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Abstract
In the realm of information retrieval, the need to maintain re-

liable term-indexing has grown more acute in recent years, with
vast amounts of ever-growing online data searched by a large
number of search-engine users and used for data mining and
natural language processing. At the same time, an increasing
portion of primary storage systems employ data deduplica-
tion, where duplicate logical data chunks are replaced with
references to a unique physical copy.

We show that indexing deduplicated data with deduplication-
oblivious mechanisms might result in extreme inefficiencies:
the index size would increase in proportion to the logical data
size, regardless of its duplication ratio, consuming excessive
storage and memory and slowing down lookups. In addition,
the logically sequential accesses during index creation would
be transformed into random and redundant accesses to the
physical chunks. Indeed, to the best of our knowledge, term
indexing is not supported by any deduplicating storage system.

In this paper, we propose the design of a deduplication-
aware term-index that addresses these challenges. IDEA maps
terms to the unique chunks that contain them, and maps each
chunk to the files in which it is contained. This basic design
concept improves the index performance and can support ad-
vanced functionalities such as inline indexing, result ranking,
and proximity search. Our prototype implementation based on
Lucene (the search engine at the core of Elasticsearch) shows
that IDEA can reduce the index size and indexing time by
up to 73% and 94%, respectively, and reduce term-lookup la-
tency by up to 82% and 59% for single and multi-term queries,
respectively.

1 Introduction
One of the most effective ways to address growing storage
requirements in datacenters is data deduplication: duplicate
chunks of data are identified and replaced by references to a
single unique copy of each chunk. The mechanisms involved
in data deduplication have been optimized in numerous studies
and commercial systems. As a result, most backup and archival
systems [25,80], as well as many primary (non-backup) storage
systems and appliances [20, 24, 35, 43], currently support data
deduplication.

Data deduplication entails a distinction between the user’s
logical data and the physical chunks stored in the system. This

additional level of abstraction introduces new challenges in
data management. The implicit sharing of content between files
complicates, for example, garbage collection [39, 40, 62], load
balancing between volumes [30,37,38,49,51], caching [44,55,
56], and charge-back [69]. Fragmentation, which results from
newly written files referencing a combination of ‘old’ chunks
and newly written chunks, transforms logically-sequential data
accesses to random I/Os in the underlying physical media.
This has been addressed in the context of file-read and restore
performance [33, 45, 57, 63] and in full-system scans [42].

In this paper, we address keyword indexing, an impor-
tant functionality that is supported by many storage sys-
tems [17, 26, 27] and is severely complicated by deduplication.
Specifically, we refer to term-to-file indexing (also known as
inverted indexing), which supports queries that return the files
containing a keyword or term. Inverted indexes are widely used
for simple queries, e.g., by users on personal computers, as well
as for complex and batch queries involving multiple terms in a
large-scale repository, e.g., by search engines [36], data analyt-
ics jobs [61, 64, 70], and legal discovery [67, 77]. The searched
data might be deduplicated, e.g., in shared file systems, code
repositories, or systems storing similar VM images.

Two aspects of keyword indexing are affected by dedupli-
cation. The first is initial index creation time: the system is
scanned by processing the logical files, generating random ac-
cesses to physical chunks. In addition, chunks are processed
redundantly when there are multiple references to a chunk due
to deduplication. The second aspect is the index size, which is
proportional to the logical data size rather than to the physical
size stored in the system: each term must point to all the files
containing it, even if the files’ content is almost identical. The
inflated index size can result in poor lookup performance and
also overshadow any capacity savings achieved by deduplica-
tion.

Indeed, to the best of our knowledge, systems with high
deduplication ratios (i.e., a large number of references to each
unique chunk) typically do not support full keyword indexing.
For example, VMware vSphere [25] and Commvault [19] sup-
port file indexing, which only identifies individual files within a
backup according to their metadata. Dell-EMC Data Protection
Search [21] supports full content indexing, but warns that “pro-
cessing the full content of a large number of files can be time
consuming” and recommends performing targeted indexing on
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specific backups or file types.
We address these challenges by deduplication-aware key-

word indexing. We introduce IDEA, which replaces the term-to-
file mapping in traditional indexes with a term-to-chunk map-
ping, whose size is proportional to the unique content physi-
cally stored in the system. An additional chunk-to-file mapping
records references from chunks to the files they are contained
within. This ‘reverse mapping’ is significantly smaller than
the term-to-chunk map and can be stored in a smaller and
faster storage device such as SSD or NVRAM. IDEA focuses
on textual data. It uses a white-space aware content-defined
chunking algorithm that creates chunk boundaries that align
with white-space characters. This ensures that terms are not
split between adjacent chunks.

IDEA creates the index by sequentially processing the physi-
cal data instead of the logical data. The term-to-chunk mapping
is created by standard term-indexing software, which scans all
the physical chunks in the system, disregarding their logical
order in the containing files. The chunk-to-file mapping is cre-
ated by scanning the file metadata, which is typically stored
separately from the data chunks. Term lookup in IDEA begins
with querying the term-to-chunk mapping. The set of result-
ing chunks is then used for lookup in the chunk-to-file map,
producing a set of matching files.

This basic design of IDEA can support additional function-
alities provided by traditional indexes, including low-overhead,
incremental indexing of incoming data streams as part of their
ingestion, ranking of documents with metrics such as TF-IDF,
and returning, for each file in the query result, the offsets in
which the keywords were found.

We make the following contributions in this paper:

• We identify and demonstrate the challenges involved in in-
dexing deduplicated data.

• We propose IDEA, the first design of a deduplication-aware
term index.

• We describe a prototype implementation of IDEA. For this
prototype, we integrated Lucene [2], an open-source single-
node inverted index software (similar to that used by the
distributed Elasticsearch [4]), into the Destor deduplicating
storage system [46].

• We compare the performance of IDEA to a naïve, dedupli-
cation unaware, index. On datasets of Linux kernel versions
and of English Wikipedia archives, IDEA significantly re-
duced the indexing and lookup times. For the datasets with
a high deduplication ratio, it also reduced the index size.

The rest of this paper is organized as follows. Section 2 gives
background and surveys relevant related work, and Section 3
identifies the challenges involved in indexing deduplicated
data. Sections 4 and 5 describe the design and implementation
of IDEA. Our evaluation setup is described in Section 6, and
our evaluation results are analyzed in Section 7. We discuss
possible extensions of IDEA in Section 8 and conclude in
Section 9.

Figure 1: The basic deduplication process.

File Content

F1 Let me into the house
F2 The house of the opera

F3
Welcome to the

house of fun

Term File (Offset)

fun F3(24)
house F1(16),F2(4),F3(15)
into F1(7)
let F1(0)
... ...

Term File only

fun F3
house F1,F2,F3
into F1
let F1
me F1
of F2,F3

opera F2
the F1,F2,F3
to F3

welcome F3

Figure 2: A toy example of an index of three files.

2 Background and Related Work
Data deduplication. Deduplicating storage systems process
incoming data to identify duplicate content and replace it with
references to content already stored in the system. Figure 1
gives a schematic view of the main mechanisms of the dedupli-
cation process. The data is first split into chunks whose average
size is typically 4KB-8KB, in a process referred to as chunking.

