the two I/O modes complement each other. Buffered I/O
simplifies programming and can yield performance benefits
in many situations. However, for sequential I/O to very large
files, direct I/O with large transfer sizes can provide the same
or better performance as buffered I/O with much less CPU
overhead and memory usage. In addition, direct I/O can also
improve performance for small writes when many nodes with
interleaved file offsets concurrently modify a file.

Figure 1 shows an example of this tradeoff when 16 threads
run the fio benchmark on a local Lustre ldiskfs device.
Each thread used separate files and wrote and read 20 GiB
of data for I/O sizes between 4 KiB and 256 MiB. The write
aggregation and read-ahead optimizations of buffered I/O re-
sulted in a stable write performance of 3 GiB/s and a read
performance of 11 GiB/s, almost independent of access sizes.
This performance wall for buffered I/O depends on available
memory for caching and page cache overhead and is indepen-
dent of available storage bandwidth or number of the attached
storage system. We also experienced the same behavior for
other file systems like BeeGFS [25] or NFS [22].

The performance of direct I/O for small I/O sizes in Figure 1
is significantly lower than in buffered I/O mode. In this case,
direct I/O suffers from latencies induced by synchronous
writes to the storage backend. For bigger I/O sizes however,
direct I/O benefits from not performing unnecessary copy
operations and not having to manage the page cache, reaching
a performance that exploits the potential of the backend SSDs.

To the best of our knowledge, we are the first to evaluate
combining buffered I/O and direct I/O in the parallel file sys-
tem itself. Based on our empirical results, we designed and
implemented a new I/O path engine for the Lustre parallel
file system that can automatically switch between buffered
I/O and direct I/O modes. In contrast to previous work on
BeeGFS [5], this switch is not only based on the size of re-
quests but also considers memory pressure on compute nodes
and lock contention on files. We also introduce a mechanism
that supports adaptive switching between buffered I/O and

direct I/O on storage servers.
We compare this new architecture with BeeGFS and Or-

angeFS [2]. We chose these two file systems as BeeGFS can
switch between buffered I/O and direct I/O based on a fixed
threshold [5], whereas OrangeFS in the tested implementation
only performs direct I/O [17] on the client side. Our evalua-
tion uses a variety of workloads, including microbenchmarks,
macrobenchmarks, and real-world HPC workloads.

We show that our approach can effectively combine
buffered I/O and direct I/O, selecting the best-performing
I/O mode for a given I/O size and system state. Compared
with the original Lustre version, our approach achieved up
to 3× higher throughput for real-world workloads (that use
many heterogeneous I/O sizes) and outperformed BeeGFS
and OrangeFS by up to 13× and up to 10×, respectively.
Moreover, we present the I/O statistics in which the I/O mode
switch was triggered.

The remainder of this paper is organized as follows. First,
Section 2 discusses the necessary background and motivates
our work. Section 3 presents our new Lustre I/O engine. Next,
Section 4 evaluates different parameter settings and compares
our approach with BeeGFS and OrangeFS. Section 5 dis-
cusses related work, and we conclude with Section 6.

2 Background and motivation

In this section, we present a detailed comparative analysis
between buffered I/O and direct I/O and then introduce the
performance impact of page caching and I/O lock contention
on buffered I/O to motivate our design for higher I/O perfor-
mance in HPC systems.

2.1 Buffered I/O vs. direct I/O
Linux and most other operating systems offer buffered and
direct I/O modes for file access. In the buffered I/O mode, the
virtual file system first buffers all read and write requests in
the kernel page cache. This is the default file access mode and
is easy to integrate into applications as they do not need to deal
with I/O size and alignment constraints. A major advantage of
buffered I/O is that it can hide the latency of storage accesses
when data is accessed more than once. The direct I/O mode
in contrast transfers data directly between the application and
the storage device without a data copy, but the data must meet
specific size and alignment constraints.

Table 1 provides a high-level comparison of the two I/O
modes. A key advantage of buffered I/O is its ability to
prefetch data using read-ahead and to aggregate small writes
using write-back caching. In both cases, small I/O requests
from the application can be transformed into large I/O opera-
tions to the underlying storage system. Asynchronous write-
back caching and read-ahead are perfect for hiding the latency
of slow storage devices, such as spinning disks, and can per-
form close to the speed of the memcpy() operation. Buffered

18 22nd USENIX Conference on File and Storage Technologies USENIX Association

Table 1: Comparison between two I/O modes.

I/O case Buffered I/O Direct I/O

Small I/O size ✓ X
High latency storage ✓ X
Unaligned I/O ✓ X
Large, sequential I/O X ✓
Many running processes/nodes X ✓
System under memory pressure X ✓

I/O also has no requirements on the read and write size and
alignment and is therefore convenient to use by programmers.

A major drawback of buffered I/O is its poor single-stream
performance when data cannot be reused multiple times. It
also creates many lock conflicts when multiple processes
from different nodes write to a shared file on a networked
file system with strong consistency guarantees. There is also
contention within a single node’s page cache when multiple
cores are writing to a single file.

Direct I/O does not use page caching and transfers data
directly between application memory and the storage device.
It can provide near-device performance for large I/O sizes and
does not slow down when scaling the number of processes
and nodes. It can also reduce memory pressure because data
is not prefetched or cached. The downside is that direct I/O
cannot hide the latency for slow devices or small I/Os. Also,
direct I/O requires that the I/O size and the offset in memory
are aligned with the page size, so most applications must be
significantly modified to use this I/O mode.

2.2 Impact of page caching and data copies on
buffered I/O

The page cache used by buffered I/O induces additional copies
between user space and the page cache. Its management re-
quires, e.g., page allocation, locking, and LRU list manage-
ment for aging and reclaiming. We therefore designed an
experiment to measure the page cache overhead for sequen-
tial write operations from a single thread for a total I/O size of
2,560 GiB. We used the IOR benchmark [1] and the perf [28]
profiling utility to collect and analyze the corresponding per-
formance and trace data. Figure 2 shows the results for the
local file system Ext4 and the network file systems Lustre and
BeeGFS. These file systems spent about 20% of their time
on copying data between the application and the page cache
and more than 40% on page cache management. The figure
also shows the resulting buffered I/O performance and the
performance of direct I/O in the same setting.

This page cache overhead was also observed in previous
work. For example, Corbet [16] describes that even (seem-
ingly harmless) reads that span a dataset larger than the mem-
ory size can lead to page cache thrashing and huge perfor-
mance drops once the page cache is full (see also [35, 44]). It

Ext4 BeeGFS Lustre0

25

50

75

100

Ti
m

e
ov

er
he

ad
 p

er
ce

nt
ag

e

Data copy Page cache Others

0

2000

4000

6000

8000

I/O
 th

ro
ug

hp
ut

 (M
iB

/s
)BIO

DIO

Figure 2: I/O time breakdown for buffered I/O writes.

is therefore interesting to understand why page cache man-
agement is so costly, even for such simple use cases.

Page cache management includes page allocation and page
reclaim, among others. The page allocation process allocates
clean pages for newly accessed data and adds the pages to
the page cache. During memory pressure, Linux must reclaim
some of the previously allocated pages from the cache to
make room for newly allocated pages. In our example, re-
claiming pages requires not only evicting pages from the page
cache but also writing the data back to the storage system (see
also [21]). A closer look at the profiling data shows that IOR
running on BeeGFS, for example, spent more than 42% of its
time in the pagecache_get_page() function. The reason is
that pagecache_get_page() can only return under memory
pressure after it has received a clean page. These clean pages
must first be generated by the kswapd daemon. kswapd there-
fore constantly launched many kworker background threads
that asynchronously wrote back these dirty pages using the
native BeeGFS write functions, which in turn can impose an
overhead and can lead to page cache thrashing. An additional
page management overhead of 20% attributed to setting pages
dirty by calling __set_page_dirty_nobuffers().

Direct I/O does not interact with the page cache and can
perform large sequential writes directly to the backend storage.
The performance comparison in Figure 2 therefore shows
that direct I/O on the local file system Ext4 can increase
performance by nearly five times, while Lustre and BeeGFS
have smaller gains because they require additional bulk data
transfers over the network.

2.3 I/O locking and contention in Lustre
The Lustre file system stores data on object storage targets
(OSTs) exporting local disk file systems through object stor-
age servers (OSSs). Similarly, metadata is stored on metadata
targets (MDTs) which are accessed through metadata servers
(MDSs). Both data and metadata performance and capacity
can be scaled by including more servers [9]. Lustre clients
run on the compute nodes and access the storage and meta-
data servers through a high-speed network. Lustre supports
client-side caching of data and metadata to reduce the impact
of network round-trip times [45,46]. It uses a distributed lock

USENIX Association 22nd USENIX Conference on File and Storage Technologies 19

OST

namespace

object1

Q1 Q2 Q3

Q1: grant queue
Q2: convert queue
Q3: waiting queue

L1:
[a1, b1]

L2:
[a2, b2]

Client A

namespace

object1

Q1 Q2 Q3
L1:

[a1, b1]

Client B

namespace

object1

Q1 Q2 Q3
L2:

[a2, b2]
1. ask for lock L2

2. conflict

3. lock blocking callback
notify Client A, revoke L1

cache pages

L2:
[a2, b2]

5. notify Client B, grant L2

4. granted

Figure 3: Lock blocking callback under write-back.

manager (DLM) [31, 37, 49] to protect the cached data and
metadata from concurrent accesses by other clients. Lustre
manages DLM locks in namespaces, where each Lustre OST
or MDT has a separate lock namespace for its local objects.

Files are protected by read and write byte-range locks,
allowing multiple clients to access or modify different parts
of a shared file. A client requests a lock covering exactly
the required I/O range (aligned with the page cache). The
server attempts to optimize this request by expanding the lock
to the largest non-conflicting range. The locks cached by a
client are not released immediately and are instead revoked
asynchronously through a callback in case of a lock conflict
due to age or when exceeding cache sizes. Based on the
locality principle, this can reduce lock traffic between clients
and servers and improve performance, especially when only a
single client accesses a file. Nevertheless, it can also result in
heavy lock contention and false lock sharing for concurrent
writes on a shared file from multiple clients [39].

