Perseus: A Fail-Slow Detection Framework for Cloud Storage Systems

Ruiming Lu, Erci Xu, Yiming Zhang,

Fengyi Zhu, Zhaosheng Zhu, Mengtian Wang,

Zongpeng Zhu, Guangtao Xue, Jiwu Shu, Minglu Li, Jiesheng Wu

FAST^T Data Center Instability

- Failures in The Wild
 - Fail-Slow
 - Fail-Stop
 - Byzantine

...

FAST¹/₂₃ Not A Problem?

FAST⁷ Not A Problem?

• No Ground Truth in Identifying Fail-Slow

FAST¹/₂₃ Fail-Slow Detection (FSD)

• Previous FSD Studies Are

- Intrusive
 - Source Code Accessing/Altering
- Coarse-grained
 - Node-Level Detection

Capturing and Enhancing *In Situ* System Observability for Failure Detection

Peng Huang Johns Hopkins University Chuanxiong GuoJacob R. LaByteDance Inc.Mic

Jacob R. Lorch Lidong Zhou Microsoft Research

Yingnong Dang Microsoft

IASO: A Fail-Slow Detection and Mitigation Framework for Distributed Storage Services

Biswaranjan Panda, Deepthi Srinivasan, Huan Ke*, Karan Gupta, Vinayak Khot, and Haryadi S. Gunawi*

Nutanix Inc.

University of Chicago*

Abstract

We address the problem of "fail-slow" fault, a fault where a hardware or software component can still function (does not fail-stop) but in much lower performance than expected. absolute failure of sub-components but can also gracefully handle the occurrence of performance faults.

In this context, our work in this paper makes the two following contributions:

(1) Design and implementation of a fail slave mitigation

FAST¹/₂₃ Fail-Slow Detection (FSD)

- Our Work Shares
 - Years of Experiences in FSD
 - A Practical FSD Framework named Perseus
 - Root Cause Analysis

FAST⁷ Our Dataset

• <u>248K+</u> drives

- 55% NVMe SSD + 45% SATA HDD
- 4 manufacturers
- 9 major drive models
- Diverse cloud services:
 - Log service, big data, E-commerce, table storage, stream processing, database, object storage, data warehouse, block storage

FAST¹/₂₃ Our Dataset

- 248K+ drives
- <u>10-month</u> performance logs (iostat)
 - Latency/throughput time series
- Test dataset released
 - https://tianchi.aliyun.com/dataset/144479

Workload bursts are common causes of latency variations

FAST¹/₂₃ Failed Attempt: Peer Evaluation

Time-consuming to fine-tune

Insight: "Workload pressure can affect latency variations"

• How to model such a positive correlation?

Guideline: Model the latency-vs-throughput (LvT) distribution

Throughput

Insight: "No golden standards to identify fail-slow "

Guideline: Non-binary output

• Model the likelihood of fail-slow

FAST⁷ Outline

FAST¹/₂₃ Raw Data

LvT distribution of one storage node

Throughput

FAST¹/₂₃ Raw Data

23

FAST¹/₂₃ Step 1: Outlier Detection

Throughput

FAST³ Step 2: Building Regression Model

Throughput

FAST¹ Step 2: Building Regression Model

Throughput

Prediction upper bounds as adaptive latency thresholds without fine-tuning 26

FAST¹/₂₃ Step 3: Identifying Fail-Slow Event

FAST^T Step 4: Evaluating Risk

Quantify the slowness of drives

FAST¹/₂₃ Evaluation Benchmark

- Built and released our self-assembled test dataset
 - Clear labels (fail-slow or not)
 - 15 days of operational traces
 - 41K drives

Fail-Slow Detection Open Dataset	CC BY-NC-SA 4.0		New a notebook
Content Notebook Comment			
Description			
This dataset aims at fail-slow detection on storage devices. Please refer to our paper (to appear in USENIX FAST 2023) for more details.			
Data List			
Name	Date	Size	Download
README.md	2023-01-13	1.42KB	<u>.L.</u>
1_cluster_ABCDE.zip	2023-01-25	379.70MB	٤.
2_cluster_FGHIJ.zip	2023-01-25	1.48GB	<u>ل</u>
cluster_info.csv	2023-01-25	555.00Bytes	<u>.</u>
slow_drive_info.csv	2023-01-25	9.45KB	<u>ل</u>
5_cluster_PQST.zip	2023-01-25	556.42MB	<u>ل</u>
7_cluster_UVWXY.zip	2023-01-25	1.01GB	<u>ل</u>
4_cluster_MNO.zip	2023-01-25	1.07GB	Ł
3_cluster_KL.zip	2023-01-25	1.42GB	土
6_cluster_R.zip	2023-01-25	1.86GB	<u>L</u>

https://tianchi.aliyun.com/dataset/144479

FAST⁷ Evaluations

- Perseus outperforms all previous attempts (§5.4)
- Effectiveness of Perseus's Design Choices (§5.5)
- Reduce Tail Latency By <u>31-48%</u> (§5.6)
- Root Cause Analysis (§6)

More details in the paper!

FAST¹/₂₃ Root Cause Distribution

FAST⁷ Summary

Perseus

Detection Framework

Non-intrusive (Performance) log-based No source code altering

Fail-Slow

Efficient

Detection

Fine-grained Device-level detection Accurate Recall/precision rate > 0.99

General
One set of parameters fits all scenarios

Storage Devices

Adaptable to Other Problem Domains

Thank you!

Perseus: A Fail-Slow Detection Framework for Cloud Storage Systems

Ruiming Lu, Erci Xu, Yiming Zhang, Fengyi Zhu, Zhaosheng Zhu, Mengtian Wang, Zongpeng Zhu, Guangtao Xue, Jiwu Shu, Minglu Li, Jiesheng Wu

Contact email: lrm318@sjtu.edu.cn