A chunk is represented by a cryptographic hash of its content,
referred to as its fingerprint. The fingerprint map is queried
to determine whether an incoming chunk is already stored in
the system. If the chunk is new, it is written and its fingerprint
is added to the fingerprint map. Each file is represented by a
file recipe which contains the file metadata, a list of its chunks’
fingerprints, and their sizes. Thus, to read (or restore) a file, its
recipe is read and its chunks are located by searching in the
fingerprint map or a cache of its entries.

The unique physical chunks are written in a log-structured
manner, in the order in which they are added to the system.
Backup and archival systems usually aggregate chunks, com-
press them, and pack the compressed data into containers,
which are the unit of I/O. Containers are several MB in size,
and decompression is necessary when restoring chunks. In con-
trast, deduplication systems for primary storage [34,41,43,72],
and especially deduplicating file systems [20, 24], might sup-
port direct access to individual chunks.

Keyword indexing. An inverted index or a keyword index, is
a data structure which points from terms to their occurrences
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Figure 3: A naive implementation of an index in a deduplicated file
system. The resulting inverted index is similar to that in Figure 2.

in a collection of documents. Terms (or keywords) can be any
searchable strings and are typically natural language words.
Any data structure which implements a key-value mapping
can be used as an inverted index. From here on, we refer to a
keyword index as simply an index, and use map to describe
individual data structures in the system. Figure 2 shows an
example of a small inverted index of a dataset containing three
files, where each file is an indexed document. An index lookup
or query returns, for each included term, the list of files con-
taining this term, and optionally the byte offsets in which the
term appears. For example, looking up the term “house” in this
example will return {F1,F2,F3}. If offsets are stored, the query
will return {F1(16),F2(4),F3(15)}. Storing the term offsets
increases the index size, and is thus supported as an option.

The process of building an index is referred to as indexing,
and includes the following steps [58]: (1) collecting the docu-
ments, i.e., reading the indexed files, (2) identifying the terms
within each document, (3) linguistically normalizing the terms
(e.g., eliminating plural form and capitalization), and (4) cre-
ating the list of documents, and optionally offsets, containing
each term. An index can also be built incrementally by a series
of index updates, where a new set of documents is processed
and the existing index is updated to reflect the terms appearing
in them. Creating an inverted index is known to be time and
resource consuming. Distributing the index and its creation
was thus included as a use case in the seminal MapReduce pa-
per [36]. Most index designs support the removal of documents
by marking deleted documents and garbage collecting index
entries. Some designs avoid the resulting fragmentation in the
index structure by batching deletions and rebuilding the index
later [2, 58].

Indexing is a key mechanism in information retrieval and
presents several challenges that have attracted a wide range
of research efforts. One challenge is handling a high rate of
incoming new data from sources, such as social media plat-
forms and news services, which needs to be indexed [74, 75],
possibly while simultaneously remaining responsive to user
queries. Another challenge is supporting not only direct search,
but also similarity search, in order to provide users with ad-
ditional related search results [29, 52, 71]. Indexing is used in
a wide range of contexts. For example, in natural language
processing, an index is used for pre-training and fine-tuning
the language model [48, 54]. Indexed pattern matching also
plays a key role in bioinformatics [61, 64], data mining [70]
and multimedia retrieval [73]. Since the data held in the in-

dex itself may be very large [74], an extensive body of work
addresses compressed indexes with the goal of fitting them in
memory [60, 68, 78].

Of available commercial indexing products, the most well-
known is Elasticsearch—a distributed search engine supporting
full-document indexing and real-time analytics [4, 47]. Elastic-
search is built on top of the single-node Apache Lucene [2]—an
open-source full-text search-engine library. Lucene combines a
document store with an inverted index that supports searching
within any field of the indexed documents, simple lookups,
complex queries, analytics jobs, and offsets. Lucene’s underly-
ing data structure is based on a hierarchy of skip-lists, which
enable sequential access when a query contains multiple terms.

Lucene and its variations serve as the underlying engine of
many more commercial indexing products, such as Apache
Solr™ [13] and Amazon OpenSearch [1]. IBM Watson [5] is
based on distributed Lucene and Indri [6] for indexing large cor-
pora as well as semantic entries and relations between words.
Other products support similar document and search interfaces
with alternative data structures. For example, Meilisearch [10]
is based on LMDB [8] which is implemented with B+ trees,
and TypeSense [14] uses the LSM-tree-based RocksDB [12]
for its mapping.

Specialized solutions enable search inside compressed struc-
tured data such as logs or time-series data. Examples include
rapid exhaustive search [22, 23], lazy on-demand indexing of
log fields [18], and highly effective in-memory caching of
logs [65]. These special-purpose solutions are tightly coupled
with the structure of the data and are not directly applicable to
the general case of unstructured deduplicated data.

Result ranking. To maximize their relevance, lookup re-
sults are typically ranked by index systems, using a scor-
ing formula on each result. Among the most popular such
formulas, which we use in this paper, is TF-IDF [66], used
by Lucene (and therefore in Elasticsearch). TF-IDF is com-
monly defined as follows. Given a document d in which a
lookup term t is found, the score TF-IDF(t,d) is defined as

T F(t,d) · IDF(t) where T F(t,d) =
√

# occurrences of t in d
# words in d and

IDF(t) = 1+ log( # docs in the system
1+# docs in which t appears ).

Intuitively, T F measures how frequently a term appears in
the document, and IDF measures the term significance, based
on its occurrence in the entire corpus. Keeping the byte offsets
of the terms allows measuring additional attributes such as
proximity between multiple terms [32].

3 Challenges
When it was first commercialized, deduplication was primarily
applied to backup and archival storage of ‘cold’ data, which
is only rarely read and processed [80]. Since then, however,
two separate trends have changed the way deduplicated data
is accessed. The first is the growing need to process cold data,
including old backups. Common scenarios include full-system
scans for malware and anomaly detection [53, 76], as well as
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keyword searches for legal disclosure [67, 77]. Enterprise ap-
plications might perform complex analytics queries, involving
multiple-term lookups, on cold storage [31]. In disaster re-
covery situations, needed VMs may be identified with search
terms and then run directly from backup storage until a primary
system is restored [28]. These scenarios were addressed in a
recent study of deduplication-aware search [42]. However, in
the absence of an index, these exhaustive searches might be
prohibitively slow.

The second trend is the growing application of deduplication
on primary storage of ‘hot’ and ‘warm’ data that is accessed
regularly [69]. As a result, deduplicating storage appliances
are expected to support various functions, including keyword
search. For example, users might perform single-term searches
for files within their deduplicated personal workstation or their
home directory on a deduplicated shared storage partition.

Since indexing software operates at the file-system level,
it is unaware of the underlying deduplication at the storage
system. A deduplication-unaware (naïve) index would thus
schematically resemble the structure in Figure 3. The index
will map terms to files, independently of how the files’ content
is stored in the underlying media. However, this oblivious
design is inefficient due to the following three challenges.

Challenge 1: index size. The size of the index grows with
the number of distinct terms as well as the number of files in
the system. In traditional storage systems, this size is roughly
proportional to the size of the stored data. As the data size
grows, the storage capacity is scaled accordingly, accommodat-
ing the growing index. In deduplicated storage, however, the
index grows with the logical data, as every new file must be re-
flected in the terms’ document list, even if its content is almost
identical to that of files already in the system. An increased
index size might also increase the latency of lookups due to
logarithmic search complexity and because smaller portions of
it will fit into DRAM.