Figure 3 shows the required steps to allocate a lock for
write-back caching data in the range [a2,b2] by client B. We
assume that client A previously wrote data to the same file and
still keeps a lock L1=<[a1, b1]> in its local lock namespace.
Now, client B requests a lock L2=<[a2, b2]> on the same
object. The server detects that L2 conflicts with L1 because
the two lock ranges [a2, b2] and [a1, b1] intersect and
notifies client A to revoke L1 via the lock-blocking callback.
Client A then flushes the dirty pages to the server, clears the
client cache, and releases L1. Afterward, the server grants L2
to client B, and then client B can write to the file.

Lock conflict resolution and possible lock ping-pong are
expensive processes and can significantly reduce I/O perfor-
mance when writing to shared files. Therefore, we present a
mechanism for using direct I/O with server-side locking to
eliminate the lock callbacks for conflict I/Os next.

3 Design and implementation

Our design consists of four main components. Its switching
algorithm automatically selects the I/O mode on both the
client and the server to match request sizes and access pat-
terns. Server-side adaptive locking reduces lock congestion
on shared files when the I/O pattern has no access locality
or when many clients access a file in parallel. Server-side
delayed allocation improves strided I/O performance, and sup-
port for unaligned direct I/O accesses simplifies programma-
bility. We have implemented our approach in the Lustre par-
allel file system. However, the general idea is applicable to
other distributed file systems that also use a DLM.

3.1 Combining buffered I/O and direct I/O
We introduce a fully transparent hybrid I/O path engine that
automatically switches between buffered I/O and direct I/O
in the Lustre client and server.

autoIO – transparent direct I/O in the client: autoIO uses
the I/O request size, lock contention, memory pressure, and ac-
cess locality to decide whether a client’s I/O request should be
handled as buffered or direct I/O. Algorithm 1 shows the cor-
responding decision tree for autoIO to automatically switch
between buffered I/O and direct I/O.

If an I/O request is smaller than the small I/O threshold, au-
toIO uses buffered I/O. If the I/O request size is larger or equal
to the large I/O threshold, autoIO uses direct I/O. Between
both thresholds, autoIO uses buffered I/O by default and first
checks whether the file is under lock contention due to con-
flicting accesses from multiple clients, and if so, switches
to direct I/O. This is advantageous in combination with our
adaptive server-side locking, which is discussed later in this
section. Next, autoIO considers the client’s current memory
pressure and cache reuse. AutoIO therefore limits the number
of cached pages of a file to 1 GiB (default) and switches to
direct I/O when the cached pages or a corresponding cgroup
reach 95% of their allowed limit. Also, if the I/O workload

Algorithm 1 The autoIO decision algorithm
1: function DECIDE_IO_MODE(file, io_size, cfg)
2: if (io_size ≥ cfg.large_io_threshold) then
3: return DIO;
4: else if (io_size < cfg.small_io_threshold) then
5: return BIO;
6: else if file_is_under_lock_contention(file) then
7: return DIO;
8: else if client_is_under_memory_pressure(file, cfg) then
9: return DIO;

10: else if file_lacks_access_locality(file, io_size, cfg) then
11: return DIO;
12: else
13: return BIO;

20 22nd USENIX Conference on File and Storage Technologies USENIX Association

4K 16K 64K 256K 1M 2M 4M 16M 64M 256M
I/O sizes

0
2
4
6
8

10

W
rit

e
th

ro
ug

hp
ut

(G
iB

/s
)

Buffered I/O (io_size< small_io_threshold)
Direct I/O (io_size≥ large_io_threshold)

Figure 4: I/O streaming throughput for autoIO with various
small and large I/O thresholds.

lacks access locality and the cached pages are not reused, au-
toIO switches to direct I/O for subsequent I/O accesses larger
than the small I/O threshold.

For lock contention detection, autoIO leverages an already
existing detection mechanism in Lustre. The other default
parameters are based on preliminary experiments and are
configurable by the user.

We ran I/O streaming experiments on a Lustre system with
eight storage servers to determine the initial small and large
I/O thresholds (see Section 4 for the experimental setup). We
used IOR [1] with various I/O request sizes ranging from
4 KiB to 256 MiB. Figure 4 presents the results for each I/O
size for two cases: First, the small I/O threshold was set larger
than the I/O request size, resulting in buffered I/O. Second,
the large I/O threshold was set smaller than the I/O request
size, resulting in direct I/O. Based on the results, we set the
large I/O threshold to 2 MiB by default. We further set the
small I/O threshold to 32 KiB. Therefore, if Lustre detects
lock contention, memory pressure, or a lack of access locality,
autoIO switches to direct I/O in the range [32 KiB, 2 MiB).
Section 4 provides additional I/O statistics when a specific
case was triggered and shows the performance benefits of
switching to direct I/O across workloads within this range.

Note that autoIO does not switch to buffered I/O when a
user opens a file with the O_DIRECT flag.

Adaptive server-side locking for direct I/O Bulk-
synchronous applications [10] represent some of the most
dominant workloads in HPC, where applications typically
alternate compute and I/O phases at step boundaries. Often,
such workloads access a single shared file at a step bound-
ary, where each process accesses its own non-conflicting
region. Examples include Nek5000 [20] for computational
fluid dynamics, VPIC for large-scale plasma physics simula-
tions [8, 12], and checkpointing to a single shared file [7].

This workload type is so common that it is included in the
IO500 [32] ior-hard-write benchmark where each MPI rank
concurrently writes into a single shared file with an I/O size
of 47,008 bytes in strided I/O mode. Although the I/O regions
do not overlap, this can cause significant lock contention.
The reason is that clients must obtain page-aligned extent
locks before performing their non-page-aligned I/Os. This

can result in many ping-pong lock callbacks that negatively
affect I/O throughput.

For direct I/O, our implementation leverages an existing
server-side locking mechanism in which clients send their
I/O requests directly to the server, which acquires the DLM
lock on the client’s behalf. Compared to the client-side extent
lock, the server-side extent lock has a much lower latency
because the server can take the lock before proceeding with
the bulk transfer (and free it directly after), saving lock round-
trip traffic. Therefore, when a file is under lock contention,
the benefits of direct I/O shift towards smaller I/O sizes.

For autoIO, this means that, according to our experiments,
it is beneficial to use direct I/O already below the large I/O
size threshold but above the small I/O size threshold (see
Algorithm 1 line 6) when a file is under lock contention.
To determine whether a lock resource is under contention
and to what degree, our detection algorithm uses a sliding
window counter [59]. If at least 16 (by default) conflicting
lock requests are seen over a sliding window of 4 seconds (by
default), the file object is considered under contention, which
the server reports to the client via the reply. Overall, this can
increase the efficiency for I/O requests that fall between the
small and large I/O thresholds, as shown later in Section 4.

Server-side adaptive write-back and write-through Lus-
tre servers implement a thread pool model for incoming re-
quests from many clients in parallel. Specifically, Lustre uses
an out-of-band data transfer mode, combined with remote di-
rect memory access (RDMA) network transfers, to minimize
CPU and memory utilization while providing high through-
put and scalability. For large incoming I/O requests, each I/O
service thread uses a pre-allocated buffer (between 4 MiB
and the maximum bulk RPC size) for bulk data transfers to
avoid the overhead of the kernel page cache. Depending on
the server load, the number of I/O threads can vary from 2
to 512 threads. Therefore, the total memory requirement can
be several GiB (RPC size times 512 threads). By default, all
I/O requests are immediately submitted to storage by the I/O
service thread to avoid memory contention (write-through).

Although this works well for large I/O requests, especially
when using large bulk RPCs (up to 64 MiB in Lustre), the
write-through mode does not fully utilize the available disk
bandwidth for small I/O requests (see Figure 1). This is par-
ticularly noticeable for latency-sensitive I/O requests, such as
when many small files are written and read.

We added an adaptive write-back cache mode to improve
I/O performance on the server for such latency-sensitive use
cases. Similar to how the Lustre client can switch to direct
I/O for non-O_DIRECT requests, the Lustre server can switch
to buffered I/O mode (write-back). According to the results in
Figure 1, all I/O requests smaller than 64 KiB are processed in
write-back mode using the page cache. For larger I/O requests,
Lustre uses its default write-through mode via direct I/O. This
allows the server to use the available memory to cache small

USENIX Association 22nd USENIX Conference on File and Storage Technologies 21

I/Os while not overwhelming the cache with large I/Os.
Moreover, we do not implement server-side read-ahead.

The reason is that 1. the server memory is a limited resource
shared by all clients, and read-ahead data may overwhelm the
cache space on a server; and 2. client-driven read-ahead in
Lustre is a more efficient way and has already achieved very
good performance in most cases.

Note that when using write-back, limited data availability
after a crash is a challenge, with the potential to lose non-
persisted data. However, this is also the case with buffered
I/O in general. Here, fsync() is essential to ensure data
consistency and durability within the file system. This is
in accordance with POSIX which states that a successful
write() does not guarantee that the data has been committed
to disk unless fsync() is called. Interestingly, this applies
also to direct I/O. Although it bypasses the client’s kernel
cache, a storage system may or may not apply O_DIRECT to
other layers of the I/O stack where caching is used. Therefore,
it is important to use fsync() to flush all cached data to disk.

Overall, our work does not affect metadata durability and
consistency as the file system can always recover to a consis-
tent state after a crash. For example, Lustre’s recovery mech-
anism can resend (replay) uncommitted I/O operations on
clients to the server once the server resumes operations [43].

