
This paper is included in the Proceedings of the
22nd USENIX Conference on File and Storage Technologies.

February 27–29, 2024 • Santa Clara, CA, USA
978-1-939133-38-0

Open access to the Proceedings
of the 22nd USENIX Conference on

File and Storage Technologies
is sponsored by

Optimizing File Systems on Heterogeneous Memory
by Integrating DRAM Cache

with Virtual Memory Management
Yubo Liu, Yuxin Ren, Mingrui Liu, Hongbo Li, Hanjun Guo, Xie Miao,

and Xinwei Hu, Huawei Technologies Co., Ltd.;
Haibo Chen, Huawei Technologies Co., Ltd. and Shanghai Jiao Tong University

https://www.usenix.org/conference/fast24/presentation/liu-yubo

Optimizing File Systems on Heterogeneous Memory by Integrating DRAM Cache

with Virtual Memory Management

Yubo Liu1, Yuxin Ren1, Mingrui Liu1, Hongbo Li1, Hanjun Guo1, Xie Miao1,

Xinwei Hu1, and Haibo Chen1,2

1Huawei Technologies Co., Ltd. 2Shanghai Jiao Tong University

Abstract

This paper revisits the usage of DRAM cache in DRAM-PM

heterogeneous memory file systems. With a comprehensive

analysis of existing file systems with cache-based and DAX-

based designs, we show that both suffer from suboptimal

performance due to excessive data movement. To this end,

this paper presents a cache management layer atop hetero-

geneous memory, namely FLAC, which integrates DRAM

cache with virtual memory management. FLAC is further in-

corporated with two techniques called zero-copy caching and

parallel-optimized cache management, which facilitates fast

data transfer between file systems and applications as well

as efficient data synchronization/migration between DRAM

and PM. We further design and implement a library file sys-

tem upon FLAC, called FlacFS. Micro benchmarks show that

FlacFS provides up to two orders of magnitude performance

improvement over existing file systems in file read/write. With

real-world applications, FlacFS achieves up to 10.6 and 9.9

times performance speedup over state-of-the-art DAX-based

and cache-based file systems, respectively.

1 Introduction

Emerging persistent memory (e.g., 3DXPoint [14, 26] and

CXL-based SSD [18]) promise fast and byte-addressable ac-

cesses to large volume of data. This brings a trend of de-

ploying heterogeneous memory of a volatile memory layer

(DRAM) and a persistent memory layer (PM). However, it

raises a natural question: how to maximize performance atop

such a heterogeneous architecture?

State-of-the-art file systems for heterogeneous memory can

mainly fall into two categories: using DRAM as a cache for

PM (DRAM cache) or providing direct access (DAX) to PM.

Caching pages in DRAM, such as the VFS page cache, is a

common design in traditional file systems (e.g., EXT4 and

XFS [44]) to bridge the performance gap between fast DRAM

and slow persistent storage devices (e.g., HDD and SSD).

However, many previous studies [10] show that DRAM cache

incurs significant overhead under the fast, all-memory archi-

tecture. Therefore, most existing systems (e.g., NOVA [51],

SplitFS [20], and ctFS [31]) resort to DAX , which bypasses

the DRAM cache and performs I/Os on PM directly.

However, DAX is still suboptimal for heterogeneous mem-

ory file systems. First, the performance gap between PM and

DRAM cannot be ignored in the present and future (the PM

latency may range from hundreds to thousands of nanosec-

onds [18], which is much higher than DRAM). Such high

PM latency easily limits the file system performance. Second,

DAX potentially loses the performance benefit of data local-

ity provided by the DRAM cache. According to our analysis,

the performance of DAX-based systems is inferior to that of

DRAM cache systems in scenarios with high concurrency

and strong data locality, even though the VFS page cache

framework introduces high software overhead. Last but not

least, instant persistence is the best scene of DAX; but it is an

overkill in many real-world scenarios [49].

To this end, this paper revisits the usage of DRAM cache in

heterogeneous memory architecture. According to our quanti-

tative analysis, we summarize two challenges of building an

efficient cache framework on heterogeneous memory:

Challenge 1. Data transfer overhead between application

buffer and DRAM cache is high. Transferring data between

the application and DRAM cache is the most critical fast-

path operation; but existing cache frameworks use memory

copy that introduces substantial performance overhead. Our

experiments show that data copying occupies up to 84% of

the overhead in the file system with the VFS page cache.

Challenge 2. The impact of “cache tax” is significant. In

addition to data transfer, existing cache frameworks spend lots

of effort to synchronize (flushing dirty data) and migrate data

across DRAM cache and PM (moving data into/out of cache).

Currently, such operations are implemented in a synchronous

and sequential way and significantly increase performance

penalty (more than 30%).

We argue that the main reason is that existing cache frame-

works (e.g., VFS page cache) are built upon the virtual mem-

ory subsystem, which makes it difficult to avoid the cache-

application data copying and hide the overhead of cross-layer

data synchronization/migration. Hence, this paper advocates

an integration of DRAM page cache into virtual memory

management of operating systems and proposes FLAC (FLAt

Cache), a novel cache framework for heterogeneous memory.

FLAC provides a single-level address space of heterogeneous

memory. File system developers can leverage the exposed

interfaces to the data store on FLAC to enjoy the efficient

DRAM cache on data I/O paths (other modules of file system

are independent of FLAC). FLAC further builds two novel

techniques to deal with the two challenges outlined above:

USENIX Association 22nd USENIX Conference on File and Storage Technologies 71

1) Zero-Copy Caching. FLAC proposes the heterogeneous

page table that unifies heterogeneous memory into a single

level. Virtual pages within FLAC can be dynamically mapped

to physical pages on DRAM or PM according to their states

(i.e., cached or evicted). We then design the page attaching

mechanism, a set of tightly coupled management operations

on the heterogeneous page table, which optimize the data

transfer between applications and cache in a zero-copy man-

ner. The core idea of page attaching is to map pages between

source and destination addresses with enforced copy on write

(COW). As a result, data read/write to/from FLAC is executed

by page attaching to realize efficient and safe data transfer.

While page remapping optimizations are also used in some

systems to reduce the overhead of data copy [9, 30, 38, 40],

simply adopting this idea in the file system cache faces some

unique challenges. First, FLAC addresses the side-effects of

page unaligned and expensive COW page fault by the sliding

window buffer and batch faulting/detaching, respectively. Sec-

ond, the zero-copy caching makes the page have multiple ver-

sions, and it requires FLAC to have a new cache management

mechanism to ensure data consistency and high concurrency.

2) Parallel-Optimized Cache Management. The cache man-

agement mechanism of FLAC must ensure a low “cache tax”

impact. Leveraging the multi-version feature brought by the

zero-copy caching, FLAC fully exploits the parallelism of data

synchronization and migration with critical I/O paths. FLAC

proposes the 2-Phase flushing that allows the expensive persis-

tence phase in dirty data synchronization to be lock-free, and

proposes the asynchronous cache miss handling to amortize

the overhead of loading data to cache in the background.

To demonstrate the effectiveness of FLAC, we design and

implement FlacFS, a file system for building its data store on

FLAC. Evaluation shows that FlacFS provides a performance

increase of more than two orders of magnitude over state-of-

the-art DAX-based and cache-based file systems in the micro

benchmarks. With real-world applications, FlacFS achieves

up to 10.6 and 9.9 times performance speedup over DAX-

based and cache-based systems, respectively.

The contributions of this paper include:

• It quantitatively analyses the cache and DAX frameworks

and summarizes the key challenges of cache framework

design on heterogeneous memory.

• It designs and implements FLAC, a novel cache framework

for heterogeneous memory file systems that including the

techniques of zero-copy caching and parallel-optimized

cache management.

• It implements a file system (FlacFS) based on FLAC, and

demonstrate the benefits via micro/macro benchmarks and

real-world applications.

The rest of this paper is organized as follows: Section 2

introduces the background and motivation; Section 3 presents

the key designs of FLAC; Section 4 introduces the imple-

mentation of FlacFS; Section 5 discusses the limitations

 0

 0.7

 1.4

 2.1

 2.8

 3.5

EXT4-nf EXT4-f EXT4-dax NOVA

E
x
e

c
u

ti
o

n
 T

im
e

 (
s
)

(a) Random Write

 0

 0.7

 1.4

 2.1

 2.8

 3.5

EXT4 EXT4-dax NOVA EXT4-cc

(b) Random Read

Copy

Others

Figure 1: Traditional Cache vs. DAX. “-f/-nf”: with/without back-

ground flushing; “-cc”: cold cache.

and challenges; Section 6 shows the detailed evaluation of

FLAC/FlacFS; Section 7 concludes the paper.

2 Background and Motivation

2.1 Heterogeneous Memory

With the emergence of new persistent storage media (e.g.,

3DXPoint [14], CXL-based SSD [18, 23, 55, 56]), the stor-

age architecture evolves from memory-block to all-memory.

A typical heterogeneous memory architecture consists of a

fast, volatile, small capacity layer (DRAM), and a slow, non-

volatile, large capacity layer (PM). Different types of memo-

ries present heterogeneity in multiple aspects [33]. 1) Latency

Gap. The latency of DRAM is about tens of nanoseconds,

while the latency of low-level memory range from hundreds

to thousands of nanoseconds [18,34]. 2) Bandwidth Gap. The

bandwidth of DRAM can reach tens of GB, while it is only

about a few GB of existing PM [52]. 3) Concurrency Gap.

The PM has lower concurrency than the DRAM [11, 20]. For

example, existing PM hardware based on 3DXPoint is hard

to scale beyond 4 concurrent [16] in the single channel. In

summary, the performance gap between DRAM and PM and

between different types of PMs cannot be ignored, which

make it challenging to design efficient storage systems for

heterogeneous memory.

2.2 Direct Access (DAX) vs. Cache

Heterogeneous memory raises an important question for file

system designers: what kind of storage framework can take

advantage of different memory devices? There are two typ-

ical storage frameworks are used on heterogeneous mem-

ory: 1) traditional page cache based on the DRAM-block

device architecture (i.e., VFS page cache) and 2) direct access

(DAX). We quantitatively analyze three typical file systems

with the VFS page cache (EXT4) and DAX (EXT4-DAX [7],

NOVA [51]) by performing random writes/reads on a 10GB

file with 2MB I/O (the testbed is introduced in §6). Three

important observations are found from our experiments:

Observation 1: Existing DAX and cache frameworks are sub-

optimal, and DRAM cache still has great value for heteroge-

neous memory file systems.

