
USENIX Association

February 21–23, 2023
Santa Clara, CA, USA

Proceedings of the
21st USENIX Conference on

File and Storage Technologies

© 2023 by The USENIX Association

All Rights Reserved

This volume is published as a collective work. Rights to individual papers remain with the author or the author’s
 employer. Permission is granted for the noncommercial reproduction of the complete work for educational or research
purposes. Permission is granted to print, primarily for one person’s exclusive use, a single copy of these Proceedings.
USENIX acknowledges all trademarks herein.

ISBN 978-1-939133-32-8

Conference Organizers
Program Co-Chairs
Ashvin Goel, University of Toronto
Dalit Naor, The Academic College of Tel Aviv–Yaffo

Program Committee
Nitin Agrawal, Google
Deniz Altinbüken, Google Research
Lakshmi N. Bairavasundaram, VMware, Inc.
Randal Burns, Johns Hopkins University
Ali R. Butt, Virginia Tech
Rong Chen, Shanghai Jiao Tong University
Sangyeun Cho, Samsung Electronics Co.
Young-ri Choi, UNIST (Ulsan National Institute of Science and

Technology)
Alex Conway, VMware Research
Peter Desnoyers, Northeastern University and Red Hat
Yu Hua, Huazhong University of Science and Technology
Sudarsun Kannan, Rutgers University
Sanidhya Kashyap, EPFL
Kimberly Keeton, Google
Geoff Kuenning, Harvey Mudd College
Patrick P. C. Lee, The Chinese University of Hong Kong
Youyou Lu, Tsinghua University
Xiaosong Ma, Qatar Computer Research Institute, HBKU
Peter Macko, MongoDB
Ethan Miller, University of California, Santa Cruz, and

Pure Storage
Hyungon Moon, UNIST (Ulsan National Institute of Science

and Technology)
Adam Morrison, Tel Aviv University
Beomseok Nam, Sungkyunkwan University (SKKU)
Sam H. Noh, UNIST (Ulsan National Institute of Science and

Technology) and Virginia Tech
Raju Rangaswami, Florida International University
Rob Ross, Argonne National Laboratory
Jiri Schindler, Tranquil Data
Philip Shilane, Dell Technologies
Liuba Shrira, Brandeis University
Keith A. Smith, MongoDB
Haris Volos, University of Cyprus
Carl Waldspurger, Carl Waldspurger Consulting
Avani Wildani, Emory University
Youjip Won, Korea Advanced Institute of Science and

Technology (KAIST)
Gala Yadgar, Technion—Israel Institute of Technology

Work-in-Progress/Posters Co-Chairs
Ram Alagappan, University of Illinois at

Urbana–Champaign
Aishwarya Ganesan, University of Illinois at

Urbana–Champaign

Test of Time Awards Committee
Nitin Agrawal, Google
Jiri Schindler, Tranquil Data

Steering Committee
Nitin Agrawal, Google
Marcos K. Aguilera, VMware Research
Casey Henderson, USENIX Association
Dean Hildebrand, Google
Kimberly Keeton, Google
Geoff Kuenning, Harvey Mudd College
Arif Merchant, Google
Sam H. Noh, UNIST (Ulsan National Institute of Science and

Technology) and Virginia Tech
Don Porter, The University of North Carolina at Chapel Hill
Raju Rangaswami, Florida International University
Erik Riedel
Jiri Schindler, Tranquil Data
Bianca Schroeder, University of Toronto
Keith A. Smith, MongoDB
Eno Thereska, Alcion
Carl Waldspurger, Carl Waldspurger Consulting
Hakim Weatherspoon, Cornell University
Brent Welch, Google
Ric Wheeler, Facebook
Gala Yadgar, Technion—Israel Institute of Technology
Erez Zadok, Stony Brook University

Message from the
FAST ’23 Program Co-Chairs

Welcome to the 21st USENIX Conference on File and Storage Technologies (FAST ’23).

This year’s conference continues the tradition of bringing together researchers and practitioners from both industry and
academia for a program of innovative and rigorous storage-related research. FAST has adapted with the progression of the
COVID pandemic. Two years back, FAST ’21 was held as a fully virtual conference for the first time. Last year, FAST ’22 was
held as a hybrid (both in-person and online) conference. This year, we are happy to announce that the FAST ’23 conference is
being held fully in person, and we are expecting participation from much of the broader storage community at the conference.
However, the pandemic isn’t over yet, and some of the authors are unable to travel to the conference, so we are offering both
in-person and video talks with online Q&A.

We have worked on a program with talks on a wide range of topics, including emerging and traditional storage technologies,
cloud and remote storage, key-value stores, persistent memory systems, storage coding, learned storage systems, and, as
always, new file system designs. The conference will also include posters and work-in-progress sessions.

FAST ’23 received 122 submissions from authors in academia, industry, government labs, and the open-source communities. Of
these, we accepted 28 papers, for an acceptance rate of 23%. The Program Committee (PC) used a two-round online review
process. In the first round, each paper was assigned three reviewers. This year, we adopted an early rejection notification for
papers that did not advance to round two, allowing authors to receive and act upon feedback earlier. In the second round, 63
papers were assigned at least two more reviews, and these authors were invited to submit a response to the reviews before
the PC meeting. This is the third year that FAST has included an author response period. After the author response period
and online discussion, in which we pre-accepted 13 papers, the PC discussed 28 papers to select the final program. We held
a two-day online PC meeting on December 5–6, 2022, with PC members joining virtually from global locations across 11
different time zones.

We used the HotCRP service to manage all the stages of the review process, from submission to author notification. All
accepted papers were assigned a shepherd from the PC, who worked with the authors to address comments from the reviews
and provided editorial advice and feedback on the final manuscripts.

We continued including a special category of deployed-systems papers, which address experience with the practical design,
implementation, analysis, or deployment of large-scale, operational systems. We received nine deployed-systems submissions
and accepted four such papers.

We wish to thank the many people who contributed to this conference. First and foremost, we are grateful to all the authors
who submitted their work to FAST ’23. We would also like to thank the attendees of FAST ’23 and the future readers of these
papers. Together with the authors, you form the FAST community and make storage research vibrant and exciting.

We extend our thanks to the entire USENIX staff, who have provided outstanding support throughout the planning and
organizing of this conference with the highest degree of professionalism and friendliness. Most importantly, their behind-the-
scenes work makes this conference happen.

We would like to thank the Work-in-Progress Session Chairs, Aishwarya Ganesan and Ram Alagappan. Our thanks go to the
members of the FAST Steering Committee, and especially the recent FAST chairs to whom we reached out and who provided
invaluable advice and feedback. We especially wish to acknowledge our Steering Committee Liaison, Keith Smith, for his
guidance on tough issues and encouragement on various issues over the past year.

Finally, we wish to thank our Program Committee for their many hours of hard work reviewing, discussing, and shepherding
the submissions. The reviewers’ evaluations, and their thorough and conscientious deliberations at the PC meeting, contributed
significantly to the quality of our decisions. Similarly, the paper shepherds’ efforts led to significant improvements in the
final quality of the program.

We look forward to an interesting and enjoyable conference!

Dalit Naor, The Academic College of Tel Aviv–Yaffo
Ashvin Goel, University of Toronto
FAST ’23 Program Co-Chairs

21st USENIX Conference on File and Storage Technologies (FAST ’23)
February 21–23, 2023
Santa Clara, CA, USA

Tuesday, February 21
Coding and Cloud Storage
Practical Design Considerations for Wide Locally Recoverable Codes (LRCs) . 1
Saurabh Kadekodi, Shashwat Silas, David Clausen and Arif Merchant, Google

ParaRC: Embracing Sub-Packetization for Repair Parallelization in MSR-Coded Storage .17
Xiaolu Li, Huazhong University of Science and Technology; Keyun Cheng, Kaicheng Tang, and Patrick P. C. Lee,
The Chinese University of Hong Kong; Yuchong Hu and Dan Feng, Huazhong University of Science and Technology;
Jie Li and Ting-Yi Wu, Huawei Technologies Co., Ltd., Hong Kong

InftyDedup: Scalable and Cost-Effective Cloud Tiering with Deduplication . 33
Iwona Kotlarska, Andrzej Jackowski, Krzysztof Lichota, Michal Welnicki, and Cezary Dubnicki, 9LivesData, LLC;
Konrad Iwanicki, University of Warsaw

Perseus: A Fail-Slow Detection Framework for Cloud Storage Systems . 49
Ruiming Lu, Shanghai Jiao Tong University; Erci Xu, Alibaba Inc. and Shanghai Jiao Tong University; Yiming Zhang,
Xiamen University; Fengyi Zhu, Zhaosheng Zhu, Mengtian Wang, and Zongpeng Zhu, Alibaba Inc.; Guangtao Xue,
Shanghai Jiao Tong University; Jiwu Shu, Xiamen University; Minglu Li, Shanghai Jiao Tong University and
Zhejiang Normal University; Jiesheng Wu, Alibaba Inc.

Key-Value Stores
ADOC: Automatically Harmonizing Dataflow Between Components in Log-Structured Key-Value Stores for
Improved Performance . 65
Jinghuan Yu, City University of Hong Kong; Sam H. Noh, UNIST & Virginia Tech; Young-ri Choi, UNIST; Chun Jason
Xue, City University of Hong Kong

FUSEE: A Fully Memory-Disaggregated Key-Value Store . 81
Jiacheng Shen, The Chinese University of Hong Kong; Pengfei Zuo, Huawei Cloud; Xuchuan Luo, Fudan University;
Tianyi Yang, The Chinese University of Hong Kong; Yuxin Su, Sun Yat-sen University; Yangfan Zhou, Fudan University;
Michael R. Lyu, The Chinese University of Hong Kong

ROLEX: A Scalable RDMA-oriented Learned Key-Value Store for Disaggregated Memory Systems 99
Pengfei Li, Yu Hua, Pengfei Zuo, Zhangyu Chen, and Jiajie Sheng, Huazhong University of Science and Technology

AI and Storage
GL-Cache: Group-level learning for efficient and high-performance caching . 115
Juncheng Yang, Carnegie Mellon University; Ziming Mao, Yale University; Yao Yue, Pelikan Foundation; K. V. Rashmi,
Carnegie Mellon University

Shade: Enable Fundamental Cacheability for Distributed Deep Learning Training . 135
Redwan Ibne Seraj Khan and Ahmad Hossein Yazdani, Virginia Tech; Yuqi Fu, University of Virginia; Arnab K. Paul,
BITS Pilani; Bo Ji and Xun Jian, Virginia Tech; Yue Cheng, University of Virginia; Ali R. Butt, Virginia Tech

Intelligent Resource Scheduling for Co-located Latency-critical Services: A Multi-Model Collaborative Learning
Approach . 153
Lei Liu, Beihang University; Xinglei Dou and Yuetao Chen, ICT, CAS; Sys-Inventor Lab

Wednesday, February 22
File Systems
CJFS: Concurrent Journaling for Better Scalability . 167
Joontaek Oh, Seung Won Yoo, and Hojin Nam, KAIST; Changwoo Min, Virginia Tech; Youjip Won, KAIST

Unsafe at Any Copy: Name Collisions from Mixing Case Sensitivities . 183
Aditya Basu and John Sampson, The Pennsylvania State University; Zhiyun Qian, University of California, Riverside;
Trent Jaeger, The Pennsylvania State University

ConfD: Analyzing Configuration Dependencies of File Systems for Fun and Profit . 199
Tabassum Mahmud, Om Rameshwar Gatla, Duo Zhang, Carson Love, Ryan Bumann, and Mai Zheng, Iowa State University

HadaFS: A File System Bridging the Local and Shared Burst Buffer for Exascale Supercomputers 215
Xiaobin He, National Supercomputing Center in Wuxi; Bin Yang, Tsinghua University, Dept. of C.S; National
Supercomputing Center in Wuxi; Jie Gao and Wei Xiao, National Supercomputing Center in Wuxi; Qi Chen, Tsinghua
University, Dept. of C.S; Shupeng Shi and Dexun Chen, National Supercomputing Center in Wuxi; Weiguo Liu, Shandong
University; Wei Xue, Tsinghua University, Dept. of C.S; Tsinghua University, BNRist.; National Supercomputing Center
in Wuxi; Zuo-ning Chen, Chinese Academy of Engineering

Fisc: A Large-scale Cloud-native-oriented File System . 231
Qiang Li, Alibaba Group; Lulu Chen, Fudan University and Alibaba Group; Xiaoliang Wang, Nanjing University; Shuo
Huang, Alibaba Group; Qiao Xiang, Xiamen University; Yuanyuan Dong, Wenhui Yao, Minfei Huang, Puyuan Yang,
Shanyang Liu, Zhaosheng Zhu, Huayong Wang, Haonan Qiu, Derui Liu, Shaozong Liu, Yujie Zhou, Yaohui Wu, Zhiwu
Wu, Shang Gao, Chao Han, Zicheng Luo, Yuchao Shao, Gexiao Tian, Zhongjie Wu, Zheng Cao, and Jinbo Wu, Alibaba
Group; Jiwu Shu, Xiamen University; Jie Wu, Fudan University; Jiesheng Wu, Alibaba Group

Persistent Memory Systems
Tenet: Memory Safe and Fault Tolerant Persistent Transactional Memory . 247
R. Madhava Krishnan, Virginia Tech; Diyu Zhou, EPFL; Wook-Hee Kim, Konkuk University; Sudarsun Kannan,
Rutgers University; Sanidhya Kashyap, EPFL; Changwoo Min, Virginia Tech

MadFS: Per-File Virtualization for Userspace Persistent Memory Filesystems . 265
Shawn Zhong, Chenhao Ye, Guanzhou Hu, Suyan Qu, Andrea Arpaci-Dusseau, Remzi Arpaci-Dusseau, and Michael Swift,
University of Wisconsin–Madison

On Stacking a Persistent Memory File System on Legacy File Systems . 281
Hobin Woo, Samsung Electronics; Daegyu Han, Sungkyunkwan University; Seungjoon Ha, Samsung Electronics; Sam H.
Noh, UNIST & Virginia Tech; Beomseok Nam, Sungkyunkwan University

Remote Memory
Citron: Distributed Range Lock Management with One-sided RDMA . 297
Jian Gao, Youyou Lu, Minhui Xie, Qing Wang, and Jiwu Shu, Tsinghua University

Patronus: High-Performance and Protective Remote Memory . 315
Bin Yan, Youyou Lu, Qing Wang, Minhui Xie, and Jiwu Shu, Tsinghua University

More Than Capacity: Performance-oriented Evolution of Pangu in Alibaba . 331
Qiang Li, Alibaba Group; Qiao Xiang, Xiamen University; Yuxin Wang, Haohao Song, and Ridi Wen, Xiamen University
and Alibaba Group; Wenhui Yao, Yuanyuan Dong, Shuqi Zhao, Shuo Huang, Zhaosheng Zhu, Huayong Wang, and
Shanyang Liu, Lulu Chen, Zhiwu Wu, Haonan Qiu, Derui Liu, Gexiao Tian, Chao Han, Shaozong Liu, Yaohui Wu,
Zicheng Luo, Yuchao Shao, Junping Wu, Zheng Cao, Zhongjie Wu, Jiaji Zhu, and Jinbo Wu, Alibaba Group; Jiwu Shu,
Xiamen University; Jiesheng Wu, Alibaba Group

Thursday, February 23
IO Stacks
λ-IO: A Unified IO Stack for Computational Storage . 347
Zhe Yang, Youyou Lu, Xiaojian Liao, Youmin Chen, Junru Li, Siyu He, and Jiwu Shu, Tsinghua University

Revitalizing the Forgotten On-Chip DMA to Expedite Data Movement in NVM-based Storage Systems 363
Jingbo Su, Jiahao Li, and Luofan Chen, University of Science and Technology of China; Cheng Li, University of Science
and Technology of China and Anhui Province Key Laboratory of High Performance Computing; Kai Zhang and
Liang Yang, SmartX; Sam H. Noh, UNIST & Virginia Tech; Yinlong Xu, University of Science and Technology of China
and Anhui Province Key Laboratory of High Performance Computing

NVMeVirt: A Versatile Software-defined Virtual NVMe Device . 379
Sang-Hoon Kim, Ajou University; Jaehoon Shim, Euidong Lee, Seongyeop Jeong, Ilkueon Kang, and Jin-Soo Kim,
Seoul National University

SMRstore: A Storage Engine for Cloud Object Storage on HM-SMR Drives . 395
Su Zhou, Erci Xu, Hao Wu, Yu Du, Jiacheng Cui, Wanyu Fu, Chang Liu, Yingni Wang, Wenbo Wang, Shouqu Sun,
Xianfei Wang, Bo Feng, Biyun Zhu, Xin Tong, Weikang Kong, Linyan Liu, Zhongjie Wu, Jinbo Wu, Qingchao Luo,
and Jiesheng Wu, Alibaba Group

SSDs and Smartphones
Multi-view Feature-based SSD Failure Prediction: What, When, and Why . 409
Yuqi Zhang and Wenwen Hao, Samsung R&D Institute China Xi’an, Samsung Electronics; Ben Niu and Kangkang Liu,
Tencent; Shuyang Wang, Na Liu, and Xing He, Samsung R&D Institute China Xi’an, Samsung Electronics; Yongwong
Gwon and Chankyu Koh, Samsung Electronics

Fast Application Launch on Personal Computing/Communication Devices . 425
Junhee Ryu, SK hynix; Dongeun Lee, Texas A&M University - Commerce; Kang G. Shin, University of Michigan;
Kyungtae Kang, Hanyang University

Integrated Host-SSD Mapping Table Management for Improving User Experience of Smartphones 441
Yoona Kim and Inhyuk Choi, Seoul National University; Juhyung Park, Jaeheon Lee, and Sungjin Lee, DGIST; Jihong Kim,
Seoul National University

Practical Design Considerations for Wide Locally Recoverable Codes (LRCs)

Saurabh Kadekodi∗, Shashwat Silas∗, David Clausen, Arif Merchant
Google

Abstract
Most of the data in large-scale storage clusters is erasure
coded. At exascale, optimizing erasure codes for low storage
overhead, efficient reconstruction, and easy deployment is of
critical importance. Locally recoverable codes (LRCs) have
deservedly gained central importance in this field, because
they can balance many of these requirements. In our work
we study wide LRCs; LRCs with large number of blocks per
stripe and low storage overhead. These codes are a natural
next step for practitioners to unlock higher storage savings,
but they come with their own challenges. Of particular inter-
est is their reliability, since wider stripes are prone to more
simultaneous failures.

We conduct a practically-minded analysis of several pop-
ular and novel LRCs. We find that wide LRC reliability is a
subtle phenomenon that is sensitive to several design choices,
some of which are overlooked by theoreticians, and others
by practitioners. Based on these insights, we construct novel
LRCs called Uniform Cauchy LRCs, which show excellent
performance in simulations, and a 33% improvement in re-
liability on unavailability events observed by a wide LRC
deployed in a Google storage cluster. We also show that these
codes are easy to deploy in a manner that improves their
robustness to common maintenance events. Along the way,
we also give a remarkably simple and novel construction of
distance optimal LRCs (other constructions are also known),
which may be of interest to theory-minded readers.

1 Introduction

Large-scale storage clusters currently house exabytes of data,
the bulk of which is encoded with erasure codes. With storage
devices (hard-disk drives, or just disks) routinely becoming
unavailable (due to maintenance or even failures), using era-
sure coding of some variety is essential to provide acceptable
data durability. But this durability comes with the additional
storage overhead incurred by erasure codes. At a time when
data corpus size is growing exponentially [9, 43], reducing
this storage overhead is essential. One way to accomplish this
is to utilize wider stripes for encoding i.e. codes that have a
higher ratio of data blocks to coded/redundancy blocks. Such
codes are sometimes called ‘wide codes’ since they require
the overall width of the stripe to be larger (width is also re-
ferred to as blocklength in the coding theory literature). To
unlock large storage savings without compromising reliability,

*Equal contribution

Figure 1: We captured a sample of 278 unavailable stripes captured
from four Google storage clusters, along with information about the
exact block failures in each sample. The deployed code had total
width n≈ 50, and always succeeded in recovering data when there
were ≤ 6 failures. We then test these failure scenarios with the Uni-
form Cauchy LRC of the same width and overhead. The deployed
code could not recover any of the 278 stripes before restoration,
whereas Uniform Cauchy LRC simulation was successful in recov-
ering 92 stripes prior to restoration; a success ratio of 33%.

codes of larger widths like 20 [3] have been deployed, and in
this work we present some data from a Google storage cluster
using an erasure code of width ≈ 80 blocks. The drawback of
most wide codes with low overhead is that they may require
a large amount of IO to reconstruct any unavailable or lost
data. This is why wide codes are usually designed as locally
recoverable codes (LRCs) (Definition 5.3), which help miti-
gate this reconstruction cost in most cases. Wide LRCs can
be utilized to balance the challenging storage needs of today
(low storage overhead, competitive reliability, competitive av-
erage reconstruction cost), but unique challenges arise when
designing wide LRCs for deployment in storage clusters.

LRCs are optimized to shine in the case when there
is a single erasure in a stripe, but much effort has gone
into designing LRCs with various other desirable proper-
ties [17,26,27,33,47]. One obvious direction that has received
much attention is to design distance-optimal LRCs [33, 49] –
that is, LRCs with the best possible distance, given their width,
dimension, and locality. A code with distance d guarantees
recovery from any pattern of up to d−1 failures. Indeed, max-
imizing distance is especially important for wide codes, since
they are more likely (simply due to their width) to encounter
a larger number of failures simultaneously, as we show using
data from Google storage clusters in Figure 2. But we find
that even if we use distance-optimal LRCs, storage clusters
using wide codes encounter a meaningful number of events
where the number of failures is larger than the distance of the

USENIX Association 21st USENIX Conference on File and Storage Technologies 1

distance-optimal LRC (see data from a Google storage cluster
in Figure 1). So it becomes important to study LRCs that can
successfully reconstruct even a significant fraction of erasure
patterns beyond the optimal distance. The theory community
has been tackling this problem by studying maximally recov-
erable locally recoverable codes (MR-LRCs), which take the
erasure correction capability of an LRC to the information
theoretic limit implied by its design parameters [16, 18, 20].
However, to the best of our knowledge, current constructions
of MR-LRCs do not yield codes fitting the limitations of cur-
rent hardware. For example, wide MR-LRCs with storage
overhead <20% require orders of magnitude larger field sizes
than the computationally efficient field sizes of up to F256,
which is explained in detail in Section 4.

Optimizing LRC reliability in practical parameter settings
is a valuable and open problem, and we tackle aspects of it in
this work. We highlight some of our main contributions.

Practical measurement of reliability. We study wide
LRCs with a distinctively practical lens. One of our contribu-
tions is the curation of a set of robust and practical measures
of LRC reliability. These include performance against random
erasures, comparing the reliability of explicit LRC generator
matrices (see Definition 5.1) against the information theoretic
limit provided by MR-LRCs, and calculating mean time to
data loss (MTTDL) using observed reliability metrics. As
mentioned earlier, going wide creates new reliability chal-
lenges for LRCs, and these tools provide a clearer and more
realistic set of tests to tackle the new challenges. Using these
tools, we meaningfully compare popular deployed LRCs and
showcase novel highly performant LRCs.

New distance-optimal LRC constructions. In Section 6,
we provide a novel construction of distance-optimal LRCs
(Definition 5.4), which we call Optimal Cauchy LRCs. This
continues a long line of work [47, 49] for constructing
distance-optimal LRCs, and while our construction is not the
most general, it is remarkably simple and yields many codes
(even wide LRCs) in practically useful parameter settings.

Insights into reliable wide LRC design. Our practical
measures of reliability provide several insights. While it is
true that higher distance gives guarantees about fixing up to a
certain number of erasures, it is not enough by itself to guar-
antee strong empirical results. The first improvement that can
be made in this direction is to find codes that are approxi-
mately MR-LRCs (since it is not yet possible to construct true
MR-LRCs in our parameter regimes). Here we show good
news: the coefficients used in our simple constructions get
us over 99% of the reliability possible with MR-LRCs. But
we find that just being (close to) maximally recoverable is
not the end of the journey for reliability. Indeed, two codes
that have the same width and same storage overhead, and are
both MR-LRCs (true or approximate) can have significantly
different resilience to random patterns of erasures. This is
because erasure recovery is affected by how failures are dis-
tributed across the local repair groups (see Definition 5.5) of

the LRC, so it is not enough to just optimize the coefficients
of an LRC, but also the size of its local repair groups. To the
best of our knowledge, this fact has not been considered in the
literature, even though our experiments show that it can have
a significant impact on reliability. In general, codes whose
local groups are evenly sized have better performance (see
discussion in Section 8). This has the additional perk of also
lowering the degraded mode read cost and the reconstruction
cost of the code.

Novel LRCs that excel in practice. Using some of these
insights, we modify our construction of distance-optimal
codes to create Uniform Cauchy LRCs. We find that these
codes truly shine in most practically relevant reliability (and
performance!) measures. Figure 1 shows data unavailability
events from a deployed wide LRC of width≈ 50 blocks along
with their erasure patterns captured from four large storage
clusters at Google with a total disk population of over 1.7 mil-
lion disks, over a period of one year. For the same code width
and storage overhead, our Uniform Cauchy LRC simulation
recovered more than 33% of these stripes without the need
for restoration. Indeed, further experiments confirm this ob-
servation by showing that Uniform Cauchy LRCs outperform
many popular (and deployed) LRCs across our metrics. A
comprehensive experimental evaluation of LRCs is provided
in Section 8, along with the main observations.

Maintenance-robust deployment of wide LRCs. In Sec-
tion 9 we highlight the importance of maintenance-robust
deployment of wide LRCs. Even though a code may have
many desirable properties, its exact layout in a cluster affects
its robustness to common maintenance events such as kernel
upgrades. It is desirable to construct codes that are easier
to deploy in a maintenance-robust manner (not all codes are
equal here), and we show that the design of Uniform Cauchy
LRCs is ideal in this regard.

Our work shows that a myriad of design choices need to be
considered in order to optimize wide LRCs. Indeed, account-
ing for these factors can lead to more reliable deployments of
wide LRCs in practice.

2 Background

Large-scale storage clusters. Large-scale storage clus-
ters typically constitute of public cloud offerings or high-
performance computing systems. Hard-disk drives (HDDs)
make up the primary storage tier in these clusters. It is com-
mon for the disk population in a large-scale cluster to be above
100K [2, 32], and some large ones are also reported to have
close to 500K disks [30, 31]. Data being stored in large-scale
storage clusters is increasing at an alarming rate [7, 9, 10, 41].
Data redundancy using erasure coding is the reliability mech-
anism of choice for bulk of the data.

Erasure coding. Erasure coding is a more space-efficient
alternative to data replication. Usually described as an (n,k)
code, an erasure coding stripe encodes k data blocks (typi-

2 21st USENIX Conference on File and Storage Technologies USENIX Association

cally one, or a few megabytes in size) along with n−k ‘parity’
blocks (of the same size) to form an n block stripe. The
storage overhead is calculated as n

k . Maximum Distance Sep-
arable (MDS) codes (like Reed-Solomon codes) are popular
erasure codes used in practice because they provide the max-
imum erasure correction capability for any fixed value of n
and k. MDS codes have the property that up to n− k blocks
missing from a stripe can be reconstructed using any k of the
remaining blocks. As data has grown and space-efficiency
has become more critical, wider MDS codes (i.e. codes with
larger values of k) with less storage overhead have become
more popular in practice. Indeed, even (20,17) MDS codes
have been deployed and studied [3], in place of the once ubiq-
uitous schemes like RAID-6 (which is a (6,4)-Reed-Solomon
code), (9, 6) [13] and (14, 10) [42]. But wider MDS codes
have their own drawbacks because they require all the data
from k blocks to reconstruct/repair even a single missing
block, leading to a high reconstruction cost. A need to use
wider encoding schemes with less overhead, combined with
the very high reconstruction cost of MDS codes has motivated
the study of Locally Recoverable Codes.

Data reconstruction process. Large-scale cluster storage
systems have a background process that monitors the redun-
dancy level of all stripes stored in the cluster. Whenever a
disk becomes unavailable (either due to server unavailabil-
ity, or disk failure), the background daemon flags the under-
redundant stripe and starts a timeout of a few tens-of-minutes.
When the timeout expires, the stripe is marked for reconstruc-
tion. Storage clusters often set a soft threshold on the band-
width used for background activity such as reconstructions
(except client-initiated degraded mode reads). In order to bal-
ance the reconstruction workload while maintaining highest
data safety standards, the reconstructions are processed via a
priority queue in which stripes that are more vulnerable are
reconstructed before less vulnerable stripes.

Locally Recoverable Codes (LRCs). LRCs [17, 27, 33,
42, 47, 49] (also known as Local Reconstruction Codes) are
erasure codes designed to mitigate the high reconstruction
cost of MDS codes. An (n,k, `) LRC code divides an n block
stripe into local groups, each with at most ` < k blocks and
a local parity1. In addition to the local parities, the stripe
also has global parities which cover all k data blocks. One
may think of a typical LRC in this way: the data blocks and
the global parities together form an MDS code, and the local
parities are added on top of this code, so as to mitigate the cost
of reconstruction (reduce it from k to `) in the case when there
is exactly one failure in a local group. One may note that LRCs
are not MDS codes since they cannot satisfy the Singleton
bound unless `= k (see Definition 5.6). If there is more than
one failure in the same local group, the underlying MDS code
can be used to reconstruct the data. Several different LRC
constructions have been proposed over the years with different

1Theoretically each local group can have any number of parities, but in
practice the most common configuration involves 1 parity per local group.

trade-offs [27, 33, 47, 49].
Distance of a code. Distance of a code (denoted by d) is

the minimum number of failures/erasures that may render
the stripe potentially non-recoverable (i.e. all patterns of < d
failures are always recoverable). For example, the distance of
an (n,k) MDS code would be n− k+1 since an MDS code
can recover from any n−k failures. In fact, for an MDS code,
any failure beyond n− k failures is strictly non-recoverable.
However, for a code with distance d which is not MDS (such
as an LRC), some patterns of ≥ d failures could be recovered.
Maximizing this capability to recover as many erasure pat-
terns as possible beyond the distance leads us to the notion of
maximally recoverable codes.

Maximally Recoverable LRCs (MR-LRC). For any
code, simply specifying whether each entry in its genera-
tor matrix (see Definition 5.1) is zero or non-zero imposes
an information theoretic limit on which patterns of erasures
could be recoverable. The study of maximally recoverable
codes is concerned with finding coefficients for the non-zero
entries such that this limit is reached [16]. LRCs can also be
optimized in this way: once we have specified which entries
of the generator matrix are non-zero (this will fix various
code parameters like n, k, number of local parities, number of
global parities, and the size of the local groups), it is possible
to find coefficients that maximize the number of recoverable
erasure patterns (including potentially many patterns of ≥ d
erasures). LRCs which are maximially recoverable are known
as MR-LRCs. In terms of their reliability, MR-LRCs are the
gold standard among LRCs.

3 Motivation for studying wide LRCs

Reducing storage overhead is critical. Storage overhead
because of data redundancy is a major component of a clus-
ter’s storage cost. With 3-way replication, the overhead is 3×,
which is prohibitive for large-scale clusters storing exabytes
(EBs) of data on hundreds-of-thousands of disks. Even the
popular MDS codes such as (9,6) [13] or (14,10) [42] which
have an overhead of 1.5× and 1.4× respectively, are consid-
ered too expensive for exascale [9, 10, 29, 41]. Large-scale
storage clusters are actively adopting wide MDS codes to min-
imize the storage overhead. Backblaze reported the use of a
(20,17) MDS code [3] which has a reasonably low overhead
of 1.17× (a rate of 17

20 = 0.85, see Definition 5.1). With every
percent reduction in storage overhead resulting in savings of
millions in capital, operational and energy costs, lowering
storage overhead continues to be a lucrative problem.

Wide MDS codes are costly. Using wide MDS codes has
several challenges. The reconstruction IO cost of a wide (n,k)
MDS code scales linearly with k. For example, while a (9,6)
MDS codes requires reading 6 data blocks for reconstruct-
ing a missing block, a wide MDS code such as (20,17) re-
quires reading 17 data blocks. Wide MDS codes also have a
higher unavailability because they have a higher probability

USENIX Association 21st USENIX Conference on File and Storage Technologies 3

Figure 2: A 24 hour trace with the number of stripes with at least 4 failures in two deployed LRCs captured from a single storage cluster at
Google. The wider LRC (n≈ 80) has many more stripes with at least 4 failures compared to the relatively narrower LRC (n≈ 50).

of having blocks stored on devices that are unreachable due
to maintenance (since no two blocks of a stripe can be on the
same disk, server, rack, etc.). Thus, not only does a wide MDS
code have a higher degraded mode read cost (Definition 5.10),
but the frequency of performing degraded-mode reads is also
higher due to higher unavailability. Due to a larger number
of disks, degraded reads and reconstructions in wide MDS
codes are also more likely to suffer from high tail latency
due to stragglers. So although wide MDS code are good for
durability and reduced storage overhead, they are not good
for reconstruction costs, availability, and degraded read per-
formance, all of which are major performance concerns in
large-scale storage clusters. Storage overhead minimization
is critical, but cannot come at the expense of aforementioned
problems. Indeed, this is the reason for the continued popu-
larity of LRCs, which mitigate this drawback.

Real-world failure patterns favor LRCs. We empirically
observe the failure patterns of stripes stored in three large-
scale storage clusters totalling over 1.5 million disks for a
period of 6 months. These clusters have multiple different era-
sure coding and replication schemes deployed simultaneously,
and have over 1.2 trillion stripes. From among the stripes that
have > 0 failures, we observe that ≈ 99.2% of stripes have
just a single failure. Similar data has been observed by others
in [40], where they found that ≈ 98.08% stripes had a single
failure on a Facebook warehouse cluster. A single block fail-
ure in a stripe is a scenario where LRCs shine (in contrast to
MDS codes). However, this comes at a cost of higher storage
overhead (as we mentioned, typical LRCs are just MDS codes
with the additional overhead of local parities, and they cannot
lie on the Singleton bound).

Wide LRCs. In an ideal world, we would like to use wide
LRCs which have significantly lower overhead than the LRCs
showcased in [33, 42] (and many other works). Wide LRCs
could reduce the overhead from the 30−60% range (which
is common in deployed LRCs and MDS codes) to the less
than 20% range, while still maintaining many advantages
over MDS codes. But wide LRCs create novel challenges.
For example, wider stripes are much more likely to result in
a larger percentage of stripes with more than a single failure.
This makes it critical to study robust and practical measures
of LRC reliability if we are to utilize wide codes in practice.
Further, practical issues like deployment and ease-of-use also
need to be addressed.

4 Practical challenges of wide LRCs

Many simultaneous failures are more common in wide
LRCs. While most stripes (which have failures) have single-
block failures, this does not mean that the tiny fraction of
more than one block failures can be ignored. Moving to wider
stripes increases the possibility that multiple blocks of a stripe
need to be repaired at the same time, since there is a higher
chance that devices or servers storing multiple blocks of the
same stripe may be undergoing maintenance simultaneously.
This is consistent with the observation that most data unavail-
ability events in large-scale storage clusters are as a result of
planned outages [13]. Another reason for increased number
of block failures in a wide stripe is due to prioritization of
reconstructions as explained in Section 2. Figure 2 shows the
number of stripes that have at least 4 failures throughout a
24 hour period. There are two LRCs whose stripe failures
are being compared, one with width approximately 50 blocks
and the other with width approximately 80 blocks2. Note that
this trace is collected from a single storage cluster, and so the
failures seen in this trace are in response to the same machines
failing. As is clearly visible, the wider LRC has a significantly
higher number of stripes with at least 4 failures compared to
the relatively narrower LRC.

Constructing MR-LRCs is hard. As mentioned above,
a lot of research has looked at MR-LRCs in recent years
[5, 12, 16, 18, 20]. However, even with recent advancements
such as [12,18], to the best of our knowledge it is not possible
to construct MR-LRCs in the following regime: where the
field size (search-space for coefficients to construct the LRC)
is fixed to be 256, n is between 25-150, and the rate of the
code (see Definition 5.1) is at least 0.85 (i.e. storage overhead
is at most 1.17× and ` < k). This setting is particularly useful
for applications, and is the natural next phase for practical
LRCs which reduce overhead and maximize reliability.

Typically, maximally recoverable codes are easier to con-
struct when the field is large, and much research is focused
on finding explicit codes over small field sizes. In practical
settings, most computations are done over individual bytes
which restricts the field size of the LRCs we can use to 256
(the field F28). To the best of our knowledge, the current state
of the art constructions are in [18], and they require that the

2We cannot disclose the exact configuration due to confidentiality.

4 21st USENIX Conference on File and Storage Technologies USENIX Association

field size q be at least∼ (`+1)r, where `+1 is the size of a lo-
cal repair group (Definition 5.5), and r is the number of global
parity checks. For our purposes, we can think of `+1∼ 16,
and r ≥ 3, thus q = 4096, making the required field size 16×
greater than 256.

Measurements of reliability of wide LRCs are inade-
quate. While narrow LRCs have received a lot of attention in
systems research, wide LRCs have not [25]. Existing systems
research on LRCs optimizes metrics such as distance, de-
graded read cost and reconstruction cost [6,27,33,42,47,49].
We enhance this rich literature with a larger suite of empirical
measures, which give more realistic comparisons in the practi-
cal realm, particularly in the case when there are≥ d erasures
in a code with distance d. Further, since explicit MR-LRCs
are not available in our parameter regimes, it leaves open the
question of evaluating whether we can construct codes which
offer us approximately the same advantages as MR-LRCs
could offer (the answer is yes!). Finally, some design choices
such as creating evenly sized local groups have not been con-
sidered in the literature at all, which we show can have a large
impact on performance against random patterns of erasures.

Deployment of wide erasure codes is non-trivial. An-
other practical hurdle that gets worse with code width is the
deployment (placement of blocks) of an erasure coded stripe.
Recall that no two blocks of an erasure coded stripe can re-
side on the same disk, rack, fault-domain, power-source, etc.
As the code width increases, it becomes progressively harder
to fulfill these placement constraints. The placement prob-
lem is further exacerbated because it is common for sets of
servers/racks (which comprise a maintenance zone) to be
down at the same time for maintenance events, potentially
causing data unavailability. For example, if too many blocks
of a stripe are in the same maintenance zone, then even a
planned maintenance event could make the stripe unavailable.
We comment on some ways that code design can make it
easier to achieve maintenance robust layouts of data.

5 Definitions

We begin by defining important terms that are going to be use-
ful when describing the wide LRC construction in Section 6.

Definition 5.1 (Linear error correcting code). A linear error-
correcting code is simply a subspace C ≤ Fn

q where q is a
prime power and n > 0. It is customary to think of C as the
image of an encoding map Enc: Fk

q→ Fn
q for some k≤ n. This

encoding may the expressed in matrix form as,

Gx = y

where G is an n× k matrix called the generator matrix, x
is the message and y is the codeword. The fraction k

n is the
rate of the code, k is the dimension, and n is the blocklength.
The symbols yi ∈ Fq of a codeword y are called codeword
symbols.

Definition 5.2 (Distance of a code). The minimum distance
of a linear code (often just called the distance) is simply,

min
x∈C\{0}

wt(x)

where wt(x) = ∑
n
i=1 1xi 6=0. An error correcting code with dis-

tance d can always correct d−1 erasures.

Definition 5.3 ((n,k, `)-Locally recoverable code (LRC)). An
(n,k, `)-LRC is a linear error correcting code of dimension
k and blocklength n. It has the additional property that any
codeword symbol can be recovered from at most ` other code-
word symbols. The parameter ` is called the locality paramter
of the LRC. Note that 1≤ `≤ k.

Definition 5.4 (Generalized Singleton bound and distance
optimal LRCs). Any locally recoverable code must satisfy the
following bound [17],

n≥ k+
⌈

k
`

⌉
+d−2

where d is the distance of the code. Any LRC that meets this
bound with equality is called a distance optimal LRC. Note
that when ` = k, this reduces to the well-known Singleton
bound n≥ k+d−1.

Definition 5.5 (Local repair group). Given an (n,k, `)-LRC,
choose any codeword y. Due to the local recovery property,
any codeword symbol yi can be recovered using at most `
other codeword symbols {yr1 , . . . ,yr`} where r j 6= i for any
j. These at most `+ 1 indices in {i,r1, . . . ,r`} form a local
repair group of the (n,k, `)-LRC.

Definition 5.6 (Maximum distance separable code). Any lin-
ear error-correcting code which satisfies the Singleton bound
with equality, i.e. satisfies n = k+d−1, is known as a Maxi-
mum Distance Separable (MDS) code.

Definition 5.7 (Cauchy matrix). Let {x1, . . . ,xn} and
{y1, . . . ,ym} be two disjoint sequences of distinct elements
from Fq. The n×m matrix defined as

Ci j =
1

xi + y j

is a Cauchy matrix. It is well-known that every square sub-
matrix of a Cauchy matrix has non-zero determinant (and
therefore, is invertible).

Fact 5.8 (Generator matrix of an MDS code). Cauchy ma-
trices are commonly used to design generator matrices for
MDS codes. Indeed, an n× k matrix over Fq, whose first k
rows form Ik (the k× k identity matrix), and whose last n− k
form an (n−k)×k Cauchy matrix generates an MDS code of
blocklength n and dimension k (see Thm 2.2 and 5.2 in [8]).

We can visualize several of our definitions using the exam-
ple shown in Figure 3.

USENIX Association 21st USENIX Conference on File and Storage Technologies 5

GC =

1 0 0 0 d1
0 1 0 0 d2
0 0 1 0 d3
0 0 0 1 d4

c11 c12 c13 c14 c1
c21 c22 c23 c24 c2
1 1 0 0 l1
0 0 1 1 l2

c11 + c21 c12 + c22 c13 + c23 c14 + c24 lg

d1 d2

l1

d3 d4

l2

©
c1

©
c2

lg

Figure 3: Example of an LRC with 4 data blocks (d1,d2,d3,d4),
2 global parities (c1,c2), and 3 local parities (l1, l2, lg). This figure
shows how each row of the generator matrix correponds to a ‘block’
in the picture representation of an LRC (the reader may note that the
matrix representation is more informative as the specific choice of
coefficients can affect reliability in practice). The first 4 rows of the
matrix correspond to the data blocks which are encoded systemati-
cally; the next two rows correspond to the global parities (these two
rows form a 2×4 Cauchy matrix in our implementation); the last 3
rows correspond to 3 local parities, all of which contain the XOR of
the data they cover (as is evident by the coefficients of the matrix GC).
The last local parity, lg, only covers the global parities. This design
of LRC may be familiar to some readers as an Azure-LRC+1. The
local groups of this code are (d1,d2, l1), (d3,d4, l2), and (c1,c2, lg)
and therefore `= 2. In this code, ADRC (see Def. 5.10) = ARC1 (see
Def. 5.11) = 2, since each data or parity block can be reconstructed
by reading the two other blocks in its local repair group.

Definition 5.9 (Maximally recoverable locally recoverable
code (MR-LRC)). An (n,k, `)-LRC is called a MR-LRC if it
can recover from any pattern of n−k erasures as long as there
is at least one erasure in each local repair group of the code.
To clarify, suppose the (n,k, `)-LRC has local repair groups
L1, . . . ,Lp for some p > 1 where each Li ⊆ {1, . . . ,n}. Recall
that ∪iLi = {1, . . . ,n} and that the Li are not necessarily
disjoint. Let E = {e1, . . . ,en−k} ⊆ {1, . . . ,n} be any pattern
of n− k erased symbols. Then as long as Li∪E 6= /0 for any i,
then the erasure pattern E can be recovered by the code.

Definition 5.10 (Average degraded read cost (ADRC)). The
ADRC is the average of the cost of reconstructing any of the
data blocks. We can measure cost(bi) as the number of blocks
which need to be read in order to reconstruct block i.

ADRC =
∑

k
i=1 cost(bi)

k

Definition 5.11 (Average repair (or reconstruction) cost
(ARC)). The average repair cost is defined identically to
the ARDC, with the addition of the global and local parity
blocks to the computation.

ARC1 =
∑

n
i=1 cost(bi)

n

For MDS codes, ∀bi,cost(bi) = ARC = k. For LRCs, cost(bi)
may not be the same as ARC. The above ARC is defined for
one block failing in a stripe. In our evaluation we also show
the ARC of reconstructing two failed blocks defined as

ARC2 =
∑

n
i=1, j 6=i cost(bi, j)(n

2

)
where 1≤ i≤ n,1≤ j ≤ n and i 6= j, and cost(bi, j) = cost to
reconstruct blocks i and j which can result in a combination
of local and global reconstructions depending on i and j.

6 (n,k,r, p)-Optimal Cauchy LRCs

In this section we construct (n,k,r, p)-Optimal Cauchy LRCs
and discuss their advantages. Here, n is the blocklength of
the code, k is the dimension, r is the number of global parity
checks, and p is the number of local parity checks. We make
two design choices which are worth pointing out. First, the
p local parities in our code are uniformly distributed across
the k data, and they are all XOR-ed with the r global parity
checks (this helps with proving the distance optimality of the
code). Second, we restrict ourselves to the case where each of
the data symbols of the code is covered by exactly one local
parity. The second restriction is common in constructions pro-
posed in the literature, and indeed, important for our goal of
minimizing the storage overhead. For simplicity of exposition
we assume that p is even (we will mention how this condition
can be removed), and p|k where we denote k

p = t. It will be
clear that the locality parameter ` of the (n,k,r, p)-Optimal
Cauchy LRCs we will construct is k

p + r.

In Section 6.2 will show that (n,k,r, p)-Optimal Cauchy
LRCs have the best possible distance for LRCs with their
dimension and locality (under some modest restrictions). In
Appendix A.2 we show how some of these restrictions can
be relaxed. We begin with explaining the construction of
(n,k,r, p)-Optimal Cauchy LRCs.

6.1 Code construction

The generator matrix for an (n,k,r, p)-Optimal Cauchy LRC
is derived naturally from the generator matrix for an (k+ r+
1,k)-MDS code which has dimension k and blocklength n =
k+ r+1. Specifically, we derive our code from the generator
matrix of a (k+ r+1,k)-cauchy MDS code.

The generator matrix G(k+r+1),k of a (k+ r+1,k)-Cauchy
MDS code is an k+ r+1× k matrix, which simply consists
of a k×k identity matrix stacked on top of a r+1×k Cauchy
matrix. The resulting matrix is well-known to generate an
MDS code with distance r+2 (See Thm 2.2 and 5.2 in [8]).

6 21st USENIX Conference on File and Storage Technologies USENIX Association

G(k+r+1),k =

1
. . . 0

. . .

0
. . .

1
c11 . . . c1k

. . .
cr1 crk

c(r+1)1 c(r+1)k

When we do not need to refer to r and k are specifically, we
refer to G(k+r+1),k as G, and the ith row of G(k+r+1),k as gi.

To create the generator matrix for an (n,k,r, p)-optimal
cauchy LRC, we first partition this last row of G, gk+r+1 into
p rows r1, . . . ,rp as follows,

r1 = (c(r+1)1,c(r+1)2, . . . ,c(r+1)t ,0, . . . ,0)

r2 = (0, . . . ,0,c(r+1)(t+1), . . . ,c(r+1)2t ,0, . . . ,0)
...

rp = (0, . . . ,0,c(r+1)(p(t−1)), . . . ,c(r+1)pt)

It is clear that r1 + r2 + · · ·+ rp = gk+r+1. We the compute
the rows r̃i as follows,

r̃i = ri +gk+1 +gk+2 + · · ·+gk+r

Note that r̃i are simply ri with the addition of the first r
‘cauchy rows’ of G. Since p is even (and the underlying field
has characteristic 2) we have,

r̃1 + r̃2 + · · ·+ r̃p = p(gk+1 +gk+2 + · · ·+gk+r)+gk+r+1

= gk+r+1

Finally, the generator matrix On,k,r,p for the (n,k,r, p)-Optimal
Cauchy LRC is given by,

On,k,r,p =

1
. . . 0

. . .

