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Abstract

Serverless computing has revolutionized application deploy-
ment, obviating traditional infrastructure management and dy-
namically allocating resources on demand. A significant use
case is I/O-intensive applications like data analytics, which
widely employ the pivotal "shuffle" operation. Unfortunately,
the shuffle operation poses severe challenges due to the mas-
sive PUT/GET requests to remote storage, especially in high-
parallelism scenarios, leading to high performance degrada-
tion and storage cost. Existing designs optimize the data pass-
ing performance from multiple aspects, while they operate in
an isolated way, thus still introducing unforeseen performance
bottlenecks and bypassing untapped optimization opportuni-
ties. In this paper, we develop MinFlow, a holistic data passing
framework for I/O-intensive serverless analytics jobs. Min-
Flow first rapidly generates numerous feasible multi-level data
passing topologies with much fewer PUT/GET operations,
then it leverages an interleaved partitioning strategy to divide
the topology DAG into small-size bipartite sub-graphs to op-
timize function scheduling, further reducing over half of the
transmitted data to remote storage. Moreover, MinFlow also
develops a precise model to determine the optimal config-
uration, thus minimizing data passing time under practical
function deployments. We implement a prototype of MinFlow,
and extensive experiments show that MinFlow significantly
outperforms state-of-the-art systems, FaaSFlow and Lambada,
in both the job completion time and storage cost.

1 Introduction

Serverless computing, or simply "serverless", represents a
transformative cloud-computing model that dramatically
streamlines application deployment. Within this paradigm, the
burdensome tasks of traditional infrastructure management
recede into the background as cloud providers dynamically
allocate resources, billing solely for the consumed computing

*Yongkun Li is the corresponding author.
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Figure 1: Serverless Computing Framework. Circles represent
sub-tasks, and each link between circles represents a data transfer,
consisting of one PUT plus one GET.

power. Platforms such as AWS Lambda [5] and Azure Func-
tions [31] exemplify this shift, facilitating the seamless execu-
tion of code in response to specific triggers. As we navigate
the evolving expanse of cloud technologies, the prominence of
serverless is undeniable, marking a significant change in the
development, deployment, and scaling of modern applications.
This shift becomes particularly noteworthy when consider-
ing I/O-intensive applications like data analytics [21, 22, 35].
Embedded in this analytical landscape are frameworks like
Google’s MapReduce [15] and Apache Spark [44].

In data analytics, the "shuffle" operation is pivotal for data
passing between stages. Notably, over half of Facebook’s daily
analytics entails at least one shuffle operation [45]. Given the
stateless nature of serverless, data are largely passed through
remote Object Stores like S3 [8], during which each pair of
sender and receiver functions involve a PUT and a GET opera-
tion. However, shuffle’s all-to-all connectivity, i.e., each func-
tion should pass its output to all functions in the next stage,
usually leads to a huge number of PUT/GET requests, espe-
cially under high parallelism of functions. For instance, with
500 functions, one can anticipate 500×500=250,000 PUTs
and an equal number of GETs, a total of 500,000 requests.
Due to the request rate caps of S3, excessive PUT/GET oper-
ations risk exceeding these limits, causing prolonged delays.
For example, in the Pocket framework, shuffle can dominate,
taking up 62% of the time for certain jobs [22]. Worse yet,
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while S3’s storage capacity is affordable, the cost tied to mas-
sive PUT/GET operations can escalate very high.

In data analytics, optimizing the shuffle operation has led
to a myriad of solutions, each has its unique trade-off. Though
these solutions propose diverse optimization strategies, they
lack a comprehensive and integrative consideration, resulting
in suboptimal performance. First, the approach of using pri-
vate storage has been utilized [22, 35], wherein shuffle is con-
ducted through self-maintained storage such as ElastiCache
clusters [4]. While it offers enhanced shuffle speed by granting
users exclusive ownership of the storage medium, the ensu-
ing costs are considerably elevated. Additionally, the onus
of intricate cluster management falls back on the developers,
somewhat undermining the convenience of serverless com-
puting. The method of leveraging intra-worker memory offers
another alternative [13,25], harnessing over-provisioned local
memory in workers for faster shuffle operations. However, its
applicability remains tethered to functions situated within the
same worker, and due to the all-to-all data passing require-
ment between functions, only a small portion of data passing
can be performed via the local memory of workers. Lastly,
the technique of utilizing multi-level shuffle [32, 34], inspired
by the mesh networks from HPC (High Performance Com-
puting) [23], endeavors to streamline shuffle operations. Yet,
it incurs multiplied data to be transmitted, making the band-
width limit on the function side a new bottleneck, especially
when the size of the data input is large. In conclusion, rather
than offering a holistic solution, existing techniques operate
in isolated realms, sometimes incurring unintended costs or
introducing unforeseen bottlenecks. Moreover, the absence of
a systematic exploration implies that potential optimizations
still remain untapped.

In this paper, we propose MinFlow, a unified data passing
framework for I/O-intensive analytics jobs atop serverless,
which pinpoints globally optimal configuration to simulta-
neously achieve high performance and low cost. MinFlow
contains the following key innovations:

• It optimizes the data passing topology by first segmenting
functions into adaptive groups and then progressively con-
verging the groups to get integrated multi-level topologies.
This methodology not only greatly reduces the number of
PUT/GET operations, but also provides the flexibility of
selecting from a broader range of feasible topologies under
real-world settings.

• It develops an interleaved partitioning strategy to optimize
the function scheduling. Specifically, it partitions a multi-
level topology into bipartite structures, and schedules func-
tions in units of the bipartite sub-graphs so as to allow the
localization of data passing within workers.

• It leverages a precise model to pinpoint the optimal con-
figuration according to real function deployments, i.e., the
best combination of topology and function scheduling, so
as to simultaneously minimize the number of PUTs/GETs
and the storage cost.

We implement a prototype of MinFlow open-sourced at
https://github.com/lt2000/MinFlow and conduct ex-

tensive experiments based on Amazon cloud service. Our
experiments using the benchmarks of TeraSort, TPC-DS, and
WordCount show that MinFlow significantly outperforms state-
of-the-art works in both the shuffling performance and storage
cost. For example, in high-parallelism case of 600 mapper
and 600 reducer functions for 200GB TeraSort, MinFlow re-
duces the shuffle time by 66.62% and 89.22%, compared to
Lambada [32] and FaaSFlow [25], respectively, and it also
reduces the storage cost by 86% and 98.71%, respectively.

2 Background and Motivation

2.1 Background
Serverless Computing Framework. As the building blocks
of serverless, FaaS and BaaS (e.g., Amazon Lambda [5] and
S3 object store [8]) respectively empower users to directly
invoke predefined functions in containers and access remote
back-end services via RESTful APIs. When employing server-
less services, a common practice is first to decouple applica-
tions’ states and compute logic, then delegate them to BaaS-
side storage and FaaS-side functions separately (see Figure
1). Merits of the architecture are twofold. First, the separa-
tion of storage and computation and the containerized func-
tions greatly facilitate scaling up/down compute resources as
needed (e.g., to tackle bursty workloads). Second, it provides
a fine-grained "pay-as-you-go" billing model that charges for
actually used resources rather than the reserved amount; e.g.,
Amazon Lambda provides billing increments of one millisec-
ond during function execution [6]. Due to all its virtues, an
increasing number of applications have embraced the archi-
tecture, including Web, IoT, data analytics, etc. [7, 18, 31].
Data Analytics atop Serverless. Data analytics aims at ef-
ficiently processing huge amounts of data as specified to
obtain desired results, and it has been employed in a wide
range of domains, including scientific computing, machine
learning, large-scale graph computations, etc. [39]. To of-
fer essential scalability and fault-tolerance, mainstream data
analytics frameworks [15, 30, 43] commonly adopt the bulk-
synchronous-parallel model (BSP) [40], which divides a job
into consecutive stages, each stage composed of parallel sub-
tasks. When each stage is completed, the intermediate results
are transferred to the next stage, via communication primitives
such as shuffle and broadcast [14,19] for further computation.
Thereby, the workflow of jobs employing BSP can be rep-
resented as DAGs, as illustrated in Figure 1. To deploy data
analytics jobs atop serverless platforms, users typically first
declare the job’s workflow to a coordinator using configura-
tion files. Then, the coordinator assumes control, activating
functions to perform consecutive stages sequentially, with
sub-tasks within each stage executed by parallel functions.
Users receive notifications when the whole job is completed.
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Figure 2: Existing Approaches.