The VFS page cache is a typical cache framework that is

designed to bridge the performance gap between DRAM and

72 22nd USENIX Conference on File and Storage Technologies USENIX Association

block devices. However, the VFS page cache has a heavy soft-

ware stack, which makes it unsuitable for the heterogeneous

memory structure. Therefore, many heterogeneous memory

file systems proposed in the past decade resort to the DAX

method, i.e., bypassing the DRAM cache in the data I/O path.

However, we think DRAM cache still has a lot of value in

heterogeneous memory file systems. First, the performance

gap between PM and DRAM cannot be ignored. Figure 1

shows that the VFS page cache still has better performance

than DAX in some cases (e.g., read). Second, taking advan-

tage of data locality is an effective method of performance

optimization, but DAX misses this opportunity. Third, POSIX

is still a mainstream semantics and it can tolerate cached I/Os,

which makes instant persistence in DAX an overkill in many

real-world scenarios [49].

Observation 2: Data transfer overhead between the file sys-

tem and the application buffer is significant but often over-

looked, and it is one of the keys to unlocking the potential of

the cache in heterogeneous memory.

Data I/Os (file read/write) need to transfer data between

the application buffer and the storage system (cache space

or persistent data space). Memory copy is the mainstream

method to transfer data, but in our experiment, it takes up

more than 23% and 96% of the total overhead in cache-based

and DAX-based file systems, respectively. In particular, the

performance bottleneck of data copy between cache and appli-

cation is obvious in heterogeneous memory systems since the

latency of PM is much lower than traditional block devices.

Observation 3: The “Cache Tax” in traditional cache frame-

works is heavy, and it mainly includes the overhead of data

synchronization and migration.

Caching increases storage levels and brings extra data man-

agement overhead. Figure 1 shows that the “cache tax” (de-

noted as other) takes up to 77% of the execution time in EXT4.

Figure 2 shows the core processes of the typical DRAM page

cache, which reveals the composition of the “cache tax”. From

our experiments, the data synchronization (background dirty

flushing) and data migration (cache miss handling) lead to

37% and 65% performance declines, respectively.

2.3 Motivation

According to the previous analysis, an efficient heterogeneous

memory cache framework needs to meet two requirements:

1) low application-cache transfer overhead and 2) low “cache

tax” impact. However, exiting cache frameworks (e.g., VFS

page cache) do not fully exploit the potential of DRAM cache

in heterogeneous memory systems. They are difficult to avoid

the data copy between the DRAM cache and the application

buffer. At the same time, they are difficult to transparently

overlap the critical I/O paths and the cross-layer data synchro-

nization/migration. The motivation of this work is to integrate

the DRAM page cache with the virtual memory management

subsystem, and it brings two key principles for our design.

Lookup PM

index

Load page to

cache

App-Cache

page copy

Cache

hit

Wait for dirty

page flushing

Cache

hit

Build cache

index

Lock Persist to PM Unlock

read

write

N

Y

N

Y

Y

Can be eliminated

in FLAC

Can be asynchronous

in FLAC

N

Flushing

Thread

Flushing

Figure 2: Typical Diagram of Page Cache.

Principle 1: Optimizing data transfer between the cache

and the application by zero-copy. Traditional DRAM cache

frameworks simply take advantage of the performance advan-

tages of DRAM, but ignore another important advantage of

DRAM cache: it is homogeneous with the application runtime.

By co-designing the DRAM cache and the virtual memory

subsystem, the data copy during application-cache transfer

can be avoided by page mapping. FLAC proposes the zero-

copy caching technique to avoid application-cache data copy

and redundant indexes (red squares in Figure 2).

Principle 2: Reducing the impact of “cache tax” by hiding

the data synchronization/migration overhead. The “cache tax”

is difficult to eliminate, but their impact on the critical I/O

paths can be reduced by improving the parallelism between

the data synchronization/migration and the front-end I/Os.

FLAC proposes the parallel-optimized cache management

mechanism to amortize the data synchronization/migration

overhead in the background (blue squares in Figure 2).

3 FLAC Design

3.1 Overview

This work proposes FLAC, a FLAt Cache framework inte-

grated with the virtual memory subsystem to deeply explore

the potential of cache for heterogeneous memory systems. As

shown in Figure 3, FLAC maintains a range of contiguous vir-

tual memory addresses, called FLAC space. The size of FLAC

space is equal to the usable PM space, and it provides the data

storage area with the built-in DRAM page cache for the het-

erogeneous memory file system. The FLAC space is indexed

by the heterogeneous page table, which makes page physi-

cal locations transparent and exposes a single-level memory

space to file system developers. Data is transferred between

the application and the FLAC space with the zero-copy ap-

proach (§3.2), and synchronized/migrated between DRAM

and PM with the parallel-optimized mechanism (§3.3). Ta-

ble 1 shows the main APIs of FLAC.

init_flac: This API is used to initialize and bind the

given PM to the FLAC space for file data storage. If the FLAC

space has already been created on the PM, it rebuilds the

FLAC space from the last consistent state.

zcopy_from/to_flac: The file system based on FLAC

internally uses these two APIs to transfer data and support

USENIX Association 22nd USENIX Conference on File and Storage Technologies 73

P0v1 P1v1 P0v0 P1v0 P2v0 P3v0

Persistent

PTEs

Log

Area
P0v0 P1v0 P2v0

D
R

A
M

P
M

Virtual

Pages

Physical

Pages

Write Buf in APP0
(Page Table in Userspace)

Read Buf in APP1
(Page Table in Userspace)

FLAC Space
(Heterogeneous Page Table in Kernel)

Zero-Copy Write Zero-Copy Read

2-Phase

flushing

Async cache

miss handling

……

Data Mgt. Meta Mgt.
File

System

write() read()

zcopy_to_flac() zcopy_from_flac()

Figure 3: Architecture of FLAC. File system runs the data manage-

ment on top of FLAC. Application accesses data by file read/write,

and they are converted to the zero-copy transfer APIs in FLAC. Data

is stored in a flat memory address, which is transparent to the physi-

cal locations of the pages through heterogeneous page table.

file read/write operations, which are similar to the action of

copy_to/from_user in traditional kernel file systems.

pflush_add/commit: This pair of APIs are used to ex-

plicitly flush dirty data from DRAM to PM, and they give

developers the flexibility to customize flushing policies. Dirty

pages are added to a flush handle (pflush_add) and flushed

to PM in a transaction (pflush_commit). File systems use

the fs_metalog parameter to ensure the consistency of FS-level

metadata during data flushing.

pfree: This API is used to atomically reclaim a range of

FLAC space. It invalidates the page on the DRAM/PM and

removes the page table mapping.

Architecture and Usage. FLAC runs under the file system

as a development framework. Developers of heterogeneous

memory file systems customize the file data management on

the FLAC space (e.g., file read/write logic and data flushing

policy) by encapsulating the APIs above, and applications ac-

cess the data on the FLAC space by normal file interfaces. The

other modules of the file system (e.g., metadata management)

are independent to FLAC, which can be flexibly designed and

implemented. FLAC’s APIs can be called by ioctls or kernel

functions, which allows developers to flexibly implement file

systems in the userspace or kernel.

3.2 Zero-Copy Caching

3.2.1 Heterogeneous Page Table

As Figure 3 shows, FLAC uses the heterogeneous page ta-

ble, a customized sub-level table (including one or multiple

PUDs) of the kernel page table, to maintain the FLAC space:

it is a range of consecutive kernel virtual memory addresses

and its size is equal to the usable PM size. The positions of

pages (DRAM/PM) in the FLAC space are transparent for

the file systems running upon it. This design has two mean-

ings: 1) The address indexed in the page table is dynamically

mapped to DRAM or PM as the page is cached or evicted, and

a bit in the PTE is used to indicate the location of the page.

2) Page table entries (PTEs) belonging to the FLAC space are

Table 1: Main APIs of FLAC (for file system developer)

API Main Para. Description

init_flac pm_path
Create/Recover

the FLAC space

zcopy_from_flac

zcopy_to_flac

from_addr

to_addr

size

Zero-copy transfer data

between the application

and the FLAC space

pflush_add

pflush_handle

addr

size

Attach (map) the pages

to the flushing buffer

and add to the handle

pflush_commit
pflush_handle

fs_metalog

Flush the pages in the

handle and update

the metadata atomically

pfree

addr

size

fs_metalog

Reclaim the PM pages

and update the

metadata atomically

replicated in PM for fault recovery. The heterogeneous page

table unifies the page indexes of cache and persistent storage

and simplifies cache access and management.

PM is divided into three areas. 1) The persistent PTE

area records the mapping information between the virtual

addresses and the PM pages. All PTEs of the heterogeneous

page table are mirrored on PM. When a page is flushed from

DRAM to PM, FLAC records the related offset in the PM

device to the persistent PTE for recovery. 2) The log area logs

the modifications of FLAC-level (e.g., persistent PTE) and

FS-level metadata (e.g., inode) by the FS-FLAC collaboration

logging mechanism when the persistent data modification

APIs (pflush_commit/pfree) are called. 3) The page area

contains multiple 4KB units for file data storage. Data pages

are persisted in this area during flushing.

Developers call init_flac to prepare the FLAC space and

it is responsible for rebuilding the heterogeneous page table.

First, FLAC checks the logs to determine whether the system

exits abnormally, and if so, recovers it to the last consistent

state. Then, the PGDs, PUDs, PMDs, and PTEs of the hetero-

geneous page table are created in DRAM. In particular, the

locations in PTEs are rebuilt by translating the related offsets

in the persistent PTEs (if have) to the physical location of

the PM pages. After initialization, all valid pages on PM are

mapped to the heterogeneous page table.

3.2.2 Transfer Data with Page Attaching

The core technique used to achieve the goal of zero-copy is a

new virtual memory management operation – page attaching

(Interface (1)). The attach includes four parameters: two ad-

dress and their size, and the permission mode. Page attaching

maps the pages of the source address (from_addr) to the desti-

nation address (to_addr) with the given size. The permission

mode (pmode) allows users to set permissions on source and

destination addresses after page attaching (e.g., read-only).

Page attaching first searches the PTEs of source and desti-

nation addresses then maps the physical pages of the source

74 22nd USENIX Conference on File and Storage Technologies USENIX Association

address to the destination address (the permission and page

reference counter are also set) and finally flushes the TLB.