0
. . .

1
c11 . . . c1k

. . .
cr1 crk

r̃1
...

r̃p

This matrix is simply the k+ r rows of Gk+r+1,k stacked on

top of the r̃1, r̃2, . . . , r̃p vectors. We remark that n = k+ r+ p,
and that On,k,r,p generates an LRC with locality parameter
` = k

p + r. This is clear since each row among r̃1, r̃2, . . . , r̃p
provides a local parity check on exactly ` other rows.

6.2 Distance
We note that the distance of an (n,k,r, p)-Optimal Cauchy
LRC is exactly r+2. As long as k,r, p > 0, p|k, rp2 > k+ rp,
and p is even, it is a distance optimal LRC (Definition 5.4).

Theorem 6.1. For r > 0, On,k,r,p generates an error correct-
ing code with distance exactly r + 2. Proof details are in
Appendix A.1

Lemma 6.2. Given k,r, p > 0, rp2 > k+ rp, and p even, the
locally recoverable code formed by On,k,r,p is distance optimal.
Proof details are in Appendix A.1

We show how some of the conditions in Lemma 6.2 can be
relaxed in Appendix A.2.

Remark 6.3. Constructing distance optimal LRCs is a well-
studied problem. At first, only constructions whose alphabet
size was exponential in the blocklength were known [45, 49].
These do not yield codes which may be used in practical
settings where the alphabet size q is fixed at 256. The most
well-known construction of distance optimal LRCs may be
found in [33,47]. To get truly optimal codes the codes of [47]
require that `+1|n, and none of the codes we use in our ex-
periments meet this restriction. Distance optimal LRCs with
very general parameters were finally shown in [33]. In our
experimental analysis in the later sections, we use Optimal
Cauchy LRCs (rather than other known constructions such
as [33]) as examples of codes which lie on the generalized
Singleton bound (essentially, distance optimal LRCs. See Def-
inition 5.4). This is because Optimal Cauchy LRCs are easier
to construct in our parameter regime.

7 (n,k,r, p)-Uniform Cauchy LRCs

In the previous section we give a very simple construction of
distance optimal LRCs which we will use in our experimental
analysis as examples of distance optimal codes. In this section,
we provide a simple heuristic modification of these codes
which has several practical advantages (though they are not
shown to be optimal with regards to distance).

The later experimental analysis of these codes highlights
the point that distance optimal (i.e. on the generalized Single-
ton bound) does not mean most-durable or most cost-efficient
from a practical perspective. For example, a code that has the
same locality and distance can have different durability (as
measured by mean-time-to-data-loss) and robustness against
random patterns of erasures. Distance-optimality simply indi-
cates the best distance for fixed values of n,k and `.

These codes are constructed in much the same way as opti-
mal cauchy LRCs, except that each local parity check covers
k+r

p of the data blocks and global parity blocks. Following the
same notation as the previous section, the generator matrix
for a uniform cauchy code has the form (assuming p|k+ r for
simplicity),

USENIX Association 21st USENIX Conference on File and Storage Technologies 7

d1
. . .

d12

c1

d13
. . .

d24

c2

d25
. . .

d36

c3

d37
. . .

d48

c4

©
rs1

. . .©
rs3

(a) 48-of-55 Azure-LRC

d1
. . .

d16

c1

d17
. . .

d32

c2

d33
. . .

d48

c3

©
rs1

. . .©
rs3

crs

(b) 48-of-55 Azure-LRC + 1

d1
. . .

d12

c1

d13
. . .

d24

c2

d25
. . .

d36

c3

d37
. . .

d48

c4

©
rs1

. . .©
rs3

⊕

(c) 48-of-55 Optimal Cauchy LRC

d1
. . .

d12

c1

d13
. . .

d25

c2

d26
. . .

d38

c3

d39
. . .

d48

c4

©
rs1

. . .©
rs3

(d) 48-of-55 Uniform Cauchy LRC

Figure 4: Different LRC constructions used in our evaluation.

Un,k,r,p =

1
. . . 0

. . .

0
. . .

1
c11 . . . c1k

. . .
cr1 crk

r1
...

r̃p

Where (if we denote k+r

p = t),

r1 = (c(r+1)1,c(r+1)2, . . . ,c(r+1)t ,0, . . . ,0)

r2 = (0, . . . ,0,c(r+1)(t+1), . . . ,c(r+1)2t ,0, . . . ,0)
...

rp = (0, . . . ,0,c(r+1)(p(t−1)), . . . ,ck)

Finally, we modify the last row by adding the exclusive-or
of the global parity checks.

r̃p = rp +gk+1 + · · ·+gk+r

One may note that the locality parameter for this code
`= k+r

p , which is lower than that for optimal cauchy LRCs.
In the event that p - (k+ r), we may simply divide the k+ r
data and global parities as evenly as possible amongst the p
local checks.

8 Experiments and analysis

We now use the following suite of practical measures of LRC
quality to compare various codes:

1. Average degraded read cost (Definition 5.10).

2. Average repair costs (Definitions 5.11).

3. Reliability against random erasure patterns.

4. Comparison of reliability against the information theoretic
limit (i.e. against MR-LRCs).

5. A practical computation of mean-time-to-data-loss
(MTTDL).

We compare well-known LRC constructions including dis-
tance optimal LRCs (our own Optimal Cauchy LRCs) and
novel codes like our Uniform Cauchy LRCs. We compare
these codes for the following parameter settings, all of which
have < 20% storage overhead.

LRCs used in experiments. The most popular deployed
LRCs we came across are the Xorbas-LRC [42], Azure-
LRC [27] and Azure-LRC+1 [33] constructions. Xorbas-LRC
has the advantage of being distance optimal, but it is only
shown to be so in very specific parameter settings, so we
instead use Optimal Cauchy LRCs as examples of distance
optimal codes in our evaluation. The Azure-LRC was one of
the first LRCs proposed, and is reportedly used at Microsoft
Azure [27]. We illustrate these codes for the 48-of-55 param-
eter setting in Figure 4.

Azure-LRC divides the data blocks into equally spaced lo-
cal groups, with each local group having a local parity. Each
local parity can be the XOR of the data blocks in that lo-
cal group. The global parities are not protected by any local
parities. Figure 4a gives a representation of the Azure-LRC
construction. Note that Azure-LRC is not a true LRC since
the global parities are not locally recoverable (i.e. `= k). In
early works, locality for global parities was not considered a
requirement for LRCs, but most recent works enforce it. How-

Scheme n k r p Rate

24-of-28 28 24 2 2 24
28 = 0.857

48-of-55 55 48 3 4 48
55 = 0.872

72-of-80 80 72 4 4 72
80 = 0.9

96-of-105 105 96 5 4 96
105 = 0.914

Table 1: Wide LRC schemes used to compare different LRC con-
structions. Each scheme is chosen such that rate >= 0.85.

8 21st USENIX Conference on File and Storage Technologies USENIX Association

Locality Azure-LRC Azure-LRC+1 Optimal Cauchy LRC Uniform Cauchy LRC

n = 28, k = 24, r = 2, p = 2 `= 24 `= 24 `= 12+2 = 14 `=13
n = 55, k = 48, r = 3, p = 4 `= 48 `= 16 `= 12+3 = 15 `=13
n = 80, k = 72, r = 4, p = 4 `= 72 `= 24 `= 18+4 = 22 `=19
n = 105, k = 96, r = 5, p = 4 `= 96 `= 32 `= 24+5 = 29 `=26

Avg. degraded read cost (ADRC) Azure-LRC Azure-LRC+1 Optimal Cauchy LRC Uniform Cauchy LRC

n = 28, k = 24, r = 2, p = 2 24×12
24 =12 24×24

24 = 24 12×14
12 = 14 26×13

26 = 13
n = 55, k = 48, r = 3, p = 4 48×12

48 =12 48×16
48 = 16 48×15

48 = 15 13×12+35×13
48 = 12.72

n = 80, k = 72, r = 4, p = 4 72×18
72 =18 72×24

72 = 24 72×22
72 = 22 72×19

72 = 19
n = 105, k = 96, r = 5, p = 4 96×24

96 =24 96×32
96 = 32 96×29

96 = 29 78×25+18×26
96 = 25.18

Avg. repair cost 1 failure (ARC1) Azure-LRC Azure-LRC+1 Optimal Cauchy LRC Uniform Cauchy LRC

n = 28, k = 24, r = 2, p = 2 26×12+2×24
28 =12.85 25×24+3×2

28 = 21.64 28×13
28 = 13 28×13

28 = 13
n = 55, k = 48, r = 3, p = 4 52×12+3×48

55 = 13.94 51×16+4×3
56 = 15.05 55×15

55 = 15 13×12+42×13
55 =12.76

n = 80, k = 72, r = 4, p = 4 76×18+4×72
80 = 20.7 75×24+5×4

81 = 22.75 80×22
80 = 22 80×19

80 =19
n = 105, k = 96, r = 5, p = 4 100×24+5×96

80 = 27.42 99×32+6×5
81 = 30.45 105×29

105 = 29 81×25+24×26
105 =25.22

Avg. repair cost 2 failures (ARC2) Azure-LRC Azure-LRC+1 Optimal Cauchy LRC Uniform Cauchy LRC

n = 28, k = 24, r = 2, p = 2 30.66 43.46 32.12 27.92
n = 55, k = 48, r = 3, p = 4 35.49 39.22 36.93 33.85
n = 80, k = 72, r = 4, p = 4 52.80 59.38 54.82 49.22
n = 105, k = 96, r = 5, p = 4 70.68 79.73 74.50 67.69

Normalized MTTDL comparison Azure-LRC Azure-LRC+1 Optimal Cauchy LRC Uniform Cauchy LRC

n = 28, k = 24, r = 2, p = 2 0.64× 0.14× 0.50× 1.00
n = 55, k = 48, r = 3, p = 4 0.99× 0.97× 1.01× 1.00
n = 80, k = 72, r = 4, p = 4 0.99× 0.97× 0.49× 1.00
n = 105, k = 96, r = 5, p = 4 0.99× 0.96× 0.96× 1.00

Table 2: This table captures all the analytical metrics used to compare the different LRC constructions across the different wide LRC parameters
described in Table 1. Details of this comparison are described in Section 8. The takeaways are that for all metrics except average degraded mode
read cost (in which it is < 9% worse than the best LRC), Uniform Cauchy LRCs outperform other LRCs (including the Optimal Cauchy LRC).
Another surprising result was that Azure-LRC outperforms Azure-LRC+1 despite its global parities having no local parities protecting them.

ever, we include this code in our analysis due to its popularity
and because it is actually used in practice (and our analysis
shows that it gives great performance!).

Azure-LRC+1 is an optimization to the Azure-LRC pro-
posed in [33]. Azure-LRC suffers from an expensive MDS-
level reconstruction on the failure of any of the global parities.
In order to prevent this, Azure-LRC+1 forms a local group of
the global parities and protects them using a local parity. Fig-
ure 4b captures the Azure-LRC+1 construction. Note that the
Azure-LRC+1 construction in [33] introduces an additional
local parity to protect the global parities without removing
any of the existing parity blocks. This construction changes
the storage overhead of Azure-LRC+1 in comparison to other
constructions. We deliberately choose to keep the numbers
k-of-n the same across all schemes, otherwise we are compar-
ing codes with different redundancy, which in our view is not
a fair comparison. Thus, in our construction of Azure-LRC+1,
we choose to remove one local parity protecting data blocks
(as compared to removing a global parity since removing a
local parity has a less adverse effect on the reliability), and

add a local parity protecting global parity blocks.
Figure 4c and Figure 4d are representations of the Optimal

Cauchy and Uniform Cauchy constructions which have been
described comprehensively in previous sections.

Parameter regimes for comparison. We select four dif-
ferent widths representing wide LRCs, details of which are in
Table 1. For an apples-to-apples comparison, we freeze the
size of the data, k, the size of the code n, the number of global
parities r, and the number of local parities, p. Since a (20,17)
MDS code is reportedly in use [3], we explore schemes where
24 ≤ n ≤ 105 (deliberately starting from n close to 20, and
codes with rate strictly higher than 0.85). The entire set of
results are presented in Table 2, but we highlight the main
points below.

Uniform Cauchy LRC has the smallest locality. We first
compare the locality of the different LRC constructions. Re-
call (Definition 5.3) that locality refers to the maximum
number of blocks to be read for reconstruction of a single
block. Since Azure-LRC requires reading all data blocks to
reconstruct any failed global parity, its locality is the high-

USENIX Association 21st USENIX Conference on File and Storage Technologies 9

Figure 5: This plot compares the durability of the different LRC constructions (Azure-LRC, Azure-LRC+1, Optimal Cauchy and Uniform
Cauchy) by measuring their ability to recover from random failures (only values where some recovery ratios were less than one are shown). We
evaluate all wide LRCs discussed in evaluation ranging from 24-of-28 to 96-of-105. Except in 48-of-55, we see that Uniform Cauchy has the
best durability. Optimal Cauchy has the best durability in 48-of-55. Surprisingly, Azure-LRC has better durability compared to Azure-LRC+1
even though global parities of Azure LRCs are not covered by a local parity.

Figure 6: Comparing performance with MR-LRC. In this plot
we show the results of a Monte-Carlo experiment where p failures
were forced (one in each local group) and another n− k− p fail-
ures were distributed randomly across remaining blocks. MR-LRCs
can recover from all such failure patterns. Azure-LRC+1, Optimal
Cauchy and Uniform Cauchy are all > 99% as durable as an MR-
LRC in this scenario for our choice of coefficients. Azure-LRC is
not shown because it does not have a local group covering its global
parities, making it unsuitable for this comparison.

est. This is followed by Azure-LRC+1, whose local groups
are larger than the other constructions (since we have con-
strained p). In fact for 24-of-28, Azure-LRC+1 has the same
locality as Azure-LRC due to having only 1 local group that
spans all data blocks. Optimal Cauchy LRC evenly divides
the data blocks, but requires each local group to contain all
the global parities (we need this to prove distance optimal-
ity as explained in Section 6.2), making its locality

⌈
k
p

⌉
+g.

Uniform Cauchy LRC has the lowest locality
⌈

n
p

⌉
since it

uniformly divides n blocks into p groups.
Azure-LRC has the lowest average degraded read cost

(ADRC), closely followed by Uniform Cauchy LRC. The
ADRC is calculated only for the data blocks (Definition 5.10),
and therefore is directly proportional to the size of local
groups. Therefore, since Azure-LRC has the smallest local
groups, it also has the smallest ADRC. Although, as the stripes
become wider, the difference between the local group sizes of
Azure-LRC and Uniform Cauchy LRC starts reducing. This
reflects in the reduction of the ratio of the ADRC of Uniform
Cauchy LRCs compared to Azure-LRCs. In particular, the
ADRC of Uniform Cauchy LRC is about 8% more than Azure-
LRC for 24-of-28, but is only about 5% more for 96-of-105.

Azure-LRC+1 has the highest ADRC followed by Optimal
Cauchy LRC, both owing to their larger local repair groups.

Average repair cost (ARC) is lowest for Uniform
Cauchy LRC. Very similar to the ADRC, the ARC1 and ARC2
(Definition 5.11) are the degraded read cost for all n blocks
of a stripe for 1 block failure and 2 block failures respec-
tively. We choose to showcase both ARC1 and ARC2 because
the wider the LRC, the higher the likelihood that more than
one failure can occur in a stripe as explained in Section 3.
Here, the disadvantage of Azure-LRC turns into the advan-
tage for Uniform Cauchy LRC. Specifically, the degraded read
cost for the global parities involves reading all data blocks
in the case of Azure-LRC. For Uniform Cauchy LRC, the
degraded read cost of global parities is the same as a data
block, both of which are only slightly higher than the data
block reconstruction cost of an Azure-LRC. The exception is
24-of-28 where Azure-LRC has a slightly lower ARC than
Uniform Cauchy LRC, owing to these specific parameters,
but this too becomes favorable for Uniform Cauchy LRCs
in the case of ARC2

3. Across the schemes, as the number of
data blocks increase, the ARC of Azure-LRC reduces, but at
the same time, any additional global parity increases the ARC
significantly. The difference between the Azure-LRC+1 and
Optimal Cauchy LRC is lower than their difference in ADRC.
This is due to Azure-LRC+1 having a very low-cost global
parity reconstruction. Nevertheless, the Azure-LRC+1 and
Optimal Cauchy LRCs have the highest, and second highest
ARCs among the four constructions.

Uniform Cauchy LRCs have the best random failure
tolerance. We compare the LRC constructions empirically
by evaluating their durability against random failures (includ-
ing when the number of failures are≥ d when d is the distance
of the code). For each code, we choose various values of i
and conduct a Monte-Carlo experiment in which i blocks are
removed uniformly at random (without replacement) from the
n blocks of stripe. Then data recovery is attempted. The more
times recovery can succeed, the more durable the code. For
each random failures experiment at least 1 million recover-

3We refrain from detailing the calculation of ARC2 because it significantly
more complex than ARC1.

10 21st USENIX Conference on File and Storage Technologies USENIX Association

ies from unique block failure combinations were attempted.
The exception was 4 random failures for 24-of-28, where all
combinations (20475) were exhaustively checked.

Figure 5 shows the results of the various failure scenarios
on each of the four schemes across all four LRCs. Uniform
Cauchy LRC outperforms all other LRC constructions in
each scenario, for each scheme, except 48-of-55. In 48-of-
55, the Optimal Cauchy LRC has the highest recoverability
ratio. The intuition behind Uniform Cauchy LRC’s superior
performance is that when a high number of failures happen
uniformly at random, it’s more likely that at least one failure
occurs in each local repair group. This results in all local
parities contributing to the reconstruction process, leading to
a higher success rate.

Simple choices of coefficients give almost MR-LRCs in
our parameter regime. We construct all our generator ma-
trices using Cauchy matrices. We then conduct an experiment
to compare our codes to a hypothetical MR-LRC of the exact
same design. We say ‘hypothetical’ because although there
is proof that such an MR-LRC can exist [18, 22], currently
there does not exist a deterministic way to construct such a
code. Nevertheless, we can precisely characterize the erasure
patterns that can be recovered by such MR-LRCs. Simply put,
an MR-LRC with p local parities and r global parities can
recover any pattern of r+ p failures, as long as there is at
least one failure in each local repair group (so that each local
parity may contribute towards the reconstruction). An LRC
which has this property is an MR-LRC.

We conduct an experiment in which we plant one failure
in each local group (i.e. p total planted failures), and then add
another r failures at random. Then we attempt recovery. We
find that at least with coefficients we chose (all derived from
Cauchy matrices), all the codes we tested were very close to
being MR-LRCs. So even if it is hard to construct MR-LRCs,
in practical parameter settings, it is not hard to realize many
of their benefits using common code constructions.

We do point out that even though all code constructions
were close to being MR-LRCs, this does not mean that they
were all equally durable against random erasures. This is
because the shape of the code affects the probability that r+ p
random failures will spread out so that each local repair group
gets at least one failure. Indeed, this provides some intuition
as to why Uniform Cauchy LRCs perform the best against
random erasures. It is because the evenly sized local repair
groups maximize the probability that each local repair group
will see at least one failure (recall MR-LRC Definiton 5.9).

Mean-time-to-data-loss (MTTDL). MTTDL (for a
stripe) has been a canonical metric for reliability in the cod-
ing community [14]. It is modeled using a continuous time
Markov chain in which each state represents the number of
erasures in a stripe. There is a final absorbing state, denoted
fail, which represents a data loss/unavailability event. The
MTTDL for a coding scheme is simply the mean time until a
Markov chain starting at state zero reaches the absorbing state

©©©©. . .©©
f ail

s7s6s5. . .s1s0

p f ail

prepair

p5→ f ail

p6→ f ail

p7→ f ail

Figure 7: MTTDL Markov Chain for a 48-of-55 code. The proba-
bilities p5→ f ail , p6→ f ail , and p7→ f ail are added from Fig. 5 (b, c, d)
where they are determined empirically. The probabilities pi→ f ail for
i < 5 are not pictured because they are zero.

i.e. the expected time until a healthy stripe experiences a data
unavailability event. Each state representing e failures, de-
noted se, may transition to the states se−1, se+1 or fail. These
transition probabilities are usually modelled using exponen-
tial distributions representing repair time (which captures the
transition from se to se−1), failure probability (which captures
the transition from se to se+1) and complete failure probability
(which captures the transition from se to fail). These theoret-
ical models are ubiquitous in modeling stripe reliability for
MDS codes, but they have also been used to study the relia-
bility of LRCs [27,42,44]. In our work, replace the modelled
transition probabilities with observed ones, in order to get a
better estimate of the MTTDL of our codes.

We accomplish this by supplementing our theoretical model
with empirical data in the following way: for each state se,
we add a transition to the irrecoverable data loss state with
probability pe→ f ail , where pe→ f ail is probability that a stripe
with e randomly distributed failures cannot recover the data,
as shown in Figure 7. To be clear, in order to model MTTDL
this way, we need the explicit generator matrix of our code,
and then to conduct the random failures experiment to gen-
erate data. While no model is perfect, we believe that this
is a more realistic evaluation of MTTDL of an LRC, since
we meaningfully account for the observed durability of the
explicit code (i.e. accounting for coefficients).

Table 2 shows the MTTDL comparisons for different LRC
constructions. Since we are interested in the relative compari-
son of MTTDLs, we show the ratio of each LRC construction
with the Uniform Cauchy LRC MTTDL (where MTTDL is
calculated as a function of p f ail and prepair whose values can
differ significantly based on specific cluster size, architecture,
disk makes/models, etc.). Although prepair can differ based
on the architecture of the code, those differences are negli-
gible in comparison to the wait-time for the detection of the
missing blocks in a stripe as explained in Section 2. We find
that Uniform Cauchy LRC achieves the highest MTTDL (up
to a factor of 100× in our evaluation), while Azure-LRC+1
has the lowest MTTDL values. This is in line with our ob-
servations that Uniform Cauchy LRCs and Azure-LRC+1
have respectively the highest and lowest performance in re-
constructing random erasures, and also the lowest and highest
average locality. This is unsurprising since MTTDL of an
LRC is inversely proportional to its average locality [44].

USENIX Association 21st USENIX Conference on File and Storage Technologies 11

9 Maintenance-robust deployment

When deploying an erasure code in a large-scale storage clus-
ter, there are several placement constraints that need to be
met in order to ensure adequate data reliability. For example,
usually no two blocks of the same stripe are put on the same
disk, server, rack or at times even racks powered by the same
power source to improve data reliability. Placement restric-
tions have been studied recently in [30], and in this work we
comment that placement constraints can be considered during
code design as well.

In a storage cluster, the smallest unit in which maintenance
such as kernel/firmware/hardware upgrades can be performed
is known as a maintenance zone. The design of maintenance
zones affects reliability because all servers/devices in a single
maintenance zone can be turned off simultaneously during
a maintenance event. So we would like to have each stripe
intersect a maintenance zone as little as possible, making it
robust to the maintenance events in a real storage cluster. In
an ideal world, we could make maintenance zones as small as
possible (e.g. a single rack) to limit the impact of maintenance
events on reliability. But this is not practically feasible, as it
would increase the operational toil of maintenance tasks. One
reason for this is: after every maintenance task (belonging to
a single maintenance zone) cluster-wide (and therefore time-
consuming and expensive) data reachability and reliability
tests are usually conducted to ensure that the maintenance
activity was completed without unforeseen events. If mainte-
nance zones are too small (say an individual server), then a
large-scale cluster of tens-of-thousands of servers would be
in perennial testing activity. This severely limits the number
of maintenance zones, and in practice, storage administrators
have informed us that the total number of maintenance zones
in a single cluster are typically restricted to below 20. This
means that a maintenance event can affect a large number of
stripes, and hence it is important to deploy stripes in a manner
that is robust to maintenance events.

One desirable property of a code deployment might be that
no maintenance event that affects a single zone should render
any stripe unrecoverable. We name this maintenance-robust
deployment. Since maintenance events are foreseeable, and
usually performed one zone at a time, a maintenance-robust
deployment would ensure high availability.

In the context of LRCs, we can further optimize deploy-
ment strategies to increase the likelihood of cost-efficient local
repairs. For example, if we guarantee that every maintenance
zone has at most one block from each local group, all de-
graded reads during a maintenance event would only require
local repairs. We term such a deployment maintenance-robust-
efficient deployment. Ideally we want all LRC deployments
to be maintenance-robust-efficient deployments.

Consider the (9,4,2)−LRC from Figure 3. If the number
of maintenance zones, say z is 3. We can assign each block of
data from every local repair group to a different maintenance

zone (i.e. a maintenance-robust-efficient deployment). Here,
during any maintenance event, the degraded read cost for the
data blocks stored in that maintenance zone is still `= 2. How-
ever, if z = 2, we cannot guarantee local repairs in all cases.
As a best case, we could have z1 = d1,d3,c1, lg and put the
rest of the data in z2. Suppose z2 undergoes maintenance, the
data can be repaired by first repairing c2 using c1, lg, and sub-
sequently performing a global repair using d1, d3, c1 and c2 to
reconstruct d2 and d4. Suppose z1 undergoes maintenance, d1
can be repaired using d2, l1, and d3 can be repaired using d4,
l2. Thus, with z = 2, a (9,4,2)−LRC can only be deployed
in a maintenance-robust manner, where global repairs are re-
quired for reconstructing data. In general, when z >= `+1
for an LRC, it can guarantee maintenance-robust-efficient
deployment. The parameter `+1 in Table 2 shows that mini-
mum number of maintenance zones required for maintenance-
robust-efficient deployment to be possible for the schemes we
have evaluated in this work. Thus, with z ≈20, all schemes
except 96-of-105 can be deployed in a maintenance-robust-
efficient manner for Uniform Cauchy LRCs.

10 Related Work

LRCs have widely studied and deployed in the last decade
due to their practical improvements over MDS codes. While
Microsoft Azure and Facebook first published the commercial
use of LRCs [27, 42], much academic research has also been
conducted to find LRC constructions with desirable proper-
ties [1, 6, 11, 17, 39, 39, 44, 46, 48]. One area of research has
been explicit constructions of distance optimal codes (Defini-
tion 5.4) [6, 24, 28, 35, 37, 38, 47, 49, 51]. Tamo and Barg [47]
were among the first to provide a general construction of
distance-optimal LRCs (with small field sizes), but with some
constraints on the allowable parameters. This construction
was further generalized by Kolosov et al. [33] for a wide range
of parameters. Recent years have seen a surge in research on
MR-LRCs [4, 5, 12, 15, 16, 18–22, 36]. Recently, Gopi et
al. [18] provided an explicit construction of MR-LRCs which
is broad, but does not cover our parameter regime.

Wide codes are known to be deployed in two commercial
settings, VAST [50] and Backblaze [3], and recent works
have studied wide codes in academia. Haddock et al. analyze
wide codes’ performance using GPUs [23]. Li et al. show
local erasures codes in the context of hard-disk drives [34].
More recently, Hu et al. [25] study the performance issues in
repair, encoding, and update performance of wide codes. Our
practically inspired work adds to this literature by studying
the trade-offs of wide LRCs from construction to deployment.

11 Conclusion

In this work we show that many subtle factors can affect LRC
reliability in real world scenarios: coefficients in the generator

12 21st USENIX Conference on File and Storage Technologies USENIX Association

matrix, design of local repair groups, and maintenance-robust-
deployment. We show the value of an experiment-driven un-
derstanding of reliability as it provides us novel insights into
design choices which have a meaningful impact on reliabil-
ity. Indeed, this culminates in our construction of Uniform
Cauchy LRCs which outperform popular (and provably dis-
tance optimal) codes in practice.

12 Acknowledgements

We thank our shepherd Patrick P. C. Lee and the anonymous
reviewers for their valuable feedback and suggestions. We
extend special thanks to Larry Greenfield and numerous other
researchers and engineers at Google.

A Optimal Cauchy LRCs

A.1 Distance optimality of Optimal Cauchy
LRCs

Theorem A.1. For r > 0, On,k,r,p generates an error correct-
ing code with distance exactly r+2.

Proof. We will simply show that the distance of the code gen-
erated by On,k,r,p is equal to the distance of the code generated
by G(k+r+1),k. Recall that G(k+r+1),k generates a code with
distance exactly r+2, which is equivalent to saying that this
code can correct any pattern of r+1 erasures, i.e. G(k+r+1),k
has row rank at least k if any r+1 rows are deleted.

We will show that On,k,r,p has row rank at least k whenever
any r+ 1 rows are deleted. Note that whenever some r+ 1
rows are deleted from On,k,r,p, they may or may not contain
any rows among the r̃1, . . . , r̃p.

First we consider the case when at least one of r̃1, . . . , r̃p
are deleted. In this case, we may consider all of them lost,
and note that we have exactly the same rows remaining as
if gr+k+1, and at most r other rows were lost in G(k+r+1),k.
Since, G(k+r+1),k generates an MDS code with distance r+2,
it is clear that the remainder of the rows will have rank k.

Now consider the case when the r+1 deleted rows do not
contain any of the rows r̃1, r̃2, . . . , r̃p. In this case, we can
compute gk+r+1 = r̃1 + r̃2 + · · ·+ r̃p, which reduces to the
case when r+1 rows are deleted from G(k+r+1),k.

Lemma A.2. Given k,r, p > 0, rp2 > k+ rp, and p even, the
LRC formed by On,k,r,p is distance optimal.

Proof. Recall that for a LRC to be distance optimal we must
have,

n = k+
⌈

k
`

⌉
+d−2 (1)

where ` is the locality parameter and d is the distance. We
know that `= k

p +r and n= k+r+ p for an (n,k,r, p)-optimal

cauchy code. Substituting ` and d = r + 2 (from Theorem
A.1), equation 1 becomes,

n = k+

⌈
k

k
p + r

⌉
+ r = k+

⌈
pk

k+ pr

⌉
+ r

So an (n,k,r, p)-optimal cauchy code will be distance op-
timal whenever

⌈
pk

k+pr

⌉
= p, i.e. p−1 < pk

k+pr ≤ p. Both in-

equalities hold as long as r, p,k > 0 and rp2 < k+ rp.

A.2 Relaxing constraints
We have shown how to construct distance optimal LRCs with
blocklength n = k+ r+ p, where k is the dimension of the
code, r is the number of global parity checks, and p is the
number of local parity checks as long as p is even, r, p,k > 0
and rp2 < k+ rp. We will briefly discuss some extensions of
these parameter regimes in this section.

Claim A.3. We may modify our construction of distance op-
timal codes to work with p odd.

If p = 1, we may modify the construction so that r1 = rp =
r̃p = gk+r+1, and so G(k+r+1),k = On,k,r,p. This just reduces to
the code defined by G(k+r+1),k.

If p ≥ 3, we may modify the construction so that r̃i = ri
for 1≤ i≤ p−2, r̃p−1 = rp−1 +gk+1 + · · ·+gk+r, and r̃p =
rp +gk+1 + · · ·+gk+r. In this case,

r̃1 + r̃2 + · · ·+ r̃p = 2(gk+1 +gk+2 + · · ·+gk+r)+gk+r+1

= gk+r+1

From here, the same reasoning as the previous sections im-
plies that these codes are distance optimal. Notice that when
p ≥ 3, these modifications do not change ` because r̃p is a
local parity check on k

p + r data blocks.

Claim A.4. If rp2

2 < k + rp < rp2, our construction gives
codes whose blocklength is at most one greater than a dis-
tance optimal code.

This is easily observed by following the proof of Lemma
6.2 and considering the cases where p− 2 < pk

k+pr ≤ p− 1.
Previous works have also found such ‘off by one’ LRCs in
broader parameter regimes than truly optimal LRCs [47]. This
allows us more freedom to explicitly construct almost distance
optimal and wide LRCs.

Claim A.5. We may construct codes with alphabet size q≥
k+ r+1.

Note that we can construct our LRCs starting from the
generator matrix of any MDS code in place of Gk+r+1,k. In
particular, taking Gk+r+1,k to be the generator matrix of any
Reed-Solomon code, we only need q≥ k+ r+1 (since Reed-
Solomon codes need q≥ n). For our settings q is fixed to be
256, so we have the flexibility to construct many wide explicit
codes.

USENIX Association 21st USENIX Conference on File and Storage Technologies 13

References

[1] Abhishek Agarwal, Alexander Barg, Sihuang Hu, Arya
Mazumdar, and Itzhak Tamo. Combinatorial alphabet-
dependent bounds for locally recoverable codes. IEEE
Transactions on Information Theory, 2018.

[2] Backblaze. Disk Reliability Dataset. https://www.
backblaze.com/b2/hard-drive-test-data.html,
2013-2018.

[3] Backblaze. Erasure coding used by Backblaze. https:
//www.backblaze.com/blog/reed-solomon/, 2013-
2018.

[4] SB Balaji and P Vijay Kumar. On partial maximally-
recoverable and maximally-recoverable codes. In IEEE
International Symposium on Information Theory (ISIT),
2015.

[5] Alexander Barg, Zitan Chen, and Itzhak Tamo. A con-
struction of maximally recoverable codes. Designs,
Codes and Cryptography, 2022.

[6] Alexander Barg, Itzhak Tamo, and Serge Vlăduţ. Locally
recoverable codes on algebraic curves. IEEE Transac-
tions on Information Theory, 2017.

[7] Shimrit Ben-Yair. Updating Google Photos’ storage
policy to build for the future. https://blog.google/
products/photos/storage-changes/, 2020.

[8] Johannes Bloemer, Malik Kalfane, Richard Karp, Marek
Karpinski, Michael Luby, and David Zuckerman. An
xor-based erasure-resilient coding scheme. 1995.

[9] Eric Brewer. Spinning Disks and Their Cloudy Future.
https://www.usenix.org/node/194391, 2018.

[10] Eric Brewer, Lawrence Ying, Lawrence Greenfield,
Robert Cypher, and Theodore T’so. Disks for data cen-
ters. Technical report, Google, 2016.

[11] Viveck Cadambe and Arya Mazumdar. An upper bound
on the size of locally recoverable codes. In 2013 In-
ternational Symposium on Network Coding (NetCod).
IEEE, 2013.

[12] Han Cai, Ying Miao, Moshe Schwartz, and Xiaohu Tang.
A construction of maximally recoverable codes with
order-optimal field size. IEEE Transactions on Informa-
tion Theory, 2021.

[13] Daniel Ford, François Labelle, Florentina I Popovici,
Murray Stokely, Van-Anh Truong, Luiz Barroso, Carrie
Grimes, and Sean Quinlan. Availability in Globally
Distributed Storage Systems. In USENIX Symposium on
Operating Systems Design and Implementation (OSDI),
2010.

[14] Garth Alan Gibson. Redundant disk arrays: Reliable,
parallel secondary storage. PhD thesis, University of
California, Berkeley, 1991.

[15] Parikshit Gopalan, Guangda Hu, Swastik Kopparty,
Shubhangi Saraf, Carol Wang, and Sergey Yekhanin.
Maximally recoverable codes for grid-like topologies.
In Proceedings of the Twenty-Eighth Annual ACM-SIAM
Symposium on Discrete Algorithms, 2017.

[16] Parikshit Gopalan, Cheng Huang, Bob Jenkins, and
Sergey Yekhanin. Explicit maximally recoverable codes
with locality. IEEE Transactions on Information Theory,
2014.

[17] Parikshit Gopalan, Cheng Huang, Huseyin Simitci, and
Sergey Yekhanin. On the locality of codeword symbols.
IEEE Transactions on Information Theory, 2012.

[18] Sivakanth Gopi and Venkatesan Guruswami. Improved
maximally recoverable lrcs using skew polynomials.
IEEE Transactions on Information Theory, 2022.

[19] Sivakanth Gopi, Venkatesan Guruswami, and Sergey
Yekhanin. On maximally recoverable local reconstruc-
tion codes. In Electron. Colloquium Comput. Complex.,
2017.

[20] Sivakanth Gopi, Venkatesan Guruswami, and Sergey
Yekhanin. Maximally recoverable lrcs: A field size
lower bound and constructions for few heavy parities.
IEEE Transactions on Information Theory, 2020.

[21] Matthias Grezet, Thomas Westerbäck, Ragnar Freij-
Hollanti, and Camilla Hollanti. Uniform minors in maxi-
mally recoverable codes. IEEE Communications Letters,
2019.

[22] Venkatesan Guruswami, Satyanarayana V Lokam, and
Sai Vikneshwar Mani Jayaraman. -msr codes: Contact-
ing fewer code blocks for exact repair. IEEE Transac-
tions on Information Theory, 2020.

[23] Walker Haddock, Purushotham V Bangalore, Matthew L
Curry, and Anthony Skjellum. High performance era-
sure coding for very large stripe sizes. In 2019 Spring
Simulation Conference (SpringSim).

[24] Kathryn Haymaker, Beth Malmskog, and Gretchen
Matthews. Locally recoverable codes with availabil-
ity t <= 2 from fiber products of curves. arXiv preprint
arXiv:1612.03841, 2016.

[25] Yuchong Hu, Liangfeng Cheng, Qiaori Yao, Patrick PC
Lee, Weichun Wang, and Wei Chen. Exploiting com-
bined locality for {Wide-Stripe} erasure coding in dis-
tributed storage. In USENIX File and Storage Technolo-
gies (FAST), 2021.

14 21st USENIX Conference on File and Storage Technologies USENIX Association

https://www.backblaze.com/b2/hard-drive-test-data.html
https://www.backblaze.com/b2/hard-drive-test-data.html
https://www.backblaze.com/blog/reed-solomon/
https://www.backblaze.com/blog/reed-solomon/
https://blog.google/products/photos/storage-changes/
https://blog.google/products/photos/storage-changes/
https://www.usenix.org/node/194391

[26] Cheng Huang, Minghua Chen, and Jin Li. Pyramid
codes: Flexible schemes to trade space for access effi-
ciency in reliable data storage systems. ACM Transac-
tions on Storage (TOS), 2013.

[27] Cheng Huang, Huseyin Simitci, Yikang Xu, Aaron Ogus,
Brad Calder, Parikshit Gopalan, Jin Li, Sergey Yekhanin,
et al. Erasure Coding in Windows Azure Storage. In
USENIX Annual Technical Conference (ATC), 2012.

[28] Lingfei Jin. Explicit construction of optimal locally
recoverable codes of distance 5 and 6 via binary con-
stant weight codes. IEEE Transactions on Information
Theory, 2019.

[29] Saurabh Kadekodi. DISK-ADAPTIVE REDUNDANCY:
tailoring data redundancy to disk-reliability heterogene-
ity in cluster storage systems. PhD thesis, Carnegie
Mellon University, 2020.

[30] Saurabh Kadekodi, Francisco Maturana, Sanjith Ath-
lur, Arif Merchant, KV Rashmi, and Gregory R Ganger.
Tiger:{Disk-Adaptive} redundancy without placement
restrictions. In USENIX Symposium on Operating Sys-
tems Design and Implementation (OSDI), 2022.

[31] Saurabh Kadekodi, Francisco Maturana, Suhas Jayaram
Subramanya, Juncheng Yang, KV Rashmi, and Gre-
gory R Ganger. PACEMAKER: Avoiding heart attacks
in storage clusters with disk-adaptive redundancy. In
USENIX Symposium on Operating Systems Design and
Implementation (OSDI), 2020.

[32] Saurabh Kadekodi, K V Rashmi, and Gregory R Ganger.
Cluster storage systems gotta have HeART: improving
storage efficiency by exploiting disk-reliability hetero-
geneity. In USENIX File and Storage Technologies
(FAST), 2019.

[33] Oleg Kolosov, Gala Yadgar, Matan Liram, Itzhak Tamo,
and Alexander Barg. On fault tolerance, locality, and op-
timality in locally repairable codes. ACM Transactions
on Storage (TOS), 2020.

[34] Yin Li, Hao Wang, Xuebin Zhang, Ning Zheng, Shafa
Dahandeh, and Tong Zhang. Facilitating magnetic
recording technology scaling for data center hard disk
drives through {Filesystem-Level} transparent local era-
sure coding. In USENIX File and Storage Technologies
(FAST).

[35] Jian Liu, Sihem Mesnager, and Lusheng Chen. New
constructions of optimal locally recoverable codes via
good polynomials. IEEE Transactions on Information
Theory, 2017.

[36] Shu Liu and Chaoping Xing. Maximally recoverable
local reconstruction codes from subspace direct sum
systems. arXiv preprint arXiv:2111.03244, 2021.

[37] Gaojun Luo and Xiwang Cao. Constructions of optimal
binary locally recoverable codes via a general construc-
tion of linear codes. IEEE Transactions on Communica-
tions, 2021.

[38] Giacomo Micheli. Constructions of locally recoverable
codes which are optimal. IEEE Transactions on Infor-
mation Theory, 2019.

[39] D.S. Papailiopoulos and A.G. Dimakis. Locally re-
pairable codes. In IEEE International Symposium on
Information Theory (ISIT), 2012.

[40] K V Rashmi, Nihar B Shah, Dikang Gu, Hairong Kuang,
Dhruba Borthakur, and Kannan Ramchandran. A So-
lution to the Network Challenges of Data Recovery in
Erasure-coded Distributed Storage Systems: A Study on
the Facebook Warehouse Cluster. In USENIX Workshop
on Hot Topics in Storage and File Systems (HotStorage),
2013.

[41] David Reinsel-John Gantz-John Rydning, J Reinsel, and
J Gantz. The digitization of the world from edge to
core. Framingham: International Data Corporation, 16,
2018.

[42] Maheswaran Sathiamoorthy, Megasthenis Asteris, Dim-
itris Papailiopoulos, Alexandros G Dimakis, Ramkumar
Vadali, Scott Chen, and Dhruba Borthakur. Xoring ele-
phants: Novel erasure codes for big data. In Interna-
tional Conference on Very Large Data Bases (VLDB),
2013.

[43] Seagate. The Digitization of the World From
Edge to Core. https://www.seagate.com/
files/www-content/our-story/trends/files/
idc-seagate-dataage-whitepaper.pdf, 2018.

[44] Mostafa Shahabinejad. Locally repairable linear block
codes for distributed storage systems. 2018.

[45] Natalia Silberstein, Ankit Singh Rawat, O Ozan Koylu-
oglu, and Sriram Vishwanath. Optimal locally repairable
codes via rank-metric codes. In IEEE International Sym-
posium on Information Theory (ISIT), 2013.

[46] Itzhak Tamo and Alexander Barg. Bounds on locally
recoverable codes with multiple recovering sets. In
IEEE Transactions on Information Theory, 2014.

[47] Itzhak Tamo and Alexander Barg. A family of opti-
mal locally recoverable codes. IEEE Transactions on
Information Theory, 2014.

[48] Itzhak Tamo, Alexander Barg, and Alexey Frolov.
Bounds on the parameters of locally recoverable codes.
IEEE Transactions on Information Theory, 2016.

USENIX Association 21st USENIX Conference on File and Storage Technologies 15

https://www.seagate.com/files/www-content/our-story/trends/files/idc-seagate-dataage-whitepaper.pdf
https://www.seagate.com/files/www-content/our-story/trends/files/idc-seagate-dataage-whitepaper.pdf
https://www.seagate.com/files/www-content/our-story/trends/files/idc-seagate-dataage-whitepaper.pdf

[49] Itzhak Tamo, Dimitris S Papailiopoulos, and Alexan-
dros G Dimakis. Optimal locally repairable codes and
connections to matroid theory. IEEE Transactions on
Information Theory, 2016.

[50] VAST. Providing Resilience, Efficiently. https://www.
usenix.org/node/194391, 2019.

[51] Guanghui Zhang. A new construction of optimal (r,
δ) locally recoverable codes. IEEE Communications
Letters, 2020.

16 21st USENIX Conference on File and Storage Technologies USENIX Association

https://www.usenix.org/node/194391
https://www.usenix.org/node/194391

ParaRC: Embracing Sub-Packetization for Repair Parallelization
in MSR-Coded Storage

Xiaolu Li†, Keyun Cheng‡, Kaicheng Tang‡, Patrick P. C. Lee‡,
Yuchong Hu†, Dan Feng†, Jie Li∗, and Ting-Yi Wu∗

†Huazhong University of Science and Technology ‡The Chinese University of Hong Kong
∗Huawei Technologies Co., Ltd., Hong Kong

Abstract
Minimum-storage regenerating (MSR) codes are provably op-
timal erasure codes that minimize the repair bandwidth (i.e.,
the amount of traffic being transferred during a repair opera-
tion), with the minimum storage redundancy, in distributed
storage systems. However, the practical repair performance
of MSR codes still has significant room to improve, as the
mathematical structure of MSR codes makes their repair op-
erations difficult to parallelize. We present ParaRC, a parallel
repair framework for MSR codes. ParaRC exploits the sub-
packetization nature of MSR codes to parallelize the repair
of sub-blocks and balance the repair load (i.e., the amount of
traffic sent or received by a node) across the available nodes.
We show that there exists a trade-off between the repair band-
width and the maximum repair load, and further propose a fast
heuristic that approximately minimizes the maximum repair
load with limited search time for large coding parameters.
We prototype our heuristic in ParaRC and show that ParaRC
reduces the degraded read and full-node recovery times over
the conventional centralized repair approach in MSR codes
by up to 59.3% and 39.2%, respectively.

1 Introduction
Erasure coding has been widely deployed in practical dis-
tributed storage systems for providing fault tolerance against
the lost data in failed storage nodes, while incurring signif-
icantly lower redundancy overhead than traditional replica-
tion [37]. Among many erasure codes, Reed-Solomon (RS)
codes are the most popular and reportedly deployed in pro-
duction, such as Google [11], Facebook [23], Backblaze [9],
and CERN [25]. However, RS codes are known to incur high
repair bandwidth (i.e., the amount of traffic being transferred
during a repair operation) when repairing a failed node, as the
repair of any lost block needs to retrieve multiple coded blocks
from other available nodes for decoding, thereby leading to
bandwidth amplification.

Many repair-friendly erasure codes have been proposed
in the literature to reduce the repair bandwidth of RS codes.
Examples include regenerating codes [10, 24, 27, 33, 36], lo-
cally repairable codes [15, 17, 32], and piggybacking codes
[29, 30]. In particular, minimum-storage regenerating (MSR)
codes [10] are theoretically proven to be repair-optimal, such

that they minimize the repair bandwidth for repairing a sin-
gle node failure, while preserving the minimum storage re-
dundancy as in RS codes (i.e., the redundancy is minimum
among any erasure code that tolerates the same number of
node failures). For example, compared with the (14,10) RS
code adopted by Facebook [23, 29] (i.e., 10 original uncoded
blocks are encoded into 14 RS-coded blocks), MSR codes
with the same coding parameters can reduce the repair band-
width by 67.5%. Given the theoretical guarantees of MSR
codes, many follow-up efforts have proposed practical con-
structions for MSR codes and evaluated their performance in
real-world distributed storage systems (e.g., [13, 24, 27, 36]);
for example, Clay codes [36] are shown to minimize both re-
pair bandwidth and I/Os (i.e., the amount of disk I/Os to local
storage during a repair operation is the same as the minimum
repair bandwidth), support general coding parameters, and be
deployed and integrated in Ceph [3].