Challenge 2: indexing time. The indexing process scans all
the files in the system to create the list of terms in each docu-
ment and then the list of documents for each term. Performing
such a scan on deduplicated data will result in random I/Os
for reading the chunks in the order they appear in the files.
For example, creating the index in Figure 3 would perform
the following series of chunk reads: [B1,B2,B2,B3,B4,B2,B5].
Chunk B2 is accessed and processed three times, once for ev-
ery file it is contained in. Furthermore, recall that chunks are
read by fetching their entire container or a compression region
within a container. Reading chunks in random order might thus
cause high read amplification.

Challenge 3: split terms. Although the chunks in our exam-
ple contain entire words, the chunking process will likely split
the incoming data into chunks at arbitrary positions, splitting
words between adjacent chunks. Thus, the terms in the begin-
ning or end of a chunk can be correctly identified only when
considering the chunks adjacent to it in each file. Therefore,
even if the chunk is identified as duplicate, it must be processed

in the context of each file that contains it.
As a result of these challenges, to the best of our knowledge,

current deduplicating storage systems do not support indexing
of their entire content.

4 IDEA
In this section, we describe the design of our deduplication-
aware index, IDEA. We begin with an overview of the key
concepts, and then describe each component in detail.

4.1 Overview
The key idea of deduplication-aware indexing is to map terms
to the unique physical chunks they appear in, instead of the
logical documents whose number might be disproportionately
high. We replace the term-to-file mapping of the traditional
index with two complementing maps: a term-to-chunk map
and a chunk-to-file map. The lookup process first finds all the
chunks containing the queried terms, and then finds the files
containing these chunks. Figure 4(a) depicts the deduplication-
aware index that replaces the naïve index in Figure 3. The
logical term-to-file mapping from Figure 2 is realized by the
combination of the two maps in Figures 4(b) and 4(c), with
the file paths resolved by the file-to-path map in Figure 4(d).
We use file IDs (generated as an internal serial number) in the
term-to-file map because they are much smaller than the full
file paths. From hereon, we refer to the file IDs as files.

This design allows deduplicating storage systems to provide
index functionality to their users. The system can construct
The term-to-chunk map with standard indexing software (e.g.,
Lucene), by passing the chunks as documents for indexing. The
chunk-to-file map is based on information from the file recipes,
and can be implemented by any standard key-value store. The
only modification required in the deduplication system is the
chunking process, to ensure that chunk boundaries do not split
terms between chunks. We modify the chunking procedure
to be white-space aware and enforce chunk boundaries only
between words.

Properties. The term-to-chunk map is the largest part of
the deduplication-aware index. Its size and creation time are
proportional to the number of physical chunks. In systems with
a high deduplication ratio, this map will be smaller than the
term-to-file map in traditional indexing, and will incur lower
lookup latency. On the other hand, many optimizations within
the traditional index data structures are most effective when
files are large (e.g., compressed encoding of file IDs or offsets
within files). Processing individual chunks instead of entire
files eliminates some of their benefits in a deduplication-aware
index. We discuss these cases in detail in Section 7.

4.2 White-space aligned chunking
Deduplication systems employ two types of chunking mecha-
nisms. Fixed-sized chunking splits the incoming data into fixed-
sized chunks and is typically used in primary storage to align
the deduplicated chunks with those of the storage interface. In
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(a) Implementation

Term
Chunk

(Offsets)

fun B5(3)
house B2(4)
into B1(7)
let B1(0)
me B1(4)
of B3(0),B5(0)

opera B3(7)
the B2(0),B3(3)
to B4(8)

welcome B4(0)

(b) Term-to-chunk

Chunk File (Offsets)

B1 F1(0)

B2
F1(11),F2(0),

F3(10)
B3 F2(10)
B4 F3(0)
B5 F3(21)

(c) Chunk-to-file
File Path

F1 home\file1
F2 shared\file3
F3 fun\lyrics\file3

(d) File-to-path

Figure 4: An illustration of a deduplication-aware index (a) and its related maps (b-d) for the files and terms in Figure 2.

Chunk 1 Chunk 2 Chunk 3

Incoming data welcome to the house of fun

Traditional welcome t o the hous e of fun
Whitespace-CDC welcome to the house of fun
Whitespace-fixed welcome to the house of fun

Figure 5: The effect of white-space alignment on chunk content.

other words, the chunks are aligned to the operating-system
pages and to the storage-device blocks [20, 24, 34, 43, 56].
Content-defined chunking (CDC) splits the data into variable-
sized chunks where the hash produced over a rolling window
matches a predefined mask. This indicates the start of a new
chunk [50, 79, 80]. This method ensures that small differences
between similar files will be contained within a small number
of chunks and has been shown to achieve better deduplication
efficiency than fixed-size chunking [59, 80].

Both techniques are agnostic to word boundaries and will
likely end a chunk in the middle of a word. Thus, we modify
both to be white-space aware and create chunk boundaries
that align with white-space and other characters that preserve
the locality of words within chunks. These characters are the
delimiters used by the indexing software to parse terms dur-
ing document processing. Thus, white-space awareness is not
restricted to a specific encoding or language. In our implemen-
tation, the delimiters are defined by the C function isspace().

Content-defined chunking. Systems that use content-
defined chunking are designed to handle variable-sized chunks.
Thus, extending this mechanism to be white-space aware is
relatively straightforward: when it identifies a chunk boundary,
instead of immediately triggering a new chunk, we continue
scanning the following characters until a white-space charac-
ter is encountered. This character ends the current chunk and
starts the next chunk at the character immediately after it. If a
white-space character is not encountered within a sufficiently
long distance from the original boundary (512B in our imple-
mentation), we leave it unchanged—we assume the split string
is irrelevant for indexing anyway.

Fixed-size chunking. Systems that use fixed-size chunking
require chunks to fit into fixed-sized memory buffers and/or

storage blocks. Thus, if the chunk boundary splits a term in
two, we cannot extend this chunk until the end of this term.
Instead, when an end of a chunk is identified (by calculating
the offset from the beginning of the chunk), we scan this chunk
backwards until a white-space character is encountered. This
character ends the current chunk and starts the next chunk at
the character immediately after it. Figure 5 demonstrates the
effect of white-space aligned chunking on a small file example.

Although white-space alignment converts fixed-sized chunks
to variable-sized chunks, it does not interfere with the dedu-
plication system’s operation. The resulting chunks are always
smaller than the fixed size, and can thus be stored in a single
block (i.e., hard-disk sector or flash page). In addition, recall
that file recipes record the size of each chunk, and can thus
handle chunks smaller than the fixed size. In case of a dedupli-
cating file system, it can trim the block in memory to the chunk
boundary. Additional file system changes might be required to
support variable-sized chunks within larger fixed-sized blocks,
e.g., recording the chunk size in the inode. These changes are
beyond the scope of this project.

Non-textual content. Aligning chunks to white-spaces is
only effective in case of textual content, and will have little
effect on arbitrary binary content. We thus apply white-space
alignment only to chunking of textual content. We identify this
content by the file extension of the incoming data, e.g., .txt,
.c, .h, and .htm files. This distinction during the chunking
step allows us to also identify candidate chunks for indexing,
and to exclude non-textual content from the indexing process.
This is similar to how traditional indexing excludes files based
on their extension, e.g., executable files.