It will be aborted if the source addresses are not faulted (i.e.,

mapped to the physical pages), but there is no restriction on

the destination addresses. If the destination addresses are

faulted (e.g., overwrite), the reference counter of the old phys-

ical pages will be reduced and they are reclaimed by the

memory subsystem when their counters reach 0.

attach(to_addr, f rom_addr, size, pmode) (1)

The APIs of zcopy_from/to_flac encapsulate attach

for transferring data between the application and the FLAC

space. For data security and isolation, the operated pages are

set to read-only after attaching, so that subsequent writes on

these pages will transparently trigger copy-on-write (COW)

page fault, which ensures that the memory operations inside

the application do not affect the data that have been mapped to

the global cache and other applications. In particular, benefit-

ing from the heterogeneous page table, pages can be attached

whether they are cached or not and this feature delivers the

design of asynchronous cache miss handling.

Handling Page Unaligned. The file I/O (<fd, offset, size>)

is translated to the address and size of the FLAC space by

the upper-layer file system, and the data is transmitted be-

tween the FLAC space and read/write buffer by page attaching

(zcopy_from/to_flac). Page attaching requires that the op-

erated addresses and sizes are page aligned, but file I/Os and

buffers are arbitrary, resulting in the page unaligned problem.

Our solution is to attach all the pages containing the required

data and use a cursor to locate valid data in the application

buffer. FLAC requires the upper-layer file system to ensure

that the start address of each file is page aligned. Given an un-

aligned file I/O and a buffer, we first need to extend the file I/O

to the FLAC space range that contains all the required pages,

which is achieved by the automatic alignment mechanism. In

addition, we need to ensure that the buffer is large enough,

page aligned, and can represent the valid data in it, which is

achieved through the sliding window buffer technology.

Automatic Alignment. The zcopy_from/to_flac check

whether the given FLAC address and size are page aligned,

and if it doesn’t, the access range (start and end addresses)

is automatically extended to page aligned. Then, the page

attaching is executed. In particular, if the destination space

is already mapped to the (old) pages, the hole(s) caused by

automatic alignment is filled with the data in the old page(s)

through copy after attaching.

Sliding Window Buffer. As Figure 4 shows, the appli-

cation allocates (swbuf_alloc) the sliding window (SW)

buffer by using the read/write size (dsize). It includes a

swbuf structure and a page unaligned space (*bhead) in

the size of ⌈dsize/4096⌉+1 pages (bszie). The application

uses the *bhead in SW buffer to serve file read/write with

arbitrary offset and size. However, the valid data may not

struct swbuf {

int bsize // buffer size

int dsize // data size

void *bhead // buffer head

void *data // valid data

} swb

swb* swbuf_alloc (dsize)

void swbuf_slide (*swb, offset)

void swbuf_free (*swb)

APIs
*swb = swbuf_alloc (dsize)

/* file write */

swbuf_slide (swb, write_offset)

fill data by swb->data & swb->dsize

write (fd, swb->bhead, write_offset, dsize)

/* file read */

read (fd, swb->bhead, read_offset, dsize)

swbuf_slide (swb, read_offset)

get data by swb->data & swb->dsize

swbuf_free (swb)

Usecase

Page

S
W

B
u

ff
e
r F

ile

data

bhead

write_offset

Copy the data

from file

(by zcopy_to_flac)

File write by sliding window buffer

Page

zcopy_to_flac

dsize

bsize

dsize

Figure 4: Sliding Window (SW) Buffer. Application uses SW buffer

to serve page unaligned read/write. The sliding window is used to

identify valid data in the buffer.

start with the *bhead due to the automatic alignment in

zcopy_from/to_flac. Before using the data in the read-

/write buffer, the application is asked to call the swbuf_slide

to calculate the window of valid data in the SW buffer by

using the file offset and *bhead. The head of valid data is

recorded in the *data. It is worth noting that the SW buffer is

not mandatory if the application can guarantee the offset and

size of file read/write are page aligned.

Reducing COW Page Fault Overhead. The zero-copy data

transfer ensures security and isolation by setting the source

and destination memory read-only, and this makes the first

write operation (store instruction) to the source (write

buffer) or destination (read buffer) memory after attach to

trigger COW page fault. According to our analysis, the main

overhead of COW page fault includes two aspects: TLB flush

and data copy. FLAC proposes two techniques to reduce the

impact of COW page fault for different use cases.

Batch Fault. In some scenarios, applications directly pro-

cess data in the read/write buffer, which causes a large number

of pages in the buffer to be faulted with COW. FLAC opti-

mizes this unfriendly case by executing the COW page faults

in batch, thus reducing the number of TLB flushes. Batch

faulting copies the data from the original pages to the new

pages in batch and only needs to flush the TLB once. The

application can call the bfault API for the read/write buffer

before the data in the buffer are processed.

Detach. In some scenarios, the application just wants to

reuse the read/write buffer’s space instead of its data, which

is a false sharing scenario (e.g., pre-allocating a log buffer

and reusing it after it is written to the storage system). To

avoid COW page fault in this scenario, FLAC provides the

detach API to remap the addresses of the read/write buffer

to some new anonymous pages to absorb subsequent memory

operations. The application can call the detach before the

read/write buffer is reused. After detaching, the subsequent

memory writes to the buffer will not trigger COW page faults.

3.3 Parallel-Optimized Cache Management

Due to the zero-copy caching design, FLAC requires a cache

management mechanism for its multi-version feature, while

ensuring a low “cache tax” impact. Fortunately, the multi-

version feature and the heterogeneous page table design of

USENIX Association 22nd USENIX Conference on File and Storage Technologies 75

V
ir

tu
a
l

P
a
g

e
s

P
h

y
si

c
a
l

P
a
g

e
s

Application
Buffer

FLAC
Space

DRAM

PM Pv0

Pv0 Pv0Pv1

Pv0

Pv0Pv1

Pv0

S1: read from FLAC S2: update buffer S3: write to FLAC S4: flush

Pv1

Pv0Pv1

Shared-Persisted
(SP)

Shared-Cached
(SC)

Anonymous
(AM)

Out-of-Date
(OD)

async

load

COW

page fault

2-Phase

flush Virtual Page

S0: initial

Pv0

①

②

③

①

②

①

②

updated

①

②

Figure 5: Page State/Version Transition. Solid blue arrow: current mapping; Blue dashed arrow: future mapping; Red dashed arrow: data copy.

FLAC allow us to fully exploit the parallelism of data synchro-

nization/migration with critical I/O paths.

3.3.1 Parallel-Optimized Synchronization/Migration

Existing cache frameworks execute cache flushing and cache

miss handling with large synchronization and migration over-

head: Cache flushing locks the dirty pages until they are

completely flushed, which blocks the front-end writes and

dramatically reduces the performance; Cache miss handling

blocks the I/Os until the pages are loaded to the DRAM cache.

They are optimized by the following two techniques.

2-Phase Flushing. FLAC splits the dirty pages flushing

into two phases: collection (pflush_add) and persistence

(pflush_commit). The collection phase adds the given dirty

pages to a flush handle, which allocates a fresh virtual mem-

ory address space as a temporary flush buffer and attaches the

dirty pages to it. This phase requires a lock to prevent concur-

rent writes from modifying the target pages. The persistence

phase is responsible for persisting the dirty pages in the flush

handle to PM. This phase is lock-free since there are no con-

current accesses to the temporary buffer. Because the page

mapping in the collection phase is much faster than cross-

layer copy, the 2-Phase flushing mechanism significantly re-

duces the blocking time on concurrent writes due to dirty

page synchronization (e.g., background flushing).

The persistence phase is atomic. It flushes data pages by

the log-structured method, i.e., dirty data is written to the

new PM pages and the out-of-date PM pages are reclaimed.

The persistent PTEs are updated after dirty data is success-

fully flushed. The modifications of the PM page allocator and

persistent PTEs are logged to ensure crash consistency. In

addition, file systems may require FS-level metadata updates

and data persistence to be the same transaction. FLAC pro-

vides the FS-FLAC collaboration logging mechanism to meet

this goal (§3.3.4).

Asynchronous Cache Miss Handling. Cache miss has less

impact on write operation because it does not require pages to

be loaded into the cache (except in the case of page misalign-

ment), but it is expensive on read operation. Benefiting from

the heterogeneous page table, FLAC can directly attach the

PM pages to the read buffer (returns immediately) and handle

the cache miss asynchronously. A background thread in FLAC

is responsible for loading the missed pages to DRAM and

remapping the PTEs of FLAC space and application buffer(s)

pointing to those PM pages to the cached DRAM pages. The

page may have been modified to trigger the COW page fault

before it is loaded to DRAM, which means it has the newest

version in DRAM. The asynchronous cache miss handling

checks if the page already has a new version in DRAM and

skips if it does. This design makes it possible for the overhead

of handling cache misses to be amortized in the background,

thereby reducing the data I/O latency.

3.3.2 Page State/Version Transition

The page may have different states and versions in FLAC.

There are four states of a page in FLAC: shared-persistent

(SP), shared-cached (SC), anonymous (AM), and out-of-date

(OD). SP and SC pages are stored in the global areas (PM

data page area/DRAM cache) and are read-only; AM pages

are readable and writable, which is the same as the normal

anonymous page in processes; OD pages are invisible to the

file system on FLAC and are managed by FLAC’s reclamation

mechanism. Figure 5 shows an example of page state/version

transition through a sequence of operations. As the initial

stage (S0), we assume that there is a page on the FLAC space

and it is in the PM data page area.

Stage 1: Read from FLAC. The target page is an SP page,

so cache miss happens when the application reads the page

from the FLAC space to the application buffer (by the file

system interface). FLAC first maps the buffer to the SP page

and the read operation is returned (①). Then, the target page

is asynchronously loaded to DRAM as an SC page (②) and

the virtual pages of application buffer and FLAC space are

remapped to the new SC page (③).

Stage 2: Update the buffer. When the application tries

to update (by store instruction) the data in the buffer, a

new version AM page is created by COW (①), and then it is

mapped to the buffer address to absorb the updates (②). COW

page fault is only triggered at the first time the SP/SC page

(depending on if it is cached) is updated by the application,

and subsequent memory accesses will directly perform on the

AM page. In addition, the old version page in FLAC is still in

its original state (SP/SC).

Stage 3: Write to FLAC. When the application writes (at-

taches) the page back to FLAC, the state of the page mapped

76 22nd USENIX Conference on File and Storage Technologies USENIX Association

by the buffer is changed from AM to SC (①). The state of the

old page that is mapped to the target address in FLAC will be

changed to OD and reclaimed by FLAC when it is clean (②).

Stage 4: Background flush. The page will be synchronized

to PM when the background flushing is triggered, which is

implemented by the upper-layer file system. During back-

ground flushing, a new SP page is created (①) and the old

version of the SP page is reclaimed by FLAC after the data is

successfully synchronized (②).

Page State Semantics. Page state is at the process granular-

ity as FLAC maintains the state by manipulating the process’

page table. The FLAC-based file system has the same seman-

tics in file read/write operations as traditional file systems.