While MSR codes provably minimize the repair bandwidth,
we argue that their practical repair performance remains bot-
tlenecked by the node where the lost block is decoded, as
the node needs to retrieve an amount of data from other
available nodes more than the amount of lost data; in other
words, bandwidth amplification still exists, albeit less severe
than RS codes. To mitigate the repair bottleneck issue, re-
cent studies [20, 22] have shown how to parallelize and load-
balance the repair for RS codes across multiple available
nodes, by decomposing the repair operation into partial re-
pair sub-operations that are executed in different nodes in
parallel and combining the partially repaired blocks into the
final decoded block. Thus, it is natural to ask whether we
can also decompose and parallelize the repair for MSR codes
like RS codes. Unfortunately, the answer is negative: the re-
pair for RS codes satisfies the additive associativity of linear
combinations and the repair operation can be decomposed; in
contrast, MSR codes have a different mathematical structure
from RS codes, such that the repair of MSR codes needs to
solve a system of linear combinations and cannot be directly
decomposed (see §2 for details).

This motivates an alternative to parallelize the repair of
MSR codes. Our insight is that MSR codes build on sub-
packetization, in which a block is partitioned into sub-blocks
and the repair of a lost block in MSR codes is to retrieve a

USENIX Association 21st USENIX Conference on File and Storage Technologies 17

subset of sub-blocks from other available nodes for decoding.
The sub-blocks of a lost block can be represented as different
linear combinations, and are finally decoded by solving the
system of linear combinations. Based on sub-packetization,
our idea is to distribute the repair of sub-blocks across differ-
ent available nodes and later combine the repaired sub-blocks
to reconstruct the lost block. An open question is how to dis-
tribute the repair of sub-blocks to balance the repair load (i.e.,
the amount of traffic sent or received by a node) across the
available nodes.

We present ParaRC, a parallel repair framework for MSR
codes that aims to balance the repair load across the available
nodes and hence accelerate the repair operation. We make the
following contributions:

• We observe that there exists a trade-off between the repair
bandwidth and the maximum repair load. To formally ana-
lyze the trade-off, we model the repair operation of MSR
codes as a directed acyclic graph (DAG) [19] and solve
the repair parallelization problem as a DAG coloring prob-
lem. We identify an extreme point, the min-max repair load
(MLP) point, which minimizes the maximum repair load
with the smallest possible repair bandwidth.

• We show that finding the MLP is computationally expensive
in general, and hence propose a fast heuristic that quickly
identifies the approximate MLP point even for large coding
parameters.

• We prototype ParaRC atop Hadoop 3.3.4 HDFS [4] and
evaluate our prototype on Alibaba Cloud [1]. We show that
ParaRC reduces the degraded read and full-node recovery
times by up to 59.3% and 39.2%, respectively, compared
with the centralized repair for Clay codes. We also show that
ParaRC reduces the full-node recovery time of the default
repair method in Hadoop-3.3.4 HDFS by 71.4%.

We release the source code of our ParaRC prototype at:
http://adslab.cse.cuhk.edu.hk/software/pararc.

2 Background and Motivation
2.1 Basics of Erasure Coding
We review the basics of erasure coding. We consider a large-
scale distributed storage system that organizes data and per-
forms reads/writes in fixed-size blocks, such that the block
size is large enough (e.g., 128 MiB in Hadoop 3.3.4 HDFS [4]
and 256 MiB in Facebook [28]) to mitigate I/O overhead.
In this work, we target the distributed storage environments
where the network bandwidth and disk I/Os are the bottle-
necks, as opposed to the computational overhead for encoding
and decoding operations in erasure coding.

There are many approaches to construct erasure codes,
among which Reed-Solomon (RS) codes [31] are the most
widely deployed (e.g., [9, 11, 23, 25]). Specifically, an (n,k)
RS code, configured by two parameters k and n (where n >
k), encodes every set of k original uncoded blocks into n
coded blocks, such that any k out of n coded blocks suffice

to decode the k original uncoded blocks. Each set of n coded
blocks is called a stripe. In this work, we focus on a single
stripe, while multiple stripes are independently and identically
encoded. Each stripe is stored in n distinct nodes, so as to
tolerate any n− k node (or block) failures. RS codes satisfy
three practical properties: (i) generality, where n and k can
be general parameters (provided that n > k), (ii) maximum
distance separable (MDS), where the redundancy overhead
n/k is the minimum for tolerating any n− k node failures,
and (iii) systematic, where the k uncoded blocks are kept in
the n coded blocks (i.e., the uncoded blocks remain directly
accessible after encoding).

We elaborate on the mathematical properties of RS codes to
help motivate our work. In this paper, we treat the uncoded and
coded blocks equivalently in a systematic stripe and simply
refer to them as “blocks” in our discussion. Let B0, B1, · · · ,
Bn−1 be the n blocks of a stripe in an (n,k) RS code that are
respectively stored in n nodes, denoted by N0, N1, · · · , Nn−1.
Each block can be expressed as a linear combination of k
blocks of the same stripe under Galois Field arithmetic. For
example, we have B0 =∑

k
i=1 aiBi for some coding coefficients

ai’s (1 ≤ i ≤ k).
Despite the popularity, RS codes are known to incur high

repair penalty, since repairing a single lost block in RS codes
needs to transfer multiple blocks of the same stripe from
other available nodes. The repair penalty manifests in two
aspects. First, the repair incurs high repair bandwidth, defined
as the amount of traffic transferred over the network during a
repair operation. In general, an (n,k) RS code incurs a repair
bandwidth of k times the block size when repairing a lost
block. Figure 1(a) shows an example of the conventional
centralized repair for the (4,2) RS code. To repair a lost block
(say B0), the new node (say N0) downloads any k = 2 blocks
(say B1 and B2 from N1 and N2, respectively), so as to repair
B0 via the linear combination of the downloaded blocks. The
repair bandwidth is 512 MiB for a block size of 256 MiB.

Second, the conventional centralized repair also incurs high
maximum repair load, where the repair load of a node is de-
fined as the amount of traffic that the node sends or receives,
whichever is larger, during a repair operation, and the maxi-
mum repair load is the largest repair load among all nodes. In
the centralized repair, the new node has the most traffic among
all nodes, as it receives an amount of traffic that is k times the
block size, while each other available node sends one block
only. Thus, the performance of the centralized repair is bottle-
necked by the new node. For example, from Figure 1(a), the
new node N0 has the most received traffic, and the maximum
repair load is also 512 MiB for a block size of 256 MiB.

Thus, the repair performance in RS codes is dominated by
both the repair bandwidth and the maximum repair load. We
argue that while many studies focus on reducing the repair
bandwidth (§2.2) or reducing the maximum repair load (§2.3),
there exists a trade-off in minimizing both of the performance
metrics (§2.4).

18 21st USENIX Conference on File and Storage Technologies USENIX Association

B0N0

B1N1

B2N2

B3N3

B0N0

B0 = a1B1+a2B2

B 2

B 1

B0N0

B1N1

B2N2

B3N3

B0N0
b0,0
b0,1
b0,2
b0,3

b1,0
, b1,1

b 2,0
, b 2,1

b 3,0
, b

3,1

B0N0

B1N1

B2N2

B3N3

B0N0

a1B1+a2B2

a1B1

(a) Centralized repair for RS codes (b) Centralized repair for Clay codes (c) Repair pipelining for RS codes

Figure 1: Repair examples: (a) conventional repair for the (4,2) RS code; (b) centralized repair for the (4,2) Clay code (which
minimizes the repair bandwidth); and (c) repair pipelining for the (4,2) RS code (which minimizes the maximum repair load).

2.2 Reducing Repair Bandwidth
Existing studies on erasure coding reduce the repair band-
width by proposing new erasure code constructions. Examples
include regenerating codes [10, 13, 24, 27, 33, 35, 36], locally
repairable codes [15,32], and piggybacking codes [29,30]. In
this paper, we focus on minimum-storage regenerating (MSR)
codes (first proposed in [10]), which theoretically minimize
the repair bandwidth for repairing a single lost block, with
the minimum redundancy (i.e., MDS property) as RS codes.

MSR codes differ from RS codes by performing sub-
packetization, which divides a block into multiple sub-blocks
and performs encoding and repair at the sub-block granular-
ity. Specifically, an (n,k) MSR code partitions each block Bi
(0 ≤ i ≤ n− 1) into w sub-blocks (w > 1), denoted by bi,0,
bi,1, · · · , bi,w−1, such that each sub-block is encoded through a
linear combination of k×w sub-blocks from k blocks (under
Galois Field arithmetic). To repair any lost block (or w sub-
blocks therein), MSR codes only transfer sub-blocks from
the other nodes, such that the total amount of traffic of the
transferred sub-blocks is minimized.

Classical MSR codes [10] require that the available nodes
read all their locally stored sub-blocks, encode them, and
transfer the encoded sub-blocks to the new node (with the
minimum repair bandwidth) to repair the lost block. In this
work, we consider two state-of-the-art MSR codes, namely
Clay codes [36] and Butterfly codes [24], both of which have
been implemented and empirically evaluated. Our goal is to
show the applicability of our work to different MSR codes,
using Clay codes and Butterfly codes as two representatives.
In particular, Clay codes minimize both repair bandwidth and
I/Os (a.k.a. repair-by-transfer [33])) for general coding pa-
rameters n and k, while Butterfly codes minimize both repair
bandwidth and I/Os for the k uncoded blocks in a systematic
stripe and support n−k = 2 only. Thus, we use Clay codes as
our major baseline throughout the paper.

We first provide an overview for Clay codes. At a high
level, Clay codes repair a lost block in three steps: (i) pair-
wise reverse transformation (PRT), which couples sub-blocks
in pairs and generates intermediate sub-blocks; (ii) MDS de-
coding, which performs linear combinations on k sub-blocks

to decode intermediate sub-blocks and a subset of repaired
sub-blocks; and (iii) pairwise forward transformation (PFT),
which again couples sub-blocks in pairs to generate the re-
maining repaired sub-blocks, such that the lost block is com-
pletely repaired. In Clay codes, the number of sub-blocks w
is given by w = (n− k)⌈n/(n−k)⌉.

Let us take the (4,2) Clay code (where w = 4) as an exam-
ple, as shown in Figure 1(b). Let ci be the ith intermediate
sub-block generated in the repair. Also, let ⟨...⟩i denote some
linear combination of sub-blocks within the brackets, where
the subscript i differentiates the linear combinations with dif-
ferent coding coefficients. To repair a lost block, say B0, the
new node N0 downloads two sub-blocks bi,0 and bi,1 from
each Ni, where 1 ≤ i ≤ 3. N0 repairs the four sub-blocks of
B0 as follows. First, in the PRT step, N0 generates two inter-
mediate sub-blocks c0 and c1 by coupling b2,1 and b3,0:

c0 = ⟨b2,1,b3,0⟩0, c1 = ⟨b2,1,b3,0⟩1. (1)

Second, in the MDS decoding step, N0 performs linear combi-
nations on b2,0 and c0, and on b3,1 and c1. It repairs b0,0 and
b0,1, and generates two intermediate sub-blocks c2 and c3:

b0,0 = ⟨b2,0,c0⟩2, c2 = ⟨b2,0,c0⟩3,
b0,1 = ⟨b3,1,c1⟩4, c3 = ⟨b3,1,c1⟩5.

(2)

Finally, in the PFT step, N0 repairs b0,2 by coupling b1,0 and
c2, and repairs b0,3 by coupling b1,1 and c3:

b0,2 = ⟨b1,0,c2⟩6, b0,3 = ⟨b1,1,c3⟩7. (3)

The (4,2) Clay code minimizes the repair bandwidth to
384 MiB for a block size of 256 MiB (it downloads six sub-
blocks of size 64 MiB each). Compared with the (4,2) RS
code, the (4,2) Clay code reduces the repair bandwidth by
25%. Note that the maximum repair load of the Clay code is
also 384 MiB (same as the repair bandwidth), which is the
amount of traffic downloaded in the new node.

We also consider Butterfly codes [24] in this paper. For an
(n,k) Butterfly code (n−k = 2), we focus on the repair of the
first k original uncoded blocks in a systematic stripe (whose
repair bandwidth and I/Os are both minimized). An (n,k)

USENIX Association 21st USENIX Conference on File and Storage Technologies 19

Butterfly code divides each block into w = 2k−1 sub-blocks.
When repairing a lost block, a new node first downloads half
of the sub-blocks from each available node. It then selects dif-
ferent subsets of sub-blocks among all the received sub-blocks
and performs XOR operations to repair the w sub-blocks of
the lost block. For example, to repair a lost block of size
256 MiB for the (4,2) Butterfly code, the new node down-
loads 128 MiB of sub-blocks from each of the three available
nodes, such that the repair bandwidth and the maximum repair
load are both 384 MiB.

2.3 Reducing Maximum Repair Load
Some studies reduce the maximum repair load by decom-
posing and parallelizing a repair operation across the avail-
able nodes [20, 22]. In this work, we focus on repair pipelin-
ing [20], which reduces the time of repairing a lost block to
almost the same as the time of directly reading a block.

Repair pipelining is mainly designed for RS codes [31].
It divides a single-block repair operation into multiple sub-
block repair operations and evenly distributes sub-block repair
operations across all nodes. For example, suppose that we
use repair pipelining to repair a lost block B0 for an (n,k)
RS code. It first divides each block Bi (0 ≤ i ≤ n− 1) into
multiple sub-blocks, denoted by bi,0,bi,1, · · · . Recall that each
block can be expressed as a linear combination of k blocks
(§2.1), say B0 = ∑

k
i=1 aiBi for some coding coefficients ai’s.

Repair pipelining makes two observations. First, each sub-
block in B0 is also a linear combination of the k sub-blocks at
the same block offset with the same coding coefficients, i.e.,
b0, j = ∑

k
i=1 aibi, j, for the j-th sub-block. Second, the linear

combination is addition associative, meaning that b0, j can be
computed from the linear combinations of partial terms.

To repair B0, repair pipelining works as follows. First, N1
starts the repair of b0,0 by sending a1b1,0 from its local storage
to N2. Second, N2 combines the received a1b1,0 with a2b2,0
from its local storage to form a1b1,0 +a2b2,0. Third, N2 sends
a1b1,0 + a2b2,0 to N3; meanwhile, N1 can start the repair of
b0,1 by sending a1b1,1 from its local storage to N2 without
interfering with N2’s transmission. Finally, the last available
node Nk reconstructs b0, j for each j-th sub-block and sends
b0, j to N0.

Repair pipelining reduces the maximum repair load to the
same as the block size. For example, Figure 1(c) shows an
example of repair pipelining for the (4,2) RS code. The maxi-
mum repair load is 256 MiB for a block size of 256 MiB since
each of the k available nodes sends or receives one block of
data; it is even less than that in Clay codes (Figure 1(b)). Note
that the repair bandwidth remains 512 MiB, the same as in
the conventional repair for RS codes (Figure 1(a)), since k
available nodes transfer k blocks of data in total.

2.4 Motivation and Challenges
From §2.3, a natural question to ask is whether we can apply
repair pipelining to MSR codes (§2.2) to reduce the maximum

B0N0

B1N1

B2N2

B3N3

N2

b3,0

N1

b3,1

N0b1,1

c0 = < b2,1, b3,0 >0

c1 = < b2,1, b3,0 >1

b0,0 = < b2,0, c0 >2

c2 = < b2,0, c0 >3 b0,2 = < b1,0, c2 >6

b0,1 = < b3,1, c1 >4

c3 = < b3,1, c1 >5

b0,3 = < b1,1, c3 >7

(a) Repair bandwidth = 448 MiB; Max. repair load = 320 MiB

B0N0

B1N1

B2N2

B3N3

c0 = < b2,1, b3,0 >0

c2 = < b2,0, c0 >3

c1 = < b2,1, b3,0 >1

c3 = < b3,1, c1 >5

b0,0 = < b2,0, c0 >2

b0,1 = < b3,1, c1 >4

b0,2 = < b1,0, c2 >6

b0,3 = < b1,1, c3 >7b2,0

b3,0
b2,1

b3,0

b2,1

b3,1

b2,0

N1

N2

N3

c0 c2

c1
c3

b3,1

b1,0 b1,1

(b) Repair bandwidth = 832 MiB; Max. repair load = 512 MiB

Figure 2: Examples of the parallel repair for the (4,2) Clay
code. The example in figure (a), with more careful repair
scheduling, has both less repair bandwidth and less maximum
repair load than the example in figure (b).

repair load. Unfortunately, the answer is negative, mainly
because the repair of sub-blocks is not based on the addition
associativity as in RS codes; instead, it is done by solving a
system of linear combinations (e.g., see Equations (1)-(3) in
§2.2 for Clay codes). Thus, we cannot pipeline the repair of
individual sub-blocks of MSR codes as in RS codes.

Nevertheless, the sub-packetization nature of MSR codes
offers an opportunity for parallelizing a repair operation to
reduce the maximum repair load. First, the repair of a sub-
block in MSR codes only requires a subset of available sub-
blocks; for example, in the (4,2) Clay code, each sub-block is a
linear combination of two currently stored or intermediate sub-
blocks. Thus, we can distribute the repair operations of sub-
blocks across different nodes for load balancing. Second, in
erasure coding implementation, each block is further divided
into smaller-sized units (called packets), so that the repair
of a block can be parallelized at the packet level (see §6 for
implementation details).

Figure 2(a) shows a parallel repair example for the (4,2)
Clay code. First, in the PRT step, N2 generates c0 and c1
from b3,0 (retrieved from N3) and b2,1 (locally stored in N2).
Second, in the MDS decoding step, N2 decodes c2 and b0,0
from b2,0 (locally stored in N2) and c0 (generated in the PRT
step), while N0 generates c3 and b0,1 from c1 (retrieved from

20 21st USENIX Conference on File and Storage Technologies USENIX Association

Repair
bandwidth (MiB)

Maximum repair
load (MiB)

RS; centralized 512 (highest) 512 (highest)
Clay; centralized 384 (lowest) 384 (high)
RS; parallel 512 (highest) 256 (lowest)
Clay; parallel 448 (medium) 320 (medium)

Table 1: Summary of the four repair methods for (n,k) =
(4,2).

N2) and b3,1 (retrieved from N3). Finally, in the PFT step, N1
repairs b0,2 from b1,0 (locally stored in N1) and c2 (retrieved
from N2), while N0 repairs b0,3 from b1,1 (retrieved from N1)
and c3 (generated in the MDS decoding step). Also, N0 re-
trieves the repaired b0,0 and b0,2 from N2 and N1, respectively.
In this example, the repair operation can be parallelized in
two aspects: (i) the repair of b0,1 and b0,3 in N0, as well as
the repair of b0,2 in N1, can be performed in parallel; and
(ii) the sub-block repair operations in N0, N1, and N2 can be
parallelized at the packet level. Thus, the maximum repair
load is 320 MiB (i.e., the five sub-blocks b0,0, b0,2, b1,1, b3,1,
and c1 retrieved by N0) for a block size of 256 MiB.

Such a parallel repair approach may amplify the repair
bandwidth, as some sub-blocks are reused more than once
by different nodes. For example, the sub-blocks b2,1 and b3,0
are used to compute c1, c2, and b0,0. Each of the three sub-
blocks will be transmitted over the network. Thus, instead of
transmitting each of the sub-blocks b2,1 and b3,0 only once as
in the centralized repair (Figure 1(b)), the parallel repair now
includes the sub-blocks b2,1 and b3,0 in three transmissions.
The repair bandwidth increases from the minimum point of
384 MiB to 448 MiB.

How to carefully schedule the parallel repair of different
sub-blocks is a critical issue. Figure 2(b) shows another ex-
ample of the parallel repair of the (4,2) Clay code, where
the repair is less efficiently scheduled. In this example, the
sub-blocks b2,0, b2,1, and b3,0 are all transmitted twice. Thus,
the repair bandwidth is 832 MiB, while the maximum repair
load is 512 MiB.

In summary, the parallel repair of MSR codes can be sched-
uled to balance the trade-off between the repair bandwidth
and the maximum repair load, as shown in Table 1 for the
(4,2) Clay code. Our goal in this paper is to design a parallel
repair solution that can effectively balance the trade-off for
general coding parameters of MSR codes.

3 Model and Analysis
Before we design the parallel repair solution for MSR codes,
we first formulate a generic repair model that characterizes the
trade-offs between the repair bandwidth and the maximum
repair load for different repair solutions, either centralized
(e.g., Figures 1(a) and 1(b)) or parallel (e.g., Figures 1(c) and
2). In this section, we design our repair model (§3.1) and
evaluate the repair bandwidth and the maximum repair load
of a repair solution (§3.2). Finally, we analyze the trade-off

between the repair bandwidth and the maximum repair load
for different repair solutions on RS and MSR codes (§3.3).

3.1 Characterizing Repair Solutions
Design requirements. We first identify three design require-
ments for our repair model to characterize repair solutions
based on our example in Figure 2:

• R1: It can describe the linear combination relationships of
sub-blocks (e.g., b0,0 is the linear combination of b2,0, b2,1,
and b3,0).

• R2: It can describe which node is scheduled to execute
a repair operation for each sub-block and how the repair
operation is executed (e.g., N2 downloads b3,0 from N3 and
generates b0,0 with its locally stored b2,0 and b2,1).

• R3: It can describe how the repaired sub-blocks are col-
lected (e.g., b0,0, b0,1, b0,2, and b0,3 can be repaired in differ-
ent nodes, but are finally collected by N0 for reconstructing
block B0).

Our repair model builds on the ECDAG abstraction [19],
which characterizes and schedules erasure coding operations
in distributed storage systems. Note that an ECDAG can
model the linear combination relationships of sub-blocks (i.e.,
R1 addressed), but cannot directly schedule the repair opera-
tions for different sub-blocks in different nodes (i.e., R2 and
R3 not addressed). In the following, we first introduce the
ECDAG abstraction, and then explain how it can be extended
to address all our requirements.

Basics of an ECDAG. We provide an overview of an ECDAG.
An ECDAG G = (V,E) is a directed acyclic graph (DAG) that
describes an erasure coding operation (including the repair
of a block), where V is the set of vertices and E is the set
of edges. A vertex vℓ ∈ V (where ℓ ≥ 0) refers to either a
sub-block that is stored in a node (i.e., ℓ= i×w+ j for bi, j,
where i, j ≥ 0) or an intermediate sub-block that is generated
on-the-fly but will not be finally stored (i.e., ℓ≥ n×w). With
a slight abuse of notation, we refer to a sub-block with its
vertex vℓ, where ℓ is the index. An edge e(ℓ1, ℓ2) ∈ E means
that the sub-block vℓ1 is an input to the linear combination for
computing the sub-block vℓ2 . Note that the repair workflows
vary across blocks, so the repair of each block will lead to a
different ECDAG instance.

We use Clay codes [36] as an example to show how an
ECDAG describes its repair workflow. Figure 3(a) shows
the block layout of the (4,2) Clay code (where w = 4) in an
ECDAG, and Figure 3(b) shows the repair flow for block B0,
which we introduce in §2.2. First, in the PRT step, we couple
sub-blocks v9 (b2,1) and v12 (b3,0) as a pair and perform linear
combinations to generate two intermediate sub-blocks v16 (c0)
and v17 (c1). Second, in the MDS decoding step, we decode
sub-blocks v0 (b0,0) and v18 (c2) from sub-blocks v8 (b2,0) and
v16 (c0), and we decode sub-blocks v1 (b0,1) and v19 (c3) from
sub-blocks v13 (b3,1) and v17 (c1). Note that the sub-blocks
v0 (b0,0) and v1 (b0,1) of B0 are repaired. Finally, in the PFT

USENIX Association 21st USENIX Conference on File and Storage Technologies 21

1294 58

16 17

13

18

0 1

19

2 3

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

B0 B1 B2 B3

20:T_1
25:T_0

1294 58

16 17

13

18

0 1

19

2 3

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

B0 B1 B2 B3

20:T_1
25:T_0

(a) Layout (b) ECDAG

Figure 3: An ECDAG example of repairing B0 using the
(4,2) Clay code (w = 4).

step, we couple sub-blocks v4 (b1,0) and v18 (c2) to repair
sub-block v2 (b0,2), and also couple sub-blocks v5 (b1,1) and
v19 (c3) to repair sub-block v3 (b0,3). B0 is now fully repaired.

pECDAG. We extend the ECDAG abstraction into the
pECDAG abstraction to support the scheduling of parallel
sub-block repair operations, so that we can model the trade-
off between the repair bandwidth and the maximum repair
load. Specifically, a pECDAG makes two extensions over
an ECDAG. First, it associates each vertex with a color that
corresponds to a node, such that the node is responsible for
generating or storing all sub-blocks associated with the same-
colored vertices (i.e., R2 addressed). Second, it connects all
repaired sub-blocks, which may reside in different nodes to a
vertex R, which represents a data collector (i.e., R3 addressed).
Figure 4(a) shows the pECDAG for the parallel repair in Fig-
ure 2. To help our discussion, we refer to the topmost vertices
(e.g., v4, v5, v8, v9, v12, and v13) that correspond to the sub-
blocks retrieved from the other available nodes as the leaf
vertices, and the vertex R that corresponds to the data collec-
tor as the root vertex. Note that the colors of both the leaf
vertices and root vertex are fixed, as they depend on where the
retrieved sub-blocks and repaired block reside, respectively.

For example, from Figure 4(a), N2 (i.e., yellow-colored)
computes the sub-block v17 (c1) in Figure 2 and sends it to N0
(i.e., red-colored), which repairs the sub-blocks v1 (b0,1) and
v3 (i.e., b0,3). Also, N2 computes the sub-blocks v0 (b0,0) and
v18 (c2). It sends v18 to N1 (i.e., green-colored), which repairs
the sub-block v2 (b0,2). Finally, N0 collects all the repaired
sub-blocks for the reconstruction of B0.

3.2 Evaluating Repair Solutions
Given (n,k,w) and the block to repair, there are different ways
to color the vertices of a pECDAG, so there are multiple possi-
ble pECDAG instances. We associate each pECDAG instance
with a traffic table, so as to efficiently quantify the repair
bandwidth and the maximum repair load of the corresponding
repair solution.

Definition of a traffic table. A traffic table maintains the
amount of data that each node sends or receives when re-
pairing a block. For each node in the system, the traffic ta-
ble records the number of incoming sub-blocks received by
the node and the number of outgoing sub-blocks sent by the

1294 58

16 17

13

18

0 1

19

2 3

R

N1

N3

N2

N0

Node
In Out

N0 5 0

N1 1 2

N2 1 3

N3 0 2

1294 58

16 17

13

18

0 1

19

2 3

R

N1

N3

N2

N0

Node
In Out

N0 5 0

N1 1 2

N2 1 3

N3 0 2

(a) pECDAG (b) Load table

Figure 4: A pECDAG example of (4,2) Clay code with w= 4
to repair B0.

node. The repair bandwidth is the total number of incoming
sub-blocks (or equivalently, the total number of outgoing sub-
blocks) of all nodes, while the maximum repair load is the
largest number of incoming or outgoing sub-blocks of a node
across all nodes. For example, Figure 4(b) shows the traffic
table for the parallel repair solution shown in Figure 2, in
which the repair bandwidth is 7 sub-blocks and the maximum
repair load is 5 sub-blocks.

Construction of a traffic table. We show how we generate
the traffic table for a given pECDAG instance. We initialize a
traffic table T with two arrays T.In and T.Out, which record
the numbers of incoming and outgoing sub-blocks for each
node, respectively. For each vertex vi, we traverse each edge
e(vi,v j). Let N′ and N′′ be two nodes with respect to the colors
of vi and v j, respectively. If vi and v j have different colors, we
increment T.Out[N′] and T.In[N′′] by one; however, if there
exist two edges, say e(vi,v j) and e(vi,vh), such that v j and vh
have the same color that is different from vi’s color, we only
increment T once for the corresponding pairs of nodes. The
rationale is that the sub-block vi only needs to be transmitted
once to calculate the sub-blocks v j and vh.

For example, in Figure 4(a), both v18 and v0 have the same
color as v8, we do not need to update the traffic table. For v17,
as v1 has a different color, we count e(v17,v1) as a transmis-
sion and increment the traffic table. As v19 and v1 have the
same color, we do not need to increment the traffic table for
e(v17,v19).

3.3 Trade-off Analysis
Based on a pECDAG and its traffic table, we study the trade-
off between the repair bandwidth and the maximum repair
load. Our idea is to enumerate all possible color combinations
of a pECDAG and find the corresponding traffic table for each
color combination. Note that the colors of the leaf vertices
and the root vertex are fixed (§3.1). Thus, for a pECDAG,
we only need to enumerate the color combinations for the
intermediate sub-blocks and repaired sub-blocks. Currently,
we assume that the repair operation of a stripe is scheduled
among the nodes (i.e., n nodes for an (n,k) code) that store
the blocks of the stripe, so as to limit the interference across
different stripes.

We consider the repair scenarios of two MSR codes: the

22 21st USENIX Conference on File and Storage Technologies USENIX Association

0
256
512
768

1024
1280
1536

0 256 512 768
Maximum repair load (MiB)

R
ep

ai
r b

an
dw

id
th

 (M
iB

)

RP/MLP
Clay

RS

(a) (4,2) Clay code (w = 4)

0
256
512
768

1024
1280
1536

0 256 512 768 1024
Maximum repair load (MiB)

R
ep

ai
r b

an
dw

id
th

 (M
iB

)

RP
MLP

Butterfly

RS

(b) (6,4) Butterfly code (w = 8)

Figure 5: Trade-off analysis between the repair bandwidth
and the maximum repair load.

(4,2) Clay code and the (6,4) Butterfly code. We consider
the repair of block B0 (i.e., the first block of a stripe) and
construct a pECDAG for each of them. We apply a brute-
force search to enumerate all color combinations; for each
color combination, we generate the traffic table and obtain the
corresponding repair bandwidth and maximum repair load.
We show the spectrum of repair bandwidth and maximum
repair load for different color combinations under the (4,2)
Clay code (Figure 5(a)) and the (6,4) Clay code (Figure 5(b)).
In the figures, we highlight the points corresponding to the
centralized repair for RS codes (RS), repair pipelining for RS
codes (RP), and the centralized repair for Clay codes (Clay)
or Butterfly codes (Butterfly) for comparisons.

We find that different color combinations for an MSR code
have different trade-offs between the repair bandwidth and the
maximum repair load. We define a min-max repair load point
(MLP), which minimizes the maximum repair load, and whose
repair bandwidth is minimized given this optimal maximum
repair load. Note that the MLP does not guarantee the absolute
minimum value of repair bandwidth. For example, for the
(4,2) Clay code, the MLP happens to be overlapped with the
point of RP; for the (6,4) Butterfly code, the MLP reduces the
repair bandwidth by 15.6% compared with that of RP, while
it achieves the same maximum repair load as RP.

This observation indicates that the parallel repair of an
MSR code may further improve the repair performance of a
distributed storage system if we can find the MLP. However, it
is non-trivial to find the MLP in general. While the brute-force
approach can always find the MLP, it also has high complexity.

For a pECDAG of an (n,k) MSR code with w sub-blocks in
a block, the lower bound of the number of vertices being
colored is w (i.e., when there is no intermediate sub-block,
we only need to color the w repaired sub-blocks). In this case,
the lower bound of the total number of color combinations is
nw. For Clay codes, the lower bound is n(n−k)⌈n/(n−k)⌉

, while
for Butterfly codes, the lower bound is n2k−1

. For example,
for the (14,10) Clay code, the number of color combinations
is no less than 14256, while for the (12,10) Butterfly code,
the number of combinations is no less than 12512, which are
not solvable in polynomial time. Thus, for reasonably large
(n,k), it is important to reduce the size of the search space,
and hence the running time.

4 Heuristic
As the brute-force approach in general is time-consuming to
find the MLP, we propose a heuristic to find an approximate
point that is close to the MLP. Our goal is to find a parallel
repair solution represented in a pECDAG that keeps both
the repair bandwidth and the maximum repair load as low as
possible.

Design idea. The high-level idea is to search all the color
combinations for a pECDAG, while pruning some branches
based on the heuristic to reduce the search space. Intuitively,
we can view our heuristic as searching for the solution based
on Pareto optimality, such that it searches for the MLP on the
Pareto frontier and prunes the dominated solutions that have
both larger repair bandwidth and larger maximum repair load
than a candidate solution.

We first introduce the key definitions. If two pECDAGs,
say X and Y , have the same DAG structure except in the color
of a single vertex that refers to an intermediate sub-block or a
repaired sub-block, we call X and Y the neighbors. We per-
form the search on a pECDAG by examining all the neighbors
of the pECDAG. If we have examined all the neighbors of a
pECDAG, we say that the pECDAG is searched; otherwise,
the pECDAG is un-searched. Our heuristic is composed of
the following three steps.

Step 1: Initialization. We define an un-searched pool, which
is used to keep the pECDAGs that will be searched, as well
as a candidate pool, which is used to record the candidate
pECDAG solutions to be returned. At the beginning, we gen-
erate a random pECDAG, in which the color of a vertex that
refers to an intermediate sub-block or a repaired sub-block
is randomly selected from a set of candidate colors that rep-
resent the nodes storing the available blocks and the node
storing the repaired block. We add the random pECDAG to
the un-searched pool and the candidate pool for initialization.

Step 2: Searching. Each time we retrieve a pECDAG from
the un-searched pool. We enumerate all the neighbors of this
pECDAG by changing the color of only one vertex (which
refers to an intermediate sub-block or a repaired sub-block). If
there are α such vertices and β candidate colors, a pECDAG

USENIX Association 21st USENIX Conference on File and Storage Technologies 23

has α × (β − 1) neighbors (note that for each vertex, there
are β −1 different candidate colors to which we can change).
After we examine all the neighbors of the pECDAG (i.e., the
pECDAG is searched), we remove the pECDAG from the
un-searched pool.

Step 3: Pruning. After Step 2, we generate α × (β −1) new
neighbors of a pECDAG. However, not all of them are suitable
for future search. Here, we consider different cases of how
we compare a neighbor pECDAG that we generate in Step 2
with the pECDAGs in the candidate pool to decide whether
the neighbor pECDAG is suitable for future search. Suppose
that there are two pECDAGs in the candidate pool (say, A and
B), and Figure 6 shows the four cases when we compare a
neighbor pECDAG with the solutions in the candidate pool:

• Case 1 (Figure 6(a)): This is an example of a generated
neighbor pECDAG that is not suitable for future search. If
there exists a pECDAG in the candidate pool that provides
less maximum repair load and less repair bandwidth than
the neighbor that we generate in Step 2, it means that we
already have an existing solution that outperforms the neigh-
bor. Thus, we discard the neighbor. The remaining three
cases show the examples of when we can add a neighbor
pECDAG to the candidate pool.

• Case 2 (Figure 6(b)): If the neighbor has the least maximum
repair load or the least repair bandwidth compared with
all the pECDAGs in the candidate pool, we can add the
neighbor to the candidate pool.

• Case 3 (Figure 6(c)): If the neighbor lies between two solu-
tions in the candidate pool, we can add the neighbor to the
candidate pool.

• Case 4 (Figure 6(d)): If we find that the repair bandwidth
and the maximum repair load of the neighbor are both less
than those of an existing pECDAG in the candidate pool,
we can add the neighbor to the candidate pool and also
remove the existing one from the candidate pool.

For the neighbors that have been added to the candidate pool,
we also add them to the un-searched pool for our future search.

Note that Step 2 and Step 3 are performed iteratively until
the un-searched pool is empty. Then, we report the pECDAG
that has the least maximum repair load as an approximate
MLP from the candidate pool.

Discussion. As our heuristic in general only provides a local
optimal solution, we can repeat the process to find an approxi-
mate MLP starting from Step 1 by multiple runs, such that we
can choose the one with the least maximum repair load from
all the runs. We show in §7.2 how the heuristic performs in
finding the approximate MLP.

5 Design of Repair Operations
Repair operations in a distributed storage system will be trig-
gered in two scenarios, namely degraded reads, where a client
reads an unavailable block, and full-node recovery, where the
distributed storage system repairs the lost blocks of a failed

Maximum repair load

Re
pa

ir
bd

w
t

Candidate solution
Neighbor

A
B

✘

Re
pa

ir
bd

w
t

A
B

Candidate solution
Neighbor

Maximum repair load

✓

✓

(a) Case 1 (b) Case 2

Re
pa

ir
bd

w
t

A
B

Candidate solution
Neighbor

Maximum repair load

✓ Re
pa

ir
bd

w
t

A
B

✘

✓

Candidate solution
Neighbor

Maximum repair load

(c) Case 3 (d) Case 4

Figure 6: Compare a neighbor generated in Step 2 with solu-
tions in the candidate pool.

node in a new node. In this section, we design the two repair
operations based on our heuristic in §4.

Degrade reads. A client issues a degraded read operation
when it requests an unavailable block, in which it needs to
repair the requested block through the available blocks of
the same stripe stored in other nodes. We generate an ap-
proximate MLP from our heuristic. We then associate the
approximate MLP with a pECDAG, which describes the re-
pair workflow with the sub-blocks (including the available
sub-blocks, repaired sub-blocks, and intermediate sub-blocks)
and the nodes (i.e., the nodes that store the available blocks
and the node associated with client). Note that a pECDAG
varies for different unavailable blocks of a stripe. Also, as the
blocks of different stripes are distributed across different sets
of nodes in a distributed storage system, a pECDAG varies
across different stripes and needs to be generated for each
requested unavailable block of a stripe.

Full-node recovery. In a full-node recovery operation, a new
node is added to the system, and we repair all the lost blocks
of a failed node and store the repaired blocks in the new node.
We run our heuristic to generate an approximate MLP for each
lost block to be repaired and associate the approximate MLP
with a pECDAG. For each block, we associate the colors in
the corresponding pECDAG with both the nodes that store the
available blocks in the stripe and the new node that is added
for full-node recovery.

6 ParaRC
We propose a parallel repair middleware, ParaRC, to balance
the repair bandwidth and the maximum repair load for MSR
codes. We first introduce the architecture of ParaRC in §6.1.
We then elaborate on the implementation details in §6.2.

24 21st USENIX Conference on File and Storage Technologies USENIX Association

DataNode
Agent

DataNode
Agent

DataNode
Agent...

Controller

NameNode
PRS

Generator

Client

control flow data flow metadata flow

Figure 7: System architecture.

6.1 Architecture
We have built ParaRC as a repair middleware based on
OpenEC [19], an erasure coding framework that supports
the deployment of custom erasure coding solutions in existing
distributed storage systems. ParaRC leverages OpenEC to de-
ploy the parallel repair of MSR codes on Hadoop HDFS [4].
HDFS stores data in fixed-size blocks. It comprises a NameN-
ode and multiple DataNodes: the NameNode manages the
storage of all DataNodes and maintains the metadata of all
stored blocks, while the DataNodes provide the storage for
the blocks. ParaRC performs encoding across HDFS blocks:
for an (n,k) code, it encodes every k uncoded HDFS blocks
(i.e., data blocks) into n− k coded HDFS blocks (i.e., parity
blocks) to form a stripe, and stores the stripe in n DataNodes.

Figure 7 shows the architecture of ParaRC when it is inte-
grated with HDFS. ParaRC includes a parallel repair solution
generator, called the PRS generator. It also deploys a con-
troller that runs within the NameNode, and multiple agents,
each of which runs within a DataNode. We also deploy a
client that is co-located with an agent in a DataNode to issue
repair requests to ParaRC (note that the client can also run
in a standalone machine outside of the DataNodes). We now
elaborate on each component in detail.

PRS generator. The PRS generator pre-computes the parallel
repair solution for each single-block repair scenario offline
and stores the results before the system starts [16]; this offline
approach is suitable since the number of repair scenarios is
limited for moderate ranges of (n,k) that are commonly used
in practice [26]. The PRS generator runs the heuristic in §4
for an MSR code to generate a parallel repair solution that
operates at an approximate MLP. It constructs a pECDAG
based on the parallel repair solution. It stores the solution in
the controller, which coordinates the actual repair operation.

Controller. The controller coordinates the parallel repair op-
eration for the lost blocks that are encoded with MSR codes.
Upon receiving a repair request for a block, the controller
first reads the metadata of the block from HDFS to deter-
mine the location of other blocks in the same stripe. Then,
the controller constructs a pECDAG to repair the block with
the parallel repair solution returned from the PRS generator.
Finally, it translates the pECDAG into a set of basic tasks de-
fined in OpenEC [19], including (i) reading sub-blocks from

disk, (ii) fetching sub-blocks from other nodes, (iii) comput-
ing intermediate sub-blocks and repaired sub-blocks, and (iv)
persisting the repaired sub-blocks as the final repaired block.
Then, the controller sends the basic tasks to the agents to
perform sub-block repair operations to repair a lost block.

Agent. Each agent performs the basic tasks assigned by the
controller. For a reading task, an agent directly reads the sub-
blocks of a block stored in the local file system. For a fetching
task, an agent downloads the sub-blocks from another agent.
For a computing task, an agent generates the intermediate sub-
blocks or repaired sub-blocks. For a persisting task, an agent
stores the repaired sub-blocks as the final repaired block.

Client. A client sends repair requests to ParaRC. It can send
a degraded read request or a full-node recovery request to
ParaRC (§5). For a degraded read request, ParaRC coordinates
the parallel repair for an unavailable block requested by the
client; for a full-node recovery request, ParaRC repairs all lost
blocks of a failed DataNode in parallel in a new DataNode.

6.2 Implementation
We implement ParaRC in C++ with around 9.4 K LoC and
integrate ParaRC with Hadoop-3.3.4 HDFS [4] (HDFS-3 for
short). ParaRC uses Redis [7] for internal communications
among the controller, agents, and clients. It uses Intel’s Intel-
ligent Storage Acceleration Library (ISA-L) [6] to perform
encoding and decoding operations for erasure codes. It sup-
ports both the centralized repair and parallel repair for MSR
codes. In the following, we elaborate on the deployment de-
tails of ParaRC and how ParaRC is integrated with HDFS-3.

Deployment. To generate basic tasks for parallel repair, we
need to carefully co-locate sub-block repair operations to
avoid redundant data transmissions. For example, when we
deploy the pECDAG in Figure 4(a), we need to co-locate
the repair of sub-blocks v18 and v0, to make sure that the
sub-blocks v8 and v16 are only downloaded once in N2 in
the sub-block repair operation. To achieve this goal, we first
divide vertices into groups based on topological sorting, in
which we can co-locate the sub-block repair operations for
the vertices of the same color in the same group.

For example, the vertices in Figure 4(a) can be divided into
the following five groups according to topological sorting: (i)
v4, v5, v8, v9, v12, and v13; (ii) v16 and v17; (iii) v0, v1, v18, and
v19; (iv) v2 and v3; and (v) R. In group (ii), as v16 and v17 have
the same color, we can co-locate the two sub-block repair
operations, such that N2 can only download sub-block v12
from N3 only once to compute the two sub-blocks. Similarly,
we can co-locate the sub-block repair operations specified by
v0 and v18 in N2, and the sub-block repair operations specified
by v1 and v19 in N0.

HDFS-3 integration. To improve parallelism, in ParaRC, the
encoding of a stripe of blocks is divided into the encoding of
multiple small sub-stripes, where the data unit in each node
within a sub-stripe is called a packet. In MSR codes, each

USENIX Association 21st USENIX Conference on File and Storage Technologies 25

packet contains w sub-packets. Each sub-stripe encodes k×w
sub-packets into n×w MSR-coded sub-packets, where the
size of a sub-packet is as small as 64 KiB. Thus, we implement
sub-packetization across sub-packets instead of sub-blocks
as in OpenEC [19], so that ParaRC can encode different sub-
stripes in parallel to fully utilize the system resources.

Note that HDFS-3 does not directly support MSR codes, so
we rely on ParaRC to generate MSR-coded blocks and store
them in HDFS-3. To enable the parallel repair for MSR codes
in HDFS-3, we run the ParaRC controller with the NameNode
and run each ParaRC agent with a DataNode. The controller
maintains a stripe store for MSR-coded stripes, which records
the metadata of each stripe, including the blocks of the same
stripe, and the location of each block in the same stripe. We
store the metadata of HDFS-3 blocks in the stripe store of
ParaRC, such that when repairing a block, the controller can
retrieve metadata from the stripe store.

Support for RS codes. ParaRC also supports RS codes. It
now implements both the conventional centralized repair ap-
proach and the parallel repair approach based on repair pipelin-
ing [20]. In repair pipelining, we divide a packet into sub-
packets and pipeline the repair of different sub-packets across
a repair path (i.e., each sub-packet is viewed as a slice in repair
pipelining [20]). The corresponding parallel repair solutions
are stored in the PRS generator. Note that RS codes have no
sub-packetization and a sub-stripe encodes k packets into n
RS-coded packets.

7 Evaluation
We conduct experiments for ParaRC on Alibaba Cloud [1].
We aim to answer the following questions:

• What is the performance of our heuristic in §4 in finding
the approximate MLP? (§7.2)

• How does the performance of ParaRC vary across different
system configurations? (§7.3 and §7.4)

• What is the performance overhead of ParaRC to HDFS-3
and how is the repair performance improved by the parallel
repair from ParaRC? (§7.5)

7.1 Setup
Testbed. We provision 23 memory-optimized instances on
Alibaba Cloud [1] for ParaRC, which includes the PRS gen-
erator, the controller, 20 agents, and a node that serves as
the client for degraded reads or the new node for full-node
recovery. The PRS generator runs on an ecs.r7.2xlarge
instance with 8 vCPUs and 64 GiB RAM, while other com-
ponents are deployed in ecs.r7.xlarge instances with 4
vCPUs and 16 GiB RAM. Each instance is also equipped with
a 40 GiB enhanced SSD with performance level PL0 [2] and
is installed with Ubuntu 18.04. All instances are connected
via a 10 Gbps network.

Default settings. We configure the default block size as
256 MiB and the default sub-packet size as 64 KiB; for exam-

ple, the packet size for the (14,10) Clay code is 256×64 KiB
= 16 MiB, so a stripe can be divided into 16 sub-stripes. In
our evaluation, we compare four repair approaches: (i) the cen-
tralized repair for RS codes (RS); (ii) repair pipelining for RS
codes (RP); (iii) the centralized repair for Clay/Butterfly codes
(Clay/Butterfly); and (iv) the parallel repair for Clay/Butterfly
codes (ParaRC). If we consider an (n,k) Clay/Butterfly code,
we also use the same (n,k) for RS and RP.

For degraded reads, we evaluate the average degraded read
time for the first k uncoded blocks. For full-node recovery,
we measure the total time of repairing 20 lost blocks of a
failed storage node from 20 stripes (whose available blocks
are randomly distributed across the non-failed storage nodes).
We plot the average results over 5 runs, including the error
bars showing the maximum and minimum of the 5 runs.

7.2 Finding the Approximate MLP
E1: Performance of finding the approximate MLP. We
evaluate our heuristic in §4 in finding the approximate MLP.
We focus on repairing B0 for Clay codes [36] and Butterfly
codes [24]. We evaluate the algorithm running times of our
heuristic and the brute-force approach. We also compare the
maximum repair load and repair bandwidth of the approxi-
mate MLP returned by our heuristic with those of RP and the
centralized repair for Clay/Butterfly codes.