The modifications to the deduplication mechanism are min-
imal. In our implementation, we add a Boolean field to the
metadata of each chunk in the file recipe and in its container,
indicating whether it is a ‘text’ chunk or not. During index
creation, described in the following subsections, we only pro-
cess chunks marked as textual.1 We note, however, that our

1We experimented with workloads that contained a mix of textual and non-
textual data, and found that the non-textual data does not affect the performance
of IDEA. We thus omit those results from our evaluation.
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chunking and indexing approaches do not preclude processing
of binary content. Non-textual strings are identified by the in-
dexing software (e.g., by the ‘tokenizer’ in Lucene) and are
excluded from the mapping.

Overhead. White-space aligned chunking requires additional
processing during the chunking step, and alters the location
of chunk boundaries. We verified that enabling white-space
awareness increases the chunking time by no more than 0.6%
for content-defined chunking. The fixed-size chunking time
increased by up to 3×, although it was still only 0.5% of
the content-defined chunking time. The resulting number of
chunks was within 0.4% and 0.15% of the number of chunks
created by content-defined and fixed-size chunking, respec-
tively. The difference in average chunk size was similarly
negligible. White-space alignment reduced the deduplication
ratio (percentage of data removed by deduplication) of content-
defined chunking by no more than 0.4%, and marginally im-
proved that of fixed-size chunking. The experiments were done
on the LNX-198 and Wiki-4 datasets, described in Section 6.

4.3 Term-to-chunk mapping

The term-to-chunk map is an inverted index whose documents
are physical chunks instead of logical files. The white-space
aligned chunking described above ensures that chunks include
complete terms, preventing arbitrary prefixes or suffixes from
being incorrectly indexed. The number of documents in the
index is the number of physical chunks, which might be higher
than the number of logical files. The effect of this design choice
on the size of the index is evaluated in Section 7.

During indexing, the chunks are read sequentially by fetch-
ing entire containers or compression regions, and each chunk is
processed only once, regardless of the number of files contain-
ing it. Since each chunk is processed independently, processing
the chunks is easily parallelizable. We leave related optimiza-
tions for future work. A term-lookup in the term-to-chunk map
returns the fingerprints of the chunks this term appears in (and
optionally its offsets within them). The fingerprints are used for
lookup in the chunk-to-file map, described later in this section.

4.4 Chunk-to-file mapping

The mapping from chunks to files is independent of the term-
to-chunk mapping, both in structure and in its construction.
The mapping is constructed from two complementing maps: in
the chunk-to-file map, each chunk fingerprint points to the IDs
of all the files that contain this chunk (and optionally its offsets
within each file). The file-to-path map connects each file ID
to the file’s full pathname. This is equivalent to the mapping
between document IDs to user-defined document names in
traditional inverted indexes.

We implement the chunk-to-file and file-to-path maps as
separate key-value stores, whose keys are the chunk finger-
prints and file IDs, respectively. Both maps are created from
the metadata in the file recipe. For each file, a <fileID,path>
pair is added to the file-to-path map, and a <fingerprint,fileID>

pair is added to the chunk-to-file map for each fingerprint in
the recipe. If the index support offset lookup, then the <finger-
print,fileID> pair also carries the list of offsets in which the
chunk appears. This information can be derived from the file
recipe, which contains the size of each chunk.

4.5 Keyword/term lookup

IDEA performs keyword lookup in three phases: (1) a lookup
in the term-to-chunk map yields the fingerprints of all the
relevant chunks and optionally the term offsets within them,
(2) a series of lookups in the chunk-to-file map retrieves the
IDs of all the files containing these chunks, and optionally the
chunk offsets within them, and (3) a lookup of each file ID in
the file-to-path map returns the final list of file names. When
requested, the offsets of the terms within the files are derived
from the combination of the term and chunk offsets.

Phases (2) and (3) are oblivious to the number of keywords
in the original search query. The term-to-chunk map, imple-
mented as an inverted index, returns a set of unique chunks,
even in complex search queries that lookup multiple keywords.
However, when a term appears in multiple chunks belonging to
the same file, some of the files returned from the chunk-to-file
map will be redundant. When offsets are not supported or not
requested in the query, we collect the results from phase (2) in
a set data structure that eliminates duplicate entries, ensuring
that each file is searched in the file-to-path map only once.

4.6 Ranking results

As a proof of concept, we extended IDEA to support document
ranking with the TF-IDF metric. Recall (from Section 2) that
the score of a <document,term> pair is calculated using four
values. The number of files in the system is a global system
value. The number of words in the file is calculated during
index creation: IDEA sums the number of words in each of
its chunks, which are counted by indexing software when the
chunks are processed.

The remaining values are calculated during the lookup of the
term, as follows. The number of files containing the term is the
number of files in the query result. Calculating the number of
appearances of the term in the file is equivalent to counting the
offsets of this term within the file. If offsets are not supported,
IDEA supports ranking by recording number of appearances
instead of offsets. The term-to-chunk map records the number
of appearances of the term in each chunk, and the chunk-to-file
map records the number of appearances of each chunk in the
file. These values are combined for the files in the query result,
to return the number of appearances of the term in each file.

Supporting ranking for a query with multiple terms requires
calculating the number of appearances of each term in each
file, separately. This can be done by maintaining a temporary
data structure that collects, for each term, the chunks it appears
in. This information can be combined with the number of
appearances of each chunk in each file in the query result.
IDEA can directly support ranking with any metric that is
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based on term occurrences or positions. Other metrics may
also be supported, but are outside the scope of this paper.

5 Implementation
We implemented a prototype of IDEA to show how deduplicat-
ing storage systems can provide indexing functionality with our
approach. Storage systems have direct access to file recipes and
physical chunks, and can use an existing engine for indexing. In
our implementation, we integrated Apache Lucene [2] into the
Destor open-source deduplicating backup system [46]. Destor
was built for academic purposes and includes all fundamen-
tal deduplication mechanisms and data structures. It supports
backup and restore operations, creating deduplicated backups
of entire directories. We used the open-source C++ implemen-
tation of Apache Lucene, LucenePlusPlus [9], and the C++
version of Destor [3] that was used for deduplication-aware
exhaustive scans [42].

Lucene assigns an internal document ID to every document
that it processes. Its index consists of two major data struc-
tures. The term-to-doc map returns, for each term, a list of
document IDs it is contained in. The document store contains,
for each document ID, attributes such as its size and file path,
and possibly its content. In IDEA, we realize the term-to-chunk
map using Lucene’s term-to-doc. The document store realizes
the chunk-to-file map: the document representing each chunk
contains the list of files this chunk is contained in. We use
Berkeley-DB [11] for the file-to-path map. It is implemented
with the recno data structure, which is a flat text format opti-
mized for sequential integer keys. Figure 6 illustrates the data
structures used by Lucene and by IDEA. By default, IDEA uses
an SSD for the data structures which are external to Lucene,
as Lucene uses the main memory to cache the parts of the
index required for fast access. We evaluate the effect of the
SSD below.

The full indexing process in IDEA proceeds as follows. We
first scan all the file recipes from Destor and create the list
of files containing each chunk using a key-value store, which
may spill to disk. Each list is added as a document (which
is immutable in Lucene2) to the document store, where the
document ID is the chunk ID. Then, we read the containers
from Destor’s on-disk container store to memory. The chunks
in the containers are passed to Lucene for indexing in the
term-to-document map, with their respective IDs.