After one thread attaches (by file read/write) a page with

SC/SP state, other threads in the same process can read it

consistently. Once the attached page is modified and causes

COW to generate an AM page, it can be shared within the

process. FLAC currently does not support read/write shared

pages between different processes (e.g., using the FLAC space

as inter-process shared memory). FLAC enforces mandatory

isolation and COW in different processes will generate sep-

arate AM pages. However, FLAC may support this case by

considering reverse page mapping during COW.

Durability. FLAC does not restrict the durability model,

which is defined and implemented by the upper-layer file

system. Our prototype FLAC-based system (FlacFS) uses

the same durability model as traditional file systems. The

cached data is persisted to PM under two cases, i.e., the back-

ground flushing is triggered and the fsync is called by the

file system user. FlacFS implements background flushing and

fsync by encapsulating the data synchronization operations

of FLAC (pflush_add/commit), and FLAC guarantees that

these operations are atomic and recoverable by the FS-FLAC

collaboration logging.

3.3.3 Cache Policy

The size of FLAC space is equal to the usable PM size, but

the maximum DRAM cache usage is controllable and page

eviction is triggered when the cache is full. Due to the zero-

copy design naturally brings the advantage of deduplication,

FLAC counts the pages that are only mapped by the FLAC

space into the used size, and the pages that are mapped by

both the FLAC space and application buffer are treated as an

in-process pages (without taking up the cache space).

As this work mainly focuses on the cache framework, we

just design a simple cache policy in our prototype, i.e., it

selects pages for eviction with the round-robin approach. Ex-

isting cache algorithms [17, 35, 41, 53, 54] can also be used

for FLAC. For the sake of simplicity, a page can be evicted

only when two conditions are met. First, the page is clean, i.e.,

it has been synchronized to PM by background flushing or

fsync. Second, the reference counter of the page is 1, which

means that the page is only mapped by the FLAC space and

not used by any application. After a page is evicted to PM,

the target PTE of the FLAC space is remapped to the PM page

and the DRAM page will be reclaimed.

In particular, the multi-version feature of FLAC does not

incur additional space overhead compared to traditional page

cache. The new version of the page being created in the ap-

plication process by COW page fault, the new version does

not take up space in the page cache before it is overwritten to

FLAC. After overwriting, the virtual address of FLAC space is

mapped to the new version and the old version is reclaimed.

3.3.4 FS-FLAC Collaboration Logging

For normal shutdown, the recovery process of FLAC only

needs to rebuild the heterogeneous page table according to

the persistent PTEs. For an unexpected shutdown, FLAC must

recover the system to the last consistent state. As described

in the 2-Phase flushing, persistent data modifications in FLAC

(pflush_commit/pfree) are atomic. However, along with

data modifications, the file system upon FLAC may need to

update the related FS-level metadata (e.g., page index) on PM

in the FS-level atomic operation (e.g., append).

To ensure complete consistency, FLAC provides the FS-

FLAC collaboration logging mechanism to allow the data

modifications in FLAC and FS-level metadata updates in a

transaction. It requires the file system to make two efforts:

1) File system should provide the self-formatted metadata log

(fs_metalog parameter) when the persistent data modification

APIs are called. FLAC concatenates the internal (FLAC-level)

and external (FS-level) metadata log into an entry and appends

it to the log area after a successful persistent data modification

operation. 2) File system should overload an external meta-

data recovery function provided by FLAC. During recovery,

FLAC first commits the internal metadata log and then calls

the external recovery function to commit the external meta-

data. After all logs are committed, FLAC can be recovered as

normal shutdown.

4 Case Study: FlacFS

We implement FlacFS, a file system based on FLAC to show

the usage and benefits of FLAC. FlacFS contains three addi-

tional designs, the metadata management, data management,

and mechanism of security and consistency. FlacFS is a li-

brary file system implemented through memory semantics.

Figure 6 shows the architecture of FlacFS. As FlacFS focuses

on the cache framework, we draw from existing works on

designs in some aspects.

4.1 Metadata Management

The metadata area is mapped as traditional shared memory on

userspace. It includes two separate virtual memory addresses

for DRAM and PM, while they are created by shmget and

mmap, respectively. The metadata (inode) of the directory/file

USENIX Association 22nd USENIX Conference on File and Storage Technologies 77

FlacFS

Metadata Area

Address Space

(Userspace)

Data Area

Address Space

(Kernel)

FLAC

DRAM Cache

PM Data (Page) Area

DRAM

Meta Area

PM

Meta Area

Shared

Memory

Shared

Memory

inode: <……, FileSize, StartAddr, ……>

Adjustable

Cache Size

File Data

(consecutive addr)
Meta

Figure 6: Implementation of FlacFS. The data space is built on FLAC,

and file read/write are implemented by encapsulating FLAC’s APIs.

The metadata space is built on traditional shared memory. All inodes

are cached in the DRAM hash table using their paths as keys, and

their copies are persistently stored on PM.

is treated as a KV pair and stored in the inode hash table

on shared memory using its full path as the key. The inode

table is stored on both DRAM and PM to accelerate metadata

operations. The metadata operations are performed in the

DRAM inode table immediately and flushed to the PM inode

table when the dirty data of the related files are flushed by

background flushing or fsync. The metadata consistency is

guaranteed by the FS-FLAC collaboration logging (§4.3).

Inspired by SCMFS [50] and ctFS [31], FlacFS allocates

consecutive virtual memory addresses on the FLAC space for

each file to store data. File inode only needs to record the

start virtual address and the file size. FlacFS uses a buddy-

like allocator for it. When the file size increases, a new range

of consecutive virtual addresses is allocated, then the pages

(existing and new) are attached to the new virtual addresses,

and finally the old virtual addresses are reclaimed. This design

allows FlacFS to leverage MMU to accelerate page indexing

without the need for complex index structures (e.g., B-tree).

4.2 Data Management

The data area is run on top of FLAC, which is created by

init_flac. It appears to FlacFS as a range of consecutive

kernel virtual memory addresses, and the data I/Os on the

FLAC space are transparently cached.

File Read/Write. After the file is successfully opened,

FlacFS calculates the target address range on FLAC space

of the request by the start virtual address of the file (recorded

in the inode) and the offset. Read and write are executed

by zcopy_from_flac and zcopy_to_flac respectively,

which makes the data transferring between file system and

application is zero-copy.

Background Flushing. FlacFS launches a background

thread periodically (10ms by default) to traverse the opened

files and flush the dirty pages and related metadata to PM. It

uses the 2-Phase flushing mechanism of FLAC for efficient

data synchronization. For each dirty file, FlacFS creates a

flush handle and collects the dirty pages according to the per-

file dirty bitmap, and then uses pflush_add to add them to

the handle (i.e., attach to a temporary flush buffer). After col-

lecting, FlacFS calls pflush_commit to atomically persist

the dirty data to PM.

File Synchronization. Similar to traditional file systems,

FlacFS provides fsync for users to flush data from DRAM

to PM immediately. FlacFS uses the 2-Phase flushing mecha-

nism to synchronize dirty data in fsync, which is similar to

the background flushing. Following the semantics of fsync,

the operation is returned after the data is persisted.

4.3 Security and Consistency

Data is protected by the kernel mode. FLAC is implemented

in the kernel, and userspace applications can access it only

through syscall/ioctl. Pages are always mapped to the appli-

cation as read-only, which ensures that local operations of the

application do not affect the data in the cache and other appli-

cations as they are handled by COW page fault. The metadata

security can be solved by using the userspace security mech-

anisms or putting metadata management in the kernel. For

example, the mechanism of existing systems [31, 57] can be

used to ensure the metadata security, i.e., the metadata area

is protected by MPK [13, 42] and access permission only is

granted to the user process during the metadata operation.

The FS-FLAC collaboration logging mechanism requires

the upper-layer file system to provide formatted metadata

modification and corresponding metadata recovery functions.

FlacFS uses the newest inode as the fs_metalog parameter in

persistent data modification APIs (pflush_commit, pfree),

and overloads the external recovery function to overwrite the

original inode by its newest version. FlacFS calls init_flac

to recover the FLAC space when system restarts. After the

success of init_flac, FlacFS rebuilds the metadata area in

DRAM and the system is recovered from the crash.

4.4 Advantages of FlacFS/FLAC

FLAC allows file systems based on it to benefit from the

DRAM cache while reducing the effects of “cache tax” as

much as possible. Table 2 gives a comparison between

FlacFS/FLAC and existing systems.

vs. Cache-based File Systems/mmap. There are many file

systems designed based on the VFS. Although the VFS page

cache can improve the performance in some scenarios in

heterogeneous memory file systems, these systems suffer

from heavy “cache tax” and fail to optimize the application-

storage data transfer. These file systems also provide the

mmap method to avoid the data transfer overhead, but it makes

application design and storage backend to be coupled. There-

fore, they cannot fully exploit the potential of cache in hetero-

geneous memory architecture.

vs. DAX-based File Systems. DAX-based systems bypass

the DRAM cache in data I/O, making them suffer from high

application-storage transfer overhead. Also, the latency and

78 22nd USENIX Conference on File and Storage Technologies USENIX Association

Table 2: Comparison with Related Work

Type Typical System
Data

Cache

Low/Non Cache

Tax Impact

App-Storage

Zero-Copy

App-Storage

Decouple

Cache-based FS VFS page cache FSes (e.g., ETX4, XFS [44], SPFS [49]) " % % "

Cache-based mmap mmap in VFS page cache FSes (e.g., EXT4, XFS [44]) " % " %

DAX-based FS
NOVA [51], SplitFS [20], WineFS [19], ctFS [31], KucoFS [5], PMFS [10]

libnvmmio [6], EXT4-DAX [7], HTMFS [57], OdinFS [62], ZoFS [8]
% " % "

DAX-based Runtime
Twizzler [4], Mnemosyne [46], PMDK [15]

zIO [43], DaxVM [1], SubZero [22]
% " " %

Flat Cache FlacFS " " " "

concurrency of PM hardware greatly limit their performance.

In particular, some DAX-based file systems also use remap-

ping: SplitFS [20] proposes relink, an operation to atom-

ically move a contiguous extent from one file to another,

which is used to accelerate appends and atomic data opera-

tions; ctFS [31] proposes pswap to swap the page mapping of

two same-sized contiguous virtual addresses, which is used

to reduce the overhead of maintaining file data in contigu-

ous virtual addresses. However, neither SplitFS nor ctFS uses

remapping to optimize data copying between applications

and file systems, and FLAC optimizes this part with the zero-

copy caching technique. Some DAX-based systems focus

on special design objectives, such as NUMA optimization

(e.g., OdinFS [62]), userspace optimization (e.g., KucoFS [5],

ZoFS [8], Trio [61]), and aging problem (e.g., WineFS [19]).