Cross-file batching for buffered writes For single files,
Lustre clients accumulate an application’s dirty pages and
asynchronously send them as large bulk RPCs (1 MiB) to
the storage servers. This method avoids many small RPCs,
and it is therefore more network and disk-efficient. For many
small files, however, there may not be enough dirty pages
to accommodate a full bulk RPC, delaying the write-back
operation. Moreover, I/O RPCs sending dirty pages to the
storage servers are restricted to a single file and thus many
small RPCs are sent.

Cross-file batching for buffered writes is an optimization
strategy for such use cases that involve many small writes
across many small files. It batches dirty pages of multiple
files into one large bulk RPC, improving network efficiency.
The configurable threshold small_write_threshold (de-
fault 64 KiB) allows Lustre to distinguish whether a file is
small enough to benefit from this optimization. Essentially,
Lustre clients maintain a small-file list that contains files be-
low the threshold. Once enough dirty pages are placed in the
list, batched I/O bulk RPCs are sent to the storage servers.

Consistency challenges Whenever our algorithm triggers
transparent and dynamic switching between buffered I/O and
direct I/O, there is the potential for data regions from the two
I/O modes to overlap. For instance, on the Lustre client, a file
region could be written via direct I/O while parts have not
been flushed yet and remain in page cache as they were part
of a prior buffered I/O operation. If not handled properly, this
can cause a consistency conflict. A similar situation could

occur on the server with the above-described write-back cache
and the default direct I/O path.

On the client, overlapping regions are detected, and dirty
pages in that region are flushed first before direct I/O is per-
formed. On the server side, with write-back enabled, dirty
pages are not flushed and are reused instead as part of the
direct I/O operation. Thus, because clients must flush their
cache and servers merge overlapping data, our approach does
not change Lustre’s strong consistency guarantees. Similar
arguments hold for aligning unaligned direct I/O, which we
discuss next.

3.2 Unaligned direct I/O
One of the challenges of using direct I/O is that the O_DIRECT
open flag typically imposes alignment constraints on the
length and address of user space buffers and the file offset of
I/Os, where the I/O size and offset must be a multiple of 512
bytes and the memory buffer address must also be aligned to
512 bytes [26]. In this context, the 512-byte boundary refers
to the logical block size of the underlying storage device,
although modern devices use a sector size of 4096 bytes or
more [36]. If not all conditions are true, direct I/O is not
supported and the error code EINVAL is returned.

In general, I/O alignment provides several benefits. For
example, it can resolve conflicting read-modify-write (RMW)
operations on the same block. However, not all applications
can align their I/O. This is especially true for applications
with a complex I/O stack that is not under the control of the
application. Therefore, to maximize the benefits of direct
I/O, the underlying file system should handle misaligned I/O
in the kernel. We implemented a buffering scheme in the
Lustre client to address this challenge. When the user buffer
is misaligned, Lustre creates an aligned buffer in the kernel
by remotely reading data outside the user buffer up to the
alignment boundary. Direct I/O then uses this aligned buffer.

Nevertheless, because aligning a user buffer potentially re-
quires additional memory allocation and data copying, it may
be less efficient than using an existing user buffer. However,
our analysis showed that allocating and copying to an aligned
buffer in the kernel still outperforms buffered I/O, especially
for large I/O sizes. This is because buffered I/O spends less
than 20% of its time allocating a buffer and copying data to
that buffer, while the remaining time is spent locking page
caches and managing the kernel cache.

3.3 Efficient RAID I/O via delayed allocation
When Lustre receives I/O write requests for a small file, blocks
are allocated at write time, even if the data is written in write-
back mode. This strategy can lead to severe file fragmentation
for strided I/O (discussed above) when multiple clients are
writing data to a single file and are therefore constantly allo-
cating blocks simultaneously. Since magnetic disks are still

22 22nd USENIX Conference on File and Storage Technologies USENIX Association

used as the primary backend for storing data in parallel file
systems, we try to reduce file fragmentation by delaying block
allocation on the backend storage.

A common technique to mitigate such file fragmentation
is to use delayed (block) allocation by deferring data block
allocation until the last possible moment before data is flushed
to disk. Delayed block allocation is featured in many modern
file systems, e.g., EXT4 [13], XFS [29], or BtrFS [48] to
reduce fragmentation [51].

Therefore, we have enabled delayed allocation in write-
back mode on the server to collect and merge small or non-
contiguous I/O requests into large, contiguous I/O requests.
This can reduce head thrashing on magnetic disks. It can also
reduce the number of RMWs on RAID systems by consoli-
dating full stripes before flushing the data. Small fragmented
I/O, on the other hand, immediately writes the data to the
RAID controller cache before flushing it in an RMW fashion,
significantly impacting I/O performance.

Delayed allocation uses the kernel’s write-back mechanism
to flush dirty pages and allocate blocks at flush time. By de-
fault, Linux’s periodic flushing interval is five seconds, during
which the disk bandwidth may be underutilized. To flush
data continuously, we leverage extent status trees (available
in Ext4 and ldiskfs) – a data structure to track the status of
delayed allocation extents. When a server receives a write
request from a client, it allocates an in-memory delayed ex-
tent and inserts it into the delayed extent status tree. During
insertion, the server looks for other delayed extents to form
a contiguous extent. If Lustre detects that a merged extent
can form a full extent write, e.g., offset and length are both
1 MiB aligned, the dirty pages from this extent are flushed by
a worker thread. In summary, this allows larger continuous
I/O buffers to be flushed to the underlying RAID disk system
outside of the periodic flushing interval, reducing RMW oper-
ations caused by otherwise small extents and improving the
overall I/O performance in the process.

4 Evaluation

This section evaluates the performance and benefits of our
work under various workloads, including microbenchmarks,
macrobenchmarks, and real application workloads. Most of
these experiments are compared to BeeGFS and OrangeFS.
We chose these two distributed file systems for comparison
because BeeGFS supports switching between buffered I/O
and direct I/O based on a fixed threshold value [5], whereas
OrangeFS, in the tested implementation, only performs direct
I/O on the client side [17].

This section uses abbreviations for various I/O and file sys-
tem modes. BIO (buffered I/O) and DIO (direct I/O) refers
to the I/O mode across several benchmarks, i.e., whether
O_DIRECT was used with open(). File system modes refer to
configuration changes applied to the three file systems used.

First, our new Lustre features can be toggled and configured
independently, allowing us to investigate the impact of each.
The following abbreviations for Lustre are used: 1. vanilla
for the original Lustre version; 2. autoIO for the client-
side decision algorithm; 3. svrWB for server-side write-back
caching; 4. delalloc for the delayed (block) allocation; and
5. XBatch for cross-file batching of buffered writes.

For BeeGFS, we used two file cache modes on the
clients [5]: 1. buffered mode representing the default
file cache mode for write-back and read-ahead by using
several static buffers; and 2. native mode that relies on
the Linux page cache. BeeGFS’s native mode offers the
tuneFileCacheBufSize parameter (512 KiB by default) for
switching to direct I/O above the threshold. In that case, all
I/O operations bypass the page cache, communicating directly
with the storage servers. Native is therefore comparable to
our autoIO, which further considers additional parameters.

For OrangeFS, we used two server-side I/O
modes: 1. alt-aio mode which is the default for ac-
cessing data on the storage servers by using buffered I/O via
asynchronous I/O; and 2. directio mode that uses direct
I/O to access data on the storage backend. Similar to our
svrWB caching, which allows Lustre also to use buffered I/O
on the servers, OrangeFS servers can therefore operate in
buffered and direct I/O mode.

Our experiments were run on a Lustre cluster consisting
of 4 MDTs, 8 OSTs, and 32 client nodes. The servers used
a DDN AI400X2 Appliance backend (20 × SAMSUNG
3.84 TiB NVMe, 4 × IB-HDR100 100 Gbps), running Lustre
version 2.15.58. All clients used an Intel Gold 5218 processor,
96 GiB of DDR4 memory, and ran CentOS 8.7 Linux. All
nodes were interconnected using InfiniBand IB-HDR100.

BeeGFS used a storage architecture similar to Lustre,
with the same hardware and configurations. Both clients and
servers were running BeeGFS 7.4.0. For OrangeFS, we used
version 2.10.0 running CentOS 8.7 Linux on both servers
and clients. Each metadata storage target was configured with
two metadata server instances, and each data storage target
was configured with one data server instance. Thus, there are
eight metadata instances and eight data server instances in
total. The client kernel module for OrangeFS with CentOS 8.7
does not integrate with the Linux page cache, and all client
I/Os (both direct and buffered I/O modes) are performed syn-
chronously. Unless otherwise specified, a given file is striped
across eight storage targets by default, and the stripe size is
1 MiB for all file systems.

4.1 Microbenchmarks

This section presents the experiments and results for various
microbenchmark workloads using IOR and mdtest [1], which
have become popular benchmarking tools in HPC [23].

USENIX Association 22nd USENIX Conference on File and Storage Technologies 23

4K 16K 64K 256K 1M 4M 16M 64M 256M
I/O request size

0

3000

6000

9000

12000

W
rit

e
th

ro
ug

hp
ut

 (M
iB

/s
)

BIO − vanilla
DIO − vanilla
UDIO − vanilla
autoIO

4K 16K 64K 256K 1M 4M 16M 64M 256M
I/O request size

0

3000

6000

9000

12000

Re
ad

 th
ro

ug
hp

ut
 (M

iB
/s

)

Figure 5: Single I/O stream throughput for Lustre.

4K 16K 64K 256K 1M 4M 16M 64M 256M
I/O request size

0
1000
2000
3000
4000
5000
6000

I/O
 th

ro
ug

hp
ut

 (M
iB

/s
) BIO write − native

BIO read − native
BIO write − buffered
BIO read − buffered
DIO write
DIO read

Figure 6: Single I/O stream throughput for BeeGFS.

Single I/O stream throughput First, we present the single
I/O stream throughput for BIO, DIO, and unaligned DIO (UDIO)
in vanilla Lustre and with our autoIO compared with BeeGFS
and OrangeFS. In this case, IOR ran a single process, writing
and reading data 2× the memory size with I/O sizes varying
from 4 KiB to 256 MiB on the client.