We first compare the running time of our heuristic with that
of the brute-force approach. We only consider the (4,2) Clay
code (w = 4) and the (6,4) Butterfly code (w = 8), as the
brute-force approach for large (n,k) cannot be solved within
reasonable time. As shown in Table 2, for the (4,2) Clay
code, the heuristic reduces the running time from 264.1 s to
1.8 s, while for the (6,4) Butterfly code, the heuristic reduces
the running time from 34.2 s to 0.3 s. We also examine the
number of pECDAGs being examined by the heuristic. For
example, for the (14,10) Clay code, the heuristic examines
about 14 million pECDAGs only; the number is much less
than the lower bound of the number of pECDAGs (i.e., 14256)
that need to be examined by the brute-force approach (§3.3).
Thus, the heuristic significantly reduces the search space.

We note that the heuristic can find the solution whose max-
imum repair load has the same size as the block size, but
sometimes cannot. For example, the solution for the (6,4)
Butterfly code (w = 8) achieves the maximum repair load of
256 MiB (which is also the minimum), while the maximum
repair load of the solution for the (4,2) Clay code (w = 4)
is larger than the block size 256 MiB. The reason is that the
heuristic may return a local optimal solution.

We then compare the maximum repair load and repair band-
width of different repair approaches. The maximum repair
load of our heuristic is significantly less than that of the cen-
tralized repair for Clay/Butterfly codes. For example, for the
(14,10) Clay code (w = 256) the maximum repair load of the
MLP decreases to 271 MiB, which is 67.4% less than that of
the centralized repair for Clay codes (i.e., 832 MiB). We also

26 21st USENIX Conference on File and Storage Technologies USENIX Association

(n,k,w) RP Clay Approximate MLP Heuristic Brute-force
(4,2,4) (256,512) (384,384) (320,448) 1.8 s 264.1 s

(12,8,64) (256,2048) (704,704) (264,1224) 425.9 s -
(14,10,256) (256,2560) (832,832) (271,1609) 57.2 h -
(16,12,256) (256,3072) (960,960) (281,1774) 61.9 h -

(a) Clay codes
(n,k,w) RP Butterfly Approximate MLP Heuristic Brute-force
(6,4,8) (256,1024) (640,640) (256,896) 0.3 s 34.2 s

(12,10,512) (256,2560) (1408,1408) (297,2216) 31.64 h -
(b) Butterfly codes

Table 2: E1: Performance of finding the approximate MLP to repair B0 for Clay codes and Butterfly codes. We show the
(maximum repair load, repair bandwidth) for each repair approach. We also show the running time for the heuristic. For the brute-
force approach, we only show the running time for the (4,2,4) Clay code and (6,4,8) Butterfly code, as the other configurations
cannot be completed within reasonable time.

0
.60
.7

1
.31

.7

0
.7

1
.4

1
.3

2
.1

0
.6

1
.5

1
.3

2
.6

1
.21

.6

1
.3

2
.1

0

1

2

3

4

(12,8) Clay

(14,10) Clay

(16,12) Clay

(12,10) Butterfly

T
im

e
 (

s
)

RS RP Clay or Butterfly ParaRC

(a) Degraded reads

1
0

.9
1

2
.5

3
1

.6
3

5
.5

1
2

.6
1

7
.1
3

5
.54
2

.8

1
1

.81
9

.5
3

9
.75
1

.4

2
6

.9
2

6
.93
5

.54
2

.8

0

20

40

60

80

(12,8) Clay

(14,10) Clay

(16,12) Clay

(12,10) Butterfly

T
im

e
 (

s
)

RS ECPipe Clay or Butterfly ParaRC

(b) Full-node recovery

Figure 8: E2: Varying MSR codes.

observe that when the maximum repair load decreases, the
repair bandwidth of our heuristic is higher than that of the
centralized repair, while it is still much less than the repair
bandwidth of RP (by 37.1%). We also observe similar trends
in Butterfly codes.

7.3 ParaRC Performance
We evaluate the performance of ParaRC in degraded reads
and full-node recovery under different settings.

E2: Varying MSR codes. We evaluate the performance of
ParaRC for different MSR code configurations, including the
(12,8) Clay code, the (14,10) Clay code, the (16,12) Clay
code, and the (12,10) Butterfly code. Figure 8 shows the
evaluation results.

We first analyze the performance of the degraded reads,
as shown in Figure 8(a). Overall, ParaRC has the smallest
degraded read time compared with other baseline repair ap-
proaches. For example, for the (16,12) Clay code, ParaRC
reduces the degraded read time by 76.4%, 51.9%, and 59.3%,

compared with RS, RP, and Clay, respectively. Although RP
minimizes the maximum repair load, its degraded read time
is not necessarily minimized, as RP still has high repair band-
width and needs to read the whole block from each avail-
able node in degraded reads. For the (12,10) Butterfly code,
ParaRC reduces the degraded read time by 43.8%, 3.7%, and
24.8% compared with RS, RP, and Butterfly, respectively.

We next analyze the performance of full-node recovery,
as shown in Figure 8(b). Like degraded reads, ParaRC also
has the smallest full-node recovery time compared with other
baseline repair approaches. For example, for the (16,12) Clay
code, ParaRC reduces the full-node recovery time by 76.9%,
70.2%, and 39.2% compared with RS, RP, and Clay, respec-
tively. For the (12,10) Butterfly code, ParaRC reduces the full-
node recovery time by 37.2% and 24.2% compared with RS
and RP, respectively. We observe that the network bandwidth
usages of the centralized repair for the (12,8) Clay code, the
(14,10) Clay code, the (16,12) Clay code, and the (12,10)
Butterfly code are 1,126 MiB/s, 973 MiB/s, 984 MiB/s, and
1,046 MiB/s, respectively, implying that it is bottlenecked by
the high maximum repair load at the new node where the lost
blocks are reconstructed. As ParaRC reduces the maximum
repair load, we observe that it significantly improves the re-
pair performance for Clay codes. However, we also observe
that the performance improvement of ParaRC is marginal for
Butterfly codes. The reason is that while the maximum repair
load reduces for Butterfly codes, the repair bandwidth also in-
creases (i.e., from 1,408 MiB to 2,216 MiB), thereby limiting
the performance improvements.

7.4 Micro-benchmarks
We study how the performance of ParaRC varies for different
sub-packet sizes and block sizes. We focus on the (14,10)
Clay code and the (12,10) Butterfly code.

E3: Varying sub-packet size for degraded reads. We eval-
uate ParaRC under different sub-packet sizes. We vary the
sub-packet size from 16 KiB to 256 KiB, and fix the block
size at 256 MiB (note that the packet size is the sub-packet
size multiplied by w, where w depends on the erasure code).

USENIX Association 21st USENIX Conference on File and Storage Technologies 27

0

1

2

3

4

5

16 32 64 128 256
Sub-packet size (KiB)

T
im

e
 (

s
)

RS
RP
Clay
ParaRC

0

1

2

3

4

5

16 32 64 128 256
Sub-packet size (KiB)

T
im

e
 (

s
)

RS
RP
Butterfly
ParaRC

(a) (14,10) Clay code (b) (12,10) Butterfly code

Figure 9: E3: Varying sub-packet size for degraded reads.

0

1

2

3

4

5

64 128 256 512
Block size (MiB)

T
im

e
 (

s
)

RS
RP
Clay
ParaRC

0

1

2

3

4

5

64 128 256 512
Block size (MiB)

T
im

e
 (

s
)

RS
RP
Butterfly
ParaRC

(a) (14,10) Clay code (b) (12,10) Butterfly code

Figure 10: E4: Varying block size for degraded reads.

Figure 9 shows the results. For the (14,10) Clay code,
ParaRC has the smallest degraded read time compared with
other repair approaches for all the sub-packet sizes being con-
sidered. For example, when the sub-packet size is 128 KiB,
ParaRC reduces the degraded read time by 64.8%, 40.0%, and
44.8% compared with RS, RP, and Clay, respectively. For each
repair approach, we see a performance drop when the sub-
packet size decreases to 16 KiB due to the overhead of process-
ing a large number of sub-packets, and such a performance
drop is especially significant for RP. For example, when we
decrease the sub-packet size from 64 KiB to 16 KiB, the de-
graded read time of ParaRC increases by 12.8%. However,
ParaRC still outperforms other baseline repair approaches.

For the Butterfly code, we also observe similar results.
For all sub-packet sizes, ParaRC has the smallest degraded
read time. For example, when the sub-packet size is 128 KiB,
ParaRC reduces the degraded read time by 49.2%, 13.3%,
and 33.4% compared with RS, RP, and Butterfly, respectively.
When the sub-packet size decreases from 64 KiB to 16 KiB,
the degraded read time increases by 26.5%.

E4: Varying block size. We evaluate ParaRC under different
block sizes. We vary the block size from 64 MiB to 512 MiB,
and fix the sub-packet size at 64 KiB. The block size deter-
mines the number of sub-stripes; for example, for the de-
fault block size of 256 MiB, the number of sub-stripes for the
(14,10) Clay code is 16 (§7.1).

Figure 10 shows the results. When the block size is large,
ParaRC outperforms other repair approaches. For example,
when the block size is 512 MiB, ParaRC for the (14,10) Clay
code reduces the degraded read time by 67.3%, 60.9%, and
31.8% compared with RS, RP, and Clay, respectively, while

1
2

9
.7

1
2

8
.8

1
2

8
.8

1
3

1
.1

1
2

.63
5

.5

4
2

.8

4
4

.2

0

30

60

90

120

150

180

Encode Full-node recovery

T
im

e
 (

s
)

HDFS-RS
ParaRC-RS
ParaRC-RP
ParaRC-Clay

Figure 11: E5: HDFS-3 integration.

ParaRC for the (12,10) Butterfly code reduces the degraded
read time by 40.3%, 28.4%, and 12.3% compared with RS,
RP, and Butterfly, respectively.

When the block size is small, RP outperforms ParaRC.
For example, when the block size is 64 MiB, ParaRC for the
(14,10) Clay code has 22.1% higher degraded read time than
RP. The reason is that ParaRC fails to benefit from the parallel
repair for small block sizes due to high sub-packetization.
For example, when the block size is 64 MiB, a stripe is only
divided into 4 sub-stripes that are repaired in parallel for the
(14,10) Clay code, so the degree of parallelism is low. In
contrast, RP can pipeline the repair of 1,024 sub-stripes in
parallel (§6.2) and outperform ParaRC for small block sizes.

7.5 Performance in HDFS-3
E5: HDFS-3 integration. We evaluate the integration of
ParaRC into HDFS-3. Recall that we have shown the bene-
fits of ParaRC over other repair approaches (E2-E4). In this
experiment, we only focus on the performance overhead and
performance gain of ParaRC in HDFS-3 deployment. We
focus on the (14,10) Clay code with the default block size of
256 MiB.

Currently, HDFS-3 does not support Clay codes in its code-
base, so we mainly compare ParaRC with the RS code imple-
mentation in HDFS-3. We focus on evaluating the overhead
of encoding data by Clay codes in ParaRC and the full-node
recovery performance gain of ParaRC. We omit the results for
degraded reads to a lost block. The reason is that in HDFS-3,
a degraded read is triggered when reading a file, where all
blocks of the original file are returned to the client anyway. In
this case, the centralized repair of the lost block is sufficient.

We evaluate the performance of encoding 20 stripes and
repairing 20 lost blocks of a failed node in full-node recov-
ery (the full-node recovery procedure is described in §7.1).
We consider four approaches: (i) encoding by the default
RS codes and performing the default recovery approach in
HDFS (denoted by HDFS-RS); (ii) encoding by RS codes
and performing the centralized repair for RS codes in ParaRC
(denoted by ParaRC-RS); (iii) encoding by RS codes and per-
forming repair pipelining [20] in ParaRC (denoted by ParaRC-
RP); and (iv) encoding by Clay codes and performing the
parallel repair in ParaRC (denoted by ParaRC-Clay).

Figure 11 shows the results. For encoding, we observe that
the encoding of Clay codes in ParaRC and that of the encoding

28 21st USENIX Conference on File and Storage Technologies USENIX Association

of RS codes in HDFS-3 have similar overhead. For example,
HDFS-RS takes 131.1 s, while ParaRC-Clay takes 129.7 s
for encoding 20 stripes. For full-node recovery, ParaRC-Clay
reduces the full-node recovery time by 71.4% compared with
HDFS-RS; note that the total repair bandwidth for the full-
node recovery of 20 lost blocks in ParaRC-Clay is 16.25 GiB,
while that in HDFS-RS is 50 GiB (where (n,k) = (14,10)).

8 Related Work
RS codes [31] are popularly deployed in distributed storage
systems [3, 5, 9, 11, 23, 25], but incur high repair bandwidth
(§2.1). Thus, research efforts are made to improve the repair
performance of RS codes. One direction is to design fast
repair algorithms over RS codes, while another direction is to
design regenerating codes to minimize the repair bandwidth.

Repair algorithms for RS codes. PPR [22] divides the re-
pair of a block into partial operations and parallelizes them
for improved repair performance. Repair pipelining [18, 20]
divides the repair of a block into the repair of small slices,
organizes the available nodes that participate in the repair
operation into a repair path, and pipelines the repair of slices
along the repair path to reduce the degraded read time to be
almost the same as the time of reading a block. PPT [8], SM-
FRepair [39], and PivotRepair [38] propose different parallel
repair strategies for RS codes in heterogeneous bandwidth
environments. However, the above repair algorithms do not
reduce the repair bandwidth of RS codes. Our work focuses
on designing parallel repair algorithms for regenerating codes,
which have much lower repair bandwidth than RS codes.

Regenerating codes. Regenerating codes [10] are a family of
erasure codes that minimize the repair bandwidth. Minimum-
storage regenerating (MSR) codes not only minimize the re-
pair bandwidth, but also achieve the MDS property. Many re-
search studies propose new designs of MSR codes, including
F-MSR codes [13], PM-RBT codes [27], Butterfly codes [24],
and Clay codes [36]. Such MSR codes operate in different pa-
rameter regimes, such as n−k = 2 for F-MSR codes [13] and
Butterfly codes [24], and n ≥ 2k−1 for PM-RBT codes [27].
In particular, Clay codes [36] are state-of-the-art MSR codes
that support general parameters of n and k and are proven to
minimize both repair bandwidth and I/Os (§1). Geometric
partitioning [34] builds on Clay codes and divides an object
into variable-sized blocks to trade between the performance
of degraded reads and full-node recovery. However, the repair
strategy for existing MSR codes is still based on the central-
ized repair approach, in which a node downloads the required
data from all available nodes to repair a failed block. Even
though the repair bandwidth is still the minimum, the maxi-
mum repair load is high. ParaRC addresses this trade-off by
proposing a parallel repair strategy for MSR codes.

DAG-based erasure coding. OpenEC [19] proposes an
ECDAG abstraction to model and configure erasure coding
operations as a directed acyclic graph (DAG) without modify-

ing the I/O workflows of the underlying distributed storage
system. RepairBoost [21] proposes a DAG abstraction to load-
balance the full-node recovery workflow. Our work extends
ECDAG [19] to support the parallel repair for MSR codes.

9 Conclusions and Future Work
We present ParaRC, a parallel repair framework that improves
the repair performance of MSR-coded distributed storage
systems by exploiting the sub-packetization nature of MSR
codes. We show that there is a trade-off between the repair
bandwidth and the maximum repair load. ParaRC builds on
a fast heuristic that aims to minimize the maximum repair
load, while maintaining the low repair bandwidth. We im-
plement ParaRC as a middleware that runs atop HDFS. Our
evaluation results on Alibaba Cloud demonstrate that ParaRC
improves the repair performance of degraded reads and full-
node recovery compared with the conventional centralized
repair approach for Clay codes and Butterfly codes as well as
the repair pipelining approach for RS codes.

We discuss the limitations of our work and pose the follow-
ing open issues for future work.
• Currently, we only empirically show the performance gain

of ParaRC, but the theoretical analysis of the ParaRC de-
sign remains unexplored. Some open theoretical issues in-
clude: (i) the formulation of a multi-objective optimization
problem that minimizes both the repair bandwidth and the
maximum repair load; (ii) the difference between the re-
turned solution of the heuristic in §4 and the MLP; (iii)
the convergence of the heuristic in §4 to the MLP; and (iv)
faster and more efficient heuristics.

• ParaRC now focuses on the repair parallelism within a sin-
gle stripe (i.e., intra-stripe parallelism). One optimization is
to extend ParaRC with the repair parallelism across multiple
stripes (i.e., inter-stripe parallelism) for further performance
gains, particularly in declustered settings where the stripes
span across a large number of nodes [12]. Also, the full-
node recovery of ParaRC currently stores all reconstructed
blocks in a new node that replaces the failed node. We
can extend it to distribute the reconstructed blocks across
different nodes to avoid bottlenecking the new node.

• ParaRC is currently designed for large blocks and the mod-
erate parameters n and k. In future work, we consider small
blocks and wide stripes [14] (wide stripes encode data with
large parameters n and k for ultra-low redundancy).

Acknowledgments. We thank our shepherd, Gala Yadgar, and
the anonymous reviewers for their comments. This work
was supported in part by the National Key Research and
Development Program of China for Young Scholars (No.
2021YFB0301400), Key Laboratory of Information Storage
System Ministry of Education of China, the National Nat-
ural Science Foundation of China (No. 61821003 and No.
61832007), and Research Grants Council of HKSAR (AoE/P-
404/18). The corresponding author is Yuchong Hu.

USENIX Association 21st USENIX Conference on File and Storage Technologies 29

References
[1] Alibaba Cloud. https://www.alibabacloud.

com/product/ecs-pricing-list/en.

[2] Alibaba Cloud - ESSDs. https://
www.alibabacloud.com/help/en/
elastic-compute-service/latest/
essds.

[3] Ceph - Erasure code. http://docs.ceph.
com/docs/master/rados/operations/
erasure-code/.

[4] Hadoop 3.3.4. https://hadoop.apache.
org/docs/r3.3.4/hadoop-project-dist/
hadoop-hdfs/HdfsDesign.html.

[5] HDFS erasure coding. https://hadoop.apache.
org/docs/r3.0.0/hadoop-project-dist/
hadoop-hdfs/HDFSErasureCoding.html.

[6] Intel’s intelligent storage acceleration library (ISA-L).
https://www.intel.com/content/www/
us/en/developer/tools/isa-l/overview.
html.

[7] redis.io. https://redis.io/.

[8] Yunren Bai, Zihan Xu, Haixia Wang, and Dongsheng
Wang. Fast recovery techniques for erasure-coded clus-
ters in non-uniform traffic network. In Proc. of ICPP,
2019.

[9] Brian Beach. Backblaze Vaults:
Zettabyte-scale cloud storage architecture.
https://www.backblaze.com/blog/
vault-cloud-storage-architecture/,
2019.

[10] Alexandros G Dimakis, P Brighten Godfrey, Yunnan
Wu, Martin J Wainwright, and Kannan Ramchandran.
Network coding for distributed storage systems. IEEE
Trans. on Information Theory, 56(9):4539–4551, 2010.

[11] Daniel Ford, François Labelle, Florentina I Popovici,
Murray Stokely, Van-Anh Truong, Luiz Barroso, Car-
rie Grimes, and Sean Quinlan. Availability in globally
distributed storage systems. In Proc. of USENIX OSDI,
2010.

[12] Mark Holland, Garth A. Gibson, and Daniel P.
Siewiorek. Architectures and algorithms for on-line
failure recovery in redundant disk arrays. Distributed
Parallel Databases, 2(3):295–335, 1994.

[13] Yuchong Hu, Henry C. H. Chen, Patrick P. C. Lee, and
Yang Tang. NCCloud: Applying network coding for the
storage repair in a cloud-of-clouds. In Proc. of USENIX
FAST, 2012.

[14] Yuchong Hu, Liangfeng Cheng, Qiaori Yao, Patrick
P. C. Lee, Weichun Wang, and Wei Chen. Exploiting

combined locality for wide-stripe erasure coding in dis-
tributed storage. In Proc. of USENIX FAST, 2021.

[15] Cheng Huang, Huseyin Simitci, Yikang Xu, Aaron
Ogus, Brad Calder, Parikshit Gopalan, Jin Li, and Sergey
Yekhanin. Erasure coding in Windows Azure Storage.
In Proc. of USENIX ATC, 2012.

[16] Osama Khan, Randal C Burns, James S. Plank, William
Pierce, and Cheng Huang. Rethinking erasure codes
for cloud file systems: minimizing I/O for recovery and
degraded reads. In Proc. of USENIX FAST, 2012.

[17] Oleg Kolosov, Gala Yadgar, Matan Liram, Itzhak Tamo,
and Alexander Barg. On fault tolerance, locality, and op-
timality in locally repairable codes. In Proc. of USENIX
ATC, 2018.

[18] Runhui Li, Xiaolu Li, Patrick P. C. Lee, and Qun Huang.
Repair pipelining for erasure-coded storage. In Proc. of
USENIX ATC, 2017.

[19] Xiaolu Li, Runhui Li, Patrick P. C. Lee, and Yuchong
Hu. OpenEC: Toward unified and configurable erasure
coding management in distributed storage systems. In
Proc. of USENIX FAST, 2019.

[20] Xiaolu Li, Zuoru Yang, Jinhong Li, Runhui Li, Patrick
P. C. Lee, Qun Huang, and Yuchong Hu. Repair pipelin-
ing for erasure-coded storage: Algorithms and evalua-
tion. ACM Trans. on Storage, 17(2):13:1–13:29, 2021.

[21] Shiyao Lin, Guowen Gong, Zhirong Shen, Patrick P. C.
Lee, and Jiwu Shu. Boosting full-node repair in erasure-
coded storage. In Proc. of USENIX ATC, 2021.

[22] Subrata Mitra, Rajesh Panta, Moo-Ryong Ra, and
Saurabh Bagchi. Partial-parallel-repair (PPR): A dis-
tributed technique for repairing erasure coded storage.
In Proc. of ACM EuroSys, 2016.

[23] Subramanian Muralidhar, Wyatt Lloyd, Sabyasachi Roy,
Cory Hill, Ernest Lin, Weiwen Liu, Satadru Pan, Shiva
Shankar, Viswanath Sivakumar, Linpeng Tang, and San-
jeev Kumar. f4: Facebook’s warm blob storage system.
In Proc. of USENIX OSDI, 2014.

[24] Lluis Pamies-Juarez, Filip Blagojevic, Robert Mateescu,
Cyril Guyot, Eyal En Gad, and Zvonimir Bandic. Open-
ing the chrysalis: On the real repair performance of msr
codes. In Proc. of USENIX FAST, 2016.

[25] Andreas-Joachim Peters, Michal Kamil Simon, and
Elvin Alin Sindrilaru. Erasure coding for production in
the EOS open storage system. In Proc. of CHEP, 2019.

[26] James S. Plank, Jianqiang Luo, Catherine D. Schuman,
Lihao Xu, and Zooko Wilcox-O’Hearn. A performance
evaluation and examination of open-source erasure cod-
ing libraries for storage. In Proc. of USENIX FAST,
2009.

30 21st USENIX Conference on File and Storage Technologies USENIX Association

[27] K. V. Rashmi, Preetum Nakkiran, Jingyan Wang, Ni-
har B. Shah, and Kannan Ramchandran. Having your
cake and eating it too: Jointly optimal erasure codes
for I/O, storage, and network-bandwidth. In Proc. of
USENIX FAST, 2015.

[28] K. V. Rashmi, Nihar B. Shah, Dikang Gu, Hairong
Kuang, Dhruba Borthakur, and Kannan Ramchandran.
A solution to the network challenges of data recovery in
erasure-coded distributed storage systems: A study on
the Facebook warehouse cluster. In Proc. of USENIX
HotStorage, 2013.

[29] K. V. Rashmi, Nihar B. Shah, Dikang Gu, Hairong
Kuang, Dhruba Borthakur, and Kannan Ramchandran.
A “hitchhiker’s” guide to fast and efficient data recon-
struction in erasure-coded data centers. In Proc. of ACM
SIGCOMM, 2014.

[30] K. V. Rashmi, Nihar B. Shah, and Kannan Ramchan-
dran. A piggybacking design framework for read-and
download-efficient distributed storage codes. IEEE
Trans. on Information Theory, 63(9):5802–5820, 2017.

[31] Irving S. Reed and Gustave Solomon. Polynomial codes
over certain finite fields. Journal of the Society for In-
dustrial and Applied Mathematics, 8(2):300–304, 1960.

[32] Maheswaran Sathiamoorthy, Megasthenis Asteris, Dim-
itris Papailiopoulos, Alexandros G Dimakis, Ramkumar
Vadali, Scott Chen, and Dhruba Borthakur. XORing
elephants: Novel erasure codes for big data. Proc. of the
VLDB Endowment, 6(5):325–336, 2013.

[33] Nihar B. Shah, K. V. Rashmi, P. Vijay Kumar, and Kan-
nan Ramchandran. Interference alignment in regener-
ating codes for distributed storage: Necessity and code
constructions. IEEE Trans. on Information Theory,
58(4):2134–2158, 2012.

[34] Yingdi Shan, Kang Chen, Tuoyu Gong, Lidong Zhou,
Tai Zhou, and Yongwei Wu. Geometric partitioning:
Explore the boundary of optimal erasure code repair. In
Proc. of ACM SOSP, 2021.

[35] Itzhak Tamo, Zhiying Wang, and Jehoshua Bruck.
Zigzag codes: MDS array codes with optimal rebuilding.
IEEE Trans. on Information Theory, 2012.

[36] Myna Vajha, Vinayak Ramkumar, Bhagyashree Puranik,
Ganesh Kini, Elita Lobo, Birenjith Sasidharan, P. Vijay
Kumar, Alexandar Barg, Min Ye, Srinivasan Narayana-
murthy, Syed Hussain, and Siddhartha Nandi. Clay
codes: Moulding MDS codes to yield an MSR code.
In Proc. of USENIX FAST, 2018.

[37] Hakim Weatherspoon and John D. Kubiatowicz. Erasure
coding vs. replication: A quantitative comparison. In
Proc. of IPTPS, 2002.

[38] Qiaori Yao, Yuchong Hu, Xinyuan Tu, Patrick P. C. Lee
Lee, Dan Feng, Xia Zhu, Xiaoyang Zhang, Zhen Yao,

and Wenjia Wei. PivotRepair: Fast pipelined repair for
erasure-coded hot storage. In Proc. of ICDCS, 2022.

[39] Hai Zhou, Dan Feng, and Yuchong Hu. Multi-level
forwarding and scheduling repair technique in heteroge-
neous network for erasure-coded clusters. In Proc. of
ICPP, 2021.

USENIX Association 21st USENIX Conference on File and Storage Technologies 31

InftyDedup: Scalable and Cost-Effective Cloud Tiering with Deduplication

Iwona Kotlarska
9LivesData, LLC

Andrzej Jackowski
9LivesData, LLC

Krzysztof Lichota
9LivesData, LLC

Michal Welnicki
9LivesData, LLC

Cezary Dubnicki
9LivesData, LLC

Konrad Iwanicki
University of Warsaw

Abstract
Cloud tiering is the process of moving selected data from
on-premise storage to the cloud, which has recently become
important for backup solutions. As subsequent backups usu-
ally contain repeating data, deduplication in cloud tiering can
significantly reduce cloud storage utilization, and hence costs.

In this paper, we introduce InftyDedup, a novel system for
cloud tiering with deduplication. Unlike existing solutions,
it maximizes scalability by utilizing cloud services not only
for storage but also for computation. Following a distributed
batch approach with dynamically assigned cloud computation
resources, InftyDedup can deduplicate multi-petabyte back-
ups from multiple sources at costs on the order of a couple of
dollars. Moreover, by selecting between hot and cold cloud
storage based on the characteristics of each data chunk, our
solution further reduces the overall costs by up to 26%–44%.
InftyDedup is implemented in a state-of-the-art commercial
backup system and evaluated in the cloud of a hyperscaler.

1 Introduction

Managing the surging volumes of data that require protection
or long-term retention increasingly necessitates novel backup
strategies [18]. A popular approach is employing cloud-based
solutions. For instance, according to Veeam, the number of
organizations adopting cloud-powered data protection is ex-
pected to rise from 60% in 2020 to 79% in 2024 [66]. Simi-
larly, in a survey by ESG, 72% of the participants confirmed
using tiering techniques to move colder data (e.g., older back-
ups and archives) from on-premise storage to the cloud [22].

In this context, data deduplication can become effective.
Since consecutive backups often contain repeating data [47,
50], this technique reduces storage utilization tens of times
[70]. As a result, deduplication is a core feature of several
storage systems for on-premise backup applications [33, 57,
84]. In this light, for backup use cases, it is sensible to consider
cloud tiering with deduplication, that is, moving data from
a local tier (e.g., on-premise backup appliances) to a cloud

tier (e.g., a cloud object store), so that ultimately the data kept
in the cloud tier are deduplicated.

However, implementing cloud tiering with deduplication
poses two major problems. First, state-of-the-art cloud storage
systems provided by hyperscalers (e.g., Amazon, Google, and
Microsoft) do not offer deduplication as a core functionality
for their clients. Consequently, deduplication algorithms tai-
lored for cloud tiering have to be developed. In the process,
the extra tier should be treated not only as a challenge but
also a potential opportunity for exploring novel deduplication
paradigms dedicated for the cloud. Second, there is a large
variety of available cloud storage service types, notably differ-
ing in pricing models. Initially, a lower storage cost implied a
longer retrieval time (e.g., AWS Glacier) but nowadays, sys-
tems like AWS Glacier Instant Retrieval [77] offer the same
performance as other cloud storage services. The trade-off
is that with a decreased per-byte monthly storage fee, the
costs of data retrieval and the minimal data storage period
are increased. Therefore, algorithms have to be devised to
decide what type of service to use for which data, specifically
considering the peculiarities due to deduplication.

As we discuss in more detail further in the paper, despite
some research progress, these two problems are largely open.
In short, regarding the first problem, although a few backup
applications [54, 59] and backend appliances [34, 68] with
deduplication offer mechanisms for cloud tiering, they heavily
rely on and are implemented mainly in the local tier. In ef-
fect, deduplication between different local tier systems is not
supported for data stored in the cloud. Moreover, the entire
process is fundamentally limited by the resources of the local
tier. In other words, despite the possibilities offered by the
hyperscalers, the actual scalability of the cloud tier in such so-
lutions is severely limited, proportionally to what is offered by
the local tier. When it comes to the second problem, although
the diversity of the service models offered by the hyperscalers
can also be exploited in some solutions [52], this has to be
configured manually or, at best, through policies depending
on the ages of data collections. However, deduplication typi-
cally entails chunking data collections into smaller pieces that

USENIX Association 21st USENIX Conference on File and Storage Technologies 33

may be referenced multiple times, thereby possibly having
different access patterns. This calls for finer-grained and more
automated approaches to storage type selection.

In this paper, we address both these problems, introducing
solutions for scalable and cost-effective cloud tiering with
deduplication. Accordingly, our contribution is twofold.

First, we present InftyDedup, a novel system for cloud
tiering with deduplication. Like the existing tiering-to-cloud
backup solutions, InftyDedup moves selected data from a
local-tier system to the cloud, based on customer-specific
backup policies. However, its operation aims to maximize
scalability by exploiting cloud services — not only for stor-
age but also for computation. Therefore, rather than relying on
deduplication methods of on-premise solutions, InftyDedup
deduplicates data using the cloud infrastructure. This is done
periodically in batches before actually transferring data to
the cloud, which, among others, enables the dynamic alloca-
tion of cloud resources. Other functionalities, such as garbage
collection of deleted data, are supported in the same way.
We integrate InftyDedup with HydraStor [33], a commercial
backup system with deduplication, and evaluate its perfor-
mance in AWS, demonstrating that multiple petabytes can be
deduplicated for a couple of dollars. Being highly indepen-
dent of the local tier, InftyDedup overcomes the limitations
of similar state-of-the-art technologies and offers unprece-
dented scalability. To the best of our knowledge, this is the
first application of such solutions to backup systems.

The second contribution is an algorithm for decreasing the
financial cost of storing deduplicated data in the cloud tier.
It extends InftyDedup by allowing it to move deduplicated
data chunks between cloud services dedicated to hot and
cold storage. Whereas existing solutions do not address the
problem at all or enable some optimizations at the level of data
collections (e.g., backups or files), the fact that chunks are
deduplicated between backups/files makes them a better unit
for optimizations. In InftyDedup, the chunks are moved based
on their metadata, notably deduplication reference counts and
terse information provided by system administrators on their
data collections. Our empirical evaluation of the algorithm
shows that mixing storage types can reduce the total financial
cost of cloud tiering with deduplication by up to 26–44%.

The rest of the paper is organized as follows. Section 2
gives the background. Section 3 describes the overall architec-
ture and specific algorithms comprising InftyDedup. Section 4
discusses the algorithm for exploiting cold cloud storage for
cost minimization. Section 5 presents the experimental results.
Section 6 surveys related work. Finally, Section 7 concludes.

2 Background

This section reviews the characteristics of deduplication stor-
age, backups, and cloud services, which are essential to In-
ftyDedup architecture.

2.1 Deduplication Storage

Deduplication is a data reduction technique that avoids writ-
ing the same data twice. For data with many duplicates, dedu-
plication reduces the storage capacity requirements of the
system [70], increases throughput, and decreases network
traffic [3]. Typically, deduplication is implemented in the fol-
lowing steps [79]. Firstly, the data stream is chunked into
small immutable blocks of size from 2 KB to 128 KB [71].
Secondly, each block receives a fingerprint, for instance, by
computing the SHA-256 hash of the block’s data. Finally, the
fingerprint is compared with other fingerprints in the system,
and if the fingerprint is unique, the block’s data is written.

The deduplicated blocks are typically organized in a di-
rected acyclic graph. Each file has its root block correspond-
ing to a vertex that references other blocks. The blocks with
actual data are leaves of the DAG and keep no references.
Blocks with data corresponding to a particular file form a
subgraph reachable from the root block representing that file.
Therefore, the movement of a deduplicated file to a different
tier is effectively the movement of a subset of leaves that are
reachable from the root block of the file.

A block can be removed after it is migrated to another sys-
tem. However, reclaiming storage capacity in the presence of
deduplication is nontrivial, as the system must ensure there
are no other references to the removed block. Therefore, com-
plex garbage-collecting algorithms that can process blocks’
metadata for hours are implemented [36, 69].

The most natural use case for deduplication is backup stor-
age, as most data do not change in consecutive backups. In
our research, we leverage the characteristics and lifecycle of
backups to decrease the total storage cost.

2.2 Lifecycle of Backups

Typically, backups are created and managed based on assigned
retention policies [61]. From the perspective of our research,
there are two essential constraints regarding the timing and
life cycle of protected data.

On the one hand, the data should be up-to-date and avail-
able quickly in case of a disaster. For instance, Zerto re-
ports [82] that their customers achieve Recovery Point Objec-
tives of seconds and Recovery Time Objectives of minutes.
To achieve such ambitious objectives, recent data is kept as
closely as possible to the infrastructure being recovered.

On the other hand, older versions of backups need to be
stored for weeks, months, or even years [65]. As the objec-
tive points for older data differ, backups are often moved to
cheaper storage after a specific time [55, 83]. Cloud is often
chosen to keep the older backups for many reasons, includ-
ing storing data in a different physical location. The pricing
model of cloud storage is also appealing, but as described in
the next section, many factors influence the total costs.

34 21st USENIX Conference on File and Storage Technologies USENIX Association

2.3 Cloud Storage
The market of cloud storage is mostly shared between three
hyperscalers (Amazon Web Services, Microsoft Azure, and
Google Cloud) [74], so in our considerations, we assume ser-
vices offered by the three as a market standard.1 The portfolio
of hyperscalers comprises numerous storage and computing
products: from databases, queues, and distributed filesystems
to simple storage primitives, such as objects or blocks. Our
goal is to minimize the storage cost of backups, so our re-
search focuses on the most affordable products. The lowest
price per stored gigabyte is offered by cold archival object
stores, which are orders of magnitude cheaper than block de-
vices, as shown in Tab. 1. However, many factors determine
the total cost, including fees per request or IO, charges for
removing data before meeting the minimal storage duration,
and data transfer costs. Accessing data in some types of the
coldest storage takes additional time (e.g., 12 hours), but every
hyperscaler offers cold storage with instant access [23,28,77].

Amazon
Web Services

Microsoft
Azure

Google
Cloud

Block Storage [$/GB] 0.08 0.15 0.04

Object Storage [$/GB] 0.021 0.0166 0.02
Archival

Object Storage [$/GB] 0.004 0.01 0.004
Coldest Archival

Object Storage [$/GB] 0.00099 0.00099 0.0012

Table 1: Sample2monthly costs of storing blocks and objects
in public clouds [5, 7, 26, 27, 49].

Uploading data to the cloud is usually free, whereas the
cost of downloading data once a month can outweigh the cost
of monthly data storage. In either case, network throughput to
the cloud is a major concern. Hyperscalers offer connecting
data centers to the cloud directly (e.g., with 100 GbE) [9, 15],
but the availability of such networks is limited to specific
regions. Alternatively, physical devices can be used for the
movement of data [11], but it is rather for niche applications.
Therefore, moving terabytes to the cloud can take up days.

2.4 Cloud Computing
The product portfolio of cloud computing services is also
versatile. There are virtual machines (e.g., AWS EC2), con-
tainers (e.g., AWS ECS), and other services, such as event-
driven function execution (e.g., AWS Lambda). Some prod-

1However, there are numerous innovative services offered by other
providers. For instance, the latest trend to decentralize the cloud [62, 63] can
help to implement InftyDedup efficiently.

2The price of storage products depends on many factors, including region.
Each cloud provides many products (e.g., each provider offers more than one
cold object store). The prices between providers cannot be compared directly
because the products differ. However, there are several categories of cloud
storage products similar to the order of magnitude of the price. The table
contains list prices as of 2023-01-01.

ucts are prepared for specific use cases, including machine
learning [29] and databases [4, 25].

The pricing model of computation services is typically
based on the cost of the lower-level resources. For instance,
ECS allows running containers on EC2 instances, so the cost
of container execution depends on the amount and size of
virtual machines which host the containers [6]. This billing
model enables using numerous nodes (e.g., hundreds of
servers) for short periods at a very low cost.

What is important for cost reduction, hyperscalers offer
so-called spot instances, that are virtual machines with a dis-
counted price of up to 90%. Spot instances can be interrupted
by a cloud provider at any moment, but the computations in-
terrupted within the first hour are free [13]. The exact price of
a spot instance depends on multiple factors (e.g., the momen-
tary demand), but historical data shows that achieving both a
very low risk of termination and a significant cost reduction is
possible [35]. Virtual machines (including spot instances) can
have their local storage (e.g., SSD drives), which is cheaper
than network-attached drives but has limited durability as the
data are lost if the machine is destroyed or fails.

To minimize the costs of computations, we considered these
cloud attributes in InftyDedup architecture, which we describe
in the next section.

3 InftyDedup Architecture

InftyDedup moves selected data from local tier systems
(i.e., on-premise backup appliances implemented as described
in Section 2.1) to the cloud tier. The local tier is expected to
have its own deduplication and to be hardware-failure resis-
tant (e.g., by implementing erasure codes or RAID), as it per-
sistently stores local data (e.g., data not selected for tiering).
As shown in Fig. 1, the cloud tier stores deduplicated data
with necessary persistent metadata, and occasionally executes
highly optimized batch algorithms.

Before we describe the details of the structures and algo-
rithms, we discuss our study of cloud characteristics (Sec-
tion 3.1) and the assumptions we made based on them (Sec-
tion 3.2). After that, we describe the structure of in-cloud
data and metadata (Section 3.3), the model of communication
between tiers (Section 3.4), and algorithms of deduplication
(Section 3.5), garbage collection (Section 3.6), and file restore
(Section 3.7).

3.1 Cloud Cost Considerations
We studied the pricing of public clouds to design InftyDedup
in line with the current trends. First, we chose product types
common for all vendors and compared the pricing models and
capabilities of each product with other products of the same
vendor. We did not compare pricing between vendors, as our
goal was to design cost-efficient architecture for any regular
cloud, not choosing a particular vendor.

USENIX Association 21st USENIX Conference on File and Storage Technologies 35

Figure 1: InftyDedup architecture.

Keeping 1 PB of non-deduplicated data in standard cloud
object storage costs between $16,600 and $21,000 per month,
and between $4,000 and $10,000 for archival object storage
with instant access. Therefore, the overall cost of storing data
with deduplication, including additional storage for dedupli-
cation metadata and costs of computations, must be lower
than that to bring any financial benefit.

Assuming a deduplication block size of 8 KB, 10:1 dedu-
plication, and 20 bytes per fingerprint, 1 PB of data requires
262 GB of fingerprints. If new backups of similar size are writ-
ten each week, over 496 billion fingerprint existence queries
to the cloud are needed each month.

Modern architectures of inline deduplication often keep the
fingerprint index (or its parts) on SSDs [3,30,48]. Considering
a naive approach in which each deduplication query requires
a read IO from an SSD drive, at least 190k IOPS are required
to perform the necessary queries each month. To estimate the
cost, let us consider AWS as an example. The monthly cost
of EBS gp3 block storage which provides such an amount of
IOPS is $978, and EC2 instances (m5.large) capable of uti-
lizing the IOPS cost $3827. With a total cost of nearly $5000
monthly for just handling deduplication queries, there is still
room for a cost benefit from deduplication (depending on the
deduplication ratio). Still, the price is significant compared to
the cost of storage without deduplication.

These calculations led us to our conclusion that, despite the
fact that SSDs provide a high number of random-read IOPS,

relying on a random-read-intensive fingerprint index is not
negligibly cheap in the cloud environment. Although there are
techniques that reduce the number of read IOs for traditional
sequential workloads [84], their efficiency is decreased for
modern non-sequential workloads, which need to be handled
in addition to classic sequential workloads, as explained by
Y.Allu et al. [2]. Similarly, the efficiency of methods that rely
on data locality (like SISL [84]) decreases when data is highly
fragmented.3 Finally, these methods are often not prepared
to update block information during deduplication, which is a
necessary part of our algorithms for cold storage.

On the other hand, transferring data within the cloud is
free of charge, and even the cheapest instance can transfer
hundreds of gigabytes per hour [14]. Having the possibility
of dynamically scaling resources between zero and hundreds
of servers, processing the fingerprint index sequentially with
a batch job can be more cost-effective than keeping the finger-
print index online 24/7 or relying on short-lived lambdas [10].
This is particularly true considering up to 10 times cheaper
computation using the aforementioned spot instances. This
key observation was used when designing the InftyDedup ar-
chitecture based on assumptions explained in the next section.

3.2 Assumptions and Design Decisions
Our principal assumption is that our cloud tiering dedupli-
cation must be processed outside the local tier to prevent
resource restrictions and enable functionalities like deduplica-
tion between many local tier systems. Therefore, all metadata
required for deduplication must be stored and processed out-
side the local tier.

As network throughput between the tiers is limited, data
movement between the tiers should be minimal. Therefore,
only non-duplicate data must be uploaded to the cloud tier.
When restoring data, it must be possible to download only
data absent from the local tier. However, for efficient disaster
recovery, quick and granular backup restores must be possible,
even when the local tier is unavailable.

The next central assumption is that batch processing is pre-
ferred over streaming processing. Therefore, the algorithms
are executed occasionally (e.g., once a day or week for dedu-
plication and even less frequently for garbage collection).
There are multiple reasons for that. Firstly, as our cost analy-
sis of public clouds shows, being prepared for data deduplica-
tion 24/7 is not negligibly cheap. Secondly, as explained in
Section 2.2, backups are typically moved to the cloud after
a specified period, so batch processing can be done without
disrupting the data lifecycle. Finally, tiering to cloud with
deduplication requires steps that take a significant amount
of time: uploading data to the cloud, and running garbage
collection in the local tier to reclaim data there. All in all, per-

3Fragmentation also concerns restore throughput [40, 44]. However, in
the case of cloud storage, the read performance scales, and even with random
8 KB reads, the egress traffic cost is equal to the per-request fee.

36 21st USENIX Conference on File and Storage Technologies USENIX Association

forming a costly deduplication query with each write brings
few benefits in practice, and we decided to use the cheaper
option of infrequent batch processing.

Garbage collection in the cloud tier must be cost-aware to
ensure that data removal costs are not higher than keeping
data for a longer period. Similarly, storing frequently accessed
data in cold cloud storage actually increases the costs, so
the deduplication and garbage collection algorithms must be
extendable with intelligent storage type selection.

Finally, our solution is meant to be suitable for a variety of
cloud platforms and providers. Although in our description
and evaluation we focus on the most popular hyperscalers,
our architecture can be easily adapted to others. In particular,
private clouds ensure privacy and compliance, so we verified
our solution in our private cloud environment.

3.3 Data and Metadata in Cloud

Based on the assumptions, we designed persistent structures
of InftyDedup to be kept in cloud object storage as follows.

The largest structure contains blocks with deduplicated
data grouped into containers. Selecting the size of containers
depends on the cloud pricing, as writing and reading larger
containers requires fewer requests but can increase rewriting
costs when reclaiming space after garbage collection.

The largest metadata structure contains file recipes, which
are effectively a list of per-block metadata as they appear in
each file. If one block exists in a file multiple times, its meta-
data also occurs multiple times in its file recipe. There are two
types of file recipes. Firstly, there are unprocessed file recipes
(UFR in short), which are provided by the local tier. UFRs
contain the fingerprint of each block, as the local tier does not
know the block’s cloud location. Later, during deduplication
processing, each entry of UFR receives a cloud address of
the block it references, so the file recipes are converted to
processed file recipes (PFR in short). PFRs can be a simple
list of cloud addresses or have a tree structure to enable the
deduplication of PFR’s parts. In the latter case, fingerprints
of PFR chunks are added to the fingerprint index, which is
described shortly.

The second largest metadata structure is Fingerprint In-
dex (FingIdx in short) which contains a mapping from the
deduplication fingerprint of each block to the block’s cloud
location. FingIdx is expected to be smaller than PFRs, as it
contains only one entry per unique fingerprint. FingIdx is
bucketed [72] rather than sorted, meaning the fingerprints are
divided into thousands of buckets based on a hash function.
Such data representation enables optimization of distributed
FingIdx processing, as each bucket is small enough to fit into
server memory.

There are also a few orders of magnitude smaller struc-
tures that keep information per file or container. The metadata
structures are compressed to reduce space and network usage.

3.4 Communication between Tiers

The data exchange between the tiers is bidirectional but kept
to a minimum, as the network connection between the tiers
can easily become a bottleneck. Two types of information are
sent from the local tier to the cloud. For each file selected for
cloud tiering, the local tier system generates a UFR (a list of
fingerprints of all blocks in the file). The UFR is later used
as an input to batch deduplication, which generates in return
a blocks-to-upload list that is, in fact, a list of containers.
Each container comprises unique blocks that still need to
be uploaded to the cloud tier. Based on the list, the local tier
uploads the blocks to the cloud. During a file restore operation,
blocks can be later downloaded from the cloud tier.

Therefore, the cloud tier has minimal requirements on the
interface of the local tier. It is sufficient that the local tier can
generate a UFR and later upload blocks based on the list of fin-
gerprints. The local tier can be composed of multiple systems
if each system uses consistent chunking and fingerprinting.

3.5 Batch Deduplication

Batch deduplication (BatchDedup in short) is our distributed
method of block deduplication in the cloud. It is expected to
be run periodically, in harmony with the schedule of backups
and garbage collection in local tier systems. Each execution
of BatchDedup is a distributed, fault-tolerant computation
that ultimately changes persistent structures kept in the cloud
object storage. The computations are divided into steps, and
each of the steps comprises smaller jobs that are parallelized
and repeated in the event of failure. In our implementation, we
used YARN [76] to schedule jobs, and HDFS [64] for reliable
storage of temporary data, so the jobs can be run on spot
instances as proposed in the AWS guide [12]. The state of
computation is maintained by the YARN master node, which
can be hosted on a non-spot instance to increase reliability,
but even if the entire computation fails, the valid version of
metadata always remains in the cloud object storage.