Notably, since serverless functions are unable to directly com-
municate with each other, data transmission between stages
is realized via remote back-end storage, typically S3, rather
than direct peer-to-peer (P2P) data passing. Since analytics
workloads typically have a wide variance of resource needs
over time [34, 35, 46], traditional physical/VMs deployments
can frequently suffer from resource wastage or performance
degradation. On the contrary, benefiting from the elasticity
and fine-grained billing model of FaaS, the job’s computa-
tion can be easily accelerated by splitting each stage into
more sub-tasks assigned to parallel functions, at a signifi-
cantly lower cost and higher performance. Thereby, a lot of
research works have focused on running data analytics based
on serverless [13, 20, 22, 25, 27, 32, 34, 35, 45].

2.2 Dilemma Caused by Shuffle

In data analytics, Shuffle is the most common primitive for
passing data between adjacent stages. Prior research shows
that more than 50% of daily data analytics jobs at Facebook
involve at least one shuffle operation [45]. As shown in Figure
1, during the shuffle process, each sub-task in the previous
stage distributes its output to all sub-tasks in the next stage.
Such an all-to-all data passing method would greatly "break
down" the intermediate results, causing proliferating requests:
for instance, if the parallelism of stages is N, then at least
2N2 object PUTs/GETs are required to pass the intermediate
results since there would be N2 links between stages and each
link represents a PUT plus a GET. This causes problems in
two aspects. First, it significantly degrades the performance.
Due to S3’s request rate limit (3.5k and 5.5k req/s for writes
and reads [10]), the quadratic 2N2 PUTs/GETs could eas-
ily be throttled, especially when N is large. Consequently,
while the computation time could be slashed by improving
the parallelism N, the entire data analytics process is signifi-
cantly slowed down by shuffle. For example, in Pocket, over
62% of time is spent shuffling data, while computation only
takes 17% of time for 100GB TeraSort [22]. Second, it drasti-
cally inflates the cost. Albeit S3 offers cheap storage (0.023
USD$ per GB/month), it incurs large access cost as it charges

in increments of single request (0.005/0.0004 USD$ per 1k
PUTs/GETs) [9]. As a result, the 2N2 PUTs/GETs would
rapidly increase the cost as N goes up. In conclusion, both the
elasticity and economy of serverless get severely impeded by
the shuffle.

2.3 Existing Approaches

Existing approaches bypass or mitigate S3’s throttling by (1)
performing Shuffle via a private storage cluster, (2) perform-
ing Shuffle via intra-worker memory, or (3) using multi-level
Shuffle to decrease the number of PUTs/GETs.
Shuffle via Private Storage. As a public cloud storage ser-
vice shared by numerous users and applications, S3 inher-
ently allocates a limited request rate to each single user, to
guarantee fairness and avoid interference among tenants. A
straightforward way to eliminate this restriction is to replace
S3 with self-maintained private storage, for example, Elasti-
Cache clusters [4]. This provides the user an exclusive owner-
ship of the storage service, thereby greatly improving shuf-
fle speed. However, losing S3’s sharing economy and fine-
grained billing model often leads to a significant increase in
cost. As Pocket [22] suggests, the cost is 100 times higher
than S3 for sorting jobs. Therefore, some remedies have been
proposed to mitigate the surging cost, e.g., as shown in Fig-
ure 2(a), Pocket [22] and Locus [35] dynamically rightsizing
resources, and combine high-end and cheap storage media to
achieve better trade-offs between performance and cost.
Shuffle via Intra-worker Memory. Another way to bypass
S3’s throttling is to reclaim and leverage over-provisioned
memory in workers to accelerate shuffle [13,25]. More specif-
ically, data passing between functions located in the same
worker is performed via its local memory. Take functions
F2 and F3 co-located in worker W1 in Figure 2(b) as an ex-
ample. Suppose data to be passed from Fi to Fj is denoted
as <Fi, Fj>. To deliver data to F3, F2 first puts <F2, F3> into
W1’s local memory, then F3 fetches <F2, F3> immediately
afterwards and finishes the transmission. This approach per-
forms well in both performance and cost, since the reclaimed
over-provisioned local memory not only offers much higher
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bandwidth and lower latency, but also does not incur extra
overhead. The downside is the limitation in its applicability,
as only co-located functions can adopt this approach [25].
Multi-level Shuffle. Borrowing ideas from HPC, which
achieves all-to-all connections among processors through
the k-dimensional Mesh Network [16], Starling [34] and
Lambada [32] project shuffle-involved functions onto a k-
dimensional mesh with a side length of k

√
N where N refers to

the number of functions, and applies the all-to-all collective
primitive to subsets of functions, once for each dimension, to
realize all-to-all shuffle among functions. Compared to direct
data passing, such a multi-level indirect manner (ML-Shuffle)
greatly decreases the number of requests, since each request
loads a larger volume of data, and only one PUT plus one
GET is required for each link. To be more precise, k-level
shuffle (kL-Shuffle) reduces the number of requests from 2N2

to 2kN k
√

N. For example, in Figure 2(c) we show a 2L-Shuffle
by setting k as 2. As can be seen, only 60 requests are needed,
compared to 72 when directly connecting functions (see Fig-
ure 2(a)). Due to fewer requests that need to be transmitted
through remote S3 during the shuffle, performance degrada-
tion caused by S3’s throttling gets mitigated, and lower fees
are charged as well.

2.4 Limitations
The aforementioned approaches face respective limitations
in cost, performance, or applicability. First, to maintain the
private storage for faster shuffle, users have to bear additional
management works like resource scaling, fault tolerance, etc.,
which should have been undertaken by serverless, thus vio-
lating the easy-of-use principle. Besides, private storage still
entails high costs. Although using dedicated NVMe storage
seems cost-efficient, the need to mount NVMe devices to
VMs [22] and the limited network bandwidth of VMs signifi-
cantly hinder the speed advantage, requiring the allocation of
numerous NVMe instances for performance. To illustrate this,
we run the state-of-the-art KV database Apache kvrocks [11]
on varying numbers of NVMe instances (EC2 i3.2xlarge, the
same as Pocket uses) for shuffle. As depicted in Figure 3, in-
creasing NVMe instances reduces shuffle time but at a signifi-
cant cost. Pocket also reports that the cost of Pocket-NVMe
is 40 times that of S3 for TeraSort [22].

Second, for performing shuffle via intra-worker memory
(e.g., FaaSFlow [25]), it’s only applicable to functions co-
located at the same worker. For analytics jobs, each group
of co-located functions represents a sub-graph in the whole
workflow DAG, and all groups together make up the whole
DAG. As a result, though functions in the same sub-graph
can communicate through local memory, due to the all-to-all
feature of shuffle, links between sub-graphs still dominate,
which necessitates the use of remote storage for data passing.
Worse yet, the benefits of memory-assisted data passing could
be easily offset by the stragglers caused by slower remote
storage. As shown in Figure 3, under different configurations,
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Figure 3: TeraSort Shuffle Time under Different Configurations.
Baseline transfers all intermediate data via S3 and the storage costs
are normalized to the baseline.

the shuffle time of FaaSFlow is only reduced by 9.94% to
11.39% than that of the Baseline.

Regarding ML-Shuffle (e.g., Lambada [32]), existing meth-
ods based on k-dimensional mesh suffer from an applicability
problem, i.e., it mandates a symmetrical Mapper-Reducer
setting, which means the number of Mappers and Reducers
must be the same (e.g., both are N). Besides, while allow-
ing to adjust the topology with different parameters (e.g., k),
they merely set parameters arbitrarily and delegate the tricky
task of choosing the optimal parameters to users, which easily
leads to sub-optimal performance. For example, while larger k
decreases the number of requests more significantly, it brings
about multiplied extra data volume to be transferred. Because
cloud vendors often assign limited network bandwidth to each
function [12, 22, 32], such heavy traffic could exacerbate the
problem. On the contrary, smaller k often comes with an un-
satisfactory effect on reducing the number of requests. For
example, under 100 functions and 200GB input data, the shuf-
fle time of Lambada is 1.91× than that of the Baseline (see
Figure 3). Moreover, the 2-level shuffle algorithm can not
be easily applied to more levels, and the extension from the
2-level shuffle algorithm to a general k-level one is non-trivial
(see §A.3).