Figure 5 visualizes the results that are overall similar to the
local ldiskfs’s I/O throughput earlier in this paper (see Fig-
ure 1). The I/O sizes for unaligned direct I/O were increased
by 8 bytes in this experiment as we aimed to observe whether
aligning unaligned direct I/O can yield benefits over buffered
I/O. As expected, the performance of unaligned direct I/O
was lower than aligned direct I/O due to the overhead of ex-
tra memory allocation and copying. However, since it did
not need to interact with page caching and management, it
could outperform buffered I/O when the I/O size was larger
than 4 MiB. Our autoIO mode took advantage of the two I/O
modes and avoided their shortcomings, achieving the best
overall performance over the entire range of I/O sizes.

Figure 6 shows the results for this workload running
BeeGFS. BeeGFS achieved its highest throughput in native
mode. Overall, BeeGFS achieved at most 6.5 GiB/s and

4K 16K 64K 256K 1M 4M 16M 64M 256M
I/O size

0

1000

2000

3000

I/O
 th

ro
ug

hp
ut

 (M
iB

/s
) BIO write − alt-aio

BIO read − alt-aio
DIO write − alt-aio
DIO read − alt-aio
BIO write − directio
BIO read − directio
DIO write − directio
DIO read − directio

Figure 7: Single I/O stream throughput for OrangeFS.

256K 512K 1M 2M
I/O request size

0
2
4
6
8

10
12

W
rit

e
th

ro
ug

hp
ut

 (G
iB

/s
)

BIO − vanilla
DIO − vanilla
autoIO

256K 512K 1M 2M
I/O request size

0
2
4
6
8

10
12

Re
ad

 th
ro

ug
hp

ut
 (G

iB
/s

)

Figure 8: Lustre’s I/O throughput for 16 processes.

6.2 GiB/s for writes and reads, respectively. In comparison,
Lustre’s autoIO achieved 11.1 GiB/s (1.7×) and 11.2 GiB/s
(1.8×) for writes and reads, respectively.

OrangeFS reached the lowest I/O throughput of the three
file systems (see Figure 7) with at most 2.3 GiB/s and
3.3 GiB/s for the respective writes and reads as all client I/Os
were executed synchronously. Thus, the performance of direct
I/O and buffered I/O are nearly the same. The results also indi-
cate that the write performance using the server-side direct I/O
mode (directio) has a slight edge over the alt-aio mode
(buffered I/O). Read performance, on the other hand, achieved
about a 50% higher throughput with alt-aio compared to
direct I/O mode as it re-used data in the page cache.

Multiple I/O stream throughput Next, we ran IOR with
16 processes on a single client, sequentially writing and read-
ing 80 GiB in file-per-process mode for I/O sizes ranging
from 256 KiB to 2 MiB. Each file used only a single stripe
object. The goal of this experiment was to investigate the
trade-off phase of autoIO within the [256 KiB, 1 MiB] range
and whether autoIO selects the best-performing I/O mode.

Figure 8 presents the results. Note that the I/O sizes in the
range [256 KiB, 1 MiB] are larger than the small I/O threshold
but smaller than the large I/O threshold. In this range, the
efficiency of direct I/O and the performance optimizations
due to write-back and read-ahead prefetching for buffered
I/O are in a trade-off phase (see Algorithm 1), with autoIO
almost reaching the best of both modes.

Table 2 lists the I/O statistics for the 512 KiB I/O size,
that is, when autoIO switched to direct I/O due to memory

24 22nd USENIX Conference on File and Storage Technologies USENIX Association

Table 2: I/O statistics for parallel I/O with 16 processes on 1
client node for a 512 KiB I/O size.

I/O Type DIO (mem-
ory pressure)

DIO (cache
overuse)

BIO (default)

Write 0 2,457,520 163,920
Read 45,593 5,993 4,738

Write phase Read phase0
50

100
150
200
250
300

m
dt

es
t-h

ar
d

I/O
 ra

te
(k

IO
PS

)

OrangeFS − alt-aio
OrangeFS − directio
BeeGFS − native
BeeGFS − buffered
Lustre 1mnt − vanilla

Lustre 1mnt − svrWB
Lustre 1mnt − svrWB, XBatch
Lustre 4mnts − vanilla
Lustre 4mnts − svrWB
Lustre 4mnts − svrWB, XBatch

Figure 9: IO500’s mdtest-hard performance for ten nodes.

pressure or cache over-usage. Default represents autoIO
staying in buffered I/O mode. For instance, it shows that most
writes were switched to direct I/O because more data was
cached than allowed (see Section 3 in the page caches. For
reads in autoIO, 45,593 I/Os were performed in direct I/O
due to the memory pressure. In summary, these I/O statis-
tics demonstrate that autoIO considers memory pressure and
access locality to avoid excessive caching to obtain similar
performances among the two I/O modes.

IO500’s mdtest-hard workload To evaluate the I/O im-
provements for many small files, we ran mdtest in the mdtest-
hard configuration of the IO500 “10-node challenge” bench-
mark. mdtest-hard generates many small files (with a size of
3091 bytes) in a single directory. We used 10 clients with 16
processes each, creating, writing, and reading 128,000 files
per rank. Figure 9 shows the mdtest-hard-write and mdtest-
hard-read results.

For Lustre, we compared several configurations: First, we
used either one (1 mnt) or four separate Lustre mount points
(4 mnts). For the latter, each mount point was assigned four
MPI ranks. This technique mitigates locking congestion in
the virtual file system (VFS) during parallel file creation in a
shared directory. We also focused on measuring the impact
of the XBatch and svrWB optimizations. Due to the many
small files in this workload, autoIO and delayed allocation
did not improve performance and are omitted. Finally, we
used Lustre’s Data on MDT (DoM) feature, which improves
small file performance by placing small files only on the MDT
and eliminating additional RPCs to the OSTs.

We also ran these experiments with BeeGFS (native,
buffered) and OrangeFS (alt-aio, directio), albeit only
working on a single mount point. In this configuration and
compared to the vanilla Lustre case (4 mnts), they reached
at most 2% of the performance for writes with OrangeFS

Write phase Read phase0

20

40

60

80

100

IO
50

0
io

r-e
as

y
I/O

 th
ro

ug
hp

ut
 (G

iB
/s

) OrangeFS − alt-aio
OrangeFS − directio
BeeGFS − native
BeeGFS − buffered

BeeGFS DIO − buffered
Lustre − vanilla
Lustre − autoIO

Figure 10: IO500’s IOR-easy performance for ten nodes.

(alt-aio, directio) and 8% with BeeGFS (buffered).
For reads, OrangeFS (alt-aio, directio) and BeeGFS
(buffered) reached at most 9% of Lustre’s performance.

For Lustre, we measured a performance benefit when our
optimizations were enabled. In the write case (4 mnts) and
with svrWB caching, the server sent a reply to the client as
soon as the data was copied to the page cache, resulting in a
10% performance improvement over vanilla Lustre (4 mnts).
With XBatch added, we achieved a 20% increase in perfor-
mance. In the read case, the client’s MPI ranks are offset so
that the readers cannot benefit from the client’s page cache.
However, with svrWB caching enabled, the data is still avail-
able in the server’s page cache, resulting in a 33% improve-
ment over vanilla Lustre. For the 1 mnt cases, the create-write
performance did not benefit from the optimizations due to
VFS locking congestion.

IO500’s IOR-easy workload In this section, we evaluate
the performance of all three file systems using IO500’s IOR-
easy use case with 10 nodes and 16 processes per node. Each
process wrote and read in 16 MiB I/O size requests to a
dedicated file for at least 300 seconds. Further, each file is
striped across eight storage targets in all cases.

Figure 10 illustrates that Lustre - autoIO outperformed
BeeGFS and OrangeFS in all configurations. This is because
Lustre used direct I/O on both clients and servers with such a
large I/O size (as opposed to Lustre - vanilla which used
buffered I/O). BeeGFS used the less efficient buffered I/O on
the servers for this I/O size, even when using direct I/O on
the clients, resulting in inferior performance.

IO500’s IOR-hard workload While IOR-easy represents
a common sequential workload that generally works well for
distributed file systems (and especially autoIO), IOR-hard cre-
ates a cyclic data distribution with an I/O size of 47,008 bytes
that is neither aligned to page or file system block boundaries.
Moreover, all processes access a single shared file with a seg-
ment count of 40,000. Figure 11 presents the results for the
IOR-hard workload.

Generally, this is a challenging workload, particularly when
aligning unaligned direct I/O and because of lock traffic over-
heads. In the case of Lustre and unaligned buffered writes, the
client must first lock the object and read the unaligned page(s)

USENIX Association 22nd USENIX Conference on File and Storage Technologies 25

Write phase Read phase0

5

10

15

20

25

30

IO
50

0
io

r-h
ar

d
I/O

 th
ro

ug
hp

ut
 (G

iB
/s

) OrangeFS − alt-aio
OrangeFS − directio
BeeGFS − native
BeeGFS − buffered
Lustre BIO − vanilla

Lustre DIO − vanilla
Lustre BIO − srvWB
Lustre DIO − srvWB
Lustre BIO − autoIO,
srvWB, delalloc

Figure 11: IO500’s IOR-hard performance for ten nodes.

within the I/O range. Only then can the modified parts of the
page(s) be updated. These unaligned RMW operations on
the pages can severely affect performance. Although buffered
writes can be aggregated in the page cache on a client, the
writes must be contiguous on a single client and must be pro-
tected by the DLM extent lock. As the requested DLM extent
lock must be page-aligned on the client, it may conflict with
lock requests from other similarly page-aligned clients. This
results in unnecessary lock contention when obtaining the
DLM extent lock from the server.