IDEA must ensure that its separate maps remain consistent.
In other words, all the chunks returned from the term-to-chunk
map must be present in the chunk-to-file map, and all the file
IDs must map to full file pathnames. Thus, IDEA ensures
that the <fileID,path> pair is persisted in the file-to-path map
before it uses this ID in the chunk-to-file map. IDEA currently
does not support lookups to be issued in parallel with index
creation. IDEA records, in the file recipe, whether the file has
been indexed or not, and a similar record marks containers

2The documents are stored sequentially in the index segments, and are
immutable to facilitate efficient direct access to them via the skip-lists.

Figure 6: Data structures for Naïve and IDEA, including variants of
IDEA that support offsets and ranking.

whose chunks have been indexed. In case of a system crash
during index creation, IDEA can be restored to a consistent
state by re-processing the unindexed containers and file recipes.
Duplicate entries in the term-to-chunk map will be handled by
Lucene. In the chunk-to-file map, we can look up each chunk
before adding its <chunk,fileID> pair, to find out whether it
was already inserted to the map.

We perform the three phases of keyword lookup described
in Section 4.5 sequentially. We use the set data structure of
C++ (std::set, implemented as a red-black tree) to store the
unique sets of files returned from chunk-to-file map. Lucene
uses a similar structure to return unique file-IDs in the term-
to-chunk lookup of multiple keywords. For multiple-keyword
lookups, we use Lucene’s OR query with all the keywords.

IDEA-indirect. To support additional index functions, we
implemented an alternative, more modular, version of IDEA,
by adding another level of indirection to its maps. The main
advantage of IDEA-indirect is its ability to support inline in-
dexing, as part of the system’s processing of incoming data:
the separation between the document store and the mapping of
chunks to files precludes the need to create an immutable list
of files containing each chunk.

In IDEA-indirect, the chunk-to-file map is split into two
maps: the document store holds, for each document ID (rep-
resenting a chunk), this chunk’s fingerprint. An additional
map returns, for each fingerprint, the files containing its chunk.
Figure 6 illustrates these data structures. The FP-to-file and
file-to-path maps are stored on SSD for faster lookup. We use
Berkeley-DB [11] for the additional FP-to-file map. We im-
plement it as a hash-table based multi-map, which supports
efficient additions of <chunk,fileID> pairs whenever a new ref-
erence to a chunk is identified. In inline indexing, new chunks
are passed to Lucene for indexing as soon as they are identified
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Dataset Logical Physical Recipe Files Chunks
(GB) (GB) (GB) (M)

LNX-198 51 11 0.7 4.3M 1.6
LNX-409 181 13 2.4 15.3M 1.7
LNX-662 334 14 4.7 28.2M 1.8

Wiki-4 242 114 0.884 2.3K 10.3
Wiki-8 487 180 1.8 4.7K 14.9
Wiki-12 736 255 2.8 7K 20.1

Wiki-12-1MB 736 259 2.9 686K 20.1
Wiki-24-1MB 1370 478 5.4 1.3M 36.9

Table 1: The datasets used in our experiments

as unique (in parallel to step 6 in Figure 1). The <chunk, path>
pairs are added as <chunk, fileID> and <fileID, path> to their
respective maps after fingerprint calculation, during the cre-
ation of the file recipe. Lucene organizes its index in segments,
and automatically creates a new segment when new documents
are added to an existing index. Segment merging and splitting
is controlled by a set of Lucene’s internal triggers.

IDEA-offsets. In LucenePlusPlus [9], which is equivalent to
Lucene version 3.0.3, term offsets within files are maintained
in dedicated data structures called term vectors: for each docu-
ment, the term vector lists the terms in this document, and the
offsets each term appears in 3. We rely on these existing struc-
tures to support offset lookups in IDEA-offsets, which extends
IDEA-indirect as follows. IDEA-offsets uses the term vectors
to record the offsets of terms within the chunks they appear
in. It also extends the chunk-to-file map to record, for each
file-ID, the list of offsets of the chunk within the file. Figure 6
illustrates these data structures.

IDEA-rank. LucenePlusPlus supports ranking by recording
term frequencies within the term-to-doc map. This version of
Lucene couples support for ranking with support for proximity
search: the term frequency is recorded alongside the list of its
positions in the files.4 This increases the size of the term-to-doc
map beyond what is necessary for ranking alone.

We implement IDEA-rank by extending IDEA-indirect to
use the frequency records of Lucene. It stores the frequency
of the term in each chunk in the term-to-chunk map, and the
frequency of the chunk in each file in the FP-to-file map. The
number of terms in each file is stored in the file-to-path map,
and the global counter of files is maintained as an independent
counter. IDEA-rank currently supports a single-term lookup,
with multi-term queries deferred to future work.

6 Experimental Setup
Baseline. In addition to IDEA, IDEA-indirect, IDEA-offsets
and IDEA-rank, we evaluated a deduplication-oblivious index,
Naïve, which uses Lucene to index the logical files as doc-
uments. To implement Naïve, we extended Destor’s restore
process: we use it to read all the files in the system in their

3Later versions of Lucene also support the embedding of offsets within the
term-to-doc map, eliminating the additional data structure.

4A position is the term’s offset counted in terms, rather than bytes.

Dictionary LNX-198 Wiki-12
Files Chunks Files Chunks

file-low 1.4 1.3 1.3 1.11
file-med 9.5 3.3 9.35 3.57
file-high 93.7 14.4 95.4 40.1

chunk-low 11.6 1.22 8.25 1.43
chunk-med 28 9.6 16.1 9.36
chunk-high 148 94.8 208.9 94.6

Table 2: Average number of files and chunks per keyword in dictio-
naries used in our experiments.

logical order. Instead of writing the restored files, they are
passed to Lucene as documents for indexing. Lookup in Naïve
is performed by a simple OR-query lookup. After retrieving the
document IDs from the inverted index, Lucene converts them
to file names and returns the names as the query result (see
Figure 6). We also implemented versions supporting additional
functionality, Naïve-offsets and Naïve-rank.

Datasets. We used two types of datasets for evaluating in-
dexing and lookup times, similar to those used in [42]. The
Linux datasets contain versions of the Linux kernel source
code [7], from version 2.0 to version 5.9. The datasets con-
tain 198, 409, and 662 versions, including all the minor ver-
sions, every 10th patch, and every 5th patch, respectively. The
Wikipedia datasets contain archived versions of the English
Wikipedia [15, 16], from January 2017 to March 2018. The
datasets contain 4, 8, 12, and 24 consecutive XML dumps,
which we split into files of 100MB (at page boundaries). We
created two additional datasets from the 12 and 24 versions,
with files of 1MB, to evaluate the effect of the number of files
on the index performance. The datasets were created with
variable-sized chunks (using Rabin fingerprints) with an aver-
age size of 8KB. The full details appear in Table 1.