In short, BatchDedup takes UFRs as input, specifies new
containers with blocks to be uploaded, waits until the local
tier uploads the blocks, and updates persistent metadata. The
UFRs are expected to be uploaded to the cloud before BatchD-
edup is started (partially uploaded UFRs do not take part in
the process). The steps are as follows:

Step #1: UFR processing selects blocks that need to be
uploaded to the cloud by comparing fingerprints from both
UFRs and FingIdx. FingIdx and UFRs are bucketed based on
fingerprints, and the buckets are distributed across multiple
servers. After that, the fingerprints are compared in batches
that are small enough to fit in memory.

Step #2: Container generation splits blocks selected in
Step #1 into containers to generate descriptions for the local
tier. Each server processes a subset of blocks, and the blocks
are distributed based on their original file (so blocks from the

USENIX Association 21st USENIX Conference on File and Storage Technologies 37

Figure 2: The first two steps of BatchDedup processed in a
distributed manner.

same file can be placed in the same container). The blocks
are sorted by the order (offsets) in their original files,4 as pre-
serving the original order makes the latter step of uploading
the container easier, and reduces the number of requests for
garbage collection and data restores for non-fragmented data.

Step #3: PFR update is conducted after the first two steps,
when the block location (its container and offset) is finally
known for both new and old blocks. Based on that information,
each newly written file receives its PFR.

Step #4: Blocks upload is initiated by the local tier sys-
tems. The local tier systems first download the descriptions
of new containers (i.e., which blocks should be uploaded to
which container). After that, each of the local tier systems
uploads the actual data. When the uploads are successfully
completed, the in-cloud metadata structures are updated to
mark the new files as ready in the cloud.

The first two steps of BatchDedup are depicted in Fig. 2.
Similar techniques are used to perform the remaining steps of
BatchDedup and garbage collection at scale.

BatchDedup processes FingIdx and all recently uploaded
UFRs but does not touch any previously generated PFRs. As
UFRs likely contain duplicates, in practice, the size of UFRs
is expected to be at least comparable to the size of the whole
FingIdx, and with such assumption, processing FingIdx does
not dominate the asymptotic cost. Overall, the process is
expected to take time: BatchDedup is executed periodically,
the computations in Steps #1-#3 take from minutes to hours,
and the block upload in Step #4 can even take days, depending
on the data volume and network bandwidth. As Step #4 is
inevitable in any cloud-tiering solution, the cloud tier alone
is not suitable for providing very short RPO. However, as
backups are moved to the cloud typically after a specific time,
the steps can be scheduled in periods that will not violate the
timing constraints of the backup policy.

3.6 Batch Garbage Collection

Batch garbage collection (BatchGC in short) identifies blocks
no longer referenced by any PFR and reclaims free space in
the containers. BatchGC is expected to be executed periodi-
cally but less frequently than BatchDedup. Both algorithms

4A block is expected to exist in multiple files or to be repeated within one
file. In such a case, only the first appearance is stored in a container.

modify the same metadata structures, so they cannot be exe-
cuted simultaneously. However, file restores are possible at
any moment.

PFRs keep the addresses of containers, so rewriting a con-
tainer requires modifications of PFRs. The cost of processing
PFRs is discouraging, as PFRs can be many times larger
than FingIdx. However, garbage collection is done only oc-
casionally, so even if it is a few times more expensive than
BatchDedup, the overall cost of InftyDedup is not affected
that much. Therefore, our primary goal is ensuring scalability,
which enables meeting the time constraints of other garbage
collection algorithms for deduplication storage [31, 69].

BatchGC comprises the following steps:
Step #1: File removal processes non-removed PFRs to

find blocks that are still referenced by at least one file.
Step #2: Container verification checks how many blocks

in each container are live. Based on one of the strategies
(which we introduce shortly), a set of containers that will be
removed or rewritten is selected.

Step #3: Metadata are updated based on the results of
Step #2. More specifically, new metadata for modified contain-
ers are calculated. Some blocks may receive a new address,
so new versions of FingIdx and PFRs are also needed.

Step #4: Containers are rewritten to actually reduce
space usage. When all newly generated containers are writ-
ten, the metadata computed in Step #3 take effect, and old
containers are deleted.

Immediate removal of unreferenced data is not always opti-
mal, as rewriting a container in the cloud has a significant cost.
Therefore, we investigated three strategies to decide whether
a container should be rewritten:

GC-Strategy #1: Reclaim only empty containers. In
most cloud services sending a request to remove an entire
container is free, so the strategy brings cost reduction (as less
capacity needs to be stored) with no additional cost. How-
ever, the strategy does not remove containers in which only a
fraction of data has been deleted.

GC-Strategy #2: Reclaim containers if the rewrite pays
for itself after T days. To determine whether rewriting a
container will bring a cost-benefit, the following ratio can be
calculated for each container:

x =
COSTrewrite

Tdays ∗CAPACITYto_be_reclaimed ∗COSTbyte_per_day
(1)

Only if x< 1.0, rewriting a container is cheaper than storing
deleted data from the container for Tdays. However, picking the
proper value of Tdays is nontrivial. For instance, if Tdays is the
time left until the next BatchGC, the containers are rewritten
only if it brings financial benefit before the next chance to
remove any data. In many cases, such Tdays value is too small
and will prevent rewriting a container, although rewriting the
container would bring a financial benefit in the long run. On
the other hand, a large Tdays value implies frequent rewriting,
which can lead to exceeding Strategy #1 costs.

38 21st USENIX Conference on File and Storage Technologies USENIX Association

GC-Strategy #3: Reclaim containers based on file expi-
ration dates. GC-Strategy #2 can be improved if files contain
information about their expiration date (denoted as EXPtime).
Such information can be provided by the local tier systems in
UFRs, if the EXPtime results from the backup configuration.
Therefore, for each container, Tdays can be calculated as the
maximal EXPtime of its blocks (aligned up to the BatchGC
schedule). EXPtime is expected to increase in time,5 as new
files with later EXPtime are stored. However, even with rising
EXPtime, the cost never exceeds GC-Strategy #1, as a non-
empty container is rewritten only when it is beneficial.

3.7 File Restore
The cloud metadata format supports straightforward file re-
stores. Each file has its own object, with the key based on
the local tier system identifier and file path. Therefore, object
storage interface features such as ACLs and per-prefix listings
can be used for convenient file management. Based on the
PFR, which stores the container address and data offset, the
file can be read without accessing the local tier systems. As
PFRs are updated during BatchGC, the movement of data
between containers during GC does not spoil the reads.

However, egress traffic is a major cost, so restores can be
additionally integrated with the local tier for cost reduction.
For blocks available locally, the download from the cloud can
be omitted. Blocks absent locally can be optionally stored in
the local tier system after downloading, as some workloads
require reading data again in the near future (e.g., restoring
multiple similar VMs). Implementing such local-tier assisted
reads requires storing fingerprints in PFRs, which increases
the metadata size, but the fingerprints can be easily added and
removed from PFRs on-demand in batch algorithms.

4 Cold Storage Utilization

To reduce the cost of storing data in the cloud, InftyDedup can
be extended with an algorithm that selects whether a block
should be stored in hot or cold cloud storage. We aimed to
use cold storage services offering different pricing models
than other cloud storage products but comparable durability
and latency [28, 77] (otherwise, the movement of data to cold
storage negatively affects the recovery time).6 Therefore, we
focused on colder storage which offers a reduced price of
storing data but increases the price of restores, and demands a
minimal storage period (e.g., 90 days). To utilize the storage
effectively, we rely on two additional pieces of information
provided with each file (in UFRs):

5Theoretically, EXPtime can decrease if someone deletes a file before the
expiration date. We find such a case rather marginal. In particular, enabling
WORM protection [53] prevents such removals.

6Our algorithms can also work with the coldest storage services, which
lengthens the retrieval process. However, in such case additional information
are needed to specify the allowed retrieval time of each file.

Figure 3: The architecture of data and metadata with two types
of data storage (hot and cold). Fingerprint Index is extended.

Figure 4: Writing blocks to more than one storage type. Block
b5 is written to hotter storage, although it is already avail-
able in colder storage if it brings a cost benefit (e.g., due to
expected frequent restores of b5).

1. Current expiration date, as in GC-Strategy #3.
2. Rough, expected frequency of file restore.
As explained earlier, the expiration time is typically known.

The restore frequency is unknown in advance, but assessing
the read frequency of a file is common practice for data kept
in the cloud. For instance, Amazon explicitly recommends
different storage classes for data accessed "once per quarter"
and "1-2 times per year" [8]. In the specific case of backups,
assessing restore frequency should be possible, as a study of
numerous backup jobs [16] suggests that backup domains
fall into three categories: those with very frequent restores,
sporadic restores, and virtually no restores. Moreover, par-
ticular backup policies influence the restore frequency [58],
and an upper bound on the restores can be calculated based
on restore SLAs. Finally, modern backup software already
implements tools that allow viewing historical data on the
restore frequency of selected resources [67].

The persistent data and metadata structures are organized
as shown in Fig. 3. The process of container writing during
BatchDedup and BatchGC is extended to store each block in
an appropriate cloud storage type, as shown in Fig. 4. Each
block is stored in a storage type for which the following
formula has lower value:

t=COSTinsert+(COSTB/day+COSTrestore∗FREQrestore)∗EXPtime (2)

In the formula,COSTinsert depends on cloud pricing, as well
as the sizes of the block and its container, as the amortized
cost of data insertion is included. COSTB/day describes the
storage cost of the block. COSTrestore depends on the data

USENIX Association 21st USENIX Conference on File and Storage Technologies 39

locality, as many blocks can be read with one request, so
the upper bound for the COSTrestore can be calculated as one
request per block or assessed with a heuristic. FREQrestore
and EXPtime are inherited from files referencing block, and
stored with each block in FingIdx.

However, further adjustments to FREQrestore and EXPtime
are required. That is because the first decision about storage
type must be taken when the block is stored for the first time
and block’s FREQrestore and EXPtime are understated, as more
references will come in the future. For instance, a block can
be initially stored in cold storage but later it receives more
references (and its FREQrestore increases). Vice versa, data
with a short EXPtime can be kept in hot storage, although a
reference with a more distant EXPtime will come soon.

Therefore, both FREQrestore and EXPtime should be heuris-
tically modified. A heuristic that worked very well in our
experiments relies on block reference counts. First, we select
a number R of expected references for each block (e.g., a hard-
coded value 5 or a value calculated from the system state).
Then, we modify FREQrestore and EXPtime for blocks that
have not reached the expected number based on the formula
(e.g., we multiply it by R− r, where r is the actual number of
references). In the end, FREQrestore and EXPtime for newly
written blocks are more similar to their future values.

In justified cases, a block can be stored in multiple storage
types (e.g., when a block stored in cold storage receives a
reference with high FREQrestore), but BatchGC will eventu-
ally remove the unnecessary copies. Similarly, BatchGC can
move a block from one type of storage to another (e.g., when a
reference with high restore frequency has been deleted). Gen-
erally, during BatchGC, a formula for calculating whether a
container should be rewritten considers the potential cost re-
duction caused by a change of the storage type. A decision on
whether rewriting a particular container is profitable must be
made for the whole container because rewriting the container
also introduces costs. Nevertheless, blocks from one container
can be moved to containers in various storage types (Fig. 5).

Figure 5: Rewriting containers to multiple types of storage.

5 Evaluation

We present our experimental evaluation of InftyDedup in two
parts. Firstly, we evaluate the performance and cost of our
implementation executed in a public cloud. Secondly, we
evaluate our strategies for garbage collection and storage type
selection under various workloads.

5.1 Performance Evaluation
To evaluate the performance, we implemented InftyDedup
using Apache Hive [24], which we selected as a possible
approach to provide portability between different public and
private clouds. We present results of the evaluation of our
batch algorithms, as uploading containers and restoring data
are straightforward object storage operations in which the
bottleneck is expected mostly on the network to the cloud
(even a naive implementation can saturate 1 GbE network
with uploads and restores using a single core).

Our batch algorithms differ greatly from the state-of-the-
art tiering to cloud with deduplication techniques, therefore
a fair comparison with existing solutions was virtually im-
possible. Instead, we present the results using publicly avail-
able hardware. The evaluation was conducted in AWS using
m5d.xlarge instances with 4x vCPU, 16 GiB of RAM, and
1x 150 GB NVMe (which costs less than network-attached
EBS). We aimed to use the smallest possible instances (to
maximize the horizontal scaling), but in our workloads, the
technological stack of Apache Hive was inefficient in utilizing
the limited memory of the smallest instances.

The presented experiments used synthetic data with the
following characteristics. Each file contained approximately
51 GB (as backup files typically have tens of gigabytes or
more [78]) chunked into blocks of approximately 64 KB (the
target block size of the deduplication system for which we
prepared InftyDedup). The contents of the files are described
in each experiment. We present results with synthetically
generated data, as our algorithms mostly distribute the data
(e.g., based on fingerprints) and later sort the data in small
portions, so the exact characteristic of the data (e.g., the initial
order of blocks) does not affect the performance much.

5.1.1 Batch Deduplication Processing

We evaluated BatchDedup in configurations varying in size.
Each experiment comprised two steps. In the first (initial)
step, a large number of files without duplicates is processed to
resemble a situation in which new backups are uploaded to the
cloud. In the second (incremental) step, a dataset 3x smaller
than the initial backup is uploaded (as typically incremental
backups are smaller than their corresponding full backups
[16]), where 90% of the blocks are duplicates (which matches
the expected average daily deduplication ratio [16]). The
smallest configuration (8 instances) uploads 3072 files in the
first step and 1024 in the second step. In larger configurations,
the amount of data to be processed is scaled linearly with the
system size. Therefore, the smallest experiment processed
metadata of 208 TB data and the largest one of 1.66 PB.

In all configurations, the first step takes between 1h53m and
2h10m (Fig. 6), and the second step takes up to 30m. Overall,
the performance scales close to linearly. We analyzed the
resource utilization, and the main bottleneck is the CPU, as
most of the time its usage is above 95%. The network and

40 21st USENIX Conference on File and Storage Technologies USENIX Association

8 x m5d.xl

16 x m5d.xl

32 x m5d.xl

64 x m5d.xl
0

2,000

4,000

6,000

8,000

Ti
m

e
[s

]

initial incremental

0

500

1,000

1,500

D
ed

up
lic

at
ed

da
ta

[T
B

]

Figure 6: BatchDedup performance.
The line and right y-axis show size of
deduplicated data.

Initial 1 2 3 4 5 6 7
0

2,000

4,000

6,000

8,000

Backup step

Ti
m

e
[s

]

0 ·100

2 ·109

4 ·109

6 ·109

8 ·109

B
lo

ck
s

all unique

Figure 7: BatchDedup with growing data.
The lines and right y-axis present number
of blocks pre-deduplication (all) and post-
deduplication (unique).

1 3 5 7
0

5,000

10,000

15,000

Backup step

Ti
m

e
[s

]

0 ·100

2 ·109

4 ·109

6 ·109

8 ·109

B
lo

ck
s

all unique removed

Figure 8: BatchGC performance. After
1-7 incremental steps, data from one in-
cremental step was deleted (the removed
blocks on right y-axis).

the local NVMe drive are underutilized, with peak per-node
usage of respectively 350 MB/s of network bandwidth and 6%
of disk utilization. We expect the computations can be further
optimized, but the computation costs are already marginal
compared to the cost of data storage. For instance, in the
experiment with 32 instances, the second stage eliminates
191 TB of duplicates and costs below $1, which is less than
0.1% of monthly savings on storage. Similarly, the costs of
accessing in-cloud metadata during processing are marginal,
as both steps require roughly 250K GETs ($0.1) and 20K
PUTs ($0.1), and transfer fees within one availability zone
are free.

We also conducted a different experiment with multiple
steps of incremental uploads in one configuration (8 in-
stances). As shown in Fig. 7, the computation time increases
close to linearly with the amount of non-duplicate data which
is added to FingIdx in each experiment.

5.1.2 Batch Garbage Collection Processing

First, we evaluated BatchGC by removing a fraction of data
uploaded in the first experiment from Section 5.1.1. Specifi-
cally, we removed the data uploaded in the first step to resem-
ble removing the oldest backup. The processing took between
61 and 65 minutes in each verified configuration.

BatchGC, unlike BatchDedup, reads all PFRs, so we also
verify that the processing time increases close to linearly with
the size of both FingIdx and PFRs. The experiment shown
in Fig. 8 had multiple incremental steps, and in BatchGC we
removed data from one incremental step. The results con-
firm that, for data with many duplicates, BatchGC is more
expensive than BatchDedup. However, BatchGC is expected
to be executed less frequently, so both algorithms will have
comparable total execution costs.

5.2 Strategies Evaluation
We evaluated how our garbage collection and storage type
selection strategies behave in numerous workload simulations.
The strategies optimize the costs of storing data for months

and years, so we could not conduct these experiments in the
public cloud, as it would take too long. Instead, we ran some
initial experiments to confirm our understanding of the pricing
model and features of the cloud, and based on the results,
we implemented a simulator. The simulator calculates costs
based on cloud pricing of storage, requests, transfer, and other
factors, like the minimal storage duration.

Each experiment was conducted in many configurations of
workload characteristics and system parameters. We present
aggregated (minimal, maximal, and average) results, with val-
ues normalized to the result with the minimal cost.

5.2.1 Workload Characteristics

Our simulator allowed specifying the following factors to
evaluate various backup workloads:

Data source was selected from the following two sets.
Firstly, we generated synthetic workloads in which a given
fraction of data was modified and deleted each day. Both
types of modifications were applied in variable length stream-
contexts (of size from 1 to 1024 blocks), so a given number of
consecutive blocks was modified at once. The introduction of
the stream-contexts was necessary, as data modified in small
contexts are more fragmented, so reading data requires more
requests. Secondly, FSL traces [73] were used, as they are
real-world datasets that contain information on how the data
of multiple users change over the years.

Retention policy specifies how long each file (backup) is
stored. We analyzed guidelines related to retention policies
[1,32,75] to generate realistic policies. Typically, each type of
backup is stored for a longer time than its backup period (e.g.,
weekly backups are kept for four weeks). In our experiments,
daily backups are kept for one week, weekly backups are
kept for a month, monthly backups are kept for a year, and
yearly backups are kept for five years. Based on that, we came
up with three different policies: keepAll policy in which all
types of backups are stored in the cloud, dailyExcluded in
which daily backups are excluded (so only backups stored
for at least a month are kept in the cloud), and dailyOnly in
which only daily backups are kept in the cloud. The garbage

USENIX Association 21st USENIX Conference on File and Storage Technologies 41

collection was, in turn, executed every 7, 30, or 90 days. In
all experiments, the simulation covered a period of 5 years.

Read patterns remarkably affect the total cost of owner-
ship of data in the cloud. Unlike for writing data, we found no
collected read traces for backup data. Similarly, there are no
precise guidelines that describe typical backup read patterns.
Therefore, we adapted a model in which each file is read with
a given probability and verified the full spectrum of potential
values.

5.2.2 Garbage Collection Strategies Evaluation

To evaluate how the proposed garbage collection strategies
perform in different workloads, we conducted experiments
with the pricing model of AWS S3 Standard as hot storage
and Glacier Instant Retrieval as cold storage.7 Experiments
in which the storage types are mixed based on our strategy are
denoted as mixed. Garbage collection strategies are denoted
as follows: Strategy #1 is denoted as onlyEmpty, less{25; 50;
75; 99} denotes Strategy #2 with the Tdays parameter such
that the behavior is equivalent to reclaiming space when less
than 25 / 50 / 75 / 99 percent of container capacity is used by
live data, and Strategy #3 is denoted as costBased.

First, we evaluated a case in which there were no reads.
As shown in Fig. 9, onlyEmpty strategy achieved the worst
results. For cold and mixed storage, costBased strategy gave
significantly better results than others (on average 1.4%-23%),
whereas for hot storage (where the rewrite cost is marginal) it
gave similar results to less99.

co
ld

co
stB

as
ed

co
ld

on
ly

Em
pt

y
co

ld
le

ss
25

co
ld

le
ss

50
co

ld
le

ss
75

co
ld

le
ss

99

1

2

3

4

N
or

m
al

iz
ed

co
st

average max min

ho
t c

os
tB

as
ed

ho
t o

nl
yE

m
pt

y
ho

t l
es

s2
5

ho
t l

es
s5

0
ho

t l
es

s7
5

ho
t l

es
s9

9

1
3
5
7
9

m
ix

ed
co

stB
as

ed

m
ix

ed
on

ly
Em

pt
y

m
ix

ed
le

ss
25

m
ix

ed
le

ss
50

m
ix

ed
le

ss
75

m
ix

ed
le

ss
99

1

2

3

4

Figure 9: Garbage collection with different strategies.

In the next set of experiments, which included reads (with
patterns explained in Section 5.2.3) and mixed storage, there
are more differences between the strategies (Fig. 10). On aver-
age, costBased strategy is only 2.2% better, but comparing the
worst cases, the difference is 24%. The analysis of the number
of containers that are rewritten, deleted empty, or remain live
at the end of the experiment, confirms that onlyEmpty has the
largest number of containers that are live (Fig. 11).

7At the moment of writing, cold storage had 4x/25x more expensive
PUT/GET requests, 5.25x times cheaper storage costs, the minimum storage
duration was 90 days, and an additional per-gigabyte retrieval cost for cold
storage was equal to the fee for 3000 GET requests.

The analysis of garbage collection strategies led to the
question of how container sizes affect the costs, as smaller
containers increase the probability of removing the entire con-
tainer but also increase the number of PUT requests needed
to store data initially or during container rewriting. As shown
in Fig. 12, for costBased strategy, the lowest average cost is
with 16 MB containers (4 MB and 64 MB are respectively
4.5% and 2% more expensive). The smallest, 1 MB containers
were the most expensive, even with the onlyEmpty strategy,
because of the cost of initial container generation (Fig. 13).
Especially in cold storage, the cost of PUT requests is high
(up to 40% of all costs with 1 MB containers).

co
stB

ase
d

on
lyE

mpty
les

s2
5

les
s5

0
les

s7
5

les
s9

9
1

2

3

N
or

m
al

iz
ed

co
st

average max min

Figure 10: Garbage collection
strategies with reads.

co
stB

ase
d

on
lyE

mpty
les

s2
5
les

s5
0
les

s7
5
les

s9
9

0

0.5

1

N
or

m
al

iz
ed

co
nt

ai
ne

rs
nu

m
.

rewritten deleted live

Figure 11: Breakdown of
containers number.

co
ld

1
M

B
co

ld
4

M
B

co
ld

16
M

B
co

ld
64

M
B

co
ld

25
6

M
B

1

2

3

N
or

m
al

iz
ed

co
st

average max min

ho
t 1

M
B

ho
t 4

M
B

ho
t 1

6
M

B
ho

t 6
4

M
B

ho
t 2

56
M

B
1

1.1

Figure 12: Garbage collection
with varying container sizes.

co
ld

1
M

B
co

ld
4

M
B

co
ld

16
M

B
co

ld
64

M
B

co
ld

25
6

M
B

ho
t 1

M
B

ho
t 4

M
B

ho
t 1

6
M

B
ho

t 6
4

M
B

ho
t 2

56
M

B

0

0.5

1

N
or

m
al

iz
ed

co
st

InitialPuts Rewrite Capacity

Figure 13: Cost breakdown
with varying container sizes.

5.2.3 Storage Type Selection Evaluation

We evaluated our storage type selection strategies in work-
loads with varying read frequencies. For each experiment,
there are 4 synthetically generated sets of files, and each set
has a different read frequency: once a month, once a year,
once a year with 1% probability, and once a year with 0.1%
probability. All 4 sets were written together, just as in a stor-
age system that keeps files with varying read frequencies. The
experiments were conducted in series, and in each series, the
read frequency was scaled by a factor from 0.001 to 10. There-
fore, cases in which reads are virtually nonexistent, cases in
which reads dominate the total cost, and cases in-between
were evaluated. A real-world ratio between backup and recov-
ery jobs is typically 100 : 1 [17] but varies depending on the
system [16]. In our experiments, the ratio of backups to recov-

42 21st USENIX Conference on File and Storage Technologies USENIX Association

eries for scale factor 0.01 is 70−700 : 1 (mean = 216 : 1) de-
pending on the retention policy. Therefore, we expect results
with scale factors 0.01 and 0.1 to reflect a typical use-case.

As shown in Fig. 14, on average mixed strategy gives 55%
cost savings compared to cold if there are many reads and 70%
compared to hot if there are hardly any reads. The breakdown
of newly created containers (Fig. 15) confirms that data ends
up in cold storage when there are hardly any reads, and in
hot storage reads are frequent. The cost breakdown (Fig. 16)
confirms that mixed strategy balances the high storage cost in
hot and the expensive reads in cold.

co
ld

0.
00

1
co

ld
0.

01
co

ld
0.

1
co

ld
1

co
ld

10

ho
t 0

.0
01

ho
t 0

.0
1

ho
t 0

.1
ho

t 1
ho

t 1
0

m
ix

ed
0.

00
1

m
ix

ed
0.

01
m

ix
ed

0.
1

m
ix

ed
1

m
ix

ed
10

2

4

N
or

m
al

iz
ed

co
st

average max min

Figure 14: Storage type selec-
tion depending on the read fre-
quency.

co
ld ho
t

m
ix

ed
0.

00
1

m
ix

ed
0.

01
m

ix
ed

0.
1

m
ix

ed
1

m
ix

ed
10

0

0.5

1

N
or

m
al

iz
ed

co
nt

ai
ne

rs

hot-init. hot-after-recl.

cold-init. cold-after-recl.

Figure 15: Containers
created initially and after
reclamation.

cold 0.001

cold 0.01
cold 0.1

cold 1
cold 10

hot 0.001
hot 0.01

hot 0.1
hot 1

hot 10

mixed 0.001

mixed 0.01

mixed 0.1
mixed 1

mixed 10
0

0.5

1

N
or

m
al

iz
ed

co
st

cold-initialPuts cold-reads cold-rewrites cold-capacity

hot-initialPuts hot-reads hot-rewrites hot-capacity

Figure 16: Cost breakdown with varying read frequencies.

We also evaluated how the changes in the predicted refer-
ence number affect the cost. Fig. 17 presents the normalized
cost, depending on the selection of the expected reference
number. Without predicting that more references will come
in the future, the cost is higher on average by 11% (worst
case 289%) compared to predicting 5-10 references, so we
confirmed that predicting the number of references brings a
significant cost reduction. The results with 3-10 references
are very similar, so the slight inaccuracies in the expected
number of references do not change the results much.

The mixed strategy depends on the expected frequency of
reads, which may be incorrectly assessed. We conducted ex-
periments with a significant prediction error (the value was un-
derestimated and overestimated ten times). Even with such a
large estimation error, the results are close to perfect (Fig. 18).
Therefore, in all other experiments, we assumed perfect esti-
mation to facilitate studying other experimental parameters.

mixe
d 1-r

ef

mixe
d 3-r

efs

mixe
d 5-r

efs

mixe
d 10

-re
fs

mixe
d 20

-re
fs

mixe
d 10

0-r
efs

1

2

3

4

N
or

m
al

iz
ed

co
st

average max min

Figure 17: Cost of storing
data depending on the ex-
pected number of references.

co
ld ho

t

mixe
d 0.1

-er
ror

mixe
d no

Erro
r

mixe
d 10

-er
ror

2

4

N
or

m
al

iz
ed

co
st

average max min

Figure 18: Cost of storing
data depending on the error
of frequency prediction.

5.2.4 Different Public Clouds

To confirm that our strategies are generally applicable to pub-
lic clouds, we repeated most of the experiments with the pric-
ing model of Google Cloud and Microsoft Azure. As our
evaluation shows, mixing cold and hot storage reduces the
costs for all three major providers (Fig. 19). The noticeable
differences in gain between the cloud providers follow from
the different ratios of costs, especially the cost of storing data
and egress traffic. On average, keeping data only in hot stor-
age is 61% more expensive, and keeping data only in cold
storage is 30% more expensive than using the mixed strategy.

co
ld ho

t

mixe
d

1
2
3
4
5
6

N
or

m
al

iz
ed

co
st

AWS

average max min

co
ld ho

t

mixe
d

1
2
3
4
5
6

Google Cloud

co
ld ho

t

mixe
d

1

2

3

Microsoft Azure

Figure 19: Storage type selection in different public clouds.

5.2.5 FSL Traces

Finally, we verified our strategies using the FSL traces [73].
Specifically, we used all data available with 64 KB chunking
in homes snapshots dataset. The traces contain metadata of
files chunked during writing, but they have no information
about the read pattern. Therefore, for each user, we verified
how our storage type selection works with a varying number
of reads (restoring each backup with a frequency from 0.0001
to 1 time a month). As shown in Fig. 20, at the extreme read
frequencies the mixed strategy keeps almost all the data in
the cheapest of the two storage types. However, if the number
of reads is in between, the mixed strategy works better than

USENIX Association 21st USENIX Conference on File and Storage Technologies 43

keeping data in a single type of storage, as depending on the
data characterization a different decision should be made for
each block. In particular, the characterization of the reference
number of each block is important, as frequently referenced
blocks are accessed more often. Therefore, mixing storage
types can outperform keeping the data in one storage type,
decreasing the cost by 26%-44%. This result shows that even
when the restore frequency of each file is known in advance,
relying on selecting one storage type can be significantly
more expensive than using our mixed strategy.

co
ld

0.0
00

1

ho
t 0

.00
01

mixe
d 0.0

00
1

co
ld

0.0
01

ho
t 0

.00
1

mixe
d 0.0

01

co
ld

0.0
1

ho
t 0

.01

mixe
d 0.0

1

co
ld

0.1

ho
t 0

.1

mixe
d 0.1

co
ld

1
ho

t 1

mixe
d 1

1

2

3

4

5

N
or

m
al

iz
ed

co
st average max min

Figure 20: Total costs in experiments with FSL traces.

6 Related Work

Hierarchical storage is widely adapted, as storage devices
offer a trade-off between cost, capacity, and performance [56].
Systems with storage tiers are actively researched, and in
recent years, many publications have referred to tiering in
the cloud [39, 46, 60]. Hsu et al. [38] propose an AI-based
prediction model for classifying whether data is cold or hot.
Liu et al. [45] describe an online algorithm for two-tier cloud
storage, which works with no prior knowledge of future ac-
cess frequencies. However, less attention is given to tiering
techniques in the cloud in the context of deduplication.

MUSE [80] is a framework focused on providing SLA
for deduplicated data focused on the primary storage use
case, which is a different use case than storing backups.
DD Tier [34] is tiering with deduplication that performs its
computation in the local tier, hence imposing fundamental
restrictions and limitations. First, deduplicating data from
more than one local tier system is impossible, as each sys-
tem performs deduplication on its own. Furthermore, all or at
least a large fraction of metadata is needed locally to operate.
Therefore, metadata are stored in both tiers, which not only
increases storage capacity usage but also forces downloading
a large amount of metadata to recover even a single file. More-
over, the resources for metadata storage and processing of the
local tier are limited. As locally stored metadata can consume
hundreds of terabytes of local storage, the size of the cloud tier
is limited (to 2x the size of the local tier). Alike, deduplication
and garbage collection algorithms cannot overuse scarce local
resources, especially RAM, CPUs, and disk I/Os. Therefore,

perfect hashing is used to decrease memory requirements
below 3 bits per fingerprint, so extending it with techniques
similar to our storage type selection is very difficult.

DD Tier introduces a technique for estimating how much
space will be freed from the local tier after moving data to
the cloud, and in recent years, significant research attention
has been paid to the problem of selecting files for efficient
data removal and migration in systems with deduplication
[37, 42, 51]. As long as such methods do not require storing
additional metadata locally, they can be used with InftyDedup.

A large number of publications explore security threats of
deduplication in the cloud. Therefore, several methods of pre-
venting particular attack types were proposed [21, 41, 43, 81].
Alike, side channels leaking information from deduplication
storage have been studied [19,20]. Most threats arise from the
situation in which a public cloud provider implements dedu-
plication between users. InftyDedup is meant to be used by a
single organization, and writing to InftyDedup requires access-
ing the local tier, so the situation is much different. Still, some
organizations might find the deduplication side-channels as
a threat within the organization, and adding security mech-
anisms to InftyDedup can be required. Moreover, users of
InftyDedup may not trust the cloud provider, so the local
tier can encrypt data before storing them in the cloud. The
structure of the data (information on block sizes and which
blocks are referenced by which files) is still exposed to allow
the computations, but the situation is similar in other tiering
with deduplication solutions, as restoring blocks reveals the
structure of files.

7 Conclusions

We presented InftyDedup, a novel, cloud-native approach to
tiering to cloud for a storage system with deduplication. Com-
pared to the state of the art, our architecture does not impose
any limit on the size of the cloud tier and supports dedu-
plication from multiple local tier systems. We implemented
InftyDedup for a commercial storage system (HydraStor) and
evaluated it in a public cloud (AWS). The evaluation con-
firmed the desired scalability of deduplication handling: our
batch algorithms, designed to reduce cloud costs and harness
dynamic resource allocation, were able to process metadata
of multi-petabyte data collections for a couple of dollars.

To further decrease the cost of cloud storage, we proposed
an extension to InftyDedup which moves chunks between
hot and cold cloud stores based on their anticipated access
patterns. Its evaluation with real-world traces showed that our
deduplication-specific heuristic for adjusting the expected
read frequency, which takes into account block reference
counts, decreased the costs on average by 11%, and the over-
all solution achieved 26%–44% reductions. The algorithm
requires minimal input from a system administrator and was
demonstrated to retain its cost benefits even when the admin-
istrator’s estimations were inexact.

44 21st USENIX Conference on File and Storage Technologies USENIX Association

Acknowledgments

We sincerely thank our shepherd Philip Shilane and the anony-
mous reviewers for helping us improve our paper significantly.

References

[1] Acronis. Retention rules: how and when they work.
2022. https://kb.acronis.com/content/68304.

[2] Yamini Allu, Fred Douglis, Mahesh Kamat, Ramya Prab-
hakar, Philip Shilane, and Rahul Ugale. Can’t We All
Get Along? Redesigning Protection Storage for Modern
Workloads. In 2018 USENIX Annual Technical Confer-
ence (USENIX ATC 18), 2018.

[3] Yamini Allu, Fred Douglis, Mahesh Kamat, Philip Shi-
lane, Hugo Patterson, and Ben Zhu. Backup to the future:
How workload and hardware changes continually rede-
fine data domain file systems. Computer, 50(7):64–72,
2017.

[4] Amazon Web Services, Inc. Amazon aurora - fully
mysql and postgresql compatibile managed database ser-
vice. 2023. https://aws.amazon.com/rds/aurora/
?did=ap_card&trk=ap_card.

[5] Amazon Web Services, Inc. Amazon ebs pricing. 2023.
https://aws.amazon.com/ebs/pricing/.

[6] Amazon Web Services, Inc. Amazon elastic container
service pricing. 2023. https://aws.amazon.com/
ecs/pricing/.

[7] Amazon Web Services, Inc. Amazon s3 pricing. 2023.
https://aws.amazon.com/s3/pricing/.

[8] Amazon Web Services, Inc. Amazon s3 storage
classes. 2023. https://aws.amazon.com/s3/
storage-classes/.

[9] Amazon Web Services, Inc. Aws direct connect
locations. 2023. https://aws.amazon.com/
directconnect/locations/.

[10] Amazon Web Services, Inc. Aws lambda - faqs. 2023.
https://aws.amazon.com/lambda/faqs/.

[11] Amazon Web Services, Inc. Aws snow family faqs.
2023. https://aws.amazon.com/snow/faqs/.

[12] Amazon Web Services, Inc. Best practices for cluster
configuration. 2023. https://docs.aws.amazon.
com/emr/latest/ManagementGuide/emr-plan-
instances-guidelines.html.

[13] Amazon Web Services, Inc. Billing for interrupted
spot instances. 2023. https://docs.aws.amazon.
com/AWSEC2/latest/UserGuide/billing-for-
interrupted-spot-instances.html.

[14] Amazon Web Services, Inc. General purpose instances
- network performance. 2023. https://docs.aws.
amazon.com/AWSEC2/latest/UserGuide/general-
purpose-instances.html#general-purpose-
network-performance.

[15] Amazon Web Services, Inc. Link aggregation
groups. 2023. https://docs.aws.amazon.com/
directconnect/latest/UserGuide/lags.html.

[16] George Amvrosiadis and Medha Bhadkamkar. Identi-
fying trends in enterprise data protection systems. In
2015 USENIX Annual Technical Conference (USENIX
ATC 15), 2015.

[17] George Amvrosiadis and Medha Bhadkamkar. Getting
back up: Understanding how enterprise data backups
fail. In 2016 USENIX Annual Technical Conference
(USENIX ATC 16), 2016.

[18] Associate Research Director Andrew Smith, Research
Manager; Archana Venkatraman. Enterprise data growth
and adoption of cloud applications challenge traditional
data protection strategies. 2021. https://afi.ai/r/
US48310921.pdf.

[19] Frederik Armknecht, Colin Boyd, Gareth T Davies, Kris-
tian Gjøsteen, and Mohsen Toorani. Side channels
in deduplication: Trade-offs between leakage and ef-
ficiency. In Proceedings of the 2017 ACM on Asia
Conference on Computer and Communications Security,
2017.

[20] Andrei Bacs, Saidgani Musaev, Kaveh Razavi, Cristiano
Giuffrida, and Herbert Bos. Dupefs: Leaking data over
the network with filesystem deduplication side chan-
nels. In 20th USENIX Conference on File and Storage
Technologies (FAST 22), 2022.

[21] Mihir Bellare, Sriram Keelveedhi, and Thomas Risten-
part. Message-locked encryption and secure deduplica-
tion. In Annual international conference on the theory
and applications of cryptographic techniques, 2013.

[22] Christophe Bertrand. Esg research report: The
evolution of data protection cloud strategies. 2021.
https://www.esg-global.com/research/esg-
research-report-the-evolution-of-data-
protection-cloud-strategies.

[23] Sriprasad Bhata. Introducing azure cool blob storage.
Microsoft, 2016. https://azure.microsoft.com/
en-us/blog/introducing-azure-cool-storage/.

USENIX Association 21st USENIX Conference on File and Storage Technologies 45

https://kb.acronis.com/content/68304
https://aws.amazon.com/rds/aurora/?did=ap_card&trk=ap_card
https://aws.amazon.com/rds/aurora/?did=ap_card&trk=ap_card
https://aws.amazon.com/ebs/pricing/
https://aws.amazon.com/ecs/pricing/
https://aws.amazon.com/ecs/pricing/
https://aws.amazon.com/s3/pricing/
https://aws.amazon.com/s3/storage-classes/
https://aws.amazon.com/s3/storage-classes/
https://aws.amazon.com/directconnect/locations/
https://aws.amazon.com/directconnect/locations/
https://aws.amazon.com/lambda/faqs/
https://aws.amazon.com/snow/faqs/
https://docs.aws.amazon.com/emr/latest/ManagementGuide/emr-plan-instances-guidelines.html
https://docs.aws.amazon.com/emr/latest/ManagementGuide/emr-plan-instances-guidelines.html
https://docs.aws.amazon.com/emr/latest/ManagementGuide/emr-plan-instances-guidelines.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/billing-for-interrupted-spot-instances.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/billing-for-interrupted-spot-instances.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/billing-for-interrupted-spot-instances.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/general-purpose-instances.html#general-purpose-network-performance
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/general-purpose-instances.html#general-purpose-network-performance
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/general-purpose-instances.html#general-purpose-network-performance
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/general-purpose-instances.html#general-purpose-network-performance
https://docs.aws.amazon.com/directconnect/latest/UserGuide/lags.html
https://docs.aws.amazon.com/directconnect/latest/UserGuide/lags.html
https://afi.ai/r/US48310921.pdf
https://afi.ai/r/US48310921.pdf
https://www.esg-global.com/research/esg-research-report-the-evolution-of-data-protection-cloud-strategies
https://www.esg-global.com/research/esg-research-report-the-evolution-of-data-protection-cloud-strategies
https://www.esg-global.com/research/esg-research-report-the-evolution-of-data-protection-cloud-strategies
https://azure.microsoft.com/en-us/blog/introducing-azure-cool-storage/
https://azure.microsoft.com/en-us/blog/introducing-azure-cool-storage/

[24] Jesús Camacho-Rodríguez, Ashutosh Chauhan, Alan
Gates, Eugene Koifman, Owen O’Malley, Vineet Garg,
Zoltan Haindrich, Sergey Shelukhin, Prasanth Jayachan-
dran, Siddharth Seth, et al. Apache hive: From mapre-
duce to enterprise-grade big data warehousing. In Pro-
ceedings of the 2019 International Conference on Man-
agement of Data, 2019.

[25] Google Cloud. Cloud sql. 2023. https://cloud.
google.com/sql.

[26] Google Cloud. Cloud storage pricing. 2023.
https://cloud.google.com/storage/pricing#
north-america.

[27] Google Cloud. Disk pricing. 2023. https:
//cloud.google.com/compute/disks-image-
pricing#disk.

[28] Google Cloud. Storage classes. 2023. https:
//cloud.google.com/storage/docs/storage-
classes#descriptions.

[29] Google Cloud. Vertex ai - google cloud’s unified ml plat-
form. 2023. https://cloud.google.com/vertex-
ai.

[30] Biplob Debnath, Sudipta Sengupta, and Jin Li.
Chunkstash: Speeding up inline storage deduplication
using flash memory. In 2010 USENIX Annual Technical
Conference (USENIX ATC 10), 2010.

[31] Fred Douglis, Abhinav Duggal, Philip Shilane, Tony
Wong, Shiqin Yan, and Fabiano Botelho. The logic of
physical garbage collection in deduplicating storage. In
15th USENIX Conference on File and Storage Technolo-
gies (FAST 17), 2017.

[32] Druva. What is backup retention policy?
how is it implemented? 2023. https:
//docs.druva.com/Knowledge_Base/inSync/
Client/010_FAQ/What_is_Backup_Retention_
Policy%3F_How_is_it_implemented%3F.

[33] Cezary Dubnicki, Leszek Gryz, Lukasz Heldt, Michal
Kaczmarczyk, Wojciech Kilian, Przemyslaw Strzelczak,
Jerzy Szczepkowski, Cristian Ungureanu, and Michal
Welnicki. Hydrastor: A scalable secondary storage. In
Proccedings of the 7th Conference on File and Storage
Technologies (FAST 09), 2009.

[34] Abhinav Duggal, Fani Jenkins, Philip Shilane, Ram-
prasad Chinthekindi, Ritesh Shah, and Mahesh Kamat.
Data domain cloud tier: Backup here, backup there,
deduplicated everywhere! In 2019 USENIX Annual
Technical Conference (USENIX ATC 19), 2019.

[35] Nnamdi Ekwe-Ekwe and Adam Barker. Location, lo-
cation, location: exploring amazon ec2 spot instance
pricing across geographical regions. In 2018 18th
IEEE/ACM International Symposium on Cluster, Cloud
and Grid Computing (CCGRID), 2018.

[36] Fanglu Guo and Petros Efstathopoulos. Building a high-
performance deduplication system. In 2011 USENIX
Annual Technical Conference (USENIX ATC 11), 2011.

[37] Danny Harnik, Moshik Hershcovitch, Yosef Shatsky,
Amir Epstein, and Ronen Kat. Sketching volume ca-
pacities in deduplicated storage. In 17th USENIX Con-
ference on File and Storage Technologies (FAST 19),
2019.

[38] Ying-Feng Hsu, Ryo Irie, Shuuichirou Murata, and
Morito Matsuoka. A novel automated cloud storage
tiering system through hot-cold data classification. In
2018 IEEE 11th International Conference on Cloud
Computing (CLOUD), 2018.

[39] Ryo Irie, Shuuichirou Murata, Ying-Feng Hsu, and
Morito Matsuoka. A novel automated tiered storage
architecture for achieving both cost saving and qoe. In
2018 IEEE 8th International Symposium on Cloud and
Service Computing (SC2), 2018.

[40] Michal Kaczmarczyk, Marcin Barczynski, Wojciech Kil-
ian, and Cezary Dubnicki. Reducing impact of data
fragmentation caused by in-line deduplication. In Pro-
ceedings of the 5th Annual International Systems and
Storage Conference, 2012.

[41] Sriram Keelveedhi, Mihir Bellare, and Thomas Risten-
part. Dupless: Server-aided encryption for deduplicated
storage. In 22nd USENIX Security Symposium (USENIX
Security 13), 2013.

[42] Roei Kisous, Ariel Kolikant, Abhinav Duggal, Sarai
Sheinvald, and Gala Yadgar. The what, the from, and
the to: The migration games in deduplicated systems. In
20th USENIX Conference on File and Storage Technolo-
gies (FAST 22), 2022.

[43] Jingwei Li, Chuan Qin, Patrick P. C. Lee, and Jin Li.
Rekeying for encrypted deduplication storage. In 2016
46th Annual IEEE/IFIP International Conference on
Dependable Systems and Networks (DSN), 2016.

[44] Mark Lillibridge, Kave Eshghi, and Deepavali Bhagwat.
Improving restore speed for backup systems that use
inline chunk-based deduplication. In 11th USENIX Con-
ference on File and Storage Technologies (FAST 13),
2013.

46 21st USENIX Conference on File and Storage Technologies USENIX Association

https://cloud.google.com/sql
https://cloud.google.com/sql
https://cloud.google.com/storage/pricing#north-america
https://cloud.google.com/storage/pricing#north-america
https://cloud.google.com/compute/disks-image-pricing#disk
https://cloud.google.com/compute/disks-image-pricing#disk
https://cloud.google.com/compute/disks-image-pricing#disk
https://cloud.google.com/storage/docs/storage-classes#descriptions
https://cloud.google.com/storage/docs/storage-classes#descriptions
https://cloud.google.com/storage/docs/storage-classes#descriptions
https://cloud.google.com/vertex-ai
https://cloud.google.com/vertex-ai
https://docs.druva.com/Knowledge_Base/inSync/Client/010_FAQ/What_is_Backup_Retention_Policy%3F_How_is_it_implemented%3F
https://docs.druva.com/Knowledge_Base/inSync/Client/010_FAQ/What_is_Backup_Retention_Policy%3F_How_is_it_implemented%3F
https://docs.druva.com/Knowledge_Base/inSync/Client/010_FAQ/What_is_Backup_Retention_Policy%3F_How_is_it_implemented%3F
https://docs.druva.com/Knowledge_Base/inSync/Client/010_FAQ/What_is_Backup_Retention_Policy%3F_How_is_it_implemented%3F

[45] Mingyu Liu, Li Pan, and Shijun Liu. To transfer or not:
An online cost optimization algorithm for using two-
tier storage-as-a-service clouds. IEEE Access, 7:94263–
94275, 2019.

[46] Yaser Mansouri and Abdelkarim Erradi. Cost optimiza-
tion algorithms for hot and cool tiers cloud storage ser-
vices. In 2018 IEEE 11th International Conference on
Cloud Computing (CLOUD), 2018.

[47] Dirk Meister and André Brinkmann. Multi-level com-
parison of data deduplication in a backup scenario. In
Proceedings of SYSTOR 2009: The Israeli Experimental
Systems Conference, 2009.

[48] Dirk Meister and André Brinkmann. dedupv1: Improv-
ing deduplication throughput using solid state drives
(ssd). In 2010 IEEE 26th Symposium on Mass Storage
Systems and Technologies (MSST), 2010.