Our I/O statistics revealed that even though buffered I/O
accessed smaller file fragments, it still generated 3.5 million
lock callbacks (35 per I/O segment). This is in contrast to
unaligned direct I/O, which generated no lock callbacks due
to server-side locking. As a result, the I/O throughput in-
creased from 3 GiB/s to 4.2 GiB/s. By using autoIO as well
as enabling svrWB (see Section 3.1) and delalloc (see Sec-
tion 3.3), the write bandwidth reached 13 GiB/s.

Note that with server-side delayed allocation, data only
needs to be written to the page cache without block allocation,
thus reducing the I/O request latency. Moreover, we mea-
sured a reduction in file allocation fragments from 100K to
about 35K, leading to a significant increase in 1 MiB size
writes (100K+) that match our stripe size. Further, we enabled
Lustre’s overstriping feature [19, 38] which can improve I/O
performance by allowing multiple stripes per OST. In this
case, we set the lfs setstripe parameter to use 1,000 stripe
objects, i.e., 125 stripes per OST. Overall, our additions im-
proved performance by 4× compared with vanilla Lustre.

In the case of ior-hard-read and unaligned direct I/O reads,
the I/O throughput increased from 11 GiB/s to 18 GiB/s with
only svrWB caching enabled. This is due to many page cache
read hits on the server that avoid reading from disk. The
results also show that buffered I/O achieved much better read
performance due to client-side read-ahead, reaching 30 GiB/s.
With autoIO, reads achieved similar performances since the
DLM lock for read operations from multiple clients were
compatible. Therefore, the reads were performed in buffered
I/O mode from the start.

Both BeeGFS and OrangeFS do not support unaligned di-
rect I/O and used buffered I/O mode in this case. BeeGFS’s
native mode was slightly faster than Lustre with normal di-

0-32K
32K-64K

64K-100K
100K-1M

1M-2M
2M-100M

100M-1G 1G-1T

File size distribution

0

0.5M

1M

1.5M

2M

fil

es
 p

er
 b

uc
ke

t

61,318 88,864
383,694

1,805,567

15,145 14,292 6,426 293

Figure 12: File size distribution of a large dataset.

0 100 200 300 400 500
Elapsed time (s)

0

10

20

30

40

I/O
 th

ro
ug

hp
ut

 (G
iB

/s
)

BIO − vanilla
autoIO

Figure 13: dcp I/O bandwidth over time for Lustre.

rect I/O. Lustre, on the other hand, with our autoIO and
delalloc, was 2.9× faster than BeeGFS (native) for writes
and 1.7× faster than BeeGFS (buffered) for reads.

4.2 mpiFileUtils/dcp workload
This section examines the I/O performance over time when
copying a large file using mpiFileUtils/dcp [50]. Further, we
copied an 8.8 TiB heterogeneous dataset, containing millions
of files in a directory hierarchy with more than 10K directories
(see the file size distribution in Figure 12), and compared the
bandwidth with the three file systems in different modes. Dcp
segments a large file into fixed-size chunks (4 MiB by default)
and places a new distributed work item for each chunk in a
global queue. The data copies are then distributed across
multiple MPI ranks.

We first ran dcp on 32 nodes (16 processes each), writing
and reading a 4 TiB to and from a single file (on the same file
system) in parallel with a chunk size of 4 MiB. The source
and target file were both striped across 8 OSTs. Figure 13
shows the bandwidth variation over time. Due to the large
chunks that triggered direct I/O in the autoIO algorithm, it
achieved a 3× performance improvement at 20 GiB/s and a
more stable throughput than the buffered I/O performance in
the vanilla case. As expected, the buffered I/O performance
dropped drastically once most memory was consumed by the
page cache. The observed lock callback count was over 77K.
The memory pressure, due to interacting with the kernel’s
page cache, and false lock callbacks all contributed to the
performance drop.

Next, we copied the entire dataset using dcp across 10
nodes (16 processes each) and a chunk size of 4 MiB. In this

26 22nd USENIX Conference on File and Storage Technologies USENIX Association

Various file systems and I/O modes0

5

10

15

20

25

dc
p

da
ta

se
t t

hr
ou

gh
pu

t
(G

iB
/s

)

OrangeFS − alt-aio
OrangeFS − directio
BeeGFS − native
BeeGFS − buffered

Lustre − vanilla
Lustre − autoIO
Lustre − autoIO,
XBatch, srvWB

Figure 14: I/O throughput for copying a dataset with dcp.

Write Read0

5

10

15

20

25

VP
IC

 I/
O

ba
nd

wi
dt

h
(G

iB
/s

)

OrangeFS − alt-aio
OrangeFS − directio
BeeGFS − native

(a) 32 KiB I/O size

Write Read0

50

100

150

200

VP
IC

 I/
O

ba
nd

wi
dt

h
(G

iB
/s

)

BeeGFS − buffered
Lustre − vanilla
Lustre − autoIO,
srvWB, delalloc

(b) 1 MiB I/O size

Figure 15: VPIC-IO bandwidth for various file systems.

case, we set autoIO’s large I/O threshold to 512 KiB, which
is similar to BeeGFS’s default native mode.

Figure 14 presents the performance for the three file
systems with various configurations. Overall, Lustre with
autoIO, XBatch, and svrWB reached 21.7 GiB/s and out-
performed vanilla Lustre by 1.5×, BeeGFS (buffered) by
∼2.6×, and OrangeFS (directio) by 4.3×. These results
match the above IOR-easy conclusions in file system capabili-
ties and demonstrate that our additions benefit both large files
and heterogeneous datasets.

4.3 VPIC-IO workload
VPIC-IO is a macrobenchmark that represents the I/O ker-
nel [12] of a large-scale plasma physics simulation that
can compute, e.g., the reconnection and turbulence in solar
weather. We ran the VPIC-IO kernel via h5bench [33] which
uses an emulated compute time of two seconds for each time
step and writes random particle data. Specifically, each MPI
rank writes many particles into a single shared HDF5 file for
a certain number of time steps, called particle dump.

We ran VPIC-IO on 32 nodes (16 processes each) for 8,192
and 262,144 particles and I/O sizes of 32 KiB and 1 MiB,
respectively. In contiguous storage mode, the HDF5 meta-
data header is separate from the dataset data, with the data
itself stored in one contiguous block in the HDF5 file. This
led to MPI-IO starting not from 0 but at a specific offset
(mpi_off=2104 in our case), which is equal to the size of

Table 3: I/O statistics for VPIC-IO and 32 KiB I/O size.

Count DIO
(large I/O)

DIO (lock
contention)

BIO (small
I/O)

BIO
(default)

AutoIO 0 807,876 1,043 11,324

the metadata header. Since the offset of MPI-IO is not page-
aligned, all I/O operations were unaligned. Figure 15 shows
the write and read bandwidth for OrangeFS, BeeGFS, and
Lustre. Lustre performed best among the three file systems.
With autoIO and a 1 MiB I/O size, for instance, the write
performance reached 3× of Lustre’s vanilla performance
as most I/O operations are switched to direct I/O due to lock
contention.

The I/O statistics for the 32 KiB I/O size workload for
Lustre and autoIO are listed in Table 3. Since the I/O size
was small, I/O was initially handled in buffered I/O mode. Be-
cause I/O locks must be page-aligned in Lustre, this resulted
in significant lock contention on the server, mainly due to
unaligned I/O. This caused the clients to switch 807,876 I/O
requests to direct I/O. 1,043 requests were handled in buffered
I/O due to the small I/O size, and 11,324 were processed with
buffered I/O by default. Finally, we monitored that more than
50% of the 32 KiB I/O requests were merged into a 1 MiB
full stripe using svrWB caching and delalloc.

4.4 Nek5000 turbulent pipe flow workload

The Nek5000 application [20] for computational fluid dynam-
ics (CFD) is a bulk-synchronous application. Its workflows
can define step boundaries when Nek5000 should flush vector
data, vector statistics, or write checkpoints. At each step, all
ranks participate in writing to a single shared file at predefined
offsets, depending on the number of participating processes.

In our experiments, we ran a turbulent pipe flow work-
load [47] on 32 nodes with 16 processes each. Contrary to
VPIC-IO, this workload represents a real application and in-
cludes the computational component as well. In this experi-
ment, Nek5000 executed 1,000 time steps (running for about
10 minutes), writing the corresponding vectors at each step,
accounting for 600 GiB of data in total. Further, we used the
Darshan profiling tool [40] to collect all I/O access sizes of

0-100
101-1K

1K-10K
10K-100K

100K-1M
1M-4M

4M-100M

I/O request size distribution for workload

0

100K

200K

300K

I/O

 o
pe

ra
tio

ns

1,027 0 256 64 64 192 256

58,177
3,003

196,192

126,000

4,007

256,192

256

Read
Write

Figure 16: Nek5000’s turbPipe workload I/O access sizes.

USENIX Association 22nd USENIX Conference on File and Storage Technologies 27

Various file systems and I/O modes0

1000

2000

3000

4000

I/O
 th

ro
ug

hp
ut

 (M
iB

/s
) OrangeFS − alt-aio

OrangeFS − directio
BeeGFS − native
BeeGFS − buffered

Lustre − vanilla
Lustre − autoIO
Lustre − autoIO,
srvWB

Figure 17: Nek5000 bandwidth for various file systems.

Table 4: I/O statistics for Nek5000’s turbPipe workload.

Count DIO
(large I/O)

DIO (lock
contention)

BIO (small
I/O)

BIO
(default)

AutoIO 128,000 132,000 372,281 65

this workload (see Figure 16), revealing a broad profile of
small and large I/O requests.

Figure 17 presents the I/O bandwidth of Nek5000. Lustre
with autoIO and svrWB caching reached 3,428 MiB/s and
outperformed vanilla Lustre by 1.4×, BeeGFS (buffered)
by ∼2.8×, and OrangeFS (directio) by 18.5×. Table 4
shows the I/O statistics using autoIO. The I/O throughput
improved by more than 10% with svrWB caching enabled
due to many small I/O requests. Note that the I/O sizes are
proportional to the number of participating processes. Thus,
with half the number of nodes and processes, e.g., 16 nodes,
the I/O sizes become larger, increasing the effectiveness of
direct I/O. In this case, Lustre with autoIO achieved 60%
higher bandwidth than vanilla Lustre.