They are complementary to FlacFS.

vs. DAX-based Runtime. This type of work usually pro-

vides a memory management library or programming frame-

work for applications. Although the overhead of data transfer

between the application and storage system can be avoided,

they require the application to be co-designed with the stor-

age backend (e.g., use customized interfaces or object ab-

straction). Some of these works provide zero-copy PM I/O

libraries [22, 43]. However, they require applications to allo-

cate read/write buffers on PM to avoid data copy, and thus

force to ship the data processing from DRAM to PM, which

is not friendly for some cases [48]. DAX-based runtime fo-

cuses on programming directly on PM and can be seen as

complementary to the file system.

vs. Other Related Work. Some PM-based file systems try

to use DRAM as a cache (e.g., HiNFS [37] and HasFS [32]).

However, these works do not exploit the potential of the vir-

tual memory subsystem in the cache and are designed for

the simulated PM. Some file systems (e.g., Strata [24], Zig-

gurat [60]) are optimized for other multi-layer storage ar-

chitectures (DRAM-PM-SSD). Some work focuses on data

management in tiered memory (e.g., HeMem [39] and Johnny

Cache [29]), which are complementary to FLAC.

5 Discussion

Although FLAC/FlacFS offers promising performance, it also

encounters some new challenges, which we discuss below.

Page Fault Overhead. COW page fault doesn’t happen at

every write, and is only triggered at the first time to overwrite

the buffer. The natural COW page fault overhead is high and

our evaluation shows that it can reduce performance by about

30 times in the worst case without specific optimization. Our

optimizations (bfault/detach) precisely address two key

bottlenecks in COW page fault and they are easy to adapt

to applications (shown below). According to our evaluation,

bfault/detach can reduce more than 78.3% COW page

fault overhead in the worst cases (§ 6.2.4) and can be used

effectively in real-world scenarios (§ 6.3).

Application Adaptation. We think adaptation is simple and

straightforward: First, it requires only a few code changes.

We intercepted the POSIX interface to transparently adopt

the file operations (open, read, write, etc) to FlacFS. The

code changes are related only to buffer allocation and page

fault optimization. Second, it needs no change to the orig-

inal application code logic. The code changes are alterna-

tive (replacing buffer allocation) and/or incremental (adding

bfault/detach before reusing the buffer). This allows ap-

plications to be "trivially" adapted to FLAC/FlacFS.

Target I/O Workloads. FLAC/FlacFS is more friendly to

large I/Os, especially I/Os larger than 64KB (§ 6.2.2). Large

I/Os are important in production scenarios. For example, LLM

(Large Language Model) training usually makes checkpoints

in the file system for recovery. Take GPT3-NEOX [12] as an

example, the average I/O size generated during checkpointing

is at MB-level; As another example, SQL databases (e.g.,

openGauss [36]) typically aggregate data into large blocks

(e.g., 64KB) and write to the file system by large I/Os.

Design Universality. Although this work mainly focuses

on the cache framework of file systems, FLAC is possible

to be adapted to other storage systems. For example, KV

stores (e.g., [2,3,21,27,28,47,58,59]) can build their DRAM

cache upon the FLAC space to enjoy the benefits of zero-copy

caching and efficient cache management.

6 Evaluation

We compare FlacFS to a wide range of heterogeneous memory

file systems to demonstrate the benefits of FLAC framework.

Cache-based Systems. Systems of this type include EXT4

and FlacFS. EXT4 is representative of file systems using the

USENIX Association 22nd USENIX Conference on File and Storage Technologies 79

 70

 160

 250

E
x
e

c
u

ti
o

n
 T

im
e

 (
1

0
0

 m
s
) (a) Sequential Overwrite

 0

 3.5

 7

1 2 4 8 16 32 64
Number of Threads

 30

 130

 230

E
x
e

c
u

ti
o

n
 T

im
e

 (
1

0
0

 m
s
) (b) Random Overwrite

 0

 3.5

 7

1 2 4 8 16 32 64
Number of Threads

 70

 260

 450

E
x
e

c
u

ti
o

n
 T

im
e

 (
1

0
0

 m
s
) (c) Append

 0

 3.5

 7

1 2 4 8 16 32 64
Number of Threads

 100

 200

 300

 400

 500

1 2 4 8 16 32 64

E
x
e

c
u

ti
o

n
 T

im
e

 (
1

0
0

 m
s
)

Number of Threads

(d) fsync

 10

 150

 290

E
x
e

c
u

ti
o

n
 T

im
e

 (
1

0
0

 m
s
) (e) Sequential Read

 FlacFS-HIT SplitFS EXT4-DAX NOVA EXT4-HIT ctFS EXT4-MISS FlacFS-MISS

 0

 4.5

 9

1 2 4 8 16 32 64
Number of Threads

 10

 130

 250

E
x
e

c
u

ti
o

n
 T

im
e

 (
1

0
0

 m
s
) (f) Random Read

 0

 4.5

 9

1 2 4 8 16 32 64
Number of Threads

Figure 7: Micro Benchmark Performance.

VFS page cache (e.g., XFS [44] and SPFS [49]). The dirty

data flushing period is set to 10ms and 100ms for FlacFS and

EXT4, respectively. FlacFS ensures the consistency of meta-

data and data, while EXT4 only ensures metadata consistency

(ordered mode). If not specified, EXT4 and FlacFS trigger

page eviction unless memory allocation fails, which is the

default policy in Linux.

DAX-based Systems. Systems of this type includes EXT4-

DAX [7], NOVA [51], SpiltFS [20], and ctFS [31]. Data I/Os

of these systems bypass the VFS page cache and perform on

PM directly. NOVA is set to sync mode, while SplitFS and

ctFS are set to POSIX mode. All tested DAX file systems

only ensure the metadata consistency, while FLAC ensures

both metadata and data consistency.

Testbed. All experiments are run on a server with two Intel

Xeon CPUs, 256GB RAM, and 1TB (128GB×8) PM. FlacFS

and EXT4 use Ubuntu 20.04 with Linux 5.1, and others file

systems use the kernel versions they can support.

6.1 Benchmark Performance

6.1.1 Micro Benchmark

We evaluate the duration of performing append, overwrite,

read, and fsync-after-append (fsync is called after each write)

on 64 1GB files with random and sequence patterns. The I/O

size is 2MB and there is no contention for accesses between

files in these experiments. Figure 7 shows the results. For the

cache-based file systems, “*-HIT” and “*-MISS” represent

cache hits and misses, respectively (analyzed in §6.2.1).

In the write scenarios, FlacFS provides a maximum per-

formance increase of more than two orders of magnitude

over other tested systems. In the read scenarios, FlacFS out-

performs other tested systems by more than 200 times. The

zero-copy caching in FLAC significantly reduces the data copy

overhead between the application’s write buffer and the file

system, while all other systems suffer from this copying over-

head. Compared with another cache-based system, EXT4, the

data persisting phase during background flushing in FlacFS

does not block the front-end writes, which significantly im-

proves the performance in write-intensive scenarios. In the

fsync-after-append scenario, FlacFS is comparable to the best

of the DAX file systems and better than EXT4. Although

dense fsync is not friendly to FlacFS, it still performs well

due to the lightweight nature of FLAC.

At the framework level, we observe that the DAX-based

systems have lower scalability than cache-based systems

(EXT4 and FlacFS) under write-intensive workloads. The

DAX approaches are difficult to scale beyond even 2 concur-

rent threads in Figure 7 (a) - (d) because they reach the band-

width and concurrency limitation of PM. In summary, these

results demonstrate that FLAC can fully exploit the potential

of DRAM cache in heterogeneous memory file systems.

6.1.2 Macro Benchmark

We use two I/O intensive workloads in Filebench [45] to

evaluate the performance of FlacFS in the scenarios with

mixed operations (including many types of data and metadata

operations). All workloads use 128MB file and 2MB I/O. The

main process of Filserver is to create files, write data to the

files, and then read data from the files. The main process of

Webserver is to create and append files, and then read the

files repeatedly. In particular, read operations have stronger

locality than write operations in these workloads.

Figure 8 shows that the throughput of FlacFS is higher

than other tested file systems by more than 40 times and 20

times in Fileserver and Webserver, respectively. At the same

80 22nd USENIX Conference on File and Storage Technologies USENIX Association

 0

 1

 2

 3

 4

 5

 6

1 2 4 8

T
h
ro

u
g
h
o
u
t

(1
K

 o
p
/s

)

Number of Threads

(a) fileserver
EXT4

EXT4-DAX

NOVA

 0

 1

 2

 3

 4

 5

1 2 4 8
Number of Threads

(b) webserver
ctFS

SplitFS

FlacFS

Figure 8: Filebench Performance.

 0

 3

 6

 9

 12

1G 4G 8G 16G

E
x
e
c
u
ti

o
n
 T

im
e
 (

s
)

Eviction threshold

Figure 9: Cache Eviction Overhead.

 0

 7

 14

 21

 28

 35

4KB 16KB 32KB 64KB 2MB 16MB

E
x
e

c
u

ti
o

n
 T

im
e

 (
 s

)

I/O Size

(a) Random Overwrite

ctFS
NOVA

SplitFS

 0

 2

 4

 6

 8

 10

4KB 16KB 32KB 64KB 2MB 16MB

E
x
e

c
u

ti
o

n
 T

im
e

 (
 s

)

I/O Size

(b) Random Read

EXT4-DAX
EXT4

FlacFS

 0

 7

 14

 21

 28

 35

 42

4KB 16KB 32KB 64KB 2MB 16MB

E
x
e

c
u

ti
o

n
 T

im
e

 (
 s

)

I/O Size

(c) Append

Figure 10: Impact of I/O Size.

time, the concurrency of FlacFS is better than other tested

systems. The DAX-based systems are limited by the hardware

disadvantages of PM in these experiments. The other cache-

based file system, EXT4, is also better than the DAX-based

systems because of the locality of the workload, especially

in the Webserver case. However, EXT4’s performance is still

significantly lower than FlacFS because of the inefficiency of

the VFS page cache framework.

6.2 Design Analysis

6.2.1 Impact of DRAM Cache Size

Cache size affects the overall performance through two as-

pects: overhead of cache miss and page eviction.