Last, as shown in Figure 3, compared to the above three
approaches, MinFlow achieves a high-performance and cost-
efficient shuffle. We will further carry out extensive experi-
ments to show the benefits of MinFlow in §4.
Inefficiency Analysis. Though a series of optimizing "ac-
tions" can be employed, for lack of a systematic understand-
ing, there isn’t a judicious "decision maker" that can use them
collaboratively. Consequently, multiple factors together de-
cide the efficiency of shuffle, e.g., DAG topology, function
scheduling, transmission manner assignment, existing opti-
mizations work in their respective single dimension, paying
disproportionate expenses or leaving the rest as a bottleneck.
Besides, even for each single dimension, the possible action
space is still not fully explored. For instance, current ML-
Shuffle directly migrates the k-dimensional mesh from the
HPC field, whose applicability is strictly limited in the server-
less scenario. Last, rather than carefully considering the char-
acteristics of specific analytics jobs and environment variables
to select the most appropriate choice, they often merely offer
empirical value, e.g., k is set as 2. All these make existing
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approaches reach the sub-optimal configuration, leading to
degraded performance/cost/ease-of-use.

2.5 Main Idea and Challenges
Main Idea. The key factors deciding analytics jobs’ effi-
ciency include function topology represented by the DAG,
function scheduling, and the data transmission media. Com-
pared to considering them separately, optimizing them in a
unified way greatly helps find the optimal configuration, so
as to eradicate bottlenecks from the whole workflow. For in-
stance, ML-Shuffle facilitates traffic localization through local
memory since the links at each level are more sparse and
functions can be co-located more easily to avoid cross-worker
data transmission. Also, traffic localization largely absorbs the
additional traffic volume induced by ML-Shuffle. Therefore,
for any given analytics job, our main idea is to first construct
the whole configuration space by considering all three dimen-
sions, then derive the optimal configuration from the space,
based on user requirements, the task’s characteristics, and the
serverless platform’s rate limit and billing rules.
Challenges. To realize the above idea, we mainly face the
following challenges.

• Constructing ML-Shuffle topology space. To ensure ap-
plicability, we must be able to construct the complete topo-
logical space for any analytics job, including those with
an asymmetric setting of Mappers and Reducers, despite
the conventional mesh-based method supposes #mapper =
#reducer = N and only provides a concrete algorithm for
2-level shuffle† . Plus, for a specified analytics job, the com-
plete ML-Shuffle topology space contains a number of pos-
sible combinations. Thus we need to efficiently construct
the ML-Shuffle topology space with low overhead.

• Function co-location and data transmission. For each
possible topology in the space, we need to carefully as-
sign functions to workers to maximize the proportion of
leveraging local memory for data passing, while simultane-
ously ensuring load-balance among workers and avoiding
stragglers. This process is equivalent to that of searching
for a partitioning scheme that divides the whole DAG into
sub-graphs consisting of co-located functions in accordance
with requirements, which is an NP-hard problem and es-
pecially time-consuming when the number of functions is
large.

• Finding the optimal configuration. To select the optimal
configuration from the space, we need to precisely model
the mapping from each configuration to its performance
and cost. To achieve this, we must take multiple key fac-
tors into consideration, e.g., the analytics job’s intermediate
data volume and the number of I/O requests, functions’ net-
work bandwidth, and remote storage’s request rates, some
of which can only be obtained at runtime, or be dependent

†#mapper and #reducer are the number of mappers and reducers, and N
is a positive integer.
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on specific platforms.

3 MinFlow Design

To optimize the data passing between functions, we propose
MinFlow, a unified data passing framework for analytics jobs
atop serverless platforms, which seeks the global optimal con-
figuration to achieve high performance and low cost simulta-
neously. We first introduce the overall architecture (§3.1) and
elaborate on each technique in detail (§3.2-§3.4).

3.1 Overview
As Figure 4 illustrates, MinFlow resides in the cloud-side con-
trol plane, generating appropriate configuration for specific
analytics jobs upon receiving user-submitted workflow specifi-
cations which delineate data passing paths between functions
and the communication operators executed by these functions.
Then, the coordinators deploy and run the task accordingly,
upon FaaS and BaaS platforms. Specifically, MinFlow consists
of three key components that work collaboratively to meet
this goal while tackling the aforementioned challenges at the
same time. A brief introduction of the components and their
interaction is as follows.

• Topology Optimizer. For a given analytics job, it gener-
ates equivalent multi-level topologies based on the original
single-level topology, via a novel progressively converging
method to sidestep the inherent applicability downside of
the mesh-based approach. More specifically, all candidates
for the ultimate optimal topology, i.e., those with the fewest
edges for each possible level, are rapidly constructed by a
dynamic programming algorithm, while others are ignored.

• Function Scheduler. For each generated candidate topol-
ogy, the Function Scheduler decides which functions should
be co-located at the same worker and passes data through
local memory, by dividing the complete topology into sub-
graphs. The partitioning must simultaneously achieve load
balance, cross-worker traffic minimization, and straggler
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avoidance. To solve the NP-hard problem, MinFlow em-
ploys a heuristic algorithm to find the near optimal solution
quickly.

• Configuration Modeler. Configuration Modeler selects the
optimal configuration, i.e., that with the shortest estimated
completion time and lowest cost for data passing, among
candidates. At its core is a mathematical model that fac-
tors in key variables, including serverless platform features
and analytics job characteristics, to achieve high estimation
accuracy. In particular, for those variables needed to be ob-
tained at runtime, it determines them by an efficient and
lightweight sampling method.

Note that though our current design follows FaaSFlow’s
distributed function coordination, which employs multiple
coordinators to prevent function scheduling from becoming
the bottleneck (see Figure 4), MinFlow also applies to the more
conventional architecture with a centralized coordinator.

3.2 Topology Optimizer

Progressively Converging ML-Shuffle. Following the mesh-
based ML-Shuffle, the progressively converging ML-Shuffle
attempts to generate optimized topology, which is equivalent
to the original single-level shuffle directly linking all pairs of
mappers and reducers, by adding intermediate functions to
reduce the number of required links. In contrast, it aims to
offer essential flexibility to search in the complete feasible
space for the optimal topology, instead of only providing a
single sub-optimal topology as the mesh-based method does
[32,34]. Moreover, it’s a general k-level shuffle algorithm that
allows an asymmetric number of mappers and reducers.

The key idea behind the progressively converging ML-
Shuffle is a "divide and conquer" strategy. To avoid ambiguity,
we clarify that a kL-Shuffle network consists of k+1 function
levels (denoted as flevel) and k communication levels (de-
noted as clevel), and Figure 5(a) shows a 3L-Shuffle network
involving four flevels and three clevels. Rather than projecting
functions to a rigid k-dimensional grid, progressively converg-
ing first divides functions in the first flevel into groups of the
same size (initially one) and gradually lets them converge
into larger groups in the next flevel, while preserving the full
connection between each group and its upstream mappers,
until all functions in the last flevel exist in the same group,
thus ultimately achieving global all-to-all connection. For ex-
ample, as Figure 5(a) illustrates, to build a three-level shuffle
when #mapper = #reducer = 8, functions are respectively di-
vided into 8, 4, 2, and 1 group for flevel 0, 1, 2, 3. Suppose we
let Ci, j/Fi, j denote the j-th group/function at flevel i, the data
in C0,0 in turn passes into C1,0, C2,0, and C3,0. Analogously,
the data in C0,7 passes into C1,3, C2,1, and C3,0. The rest are
similar.

More generally, to derive an L-level topology comprising
L+1 function levels, with each flevel having N functions, we
divide the functions of the i-th flevel into gi groups, where
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Figure 5: Progressively Converging ML-Shuffle Topology. Squ-
ares represent functions, and the upper and lower tuples inside func-
tions respectively represent the function’s id and the data’s range.

gi( 0 ≤ i ≤ L) meets the following conditions:
g0 = N, gL = 1, gi = di ×gi+1 where di ∈ N+\{1}. (1)

When converging groups, to preserve the full connection be-
tween the new group in the flevel i+1 and its upstream map-
pers, for each function in the new group, a unique path be-
tween it and any upstream group in the flevel i must be guar-
anteed. To achieve this, we set the receiver functions of Fi, j
as R:

R = {Fi+1,k|⌊k/si+1⌋= ⌊ j/si+1⌋∧ ⌊k%si+1/di⌋= j%si},
where si = ⌊N/gi⌋, si+1 = ⌊N/gi+1⌋, di = ⌊gi/gi+1⌋.