5 Related work

This section discusses the related work concerning avoiding
the page cache, locking file system resources for strided I/O,
dynamic I/O path, and I/O mode selection.

Direct access and page cache avoidance When direct I/O
is used to bypass the kernel’s page cache, it considerably im-
pacts performance if used incorrectly while greatly benefiting
large I/O operations [27]. Other approaches were made to di-
rectly access the storage device without involving the kernel
to avoid overhead in the kernel’s I/O stack [30,54]. Aerie [54],
for example, processes metadata within a trusted metadata
server in user space, potentially involving costly RPCs that
can affect scalability.

For non-volatile main memories (NVMM) devices, page
cache overhead due to data copies is unnecessary and can be
directly addressed by the NVMM device. The DAX (direct
access) feature in the Linux kernel uses the DAX interface
to bypass the page cache and exposes the persistent memory
driver [18, 52]. Nevertheless, Simurgh [41] showed that DAX

is often insufficient to expose the NVMM device’s native per-
formance. Other Linux features, e.g., POSIX_FADV_DONTNEED
fadvise(), can reduce the impact of page caching for reads
to discard a data range from the page cache after reads, avoid-
ing page reclaiming during page allocation. A similar idea was
developed for the Linux kernel with the RMF_UNCACHED flag,
where pages are only added to the page cache for the duration
of a read and removed after [16]. However, this approach still
suffers from page management overhead, especially when
using high-speed networks and storage backends.

Our work focuses on storage backends used by distributed
file systems where bypassing the page cache is not always the
best option. Therefore, we showed the importance of dynam-
ically deciding whether to bypass the page cache based on
both the I/O access patterns and the system state.

Cache strategies Numerous caching strategies targeting
distributed file systems were designed over the years, in-
cluding client-side write-back caching [45], I/O caching
middlewares [60], employing machine learning to automate
caching [24], or leveraging existing node-local storage de-
vices [46]. Our implementation does not replace or add to
these existing strategies. Instead, autoIO identifies requests
for which it is more beneficial to bypass the client’s page
cache. AutoIO thus relieves cache pressure and allows cache
strategies to be optimized for the remaining cached data. The
break-even point at which direct I/O becomes useful depends
not only on the given I/O size but also on lock contention,
memory pressure, and overall access locality. AutoIO is the
first transparent client-side algorithm to handle these parame-
ters as part of the parallel file system.

Distributed locking Lock managers are vital to modern
distributed software, e.g., to provide strong consistency in a
distributed file system. In general, concurrent applications
require locking that allows coordinated access to shared re-
sources. Chubby [11] provides a coarse-grained synchroniza-
tion mechanism between servers for reliability and availability
in a loosely coupled distributed system. Lustre, on the other
hand, must protect and coordinate access to shared resources
by many clients in parallel to guarantee that both data and
metadata remain consistent [9]. It further offers applications
a user space API to request locks in advance for specific data
ranges that are not allowed to expand [39]. This allows ap-
plications to avoid false lock conflicts beforehand and works
well in strided I/O access patterns. Nonetheless, modifying
applications to fully control their I/O behavior is not always
feasible, especially when using I/O libraries. Our server-side
adaptive locking can transparently react to lock-congested
files without changing the application.

Dynamic I/O path Applications have widely different
workload statistics that can even suddenly change with new

28 22nd USENIX Conference on File and Storage Technologies USENIX Association

application types entering the HPC space, e.g., in the cases
of data-driven application and AI workloads [10]. To accom-
modate past and future applications, parallel file systems of-
ten adopt the “one-size-fits-all” solution, such as Lustre [9],
GPFS [49], and BeeGFS [25]. However, depending on the
application and storage system, this can reduce I/O perfor-
mance. Dynamic I/O paths can therefore be valuable to fit
more closely to an application’s I/O behavior.

Xiuqiao et al. [34] use a file handle-rich scheme in
PVFS [14] providing a framework to enable a dynamic, fine-
granular, and client-side I/O path section at runtime on a per-
job basis. The balanced placement I/O (BPIO) library [56]
intelligently allocates I/O paths for a parallel file system, bind-
ing a client to a storage target while evenly distributing the
I/O traffic across components to proactively avoid contention
points. To reduce I/O contention in an HPC environment,
TAPP-IO [42] provides dynamic shared data placement mit-
igating resource contention and load-imbalance to improve
application I/O, while iez [55] offers a transparent and adap-
tive control plane for balanced data placement.

Rather than focusing on data placement, we dynamically
select the most suitable I/O path for each I/O request by using
already existing I/O protocols, i.e., direct I/O, which can be
challenging for developers to use directly.

Rigid vs. dynamic I/O mode Buffered I/O is still used as
the default I/O mode in most situations. However, direct I/O
is employed by other distributed file systems as well, e.g.,
BeeGFS and OrangeFS. BeeGFS’s native mode, for instance,
can switch from buffered I/O to direct I/O for I/O requests that
are larger than the tunable tuneFileCacheBufSize parame-
ter (512 KiB by default). Yet, direct I/O triggered on the client
does not affect server behavior, which still relies on buffered
I/O. Conversely, OrangeFS offers the alt-aio (default) and
direct I/O modes that only affect server I/O behavior. The for-
mer uses a thread-based implementation for asynchronous I/O
using pread() and pwrite(). Similarly, an NFS [22] server
can use synchronous or asynchronous I/O (decided before
launch). However, the cache protocols in BeeGFS, OrangeFS,
and NFS are all non-coherent.

In contrast to the above file systems and to the best of our
knowledge, we are the first to implement and evaluate a fully
adaptive and transparent dynamic I/O path on both the file
system client and server, using the most suitable I/O path in
a given situation. In addition, we take file lock contention,
memory pressure, and page cache reuse statistics into account
to decide whether to use buffered I/O or direct I/O (even if
unaligned) with strong consistency.

6 Conclusion and future work

This paper has presented a new approach to transparently
and dynamically switch between buffered I/O and direct I/O
in distributed file systems. We have shown the benefits of
both I/O modes over a range of I/O sizes and have presented
a client-side I/O mode switching algorithm that considers
not only I/O sizes but also file lock contention and memory
constraints. Other features include an adaptive server-side
write-back cache, alignment of unaligned I/O, delayed allo-
cation, and I/O request batching. We have achieved these
features without compromising Lustre’s strong consistency
guarantees. Overall, our experimental results over several
microbenchmarks, marcobenchmarks, and real-world work-
loads have shown that our approach reached up to 3× higher
throughput than original Lustre and outperformed other dis-
tributed file systems by up to 13×.

Our future work covers several directions. First, we plan
to conduct an extensive analysis of the performance impact
of diverse I/O sizes, thresholds, file system configurations,
and application workloads to further optimize and specialize
autoIO’s behavior. Second, we aim to modify autoIO’s deci-
sion thresholds further so that they can automatically adapt
depending on the system state by adopting previous work,
e.g., machine learning-based prediction to optimize I/O band-
width [6,53,58]. Third, we will design a server-side algorithm
to switch between write-back and write-through modes that
further considers the server state.

Acknowledgments and availability

We sincerely thank our shepherd Jinkyu Jeong and the anony-
mous reviewers for helping us improve our paper significantly.

This research was supported by the National Key R&D Pro-
gram of China under Grant No.2022YFB4500304, the Natural
Science Foundation of China under Grant No. 61832020 and
No. 62332021.

This work was partially funded by the European Union’s
Horizon 2020 and the German Ministry of Education and Re-
search (BMBF) under the “Adaptive multi-tier intelligent data
manager for Exascale (ADMIRE)” project; Grant Agreement
number: 956748-ADMIRE-H2020-JTI-EuroHPC-2019-1.

This work was also partially supported by the BMBF under
the “Federated Digital Infrastructures for Research on Uni-
verse and Matter” FIDIUM project; Grant Agreement number:
05P21UMRC1.

References

[1] Ior and mdtest. https://github.com/hpc/ior, 2022.
Accessed on Sep, 19, 2023.

[2] Orangefs. http://www.orangefs.org/, 2023. Ac-
cessed on Sep, 19, 2023.

USENIX Association 22nd USENIX Conference on File and Storage Technologies 29

https://github.com/hpc/ior
http://www.orangefs.org/

[3] FAST ’24: "Combining Buffered I/O and Direct I/O
in Distributed File Systems" - Artifacts Description.
https://doi.org/10.5281/zenodo.10425915, 2024.

[4] Abutalib Aghayev, Sage A. Weil, Michael Kuch-
nik, Mark Nelson, Gregory R. Ganger, and George
Amvrosiadis. File systems unfit as distributed storage
backends: lessons from 10 years of ceph evolution. In
Proceedings of the 27th ACM Symposium on Operat-
ing Systems Principles (SOSP), Huntsville, ON, Canada,
October 27-30, pages 353–369, 2019.

[5] BeeGFS. Client side caching modes. https:
//doc.beegfs.io/latest/advanced_topics/
client_caching.html. Accessed on Sep, 19, 2023.

[6] Babak Behzad, Surendra Byna, Prabhat, and Marc Snir.
Optimizing i/o performance of hpc applications with
autotuning. ACM Transactions on Parallel Computing
(TOPC), 5(4):1–27, 2019.

[7] John Bent, Garth A. Gibson, Gary Grider, Ben McClel-
land, Paul Nowoczynski, James Nunez, Milo Polte, and
Meghan Wingate. PLFS: a checkpoint filesystem for par-
allel applications. In Proceedings of the ACM/IEEE Con-
ference on High Performance Computing (SC), Novem-
ber 14-20, Portland, Oregon, USA, 2009.

[8] Kevin J. Bowers, B. J. Albright, Lilan Yin, B. Bergen,
and Thomas J. T. Kwan. Ultrahigh performance three-
dimensional electromagnetic relativistic kinetic plasma
simulation. Physics of Plasmas, 15(5):055703, 03 2008.