Keyword dictionaries. We created six sets (dictionaries)
of keywords that vary in the number of chunks and files they
appear in. We sorted the terms in Wiki-12 in order of the
number of chunks they appear in, and retrieved all the terms
that appear in the ranges of 1-2, 9-10, and 90-100 chunks.
We then chose 128 random terms from each range, creating
the Wiki-chunk-low, Wiki-chunk-med, and Wiki-chunk-high
dictionaries. We repeated this process, counting appearances
of terms in entire files instead of chunks, to create Wiki-file-
low, Wiki-file-med, and Wiki-file-high. We created a similar
set of dictionaries from LNX-198 using the same process. The
resulting average number of chunks and files containing each
term in each dictionary are summarized in Table 2.

Hardware. For our experiments, we used a server running
Ubuntu 16.04.7, equipped with 128GB DDR4 RAM and an
Intel Xeon Silver 4210 CPU running at 2.40GHz. The backup
store for Destor was a Dell 8DN1Y 1TB 2.5" SATA HDD.
The maps of all the index alternatives (Naïve as well as the
term-chunk map of IDEA and all the maps of IDEA-Direct)
were stored on a separate identical HDD. The chunk-to-file
and file-to-path maps of IDEA were stored on a Dell T1WH8
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240GB 2.5" SSD. We cleared the page cache and restarted
Lucene before each indexing and lookup experiment.

7 Evaluation
The goal of our experimental evaluation was to understand how
deduplication-aware indexing (IDEA) compares to the tradi-
tional deduplication-oblivious indexing (Naïve) in its storage
requirements (index size), memory usage, indexing time, and
lookup performance. We designed our evaluation to demon-
strate how these aspects are affected by the characteristics of
the indexed data (deduplication ratio, number and size of files)
and of the searched keywords.

Indexing time. Figure 7 shows the offline indexing times
of Naïve and IDEA. It shows that deduplication-aware index-
ing can reduce indexing time compared to Naïve, and that the
reduction is proportional to the deduplication ratio—the por-
tion of data removed by deduplication. The recipe-processing
time is negligible compared to the chunk-processing time in
all except very extreme cases (LNX-662 with 28M files).

Recall that the Linux datasets have a very high deduplication
ratio (between 78% in LNX-198 and 95% in LNX-662), with
many small files. In these datasets, the indexing time of IDEA
is shorter than that of Naïve by 76% to 94%. This reduction
results from processing each chunk only once, and fetching the
chunks sequentially from the underlying HDD. The Wikipedia
datasets have lower deduplication ratios (between 53% in Wiki-
4 and 65% in Wiki-12 and Wiki-24) and a considerably smaller
number of large files. In these datasets, the reduction in index-
ing time is substantial but smaller: the indexing time of IDEA
is shorter than that of Naïve by 49% to 76%.

The results for the Wiki-12 versions further illustrate the
effect of the number and the size of the files on the indexing
times. When Lucene creates the term-to-file mapping, multiple
occurrences of a term in a document are heuristically replaced
(in memory) by a single pointer/counter. Thus, as the size of
the files decreases (from 100MB in Wiki-12 to 1MB in Wiki-
12-1MB), there are fewer replacements and their processing
time in Naïve increases. In contrast, the chunk-processing time
of IDEA depends on the appearances of terms in chunks, not
files, and thus remains similar for all these versions.

Index size. Figure 8 compares the size of the different in-
dexes. In the Linux datasets, IDEA is always smaller than
Naïve, and the difference between them increases with the
deduplication ratio—for LNX-662, the index size of IDEA is
73% smaller than that of Naïve. The reason is the large num-
ber of small files, combined with a very high deduplication
ratio: there are more files than chunks in all these datasets (see
Table 1). In Naïve, each term points to a large set of files it
occurs in, while in IDEA, the files are recorded for each chunk
rather than term. The file-to-path map occupies a significant
portion of IDEA’s index for these datasets. However, it is still
considerably smaller (27%-44%) when compared to Naïve.

The Wikipedia datasets have a much lower deduplication
ratio than Linux. In this case, the benefit from mapping term
to chunks instead of files depends on the size of the files. The
index of IDEA is larger than that of Naïve in the datasets with
100MB files (Wiki-4, Wiki-8, Wiki-12), and is smaller in the
datasets with 1MB files. The advantage of IDEA compared to
Naïve can be seen when comparing the different versions of the
Wiki-12 dataset: the size of Naïve grows considerably with the
number of files, while the size of IDEA is almost unchanged.
The reason is that when the data is split into more files, Naïve
must record more files for all the terms included in them. In
IDEA, however, this additional information is recorded per
chunk, not per term.

The memory requirements of each index are related but not
directly proportional to the index size. During startup, Lucene
loads an internal data structure called the term-info-index (Tii),
which contains statistics regarding each term, including a com-
pressed counter of its frequency in the entire dataset. The size
of the Tii is roughly half of the size of the data loaded into
memory during Lucene’s startup. The Tii in IDEA is smaller
than the Tii in Naïve (except in Wiki-4, which has an unusually
low deduplication ratio) by 52% to 76%. The peak memory
usage of IDEA is proportionately lower than that of Naïve for
the Wikipedia datasets. In the Linux datasets, more memory
is used for chunk-to-file lookups, and thus its consumption is
comparable to that of Naïve.

Lookup times. Figure 9 shows the lookup time for a single
keyword from two dictionaries in three representative datasets.
Each bar represents an average of four experiments (the stan-
dard deviation was at most 0.2%), each with a different key-
word, with the latency divided into startup time and lookup
times in each map. The results show that the additional lookups
due to the indirection in IDEA have a minor effect on the la-
tency. IDEA is faster than Naïve by up to 82%, 47%, and 45%
in LNX-198, Wiki-12, and Wiki-12-1MB, respectively.

The advantage of IDEA is the smaller size of its term-to-doc
map, which incurs shorter lookup latency. The latency of each
step in the lookup process depends on the size of the respec-
tive data structure. The startup time, which is dominant when
searching for a single keyword, is proportional to the size of the
Tii, which is much smaller in IDEA. The lookup times in the
different inverted term-indexes is also proportional to their size,
due to the logarithmic search complexity in Lucene’s skip-lists.
The remaining latency is incurred when converting document
IDs to names. In the Wikipedia datasets, this specific map of
IDEA is larger than that of Naïve by orders of magnitude, but
its overall lookup time is still smaller than that of Naïve.

Figure 10 shows the lookup times with increasing numbers
of terms from the file-med dictionary. Each bar shows the av-
erage time of three independent executions, and the standard
deviation was at most 0.09%. As the number of terms increases,
the weight of the startup time Sindex in the overall lookup la-
tency decreases, and the time to convert the document IDs to
their names increases. IDEA outperforms Naïve by up to 59%
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Figure 7: Offline indexing times. Figure 8: Index sizes. Figure 9: lookup times of a single keyword.

Figure 10: Lookup times with different numbers of
keywords, with the file-med dictionary.

Figure 11: lookup times with 128 keywords of different dictionaries, in the LNX-
198 (left) and WIKI-12-1MB (right) datasets.

and 27% on the Linux and Wikipedia datasets, respectively.
Figure 11 compares the effect of different dictionaries on

the lookup times. Each bar shows the average time of three
independent executions, and the standard deviation was at most
0.09%. The lookup times of Naïve as well as IDEA increased
with the number of chunks and files in the query result. The
Linux dataset contained more files than chunks, and thus IDEA
was faster than Naïve by up to 59% (in the file-low dictionary).
The Wikipedia dataset, on the other hand, contained many
more chunks than files. As a result, there are considerably
more chunks that contain each term, especially in the chunk-
high dictionary, for which the lookup time of both indexes was
comparable. For all other dictionaries, the lookup time of IDEA
was shorter than that of Naïve.