Cache Miss Overhead. The hit ratio is determined by the

cache policy and the workload behavior. As this work mainly

focuses on the cache framework design, we just show the

performance of the upper (100% hit) and lower (100% miss)

bounds. We clear the DRAM cache before each run to evalu-

ate the system performance under cache miss. In particular,

write operations in FlacFS do not encounter cache misses in

these experiments because the new pages are always attached

from the application’s DRAM buffer to the FLAC space. By

comparing the “EXT4-MISS” and “FlacFS-MISS” in Figure 7

(e) and (f), we found that FlacFS outperforms EXT4 by more

than 320 times, which benefits from the asynchronous cache

miss handling mechanism. In FLAC, the heterogeneous mem-

ory addressing allows pages to be accessed directly whether

it is in DRAM or PM, so uncached pages can be attached

to the application’s read buffer and loaded to DRAM in the

background. Therefore, the latency penalty of cache miss is

hidden for front-end data I/Os. This design also allows FlacFS

to perform better than DAX-based file systems in the cache

miss scenario because they need to synchronously copy data

from PM to the application buffers.

Eviction Overhead. We append 16GB of data to the files

with different eviction thresholds. This experiment is used to

measure pure eviction overhead because appending does not

have data locality. A smaller threshold means a smaller effec-

tive cache capacity and causes more data to be evicted and

higher eviction frequency. For example, with 16G threshold,

no data is evicted, while half of the data (8G) is evicted at

once when the threshold is 8G. The major overhead in evic-

tion comes from copying pages to PM and its performance

is bounded by the PM bandwidth. The eviction involves the

extra overhead of updating page table entries and invalidating

TLB. Figure 9 shows the eviction performance. As expected,

a smaller threshold introduces more penalties. For instance,

eviction cost under 1G threshold is 2.3 times of 8G threshold,

as 1G threshold has nearly twice the amount of eviction data

as 8G threshold (15G vs. 8G). Additionally, 1G threshold

causes more TLB invalidation overhead due to more frequent

eviction than 8G threshold.

To sum up the above experiments, we believe that with

efficient cache algorithms (out of the scope of this work),

FLAC can run efficiently in cache-starved scenarios.

6.2.2 Impact of I/O Size

We evaluate the duration of performing random read/over-

write and append in the I/O sizes ranging from 4KB to 16MB

with 64 concurrent threads (no contention). Figure 10 shows

that FlacFS has significant advantages compared to other sys-

tems when the I/O size is greater than 64KB, because the data

copy and migration are the major overheads in these scenar-

ios and this meets the optimization point of FlacFS. For I/Os

smaller than 64KB, the advantage of FlacFS decreases as the

USENIX Association 22nd USENIX Conference on File and Storage Technologies 81

 0

 30

 60

 90

 120

 150

4KB 64KB 1MB 256MB

E
x
e
c
u
ti

o
n
 T

im
e
 (

m
s
)

I/O Size

aligned I/O
unaligned I/O

Figure 11: Impact of Unaligned Page.

 0

 5

 10

 15

 20

 25

 30

10 20 40 60 80 100E
x
e

c
u

ti
o

n
 T

im
e

 (
1

0
0

 m
s
)

Buffer Overwrite Percentage

no opt

bfault

detach

Figure 12: Impact of COW Page Fault.

 0

 3

 6

 9

 12

 15

 18

base zc zc+po

E
x
e

c
u

ti
o

n
 S

p
e

e
d

u
p

Figure 13: Performance Breakdown.

 0

 3

 6

 9

 12

 15

8M 64M 256M 1GN
o

rm
a

li
z
e

d
 D

u
ra

ti
o

n

File Size

(a) Sequential Write

ctFS

EXT4

NOVA

 0

 2

 4

 6

 8

8M 64M 256M 1G
File Size

(b) Sequential Read

EXT4-DAX

SplitFS

FlacFS

Figure 14: Impact of File Size. For each file size, the duration of

other file systems are normalized by FlacFS.

I/O size decreases, as the additional overhead introduced by

FlacFS (e.g., TLB flush) becomes apparent in these scenarios.

As discussed in § 5, we believe the FlacFS-friendly scenarios

can cover a lot of practical workloads. In scenarios where the

I/O size is smaller than a page (4KB), they are generally not

file system friendly because file systems manage data at a

page granularity. Therefore, many real-world applications try

to avoid triggering file I/Os smaller than 4KB.

6.2.3 Impact of Page Alignment

FLAC can serve file I/O at any offset and size. The automatic

alignment and sliding window buffer are used to solve the

page unaligned problem. We evaluate the impact of page

unaligned on performance by randomly overwriting 1GB of

data in the file under different I/O sizes. Figure 11 shows that

unaligned I/Os have a performance degradation of about 20%

compared to aligned I/Os when the I/O size is 4KB. However,

unaligned accesses have little impact on performance as the

I/O size increases, because the amount of data copied by the

sliding window buffer does not exceed 4KB, so the proportion

of this overhead decreases with the increase in I/O size.

6.2.4 Impact of COW Page Fault

Pages in the application buffer are set to read-only when

they are attached to/from FLAC for security and isolation.

As a result, COW page faults are triggered when the appli-

cation updates the data in the buffer for the first time after

the FlacFS read/write. FLAC proposes two APIs for batch

faulting (bfault) and detaching (detach) for applications

to reduce or eliminate the negative effect of COW page faults.

We use 16 test threads to random write on 16 files and rewrite

the data in the buffer by using memset after each write to

evaluate these optimizations (read scenario exhibits a sim-

ilar performance pattern). Figure 12 shows the results. As

the baseline (“no opt”), the test threads simply rewrite the

read/write buffers so that normal COW page faults will be

triggered. Relatively, the test threads call bfault or detach

for the buffer after each FlacFS read/write to show the benefits

of batch faulting and detaching.

The results shows that the total execution time of the base-

line grows significantly as the percentage of buffer overwrites

increases, because the higher the overwrite percentage, the

more COW page faults are triggered, which results in the

increased overhead of TLB flushing and data copy. In com-

parison, batch faulting and detaching can reduce the total

execution time by 78.3% and 89.2%, respectively, when the

overwrite percentage reaches 100%. Batch faulting reduces

the overhead of TLB flushing by aggregating multiple COW

page faults. Further, detaching completely avoids COW page

faults by remapping new pages to the given addresses.

6.2.5 Performance Breakdown

FLAC includes the key techniques of zero-copy caching and

parallel-optimized cache management. As the baseline, we im-

plement a simple FLAC equipped with only a heterogeneous

page table and use memory copy to transfer data between

the FLAC space and the application buffer. Therefore, both

zero-copy caching and parallel optimizations are removed

from this simple FLAC.

We use 2 concurrent threads to perform 2MB random write

I/Os in this experiment. Figure 13 shows the performance

breakdown. In the “zc” case, we add the zero-copy caching de-

sign into the baseline but use the coarse-grained lock instead

of the 2-Phase flushing (i.e., the front-end I/Os are blocked

during the data synchronization). The results show that the

performance can be improved by around 10 times by adding

the zero-copy caching. In the “zc+po” case, both zero-copy

caching and parallel optimizations are applied, and the per-

formance is improved by about 15 times compared to the

baseline. For the parallel optimizations, this experiment focus

on the contribution of 2-Phase flushing, while the benefits

of asynchronous cache miss handling are reflected in §6.2.1.

82 22nd USENIX Conference on File and Storage Technologies USENIX Association

 0

 30

 60

 90

 120

1 4 16 64 256

E
x
e
c
u
ti

o
n
 T

im
e
 (

m
s
)

File Size (MB)

(a) grep

ctFS
NOVA

SplitFS

 0

 70

 140

 210

 280

 350

1 4 16 64 256

E
x
e
c
u
ti

o
n
 T

im
e
 (

m
s
)

File Size (MB)

(b) tar

EXT4-DAX
EXT4

FlacFS

 0

 4

 8

 12

 16

 20

2 4 8 16 32 64

E
x
e
c
u
ti

o
n
 T

im
e
 (

s
)

Number of Processes

(c) bigsort

Figure 15: Performance on Real-World Applications.

This experiment shows that FLAC addresses the important

bottlenecks of the heterogeneous memory cache framework.

6.2.6 Impact of File Size

We perform 64KB I/Os on different sizes of files (8MB to

1GB) with a single thread to show the impact of file size on

the advantages of FLAC. We normalize the duration of other

file systems to FlacFS to reflect the fluctuation of FlacFS’

performance improvement, i.e., the smoother curve indicates

that the file size has less impact on performance improvement.

Figure 14 shows that FlacFS has a smooth performance ad-

vantage under different file sizes: it has a third of the duration

of the second-best system in write and read. The reason is

that the performance improvement of FlacFS mainly comes

from the zero-copy and parallel optimization, which are not

strongly related to the file size.

6.3 Real-World Applications

We evaluate FlacFS in some real-world applications to demon-

strate its end-to-end performance benefits. For each applica-

tion, we replace the file system calls and buffer allocation by

the FlacFS’ interfaces and sliding window buffer mechanism

to port it to our system. In addition, we use batch fault or de-

tach (select based on how the buffer is used) for the read/write

buffer to optimize the COW page fault overhead before the

application reuses the buffer (if have).

6.3.1 Command Line Application

We port two widely used command line utilities to use FlacFS.

The first one is grep v3.7. We measure the execution time of

matching a character within the input file. Figure 15 (a) shows

the performance of increasing file size The grep only issues

read operations and FlacFS runs 6.7 times faster than the best

DAX file system (ctFS) and 4.8 times faster than EXT4 at

1MB file size. The second application is tar v1.34. The tar

contains not only read operations but also contains write to

generate the output archive. Figure 15 (b) plots the execution

time of creating an archive from the input file. FlacFS still

achieves the best performance. With 16MB file, FlacFS gets

4.4 times improvement over the best DAX file system (NOVA)

and 9.4 times better than EXT4. Additionally, the computation

in tar is less expensive than grep, which process regulator

expression matching. Thus, tar spends more time on file

I/Os than grep and the performance gain in tar is more than

grep. For instance, with 256MB file, FlacFS improves over

SplitFS by 3.6 and 5.6 times for grep and tar, respectively.

6.3.2 Big Data Processing

We evaluate FlacFS and other file systems with BigSort [25], a

large-scale merge sort application implemented by Lawrence

Livermore National Laboratory. Merge sort is an important

phase in big data processing (e.g., page ranking). Given a

dataset, BigSort partitions it and performs the merge sorted

on each partition recursively. There are three phases in each

merge sort: Phase 1) reads the unsorted objects from the target

file; Phase 2) performs quick sorting on the objects read in

the previous phase; Phase 3) stores the intermediate-ordered

results in the file system. After the recursive exit, the global

ordered results are written to the output file.