(2)

For example, as shown in Figure 5(a), when converging C1,0
and C1,1 into C2,0, we link F1,0 to {F2,0, F2,1}, F1,1 to {F2,2,
F2,3}, F1,2 to {F2,0, F2,1}, and F1,3 to {F2,2, F2,3}, thus preserv-
ing the full connection between {F2,0, F2,1, F2,2, F2,3} with
their upstream mappers {F0,0, F0,1, F0,2, F0,3}. As we see, the
link distribution is also kept even to balance the transmission
load among functions. Moreover, to ensure the correctness of
data passing, each function must carefully partition and dis-
tribute received data to the next flevel functions. For function
Fi, j, it first shards its data into |R| continuous and equal-sized
parts, then orderly assigns them to the receiver functions, i.e.,
functions in its R. For instance, as illustrated in Figure 5(a),
F0,0 shards its data ⟨0,7⟩ into two parts ⟨0,3⟩ and ⟨4,7⟩, and
passes ⟨0,3⟩ and ⟨4,7⟩ to F1,0 and F1,1, respectively.

Notably, the flexibility of the progressively converging
method lies in the setting of D = {di|0 ≤ i ≤ L−1}, since it
determines G = {gi|0 ≤ i ≤ L} and any G that satisfies con-
dition Equation (1) corresponds to a unique valid multi-level
topology. In other words, by adjusting D we can easily de-
rive a space containing multiple optional topologies, which
may vary in edge distribution and the number of clevels and
thus have different preferences for the number of requests,
data transmission volume, etc. For example, the data passing
volume is obviously proportional to L since each additional
clevel incurs one more intermediate data transmission, and
combining Equation (2) we have that the number of edges
is N ×∑

L−1
i=0 di, by doubling which we can get the number of

PUTs/GETs. Actually, the space covers those topologies gen-
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erated by conventional mesh-based methods. And it can be
proven that supposing N can be decomposed as the product of
p prime factors, the space size SS = ∑

p
j=1 ∑

j
i=1

(−1) j−iip

i!( j−i)! (e.g.,
SS = 115975 when p = 10 and the detailed proof in §A.1).
Such selectivity greatly facilitates seeking the most appropri-
ate topology for an analytics job. Later, we will detail how to
select the appropriate topology from the space, by carefully
setting D.

Note that our approach may not work well in some cor-
ner cases, especially under prime function parallelism N.
However, this problem can be easily addressed by allowing
slight adjustments to the number N within a given bound, i.e.,
[N −α,N +α]. In our paper, we select α = 3, and we will
provide a detailed discussion on the impact of α in §4.5.

Last, compared to the mesh-based approach, the applica-
bility gets significantly improved as well. As depicted in
Figure 5(b), our approach even works for an asymmetric num-
ber of senders and receivers (#mapper = 8 ̸= #reducer = 6),
provided we keep the intermediate flevel the same size as the
Reduce flevel, and link functions as Equation (2) suggests.
Candidates for Optimal Topology. For the Topology Opti-
mizer, not provided with essential information (like function
scheduling plan, data transmission manner, and other runtime
states) to predict resulting completion time precisely, simply
deciding the best topology by completion time is a rub. On the
other hand, indiscriminately outputting all possible topologies
forces all of them to go through all modules, incurring high
overhead. Thus we adopt a middle-ground solution, i.e., to
first select a small set of candidates, based solely on a com-
parison between their topological structure, then relegate the
ultimate decision-making for the best to subsequent modules.
In particular, though it’s hard to directly find a total order
for topologies’ structure, comparison between them can be
summarized as the following cases:

• Case 1. Under the same L, the topology with the fewest
edges has the shortest completion time and data passing
cost, as it transfers the data with the fewest PUTs/GETs that
are more promptly processed by remote storage service.

• Case 2. Under different L, the comparison could be ambigu-
ous, since on the one hand, larger L reduces edges, thus
the number of PUTs/GETs. On the other hand, it transmits
the intermediate data L times, potentially throttled by the
function’s network bandwidth.

Therefore, based on the partially ordered comparison, we
add the locally optimal topology under each possible L, i.e.,
the one with the fewest edges, to our candidate set. Recall
that the number of edges is N ×∑

L−1
i=0 di. Then suppose N can

be decomposed into p prime factors, which means feasible
L lies in [1, p], candidate selection can be transformed into a
series of optimization problems as follows:

For L ∈ [1, p],

 minimize N ×∑
L−1
i=0 di

subject to ∏
L−1
i=0 di = N, di ∈ N+\{1}

(3)

We propose a dynamic programming algorithm to solve these
problems at once. Let MinSum(i, j) denote the minimized
sum of factors when factorizing i into j factors. Then we
need to find MinSum(N,L) for L ∈ [1, p]. The state transition
equation is as follows:

MinSum(i, j) =

 minn|i(n+MinSum(i/n, j−1)) j > 1

i j = 1
(4)

As we see, the equation formulates the value of MinSum(N,L)
recursively in terms of its sub-problems. Thus we employ a
bottom-up dynamic programming approach, i.e., iteratively
solving MinSum(i, j) with smaller i and j first and use their
solutions to arrive at solutions to bigger i and j. More specif-
ically, we can calculate all MinSum(N,L) for L ∈ [1, p] in a
nested loop. In the inner loop, i starts from 1 to N, while in
the outer loop, j progresses from 1 to p. Along the way, all
desired MinSum(N,L), 1 ≤ L ≤ p gets solved. Moreover, we
use Sol(i, j) to track the decomposition path of MinSum(i, j),
i.e., Sol(i, j > 1) = the selected n of MinSum(i, j) in Equa-
tion (4) and Sol(i,1) = i. Then by iteratively putting Sol(i, j)
along the decomposition path of MinSum(N,L) into a se-
quence, we can get the desired D = {di|0 ≤ i ≤ L− 1}, by
which we can easily derive the corresponding L-level topology
with the fewest edges.

3.3 Function Scheduler
The Function Scheduler assigns a scheduling plan to each
of the candidate topologies, indicating when and on which
worker each function should be invoked. While the "when"
question is straightforward to deal with by monitoring the
completion time of functions and following the data depen-
dency between functions, the latter "where" question must be
treated carefully to satisfy several important and interacting
requirements. Next, we first formulate the problem and then
demonstrate how to solve it.
Problem Formulation. The function placement problem is
equivalent to partitioning the whole DAG into sub-graphs,
where functions within each sub-graph must be co-located to
pass data via local memory, while different sub-graphs are
placed independently and communicate via remote storage.
Then our goal is to search for a partitioning scheme that
satisfies the following requirements:

1) Traffic localization. Since functions within sub-graphs are
co-located and communicate via faster local memory, the
resulting sub-graphs should include edges in the DAG as
much as possible, to localize more traffic and thus accelerate
the data passing.

2) Transmission straggler avoidance. Due to the synchroniza-
tion barrier of the BSP model, the duration of each clevel’s
transmission is decided by the slowest edge. Thus edges in
the same clevel should be either all included in sub-graphs
or not included at all, to avoid the benefit of faster local
memory being offset by stragglers caused by remote stor-
age.
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3) Load balancing. The DAG must be partitioned until all sub-
graphs width, i.e., the number of functions in the flevel with
the most functions, must be capped to ensure functions’
computing and communication load can be easily spread
among workers at all flevels and clevels.

Interleaved Graph Partitioning. As §2.4 suggests, the above
requirements are contradictory in the original single-level and
all-to-all topology. Surprisingly, the progressively converging
ML-Shuffle brings an opportunity to achieve them simultane-
ously. Since it transforms the rigid all-to-all connection into
multiple levels of more sparse connections, each clevel has
the favorable feature as follows.

Theorem 1. For a multi-level topology generated by the pro-
gressively converging method (the parallelism is N), the i-th
level of links corresponding to factor di, along with two ad-
jacent flevels of functions, can be divided into N

di
disjoint

complete bipartite graphs with width di.

Proof. According to Equation (2), Fi,m and Fi,n, where
⌊ m

si+1
⌋ = ⌊ n

si+1
⌋ and m ≡ n(mod si), have the same receiver

functions R. Hence, the functions at flevel i can be categorized
into N

di
conjugacy classes, with the elements within each class

sharing the same R. Each conjugacy class at flevel i and its R
at flevel i+1 together constitute a complete bipartite graph
with width di (detailed proof in § A.2).