We repeated all the lookup experiments of IDEA without an
auxiliary SSD. This means that its file-to-path map was stored
on HDD. As expected, this increased the total lookup time, and
this increase was proportional to the number of different files in
the query result. For example, with a single keyword from the
chunk-med dictionary, the increase compared to IDEA with an
SSD was 1.1% and 16% in the Wiki-12 and LNX-198 datasets,
respectively. The biggest increase was 168% when looking up
128 keywords from the LNX-662 dataset. Nevertheless, the
lookup of IDEA was faster than that of Naïve, even without
the SSD, in all experiments.

IDEA overheads. We created two datasets to evaluate the
worst-case overheads of IDEA in a system without deduplica-
tion. LNX-1 and Wiki-1 contain a single version of Linux and
Wikipedia, respectively. With almost no deduplication, IDEA
has no advantage when compared to deduplication-oblivious
indexing, while incurring the overhead of processing a large

number of small documents, and looking up terms and chunks
in an additional mapping layer. Table 3 lists the characteristics
of each dataset, as well as the indexing and lookup times of the
different indexes.

Indeed, IDEA is larger than Naïve, due to the larger number
of documents in the index: IDEA must record, for each term,
all the chunks it appears in, even though many of them point
to the same file. The indexing time is similar for both indexes
in the Linux dataset that consists of many small files. In the
Wikipedia dataset, IDEA cannot optimize index construction
by eliminating recurring terms in a document because its doc-
uments are small chunks rather than Wikipedia’s large files.
The lookup times of IDEA are longer for both datasets, due to
the reasons discussed in detail above. However, this increase is
negligible for Wikipedia and is a modest 10% for Linux.

This experiment emphasizes the tradeoffs of deduplication-
aware indexing. Namely, that the additional layer of indirection
incurs non-negligible overheads that are masked in systems
where the deduplication ratio is sufficiently high. In our fu-
ture work, we will identify the minimal deduplication ratio for
which deduplication-aware indexing is more efficient that the
traditional approach, and how this minimum depends on the
average file size.

The effect of indirection. IDEA-indirect is the basis for
the additional functionality of deduplication-aware indexing
(offsets and ranking). To evaluate the effect of the additional
layer of indirection (chunk-to-file mapping), we repeated the
indexing and lookup experiments with IDEA-indirect. The
offline indexing times were within 1% and 6% of those of
IDEA for the Wikipedia and Linux datasets, respectively. The
size of IDEA-indirect is always larger than that of IDEA: by
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Dataset Dataset size Indexing time Index size Lookup time
Logical Physical # files / # chunks Naïve IDEA Naïve IDEA Naïve IDEA

WIKI-1 60.4GB 60.3GB 574 / 6M 2.02H 2.25H (11.3%) 2.5GB 6.1GB (152%) 11.67 11.78 (0.1%)
LNX-1 0.91GB 0.86GB 74K / 165K 86 secs 85 secs (N/A) 49MB 60.8MB (24%) 0.47 0.52 (10%)

Table 3: Worst-case overhead of IDEA (in parentheses, with respect to Naïve) for systems without deduplication. The lookup times (in
seconds) refer to the average of the file-med and chunk-med dictionaries.

up to 22% and 49% for the Wikipedia and Linux datasets,
respectively. Despite this increase, it is still smaller than Naïve
in the Linux datasets.

The additional level of indirection also increases the lookup
time compared to IDEA. This increase grows with the number
of chunks in which the queried keywords appear: in the LNX-
198 dataset, the lookup time of 128 keywords with IDEA-
indirect was 32% and 23% higher than that of IDEA, in the
file-low and chunk-high dictionaries, respectively. In the Wiki-
12-1MB dataset and the file-high and chunk-high dictionaries,
this increase caused IDEA-indirect to be slower than Naïve. In
all other experiments, however, IDEA-indirect was faster than
Naïve, despite the additional layer of indirection.

Inline indexing. We compared the inline and offline indexing
times of Naïve and IDEA-indirect on two of the datasets, LNX-
198 and Wiki-12. Recall that inline indexing is integrated into
the deduplication process, referred to as ‘backup’ in Destor.
In this experiment, the original data was read from one HDD
and backed-up by Destor on a second HDD. We include the
backup time in the results for offline indexing, for a mean-
ingful comparison. Inline indexing is more efficient in terms
of memory usage – the chunks are processed while they are
still in memory, and do not need to be fetched from the disk.
At the same time, the backup process is slowed down by the
additional processing.

The results in Figure 12 show that the slowdown of the
backup process is detrimental with Naïve indexing: 6.1x and
11.5x in the Linux and Wikipedia datasets, respectively. In-
deed, to the best of our knowledge, no deduplicating system
currently supports inline indexing. In contrast, IDEA-indirect
slows down the backup process by only 1.7x and 4.5x in the
Linux and Wikipedia datasets, respectively, thanks to its ability
to process only new unique chunks. Although this overhead is
not negligible, it presents, for the first time, a realistic opportu-
nity to index deduplicated data inline with writes.

The effect of term offsets. We repeated the indexing and
lookup experiments of IDEA with IDEA-offsets. For brevity,
we present here only the results of representative datasets and
workloads. Figure 13 shows the index size for Naïve-offsets
and IDEA-offsets. These sizes are larger than the sizes without
offsets, due to the additional information stored in the term
vectors. The increase is higher for Naïve than for IDEA: offsets
increase the index size by up to 20.9x and 7.1x for Naïve and
IDEA, respectively. As a result, the size of IDEA-offset is
always smaller than Naïve-offset, even for datasets in which
the situation was reversed without offsets (see Figure 8).

The reason for this difference is that the number of offsets

Dataset LNX-198 Wiki-12-1MB

Naïve-rank 10.2GB (332%) 173GB (490%)
IDEA-rank 3.8GB (178%) 80GB (172%)

Table 4: Index sizes with ranking. The number in parentheses is the
increase compared to the version without ranking.

stored by Naïve-offset depends on the logical occurrences of
each term. This eliminates the “advantage” that Naïve had over
IDEA in datasets with large files. In IDEA-offsets, the offsets
are recorded only within chunks: their number as well as their
values are smaller, occupying less space in the term-vectors.
The additional size of the chunk offsets in the FP-to-file is
much smaller than that of the term offsets.

IDEA’s smaller size also results in faster indexing, shown in
Figure 14. Offsets increase the indexing time by up to 51% and
47% for Naïve and IDEA, respectively. The increase is higher
for Naïve-offsets due to the larger index that must be persisted
on the HDD.

Figure 15 shows the lookup times for 128 words from the
different dictionaries for two representative datasets. Lookups
with offsets are naturally slower than without them, due to the
need to fetch the term vectors for each file in the query result.
Comparing the results to those in Figure 11 shows the increase
in the lookup time due to the added offsets: the time increased
by as much as 33x and 7.5x for Naïve and IDEA, respectively.
The increase is higher in Naïve due to different reasons: in
LNX-198, it fetches more term vectors from HDD: one for
each file the term appears in, rather than one for each chunk.
In Wiki-12-1MB, the term vectors are much longer, because
each 1MB file contains many more terms than each chunk.