We perform merge sorting on a dataset of 134 million

integers. Porting BigSort to SplitFS and ctFS causes multiple

processes to hang, so we cannot obtain their performance

results. Figure 15 (c) shows that FlacFS has up to 2.62 times

improvement compared to other file systems when the number

of concurrent processes reaches 64. Benefiting from the zero-

copy caching design, FlacFS has a significant performance

advantage in Phases 1 and 3 because they include intensive

large file I/Os (512KB per I/O). Phase 2 is compute-intensive,

and it will incur an unnegligible overhead of COW page fault

if nothing is done to optimize it. As a result, FlacFS has an

obvious performance advantage in this complex application.

7 Conclusion

Heterogeneous memory provides various advantages, but it

also poses challenges to the file system architecture. We an-

alyze the shortcomings of existing cache-based and DAX-

based storage frameworks in heterogeneous memory, and

conclude that DRAM cache still has great potential in fast

all-memory architectures. We propose FLAC, a flat cache

framework of heterogeneous memory that integrates the page

cache into the virtual memory subsystem. FLAC unlocks the

potential of cache through zero-copy caching and parallel-

optimized cache management. We implement a file system

based on FLAC and show that FLAC has significantly better

performance than existing cache and DAX solutions.

USENIX Association 22nd USENIX Conference on File and Storage Technologies 83

Acknowledgments

We thank our shepherd Oana Balmau and the anonymous

reviewers for their constructive comments and feedback. We

also thank our colleagues in the Huawei OS Kernel Lab for

their support. Yuxin Ren is the corresponding author.

References

[1] Chloe Alverti, Vasileios Karakostas, Nikhita Kunati,

Georgios Goumas, and Michael Swift. DaxVM: Stress-

ing the limits of memory as a file interface. In Pro-

ceedings of the IEEE/ACM International Symposium on

Microarchitecture (MICRO’22), pages 369–387, 2022.

[2] Oana Balmau, Diego Didona, Rachid Guerraoui, Willy

Zwaenepoel, Huapeng Yuan, Aashray Arora, Karan

Gupta, and Pavan Konka. TRIAD: Creating synergies

between memory, disk and log in log structured key-

value stores. In Proceedings of the USENIX Technical

Conference (ATC’17), pages 363–375, 2017.

[3] Oana Balmau, Florin Dinu, Willy Zwaenepoel, Karan

Gupta, Ravishankar Chandhiramoorthi, and Diego Di-

dona. SILK: Preventing latency spikes in log-structured

merge key-value stores. In Proceedings of the USENIX

Technical Conference (ATC’19), pages 753–766, 2019.

[4] Daniel Bittman, Peter Alvaro, Pankaj Mehra, Darrell

D. E. Long, and Ethan L. Miller. Twizzler: A data-

centric os for non-volatile memory. In Proceedings of

the USENIX Annual Technical Conference (ATC’20),

pages 1–31, 2020.

[5] Youmin Chen, Youyou Lu, Bohong Zhu, Andrea C.

Arpaci-Dusseau, Remzi H. Arpaci-Dusseau, and Jiwu

Shu. Scalable persistent memory file system with kernel-

userspace collaboration. In Proceedings of the USENIX

Conference on File and Storage Technologies (FAST’21),

pages 81–95, 2021.

[6] Jungsik Choi, Jaewan Hong, Youngjin Kwon, and Hwan-

soo Han. Libnvmmio: Reconstructing software IO path

with failure-atomic memory-mapped interface. In Pro-

ceedings of the USENIX Annual Technical Conference

(ATC’20), pages 1–16, 2020.

[7] Johnathan Corbet. Ext4-dax. https://lwn.net/

Articles/717953, October 2022.

[8] Mingkai Dong, Heng Bu, Jifei Yi, Benchao Dong, and

Haibo Chen. Performance and protection in the ZoFS

user-space nvm file system. In Proceedings of the ACM

Symposium on Operating Systems Principles (SOSP’19),

pages 478–493, 2019.

[9] Peter Druschel and Larry L. Peterson. Fbufs: A high-

bandwidth cross-domain transfer facility. In Proceed-

ings of the ACM Symposium on Operating Systems Prin-

ciples (SOSP’93), pages 189–202, 1993.

[10] Subramanya R. Dulloor, Sanjay Kumar, Anil Keshava-

murthy, Philip Lantz, Dheeraj Reddy, Rajesh Sankaran,

and Jeff Jackson. System software for persistent mem-

ory. In Proceedings of the European Conference on

Computer Systems (EuroSys’14), pages 1–15, 2014.

[11] Subramanya R. Dulloor, Amitabha Roy, Zheguang

Zhao, Narayanan Sundaram, Nadathur Satish, Rajesh

Sankaran, Jeff Jackson, and Karsten Schwan. Data tier-

ing in heterogeneous memory systems. In Proceedings

of the European Conference on Computer Systems (Eu-

roSys’16), pages 1–16, 2016.

[12] EleutherAI. GPT3-NEOX. https://github.com/

EleutherAI/gpt-neox, October 2023.

[13] Mohammad Hedayati, Spyridoula Gravani, Ethan John-

son, John Criswell, Michael L. Scott, Kai Shen, and

Mike Marty. Hodor: Intra-process isolation for high-

throughput data plane libraries. In Proceedings of the

USENIX Annual Technical Conference (ATC’19), pages

489–504, 2019.

[14] Intel. 3D XPoint DCPMM. https:

//www.intel.com/content/www/us/en/

products/details/memory-storage/

optane-dc-persistent-memory, September

2021.

[15] Intel. Persistent memory development kit. https://

pmem.io/pmdk, October 2022.

[16] Joseph Izraelevitz, Jian Yang, Lu Zhang, Juno Kim, Xiao

Liu, Amirsaman Memaripour, Yun Joon Soh, Zixuan

Wang, Yi Xu, Subramanya R. Dulloor, Jishen Zhao,

and Steven Swanson. Basic performance measure-

ments of the Intel Optane DC persistent memory module.

arXiv:1903.05714, 2019.

[17] Song Jian and Xiaodong Zhan. LIRS: An efficient low

inter-reference recency set replacement policy to im-

prove buffer cache performance. In Proceedings of the

ACM Sigmetrics Conference (SIGMETRICS’02), 2002.

[18] Myoungsoo Jung. Hello bytes, bye blocks: PCIe stor-

age meets compute express link for memory expansion

(CXL-SSD). In Proceedings of the ACM Workshop on

Hot Topics in Storage and File Systems (HotStorage’22),

pages 45–51, 2022.

[19] Rohan Kadekodi, Saurabh Kadekodi, Soujanya Pon-

napalli, Harshad Shirwadkar, Gregory R. Ganger,

Aasheesh Kolli, and Vijay Chidambaram. WineFS: A

84 22nd USENIX Conference on File and Storage Technologies USENIX Association

https://lwn.net/Articles/717953
https://lwn.net/Articles/717953
https://github.com/EleutherAI/gpt-neox
https://github.com/EleutherAI/gpt-neox
https://www.intel.com/content/www/us/en/products/details/memory-storage/optane-dc-persistent-memory
https://www.intel.com/content/www/us/en/products/details/memory-storage/optane-dc-persistent-memory
https://www.intel.com/content/www/us/en/products/details/memory-storage/optane-dc-persistent-memory
https://www.intel.com/content/www/us/en/products/details/memory-storage/optane-dc-persistent-memory
https://pmem.io/pmdk
https://pmem.io/pmdk

hugepage-aware file system for persistent memory that

ages gracefully. In Proceedings of the ACM Symposium

on Operating Systems Principles (SOSP’21), pages 804–

818, 2021.

[20] Rohan Kadekodi, Se Kwon Lee, Sanidhya Kashyap,

Taesoo Kim, Aasheesh Kolli, and Vijay Chidambaram.

SplitFS: Reducing software overhead in file systems for

persistent memory. In Proceedings of the ACM Sympo-

sium on Operating Systems Principles (SOSP’19), pages

494–508, 2019.

[21] Olzhas Kaiyrakhmet, Songyi Lee, Beomseok Nam,

Sam H Noh, and Young-ri Choi. SLM-DB: single-level

key-value store with persistent memory. In Proceed-

ings of the USENIX Conference on File and Storage

Technologies (FAST’19), pages 191–205, 2019.

[22] Juno Kim, Yun Joon Soh, Joseph Izraelevitz, Jishen

Zhao, and Steven Swanson. SubZero: Zero-copy IO for

persistent main memory file systems. In Proceedings

of the Asia-Pacific Workshop on Systems (APSys’20),

pages 1–8, 2020.

[23] Miryeong Kwon, Sangwon Lee, and Myoungsoo Jung.

Cache in hand: Expander-driven CXL prefetcher for

next generation CXL-SSDs. In Proceedings of the ACM

Workshop on Hot Topics in Storage and File Systems

(HotStorage’23), pages 24–30, 2023.

[24] Youngjin Kwon, Henrique Fingler, Tyler Hunt, Simon

Peter, Emmett Witchel, and Thomas Anderson. Strata:

A cross media file system. In Proceedings of the ACM

Symposium on Operating Systems Principles (SOSP’17),

pages 460–477, 2017.

[25] Lawrence Livermore National Laboratory. Big-

sort. https://gitlab.com/arm-hpc/benchmarks/

coral-2/BigSort, May 2023.

[26] Benjamin C. Lee, Ping Zhou, Jun Yang, Youtao Zhang,

Bo Zhao, Engin Ipek, Onur Mutlu, and Doug Burger.

Phase-change technology and the future of main mem-

ory. IEEE Micro, 30(1):143–143, 2010.

[27] Baptiste Lepers, Oana Balmau, Karan Gupta, and Willy

Zwaenepoel. KVell: the design and implementation

of a fast persistent key-value store. In Proceedings of

the ACM Symposium on Operating Systems Principles

(SOSP’19), pages 447–461, 2019.

[28] Baptiste Lepers, Oana Balmau, Karan Gupta, and Willy

Zwaenepoel. KVell+: Snapshot isolation without snap-

shots. In Proceedings of the USENIX Symposium on Op-

erating Systems Design and Implementation (OSDI’20),

pages 425–441, 2020.

[29] Baptiste Lepers and Willy Zwaenepoel. Johnny Cache:

the end of dram cache conflicts (in tiered main mem-

ory systems). In Proceedings of the USENIX Confer-

ence on Operating Systems Design and Implementation

(OSDI’23), pages 519–534, 2023.

[30] Bojie Li, Tianyi Cui, Zibo Wang, Wei Bai, and Lintao

Zhang. SocksDirect: Datacenter sockets can be fast and

compatible. In Proceedings of the ACM Special Interest

Group on Data Communication (SIGCOMM’19), pages

90–103. 2019.