[49] Microsoft. Azure storage pricing. 2023.
https://azure.microsoft.com/en-us/pricing/
details/storage/blobs/#pricing.

[50] Jaehong Min, Daeyoung Yoon, and Youjip Won. Effi-
cient deduplication techniques for modern backup oper-
ation. IEEE Transactions on Computers, 60(6):824–840,
2010.

[51] Aviv Nachman, Gala Yadgar, and Sarai Sheinvald.
Goseed: Generating an optimal seeding plan for dedu-
plicated storage. In 18th USENIX Conference on File
and Storage Technologies (FAST 20), 2020.

[52] Netapp. Cloud tiering documentation. 2023.
https://docs.netapp.com/us-en/cloud-
manager-tiering/pdfs/fullsite-sidebar/
Cloud_Tiering_documentation.pdf.

[53] Veritas NetBackup. About netbackup worm storage
support for immutable and indelible data. 2020.
https://www.veritas.com/support/en_US/doc/
25074086-143197427-0/v143250065-143197427.

[54] Veritas NetBackup. Veritas netbackup™ deduplication
guide. 2021. https://www.veritas.com/support/
en_US/doc/25074086-146020141-0/v145698641-
146020141.

[55] Veritas NetBackup. Aws cloud storage with ver-
itas netbackup. 2022. https://www.veritas.
com/content/dam/www/en_us/documents/white-
papers/WP_aws_cloud_storage_with_netbackup_
long_term_retention_solution_V1259.pdf.

[56] Junpeng Niu, Jun Xu, and Lihua Xie. Hybrid storage
systems: A survey of architectures and algorithms. IEEE
Access, 6:13385–13406, 2018.

[57] Myoungwon Oh et al. Design of global data deduplica-
tion for a scale-out distributed storage system. In 2018
IEEE 38th International Conference on Distributed
Computing Systems (ICDCS), 2018.

[58] Oracle. Backing up file-system data. 2023.
https://docs.oracle.com/cd/E91325_01/OBADM/
osb_filesystem_backup.htm.

[59] Michael Paul. Cloud object storage deep dive –
part two, implementation. Veeam Software, 2021.
https://www.veeam.com/blog/cloud-object-
storage-implementation.html.

[60] Ajaykrishna Raghavan, Abhishek Chandra, and Jon B
Weissman. Tiera: Towards flexible multi-tiered cloud
storage instances. In Proceedings of the 15th Interna-
tional Middleware Conference, 2014.

[61] Santhosh Rao, Nik Simpson, Michael Hoeck, and Jerry
Rozeman. Magic quadrant for enterprise backup and
recovery software solutions. 2021. https://www.
gartner.com/en/documents/4003661.

[62] Meet Shah, Mohammedhasan Shaikh, Vishwajeet
Mishra, and Grinal Tuscano. Decentralized cloud
storage using blockchain. In 2020 4th International
conference on trends in electronics and informatics
(ICOEI)(48184), 2020.

[63] Pratima Sharma, Rajni Jindal, and Malaya Dutta Borah.
Blockchain-based decentralized architecture for cloud
storage system. Journal of Information Security and
Applications, 62:102970, 2021.

[64] Konstantin Shvachko, Hairong Kuang, Sanjay Radia,
and Robert Chansler. The hadoop distributed file system.
In 2010 IEEE 26th Symposium on Mass Storage Systems
and Technologies (MSST), 2010.

[65] Veeam Software. Step 7. configure long-term retention.
2021. https://helpcenter.veeam.com/docs/
backup/vsphere/backup_job_gfs_vm.html?ver=
110.

[66] Veeam Software. 2022 data protection trends. 2022.
https://go.veeam.com/wp-data-protection-
trends-2022.

[67] Veeam Software. Restore operator activity. 2023.
https://helpcenter.veeam.com/docs/one/
reporter/restore_operator_activity.html?
ver=110.

[68] Hewlett Packard Enterprise storage experts. Hpe
cloud bank storage: A data protection solution you can
bank on. 2017. https://community.hpe.com/t5/
Around-the-Storage-Block/HPE-Cloud-Bank-

USENIX Association 21st USENIX Conference on File and Storage Technologies 47

https://azure.microsoft.com/en-us/pricing/details/storage/blobs/#pricing
https://azure.microsoft.com/en-us/pricing/details/storage/blobs/#pricing
https://docs.netapp.com/us-en/cloud-manager-tiering/pdfs/fullsite-sidebar/Cloud_Tiering_documentation.pdf
https://docs.netapp.com/us-en/cloud-manager-tiering/pdfs/fullsite-sidebar/Cloud_Tiering_documentation.pdf
https://docs.netapp.com/us-en/cloud-manager-tiering/pdfs/fullsite-sidebar/Cloud_Tiering_documentation.pdf
https://www.veritas.com/support/en_US/doc/25074086-143197427-0/v143250065-143197427
https://www.veritas.com/support/en_US/doc/25074086-143197427-0/v143250065-143197427
https://www.veritas.com/support/en_US/doc/25074086-146020141-0/v145698641-146020141
https://www.veritas.com/support/en_US/doc/25074086-146020141-0/v145698641-146020141
https://www.veritas.com/support/en_US/doc/25074086-146020141-0/v145698641-146020141
https://www.veritas.com/content/dam/www/en_us/documents/white-papers/WP_aws_cloud_storage_with_netbackup_long_term_retention_solution_V1259.pdf
https://www.veritas.com/content/dam/www/en_us/documents/white-papers/WP_aws_cloud_storage_with_netbackup_long_term_retention_solution_V1259.pdf
https://www.veritas.com/content/dam/www/en_us/documents/white-papers/WP_aws_cloud_storage_with_netbackup_long_term_retention_solution_V1259.pdf
https://www.veritas.com/content/dam/www/en_us/documents/white-papers/WP_aws_cloud_storage_with_netbackup_long_term_retention_solution_V1259.pdf
https://docs.oracle.com/cd/E91325_01/OBADM/osb_filesystem_backup.htm
https://docs.oracle.com/cd/E91325_01/OBADM/osb_filesystem_backup.htm
https://www.veeam.com/blog/cloud-object-storage-implementation.html
https://www.veeam.com/blog/cloud-object-storage-implementation.html
https://www.gartner.com/en/documents/4003661
https://www.gartner.com/en/documents/4003661
https://helpcenter.veeam.com/docs/backup/vsphere/backup_job_gfs_vm.html?ver=110
https://helpcenter.veeam.com/docs/backup/vsphere/backup_job_gfs_vm.html?ver=110
https://helpcenter.veeam.com/docs/backup/vsphere/backup_job_gfs_vm.html?ver=110
https://go.veeam.com/wp-data-protection-trends-2022
https://go.veeam.com/wp-data-protection-trends-2022
https://helpcenter.veeam.com/docs/one/reporter/restore_operator_activity.html?ver=110
https://helpcenter.veeam.com/docs/one/reporter/restore_operator_activity.html?ver=110
https://helpcenter.veeam.com/docs/one/reporter/restore_operator_activity.html?ver=110
https://community.hpe.com/t5/Around-the-Storage-Block/HPE-Cloud-Bank-Storage-A-Data-Protection-Solution-You-Can-Bank/ba-p/6965903
https://community.hpe.com/t5/Around-the-Storage-Block/HPE-Cloud-Bank-Storage-A-Data-Protection-Solution-You-Can-Bank/ba-p/6965903

Storage-A-Data-Protection-Solution-You-
Can-Bank/ba-p/6965903.

[69] Przemyslaw Strzelczak, Elzbieta Adamczyk, Urszula
Herman-Izycka, Jakub Sakowicz, Lukasz Slusarczyk,
Jaroslaw Wrona, and Cezary Dubnicki. Concurrent dele-
tion in a distributed content-addressable storage system
with global deduplication. In 11th USENIX Conference
on File and Storage Technologies (FAST 13), 2013.

[70] Zhen Sun, Geoff Kuenning, Sonam Mandal, Philip Shi-
lane, Vasily Tarasov, Nong Xiao, et al. A long-term
user-centric analysis of deduplication patterns. In 2016
32nd Symposium on Mass Storage Systems and Tech-
nologies (MSST), 2016.

[71] Zhen “Jason” Sun, Geoff Kuenning, Sonam Mandal,
Philip Shilane, Vasily Tarasov, Nong Xiao, and Erez
Zadok. Cluster and single-node analysis of long-term
deduplication patterns. ACM Transactions on Storage
(TOS), 14(2):1–27, 2018.

[72] Liyin Tang and Namit Jain. Join strategies in hive. Hive
Summit, 2011.

[73] Vasily Tarasov, Amar Mudrankit, Will Buik, Philip Shi-
lane, Geoff Kuenning, and Erez Zadok. Generating
realistic datasets for deduplication analysis. In 2012
USENIX Annual Technical Conference (USENIX ATC
12), 2012.

[74] Lionel Sujay Vailshery. Cloud infrastructure
services vendor market share worldwide from
4th quarter 2017 to 4th quarter 2021. 2022.
https://www.statista.com/statistics/967365/
worldwide-cloud-infrastructure-services-
market-share-vendor/.

[75] Global Data Vault. Data backup: Devel-
oping an effective data retention. 2023.
https://www.globaldatavault.com/blog/data-
retention-policy-and-scheduled-backups/.

[76] Vinod Kumar Vavilapalli, Arun C Murthy, Chris Dou-
glas, Sharad Agarwal, Mahadev Konar, Robert Evans,
Thomas Graves, Jason Lowe, Hitesh Shah, Siddharth
Seth, et al. Apache hadoop yarn: Yet another resource
negotiator. In Proceedings of the 4th annual Symposium
on Cloud Computing, 2013.

[77] Marcia Villalba. Amazon s3 glacier is the best place to
archive your data – introducing the s3 glacier instant re-
trieval storage class. Amazon Web Services, Inc., 2021.
https://aws.amazon.com/blogs/aws/amazon-s3-
glacier-is-the-best-place-to-archive-your-
data-introducing-the-s3-glacier-instant-
retrieval-storage-class/.

[78] Grant Wallace, Fred Douglis, Hangwei Qian, Philip Shi-
lane, Stephen Smaldone, Mark Chamness, and Windsor
Hsu. Characteristics of backup workloads in production
systems. In Proceedings of the 10th USENIX Confer-
ence on File and Storage Technologies (FAST 12), 2012.

[79] Wen Xia, Hong Jiang, Dan Feng, Fred Douglis, Philip
Shilane, Yu Hua, Min Fu, Yucheng Zhang, and Yukun
Zhou. A comprehensive study of the past, present, and
future of data deduplication. Proceedings of the IEEE,
104(9):1681–1710, 2016.

[80] Jianwei Yin, Yan Tang, Shuiguang Deng, Bangpeng
Zheng, and Albert Y. Zomaya. Muse: A multi-tierd and
sla-driven deduplication framework for cloud storage
systems. IEEE Transactions on Computers, 70(5):759–
774, 2021.

[81] Haoran Yuan, Xiaofeng Chen, Jin Li, Tao Jiang, Jianfeng
Wang, and Robert H Deng. Secure cloud data dedupli-
cation with efficient re-encryption. IEEE Transactions
on Services Computing, 15(1):442–456, 2019.

[82] Zerto. Maximize recovery achieve your best rtos
and rpos. 2020. https://www.zerto.com/wp-
content/uploads/2020/08/Fastest-RTO-and-
RPO-in-the-Industry_Guide.pdf.

[83] Zerto. Deploy & configure zerto long-
term retention amazon s3. 2022. https:
//www.zerto.com/page/deploy-configure-
zerto-long-term-retention-amazon-s3/.

[84] Benjamin Zhu, Kai Li, and Hugo Patterson. Avoiding
the disk bottleneck in the data domain deduplication file
system. In Proceedings of the 6th USENIX Conference
on File and Storage Technologies (FAST 08), 2008.

48 21st USENIX Conference on File and Storage Technologies USENIX Association

https://community.hpe.com/t5/Around-the-Storage-Block/HPE-Cloud-Bank-Storage-A-Data-Protection-Solution-You-Can-Bank/ba-p/6965903
https://community.hpe.com/t5/Around-the-Storage-Block/HPE-Cloud-Bank-Storage-A-Data-Protection-Solution-You-Can-Bank/ba-p/6965903
https://www.statista.com/statistics/967365/worldwide-cloud-infrastructure-services-market-share-vendor/
https://www.statista.com/statistics/967365/worldwide-cloud-infrastructure-services-market-share-vendor/
https://www.statista.com/statistics/967365/worldwide-cloud-infrastructure-services-market-share-vendor/
https://www.globaldatavault.com/blog/data-retention-policy-and-scheduled-backups/
https://www.globaldatavault.com/blog/data-retention-policy-and-scheduled-backups/
https://aws.amazon.com/blogs/aws/amazon-s3-glacier-is-the-best-place-to-archive-your-data-introducing-the-s3-glacier-instant-retrieval-storage-class/
https://aws.amazon.com/blogs/aws/amazon-s3-glacier-is-the-best-place-to-archive-your-data-introducing-the-s3-glacier-instant-retrieval-storage-class/
https://aws.amazon.com/blogs/aws/amazon-s3-glacier-is-the-best-place-to-archive-your-data-introducing-the-s3-glacier-instant-retrieval-storage-class/
https://aws.amazon.com/blogs/aws/amazon-s3-glacier-is-the-best-place-to-archive-your-data-introducing-the-s3-glacier-instant-retrieval-storage-class/
https://www.zerto.com/wp-content/uploads/2020/08/Fastest-RTO-and-RPO-in-the-Industry_Guide.pdf
https://www.zerto.com/wp-content/uploads/2020/08/Fastest-RTO-and-RPO-in-the-Industry_Guide.pdf
https://www.zerto.com/wp-content/uploads/2020/08/Fastest-RTO-and-RPO-in-the-Industry_Guide.pdf
https://www.zerto.com/page/deploy-configure-zerto-long-term-retention-amazon-s3/
https://www.zerto.com/page/deploy-configure-zerto-long-term-retention-amazon-s3/
https://www.zerto.com/page/deploy-configure-zerto-long-term-retention-amazon-s3/

PERSEUS: A Fail-Slow Detection Framework for Cloud Storage Systems
Ruiming Lu1*, Erci Xu3,1*, Yiming Zhang2†, Fengyi Zhu3, Zhaosheng Zhu3,

Mengtian Wang3, Zongpeng Zhu3, Guangtao Xue1†, Jiwu Shu2, Minglu Li1,4, and Jiesheng Wu3

1Shanghai Jiao Tong University, 2Xiamen University,
3Alibaba Inc., and 4Zhejiang Normal University

Abstract
The newly-emerging “fail-slow” failures plague both soft-

ware and hardware where the victim components are still
functioning yet with degraded performance. To address this
problem, this paper presents PERSEUS, a practical fail-slow
detection framework for storage devices. PERSEUS leverages
a light regression-based model to fast pinpoint and analyze
fail-slow failures at the granularity of drives. Within a 10-
month close monitoring on 248K drives, PERSEUS managed
to find 304 fail-slow cases. Isolating them can reduce the
(node-level) 99.99th tail latency by 48%. We assemble a
large-scale fail-slow dataset (including 41K normal drives
and 315 verified fail-slow drives) from our production traces,
based on which we provide root cause analysis on fail-slow
drives covering a variety of ill-implemented scheduling, hard-
ware defects, and environmental factors. We have released
the dataset to the public for fail-slow study.

1 Introduction
Large-scale storage systems are susceptible to various fail-
ures [2, 3, 5, 7, 21, 32, 34, 35, 41, 42, 48]. Both academia and
industry have made great efforts on identifying [26,28,39], de-
tecting [9, 10, 20, 27], and fixing [8, 13, 44, 46] different kinds
of failures (e.g., fail-stop [2, 18, 31, 37], fail-partial [6, 38, 40],
and Byzantine [14]) in the field.

Recently, the fail-slow failures [19], also known as gray
failures [24] or limpware [16], have been receiving an in-
creasing amount of attention [23, 29, 36]. In fail-slow fail-
ures, a software or hardware component (while functioning)
delivers lower-than-expected performance. With faster hard-
ware devices (e.g., Optane SSD [49] and Z-SSD [11]) and
software stack (e.g., kernel bypassing [47]), the impact of
fail-slow failures (e.g., caused by malfunctioning NANDs or
unfit scheduling), which might be masked as noise previously,
are more likely to be noticed. Recent studies [30, 36] indicate
that annual fail-slow occurrences can be as frequent as annual
fail-stop events (1%∼2%).

Accurately detecting fail-slow failures is challenging. Per-
formance variations caused by internal factors (e.g., SSD
garbage collection) or external factors (e.g., workload burst)

*Equal contribution.
†Corresponding authors.

can have similar symptoms as fail-slow failures. Unlike fail-
stop failures where the criteria (e.g., software crash [2], data
loss [34]) are well-defined, determining fail-slow failures is
usually empirical in practice and thus inherently inaccurate.
Moreover, fail-slow failures are often transient [19], making it
difficult for on-site engineers to identify, let alone reproduce
or reason the root causes.

Although several work [23, 29, 36] has attempted to de-
tect fail-slow failures, they are impractical and inefficient
for large-scale deployment in our production cloud environ-
ment. First, these techniques require source code access
(e.g., static analysis in OmegaGen [29]) or software modifica-
tion (e.g., modifying software timeouts in IASO [36]), while
cloud vendors like us do not touch tenants’ code. Even for
in-house infrastructures, inserting certain code segments is
still time-consuming, as the systems can run dozens of inter-
nal services with different software stacks. Second, existing
techniques can only detect fail-slow failures at the node level
(e.g., IASO), thus still requiring nontrivial manual efforts to
locate the culprits [19].

In this paper, we share our experiences in developing a
practical, fine-grained, and general fail-slow detection frame-
work that is applicable to a wide range of of services and
devices (with minor or no adjustment) in the Alibaba cloud
data centers. We start with analyzing the characteristics of the
known fail-slow failures in our fleet. We then discuss three
unsuccessful attempts at identifying fail-slow failures in the
field, including using an empirical threshold, performing peer-
evaluation-based detection [22], and refactoring IASO [36].

With the lessons learned from our earlier efforts, we design
and implement PERSEUS, a non-intrusive fail-slow detec-
tion framework. We first leverage classic machine learning
techniques (PCA [1], DBSCAN [43], and polynomial re-
gression [17]) to establish a mapping between latency vari-
ation and workload pressure. With the mapping, PERSEUS
can automatically derive an accurate and adaptive threshold
for each node to identify slow entries within the monitor-
ing traces. Further, based on the slow entries, PERSEUS
constructs the corresponding fail-slow events and utilizes a
scoreboard mechanism to evaluate the severity of such events.

PERSEUS has been deployed in our cloud for over ten
months, monitoring an increasing number of drives up to
around 300K by now. PERSEUS has already identified more

USENIX Association 21st USENIX Conference on File and Storage Technologies 49

than 300 fail-slow drives. By isolating and/or replacing the
identified fail-slow drives, we significantly reduce the node-
level tail latency. The 95th, 99th, and 99.99th write latencies
drop by 31%, 46%, and 48%, respectively.

We compare PERSEUS to previous fail-slow detection meth-
ods as follows. We assemble a large-scale fail-slow dataset
(including 315 verified fail-slow drives and around 41K of
their cluster-wise peer drives) from our production traces, and
build a test benchmark based on the dataset. The benchmark
evaluations indicate that PERSEUS outperforms all previous
methods, achieving a precision of 0.99 and a recall of 1.00.
We also evaluate the effectiveness of components and the
sensitivity of parameters in PERSEUS. The results show that
PERSEUS can serve as a non-intrusive (based on monitoring
traces), fine-grained (per-drive), general (one set of parame-
ters fits all) and accurate (high precision and recall) fail-slow
detection framework for the cloud storage systems.

We have also analyzed the reasons for fail-slow failures
and discover a wide variety of root causes including ill-
implemented scheduling (e.g., unnecessary resource con-
tention), hardware flaws (e.g., bad sectors for HDDs), and
environmental factors (e.g., temperature and power).

This paper makes the following contributions.

• We share our lessons on detecting fail-slow failures in large-
scale data centers from three unsuccessful attempts.

• We propose the design of PERSEUS, a non-intrusive, fine-
grained and general fail-slow detection framework.

• We assemble a large-scale fail-slow dataset1 and build a
fail-slow test benchmark.

• We provide an in-depth root cause analysis of fail-slow
failures from the perspective of various factors.

2 Background
2.1 System Architecture
In this paper, we explore fail-slow detection methods on a
subset of Alibaba Internet Data Centers (IDCs). These IDCs
span across the globe and each IDC includes multiple storage
clusters. Atop each cluster, a distributed file system (DFS) is
deployed to support a dedicated service (e.g., block storage,
NoSQL, or big data analysis). Each cluster consists of tens of
racks (at most 200), and each rack contains dozens of nodes
(at most 48). There are three types of storage nodes: (1)
All-flash: a node contains 12 NVMe SSDs to store data; (2)
Hybrid: a node contains 60-120 HDDs for data storage and
2 SSDs as write cache; (3) All-HDD: a node contains 70-80
HDDs to store data. By default, data storage drives in each
node are of the same model. At most three drives from the
same node can be taken down for repairing at a time. Table 1
lists the basic information and distribution of the drives. Note
that we name drive models as vendor-model. For example,
I-A stands for model A of vendor I.

1We release our dataset at https://tianchi.aliyun.com/
dataset/144479.

Class Model Ven-
dor% Total% Layer

/Type
Cap.
(GB)

NVMe
SSD

I-A 3.58 1.80 32L 1920
I-B 6.96 3.49 64L 1920
I-C 0.76 0.38 32L 3840
I-D 82.57 41.38 64L 4000
I-E 6.13 3.07 64L 7680
II-A 52.24 2.40 48L 1920
II-B 47.76 2.19 48L 3840

SATA
HDD

III-A 100 13.28 CMR 12000
IV-A 100 32.01 CMR 12000

Table 1: Summary of drive statistics in our dataset.
(§2.1). Vendor%: percentage of drive models in the same
vendor; Total%: percentage of drive models in the total pop-
ulation; Layer/Type: number of stacking layers for 3D TLC
NAND SSD, or recording type for HDD; Cap.: capacity.

Service #Entries (M) Total%
Log service 0.58 0.16
Big data 2.05 0.57
E-commerce 4.04 1.13
Table storage 9.32 2.61
Stream processing 12.77 3.58
Database 13.61 3.81
Object storage 30.13 8.44
Data warehouse 31.86 8.92
Block storage 252.80 70.78

Total 357.16 100.00

Table 2: Cloud services and daily entries (§2.2). #Entries
(M): number of entries in millions. Each entry has five fields
(i.e., avg_latency, avg_throughput, drive_ID, node_UID,
timestamp).

2.2 Dataset Description

In our data centers, a monitoring daemon is placed in each
node to collect operational statistics, mainly the latency and
throughput of each drive. The daemons calculate the average
statistics every 15 seconds and record them as time-series
data entries. The daemons run three hours a day (from 9PM
to 12AM). A drive generates 720 entries (= 180 min × 4
entries/min) per day. In total, we have compiled around
100 billion entries as our dataset. Table 2 lists the daily
distribution of 9 cloud services.

2.3 Impact of Fail-Slow Failures

Fail-slow failures, especially the transient ones, can often be
ignored or misinterpreted as performance variations. Addi-
tionally, storage stacks usually have multiple levels (software,
firmware, and hardware) of fault tolerance, such as retry and
redundancy, silently masking the fail-slow failures. However,
fail-slow failures can have a much more significant impact on
I/O performance in the wild. Next, we will use a representa-
tive example from our object storage service to demonstrate

50 21st USENIX Conference on File and Storage Technologies USENIX Association

https://tianchi.aliyun.com/dataset/144479
https://tianchi.aliyun.com/dataset/144479

Slow Normal Average

15

20

25

Sun Mon Tue Wed Thu Fri Sat Sun

Day of the week

m
s

(a) Read Latency

5

10

15

20

Sun Mon Tue Wed Thu Fri Sat Sun

Day of the week
m

s

(b) Write Latency

Figure 1: Fail-slow impact on I/O latency (§2.3). The fig-
ures show (a) read and (b) write latency three days before and
after isolating the fail-slow HDD (in red) in one node. Lines
in grey refer to the latency distribution of normal peers from
the same node. The vertical dashed line refers to the time
when the fail-slow drive was taken down for replacement.

Percentile p50 p90 p95 p99 p9999

5

10

15

20

Sun Mon Tue Wed Thu Fri Sat Sun

Day of the week

W
ri
te

 la
te

n
cy

 (
m

s)

Figure 2: Fail-slow impact on tail latency (§2.3). The fig-
ure shows the node-level write latency (of the same node as
in Figure 1) at different percentiles. The vertical dashed line
refers to the isolation time.

the effect of fail-slow failures and consequently the impor-
tance of fail-slow failure detection.

Figures 1a and 1b show the read and write latency of a
fail-slow HDD (the red line) against the latency of the peer
HDDs (the gray lines) from the same node. The vertical
dashed line indicates when the fail-slow drive was isolated
(and taken down for replacement). While the fail-slow drive
shows much higher read/write latency than the mean (the
blue line) of all the drives (2.06∼3.65× higher for write and
1.01∼1.50× higher for read), its other metrics, such as IOPS,
remain normal.

It was the utilization rate rather than the latency that di-
rectly led us to identify this fail-slow failure. Our monitoring
system indicated that the victim node had been receiving
much fewer writes than other nodes. The log analysis fur-
ther suggested that the load balancer of the distributed object
storage system prefers not to allocate writes to the victim
node due to its abnormally high retry rate caused by high
tail latencies. Figure 2 presents the 50th, 90th, 95th, 99th,
and 99.99th percentile latency of the victim node before and
after the dashed line when the fail-slow drive was isolated.
Before isolating the fail-slow drive, the 99.99th tail latency is
2.43∼3.29× that of the median at the node level.

This example, along with other similar cases, shows that
fail-slow failures impact not only the victim drive but also the

20

30

40

50

60

70

21:25 21:30 21:35 21:40 21:45

Time (H:M)

u
s

(a) Write latency

2

4

6

8

10

12

14

21:25 21:30 21:35 21:40 21:45

Time (H:M)

M
B

/s

(b) Write throughput

Figure 3: Sudden latency increase due to heavy load
(§3.2). The figures present the time series of (a) write la-
tency and (b) write throughput of an NVMe SSD. Red points
in grey boxes refer to time segments where drive latency is
higher than a naive alarming threshold (i.e., 45 µs).

entire node for a long period of time. This motivates us to
explore effective measures for detecting fail-slow failures in
our cloud.

3 Unsuccessful Attempts & Lessons
In this section, we first describe the design goals of the de-
tection framework, and then discuss three unsuccessful early
attempts. We conclude this section with a series of lessons to
guide the design of PERSEUS.

3.1 Design Goals
From our perspective, a practical fail-slow detection frame-
work should have the following properties.
• Non-intrusive. As cloud vendors, neither can we alter users’

software nor require them to run specific modified versions
of software stacks. Therefore, we can only rely on external
performance statistics (e.g., drive latency) for detection.

• Fine-grained. Fail-slow root cause diagnosis can often be
time-consuming (e.g., days to even weeks [19, 36]). We
expect the framework to pinpoint the culprit.

• Accurate. The framework should have satisfying precision
and recall to avoid unnecessary diagnosis on false positives.

• General. The framework can be deployed on both SSD and
HDD clusters and quickly applied to different services (e.g.,
block/object storage and database) with minor adjustments.

3.2 Attempt 1: Threshold Filtering
Methodology. Intuitively, we can set up a hard threshold on
drive latency to identify fail-slow drives based on the Service
Level Objectives (SLOs). To avoid mislabeling due to one-off
events such as SSD internal GC, we further specify a mini-
mum slowdown span for a suspicious drive to be considered
as fail-slow.
Limitation. Enforcing a hard threshold on device latency is
clearly non-intrusive and fine-grained. However, the accuracy
of threshold-identified fail-slow is low, as the latency is highly
influenced by the workloads. Here, we use the latency and
throughput traces of an NVMe SSD from the block storage
service as an example. The left of Figure 3 illustrates the

USENIX Association 21st USENIX Conference on File and Storage Technologies 51

Candidate drive 2 × Median Peers from the same node

❶ ❷ ❸

0

25

50

75

100

125

22:15 22:20 22:25 22:30 22:35

Time (H:M)

W
ri
te

 la
te

n
cy

 (
u

s)

Figure 4: Peer evaluation (§3.3). The figure shows peer
evaluation results by comparing the candidate drive latency
(in red) with node-level median latency (in blue) using a
5-minute sliding window. The candidate is slow (> 50%
latency records higher than 2×Median) in three time windows
(labeled with numbers in grey boxes).

latency variation of the drive where the horizontal dashed
line indicates the threshold (45µs). The right of Figure 3 is
the corresponding throughput. We can see that three latency
spikes occur at around 21:29, 21:34, and 21:40 as the latency
increases up to 65µs. By comparing latency with throughput,
it is clear that the workload pressure causes these spikes.

Hence, the dilemma is as follows. Setting a relaxed thresh-
old easily mislabels normal performance variations as fail-
slow events. Meanwhile, a strict one could leave many fail-
slow cases undiscovered. Further, using a set of thresholds
for different scenarios through fine-tuning can be fairly time-
consuming as our experiments show that latency variation is
a factor of drive models and workloads. In practice, we use
threshold-based detection as a fail-safe measure like timeout.

3.3 Attempt 2: Peer Evaluation
Methodology. The problem of the first attempt is not having
an adaptive threshold for detection. To address this problem,
we explored the idea of peer evaluation [22,30]. The rationale
behind this approach is that, with load balancing across the
distributed storage system, drives from the same node should
receive similar workload pressure. Since fail-slow failures are
relatively rare [19] and the majority of drives in a node should
be normal, we can identify the fail-slow drive by comparing
the performance between drives from the same node.

Specifically, we first calculate the node-level median la-
tency at each entry timestamp (every 15 seconds). We then
evaluate whether there are drives constantly (more than half
of the time) delivering abnormal performance—twice slower
than the median in our case—during the monitoring window
(e.g., 5 minutes). If so, the detection framework reports a
fail-slow event, and the monitoring window moves forward
to start the next round of evaluation.

Figure 4 provides an example of peer evaluation detec-
tion, including the fail-slow drive (the red line), the adaptive
threshold (2×median, the blue line), and the normal drives
(grey lines). The three shaded regions (numbered ¶, ·, and
¸) indicate three monitoring windows when the victim drive

experiences a fail-slow event.
Limitation. Peer evaluation can obtain an adaptive threshold
(the blue line in Figure 4), but it requires more empirical pa-
rameters than threshold filtering, such as the slowdown degree
and the monitoring window span, for tuning. Although it is
possible to fine-tune the parameters on a few clusters for spe-
cific storage services, the effort would be prohibitively large
if we want to extend peer evaluation to other drive models of
different services. For example, it took on-site engineers two
hours to fine-tune a cluster with around 300 nodes, and this
set of parameters fails to work on another cluster even under
the same service with the exact same models of drives.

3.4 Attempt 3: IASO-Based Model
Methodology. IASO is a fail-slow detection framework focus-
ing on identifying performance-degrading nodes [36]). The
design principle of IASO is to leverage software timeouts and
convert them into informative metrics to benchmark fail-slow.
However, directly using IASO is not suitable for us. First,
IASO requires code changes (i.e., intrusive monitoring) to in-
sert or modify certain code snippets of the running instances
(e.g., Cassandra and ZooKeeper), thus leveraging software-
level timeouts to identify fail-slow incidents2. Second, IASO
is node-level detection, whereas our goal is device-level. Nev-
ertheless, we re-factor IASO with our best effort. To avoid
modifying the software, we reuse the fail-slow event reporting
by peer evaluation (i.e., Attempt 2, see §3.3).
Limitation. The IASO-based model delivers rather unsatis-
factory performance (see §5.4 for details) on our assembled
benchmark, with a precision rate of only 0.48. We suspect
the main reason is that using the fail-slow event reporting to
replace the software timeout might not be effective. More-
over, we have explored other possible alternatives, such as
replacing software timeouts with thresholds. However, the
results are still unsatisfactory. Therefore, we assume IASO,
even with refactoring, may not achieve our goals.

3.5 Guidelines for PERSEUS

The aforementioned methods are either labor-intensive (re-
quiring extensive tuning) or ineffective in the field. In this
subsection, we use a series of research questions as guidelines
for designing our next fail-slow detection framework.

RQ1: What metrics should we use?

Throughout the early development of previous attempts, we
mostly focused on the write performance (i.e., the laten-
cy/throughput of write) for two reasons. First, among the
verified fail-slow cases, more than half of them only have
a notable influence on writes. Even for the rest, the impact
on read performance is always much smaller (similar to Fig-
ure 1). Second, fail-slow failures have more severe impacts
on writes. In our storage systems, most clusters require the

2Note that the definition of “non-intrusive” is different in IASO (meaning
low overhead introduced) from ours (meaning no code changes).

52 21st USENIX Conference on File and Storage Technologies USENIX Association

10

35

60

85

110

135

3 4 5 6 7

Throughput (log10, B/s)

L
a
te

n
cy

 (
u

s)

(a) DB clusters

10

35

60

85

110

5.5 6.0 6.5 7.0 7.5

Throughput (log10, B/s)

L
a
te

n
cy

 (
u

s)

(b) DB nodes (same cluster)

10

15

20

25

6.0 6.5 7.0 7.5

Throughput (log10, B/s)

L
a
te

n
cy

 (
u

s)

(c) DB drives (same node)

Figure 5: Distinct LvT distribution (§3.5). The figures show the latency-vs-throughput (LvT) distribution of (a) three clusters
(in yellow, blue and red) from database service, (b) two representative nodes (in blue and red) with clear-cut distribution from
the same cluster (also from database service), and (c) drives (in distinct colors) in one node from database service. Throughput
(unit: B/s) is scaled by log base 10 here and in related figures hereafter.

-0.2

0.0

0.2

0.4

Block Object DB

S
R

C
C

 s
c
o

re

Latency vs. Throughput

Latency vs. IOPS

Figure 6: SRCC scores (§3.5). The figure shows the SRCC
scores between drive write latency and throughput/IOPS from
three major services. Error bars refer to 95th percentile
confidence intervals.

write request to return after all three replicas ACKed (only
<20% of our clusters require 2 replicas). Meanwhile, a read
request will return as soon as one replica returns. In this case,
fail-slow failure impacts the write request more often as one
fail-slow write can lead to a slow write request in most cases
while only 1/3 of the chances for a read request. Note that
write reallocation cannot remedy for fail-slow write requests
as the reallocation is triggered by a timeout (usually much
longer than a fail-slow event). Nevertheless, we still evaluate
fail-slow detection based on the read performance (see §5.5),
and the results confirm the above assumptions.

RQ2: How to model workload pressure?

Simply depending on latency to detect fail-slow failures is
unreliable. Our previous exploration has shown that work-
load pressure can significantly influence the latency variation.
Further, we explore other indexes to model workload pressure
to better understand the latency variation.

Analyzing Figure 3a and Figure 3b inspires us to check the
possibility of using throughput or IOPS to model workload.
Currently, per-drive I/O throughput (unit: byte/sec) and IOPS
(unit: count/sec) are both available and stored in the same
fashion as drive latency (see Section 2.2). In Figure 6, we
measure the per-drive latency correlation with throughput
and IOPS using Spearman’s Rank Correlation Coefficient
(SRCC [15]) across three representative services. A higher
SRCC value indicates a stronger correlation. We can see
that latency is more closely related to throughput than IOPS.
Moreover, in certain services, latency is even negatively cor-

related with IOPS (e.g., block and database). Therefore, we
decide to use throughput for modeling the workload pressure.

RQ3: How to automatically derive adaptive thresholds?

In Attempt 2 (§3.3), we discover that, though peer-evaluation
can provide adaptive thresholds, this solution requires time-
consuming tuning for different service types and drive models.
Now, with workload pressure modeled by throughput, we are
able to build the latency-vs-throughput (LvT) distribution.
Then, we can use regression models on such distribution to
define a statistically normal drive and subsequently use its
upper bound as the adaptive thresholds for various environ-
ments.

To build such regression models, we need to determine the
scope of drives to be included in the LvT distribution. The
tradeoff is that including more samples (e.g., all drives from
the service) can be more statistically confident but subject to
a more diverse distribution—difficult to derive a clear upper
bound. Therefore, we plot the distribution at three different
scales in Figure 5 and discuss their pros and cons as follows.
Service-wise. In Figure 5a, we plot the LvT distribution of
drives from three clusters (marked as red, yellow and blue) in
the database service. First, we can observe that the clusters
from the same service can have drastically different LvT
distributions. For example, samples from the red cluster rarely
overlap with those from the yellow cluster. This indicates
that directly using all drives from the service to build the
distribution is not applicable.
Cluster-wise. In Figure 5a, we notice that even samples from
the same cluster can have clear-cut distributions (i.e., the two
red regions). After statistical analysis, we discover that the
disparity is widespread. For clarity, in Figure 5b, we plot
the LvT distribution of drives from two different nodes (in
red and blue) from the same cluster. The huge gap between
distributions indicates that we also cannot rely on cluster-wise
peer evaluation.
Node-wise. Finally, in Figure 5c, we plot the LvT distribution
of drives from one all-flash node (12 SSDs). Each drive is
represented with a color. We can see the colors are well
clustered together which indicates drives from the same node
follow a similar LvT distribution. Note that we also examine

USENIX Association 21st USENIX Conference on File and Storage Technologies 53

Raw Data ➀ Outlier Detection ➁ Building Regression Model

➂ Identifying Fail-Slow Event ➃ Evaluating Risk

Regression Identify slow records

Input

Model

Empirical

Duration

Degree

Drive Score
D1 70
D2 59
D3 20
…

e.g., Score>50
prompted for

immediate
inspection

DiskN

…
…

Latency
Throughput

21:00 0:00
Timestamp …

Disk1

As Time Series

As LvT Distribution

Slow

Sliding window

Throughput

La
te

nc
y

Throghput

La
te

nc
y

Throghput

La
te

nc
y

Time

La
te

nc
y

Throughput

La
te

nc
y

Figure 7: PERSEUS design diagram (§4.1). From the raw data, PERSEUS seeks to distinguish the slow (in red) from the normal
(in grey) by building a regression model (Á) with preliminary outlier detection (À). With a sliding window, PERSEUS formulates
consecutive slow records into slowdown events (Â), and assigns risk scores based on slowdown duration and degree (Ã).

nodes from other services and confirm that such behaviors
persist across node configurations (e.g., all-flash or hybrid)
and services (e.g., block or object storage). Thus, we decide
to use the node-wise samples to build the LvT distribution.

RQ4: How to identify fail-slow without a criterion?
Unlike fail-stop failures, there are no clear criteria for detect-
ing fail-slow drives. First, both the device (e.g., an SSD) and
the software (i.e., users’ code) can be a blackbox to the on-site
engineers. Second, fail-slow failures can be temporal with
varying symptoms. Moreover, the root causes of fail-slow
failures can be too obscure to diagnose. As a result, we cannot
exclude the possibility of mislabeling fail-slow failures.

Therefore, we rethink our strategy on fail-slow detection.
Instead of relying on the framework to output a binary result
(fail-slow or not), the detection tool should describe the likeli-
hood of a drive to fail-slow. With sufficient accuracy, on-site
engineers can focus on the most severe ones. While this may
still leave some fail-slow drives undiscovered, it is acceptable
as they behave like normal performance variations.

4 PERSEUS

With lessons from previous attempts, we propose PERSEUS,
a non-intrusive, fine-grained and general fail-slow detection
framework. The core idea of PERSEUS is building a polyno-
mial regression on the node-level LvT distribution to automat-
ically derive an adaptive threshold for each node. PERSEUS
can use the threshold to formulate fail-slow events and further
use a scoreboard mechanism to single out the drives with
severe fail-slow failures. In this section, we first introduce the
high-level workflow and then discuss the design of each step
at length.

Our dataset can be viewed as a time-series dataset and
each entry has five fields (i.e., avg_latency, avg_throughput,
drive_ID, node_UID, timestamp). Every day, the monitoring
proxy would gather 720 entries (180 minutes× 4 entries/min)
from each drive (as raw dataset) and send them to PERSEUS

for a four-step detection procedure.

4.1 High-Level Workflow
1. Outlier detection. For each node, PERSEUS first collects
all the entries. Then, we use a combination of Principal
Component Analysis (PCA [1]) and Density-Based Spatial
Clustering of Applications with Noise (DBSCAN [43]) to
identify and then discard outlier entries.
2. Building regression model. Based on the clean dataset
(i.e., excluding the outliers), PERSEUS performs a polynomial
regression to obtain the model and uses the prediction upper
bound as a fail-slow detection threshold. Then, PERSEUS
applies the model onto the raw dataset (i.e., including the
outliers) to identify out-of-bound entries and mark them as
slow entries.
3. Identifying fail-slow events. PERSEUS uses a sliding win-
dow and a slowdown ratio to identify consecutive slow entries
and formulate corresponding fail-slow events.
4. Evaluating risk. Based on a risk-score mechanism [25],
PERSEUS estimates the duration and degree of fail-slow
events and assigns each drive a risk score based on daily
accumulated fail-slow events. On-site engineers can then
investigate the cases based on the severity.

4.2 Outlier Detection
Before applying regression models, a necessary pre-process
is to root out noisy samples (i.e., outliers). While the LvT
samples (i.e., <latency, throughput> pairs) are usually clus-
tered together within a node (see RQ3 in §3.5), entries from
fail-slow drives or under normal performance variations (e.g.,
internal GC) can still be deviating. Therefore, before build-
ing a polynomial regression model, we first screen out the
outliers.
Using DBSCAN. Density-based clustering algorithms (mea-
suring the spatial distance) are promising approaches for
identifying the potentially distinctive groups (i.e., normal vs.
slow). Initially, we employ DBSCAN [43] to label outliers.

54 21st USENIX Conference on File and Storage Technologies USENIX Association

Inlier Outlier Fitted curve Upper bound

0

2

4

6

2.5 3.5 4.5 5.5 6.5 7.5

Throughput (log10)

L
a
te

n
cy

 (
m

s)

(a) DBSCAN

0

2

4

6

2.5 3.5 4.5 5.5 6.5 7.5

Throughput (log10)
L

a
te

n
cy

 (
m

s)

(b) PCA+DBSCAN

Figure 8: Outlier detection (§4.2). The figures show the
performance of the regression model based on two outlier
detection schemes: (a) only DBSCAN and (b) PCA prior to
DBSCAN. All data records come from the same node with one
known fail-slow drive during the day.

In a nutshell, DBSCAN groups points that are spatially close
enough—distances between points is smaller than a minimum
value. Note that <latency, throughput> pairs from long-term
or permanent fail-slow drives can be clustered together but far
away from the main cluster. Hence, we only keep one group
with the most points for further modeling.
Adding PCA. Unfortunately, using the DBSCAN to sift
through the raw dataset can have limited effectiveness. Here,
we choose a sample node with one confirmed fail-slow drive
to illustrate the limitation. In Figure 8a, we apply fine-tuned
DBSCAN (outliers in red points) to the node’s daily raw
dataset and fit the rest of the data (grey points) to polynomial
regression (with a fitted curve in blue and a 99.9% predic-
tion upper bound in green dashed line). In this example, the
DBSCAN algorithm only identifies 63.83% of slow entries.

The root cause is that the throughput and latency are posi-
tively correlated. Thus, the samples (i.e., <latency, through-
put> pairs) can be skewed towards a particular direction.
Hence, outliers (i.e., samples from fail-slow drives) can be
mislabeled as inliers (see the black circle in Figure 8a). There-
fore, we leverage Principal Component Analysis (PCA [1])
to transform the coordinates and penalize the outliers perpen-
dicular to the skewed direction in order to reduce mislabeling.
As a result, applying DBSCAN with PCA effectively detects
92.55% of slow entries (see Figure 8b).
Usage of outliers. Recall that in RQ4, we have discussed
that just using binary detection cannot reflect the extent of
slowdown. Therefore, we do not directly use the binary results
of outlier detection, such as simply labeling outliers as slow
entries (i.e., skipping §4.3) or fail-slow events (i.e., skipping
§4.3 and §4.4). Rather, we exclude the outliers to build a
better-fitted model for measuring slowdown degree of entries.

4.3 Regression Model
As normal drives within a node can have similar latency-vs-
throughput mapping (i.e., well clustered together), we can
use a regression model to describe the behavior of a “normal”
drive and delineate the scope of variation for fail-slow detec-
tion. Classic regression models include linear, polynomial,

❶ ❷

0

2

4

6

22:33 22:36 22:39 22:42

Time (H:M)

L
a
te

n
cy

 (
m

s
)

Data Fit. Upp.

(a) Time series of latency

❶ ❷

0
1
2

4

6

8

22:33 22:36 22:39 22:42

Time (H:M)

S
lo

w
d
o
w

n
 r

a
tio

(b) Time series of slowdown ratio

Figure 9: Identifying slowdown event (§4.4). Figure (a)
shows the original (“Data”) time series of drive latency, to-
gether with the corresponding fitted values (“Fit.”) and upper
bounds (“Upp.”) calculated from the regression model. Fig-
ure (b) shows the time series of slowdown ratio by dividing
upper bound by original data. Records with a slowdown ratio
higher than 1 are deemed as slow. The two grey boxes refer
to a latency spike (¶) and a transient slowdown event (·).

and advanced ones like kernel regression. We do not use
linear regression as the latency dependency on throughput
is obviously nonlinear (e.g., see Figure 8). Moreover, ad-
vanced models (e.g., kernel regression) are unnecessary as the
latency-vs-throughput mapping is primarily monotonic (i.e.,
latency increases along with the throughput). Polynomial
regression is preferable as it handles nonlinearity while retain-
ing model parsimony (i.e., achieving the desired goodness of
fit with just enough parameters).

4.4 Identifying Fail-Slow Event
Distinguishing slow entries. After obtaining the regression
model, we can calculate a prediction upper bound to distin-
guish the slow entries, and use it to detect fail-slow events.
For example, a 99.9% upper bound means that 99.9% of the
variations are deemed normal. In practice, we use a combina-
tion of loose (i.e., 95%) and strict (i.e., 99.9%) upper bounds
to avoid overfitting while identifying as many fail-slow drives
as possible.
Formulating events. Next, we use both real and made-up
examples to illustrate how to formulate fail-slow events. Fig-
ure 9a presents the drive latency (grey line), fitted values (blue
line) and the 99.9% upper bound (green line). Slowdown Ra-
tio (SR) is obtained from dividing drive latency by the upper
bound, entry by entry (every 15 seconds). For example, let
a drive’s latency entries in one minute be [15, 20, 25, 10, 5]
and the corresponding upper bound be [5, 5, 5, 5, 5]. The
SR series would be [3, 4, 5, 2, 1]. Figure 9b presents the SR
series of the candidate drive.

Next, we formulate fail-slow events by using a sliding
window (similar to Attempt 2 in §3.3). The sliding window
has a fixed length (i.e., a minimum span) and starts at the first
entry. Within the span, if a certain proportion of SR series
has a median SR value exceeding the threshold, PERSEUS
would record that the drive has encountered a fail-slow event
within the span and see if the event should be extended to the
next entry.

USENIX Association 21st USENIX Conference on File and Storage Technologies 55

Slowness
Duration (min)

Long-term Moderate Temporal
≥120 [60, 120) [30, 60)

Severe (SR≥5) Extreme High Moderate
Moderate (SR∈[2, 5)) High Moderate Low

Mild (SR∈[1, 2)) Moderate Low Minor

Table 3: Fail-slow risk matrix (§4.5). PERSEUS assigns
risk levels based on daily accumulated slowdown events. For
example, drives at extreme risk for one day should experience
a long-term slowdown (for 120-180 minutes in total) with a
severe slowdown ratio (SR) on average (SR≥5).