From Theorem 1, any clevel can be decomposed into iso-
lated Complete Bipartite Graphs (CBGs), which are ideal
units for function co-location, since all edges in the clevel are
evenly included by same-sized CBGs as shown in Figure 6.
In other words, by putting functions within each CBG to the
same worker, data transmission of the clevel can be done via
workers’ memory instead of remote storage, greatly acceler-
ating data passing. Meanwhile, different CBGs can be placed
arbitrarily, without the need to be co-located.

So far we’ve found an excellent way to place functions for
each individual clevel, yet the method can’t be directly gener-
alized to function placement for the whole multi-level graph.
Since the communication of adjacent clevels involves a shared
flevel, e.g., clevels 0 and 1 both involve flevel 1 (see Figure 6),
co-location constraints of two clevels must be met at once,
which leads to multiplied width of co-location units. Worse
yet, when jointly considering all clevels, due to the cascade
effect, functions in the whole graph must be co-located to
the same worker, violating the load balance requirement. To
address the problem, we employ an interleaved partitioning
strategy, to decouple the tightly bound clevels so as to solve
them independently. Specifically, it removes edges in all odd-
numbered clevels, delegating that portion of data passing to
remote storage. The rationality lies in the following corollary,
which could be easily derived from Theorem 1.

Corollary 1. For a k-level topology generated by progres-
sively converging method (the parallelism is N), where each
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Figure 6: Function Scheduling.

level has the corresponding factors d0, d1, ..., dk−1, if we re-
move edges of all odd-numbered levels (1,3, ..., ⌊ k

2⌋×2−1),
the whole graph can be divided into disjoint CBGs with width
lying within Deven = {d0,d2, ..., d⌊ k−1

2 ⌋×2}

The interleaved approach (see Figure 6) acts as a heuris-
tic algorithm to solve the NP-hard graph partitioning prob-
lem [17,24,25], by giving quick solutions that fit the aforemen-
tioned requirements. Specifically, due to at least half of the
clevels being left for local memory to perform data passing,
performing function placement in units of resulting CBGs lo-
calizes over 50% of overall traffic. Meanwhile, since transmis-
sion media (i.e., local memory or remote storage) is assigned
in an interleaved manner, no communication straggler exists
during the job’s execution. Last, it allows us to selectively de-
cide which factors in D would be put in Deven, to minimize the
resulting CBGs’ width, thus achieving a fine-grained function
placement that facilitates load balancing.

3.4 Configuration Modeler
Topology Optimizer (§3.2) has offered a group of candidate
multi-level topologies, and Function Scheduler (§3.3) pro-
vided each with its appropriate function scheduling and place-
ment scheme. Configuration Modeler’s responsibility is to se-
lect the optimal one out of them. Since the additional function
level of a multi-level topology only works to assist commu-
nication and doesn’t change the job’s computing time, Con-
figuration Modeler opts to choose the one with the shortest
overall data passing time.

To achieve this, the Configuration Modeler must precisely
model each configuration’s resulting passing time. As dis-
cussed in §2.4, during each clevel’s communication, either
the function side or the storage side acts as the real bot-
tleneck, depending on the actual number of requests and
data volume. More specifically, the duration would be Ti =
2×max(Ti, f ,Ti,s),0 ≤ i ≤ L− 1, where Ti, f and Ti,s respec-
tively represents the time spent on function putting/fetching
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data in fixed rate and storage side processing received re-
quests, and since the two parts are overlapping, we take the
maximum of them. The reason behind the multiplier 2 is that
each clevel’s communication includes sender functions writ-
ing to the storage side plus receivers reading back. Due to
S3-based and memory-based communication alternating in
different clevels, caused by the interleaved transmission media
assignment (see §3.3), Ti, f and Ti,s are modeled differently in
the two types of clevels. Suppose the function number is N in
each flevel, in the S3-based clevel we have Ti, f =

Di
N∗b f

where
Di/N and b f are each function’s transmitted data volume
at flevel i and bandwidth ceiling respectively, and Ti,s =

Ri
qs

where Ri is the involved number of requests at clevel i and qs
is S3’s request rate. In contrast, for the memory-based clevel
Ti, f =

Di
M∗bt

and Ti,s =
Ri

M∗qt
, where M is the number of cluster

nodes, bt and qt respectively are the bandwidth ceiling and
I/O rate limit of Tmpfs [1] which we leverage to establish
the elastic reclaimed-memory file system. To summarize, the
overall data transmission time of a multi-level network is:

T = 2∗
L−1

∑
i=0

 max( Di
N∗b f

, Ri
qs
), i is odd.

max( Di
M∗bt

, Ri
M∗qt

), i is even.
(5)

Except for the data volume Di, other parameters in Equa-
tion (5) can be obtained before running the job. Yet Di is only
available by the runtime, preventing choosing the optimal
configuration before the job runs. We use a sampling and pro-
filing method to address the problem. As there is commonly a
linear, or a non-linear but deterministic relationship between
the size of input data and intermediate data [33], and Di keeps
consistent for all clevels, Configuration Modeler repeatedly
samples the original input with different sizes and executes
the job, recording the amount of intermediate data. Then each
time it gets a new <input data size, intermediate data size>
pair. By fitting these pairs using a curve, Configuration Mod-
eler can estimate the intermediate data size under the whole
input. Thus, by bringing all parameters into Equation (5), the
Configuration Modeler predicts the transmission time of all
candidate configurations, and selects the fastest one.

4 Evaluation

4.1 Experiment Setup
TestBed. We deploy our FaaS framework on 10 Amazon EC2
m6i.24xlarge instances, each with 96 vCPUs, 384GB mem-
ory, and 37.5 gigabits/s bandwidth, and we adopt Amazon
S3 as the remote storage. All compute instances run Ubuntu
22.04 LTS with Linux kernel 5.15.0. For our FaaS framework,
similar to FaasFlow, we run self-maintained functions within
docker containers (24.0.6 version), rather than directly adopt-
ing function services that are not transparent to us, so as to
better manage functions’ execution and lifetime.

Workload. We adopt three widely employed benchmarks in-
volving shuffle operations, ranging from typical MapReduce-
style tasks to SQL-style queries.

• TeraSort. Sorting a dataset based on the specified key.
• TPC-DS-Q16. TPC-DS consists of multiple SQL queries.

Among them, we select the most data-intensive one, i.e.,
the 16th query that performs a large joining via shuffle.

• WordCount. Counting word frequency in documents.

The datasets of the above workloads are respectively gener-
ated by Sort Benchmarks Generator [2], TPC-DS Tools [3],
and Purdue MapReduce Benchmarks Suite [36].
Comparison. We compare MinFlow (denoted as MF) with the
basic practice and two state-of-the-art works, in terms of both
performance (execution time) and cost (fees charged).

• Baseline. The most common and straightforward approach,
i.e., all intermediate results during shuffle are transferred
through remote S3 object store, denoted as BL.

• FaaSFlow. FaaS framework with state-of-the-art function
scheduling mechanism, which transmits intermediate data
via local storage within workers, referred to as FF.

• Lambada. State-of-the-art topology optimizing method, per-
forming multi-level shuffle to reduce PUTs/GETs to S3. We
select its optimal configuration and denote it as LBD.

Configuration. During all our experiments, we set the re-
source limit of each function as 2 CPU, 3GB memory,
and 75MB/s bandwidth, similar to prior research works
[21, 26, 41, 47], to simulate a common setting of Amazon’s
commercial function service Lambda. By default, we respec-
tively set the input size as 100GB and 200GB, and set the
parallelism as 400 functions and 600 functions, since MinFlow
mainly focuses on processing massive datasets with a large
number of functions, which is in accordance with the server-
less paradigm’s goal to support hyper-scale computation with
its superior scalability. Besides, we extensively adjust the in-
put size and parallelism to show MinFlow’s performance under
broader settings (see §4.5).

4.2 Microbenchmark Results
Shuffle Time & Storage Cost. Now we evaluate MinFlow’s
effectiveness in improving the shuffle speed and saving the
storage cost. Figure 7, 8 and 9 shows the shuffle time and
normalized storage cost (divided by the BL’s storage cost) of
all approaches under three different workloads.

Taking TeraSort as the example (Figure 7, we first focus on
the 600-function parallelism with 200GB input data size, the
BL takes nearly 180s to finish the shuffle operation. During
shuffling, not only do all functions await, but the bill for using
functions continues increasing as function services usually
charge based on time (e.g., in increments of 1ms). Besides,
compared to BL, FF only slightly reduces the shuffle time and
storage cost by 14.45% and 9.98%, respectively, since most of
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Figure 7: Shuffle Time of TeraSort.
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Figure 8: Shuffle Time of TPC-DS.
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Figure 9: Shuffle Time of WordCount.