The effect of result ranking. We evaluated the effect of re-
sult ranking on two representative datasets, LNX-198 and Wiki-
12-1MB. Recall that recording term frequencies in LucenePlus-
Plus is coupled with the recording of term positions. As a
result, the size of both Naïve-rank and IDEA-rank is larger
than their versions that do not support ranking. Table 4 shows
that this increase is higher for Naïve, similarly to its increased
size when offsets are recorded.

The increase in indexing time (shown in Table 5) is milder,
and is higher for IDEA than for Naïve. The reason is the
additional in-memory processing required for generating the
term counters in the file-to-path map of IDEA-rank. Neverthe-
less, the indexing time of IDEA-rank is still shorter than that
of Naïve-rank. Further optimization of the data structures of
IDEA-rank is possible and is left for future work.

Figure 16 shows the lookup times with one keyword (aver-
aged over four runs with different keywords) from the file-med
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Figure 12: Inline indexing times. Figure 13: Index sizes with offsets. Figure 14: Offline indexing times with offsets.

Figure 15: lookup times with 128 keywords of different dictionaries, in the LNX-198
(left) and WIKI-12-1MB (right) datasets, with offsets.

Figure 16: lookup times of 1 keyword of
different dictionaries with TF-IDF ranking.

Dataset LNX-198 Wiki-12-1MB

Naïve-rank 1.57H (15%) 36H (19%)
IDEA-rank 0.4H (18%) 13H (25%)

Table 5: Indexing times with ranking. The number in parentheses is
the increase compared to the version without ranking.

and chunk-med dictionaries. The standard deviation was at
most 0.4%. The lookup time of IDEA-rank is longer than that
of IDEA by up to 25% (except a 50% increase in the “-low”
dictionaries). This increase is due to the storage of the term off-
sets, which increases the term-to-chunk map. Interestingly, in
Naïve, this increase in size triggered a segment split in Lucene,
which results in slightly faster lookups. This inverse effect
causes one anomaly: IDEA-rank is slower than Naïve-rank
for words in the file-low dictionary and LNX-198. In all other
cases, IDEA is much faster than Naïve.

8 Discussion and Open Challenges
Deduplication-aware indexing opens up several additional
venues for improving search performance and applicability.
The major advantage of our approach is its generality: it is
orthogonal to the specific design details of both deduplication
and indexing mechanisms. Deduplication-aware indexing can
be integrated into any deduplication system that chunks in-
coming data streams. The design of the index itself relies on
the basic search functionality of Lucene, and could use any
other search engine. The chunk-to-file and file-to-path maps
can be realized with any data structure or external database.
Furthermore, the lookup in the two maps, term-to-chunk and
chunk-to-file can be pipelined to reduce some of its overhead:
looking up the unique chunks does not require that all of them
are identified in advance.

IDEA can support file deletion similarly to existing index
designs. The index must maintain the property that it returns all
non-deleted files in the storage system that contain the query
terms. This can be realized by marking each file as live or
deleted, and returning only live files in the query result. A long
series of file deletions, can, as in existing index designs, trigger
garbage collection and an update of the term-to-chunk and
chunk-to-file maps.

While our deduplication-aware indexing approach lends it-
self to many extensions and improvements, its dependency on
white-space aware chunking might prevent it from being ap-
plicable when the system receives chunked data and does not
perform chunking internally (such as in the case of existing
deduplicating storage devices). When terms might be split be-
tween chunks, IDEA will have to process each chunk in the
context of the chunks adjacent to it in each file.

A similar challenge is presented by files containing com-
pressed text, such as .pdf or .docx. Their textual content
can only be processed after the file is opened by a suitable
application or converted by a dedicated tool. Thus, the individ-
ual chunks cannot be processed during offline index creation.
Both challenges might be addressed by inline indexing, but
will require adjusting the indexing process and data structures
accordingly. We leave such extensions for future work.

Finally, the overhead of creating and storing an index
might be prohibitively high, for deduplicated as well as non-
deduplicated data. The choice between indexing and exhaus-
tive search depends on the context of each specific system: its
data type and the frequency and type of queries it is expected
to serve. IDEA and IDEA-Direct introduce additional design
choices between inline and offline indexing, and using HDD
or SSD for external map structures.
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9 Conclusions
Since most storage in large-scale systems is or will be dedupli-
cated, standard storage functionality can be made more efficient
by taking advantage of deduplicated state. In this paper, we
presented the first design of a deduplication-aware term index.
Our evaluation showed the advantages of this approach, as well
as its flexibility in supporting advanced search functions.
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Artifact Appendix
Abstract

IDEA is a deduplication-aware keyword index which addresses
the inherent challenges of indexing deduplicated data. We make
IDEA’s code, scripts, keywords, and configurations publicly
available to allow the reproducability of our results and to fa-
cilitate further research of deduplication-aware indexing. This
section describes the artifact that is made available with the
publication of this paper.

Scope

The artifact includes code, tools, and instructions sufficient for
reproducing the results presented in the paper. The instructions
in the repository can be followed for generating result data
equivalent to that used for Figures 7– 16. They can be used to
verify the main claims of the paper:
• Indexing is faster with IDEA than with Naïve. This claim

holds in setups with and without offsets and ranking, for
inline as well as offline indexing.

• The Naïve index is larger than that of IDEA when the dedu-
plication ratio and the number of files are high.

• When offsets are supported, the index size of Naïve is always
larger than that of IDEA.

• Index size and indexing time increase when offsets or rank-
ing are supported.

• Lookup times are faster in IDEA than in Naïve, except in
several extreme cases.

• Offsets and ranking increase lookup times.
In addition to the reproducible environment, the repository

contains instructions for modifying and recompiling the code.

Contents

The main content of the artifact is the source code of IDEA,
which is a fork of Destor [46]. The artifact contains source
and header files (src/), binary libraries of LucenePlusPlus [9]
(libs/), and compilation scripts for building the IDEA exe-
cutable. The same executable is also used to run the versions of

the Naïve index. The repository also contains resources for re-
producing the experiments described in this paper: instructions
for downloading and creating the Linux and Wikipedia datasets
(dataset_details/), the respective keywords (keywords/),
relevant system configurations (configs/), and scripts for run-
ning the experiments (scripts/).

Hosting

Our artifact is hosted in GitHub and is available here:
https://github.com/asaflevi0812/IDEA. The main branch is sta-
ble for installation and is up-to-date. To modify the code, either
open the repository in an IDE in the host machine (e.g., over
SSH), or fork the repository and use git to transfer changes
between the virtual and host machines.

Requirements

Our prototype is based on Destor, which requires Ubuntu ver-
sion 16.04. To be consistent with the evaluation setup described
in this paper, follow the instructions in GitHub for creating the
backup and index on HDD, with IDEA’s external data struc-
tures on SSD. The required storage capacity depends on the
dataset (see Table 1 for details). However, we reproduced our
main results also in a server with HDD only, and on a server
with Amazon AWS EBS SSD storage.

During the artifact evaluation process, our artifact was eval-
uated using an M5.large instance on AWS with 8 GB DRAM.
The image name was ubuntu-xenial-16.04-amd64-pro-server-
20230912 and the storage was configured as GP3 100GB with
3000 IOPS.
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