As for the example above (i.e., an SR series of [3, 4, 5, 2,
1]), we set the minimum span as one minute (i.e., four entries),
the proportion to be 50%, and the threshold to be 1. Then, the
first four SR entries can form a fail-slow event as more than
50% of the SR values (i.e., 3, 4, 5, 2) have a higher median
(i.e., 3.5) than the threshold (i.e., 1). For the same reason, this
fail-slow event should include the fifth entry (i.e., 1).

In practice, we set the minimum span as 5 minutes, the
proportion to be 50%, and the threshold to be 1, meaning the
event should be slower than the upper bound. Our rationale
is to only formulate fail-slow events under a persistent series
of slowdown entries as one-off spike entries are likely to be
acceptable performance variations. In Figure 9b, while both
¶ and · have high SR values, only · would be marked as a
fail-slow event.

4.5 Risk Score
Recall our discussion on RQ4 and the usage of outlier detec-
tion, we also do not simply rely on the existence of fail-slow
events to label the corresponding drive as “fail-slow.” In fact,
if we simply mark drives with one fail-slow event as fail-slow,
we can easily obtain 6K such “fail-slow” cases on a bad day.

Therefore, we adopt the idea of establishing a risk score
mechanism from performance regression testing [25]. In
Table 3, slowdown duration and severity are classified into
different risk levels (in shades of grey). For example, in our
case, according to the daily slowdown span, the duration of
fail-slow is classified into temporal (from 30 to 60 minutes),
moderate (from 60 to 120 minutes) and long-term (from 120
to 180 minutes). Besides, based on the average slowdown
ratio of the day, the slowness of fail-slow is evaluated as mild
(1≤SR<2), moderate (2≤SR<5), or severe (SR≥5).

To examine fail-slow, a per-drive risk score is calculated
by assigning different weights to risk levels:

Risk Score = Nextreme×100 + Nhigh×25 +

Nmoderate×10 + Nlow×5+ Nminor×1
Nextreme refers to #days at extreme risk level.

(1)

If a drive whose risk scores exceed a minimum value (i.e.,
min_score) within the most recent N days, the drive will be
recommended for immediate isolation and hardware inspec-
tion. Note that all drives in our fleet, HDDs and SSDs, use
the same scoring mechanism.

Service Device #Node #Fail-slow
Stream processing NVMe SSD 47 1
Table storage NVMe SSD 87 1
Big data NVMe SSD 119 1
Data warehouse NVMe SSD 663 1
Database NVMe SSD 96 2
E-commerce NVMe SSD 223 6
Log service SATA HDD 34 36
Object storage SATA HDD 1426 42
Block storage NVMe SSD 734 225
Total - 3429 315

Table 4: Test dataset size (§5.1).

5 Evaluation
5.1 Fail-slow Benchmark
One significant challenge of testing fail-slow detection frame-
works is the lack of a benchmark. Existing fail-slow
datasets [19, 36] only record high-level administrative in-
formation of fail-slow incidents and thus cannot be used for
evaluation. Therefore, we build and release a large-scale fail-
slow detection benchmark based on verified fail-slow drives
and production-level traces.
Benchmark size. Table 4 presents a summary of our bench-
mark. Specifically, our dataset includes 886 million opera-
tional traces of 15 consecutive days from 41K drives and 25
clusters. Among them, 315 drives (237 SSDs and 78 HDDs)
are verified fail-slow and thus labeled as positive; the rest
are normal peer drives from the same clusters. Among the
verified cases, 304 are detected by PERSEUS. All fail-slow
drives are verified by either on-site engineers or manufac-
turers. Their root causes include software scheduling bugs,
hardware defects, and environmental factors.
Workload heterogeneity. The benchmark covers 9 major
services (see Table 4). These services can have drastically
different I/O accessing patterns and subsequently various LvT
distributions.
Benchmark setup. In our dataset, 252 fail-slow drives are
caused by software scheduling (see Section 6.1). To avoid po-
tential concerns that PERSEUS may be specific to the Alibaba
stack, we set up two scopes: (1) the full test dataset, and (2) a
subset excluding traces from clusters with software-induced
fail-slow drives. We only show results with the highest evalu-
ation scores in Table 5 and Table 7.

5.2 Test Candidates
We compare PERSEUS with three models based on our early
explorations, namely threshold filtering (§3.2), peer evalua-
tion (§3.3), and the IASO-based model (§3.4). In this section,
we introduce their implementation and configuration details.

5.2.1 Threshold Filtering
We include both statistical and empirical thresholds.
Statistical bound. We derive the following statistics as the
upper bounds: (1) an X th percentile where X ranges from 75

56 21st USENIX Conference on File and Storage Technologies USENIX Association

to 99; or (2) an interquartile range (IQR = 3rd_quartile−
1st_quartile) [30]. Drives are classified as fail-slow if their
median latency during the three-hour monitoring exceeds the
upper bound.
Empirical bound. We manually set a latency upper bound
for each node setup of each service based on the Service Level
Objectives (SLOs) or the suggestions from on-site engineers
(e.g., 300 µs for the all-flash setup in block storage service).

5.2.2 Peer Evaluation
Recall that the peer evaluation approach identifies a fail-slow
drive if its latency is at least X times that of the node median
for a minimum duration (denoted min_dur). To obtain the
best performance, we explore different sets of parameters
(i.e., X from 1.5 to 3 and min_dur from 0 to 150 minutes).

5.2.3 IASO-Based Model
We re-implement IASO [36] strictly following its original
design and only modify parts when necessary. Since IASO
detects fail-slow on a per-node basis, we label the results as
true positive if the node contains a fail-slow drive. We list key
implementation details as follows.
Epoch. The size of each epoch, instead of 5 seconds, is ad-
justed to 15 seconds (the finest granularity of our raw dataset).
Timeout. The timeout signals are converted to the num-
ber of slow drives in a node. During each epoch, the slow
drives refer to the drives whose latency records (i) exceed
pre-defined empirical bounds (Attempt 1 in §3.2) or (ii) are at
least 2× the median latency of all drives from the same node
(Attempt 2 in §3.3). The response is set as the total number
of drives in each node.
DBSCAN configuration. IASO records peer scores (the
higher the slower) among nodes, and only keeps one out-
lier with the highest score for its further mitigation procedure.
Here, since we only evaluate the detection part of IASO, we
retain all outliers classified by the DBSCAN and set different
score thresholds to fine-tune IASO.

5.2.4 PERSEUS

The deployed PERSEUS adopts outlier detection (§4.2) and
uses the combination of two prediction upper bounds (i.e.,
95% and 99.9%) to formulate fail-slow events (§4.4). The
monitoring period (N) is set as 15 days for both upper bounds,
and the alert score (min_score) is set as 90 for the former and
40 for the latter (§4.5). Note that PERSEUS uses the same set
of parameters for all node configurations (e.g., all-flash and
hybrid) across different services (e.g., block/object storage
and big data).

5.3 Evaluation Metrics
We adopt three evaluation metrics: precision rate, recall rate,
and Matthews Correlation Coefficient (MCC [33]). The preci-
sion indicates the percentage of drives identified by a method
is indeed a fail-slow one. The recall is the percentage of real
fail-slow drives identified by a method. Since our test dataset

Metric Thresh- Thresh- Peer IASO- PERSEUS-
Stat Emp Eval Based Deployed

Full-set
Precision 1.00 1.00 0.98 0.48 0.99

Recall 0.52 0.02 0.57 0.24 1.00
MCC 0.72 0.14 0.74 0.32 0.99

Subset (excluding software-induced)
Precision 1.00 1.00 1.00 0.45 0.94

Recall 0.71 0.09 0.65 0.61 1.00
MCC 0.84 0.30 0.80 0.52 0.97

Table 5: Overall evaluation results (§5.4). The table shows
the best evaluation scores of threshold filtering based on
statistical (ThreshStat) and empirical (ThreshEmp) bounds,
peer evaluation (PeerEval), and the IASO-based model. For
PERSEUS, we list the results of the deployed version. Each
method is evaluated on both the full-set and the subset.

is highly unbalanced (i.e., the positive-to-negative ratio is
1:137), we further adopt MCC as it evaluates binary classi-
fication models more fairly on imbalanced datasets and can
offer a more informative and convincing score compared to
other widely adopted metrics like accuracy and F1-score [12].

5.4 Evaluation Results
Table 5 summarizes the performance results. For previous
attempts (Thresh-Stat to IASO-Based columns), we choose
the best performance. For PERSEUS, we use the results of the
deployed version. The upper half includes the results from the
full benchmark tests and the lower half includes results from
the benchmark excluding the scheduling-induced failures.

Threshold-based. We can see that, in both the full-set and
the subset, the two threshold-based approaches can achieve
a precision of 100%. However, the recalls are subpar, espe-
cially the empirical threshold method. This is understandable
as strict thresholds, on the one hand, can expose extremely
slow drives which are highly likely to be caused by fail-slow
failures. On the other hand, such methods can leave drives
with only mild fail-slow symptoms undiscovered.

Peer-evaluation. Using peer evaluation to detect fail-slow
failures also yields high precision but low recall. The reason
is that it generally adopts an adaptive threshold (i.e., X times
the node median) to formulate fail-slow events. Thus, it faces
the same problem as threshold-based methods.

IASO-based. While we have tried our best effort on refac-
toring and fine-tuning IASO, its performance is rather disap-
pointing. With an MCC score of 0.32, IASO even falls behind
using a simple statistical threshold or using a peer-evaluation
method. We believe there are two aspects of reasons. First,
IASO heavily relies on software timeouts which can not be
simply replaced with other metrics (e.g., node-level slow
drives). Second, its algorithm is designed for node-level de-
tection where a finer grained event (e.g., a fail-slow drive)
may not trigger enough alerts.

USENIX Association 21st USENIX Conference on File and Storage Technologies 57

0.46 0.81 0.86 0.95 0.90 1 1 1 1 1 1 1 1

0.46 0.81 0.86 0.96 0.97 1 1 1 1 1 1 1 1

0.46 0.81 0.86 0.96 0.97 1 1 1 1 1 1 1 1

0.46 0.81 0.86 0.96 0.97 0.99 1 1 1 1 1 1 1

0.46 0.81 0.86 0.96 0.97 0.99 1 1 1 1 1 1 1

0.46 0.81 0.86 0.96 0.97 0.99 1 1 1 1 1 1 1

1

3

5

7

10

15

L
a
st

 N
 d

a
y
(s

)

(a) Precision

0.96 0.95 0.90 0.62 0.23 0.20 0.19 0.19 0.16 0.13 0.09 0.09 0.09

0.96 0.95 0.95 0.94 0.92 0.71 0.65 0.51 0.21 0.18 0.17 0.17 0.16

0.96 0.95 0.95 0.95 0.94 0.89 0.80 0.67 0.63 0.58 0.56 0.20 0.19

0.96 0.95 0.95 0.95 0.94 0.92 0.87 0.76 0.70 0.64 0.61 0.58 0.57

0.96 0.95 0.95 0.95 0.94 0.93 0.91 0.87 0.81 0.74 0.68 0.64 0.62

0.96 0.95 0.95 0.95 0.95 0.94 0.93 0.91 0.88 0.86 0.82 0.77 0.71

1

3

5

7

10

15

L
a
st

 N
 d

a
y(

s)

(b) Recall

0.66 0.88 0.88 0.77 0.46 0.45 0.43 0.43 0.40 0.36 0.30 0.30 0.30

0.66 0.88 0.90 0.95 0.94 0.84 0.81 0.71 0.45 0.43 0.42 0.41 0.40

0.66 0.88 0.90 0.95 0.95 0.94 0.89 0.82 0.79 0.76 0.75 0.45 0.43

0.66 0.88 0.90 0.95 0.95 0.96 0.93 0.87 0.84 0.80 0.78 0.76 0.75

0.66 0.88 0.90 0.95 0.95 0.96 0.95 0.93 0.90 0.86 0.82 0.80 0.78

0.66 0.88 0.90 0.95 0.96 0.97 0.96 0.96 0.94 0.92 0.91 0.87 0.84

1

3

5

7

10

15

1 5 10 15 20 30 40 50 60 70 80 90 100

Risk score threshold (min_score)

L
a
st

 N
 d

a
y(

s)

(c) MCC

0.0

0.2

0.4

0.6

0.8

1.0

0.751.001.25

x

y

Figure 10: min_score and N of PERSEUS (§5.5). The
heatmaps show evaluation scores of PERSEUS-p999 in Ta-
ble 7 under different min_score and N. The lighter the color,
the higher the score, the better the result.

PERSEUS. Table 5 shows that PERSEUS outperforms all
previous attempts. The high precision and recall indicate
that PERSEUS can successfully detect all fail-slow drives
while rarely mislabeling normal as fail-slow. Therefore, we
conclude that PERSEUS achieves our design goals as a fine-
grained (per-drive), non-intrusive (no code changes), general
(same set of parameters for different setups) and accurate
(high precision and recall) fail-slow detection framework.

5.5 Effectiveness of PERSEUS Design
Now, we take a closer look at the effectiveness of procedures
and sensitivity of parameters in PERSEUS. In Table 6, we
list the main options or ranges of configurable parameters in
PERSEUS. Next, we discuss the effectiveness of PERSEUS’s
procedures by enabling or disabling particular functionalities
and explore different sets of parameters. The evaluation re-
sults are listed in Table 7. Note that the deployed version uses
a combination of p95 and p999 upper bounds.

Outlier detection. By disabling the outlier detection, we can
see that the precision is approximately the same, while the
recall plummets to only 0.51. This indicates that, without
outlier detection, PERSEUS may fail to distinguish samples
from fail-slow drives, thus yielding a low recall.

PCA. Surprisingly, if we enable outlier detection but disable
PCA, we find out the performance becomes even worse than

Parameter Range Description
S1: Outlier detection (§4.2)

PCA On/Off
Transform the coordinates w.r.t. the
principal components.

DBSCAN On/Off Density-based outlier detection.

S3: Identifying fail-slow event (§4.4)

X 95∼99.9
Use the X% prediciton upper bound as
the latency upper bound.

S4: Evaluating risk (§4.5)
min_score 1∼100 Risk score threshold.

N 1∼15
Evaluate the risk score of the most
recent N days.

Table 6: Evaluating PERSEUS’s design choices (§5.5).
The table summarizes the parameter settings of evaluating
PERSEUS’s design choices. PCA and DBSCAN are switched
on and off to demonstrate their effectiveness.

Metric w/o w/o p95 p99 p999 Deployed
Outlier PCA

Full-set
Precision 0.98 0.55 0.99 1.00 1.00 0.99

Recall 0.51 0.43 0.99 0.93 0.93 1.00
MCC 0.71 0.49 0.99 0.96 0.96 0.99

Subset (excluding software-induced)
Precision 0.95 0.36 0.94 0.98 1.00 0.94

Recall 0.82 0.91 0.95 0.92 0.95 1.00
MCC 0.88 0.57 0.95 0.95 0.98 0.97

Table 7: Evaluation results of PERSEUS’s design choices
in Table 6 (§5.5). Only results based on the best sets of
parameters with the highest MCC scores are shown.

simply without outlier detection. This experiment confirms
the importance of correcting mislabeling samples via PCA.

Prediction upper bounds. We set various prediction upper
bounds from p95 to p999. The optimal one on the full-set
is the p95 upper bound, with nearly perfect precision and
recall both at 0.99. For the subset, a stricter bound of p999
is preferred as fail-slow in the subset is usually with severe
slowdowns. In practice, the deployed version uses a combina-
tion of p95 and p999 upper bounds to strike a better balance
on both benchmarks.

Risk score mechanism. Figure 10 evaluates the scoring
mechanism. With a larger min_score and N, the precision
usually increases while the recall decreases. This is because,
as N becomes larger, drives—that have occasional but less se-
vere slowdowns—could be misidentified with enough scores
counted from more days.
Evaluating the read performance. Fail-slow failures im-
pact the write performance more often than the read. Among
the 315 fail-slow drives in our dataset, 49 are fail-slow in
both write and read while 223 are only fail-slow in the write.
Unfortunately, we do not have read traces of the remaining
43 fail-slow ones.

58 21st USENIX Conference on File and Storage Technologies USENIX Association

Runtime overhead. On Intel Xeon 8-core CPU 2.5GHz
with 16GB RAM, the per-node execution time of PERSEUS
is measured as 0.21±0.14 seconds. With low overheads,
PERSEUS can detect fail-slow drives in tens of thousands of
nodes each day on a single machine.

5.6 Benefit of Deployment

The most direct benefit of deploying PERSEUS is reducing tail
latency. By isolating the fail-slow, node-level 95th, 99th and
99.99th write latencies are reduced by 30.67% (±10.96%),
46.39% (±14.84%), and 48.05% (±15.53%), respectively.

6 Root Cause Analysis
We further analyze the root causes of the 315 fail-slow drives
in the test dataset. Among them, 216 SSDs and 36 HDDs
are impacted by ill-implemented software scheduling. The
remaining 42 HDDs and 21 SSDs are verified by our on-site
engineers as hardware-related fail-slow failures and further
sent back to vendors for detailed analysis. Due to the lengthy
diagnosis process, we only obtain root causes for 15 drives (9
HDDs and 6 SSDs).

6.1 Ill-Implemented Scheduler

6.1.1 Case 1: In Open-Channel SSD Cluster

Symptom. In two clusters, PERSEUS has identified a total
of 216 fail-slow drives constantly showing abnormal perfor-
mance. This is unconventional as hardware-related fail-slow
occurrences are usually rare and independent. Further investi-
gation reveals that all detected fail-slow drives are with the
same logical IDs, i.e., disk1 and disk2. After checking the
per-node latency time series, we discover that the latency of
individual drives in these nodes is positively correlated with
their logical IDs, i.e., latency level: disk1 > disk2 > · · · >
disk12. In other words, among those nodes, disk1 is always
the slowest, followed by disk2 and so on.
Root cause. Each node in these two clusters is equipped with
12 open-channel SSDs (OC SSDs), whose Flash Translation
Layer (FTL) is managed by the host. For each node, the host
allocates 12 CPU cores to manage 12 OC SSDs, respectively
(e.g., core0-core11 for SSD0-SSD11). The root cause is that
the OS scheduler places system tasks on CPU cores by do-
main (a domain includes 6 CPU cores). Upon receiving a new
system task (e.g., ps command), the scheduler first checks if
the current core and last-selected core are idle. If not, start-
ing from the first core in the domain, the scheduler iterates
through all cores in order and attempts to preempt a core for
running the task. As a result, OC drives with smaller IDs
(e.g., disk1) are more likely to be preempted and encounter
fail-slow failures.
Fix. We modify the scheduler to no longer preempt the CPU
cores assigned to the OC SSDs. After the fix, OC SSDs in
these clusters no longer suffer fail-slow failures.

6.1.2 Case 2: In All-HDD Cluster

Symptom. In one cluster, PERSEUS has identified 36 fail-
slow HDDs. This cluster is of an all-HDD setup with 76
HDDs in each node. There are three interesting facts about
the distribution of the fail-slow HDDs from this cluster. First,
the fail-slow failures always show up in fixed combinations of
pairs. For example, if there are two fail-slow HDDs in a node,
they would be disk0 and disk75. If there are 6 fail-slow HDDs,
they would be disk0−2 and disk73−75. Second, all fail-slow
HDDs are experiencing a similar level of slowdown. Third,
in each node, the number of fail-slow drives is always twice
the number of offline drives.

Root cause. In each node of this cluster, the OS assigns each
HDD a thread to manage its I/O. The assignment follows a
simple algorithm:

Thread_ID = Disk_ID mod #Drives. (2)

Therefore, as each node has 76 HDDs, normally thread0
manages disk0 and so on. However, when a drive is put
offline, the number of drives changes and the assignment acts
accordingly. For example, assume disk20 crashes and the total
number of drives now becomes 75. Then, disk0 and disk75
would share thread0 (0 ≡ 75 mod 75) and thus suffer from
fail-slow failures due to I/O contention. Similarly, two or
three drives crash can result in corresponding two or three
pairs of fail-slow occurrences.

Fix. We modify the assignment policy to only allow one
HDD per thread and thus avoid the fail-slow occurrences.

6.2 Hardware Defects
Bad sector. Bad sectors are usually an artifact of physical
damage (e.g., manufacturing defect or scratched by the read-
/write head) [40]. To deal with them, disk firmware maintains
a pool of spare sectors to reallocate the original data on bad
sectors. Moreover, firmware remaps the logical address of
bad sectors to the physical address of spare sectors. Upon
host requests on an unmarked bad sector, the disk will suffer
from long seek time (i.e., time spent for reallocating data).
According to field events, three HDDs are reported to have
a large number of bad sectors, resulting in repeated remap-
ping and reallocating, and obviously fail-slow failures. Note
that one can not simply infer the root causes based on the
occurrences of such errors. The reason is that the hardware
defects are usually neither necessary nor sufficient conditions
for fail-slow failures.
Rotor eccentricity. Disk motor spins the platter at high speed
(e.g., 7200 RPM for consumer-level HDDs). If the rotor in
the spindle motor rotates with eccentricity, it will cause a lot
of noise and vibration. For such disks, the read/write heads
would frequently fail to locate targeted positions, resulting in
considerable I/O delay. Two fail-slow HDDs are reported to
suffer from slight rotor eccentricity in our field events.

USENIX Association 21st USENIX Conference on File and Storage Technologies 59

Bad capacitors. SSD adopts a small amount of DRAM as
an internal write-back cache to boost both read and write
performance. If the DRAM capacitors are malfunctioning,
SSD will be forced to stop using the cache since it is volatile
(i.e., data loss upon power down), causing severe performance
degradation. Instead, SSDs now only ACK after data have
been directly flushed to the NAND successfully, incurring
long latencies on writes. In total, four SSDs are found to have
bad capacitors.
Read-only mode. Drives with severe errors (e.g., in the face
of too many bad sectors) are reset to (temporal) read-only
mode to prevent further data loss. Upon read-only mode,
drives are blocked from executing any write command. As a
result, two SSDs are found to be stuck in read-only mode.

6.3 Environment

Temperature and power are common sources of fail-slow
incidents [19, 48]. According to field events, one fail-slow
HDD suffered from temperature throttling due to high envi-
ronmental temperature. Another three HDDs were related to
insufficient power supply events.

7 Limitation
Multiple fail-slow occurrences. PERSEUS leverages an im-
portant precondition that fail-slow failures should be rare in
the field. However, if a key component on the critical data
path (e.g., HBA card) breaks down, all drives would be im-
pacted and result in severe delays. In this case, PERSEUS may
not be able to detect the performance anomalies as the LvT
distribution can be skewed for all drives. At the moment, we
are investigating the possibility to perform inter-node LvT
distribution to enhance PERSEUS’s ability on discovering
multiple fail-slow occurrences within the same node.

Generalizability. Utilizing the LvT distribution to identify
fail-slow drives also depends on the fact that all drives within
the node have the same drive models and similar workloads.
In our storage systems, drives have the same configuration,
and multiple levels of load balancing assure that the workload
on each drive is similar within the same node. While this
is a common practice for large-scale storage systems [30,
32, 35, 48], it might not be the case for small-scale servers
(e.g., private cloud), where drives in the same node can have
drastically different workloads and configurations. Under
such circumstances, the accuracy of PERSEUS can be affected.

Comprehensiveness. PERSEUS currently uses traces from
9PM to 12AM each day to reduce interference (see Sec-
tion 2.2). It is possible that some fail-slow failures could
only be triggered during a particular time window or under
heavier workloads. We are working on designing a more effi-
cient daemon to collect traces during busy hours for PERSEUS.
Moreover, we are exploring other device-level metrics to en-
rich what PERSEUS can take as key inputs.

8 Related Work
Fail-slow failure study and diagnosis. As an emerging
failure mode, fail-slow failure has received growing atten-
tion from academia and industry. Early literature mainly
focuses on diagnosing fail-slow as an overlooked failure
mode [16, 19, 24]. For example, Huang et al. define gray
failure in the cloud with an abstract model [24]. Do et al. [16]
measure system-level performance degradation brought by
limpware, and address the necessity to develop limpware-
tolerant systems. Gunawi et al. [19] perform qualitative analy-
sis on 101 hardware-incident reports from various institutions
and reveal the underlying fail-slow root causes in various
types of hardware. Our motivational study in Section 2.3
specifically evaluates the fail-slow impact on drive perfor-
mance (i.e., I/O latency). Moreover, our work provides a
more diverse root cause analysis on fail-slow in storage de-
vices.
Fail-slow failure detection. There have been a few studies
addressing fail-slow detection and localization [4, 23, 29,
36, 45, 50]. For example, Panda et al. [36] convert software-
level timeout signals into fail-slow metrics and adopt peer
evaluation to detect fail-slow nodes. Huang et al. design
Panorama to detect production failures by increasing the in-
site observability [23]. Different from the above, PERSEUS
detects fail-slow specifically in storage devices and is merely
based on performance metrics like latency and throughput.

9 Conclusion
In this paper, we first share our unsuccessful attempts in
developing robust and non-intrusive fail-slow detection for
large-scale storage systems. We then introduce the design of
PERSEUS, which utilizes classic machine learning techniques
and scoring mechanisms to achieve effective fail-slow detec-
tion. Since deployment, PERSEUS has covered around 250K
drives and successfully identified 304 fail-slow drives.

Acknowledgements
We would like to thank our shepherd Sangyeun Cho, and
the anonymous reviewers for their insightful comments
and suggestions. This research was supported by NSFC
(62102424, 62072306), the Alibaba Innovation Research
(AIR) program, National Key R&D Program of China
(2022YFB4500302), Program of Hunan Postdoc Innovation
(2021RC2069), and Program of Shanghai Academic Research
Leader (20XD1402100). The authors would also like to thank
Amber Bi and Shiming Wang for their feedbacks on early
versions of this paper.

60 21st USENIX Conference on File and Storage Technologies USENIX Association

References
[1] Hervé Abdi and Lynne J. Williams. Principal component

analysis. WIREs Computational Statistics, 2010.

[2] Ramnatthan Alagappan, Aishwarya Ganesan, Yuvraj
Patel, Thanumalayan Sankaranarayana Pillai, Andrea C.
Arpaci-Dusseau, and Remzi H. Arpaci-Dusseau. Corre-
lated crash vulnerabilities. In Proceedings of the 12th
USENIX Symposium on Operating Systems Design and
Implementation (OSDI), 2016.

[3] Jacob Alter, Ji Xue, Alma Dimnaku, and Evgenia
Smirni. Ssd failures in the field: Symptoms, causes,
and prediction models. In Proceedings of the Interna-
tional Conference for High Performance Computing,
Networking, Storage and Analysis (SC), 2019.

[4] Behnaz Arzani, Selim Ciraci, Luiz Chamon, Yibo Zhu,
Hongqiang (Harry) Liu, Jitu Padhye, Boon Thau Loo,
and Geoff Outhred. 007: Democratically finding the
cause of packet drops. In Proceedings of the 15th
USENIX Symposium on Networked Systems Design and
Implementation (NSDI), 2018.

[5] Lakshmi N. Bairavasundaram, Andrea C. Arpaci-
Dusseau, Remzi H. Arpaci-Dusseau, Garth R. Goodson,
and Bianca Schroeder. An analysis of data corruption
in the storage stack. In Proceedings of the 6th USENIX
Conference on File and Storage Technologies (FAST),
2008.

[6] Lakshmi N. Bairavasundaram, Garth R. Goodson,
Shankar Pasupathy, and Jiri Schindler. An analysis of
latent sector errors in disk drives. In Proceedings of the
2007 ACM International Conference on Measurement
and Modeling of Computer Systems (SIGMETRICS),
2007.

[7] Lakshmi N. Bairavasundaram, Meenali Rungta, Nitin
Agrawa, Andrea C. Arpaci-Dusseau, Remzi H. Arpaci-
Dusseau, and Michael M. Swift. Analyzing the effects
of disk-pointer corruption. In Proceedings of the 38th
Annual IEEE/IFIP International Conference on Depend-
able Systems and Networks (DSN), 2008.

[8] Yu Cai, Yixin Luo, Saugata Ghose, and Onur Mutlu.
Read disturb errors in mlc nand flash memory: Charac-
terization, mitigation, and recovery. In Proceedings of
the 45th Annual IEEE/IFIP International Conference
on Dependable Systems and Networks (DSN), 2015.

[9] Tushar Deepak Chandra and Sam Toueg. Unreliable
failure detectors for reliable distributed systems. Journal
of the ACM, 1996.

[10] Wei Chen, S. Toueg, and M. Kawazoe Aguilera. On the
quality of service of failure detectors. In Proceedings
of the 30th Annual IEEE/IFIP International Conference
on Dependable Systems and Networks (DSN), 2000.

[11] Wooseong Cheong, Chanho Yoon, Seonghoon Woo,
Kyuwook Han, Daehyun Kim, Chulseung Lee, Youra
Choi, Shine Kim, Dongku Kang, Geunyeong Yu, Jae-
hong Kim, Jaechun Park, Ki-Whan Song, Ki-Tae Park,
Sangyeun Cho, Hwaseok Oh, Daniel D.G. Lee, Jin-
Hyeok Choi, and Jaeheon Jeong. A flash memory con-
troller for 15µs ultra-low-latency ssd using high-speed
3d nand flash with 3µs read time. In Proceedings of
the IEEE International Solid State Circuits Conference
(ISSCC), 2018.

[12] David Chicco and Giuseppe Jurman. The advantages of
the matthews correlation coefficient (mcc) over f1 score
and accuracy in binary classification evaluation. BMC
Genomics, 2020.

[13] Brian Choi, Randal Burns, and Peng Huang. Under-
standing and dealing with hard faults in persistent mem-
ory systems. In Proceedings of the 16th European Con-
ference on Computer Systems (EuroSys), 2021.

[14] Allen Clement, Edmund Wong, Lorenzo Alvisi, and
Mirco Marchetti. Making byzantine fault tolerant sys-
tems tolerate byzantine faults. In Proceedings of the 6th
USENIX Symposium on Networked Systems Design and
Implementation (NSDI), 2009.

[15] GW Corder and DI Foreman. Nonparametric Statistics:
A Step-by-Step Approach. Wiley, 2014.

[16] Thanh Do, Mingzhe Hao, Tanakorn Leesatapornwongsa,
Tiratat Patana-anake, and Haryadi S. Gunawi. Limplock:
Understanding the impact of limpware on scale-out
cloud systems. In Proceedings of the 4th Annual Sym-
posium on Cloud Computing (SoCC), 2013.

[17] Norman R Draper and Harry Smith. Applied Regression
Analysis. Wiley, 1998.

[18] Haryadi S. Gunawi, Mingzhe Hao, Riza O. Suminto,
Agung Laksono, Anang D. Satria, Jeffry Adityatama,
and Kurnia J. Eliazar. Why does the cloud stop com-
puting? lessons from hundreds of service outages. In
Proceedings of the 7th ACM Symposium on Cloud Com-
puting (SoCC), 2016.

[19] Haryadi S. Gunawi, Riza O. Suminto, Russell Sears,
Casey Golliher, Swaminathan Sundararaman, Xing Lin,
Tim Emami, Weiguang Sheng, Nematollah Bidokhti,
Caitie McCaffrey, Gary Grider, Parks M. Fields, Kevin
Harms, Robert B. Ross, Andree Jacobson, Robert Ricci,
Kirk Webb, Peter Alvaro, H. Birali Runesha, Mingzhe
Hao, and Huaicheng Li. Fail-slow at scale: Evidence
of hardware performance faults in large production sys-
tems. In Proceedings of the 16th USENIX Conference
on File and Storage Technologies (FAST), 2018.

[20] Trinabh Gupta, Joshua B. Leners, Marcos K. Aguilera,
and Michael Walfish. Improving availability in dis-
tributed systems with failure informers. In Proceedings

USENIX Association 21st USENIX Conference on File and Storage Technologies 61

of the 10th USENIX Symposium on Networked Systems
Design and Implementation (NSDI), 2013.

[21] Shujie Han, Patrick P. C. Lee, Fan Xu, Yi Liu, Cheng
He, and Jiongzhou Liu. An in-depth study of correlated
failures in production SSD-based data centers. In Pro-
ceedings of the 19th USENIX Conference on File and
Storage Technologies (FAST), 2021.

[22] Mingzhe Hao, Gokul Soundararajan, Deepak
Kenchammana-Hosekote, Andrew A. Chien, and
Haryadi S. Gunawi. The tail at store: A revelation
from millions of hours of disk and ssd deployments. In
Proceedings of the 14th USENIX Conference on File
and Storage Technologies (FAST), 2016.

[23] Peng Huang, Chuanxiong Guo, Jacob R. Lorch, Lidong
Zhou, and Yingnong Dang. Capturing and enhancing in
situ system observability for failure detection. In Pro-
ceedings of the 13th USENIX Symposium on Operating
Systems Design and Implementation (OSDI), 2018.

[24] Peng Huang, Chuanxiong Guo, Lidong Zhou, Jacob R.
Lorch, Yingnong Dang, Murali Chintalapati, and Ran-
dolph Yao. Gray failure: The achilles’ heel of cloud-
scale systems. In Proceedings of the 16th Workshop on
Hot Topics in Operating Systems (HotOS), 2017.

[25] Peng Huang, Xiao Ma, Dongcai Shen, and Yuanyuan
Zhou. Performance regression testing target prioritiza-
tion via performance risk analysis. In Proceedings of the
36th International Conference on Software Engineering
(ICSE), 2014.

[26] Volodymyr Kuznetsov, Vitaly Chipounov, and George
Candea. Testing Closed-Source binary device drivers
with DDT. In Proceedings of the 2010 USENIX Annual
Technical Conference (USENIX ATC), 2010.

[27] Joshua B. Leners, Hao Wu, Wei-Lun Hung, Marcos K.
Aguilera, and Michael Walfish. Detecting failures in
distributed systems with the falcon spy network. In
Proceedings of the 23rd ACM Symposium on Operating
Systems Principles (SOSP), 2011.

[28] Jiaxin Li, Yuxi Chen, Haopeng Liu, Shan Lu, Yiming
Zhang, Haryadi S. Gunawi, Xiaohui Gu, Xicheng Lu,
and Dongsheng Li. Pcatch: Automatically detecting
performance cascading bugs in cloud systems. In Pro-
ceedings of the 13th European Conference on Computer
Systems (EuroSys), 2018.

[29] Chang Lou, Peng Huang, and Scott Smith. Understand-
ing, detecting and localizing partial failures in large
system software. In Proceedings of the 17th USENIX
Symposium on Networked Systems Design and Imple-
mentation (NSDI), 2020.

[30] Ruiming Lu, Erci Xu, Yiming Zhang, Zhaosheng Zhu,
Mengtian Wang, Zongpeng Zhu, Guangtao Xue, Minglu
Li, and Jiesheng Wu. NVMe SSD failures in the field:

the Fail-Stop and the Fail-Slow. In In Proceedings of the
2022 USENIX Annual Technical Conference (USENIX
ATC 22), 2022.

[31] Ao Ma, Fred Douglis, Guanlin Lu, Darren Sawyer,
Surendar Chandra, and Windsor Hsu. RAIDShield:
Characterizing, monitoring, and proactively protecting
against disk failures. In Proceedings of the 13th USENIX
Conference on File and Storage Technologies (FAST),
2015.

[32] Stathis Maneas, Kaveh Mahdaviani, Tim Emami, and
Bianca Schroeder. A study of SSD reliability in large
scale enterprise storage deployments. In Proceedings
of the 18th USENIX Conference on File and Storage
Technologies (FAST), 2020.

[33] Brian Matthews. Comparison of the predicted and
observed secondary structure of t4 phage lysozyme.
Biochimica et Biophysica Acta (BBA)-Protein Structure,
1975.

[34] Justin Meza, Qiang Wu, Sanjev Kumar, and Onur Mutlu.
A large-scale study of flash memory failures in the field.
In Proceedings of the 2015 ACM International Con-
ference on Measurement and Modeling of Computer
Systems (SIGMETRICS), 2015.

[35] Iyswarya Narayanan, Di Wang, Myeongjae Jeon, Bikash
Sharma, Laura Caulfield, Anand Sivasubramaniam, Ben
Cutler, Jie Liu, Badriddine Khessib, and Kushagra Vaid.
Ssd failures in datacenters: What? when? and why? In
Proceedings of the 9th ACM International on Systems
and Storage Conference (SYSTOR), 2016.

[36] Biswaranjan Panda, Deepthi Srinivasan, Huan Ke,
Karan Gupta, Vinayak Khot, and Haryadi S. Gunawi.
Iaso: A fail-slow detection and mitigation framework
for distributed storage services. In Proceedings of the
2019 USENIX Annual Technical Conference (USENIX
ATC), 2019.

[37] Thanumalayan Sankaranarayana Pillai, Ramnatthan Ala-
gappan, Lanyue Lu, Vijay Chidambaram, Andrea C.
Arpaci-Dusseau, and Remzi H. Arpaci-Dusseau. Appli-
cation crash consistency and performance with CCFS.
In Proceedings of the 15th USENIX Conference on File
and Storage Technologies (FAST), 2017.

[38] Vijayan Prabhakaran, Lakshmi N. Bairavasundaram,
Nitin Agrawal, Haryadi S. Gunawi, Andrea C. Arpaci-
Dusseau, and Remzi H. Arpaci-Dusseau. Iron file sys-
tems. In Proceedings of the 20th ACM Symposium on
Operating Systems Principles (SOSP), 2005.

[39] Matthew J. Renzelmann, Asim Kadav, and Michael M.
Swift. SymDrive: Testing drivers without devices. In
Proceedings of the 10th USENIX Symposium on Op-
erating Systems Design and Implementation (OSDI),
2012.

62 21st USENIX Conference on File and Storage Technologies USENIX Association

[40] Bianca Schroeder, Sotirios Damouras, and Phillipa Gill.
Understanding latent sector errors and how to protect
against them. In Proceedings of the 8th USENIX Con-
ference on File and Storage Technologies (FAST), 2010.

[41] Bianca Schroeder, Raghav Lagisetty, and Arif Merchant.
Flash reliability in production: The expected and the
unexpected. In Proceedings of the 14th USENIX Con-
ference on File and Storage Technologies (FAST), 2016.

[42] Bianca Schroeder, Eduardo Pinheiro, and Wolf-Dietrich
Weber. Dram errors in the wild: A large-scale field
study. In Proceedings of the 2009 ACM International
Conference on Measurement and Modeling of Computer
Systems (SIGMETRICS), 2009.

[43] Erich Schubert, Jörg Sander, Martin Ester, Hans Kriegel,
and Xiaowei Xu. Dbscan revisited, revisited: Why and
how you should (still) use dbscan. ACM Transactions
on Database Systems, 2017.

[44] Riza O. Suminto, Cesar A. Stuardo, Alexandra Clark,
Huan Ke, Tanakorn Leesatapornwongsa, Bo Fu, Da-
niar H. Kurniawan, Vincentius Martin, Maheswara
Rao G. Uma, and Haryadi S. Gunawi. Pbse: A robust
path-based speculative execution for degraded-network
tail tolerance in data-parallel frameworks. In Proceed-
ings of the 8th ACM Symposium on Cloud Computing
(SoCC), 2017.

[45] Cheng Tan, Ze Jin, Chuanxiong Guo, Tianrong Zhang,
Haitao Wu, Karl Deng, Dongming Bi, and Dong Xiang.
NetBouncer: Active device and link failure localization
in data center networks. In Proceedings of the 16th
USENIX Symposium on Networked Systems Design and
Implementation (NSDI), 2019.

[46] Yongmin Tan, Hiep Nguyen, Zhiming Shen, Xiaohui
Gu, Chitra Venkatramani, and Deepak Rajan. Prepare:
Predictive performance anomaly prevention for virtual-
ized cloud systems. In Proceedings of the 32nd Inter-
national Conference on Distributed Computing Systems
(ICDCS), 2012.

[47] Benjamin Walker. Spdk: Building blocks for scalable,
high performance storage applications. In Storage De-
veloper Conference, 2016.

[48] Erci Xu, Mai Zheng, Feng Qin, Yikang Xu, and Jiesh-
eng Wu. Lessons and actions: What we learned from
10k ssd-related storage system failures. In Proceed-
ings of the 2019 USENIX Annual Technical Conference
(USENIX ATC), 2019.

[49] Jinfeng Yang, Bingzhe Li, and David J. Lilja. Exploring
performance characteristics of the optane 3d xpoint stor-
age technology. ACM Transactions on Modeling and
Performance Evaluation of Computing Systems, 2020.

[50] Qiao Zhang, Guo Yu, Chuanxiong Guo, Yingnong Dang,
Nick Swanson, Xinsheng Yang, Randolph Yao, Murali

Chintalapati, Arvind Krishnamurthy, and Thomas An-
derson. Deepview: Virtual disk failure diagnosis and
pattern detection for azure. In Proceedings of the 15th
USENIX Symposium on Networked Systems Design and
Implementation (NSDI), 2018.

USENIX Association 21st USENIX Conference on File and Storage Technologies 63

ADOC: Automatically Harmonizing Dataflow Between Components

in Log-Structured Key-Value Stores for Improved Performance

Jinghuan Yu1 Sam H. Noh2,3∗ Young-ri Choi2 Chun Jason Xue1

1City University of Hong Kong 2UNIST 3Virginia Tech

Abstract

Log-Structure Merge-tree (LSM) based Key-Value (KV) sys-

tems are widely deployed. A widely acknowledged problem

with LSM-KVs is write stalls, which refers to sudden perfor-

mance drops under heavy write pressure. Prior studies have

attributed write stalls to a particular cause such as a resource

shortage or a scheduling issue. In this paper, we conduct a

systematic study on the causes of write stalls by evaluating

RocksDB with a variety of storage devices and show that

the conclusions that focus on the individual aspects, though

valid, are not generally applicable. Through a thorough re-

view and further experiments with RocksDB, we show that

data overflow, which refers to the rapid expansion of one or

more components in an LSM-KV system due to a surge in

data flow into one of the components, is able to explain the

formation of write stalls. We contend that by balancing and

harmonizing data flow among components, we will be able to

reduce data overflow and thus, write stalls. As evidence, we

propose a tuning framework called ADOC (Automatic Data

Overflow Control) that automatically adjusts the system con-

figurations, specifically, the number of threads and the batch

size, to minimize data overflow in RocksDB. Our extensive

experimental evaluations with RocksDB show that ADOC

reduces the duration of write stalls by as much as 87.9%

and improves performance by as much as 322.8% compared

with the auto-tuned RocksDB. Compared to the manually

optimized state-of-the-art SILK, ADOC achieves up to 66%

higher throughput for the synthetic write-intensive workload

that we used, while achieving comparable performance for

the real-world YCSB workloads. However, SILK has to use

over 20% more DRAM on average.

1 Introduction

LSM (Log-Structure Merge-tree based)-KV systems buffer

their random updates in a memory batch to leverage the disk’s

high sequential write performance characteristic to support

∗This work was done while at UNIST.

Elapsed Time (Sec)
0 250 500 0 250 500 0 250 500 0 250 500

0 250 500 0 250 500 0 250 500 0 250 500

0 250 500 0 250 500 0 250 500 0 250 500

0 250 500 0 250 500 0 250 500 0 250 500

S
y
s
te

m
 T

h
ro

u
g

h
p

u
t

(k
O

p
s
/S

e
c
)

P
M

N
V

M
e
 S

S
D

S
A

T
A

 S
S

D
S

A
T
A

 H
D

D

200

400

200

400

200

400

200

400

5.0 MB/s 15.0 MB/s 30.0 MB/s No Rate Limits

5.0 MB/s 15.0 MB/s 30.0 MB/s No Rate Limits

5.0 MB/s 15.0 MB/s 30.0 MB/s No Rate Limits

5.0 MB/s 15.0 MB/s 30.0 MB/s No Rate Limits

Figure 1: The figures show the throughput while running fill-

random with increasing write pressure (represented as num-

bers on top of each graph) and for different storage devices.

As writing pressure increases, system throughput on all de-

vices shows patterns of sudden performance drop and even

maintains long-term stalling states. Such significant perfor-

mance drops are referred to as the write stall phenomenon.

write-intensive workloads. These systems use background

data movements to persist cached data, trim the redundant

entries, and reshape the storage components to ensure IO

performance. LSM-KVs are used in products such as NoSQL

storage systems [17,25,41], data warehouses [52], time-series

databases [32] and embedded storage engine in RDBMS [15,

48]. Although LSM-KVs can provide higher write throughput,

they frequently encounter the write stall phenomenon when

facing high write pressure workloads [16, 46].

The write stall phenomenon refers to the sudden drop in sys-

tem throughput as marked by the red lines in Figure 1, which

shows results for RocksDB running with write-intensive work-

loads on a wide range of storage devices, from a traditional

HDD to a modern state-of-the-art Intel Optane DC PMM per-

sistent memory device (denoted PM). Based on this figure, we

USENIX Association 21st USENIX Conference on File and Storage Technologies 65

identify two characteristics of the write stall phenomena: first,

write stalls are universal, that is, they occur on all types of de-

vices, though they may be triggered under different conditions,

and second, write stalls are strongly device dependent, with

their duration and rate of performance degradation influenced

by various factors such as device type and write intensity. As

a notable shortcoming of LSM-KV systems, the write stall

phenomenon has been the subject of extensive research and

attention in recent years [7, 43, 45, 46, 50, 58, 60].

This study presents ADOC (Automatic Data Overflow

Control), a framework with a goal of minimizing write stalls

by harmonizing the flow of data between LSM-KV compo-

nents. To this end, we first perform an extensive experimental

study to analyze the occurrence pattern of write stalls. We find

that previous studies [7, 43, 45, 46, 50, 58, 60] are conducted

with particular settings, which make their analysis difficult

to generalize. Many former studies conclude the cause of

write stalls to be resource depletion, while we find that write

stalls are triggered even when the hardware resources are

sufficient. This indicates that write stalls not only happen in

passive blocking situations, but also occur when the system

proactively stalls the input stream in attempts to avoid further

performance loss. We find that popular LSM-KVs like Lev-

elDB and RocksDB already use active stalling strategies to

avoid “Disk Overflow”, which refers to the situation where

flush or compaction jobs cannot keep up with the incoming

write rate [28].

Through deeper analysis, we find the source of write stalls

to be a more general form of disk overflow, which we refer

to as “data overflow.” Specifically, data overflow refers to the

rapid expansion of one or more components in an LSM-KV

system due to a surge in data flow into one of the components.

We categorize data overflows into three scenarios depend-

ing on the component that forms the data overflow. We also

show how data overflow is able to explain the limitations that

could not be explained with earlier studies. Based on these

observations, we design and implement ADOC, an automatic

tuning framework, to universally control and harmonize the

data flow among LSM-KV components such that data over-

flow may be avoided. ADOC has the following four key fea-

tures: 1) it improves performance by reducing write stalls

through balanced use of resources; 2) it is a device transpar-

ent solution that improves performance for a wide range of

devices, from traditional HDDs to state-of-the-art SSDs and

PM devices; 3) it is an automatic tuning system that does not

require human intervention, and 4) it is highly portable as

it can be implemented by the native interfaces of LSM-KV

systems.