PUTs/GETs (324000 out of 360000 = 90%) carrying interme-
diate data still go through remote S3 and only a tiny portion
(the rest 10%) can be performed via local storage, which we
presented the reason in §2.4. In contrast, LBD could greatly
accelerate the shuffle process with much less storage cost.
Specifically, it shortens the shuffle time by over 72.36% and
67.69% compared to BL and FF, meanwhile saving the storage
cost by 91.68% and 90.76%, respectively. Nevertheless, LBD
still experiences ~50s idle time to wait for the shuffle’s com-
pletion. As for MinFlow, it outperforms all the competitors
in terms of performance by slashing the shuffle time to 16s.
Compared to BL and FF, MinFlow achieves 10.8× and 9.3×
shuffle acceleration respectively, and even compared to LBD,
MinFlow still achieves 3× faster shuffle speed. In addition,
MinFlow greatly saves the storage cost (98.84%, 98.71%, and
86% compared to BL, FF, and LBD), for it not only greatly
reduces the number of PUTs/GETs but also largely eliminates
additional intermediate data volume via local storage. Under
400-function TeraSort with 200GB input data size, similar to
the 600-function parallelism, MinFlow preserves considerable
performance and cost improvement – as Figure 7(a) shows it
achieves 2.1× shuffle acceleration and 85.37% cost saving
compared to LBD. Yet one noticeable change is that the perfor-
mance benefit of MinFlow over BL and FF shrinks, although
still reaches as high as 76.99% and 74.03%, respectively. It’s
because the performance degradation caused by excessive
PUTs/GETs alleviates under lower parallelism. We will con-
duct more in-depth experiments about this phenomenon later
(see §4.5).

Aside from the above TeraSort, Figure 8 and 9 show the
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Figure 10: Load Balance. TeraSort,600#F,200GB.

results of TPC-DS-Q16 and WordCount. It can be found
that while the results of TPC-DS-Q16 are quite similar to
those of TeraSort, MinFlow shows much higher performance
benefit over other approaches when running WordCount, as
shown in Figure 9 where the vertical axis is logarithmic to
more clearly present the shuffle time. For example, under 600
functions with 200GB input data, compared to BL and FF,
MinFlow reduces the shuffle time by as high as 99.31% and
99.23%. Such phenomenon can be explained from the aspect
of intermediate data size – while TPC-DS-Q16 and TeraSort
share a common characteristic that the intermediate data size
of shuffle is consistent with the input data size, WordCount
has much less intermediate data since duplicate words in the
input would be eliminated with a counter.
Load Balance among Workers. Load balance has always
been a necessity for large-scale distributed systems since it
directly determines systems’ resource efficiency and quality
of service. To demonstrate MinFlow’s capability in load bal-
ancing, we count the load of each worker every 50ms to show
a fine-grained resource usage of workers. Figure 10(a), 10(b),
10(c) and 10(d) respectively show the CPU usage, memory
occupation, and traffic load of all 10 workers when running
TeraSort under 600 functions and 200GB input data with Min-
Flow, where the brighter red represents higher load. First, as
we can see, all types of loads are kept even among workers
throughout the process. Second, the load intensity of each
worker varies noticeably along the timeline, which is in line
with the BSP model’s characteristic that compute/memory
and traffic peaks appear alternatively. For example, the com-
pute and memory peaks indicated by the bright-red "stripes"
in Figure 10(a) and 10(b) represent the positive correlation
between compute and memory peaks. On the other hand, the
peaks of incoming traffic occur at around 0-5s (input) and
22.5-27.5s (GETs of remote storage shuffle), and peaks of
outgoing traffic occur at around 12.5-17.5s (PUTs of remote
storage shuffle) and 37.5-42.5s (output). They are both inter-
leaved with the above compute/memory peak. In addition, by
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Figure 11: Overall Time of TeraSort.
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Figure 12: Overall Time of TPC-DS.
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Figure 13: Overall Time of WordCount.

combining this set of results, we could find that for MinFlow
the remote storage shuffle only accounts for ~10s out of the
overall ~45s job running time, partly verifying MinFlow’s high
shuffle speed.

4.3 Overall Performance Analysis
Figure 11, 12 and 13 show the overall job completion time
under the same setting as in §4.2. We still first take the 600-
function with 200GB input data group as the example. In
terms of the overall job completion time, as we can see, com-
pared to other approaches MinFlow could contribute 41.35%-
77.98% improvement for TeraSort workload, 39.12%-72.86%
for TPC-DS, and 12.26%-82.46% for WordCount. The im-
provement mainly comes from shuffle time reduction, since
among the compute, shuffle, and input/output time only the
shuffle time changes significantly, while the other two parts
basically remain constant across all approaches.

Among three workloads, for TeraSort and TPC-DS that
have same-sized intermediate data with their input, shuffle
time plays a non-neglectable part throughout all compared ap-
proaches. For example, in the TeraSort group BL, FF, and LBD
respectively spend 88.65%, 87.23%, and 65.24% time on shuf-
fling. By employing MinFlow the proportion could be reduced
to 37.13%, contributing to not only more efficient compu-
tation but also better function use, since functions fees are
charged in increments of time units, say 1ms. However, when
it comes to WordCount, though the overall time improvement
is still significant compared to BL and FF, the benefit over
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Figure 14: Breakdown.

0 250 500 750 1000
Function number

0

1

2

Ti
m

e(
s)

Topology optimizer
Function scheduler
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LBD shrinks, as Figure 13 shows. The reason is WordCount’s
reduction in intermediate size for word deduplication – While
this does not noticeably impact BL and FF’s overall time for
their bottleneck lies in the excessive number of PUTs/GETs
instead of the transmitted data volume, it greatly alleviates
LBD’s bottleneck that is mainly caused by function bandwidth
limit. As a result, LBD’s shuffle time only accounts for 14.83%
of the overall job execution time, largely neutralizing the great
shuffle time improvement of MinFlow over LBD.

Last, since theoretically the compute and input/output
speed are proportional to the function number, increasing
the parallelism can easily slash both compute and input/out-
put time, which does not hold for shuffle time. Therefore
shuffle time accounts for a higher portion under high paral-
lelism, providing more optimization space. For example, as
Figure 11 shows, under 200GB input data size, compared with
400-function parallelism in which MinFlow achieves 26.49%-
53.38% overall time reduction, in 600-function parallelism
the values increase to 41.35%-77.98% respectively. To con-
clude, these results demonstrate that MinFlow could improve
the overall time considerably compared to existing works
throughout all three workloads.

4.4 Breakdown and Overhead

Performance Breakdown. We progressively integrate the
three components to show their respective contribution to
MinFlow’s shuffle time reduction. Figure 14 shows the re-
sults of TeraSort under 600 function and 200GB input data,
where the MinFlow with only Topology Optimizer is referred
to as MF

1
3 , the version with both Topology Optimizer and

Function Scheduler as MF
2
3 , and the full version MinFlow

denoted as MF . As it suggests, MF
1
3 decreases the shuffle

time by 43.93% and 34.46% compared with BL and FF but
is slower than LBD. This is because compared to LBD which
offers a two-level shuffle, by default Topology Optimizer of
MinFlow chooses the highest clevel number it can generate, to
decrease entailed PUTs/GETs maximally. Yet this often in-
curs too much additional intermediate data. Fortunately, after
the Function Scheduler is combined such issue gets greatly
alleviated, thus MF

2
3 performs better than LBD, by 19% in

the figure. Last, the full version of MinFlow further integrates
Configuration Modeler to judiciously select the optimal clevel
number and corresponding suitable function scheduling plan,
instead of just gluing the Topology Optimizer and Function
Scheduler. As a result, the full version of MinFlow could out-
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Figure 16: Various Input Data Size.

perform other approaches by 66.62%-90.77%.
Besides, we further compare with MF-OPT, whose configu-

ration is obtained by iteratively running all configurations and
picking the one with the shortest shuffle time. As the purple
line in Figure 14 shows, MinFlow achieves basically the same
shuffle speed with MF-OPT once we ignore the tiny difference
(below 1%) caused by our testbed’s performance fluctuation.
System Overhead. Now we evaluate MinFlow’s system over-
head. First, the Topology Optimizer consumes additional CPU
cycles to generate the candidate topologies before running
jobs (see §3.2). Figure 15 presents the time cost, when Min-
Flow uses a single thread to perform topology calculation.
As we can see, it basically increases linearly as the paral-
lelism, i.e., the function number goes up. Under 600-function
parallelism, the time is not above 1s, which can be ignored
compared to MinFlow’s improvement on shuffle time. Second,
the Function Scheduler spends time searching in each of the
candidate topologies for biparties, which are the basic func-
tion scheduling units (see §3.3). This part of the time cost is
close to the topology calculation time as Figure 15 shows. As
to some spikes in the figure, they appear when the parallelism
value corresponds to more candidate topologies, i.e., the value
that can be decomposed into more prime factors. For example,
under 2×2×3×5×7 = 420-function setting, it has 5 can-
didate topologies. In short, both of the above time costs are
dwarfed by MinFlow’s benefits. Moreover, if needed the time
cost can be easily slashed by using multi-threads. Besides,
though multi-level shuffle entails more functions, MinFlow
eliminates the cost by keeping warm and reusing functions
across levels. The memory consumed by local storage is also
the reclaimed memory as in [25].