[9] Peter Braam. The lustre storage architecture. CoRR,
abs/1903.01955, 2005.

[10] André Brinkmann, Kathryn M. Mohror, Weikuan Yu,
Philip H. Carns, Toni Cortes, Scott Klasky, Alberto Mi-
randa, Franz-Josef Pfreundt, Robert B. Ross, and Marc-
Andre Vef. Ad hoc file systems for high-performance
computing. J. Comput. Sci. Technol., 35(1):4–26, 2020.

[11] Michael Burrows. The chubby lock service for loosely-
coupled distributed systems. In 7th Symposium on Op-
erating Systems Design and Implementation (OSDI),
November 6-8, Seattle, WA, USA, pages 335–350, 2006.

[12] Suren Byna, Andrew Uselton, D Knaak Prabhat, and
Yun He. Trillion particles, 120,000 cores, and 350 tbs:
Lessons learned from a hero i/o run on hopper. In Cray
user group meeting, 2013.

[13] Mingming Cao, Suparna Bhattacharya, and Ted Ts’o.
Ext4: The next generation of ext2/3 filesystem. In Linux
Storage and Filesystem Workshop, February 12–13,
2007, San Jose, CA, 2007.

[14] Philip H. Carns, Walter B. Ligon III, Robert B. Ross, and
Rajeev Thakur. PVFS: A parallel file system for linux
clusters. In 4th Annual Linux Showcase & Conference
2000, Atlanta, Georgia, USA, October 10-14, 2000.

[15] Fahim Chowdhury, Yue Zhu, Todd Heer, Saul Paredes,
Adam Moody, Robin Goldstone, Kathryn M. Mohror,
and Weikuan Yu. I/O characterization and performance
evaluation of beegfs for deep learning. In Proceed-
ings of the 48th International Conference on Parallel
Processing (ICPP), Kyoto, Japan, August 05-08, pages
80:1–80:10, 2019.

[16] Jonathan Corbet. Buffered i/o without page-cache
thrashing. https://lwn.net/Articles/806980/,
2019. Accessed on Sep, 19, 2023.

[17] OrangeFS Documentation. Orangefs configuration
file. https://docs.orangefs.com/configuration/
admin_ofs_configuration_file/. Accessed on Sep,
19, 2023.

[18] Mingkai Dong and Haibo Chen. Soft updates made sim-
ple and fast on non-volatile memory. In 2017 USENIX
Annual Technical Conference (ATC), Santa Clara, CA,
USA, July 12-14, pages 719–731, 2017.

[19] Patrick Farrell. Overstriping: Extracting
maximum shared file performance. https:
//wiki.lustre.org/images/b/b3/LUG2019-
Lustre_Overstriping_Shared_Write_Performance-
Farrell.pdf, 2019. Accessed on Sep, 19, 2023.

[20] Paul Fischer, James Lottes, and Henry Tufo. Nek5000.
Technical report, Argonne National Lab.(ANL), Ar-
gonne, IL (United States), 2007.

[21] Sangwook Shane Hahn, Sungjin Lee, Inhyuk Yee,
Donguk Ryu, and Jihong Kim. Fasttrack: Foreground
app-aware I/O management for improving user experi-
ence of android smartphones. In 2018 USENIX Annual
Technical Conference (ATC), Boston, MA, USA, July 11-
13, pages 15–28, 2018.

[22] Thomas Haynes. Network file system (NFS) version 4
minor version 2 protocol. RFC, 7862, 2016.

[23] Michael Hennecke. Understanding daos storage perfor-
mance scalability. In Proceedings of the HPC Asia 2023
Workshops, pages 1–14, 2023.

[24] Herodotos Herodotou. Autocache: Employing machine
learning to automate caching in distributed file systems.
In 35th IEEE International Conference on Data En-
gineering Workshops, ICDE Workshops 2019, Macao,
China, April 8-12, 2019, pages 133–139. IEEE, 2019.

30 22nd USENIX Conference on File and Storage Technologies USENIX Association

https://doi.org/10.5281/zenodo.10425915
https://doc.beegfs.io/latest/advanced_topics/client_caching.html
https://doc.beegfs.io/latest/advanced_topics/client_caching.html
https://doc.beegfs.io/latest/advanced_topics/client_caching.html
https://lwn.net/Articles/806980/
https://docs.orangefs.com/configuration/admin_ofs_configuration_file/
https://docs.orangefs.com/configuration/admin_ofs_configuration_file/
https://wiki.lustre.org/images/b/b3/LUG2019-Lustre_Overstriping_Shared_Write_Performance-Farrell.pdf
https://wiki.lustre.org/images/b/b3/LUG2019-Lustre_Overstriping_Shared_Write_Performance-Farrell.pdf
https://wiki.lustre.org/images/b/b3/LUG2019-Lustre_Overstriping_Shared_Write_Performance-Farrell.pdf
https://wiki.lustre.org/images/b/b3/LUG2019-Lustre_Overstriping_Shared_Write_Performance-Farrell.pdf

[25] Frank Herold, Sven Breuner, and Jan Heich-
ler. An introduction to beegfs. https:
//www.beegfs.io/docs/whitepapers/
Introduction_to_BeeGFS_by_ThinkParQ.pdf,
2014. Accessed on Sep, 19, 2023.

[26] IBM. Considerations for the use of direct i/o (o_direct).
https://www.ibm.com/docs/en/storage-scale/
5.1.8?topic=applications-considerations-use-
direct-io-o-direct, 2023. Accessed on Sep, 19,
2023.

[27] Russell Joyce and Neil C. Audsley. Exploring storage
bottlenecks in linux-based embedded systems. SIGBED
Rev., 13(1):54–59, 2016.

[28] Linux Kernel. Linux kernel profiling with perf. https:
//perf.wiki.kernel.org/index.php/Tutorial. Ac-
cessed on Sep, 19, 2023.

[29] Dohyun Kim, Kwangwon Min, Joontaek Oh, and Youjip
Won. Scalexfs: Getting scalability of XFS back on the
ring. In 20th USENIX Conference on File and Storage
Technologies (FAST), Santa Clara, CA, USA, February
22-24, pages 329–344, 2022.

[30] Hyeong-Jun Kim, Young-Sik Lee, and Jin-Soo
Kim. Nvmedirect: A user-space I/O framework for
application-specific optimization on nvme ssds. In 8th
USENIX Workshop on Hot Topics in Storage and File
Systems (HotStorage), Denver, CO, USA, June 20-21,
2016.

[31] Nancy P. Kronenberg, Henry M. Levy, and William D.
Strecker. Vaxclusters: A closely-coupled distributed
system. ACM Trans. Comput. Syst., 4(2):130–146, 1986.

[32] Julian M. Kunkel, John Bent, Jay Lofstead, and
George S. Markomanolis. White paper: Establishing
the io-500 benchmark. Technical report, The Virtual
Institute for I/O, 2017.

[33] Tonglin Li, Suren Byna, Quincey Koziol, Houjun Tang,
Jean Luca Bez, and Qiao Kang. h5bench: Hdf5 i/o ker-
nel suite for exercising hpc i/o patterns. In Proceedings
of Cray User Group Meeting, CUG, volume 2021, 2021.

[34] Xiuqiao Li, Limin Xiao, Meikang Qiu, Bin Dong, and
Li Ruan. Enabling dynamic file I/O path selection at
runtime for parallel file system. The Journal of Super-
computing, 68(2):996–1021, 2014.

[35] Yu Liang, Jinheng Li, Rachata Ausavarungnirun, Ri-
wei Pan, Liang Shi, Tei-Wei Kuo, and Chun Jason Xue.
Acclaim: Adaptive memory reclaim to improve user ex-
perience in android systems. In 2020 USENIX Annual
Technical Conference (ATC), July 15-17, pages 897–910,
2020.

[36] Linux man-pages 6.04. open(2) — linux manual
page. https://man7.org/linux/man-pages/man2/
open.2.html, 2023. Accessed on Sep, 19, 2023.

[37] Ajay Mohindra and Murthy V. Devarakonda. Dis-
tributed token management in calypso file system. In
Proceedings of the Sixth IEEE Symposium on Parallel
and Distributed Processing (SPDP), Dallas, Texas, USA,
October 26-29, pages 290–297, 1994.

[38] Michael Moore. Exploring lustre overstriping for shared
file performance on disk and flash. 2019.

[39] Michael Moore, Patrick Farrell, and Bob Cernohous.
Lustre lockahead: Early experience and performance us-
ing optimized locking. Concurrency and Computation:
Practice and Experience, 30(1), 2018.

[40] Nafiseh Moti, André Brinkmann, Marc-André Vef,
Philippe Deniel, Jesús Carretero, Philip H. Carns, Jean-
Thomas Acquaviva, and Reza Salkhordeh. The I/O
trace initiative: Building a collaborative I/O archive to
advance HPC. In Proceedings of the SC ’23 Workshops
of The International Conference on High Performance
Computing, Network, Storage, and Analysis, SC-W 2023,
Denver, CO, USA, November 12-17, 2023, pages 1216–
1222. ACM, 2023.

[41] Nafiseh Moti, Frederic Schimmelpfennig, Reza
Salkhordeh, David Klopp, Toni Cortes, Ulrich Rückert,
and André Brinkmann. Simurgh: a fully decentralized
and secure NVMM user space file system. In Interna-
tional Conference for High Performance Computing,
Networking, Storage and Analysis, SC 2021, St. Louis,
Missouri, USA, November 14-19, 2021, page 46. ACM,
2021.

[42] Sarah Neuwirth, Feiyi Wang, Sarp Oral, and Ulrich Brün-
ing. Automatic and transparent resource contention
mitigation for improving large-scale parallel file system
performance. In 23rd IEEE International Conference on
Parallel and Distributed Systems (ICPADS), Shenzhen,
China, December 15-17, pages 604–613, 2017.