[31] Ruibin Li, Xiang Ren, Xu Zhao, Siwei He, Michael

Stumm, and Ding Yuan. ctFS: Replacing file indexing

with hardware memory translation through contiguous

file allocation for persistent memory. In Proceedings of

the USENIX Conference on File and Storage Technolo-

gies (FAST’22), pages 35–50, 2022.

[32] Yubo Liu, Hongbo Li, Yutong Lu, Zhiguang Chen, Nong

Xiao, and Ming Zhao. HasFS: optimizing file system

consistency mechanism on nvm-based hybrid storage

architecture. Cluster Computing, 23:2510–2515, 2020.

[33] Yubo Liu, Yuxin Ren, Mingrui Liu, Hanjun Guo, Xie

Miao, and Xinwei Hu. Cache or direct access? revital-

izing cache in heterogeneous memory file system. In

Proceedings of the Workshop on Disruptive Memory

Systems (DIMES’23), pages 38–44, 2023.

[34] Hasan Al Maruf, Hao Wang, Abhishek Dhanotia, Jo-

hannes Weiner, Niket Agarwal, Pallab Bhattacharya,

Chris Petersen, Mosharaf Chowdhury, Shobhit O.

Kanaujia, and Prakash Chauhan. TPP: transparent page

placement for CXL-enabled tiered memory. In Proceed-

ings of the International Conference on Architectural

Support for Programming Languages and Operating

Systems (ASPLOS’23), pages 742–755, 2023.

[35] Nimrod Megiddo and Dharmendra S. Modha. ARC: A

self-tuning, low overhead replacement cache. In Pro-

ceedings of the USENIX Conference on File and Storage

Technologies (FAST’03), pages 115–130, 2003.

[36] openGauss. openGauss. https://opengauss.org/,

December 2023.

[37] Jiaxin Ou, Jiwu Shu, and Youyou Lu. A high perfor-

mance file system for non-volatile main memory. In

Proceedings of the European Conference on Computer

Systems (EuroSys’16), pages 1–16, 2016.

[38] Vivek S. Pai, Peter Druschel, and Willy Zwaenepoel.

IO-Lite: A unified I/O buffering and caching system. In

Proceedings of the USENIX Conference on Operating

Systems Design and Implementation (OSDI’99), 1999.

USENIX Association 22nd USENIX Conference on File and Storage Technologies 85

https://gitlab.com/arm-hpc/benchmarks/coral-2/BigSort
https://gitlab.com/arm-hpc/benchmarks/coral-2/BigSort
https://opengauss.org/

[39] Amanda Raybuck, Tim Stamler, Wei Zhang, Mattan

Erez, and Simon Peter. HeMem: Scalable tiered mem-

ory management for big data applications and real nvm.

In Proceedings of the ACM Symposium on Operating

Systems Principles (SOSP’21), pages 392–407, 2021.

[40] Yuxin Ren, Gabriel Parmer, Teo Georgiev, and Gedare

Bloom. CBufs: Efficient, system-wide memory man-

agement and sharing. In Proceedings of the ACM SIG-

PLAN International Symposium on Memory Manage-

ment (ISMM’16), pages 68–77, 2016.

[41] Liana V. Rodriguez, Farzana Yusuf, Steven Lyons,

Eysler Paz, Raju Rangaswami, Jason Liu, Ming Zhao,

and Giri Narasimhan. Learning cache replacement with

CACHEUS. In Proceedings of the USENIX Conference

on File and Storage Technologies (FAST’21), pages 341–

354, 2021.

[42] Vasily A. Sartakov, Lluís Vilanova, and Peter Pietzuch.

CubicleOS: A library os with software componentisa-

tion for practical isolation. In Proceedings of the Interna-

tional Conference on Architectural Support for Program-

ming Languages and Operating Systems (ASPLOS’21),

pages 546–558, 2021.

[43] Timothy Stamler, Deukyeon Hwang, Amanda Raybuck,

Wei Zhang, and Simon Peter. zIO: Accelerating IO-

Intensive applications with transparent Zero-Copy IO.

In Proceedings of the USENIX Conference on Operating

Systems Design and Implementation (OSDI’22), pages

431–445, 2022.

[44] Adam Sweeney, Doug Doucette, Wei Hu, Curtis Ander-

son, Mike Nishimoto, and Geoff Peck. Scalability in

the XFS file system. In Proceedings of the USENIX

Technical Conference (ATC’96), pages 363–375, 1996.

[45] Vasily Tarasov, Erez Zadok, and Spencer Shepler.

Filebench: A flexible framework for file system bench-

marking. USENIX ;login:., 41(1):6–12, 2016.

[46] Haris Volos, Andres Jaan Tack, and Michael M. Swift.

Mnemosyne: Lightweight persistent memory. In Pro-

ceedings of the International Conference on Architec-

tural Support for Programming Languages and Operat-

ing Systems (ASPLOS’11), pages 91–104, 2011.

[47] Jing Wang, Youyou Lu, Qing Wang, Minhui Xie, Keji

Huang, and Jiwu Shu. Pacman: An efficient compaction

approach for log-structured key-value store on persis-

tent memory. In Proceedings of the USENIX Technical

Conference (ATC’22), pages 773–788, 2022.

[48] Yongfeng Wang, Yinjin Fu, Yubo Liu, Zhiguang Chen,

and Nong Xiao. Characterizing and optimizing hy-

brid DRAM-PM main memory system with application

awareness. In Proceedings of the Design, Automation

& Test in Europe Conference & Exhibition (DATE’22),

pages 879–884, 2022.

[49] Hobin Woo, Daegyu Han, Seungjoon Ha, Sam H. Noh,

and Beomseok Nam. On stacking a persistent memory

file system on legacy file systems. In Proceedings of the

USENIX Conference on File and Storage Technologies

(FAST’23), pages 281–296, 2023.

[50] Xiaojian Wu and A. L. Narasimha Reddy. SCMFS: A

file system for storage class memory. In Proceedings

of the International Conference for High Performance

Computing, Networking, Storage and Analysis (SC’11),

pages 1–11, 2011.

[51] Jian Xu and Steven Swanson. NOVA: A log-structured

file system for hybrid volatile/non-volatile main memo-

ries. In Proceedings of the USENIX Conference on File

and Storage Technologies (FAST’16), pages 323–338,

2016.

[52] Jian Yang, Juno Kim, Morteexe Hoseinzadeh, Joseph

Izraelevitz, and Steve Swanson. An empirical guide

to the behavior and use of scalable persistent memory.

In Proceedings of the USENIX Conference on File and

Storage Technologies (FAST’20), pages 169–182, 2020.

[53] Juncheng Yang, Ziming Mao, Yao Yue, and K. V.

Rashmi. GL-Cache: Group-level learning for efficient

and high-performance caching. In Proceedings of the

USENIX Conference on File and Storage Technologies

(FAST’23), pages 115–133, 2023.

[54] Juncheng Yang, Yazhuo Zhang, Ziyue Qiu, Yao Yue,

and K. V. Rashmi. FIFO queues are all you need for

cache eviction. In Proceedings of the ACM Symposium

on Operating Systems Principles (SOSP’23), pages 130–

149, 2023.

[55] Qirui Yang, Runyu Jin, Bridget Davis, Devasena Inu-

pakutika, and Ming Zhao. Performance evaluation on

CXL-enabled hybrid memory pool. In Proceedings of

the International Conference on Networking, Architec-

ture and Storage (NAS’22), pages 1–5, 2022.

[56] Shao-Peng Yang, Minjae Kim, Sanghyun Nam, Juhyung

Park, Jin yong Choi, Eyee Hyun Nam, Eunji Lee,

Sungjin Lee, and Bryan S. Kim. Overcoming the mem-

ory wall with CXL-enabled SSDs. In Proceedings of

the USENIX Technical Conference (ATC’23), pages 601–

617, 2023.

[57] Jifei Yi, Mingkai Dong, Fangnuo Wu, and Haibo Chen.

HTMFS: Strong consistency comes for free with hard-

ware transactional memory in persistent memory file

systems. In Proceedings of the USENIX Conference on

86 22nd USENIX Conference on File and Storage Technologies USENIX Association

File and Storage Technologies (FAST’22), pages 17–34,

2022.

[58] Baoquan Zhang and David HC Du. NVLSM: A persis-

tent memory key-value store using log-structured merge

tree with accumulative compaction. ACM Transactions

on Storage, 17(3):1–26, 2021.

[59] Wenhui Zhang, Xingsheng Zhao, Song Jiang, and Hong

Jiang. ChameleonDB: a key-value store for Optane

persistent memory. In Proceedings of the European

Conference on Computer Systems (EuroSys’21), pages

194–209, 2021.

[60] Shengan Zheng, Morteza Hoseinzadeh, and Steven

Swanson. Ziggurat: A tiered file system for non-

volatile main memories and disks. In Proceedings of the

USENIX Conference on File and Storage Technologies

(FAST’20), pages 207–219, 2020.

[61] Diyu Zhou, Vojtech Aschenbrenner, Tao Lyu, Jian

Zhang, Sudarsun Kannan, and Sanidhya Kashyap. En-

abling high-performance and secure userspace nvm file

systems with the trio architecture. In Proceedings of

the ACM Symposium on Operating Systems Principles

(SOSP’23), pages 150–165, 2023.

[62] Diyu Zhou, Yuchen Qian, Vishal Gupta, Zhifei Yang,

Changwoo Min, and Sanidhya Kashyap. ODINFS: Scal-

ing PM performance with opportunistic delegation. In

Proceedings of the USENIX Symposium on Operating

Systems Design and Implementation (OSDI’22), pages

179–193, 2022.

USENIX Association 22nd USENIX Conference on File and Storage Technologies 87

	Introduction
	Background and Motivation
	Heterogeneous Memory
	Direct Access (DAX) vs. Cache
	Motivation

	FLAC Design
	Overview
	Zero-Copy Caching
	Heterogeneous Page Table
	Transfer Data with Page Attaching

	Parallel-Optimized Cache Management
	Parallel-Optimized Synchronization/Migration
	Page State/Version Transition
	Cache Policy
	FS-FLAC Collaboration Logging

	Case Study: FlacFS
	Metadata Management
	Data Management
	Security and Consistency
	Advantages of FlacFS/FLAC

	Discussion
	Evaluation
	Benchmark Performance
	Micro Benchmark
	Macro Benchmark

	Design Analysis
	Impact of DRAM Cache Size
	Impact of I/O Size
	Impact of Page Alignment
	Impact of COW Page Fault
	Performance Breakdown
	Impact of File Size

	Real-World Applications
	Command Line Application
	Big Data Processing

	Conclusion