4.5 Impact of Different Configurations
As mentioned earlier, two factors impact MinFlow’s perfor-
mance, including the input size and function parallelism. Now
we investigate the impact more extensively, by comparing Min-
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Figure 17: Tunable Function Parallelism.

Flow to other approaches under a broader range of input size
and parallelism settings. For space limit, we only put results of
TeraSort, while TPC-DS and WordCount show similar trends.
Input Size. First, we fix the parallelism as 100-function and
tune the input size from 50GB to 100GB, 200GB, and 400GB.
As we can see in Figure 16(a), across all approaches the shuf-
fle time increases proportionally with the input size. The trend
can be easily explained – Due to the number of PUTs/GETs
to S3 not greater than 100×100×2 = 20000, S3’s speed of
thousands of requests per second is enough to rapidly pro-
cess them. Therefore for all approaches, the shuffle time is
mainly determined by the volume of data to be transmitted,
which is proportional to the input size. Note that even under
such a low-parallelism setting, which is not MinFlow’s target
scenario, MinFlow could achieve near-optimal performance
compared to others. By contrast, in the 600-function group
(see Figure 16(b)), though LBD and MinFlow still exhibit a
similar trend, the shuffle time of BL and FF remains consistent
across all input sizes. Such difference stems from their dis-
tinct bottleneck. Specifically, for BL and FF the 600-function
parallelism setting would incur 600×600×2=720000 PUT-
s/GETs, making S3’s speed the main bottleneck. As a result,
their shuffle time is insensitive to the changing input size.
However, due to LBD and MinFlow’s great effectiveness in re-
ducing the number of PUTs/GETs, their bottleneck still lies in
functions’ aggregated bandwidth sending/receiving interme-
diate data, leading to the shuffle time proportional to the input
size. Note though it seems that under high-parallelism, say
600-function, the performance advantage of MinFlow over BL
and FF shrinks as the input size increases, such trend would
stop at a certain point where the input size is large enough to
replace the massive PUTs/GETs as the new bottleneck.
Tunable Parallelism. Figure 17(a) shows the shuffle time
results under parallelism of 100, 200, 400, and 600 functions,
with 50GB input size. As we can see, for the low efficiency
of performing shuffle, i.e., the huge number of PUTs/GETs
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to S3, both BL and FF’s shuffle time keeps getting worse
with the parallelism increasing, greatly impeding the critical
scalability advantage of the serverless paradigm. By contrast,
LBD exhibits a distinct trend that the shuffle time rapidly
decreases as the parallelism gets higher, though its multiplied
intermediate data, which must be transferred via remote S3,
severely degrades its shuffle speed. For example, under low
parallelism, say 100-function, it performs even worse than BL.
In comparison, MinFlow not only preserves the continuously
decreasing shuffle time but also avoids such degradation.

When the parallelism N is a prime number, we select the
substitute in [N −α,N +α] which can generate a network
with as many clevels as possible. Figure 18 shows that after
adjusting the prime numbers within 1000, the cumulative
distribution of the number of network clevels can be generated.
We can see that when α = 1, all prime numbers except 2 can
generate networks with more than two clevels and when α= 3,
more than 97% of prime numbers can generate networks with
more than four clevels. Therefore, in cases involving prime
parallelism, as illustrated in Figure 19, MinFlow after fine-
tuning continues to outperform other approaches significantly.
Summary. MinFlow significantly outperforms other ap-
proaches in terms of both shuffle time and storage cost un-
der high-parallelism, its target scenario. And even in a low-
parallelism setting, it preserves good performance close to its
best competitor, while considerably saving the storage cost.

5 Related Work

Optimization of Serverless DAGs. Several recent proposals
have aimed to decrease job completion time by optimizing the
performance of serverless DAGs. Orion [28] first proposes
the idea of bundling multiple parallel invocations to mitigate
execution skew and finds the best bundle size through trial and
error. WiseFuse [29] goes a step further on Orion, it builds the
performance model to determine bundle size and proposes
the fusion of successive functions to reduce communication
latency between consecutive stages in the DAG. However,
given the huge data volume and dense topology inherent in
serverless data analytics, fusion and bundling both struggle to
mitigate the data exchange overhead. A complementary line
of work provides efficient scheduling for serverless DAGs.
Wukong [13] and FaaSFlow [25] provide decentralized and
parallel scheduling distributed across function workers. Addi-

tionally, they harness over-provisioned local memory in the
workers to expedite data exchange among functions within
the same worker. This results in serverless DAGs that utilize
both network I/O and local memory highly efficiently. Nev-
ertheless, this approach proves inadequate when applied to
serverless data analytics, as elaborated in §2.4. Overall, no
prior work in this category can effectively reduce the data
movement overhead of serverless data analytics.
Optimization of Serverless Intermediate Data Store. Be-
sides DAGs optimization, recent work also reduces job com-
pletion time by optimizing the intermediate data store. Pocket
[22] and Locus [35] show that current options for remote
storage are either slow disk-based (e.g., S3) or expensive
memory-based (e.g., ElastiCache). Thus, to balance perfor-
mance and cost, Pocket combines different storage media (e.g.,
DRAM, NVMe, HDD) that users can choose to conform to
their application needs. But this approach only makes eco-
nomic sense when running different applications, e.g., when
exclusively executing tasks like TeraSort, Pocket consistently
selects the costly NVMe storage as the intermediate data
repository. Faasm [37] and Cloudburst [38] accelerate data
movement between functions, through a distributed shared
memory across worker nodes. They rely on specific assump-
tions regarding the sandbox runtime and the programming
interface exposed to tenants for developing their applications
and in terms of consistency semantics and protocols between
the FaaS workers and the backend storage. In contrast to
existing efforts, MinFlow uses only cheap S3 and reclaimed
memory, achieving performance and economic gains.

6 Conclusion

In this paper, we develop MinFlow, a holistic data passing
framework for I/O-intensive serverless analytics jobs. Min-
Flow efficiently creates multi-level data passing topologies
with fewer PUT/GET operations and uses an interleaved strat-
egy to partition the topology DAG into complete bipartite
sub-graphs. This optimizes function scheduling and cuts data
transmission to remote storage by over one half. Addition-
ally, MinFlow employs a precise model to pinpoint the best
configuration. Experiments on our prototype demonstrate that
MinFlow significantly outperforms state-of-the-art systems in
both the job completion time and storage cost.
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A APPENDIX

A.1 Topology Space Size
Theorem A.1. For a symmetric single-level shuffle network
with function parallelism N, the topology space size of its
multi-level shuffle network is SS = ∑

p
j=1 ∑

j
i=1

(−1) j−iip

i!( j−i)! , where
p refers to the number of prime factors of N.

According to §3.2, the topology space size of the multi-
level shuffle for the aforementioned network is equivalent to
the search space size encompassing all factorizations of N. An
intuitive way to explore all factorizations of N is to combine
its prime factors, e.g., the 2-factorization of N is equivalent to
dividing the prime factors of N into two nonempty sets. Next,
we prove that this method results in the search space equal to
SS in Theorem A.1.