[43] Sarp Oral, Feiyi Wang, David Dillow, Galen M Shipman,
Ross G Miller, and Oleg Drokin. Efficient object storage
journaling in a distributed parallel file system. In FAST,
volume 10, pages 1–12, 2010.

[44] Yoshihiro Oyama, Shun Ishiguro, Jun Murakami, Shin
Sasaki, Ryo Matsumiya, and Osamu Tatebe. Reduction
of operating system jitter caused by page reclaim. In
Proceedings of the 4th International Workshop on Run-
time and Operating Systems for Supercomputers (ROSS),
Munich, Germany, June 10, pages 9:1–9:8, 2014.

USENIX Association 22nd USENIX Conference on File and Storage Technologies 31

https://www.beegfs.io/docs/whitepapers/Introduction_to_BeeGFS_by_ThinkParQ.pdf
https://www.beegfs.io/docs/whitepapers/Introduction_to_BeeGFS_by_ThinkParQ.pdf
https://www.beegfs.io/docs/whitepapers/Introduction_to_BeeGFS_by_ThinkParQ.pdf
https://www.ibm.com/docs/en/storage-scale/5.1.8?topic=applications-considerations-use-direct-io-o-direct
https://www.ibm.com/docs/en/storage-scale/5.1.8?topic=applications-considerations-use-direct-io-o-direct
https://www.ibm.com/docs/en/storage-scale/5.1.8?topic=applications-considerations-use-direct-io-o-direct
https://perf.wiki.kernel.org/index.php/Tutorial
https://perf.wiki.kernel.org/index.php/Tutorial
https://man7.org/linux/man-pages/man2/open.2.html
https://man7.org/linux/man-pages/man2/open.2.html

[45] Yingjin Qian, Wen Cheng, Lingfang Zeng, Marc-
André Vef, Oleg Drokin, Andreas Dilger, Shuichi Ihara,
Wusheng Zhang, Yang Wang, and André Brinkmann.
Metawbc: Posix-compliant metadata write-back caching
for distributed file systems. In Proceedings of the Inter-
national Conference for High Performance Computing,
Networking, Storage and Analysis (SC), Dallas, TX, USA,
November 13-18, pages 56:1–56:20, 2022.

[46] Yingjin Qian, Xi Li, Shuichi Ihara, Andreas Dilger, Car-
los Thomaz, Shilong Wang, Wen Cheng, Chunyan Li,
Lingfang Zeng, Fang Wang, Dan Feng, Tim Süß, and
André Brinkmann. LPCC: hierarchical persistent client
caching for lustre. In Proceedings of the International
Conference for High Performance Computing, Network-
ing, Storage and Analysis (SC), Denver, Colorado, USA,
November 17-19, pages 88:1–88:14, 2019.

[47] Saleh Rezaeiravesh, Ricardo Vinuesa, and Philipp
Schlatter. A statistics toolbox for turbulent pipe flow in
nek5000. Technical report, KTH, Fluid Mechanics and
Engineering Acoustics, 2019.

[48] Ohad Rodeh, Josef Bacik, and Chris Mason. Btrfs: The
linux b-tree filesystem. ACM Transactions on Storage
(TOS), 9(3):1–32, 2013.

[49] Frank B. Schmuck and Roger L. Haskin. GPFS: A
shared-disk file system for large computing clusters.
In Proceedings of the 2002 Conference on File and
Storage Technologies (FAST), January 28-30, Monterey,
California, USA, pages 231–244, 2002.

[50] Danielle Sikich, Giuseppe Di Natale, Matthew LeGen-
dre, and Adam Moody. mpifileutils: A parallel and
distributed toolset for managing large datasets. Techni-
cal report, Lawrence Livermore National Lab (LLNL),
Livermore, CA, USA, 2017.

[51] Chenlei Tang, Jiguang Wan, Yifeng Zhu, Zhiyuan Liu,
Peng Xu, Fei Wu, and Changsheng Xie. Rafs: A raid-
aware file system to reduce the parity update overhead
for ssd raid. In 2019 Design, Automation & Test in
Europe Conference & Exhibition (DATE), pages 1373–
1378. IEEE, 2019.

[52] Nick-Andian Tehrany. Evaluating Performance Char-
acteristics of the PMDK Persistent Memory Software
Stack. PhD thesis, Vrije Universiteit Amsterdam, 2020.

[53] Abdul Jabbar Saeed Tipu. Hpc io and seismic data
performance optimization using anns prediction based
auto-tuning. 2023.

[54] Haris Volos, Sanketh Nalli, Sankaralingam Panneersel-
vam, Venkatanathan Varadarajan, Prashant Saxena, and
Michael M. Swift. Aerie: flexible file-system interfaces

to storage-class memory. In Ninth Eurosys Conference
(EuroSys), Amsterdam, The Netherlands, April 13-16,
pages 14:1–14:14, 2014.

[55] Bharti Wadhwa, Arnab Kumar Paul, Sarah Neuwirth,
Feiyi Wang, Sarp Oral, Ali Raza Butt, Jon Bernard, and
Kirk W. Cameron. iez: Resource contention aware load
balancing for large-scale parallel file systems. In 2019
IEEE International Parallel and Distributed Processing
Symposium (IPDPS), Rio de Janeiro, Brazil, May 20-24,
pages 610–620, 2019.

[56] Feiyi Wang, Sarp Oral, Saurabh Gupta, Devesh Tiwari,
and Sudharshan S. Vazhkudai. Improving large-scale
storage system performance via topology-aware and
balanced data placement. In 20th IEEE International
Conference on Parallel and Distributed Systems (IC-
PADS), Hsinchu, Taiwan, December 16-19, pages 656–
663, 2014.

[57] Sage A. Weil, Scott A. Brandt, Ethan L. Miller, Darrell
D. E. Long, and Carlos Maltzahn. Ceph: A scalable,
high-performance distributed file system. In 7th Sympo-
sium on Operating Systems Design and Implementation
(OSDI), November 6-8, Seattle, WA, USA, pages 307–
320, 2006.

[58] Li Xu, Thomas Lux, Tyler Chang, Bo Li, Yili Hong,
Layne Watson, Ali Butt, Danfeng Yao, and Kirk
Cameron. Prediction of high-performance computing
input/output variability and its application to optimiza-
tion for system configurations. Quality Engineering,
33(2):318–334, 2021.

[59] yongjoon. Rate limiter — sliding window counter.
https://medium.com/@avocadi/rate-limiter-
sliding-window-counter-7ec08dbe21d6, 2022.
Accessed on Sep, 19, 2023.

[60] Dongfang Zhao, Kan Qiao, and Ioan Raicu. Hycache+:
Towards scalable high-performance caching middleware
for parallel file systems. In 14th IEEE/ACM Interna-
tional Symposium on Cluster, Cloud and Grid Comput-
ing, CCGrid 2014, Chicago, IL, USA, May 26-29, 2014,
pages 267–276. IEEE Computer Society, 2014.

32 22nd USENIX Conference on File and Storage Technologies USENIX Association

https://medium.com/@avocadi/rate-limiter-sliding-window-counter-7ec08dbe21d6
https://medium.com/@avocadi/rate-limiter-sliding-window-counter-7ec08dbe21d6

A Artifact Appendix

Abstract

The Artifacts Description (AD) of this paper [3] provides
detailed documentation of the used configurations for all file
systems and experiments.

Scope

The AD has been made available. It includes detailed refer-
ence instructions to set up, deploy, and configure each used
file system and each presented experiment. Please note that
these artifacts are not functional due to the complexity of
fully configuring and testing a Lustre installation automati-
cally. However, the AD makes all instructions available for
reference, making it possible to run similar experiments in
similar configurations as provided in the paper.

Contents

The AD is sectioned into three main parts: Prerequisite infor-
mation, e.g., software dependencies, installing the three used
file systems, i.e., Lustre with autoIO, BeeGFS, and OrangeFS,
and the description of all experimental workloads.

Prerequisites We describe the experimental setup and the
required software dependencies for CentOS 8.4. Further, we
provide requirements for setting up the cluster environment
with the corresponding environment variables.

File system installation For Lustre, we provide detailed
documentation of installing and configuring a Lustre parallel
file system from scratch. We present information on Linux
InfiniBand drivers (OFED) and provide reference Linux Bash
scripts for installing and deploying the Lustre clients and
servers (including autoIO). Moreover, we link the correspond-
ing Git branches and pull requests to Whamcloud’s issue
and project tracking software (JIRA). These include all code
changes from this paper and further serve as a reference for
the status of each feature (eight in total).

Moreover, we provide the reference Bash scripts for in-
stalling the BeeGFS and OrangeFS clients and servers from
scratch.

Experimental workloads We present the reference Bash
scripts for each experiment and figure used in the paper. This
includes setting file system configurations, e.g., enabling our
server-side write-back, installing and running the evaluated
applications. We further include a dedicated document for
each experiment type in addition to the corresponding scripts.

Hosting
The AD is hosted on Zenodo and GitHub. GitHub supple-
ments the long-term Zenodo repository and offers easy access
to the artifacts’ documentation and scripts. The corresponding
versions are mirrored between Github and Zenodo, i.e., v1 on
Zenodo mirrors v1.0 on GitHub. Please note that a DOI [3]
via Zenodo is available for referencing these artifacts.

USENIX Association 22nd USENIX Conference on File and Storage Technologies 33

	Introduction
	Background and motivation
	Buffered I/O vs. direct I/O
	Impact of page caching and data copies on buffered I/O
	I/O locking and contention in Lustre

	Design and implementation
	Combining buffered I/O and direct I/O
	Unaligned direct I/O
	Efficient RAID I/O via delayed allocation

	Evaluation
	Microbenchmarks
	mpiFileUtils/dcp workload
	VPIC-IO workload
	Nek5000 turbulent pipe flow workload

	Related work
	Conclusion and future work
	Artifact Appendix