Proof. Assume that N = n1 × n2 × ... × np, where ni is
a prime, 1 ≤ i ≤ p and let S(n,k) denote the number of
k− f actorizations of an integer with n prime factors. Then,
SS = ∑

p
j=1 S(p, j). Note that we can derive all factorizations

in S(n,k) from factorizations in S(n−1,k) and S(n−1,k−1)
through the following two methods:

• case1: Assume the extra factor of S(n,k) compared
to S(n − 1,k) as m. Combine m with any factor of a
factorization in S(n−1,k).

• case2: Assume the extra factor of S(n,k) compared to
S(n− 1,k − 1) as m. Let m become a new factor of a
factorization in S(n−1,k−1).

Therefore, we can conclude that S(n,k) = k× S(n− 1,k)+
S(n − 1,k − 1) and S(n,k) is the Stirling Number of the

Second Kind, whose general formula is ∑
k
i=1

(−1)k−iin

i!(k−i)! [42].
Furthermore, we can deduce that SS = ∑

p
j=1 S(p, j) =

∑
p
j=1 ∑

j
i=1

(−1) j−iip

i!( j−i)! .

A.2 CBGs in Multi-level Networks
Theorem A.2. For a multi-level topology generated by the
progressively converging method (the parallelism is N), the
i-th clevel of links corresponding to factor di, along with
two adjacent flevels, can be divided into N

di
disjoint complete

bipartite graphs with width di.

Proof. Define the mapping function F := ⟨ f1, f2⟩ := ⟨x,x⟩ 7→
⟨⌊x/si+1⌋,x%si⟩,x ∈ {0,1, ...,N − 1}. According to Equa-
tion (2), Fi,m and Fi,n, where F (m) = F (n), have the same
receiver functions R.

We categorize the functions at flevel i into conjugacy
classes, with the elements within each class sharing the same
R. Assume that the ranges of F , f1 and f2 are R ,r1 and r2
respectively, then |R | = |r1|× |r2| = N

si+1
× si =

N
di

, in other

words, the functions at flevel i can be partitioned into N
di

con-
jugacy classes. For any element ⟨m,n⟩ in R , we can find
it’s si+1

si
= di preimages, namely, m× si+1 + k × si + n,k ∈

{0,1, ...,di −1}. In summary, the functions at flevel i can be
divided into N

di
conjugate classes of size di.

Because each conjugacy class at flevel i and its R at flevel
i+1 together constitute a complete bipartite graph, the i-th
clevel of links corresponding to factor di, along with two
adjacent levels of functions, can be divided into N

di
disjoint

complete bipartite graphs with width di.

A.3 Applicability of Mesh-based Networks
Constructing k-level shuffle networks for function parallelism
in N is equivalent to grouping N functions k times and per-
forming intra-group shuffle after each grouping, which is re-
vealed by Theorem A.2. Note that this process necessitates
distinct groupings at each flevel.

Mesh-based method [32,34] groups functions by projecting
N functions into a k-dimensional mesh to construct a k-level
shuffle network. Specifically, they adopt the unary mapping
h1(x,c) := x 7→ ⌊x/c⌋ and h2(x,c) := x 7→ x%c for grouping,
where c|N,x ∈ {0,1, ...N −1}. However, this approach does
not give guidance on selecting the side length (i.e., group
size) of the k-dimensional mesh, while we conduct a detailed
theoretical analysis in §3.2. Even worse, as shown in Theo-
rem A.3, despite having insights into selecting an appropriate
group size, the grouping methods outlined in [32, 34] still are
proved to be ineffective in many cases.

Theorem A.3. For multi-level networks where the number of
flevels with the same group size is greater than three, unable
to generate distinct groupings for flevels with the same group
size using the unary mapping in h1(x,c) := x 7→ ⌊x/c⌋ and
h2(x,c) := x 7→ x%c, where c|N,x ∈ {0,1, ...N −1}.

Proof. Assume that N = sn,n ≥ 3. According to §3.2, per-
forming progressively converging for the N functions, we can
construct a multi-level network where the number of flevels
with group size s is greater than three. However, we can not
use h1(x,c) and h2(x,c) to achieve this.

For h1(x,s), we can only perform h1(x,s) := x 7→ ⌊x/s⌋
to divide N functions into groups with group size s. This is
because that h1(x,sm),2 ≤ m ≤ n divides N functions into
groups with group size greater s.

Likewise, as to h2(x,c), we can only perform a grouping
h2(x,sn−1) := x 7→ x%sn−1 distinct with h1(x,s) to divide N
functions into groups with group size s.

Corollary A.3. For multi-level networks where the number
of flevels with the same group size is greater than three, un-
able to generate distinct groupings for flevels with the same
group size using arbitrary nesting of the unary mapping in
{h1(x,c)| c|N}

⋃
{h2(x,c)| c|N}, where x ∈ {0,1, ...N −1}.

Proof. It is omitted as it is similar to the proof of Theorem
A.3.

Note that our method uses binary mapping F in Theo-
rem A.2 instead of unary mapping to solve the limitations of
mesh-based methods.
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B Artifact Appendix

Abstract
Our artifact includes the prototype implementation of MinFlow
and three other state-of-the-art comparison methods, along
with the three data analytics benchmarks evaluated in our
experiments. Additionally, we provide experiment scripts for
reproducing our results on Amazon EC2 instances.

It’s important to note that reproducing all of our results will
take tens of hours and thousands of dollars with the Amazon
cloud service.

Scope
The artifact has two main goals: The first is to enable the
validation of the main claims presented in the paper. The
second is to facilitate others in building upon MinFlow for
their own projects. We include code to reproduce Figures
7-19.

Contents
The artifact is hosted in a git repository. This repository in-
cludes MinFlow ’s source code as well as documentation and
example applications. It is structured as follows:

benchmark/: This folder contains the code for the three
evaluation applications (Terasort, TPC-DS, and WordCount)
and input data generators for each application. By running
create_image.bash in each application directory, serverless
job-specific images can be deployed on the worker node.

config/: This folder contains the configuration file config
.py, allowing users to configure the database and node infor-
mation. It also provides options to select the application and
comparison method for evaluation.

scripts/: This folder contains scripts (conda_install.bash,
python_install.bash, and docker_install.bash) to au-
tomatically install the software dependencies of MinFlow, in-
cluding Anaconda, Python, and Docker.

src/: This folder contains the source code of MinFlow and
three other comparison methods (Baseline, FaaSFlow, and
Lambada). We have integrated them and users can switch
between different systems using the configuration file. The
source code is structured as follows:

• base/ & container/: These two folders contain the code
that builds the base images which expose hybrid-store
APIs used in Function Scheduler (§3.3) and Configura-
tion Modeler (§3.4) for applications.

• parser/: This folder contains the code that parses the
application’s YAML configuration file, written in the
Workflow Definition Language, into a DAG object used
in Topology Optimizer (§3.2).

• grouping/: This folder contains the code for Topology
Optimizer (§3.2), Function Scheduler (§3.3), and Con-
figuration Modeler (§3.4) to find the optimal execution
plan.

• workflow_manager/: This folder contains the code for
workflow management, including monitoring function
status and triggering functions.

• function_manager/: This folder contains the code for
managing containers (including creating, keeping warm,
and removing) and executing functions.

test/: This folder contains the code for reproducing most of
our evaluation results in Figures 7-9,11-13,16-17 (see folders
fast/ and cost/), 10 (see folder load_balance/), 14 (see folder
breakdown/), 15 (see folder scalability/), 18 (see folder al-
pha/) and 19 (see folder prime/).

README.md: This documentation details how to install the
software, set up the system, and reproduce the results in our
paper.

Hosting
MinFlow artifact repository is hosted on GitHub and archived
using Zenodo with a permanent DOI.

• Repository: https://github.com/lt2000/MinFlow.

• Zenodo Archive: https://zenodo.org/records/10494631.

• DOI: https://zenodo.org/doi/10.5281/zenodo.10494631.

Requirements
The artifacts have been developed and tested on an Amazon
EC2 cluster comprising 10 m6i.24xlarge instances. And, the
artifact uses Docker containers to host serverless functions,
orchestrate the functions, and organize them in a DAG. §4.1
details the exact environment we used in our experiments.

Environment Setup
1. First, install the software dependencies by running the

scripts directory in scripts/ and mount the Tmpfs as our
local storage.

2. Then, generate input data and build base and job-specific
images for evaluation applications.

3. Configure the system configuration files and use src/
grouping/metadata.py to generate the optimal execu-
tion plan.

4. Run the system and reproduce the results following the
detailed instructions in README.md.
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