Experimental results with RocksDB show that ADOC

reduces the duration of write stalls by as much as 87.9%

in the best case and improves performance by as much as

322.8% compared with the auto-tuned RocksDB, which takes

a similar auto-tuning approach of ADOC. We also compare

ADOC with the state-of-the-art LSM-KV SILK [7]. While

there have been multiple novel LSM-KVs proposed more

recently [11, 43, 44, 58], they mostly concentrated on making

use of PM. As our target is a general-purpose LSM-KV that

can accommodate all types of devices, we chose to compare

it with SILK. Compared to SILK, ADOC achieves up to 66%

higher throughput for the synthetic write-intensive workload

that we used, while achieving comparable performance for

the real-world YCSB workloads due to the higher read perfor-

mance of SILK. However, SILK attains this performance at

the expense of using 22.2% more main memory on average.

The source code of ADOC is available online [3].

2 Background

2.1 Advanced Storage Devices
Recent developments in storage technology have led to rev-

olutionary advances in storage media. Two kinds of storage

media, NVMe SSD and Persistent Memory, have entered the

public realm and have been widely studied.

NVMe SSD: NVMe SSD refers to a class of SSD devices

that are linked to the host via the PCIe bus and communi-

cate with the host using the NVMe (Non-Volatile Memory

express) protocol. NVMe is a communication interface and

drivers designed for PCIe-based SSDs aim for efficient per-

formance and interoperability. The command set in NVMe

allows devices to directly communicate with the system CPU

without an extra bus controller. Combined with the expanded

command queue, NVMe provides much higher parallelism

than conventional protocols like SATA and SAS.

Persistent Memory: Persistent memory (PM), or non-volatile

memory (NVM), is a persistent medium that provides byte-

addressability. The commercial PM product, Intel’s Optane

DC PM, can be deployed in Memory mode, as expanded

memory, or App-direct mode, as a (block-device-like) storage

device. Optane DC PM uses 3D XPoint technology, which,

compared to traditional NVMe SSDs, offers lower write la-

tency, provides byte addressing, and does not require garbage

collection. However, as PM is attached to the memory bus, the

IO processing of PM consumes more CPU resources. Also,

as the PM device has limited bandwidth compared to DRAM,

application bandwidth tends to quickly saturate as the number

of threads increases [33, 56]. While Intel has announced the

discontinuation of their Optane storage products effectively

terminating 3D XPoint based products [20], other forms of

NVM are still in development [35, 55]. Furthermore, we con-

tinue to see new developments such as CXL SSDs [35] that

are expected to provide high-performing persistent storage

similar to the Optane products.

2.2 Architecture of LSM-KVs

The majority of LSM-KVs follow the structure as that of

RocksDB [25], which is one of the most popular LSM-KVs

in industry and has been used as the platform of choice in

many prior academic studies [7, 11, 14, 49, 58]. The structure

consists of three major components and two data movement

jobs to maintain these components as shown in Figure 2.

66 21st USENIX Conference on File and Storage Technologies USENIX Association

Immutable
Memtable

Active
Memtable

Mark as
Immutable

Incoming
Writes

Memory Component

 LOG

WAL

MANIFEST

CURRENT

Disk Component

…

…

…

Level 0

Level 1

Level 2

Level n

…

L0-L1 Compaction

Compaction

Commit Log
Flush

Figure 2: Architecture of RocksDB [15, 25, 48].

More specifically, the memory component caches

the newest updates through an active and immutable

Memtable [10, 17, 25, 41]. These Memtables are generally

implemented with a skip list though other data structures

such as a vector or hash table may be used. The commit

log is the component that ensures system consistency. It is

used to recover data when the system reboots from system

failures. Finally, the disk component organizes the persisted

data. Sorted String Tables (SSTable) that serve as the basic

unit [46] are organized in a hierarchical manner in levels,

starting from Level 0 to deeper (i.e., higher numbered) levels.

There are two types of background data movement jobs,

flush and compaction. Flush moves the Immutable Memtable

from the memory component to the disk component turn-

ing it into an SSTable in Level 0. When the capacity of a

level reaches a certain threshold, compaction is triggered to

merge SSTables in this level with SSTables in the next deeper

level to form a set of new SSTables at the deeper level. Since

LSM-KVs adopt out-of-place updates, there can be invali-

dated redundant data in SSTables. Compaction has the effect

of removing some of these invalid redundant data.

Compaction can be further divided into Level 0-Level 1

(L0-L1) compaction and deeper level compaction. L0-L1 com-

paction is unique in that this activity cannot be executed in

parallel with other L0-L1 compaction activities. This is be-

cause the SSTables in L0 can have overlapping keys as they

are directly copied from the Immutable Memtable. In contrast,

all SSTables at each level for Level 1 and deeper never have

overlapping key ranges. Hence, deeper level compactions can

occur in parallel.

2.3 Write Stall Issue

Previous studies have shown that the following three types of

write stalls occur in modern LSM-KVs.

Memtable (MT) stall: This stall occurs when the memory

component becomes full. For example, RocksDB sets the

number of Memtables to 2, and when both are filled up, the

system input is simply stopped resulting in a stall. This is

known to be the most common case of write stalls [17,41,45].

Level 0-Level 1 Compaction (L0) stall: Similarly to MT

stall, LSM-KVs will slow down or even stop the input stream

when the number of L0 files reaches the set threshold, result-

ing in stalls. In RocksDB, the default slow-down threshold

Table 1: Specifications of Storage Devices.

Device Product Name
Device Sequential

Capacity Bandwidth

PM Optane DC PMM 512 GB 2300 MB/s

NVMe SSD Samsung 970 PRO 1 TB 2700 MB/s

SATA SSD Intel DC S4500 960 GB 490 MB/s

SATA HDD Seagate ST1000DM010 1 TB 210 MB/s

is 20, while at 36 the input stream is stopped. This type of

control first appeared in LevelDB [17] but has been adopted

by most subsequent implementations that use a similar com-

paction strategy [4, 25, 49].

Pending Input Size (PS) stall: LSM-KVs also slow down

or stop the system when the pending input size of compaction

jobs exceeds a certain threshold. Note that the pending input

size not only refers to repeated and out-of-date entries in an

SSTable, but also includes all the entries within the SSTable

that is pending compaction. In RocksDB, the default pend-

ing compaction input size threshold for slowing down and

stopping the system is 64GB and 128GB, respectively. Prior

studies have used the term “compaction pending bytes” for

this value [25, 58], while, in this study, we use the term “re-

dundant data” instead. The aim of this control is to reduce

the total amount of redundant data [15, 26, 28] or to avoid

disk bandwidth bursts when compaction jobs happen in deep

levels [45, 50].

3 Observations from Previous Studies

In this section, we use experimental observations with

RocksDB to revisit previous studies. While these earlier stud-

ies provide valuable insight into the causes of write stalls, we

show that they are all limited in that these insights are not

able to explain many of the experimental results.

3.1 Experimental Settings

The experiments in this section are conducted on a server

that follows the recommended configuration for installing

the Optane DC PMM. It has two Intel Xeon(R) Gold 6230

processors with 2.10GHz frequency with a total of 40 cores

(20 cores each) and is equipped with 128GB DDR4 DRAM.

We consider four different storage devices as listed in Ta-

ble 1, which shows the device types, the producer and product

names, the capacity of the devices, and the sequential band-

width as specified by the manufacturer or reported in an earlier

study [29–31, 33].

All experiments are run on Ubuntu 18.04 LTS, running

RocksDB 6.11 [24] compiled with CMake 3.10.2. We run

the fillrandom workload in db_bench [23] issuing uniformly

distributed random writes in each scheme for one hour, a

time period sufficient to trigger all kinds of write stalls and

maintain a trend in all devices. Each entry consists of a 16-

byte key and a 1000-byte value. All experiments are evaluated

under peak throughput since write stalls occur only when the

write pressure is high enough as shown in Figure 1. Write

stalls are observed with an embedded event listener provided

USENIX Association 21st USENIX Conference on File and Storage Technologies 67

Table 2: Summary of confirmations and limitations on conclusions made by existing studies on write stalls.

Original Conclusion Points we confirm Limitations we find

Resource Exhaustion

[7, 15, 34, 43, 51, 58,

60]

[C1]: High CPU utilization is a source of write

stalls. Increasing background threads reduces

CPU utilization and hence, reduces write stalls

[34, 43, 51, 60].

[C2]: Most devices show increased bandwidth

usage and decreased CPU utilization when in-

creasing the number of threads. The occur-

rence of write stalls increases when the number

of threads exceeds a certain threshold [15].

[C3]: As modern devices provide much higher

bandwidth and parallelism, the stall occurrence

and duration on PM and NVMe SSD are much

lower than those on SATA devices [7, 43, 58].

[L1]: Continued increase beyond a certain num-

ber of threads results in a continued decrease of

(normalized) CPU utilization, but results in an

increase in write stall duration. That is, reduced

CPU utilization does not result in reduced write

stalls.

[L2]: Even with high CPU utilization, simply

by increasing the batch size, write stalls may be

reduced. That is, CPU utilization and write stalls

do not correlate.

[L3]: Modern devices can provide far more band-

width than conventional devices, but write stalls

may still occur before its bandwidth capacity is

reached.

L0-L1 Compaction

Data Movement

[7, 58]

[C4]: At early phases of execution, perfor-

mance troughs in NVMe SSD and PM match

the occurrence of compaction [7, 58].

[L4]: Correspondence between performance

troughs and L0-L1 compaction jobs diminishes

over time, especially in the multi-threaded envi-

ronment.

Deep Level Com-

paction Data Move-

ment [45, 49, 50]

[C5]: The processing rate of flush jobs de-

crease when more threads are spawned for

compaction jobs [45, 49, 50].

[L5]: As the number of threads increases, the

occurrence of PS stalls that are caused by slow

compaction decreases.

with RocksDB. This listener provides basic information such

as the total duration and the number of occurrences of each

type of write stall. All experimental results obtained are the

average of three rounds of executions; the three rounds take

over 240 hours to execute.

For the experiments, we mainly consider the impact of two

parameters that have a strong effect on performance [13–15,

26]. The first is the number of threads that run concurrently in

the system, which determines the resources that are allocated

to each thread such as CPU time and bandwidth. In RocksDB,

in particular, by default, a quarter of the threads are allocated

for flush jobs (rounded down), while the rest perform com-

paction. The second parameter is batch size, which is the size

used for both Memtable and SSTable. This value is critical

for analyzing the behavior of LSM-KVs because 1) it con-

trols the scheduling pattern and input scale of background

jobs [6, 7, 14, 43] and 2) it affects the data distribution at the

various levels [11, 13, 14, 22].

3.2 Limitations of Existing Studies

In this section, we discuss the limitations of earlier studies

regarding write stalls. As we shall show, these studies tend to

analyze the causes of write stalls in LSM-KV stores from a

single component perspective. Through experimental obser-

vations, which we discuss below and summarize in Table 2,

we show that these conclusions cannot be fully generalized.

Resource Exhaustion: Some earlier studies conclude that

write stalls are caused by bandwidth congestion [7,45], while

others consider CPU limitation as the root cause [43, 58, 60].

We revisit these conclusions, starting with CPU utilization.

0 5 10 15 20 0 5 10 15 20

PM NVMe SSD

SATA SSD SATA HDD

0

1k

2k

3k

0

1k

2k

3k

 Stall Duration (64 MB) Stall Occurrence (64 MB)

 Stall Duration (512 MB) Stall Occurrence (512 MB)

S
ta

ll
D

u
ra

ti
o

n
 (

s
e

c
)

Number of Threads

PM NVMe SSD

SATA SSD SATA HDD

10
2

10
3

10
4

10
2

10
3

10
4

S
ta

ll
O

c
c
u

rr
e

n
c
e

Figure 3: Duration and occurrences of write stalls as the

number of threads is increased.

Figure 3 shows the stall occurrences and duration as the

thread count increases. We observe that for PM and NVMe

SSD, the stall duration decreases as the thread count increases

(more notably with PM) until up to six threads. Also, as shown

in Figure 4, up to six threads, the CPU utilization (normalized

to the number of threads) remains relatively high for PM

and NVMe SSD. Just based on these observations, one could

conclude that the shortage of CPU resources, that is, high

CPU utilization, is the cause for write stalls (Table 2 [C1]).

However, we also observe from Figure 3 that write stall

occurrences start to drop, while the duration increases slightly,

as the thread count increases beyond four (where CPU uti-

lization decreases as shown in Figure 4) (Table 2 [L1]). This

characteristic is particularly evident in the two advanced de-

vices with higher bandwidth and parallelism. Based on these

observations, our conclusion is that, while limited CPU capac-

68 21st USENIX Conference on File and Storage Technologies USENIX Association

0 5 10 15 20 0 5 10 15 20

PM NVMe SSD

SATA SSD SATA HDD

10

100

10

100

C
P

U
 U

ti
liz

a
ti
o

n
 (

%
)

Number of Threads

 64 MB 512 MB

Figure 4: Comparison of normalized CPU utilization as

threads are increased.

0 5 10 15 20 0 5 10 15 20 0 5 10 15 20 0 5 10 15 20

64 MB 512 MB 64 MB 512 MB

PM NVMe SSDDevice

Batch Size

64 MB 512 MB 64 MB 512 MB

SATA SSD SATA HDDDevice

Batch Size

100

1000

4000

100

1000

4000

B
a

n
d

w
id

th
 U

s
a

g
e

 (
M

B
/s

)

Number of Threads

64 MB 512 MB 64 MB 512 MB

PM NVMe SSD

64 MB 512 MB 64 MB 512 MB

SATA SSD SATA HDD

 Average Usage Peak Usage Theoretical Bandwidth

Figure 5: Comparison of bandwidth with an increasing num-

ber of threads and different batch sizes. (Note that y-axis is

log scale.)

ity may be the cause of write stalls for some scenarios, this is

difficult to generalize.

Moreover, when the batch size is increased from 64MB

to 512MB in NVMe SSD and SATA SSD, even while CPU

utilization does not show significant changes (Figure 4), we

observe both duration and occurrence of write stalls decreases

(Figure 3). In the PM case, we observe that beyond six threads,

CPU utilization for 512MB batch size is lower than with

64MB, yet the stall duration is actually higher, except with

over 15 threads and beyond. From these observations, we

conclude that CPU utilization and write stall do not correlate

well (Table 2 [L2]).

Other studies have pointed to the disk bandwidth limitation

as the source of write stalls [7, 45, 58]. It is argued that with

the increase in thread count the disk bandwidth will be over-

whelmed leading to the stall problem (Table 2 [C2] and [C3]).

However, the following observations showing that the system

can be stalled even when disks are idle tell a different story.

Observe the theoretical bandwidth limit, which is the peak

bandwidth observed when the device is flooded with requests

generated from the FIO [2] tool with multiple threads, and the

peak bandwidth used as the thread count increases in Figure 5.

Although for the HDD and SATA SSD the peak reaches the

theoretical bandwidth limit, for the NVMe SSD and PM, a

large idle bandwidth gap remains, indicating that write stalls

occur even if there is bandwidth to spare (Table 2 [L3]). In

addition, if the write stall is due to insufficient bandwidth,

Write stalls align with the
timing of L0-L1 compaction

Write stalls happen before
L0-L1 compaction

S
y
s
te

m
 T

h
ro

u
g

h
p

u
t
(k

O
p

s
/S

e
c
)

Elapsed Time (Sec)

(a) Experiments with 2 threads and 64 MB batch size. Left arrows

point to occurrences where L0-L1 compaction maps well with write

stalls, while right arrows point to occurrences where they do not

match.

Elapsed Time (Sec)

S
y
s
te

m
 T

h
ro

u
g

h
p

u
t
(k

O
p

s
/S

e
c
)

(b) Experiments with 20 threads and 64 MB batch size. L0-L1 com-

paction is triggered much more frequently than those in (a), and the

occurrences of write stalls show no relation with the L0-L1 com-

paction jobs.

Figure 6: Timing of L0-L1 compaction and throughput for

the thread count of 2 and 20.

devices should be under high write pressure for an elongated

period. This should move the average bandwidth close to the

theoretical value. However, we see in Figure 5 this is not so.

L0-L1 Compaction Data Movement: SSTables in L0 are

unordered and their keys may overlap as they are generated by

flush jobs. Thus, L0-L1 compaction, which takes all L0 files as

its input, cannot be parallelized with other L0-L1 compaction

jobs [16]. Former studies have taken this unique limitation as

the direct cause of write stalls [7, 58].

We observe from Figure 6, which plots the process timing

of L0-L1 compaction with instantaneous throughput, that this

earlier conclusion is partially true. Specifically, when running

with two threads (Figure 6(a)), initially, we observe system

throughput dropping immediately as L0-L1 compaction is

triggered, as designated by the dashed arrows on the left. This

is the regularity observed by Yao et al. [58] (Table 2 [C4]).

However, as the system continues to process the input stream,

this correspondence disappears, as with the apparent misalign-

USENIX Association 21st USENIX Conference on File and Storage Technologies 69

5 10 15 20 5 10 15 20 5 10 15 20 5 10 15 20

64MB 512MB 64MB 512MB

PM NVMe SSD

64MB 512MB 64MB 512MB

SATA SSD SATA HDD

102

104

102

104

O
c
c
u

rr
e

n
c
e

 o
f
F

lu
s
h

a
n

d
 C

o
m

p
a

c
ti
o

n

Number of Threads

 Flush L0-L1 Compaction Deep Level Compaction

(a) Comparison of occurrence of background jobs.

5 10 15 20 5 10 15 20 5 10 15 20 5 10 15 20

64MB 512MB 64MB 512MB

PM NVMe SSD

64MB 512MB 64MB 512MB

SATA SSD SATA HDD

102

103

102

103

A
v
e

ra
g

e
 P

ro
c
e

s
s
n

ig
 R

a
te

(M
B

/S
e

c
)

Number of Threads

 Flush L0-L1 Compaction Deep Level Compaction

(b) Average processing rate of background jobs.

Figure 7: Comparison of occurrences of background jobs

(flush, L0-L1 compaction, and deep level compaction) and

their average processing rate as the number of threads and

batch size are increased, measured for one hour of execution.

ments as designated by the dashed arrows on the right. More-

over, when the thread count is increased to 20, as shown in

Figure 6(b), L0-L1 compaction occurs much more frequently

than for the 2-threaded case, while showing no evident map-

ping relation between the timing of L0-L1 compaction and

write stalls (Table 2 [L4]).

Deep Level Compaction Data Movement: Yet another set

of earlier studies contend that the high resource consumption

of deep level compaction jobs that are competing with other

background jobs is the cause of write stalls [7, 45, 49, 50].

Again, this is partially true, as increasing the number of

threads does lead to more frequent compaction jobs, as shown

in Figure 7(a), and the average processing rate of background

jobs decreases, as shown in Figure 7(b) (Table 2 [C5]).

However, if the conflicting compaction jobs were the main

source of write stalls, we should have observed the occur-

rence of PS stalls increase just like how the slow flush rate

increased MT stalls. Instead, as we observe in Figure 8, the

occurrences of PS stall decrease as the number of threads

increases and the batch size increases, which is contrary to

the earlier conclusion.

4 Data Overflow

As seen from the previous section, earlier studies focus on

individual aspects that could be the cause of write stalls. Our

analysis of modern LSM-KVs reveals a more general source

of write stalls, that is, what we refer to as data overflow. In this

section, we explain the formation of data overflow and use

data overflows to explain the limitations observed in Section 3.

0 5 10 15 20 0 5 10 15 20

PM NVMe SSD

SATA SSD SATA HDD

0

3000

6000

0

3000

6000

O
c
c
u

rr
e

n
c
e

 o
f
V

a
ri
o

u
s
 S

ta
lls

Number of Threads

 MT Stall L0 Stall PS Stall

(a) Occurrence of various write stalls while increasing the number

of threads with 64 MB batches.

0 5 10 15 20 0 5 10 15 20

PM NVMe SSD

SATA SSD SATA HDD

0

500

1000

0

500

1000

O
c
c
u

rr
e

n
c
e

 o
f
V

a
ri
o

u
s
 S

ta
lls

Number of Threads

 MT Stall L0 Stall PS Stall

(b) Occurrence of various write stalls while increasing the number

of threads with 512 MB batches.

Figure 8: Breakdown of various write stalls.

4.1 Data Overflow in Modern LSM-KVs

Data overflow refers to the rapid expansion of one or more

components in an LSM-KV system due to a surge in data flow

into one of the components. It happens when the processing

rates of different background jobs do not match each other.

We identify three types of data overflow, namely, Memory

Overflow, Level 0 Overflow, and Redundancy Overflow, as

shown in Figure 9. We now describe these in more detail.

Memory Overflow (MMO): MMO occurs when the system

input rate surpasses the Immutable Memtable flush rate. Con-

sequently, as the Immutable Memtable cannot be flushed in

time, there will not be enough space in the memory compo-

nent to absorb new data. In most modern LSM-KVs, upon

MMO, the system stops receiving input as there is no room

to buffer the incoming updates. This results in an MT stall.

Level 0 Overflow (L0O): L0O occurs when the process-

ing rate of L0-L1 compaction is not able to match the flush

rate. This results in the number of SSTables in Level 0 to

rise. In modern LSM-KVs, the input stream is stopped or

slowed when this value reaches a certain threshold so that the

accumulated data may be consumed resulting in an L0 stall.

Redundancy Overflow (RDO): RDO occurs when the work-

ing efficiency of compaction threads cannot match the rate

in which redundant data is generated. In modern LSM-KVs,

when the size of redundant data reaches a threshold, the sys-

tem will slow down or stop the input, and wait for the com-

paction threads to clear out the accumulated redundancy. Such

action results in PS stalls.

70 21st USENIX Conference on File and Storage Technologies USENIX Association

L0

L2

Pending BytesL1

System Input

Active
MemTables

Immutable
MemTables

Memory Overflow (MMO)
happens when the input rate at
Memtable is higher than the
flushing rate

Pending Bytes

Pending BytesL7

…

Redundancy
Overflow (RDO)
happens when the
redundant data
generation rate is
higher than the
compaction rate

Level 0 Overflow (L0O) happens when the flushing
rate is higher than the L0-L1 compaction rate

Flush

Compaction Threshold

Compaction Threshold

Compaction Threshold

Figure 9: Data overflow scenarios in modern LSM-KVs.

4.2 Explaining the Unexplained

In Section 3, we showed how conclusions made in earlier

studies could not explain the reason behind write stalls for

some portions of the extensive experimental results that we

had obtained (Table 2). Here, we present how such incon-

gruities can be explained with data overflow. To observe

write stalls in this section, we make use of the LOG file that

RocksDB provides. While the embedded listener used in the

previous section provides only basic information, the LOG

file provides more detailed information of each write stall,

including the stall type, the limited input rate, and the exact

timestamp.

Resource Exhaustion: First, consider how write stalls oc-

curred under low utilization of resources (3.2, Table 2 [L1],

[L2] and [L3]). The key underlying reason is that all three

kinds of data overflow will stop or slow down the input before

the system reaches the hardware limitation. Let us elaborate.

Firstly, when the flush rate is not high enough to persist

the incoming requests in time, MMO will stop the input. Fig-

ure 7(b) shows that flush jobs are being allocated the least

bandwidth among the background jobs and thus, the aver-

age flush rate monotonically decreases with the number of

threads. This is because as the number of threads increases,

more threads are forced to share the limited bandwidth, re-

sulting in less bandwidth being allocated to the flush threads.

This results in the Immutable Memtable not being flushed

fast enough, which is the most common reason for write stalls

that occur in SATA HDD as well as other devices when there

are too many threads.

Secondly, L0O occurs as compaction of SSTables in L0

cannot keep pace with flush jobs, resulting in the number

of SSTables in L0 reaching its threshold, and thus, the in-

put stream being stopped or slowed. As direct evidence, Fig-

ure 10(a) shows how the occurrences of write stalls, marked

by the vertical blue lines, correspond to the peak in the num-

ber of L0 SST files. Since L0-L1 compaction jobs are not

being executed in parallel, increasing the number of threads

will not help in reducing L0O as the processing rate does

not increase. Hence, the system is stalled even when there is

0

20

kO
ps

/S
ec

(a) Number of L0 SSTs

Number of L0 SSTs L0 Stalls

0

50

G
B

(b) Redundant Data Size

Redundant Data Size PS Stall

0 100 200 300 400 500
Elapsed Time (Sec)

0

100

U
til

iz
at

io
n

(%
) (c) Resource Utilization

Disk Utilization CPU Utilization

Figure 10: System statistics (first 600 seconds) when run-

ning the fillrandom workload with 4 background threads with

NVMe SSD, which shows the most occurrences of write stalls.

enough CPU resources.

Lastly, we show how RDO makes LSM-KVs stall when

both CPU utilization is low and there is disk bandwidth to

spare. Figure 10(b) shows how the redundant data tend to

accumulate as the deep level compaction cannot keep pace

with L0-L1 compaction. Eventually, RDO occurs when the

redundant data size reaches 64GB, which is the default PS

stall threshold, at which point the system slows the input, rep-

resented by the red lines. Note, however, that at these stall

points, both the CPU and bandwidth utilization are low (and

stable) as any other points in execution (Figure 10(c)), show-

ing how RDO can occur despite low resource usage.

L0-L1 Compaction Data Movement: We next discuss why

L0-L1 compaction does not align with the occurrence of

write stalls (Table 2 [L4]). First, consider the misalignment

in Figure 6(a), when there are only two threads. In the early

stages of execution, as data in the deeper level have not been

accumulated, L0-L1 compaction is easily assigned a thread.

Hence, we see a nice alignment of the compaction with the

write stall. However, as execution continues, data starts to

accumulate and more deep level compaction requests get to

be made. With only a limited number of threads, this dwindles

the chance of L0-L1 compaction from being assigned a thread.

Thus, L0-L1 compaction and write stalls start to misalign.

Now consider the situation when the number of threads

is 20. Here, we have enough threads to always assign for

L0-L1 compaction. However, with a large number of threads,

bandwidth for flush jobs diminish, and thus, the processing

rate of flush jobs becomes much lower (Figure 7(b)) causing

more frequent MMO (Figure 8). That is, the frequent write

stalls here are due to MT stalls, and L0O hardly occurs show-

ing no relation to the L0-L1 compaction jobs as shown in

Figure 6(b).

Deep Level Compaction Data Movement: Finally, while

earlier studies concluded that PS stalls increase with thread

count, which was true for up to four threads, we also saw

USENIX Association 21st USENIX Conference on File and Storage Technologies 71

Stable

Running

State

Detection

Reach Stall?

Stall the

Input

Y

N

System

Start

Adjust Tuning

KnobsY

Adjust

Threads

Adjust Batch

Size

Figure 11: The solid black diagrams show the default control

flow of RocksDB. ADOC extends this with the red diagrams

(including the dashed arrows) to adjust tuning knobs during

execution.

the opposite as more threads were added (Figure 8 and Ta-

ble 2 [L5]). This can be explained with RDO. The initial

spike in PS stalls (up to four threads) shown in Figure 8 is

due to the flush threads obtaining sufficient bandwidth. In

addition, with this increase to four, occurrences of L0O are

decreased as more threads are allocated. This results in more

data being crowded into the deeper levels and overwhelming

the processing rate of deep level compaction jobs. This results

in a significantly increase of PS stalls (Figure 8). However,

beyond this threshold of 4 (for most cases), the flush rate

is reduced and consequently, the data redundancy rate also

diminishes. This results in less need to process deep level

compaction jobs, which finally results in less RDO.

5 Automatic Data Overflow Control

The goal of our study is to minimize (and eventually remove)

the effects of write stalls on LSM-KVs. To this end, we de-

velop a framework, which we call ADOC (Automatic Data

Overflow Control), that controls the dataflow such that data

overflow may be minimized. Dataflow is controlled by online

tuning of the number of threads and the batch size as these

values have a strong influence on dataflow, as seen from dis-

cussions in Section 4, and most LSM-KVs [15,48,52] provide

APIs to adjust these two values without rebooting the system.

We develop ADOC under two principles. The first is device

transparency. Instead of targeting optimizations to a partic-

ular storage device, as new storage devices will continue to

evolve [35, 54], ADOC should be able to tune itself to reduce

write stalls irrespective of the underlying storage device. For

this, ADOC monitors the flow of data amongst the compo-

nents independent of the specific performance parameters of

the underlying device. Then, the thread count and batch size

are adjusted to control the processing rate and scheduling

frequency of background jobs, thereby controlling the data

flow within the LSM-KV.

The second principle is ease of portability. As shown in Fig-

ure 11, the design of ADOC is a straightforward extension of

the RocksDB control flow mechanism. Unlike MatrixKV and

similar approaches [14,45,50,58] that change the compaction

strategy or SILK [7] and auto-tuned RocksDB [39] that adjust

the internal thread scheduling and IO process, ADOC does

not disrupt the internal architecture of the LSM-KV system

making it highly portable.

In our current implementation in RocksDB, we make modi-

fications to only two classes. One is the Options class, which

controls whether the ADOC tuner will be enabled or not

and records the instantaneous information of the system in a

shared C++ vector. The other is the tuner class itself, which

will periodically wake the tuner threads to perform tuning

actions. In total, we add around 300 lines of code (LOC) to

implement ADOC with 250 LOC for the tuner and 50 LOC

to collect system states.

We now discuss the triggering mechanism and the actions

that we employ to adjust these parameters. Recall that we

identified data overflow as the source of write stalls. Thus, for

every time window Tw, ADOC monitors for data overflow and

takes action accordingly as explained below. In our current

implementation, we set Tw to one second based on empirical

observations; values larger are not agile enough to quickly

detect the overflows leading to deteriorated performance for

state-of-the-art high-performing storage devices, while values

smaller could incur overhead as well as lead to fluctuations

due to responding too quickly.

MMO: ADOC determines that MMO is occurring simply

when the active Memtable is filled before the Immutable

Memtable gets flushed. Upon MMO detection, ADOC in-

creases the flush rate by reducing the number of threads,

which will have the effect of reserving more bandwidth for

the flush jobs, and increasing the batch size to increase the

processing rate.

L0O: Determining whether L0O is occurring follows the

same logic as RocksDB, that is, when the number of L0 files

exceeds the threshold, which is 20 by default in RocksDB.

Upon L0O detection, ADOC will increase the number of

threads. This has the effect of improving the chance of L0-

L1 compaction being assigned a thread and decreasing the

flush rate to ease the overflow. The batch size, in this case, is

unchanged as increasing it will increase the load on L0-L1

compaction, and decreasing it will generate more L0 files,

both leading to more L0 stalls.

RDO: Like L0O, determining if RDO is occurring follows

the same logic as RocksDB, that is, when the total redundant

data size exceeds the threshold, which is 64GB by default in

RocksDB. Upon detection of RDO, ADOC will increase the

number of threads and decrease the batch size. The former

is to increase the rate of deep level compaction (and also

reduce flush rate) and the latter is to allow the scheduler to

generate more fine-grained compaction jobs as small and

dense compaction jobs can help improve the efficiency of

redundancy reduction.

If multiple overflows are detected in Tw, we choose to

handle the overflow in L0O, RDO, MMO order based on

our experimental observations. Also, when turning the tun-

ing knobs, we take the approach used by the Additive In-

72 21st USENIX Conference on File and Storage Technologies USENIX Association

Table 3: Schemes Evaluated

Name Description

RocksDB-DF RocksDB default setting

RocksDB-AT RocksDB with auto-tuner on

SILK-D SILK with RocksDB default setting

SILK-P SILK setting set as in SILK paper [7]

SILK-O SILK optimized to our setting (Section 3)

ADOC RocksDB that enables ADOC tuner

crease/Multiplicative Decrease (AIMD) algorithm [9], best

known for its use in TCP congestion control [40]. The rea-

son for using AIMD is the fitness between the algorithm and

ADOC’s working scenario, that is, gently increasing the tun-

ing knob to explore the suitable configuration and rapidly

removing the over-allocated resources to avoid resource com-

petition. In detail, we increase the number of threads by 2 and

the batch size by 64MB, which is the default thread number

and batch size value of RocksDB, while when decreasing, the

values are reduced by half. After the adjustment, the number

of threads that are allocated for flush jobs will also be adjusted

to a quarter of the total number, just as the default setting.

6 Evaluation

6.1 Experiment Setups

Basic Settings: We use the same hardware and software se-

tups as described in Section 3.1. For the basic setup, we follow

that of SILK and set the maximum batch size to 512MB [7].

All schemes, including ADOC but excluding SILK, are based

on RocksDB v7.5.3, the latest version as of this submission.

SILK is built based on RocksDB 5.7.1 (early 2018) and our

attempt to port SILK to more recent versions failed due to

compatibility issues as considerable optimizations have been

made since RocksDB v6 [27]. Thus, all performance mea-

surements for SILK are done on RocksDB v5.7.1. In one of

our experiments, we also show the results of ADOC ported

on v5.7.1, which show some discrepancies with the results of

v7.5.3, but overall, are quite similar in trend.

Schemes Compared: The schemes that we evaluate are as

listed in Table 3. There are two settings of RocksDB, three set-

tings of SILK, and ADOC. For RocksDB, we have RocksDB-

DF with the default configuration, that is, two background

working threads and 64MB batch size, and RocksDB-AT,

an auto-tuner enabled version. RocksDB-AT automatically

changes the threshold of the rate-limiter, which limits the

number of IO operations generated by background threads [1]

based on the IO pressure of background threads. RocksDB-

AT also adjusts the allocation rate of each thread based on the

thread priority to avoid starving compaction jobs, which has

lower priority than flush jobs.

As for SILK, the three different configurations are as fol-

lows. The first is SILK that runs with the same configuration

as the default configuration, which we refer to as SILK-D

(D for default). The second is SILK-P (P for paper), which

refers to SILK that runs with the same settings as mentioned

in its original paper [7]. The configuration of SILK-P is of 4

background threads and 128MB batch size. The third con-

figuration is SILK-O (O for optimal), which we believe to

be the best performing setting in our experimental platform,

with 8 background threads and 512MB batch size, which were

obtained manually through exhaustive tuning attempts where

we considered ten (2, 4, 8,..., 18, 20) thread and two (256MB

and 512MB) batch configurations. We did not consider batch

sizes 64MB and 128MB as when their results were observed

for SILK-D and SILK-P, we found larger batches to be clearly

better. In addition to the thread and batch size settings,

the SILK implementation makes use of particular hard-coded

settings. One is the allocation of bandwidth that is hard-coded

into the db_bench tool. To faithfully configure our three ver-

sions accordingly, we set the configuration flags such that a

quarter of the entire media bandwidth (Table 1) is reserved

for compaction jobs while the rest is reserved for flush jobs.

This ratio preserves the ratio used in the original paper. Addi-

tionally, as in the original implementation, we disable L0O

by setting the number of L0 SST files threshold, which slows

the input stream when reached, to an extremely large value.

6.2 Microbenchmark Performace

In this section, we make use of the same microbenchmark

workload used in Section 3, that is, the db_bench random fill-

ing benchmark. We consider the three performance measures,

namely, the throughput, the stall duration, and 99th tail latency

for the first 3600 seconds of execution.

Throughput: Figure 12 compares the system throughput for

all the schemes that we consider. A few notable observations

can be made as follows. First, ADOC shows the best per-

formance over all devices. It shows 66.7%, 37.8%, 31.0%,

and 55.1% higher average throughput over the next best per-

forming scheme, SILK-O, for PM, NVMe SSD, SATA SSD,

and SATA HDD devices, respectively. Second, the three vari-

ations of SILK show performance in SILK-O, SILK-P, and

SILK-D order. Among these, the best performing SILK-O

does considerably better for high-end devices, but not much

so for low-end devices. Most notably, we observe that the con-

figuration of SILK, the best of which is not straightforward to

find, has a considerable effect on overall performance. Finally,

RocksDB-DF and RocksDB-AT fare comparably with SILK-

D and SILK-P, but worse than SILK-O. While RocksDB-

AT automatically decides the bandwidth usage of different

background jobs [39], the results show that this is insuffi-

cient in bringing out the best performance. Consequently, we

find that RocksDB-AT performs better than RocksDB-DF for

NVMe SSD and SATA SSD, which concurs with the fact

that RocksDB is optimized for flash devices [11, 15, 25], but

performs worse for PM and SATA HDD. It is also limited in

that the user needs to provide the bandwidth information.

For clarity, hereafter, we omit the results for RocksDB-DF

USENIX Association 21st USENIX Conference on File and Storage Technologies 73

0

300

PM

avg:63.6 std_v:8.6
RocksDB-DF

avg:50.0 std_v:0.3
RocksDB-AT

avg:46.9 std_v:0.4
SILK-D

avg:68.3 std_v:0.2
SILK-P

avg:126.9 std_v:0.0
SILK-O

avg:211.5 std_v:0.6
ADOC

0

300

N
VM

e
SS

D avg:40.9 std_v:2.5 avg:47.2 std_v:1.1 avg:35.9 std_v:6.8 avg:53.8 std_v:0.5 avg:85.1 std_v:5.3 avg:117.4 std_v:3.4

0

300

SA
TA

SS
D avg:28.4 std_v:1.3 avg:32.3 std_v:1.4 avg:22.3 std_v:3.2 avg:29.6 std_v:0.9 avg:53.0 std_v:1.2 avg:69.5 std_v:9.8

0 2000
0

300

SA
TA

H
D

D avg:17.0 std_v:1.2

0 2000

avg:14.3 std_v:0.5

0 2000

avg:11.5 std_v:1.0

0 2000

avg:11.6 std_v:0.7

0 2000

avg:19.0 std_v:4.0

0 2000

avg:29.5 std_v:5.8Sy
st

em
 T

hr
ou

gh
pu

t (
kO

ps
/S

ec
)

Elapsed Time (Sec)

Figure 12: The solid red lines represent the instantaneous throughput during a single run of 3600 seconds, while the dotted

black lines represent the average throughput of this run. The numbers shown within the box are the average throughput and the

standard deviation of the three runs for each case.

RocksDB-AT

SILK-P

SILK-O

ADOC
RocksDB-AT

SILK-P

SILK-O

ADOC

PM NVMe SSD

SATA SSD SATA HDD

0

2k

4k

0

2k

4k
PM NVMe SSD

SATA SSD SATA HDD

0

2k

0

2k

S
ta

ll
D

u
ra

ti
o

n
 (

S
e

c
)

Experiment Schemes

 RocksDB-AT SILK-P

 SILK-O ADOC

 MT Stall L0 Stall PS Stall

S
ta

ll
O

c
c
u

rr
e

n
c
e

Figure 13: Stall duration (bar) and oc-

currences (lines).

RocksDB-AT

SILK-P

SILK-O

ADOC
RocksDB-AT

SILK-P

SILK-O

ADOC

PM NVMe SSD

SATA SSD SATA HDD

0

200

0

200

N
o

rm
a

liz
e

d
 R

e
s
o

u
rc

e

U
s
a

g
e

 (
%

)

Experiment Schemes

 CPU Utilization

 Disk Space Occupied

 Input Data Size

PM NVMe SSD

SATA SSD SATA HDD

0

400

800

0

400

800

In
p

u
t

D
a

ta
 S

iz
e

 (
G

B
)

Figure 14: Comparison of CPU utiliza-

tion, disk space occupied, and input data

size with the fillrandom workload.

449k
656k

1M 2M 347k
304k

382k
719k

283k
208k

283k
591k

166k
88k

78k
189k

RocksDB-AT

SILK-P

SILK-O

ADOC
RocksDB-AT

SILK-P

SILK-O

ADOC

PM NVMe SSD

SATA SSD SATA HDD

50

100

50

100

P
ro

p
o

rt
io

n
 o

f

M
a

jo
r

 O
p

e
ra

ti
o

n
s
 (

%
)

Experiment Schemes

 Compaction Flush Write To WAL

Figure 15: Proportion of major opera-

tion occurrences, with numbers repre-

senting total occurrences.

and SILK-D, the two low-performing schemes.

Stall Duration: Figure 13 compares the write stall duration

for the various schemes. The bars indicate the total stall time,

while the scattered lines mark the average occurrences of the

three different sources of write stalls.

ADOC reduces the stall duration compared to SILK-O for

PM, SATA SSD, SATA HDD by 45.2%, 8.7%, and 10.3%,

respectively. However, for NVMe SSD, stalls seem to be

elongated by 1.5%. Looking at the sources of the stalls, we

observe that for MT and L0O stalls, ADOC is the lowest. For

the PS stall, however, ADOC seems to be doing worse than

both SILK schemes, seemingly negating the reduction of the

other stalls. However, one must take into consideration the fact

that these are measurements taken for the same 3600 seconds.

Since the throughput of ADOC is considerably higher than

the other schemes, ADOC takes in much more data from

the input stream, specifically, 66.9%, 46.9%, 46.5%, 53.5%

more data than SILK-O with PM, NVMe SSD, SATA SSD,

and SATA HDD, respectively, as shown by ‘Input Size’ in

Figure 14. This results in more data being accumulated into

the deeper levels resulting in particularly higher PS stalls

(Figure 13). Also, we observe that these additional PS stalls

have a positive effect on the space amplification of the system.

That is, the Disk Space Occupied results in Figure 14 show

that despite ADOC processing a much higher volume of input

data, the system does not occupy significantly more space

compared to the other schemes. Even on the HDD, which

has the worst compaction performance, ADOC accepts 53.5%

more input data than SILK-O, yet the disk space occupied is

only 19.4% larger. However, we also see from Figure 14 that

this results in higher CPU utilization for ADOC. For example,

with HDD, ADOC spends 72.5% more CPU time than SILK-

O. Figure 15 shows the breakdown of the major operations

for each scheme, with the total number of operations shown

on top of each bar. These numbers were obtained by sampling

the call stack of RocksDB using the perf [5, 18] tool at 99Hz

sampling frequency. While not exact, these numbers provide

an estimate of the CPU time spent for the operations as have

been used in other studies [8, 19, 61], as the CPU time will

be proportional to the operation count. We observe that the

proportion of each operation is relatively stable for schemes

on each device. However, we also observe that the operation

count for ADOC is considerably higher than SILK-O for all

devices, with the largest difference being 143.6% higher with

HDD. This is because ADOC accepts more input data than

the other schemes, with the additional inputs generating more

74 21st USENIX Conference on File and Storage Technologies USENIX Association

PM NVMe SSD SATA SSD SATA HDD

10
20

1000

Experiment Schemes

RocksDB-AT SILK-P SILK-O ADOC

Figure 16: Average 99th tail latency in fillrandom workload.

Table 4: Data distribution and the composition of request types

for the six YCSB workloads. (RMW: read-modify-write)

Workload Distribution Request Composition

A Zipfian 50% Update 50% Read

B Zipfian 95% Read 5% Update

C Zipfian 100% Read

D latest 5% Insert 95% Read

E uniform 5% Insert 95 %Seek

F Zipfian 50% Read 50% RMW

data movement jobs, and also because the occurrences are

correlated to the CPU utilization of the related functions [18].

In addition, ADOC and SILK use different approaches to

reserve bandwidth for flush jobs. SILK puts the compaction

jobs to sleep when facing bandwidth congestion, while with

ADOC there is at least one compaction job working at all

times. As a result, ADOC shows higher CPU utilization and

operation count than SILK.

Tail Latency: Figure 16 shows the 99th tail latency results

obtained over 3600 seconds of execution. We observe that

both SILK schemes do well in terms of tail latency, which was

the target performance measure of SILK. Compared to SILK-

O, ADOC does better for PM, but is higher by 70.1%, 131.2%,

and 242.9% for NVMe SSD, SATA SSD, and SATA HDD,

respectively. Again, however, we note that ADOC generates

over twice the number of requests than SILK-P and 50%

more than SILK-O, meaning that it faces edge cases (e.g.,

foreground GC, conflict I/O request in half duplex bus, etc.)

much more often leading to higher tail latency.

6.3 Macro Benchmark

In this section, we consider real-world workloads using the

YCSB benchmark. The YCSB benchmark [12] is a popular

benchmark tool that generates workloads following real-world

data characteristics. We run the six workloads with character-

istics as shown in Table 4, executing them in the suggested

order [12,49], that is, execute the loading stage first, followed

by the run stages A, B, C, D, and F. Then, we reload the data

and execute workload E. We load 50M entries (10B keys and

1000B values) during the load stage and then execute each

run stage for one hour.

Figure 17 shows the throughput of all schemes. (Note that

there is a ADOC-5.7.1 scheme that has been added to the re-

sults. We elaborate on this later.) Comparing the auto-tuning

systems, RocksDB-AT and ADOC, we find that the latter per-

E

PM

E

NVMe SSD

E

SATA SSD

0

10

20

0

10

20

0

10

20

E

SATA HDD

10
-1

10
0

Load A B C D F

PM

Load A B C D F

NVMe SSD

Load A B C D F

SATA SSD

0

100

200

0

100

200

0

100

200

S
y
s
te

m
 T

h
ro

u
g

h
p

u
t
(k

O
p

s
/S

e
c
)

Load A B C D F

SATA HDD

10
-1

10
0

10
1

 RocksDB-AT SILK-P SILK-O ADOC ADOC-5.7.1

Figure 17: Comparison of system throughput in different

stages of YCSB workloads.

A B C D E F

PM

A B C D E F

NVMe SSD

A B C D E F

SATA SSD

A B C D E F

SATA HDD

0

1

2

0

1

2

0

1

2

0

1

2
M

e
m

o
ry

 B
u

d
g

e
t
(G

B
)

Experiment Schemes

 RocksDB-AT SILK-P SILK-O ADOC

Figure 18: Comparison of main memory footprint.

forms 7.6% to 11.4% better over all the devices considered.

Comparing SILK-O and ADOC, the two gives-and-takes. For

Load, a purely write workload, ADOC beats SILK-O. How-

ever, for workloads YCSB-A, -B, -C, and -F, SILK-O per-

forms better. For YCSB-D and -E, the winner depends on the

device. Recall that the RocksDB versions on which SILK-

O and ADOC run differ. To remove the version effect, we

also run ADOC on RocksDB 5.7.1. These results, denoted,

ADOC-5.7.1 in Figure 17, show that the version difference

has some effect on ADOC performance, with the older ver-

sion performing better in the majority of run stages, most

notably for YCSB-A and -E on the HDD.

The main reason SILK-O does well, despite the fact that

ADOC performs considerably better than SILK-O for writes

as was shown with the microbenchmarks, may be attributed to

the large memory usage. As shown in Figure 18, we find that

SILK-O uses as much as 76.8% more memory than ADOC.

Larger memory allows more requests to be serviced from the

USENIX Association 21st USENIX Conference on File and Storage Technologies 75

PM NVMe SSD SATA SSD SATA HDD

0

100

200

300

T
h

ro
u

g
h

p
u

t
(k

O
p

s
/S

e
c
)

Experiment Scheme

 RocksDB-AT SILK-P SILK-O ADOC

 Percentage of Found Entries

PM NVMe SSD SATA SSD SATA HDD

0

20

40

P
e

rc
e

n
ta

g
e

 o
f

F
o

u
n

d
 E

n
tr

ie
s
 (

%
)

Figure 19: Throughput for the read-while-writing workload.

PM NVMe SSD SATA SSD SATA HDD

ADOC-T

PM NVMe SSD SATA SSD SATA HDD

ADOC-B

50

100

200

50

100

200

N
o

rm
a

liz
e

d
 M

e
tr

ic
s
 (

%
)

 Throughput Bandwidth Utilization

 Memory Footprint CPU Utilization

Figure 20: Comparison of system throughput and resource

consumption with different tuning knobs triggered, the values

shown are normalized to the value of ADOC.

data buffered in memory benefiting not only read-intensive

but also update-intensive workloads like YCSB-A and -F.

Finally, the tail latency results (not shown) do not reveal

any surprises; overall, SILK-O does best, but gives-and-takes

between SILK-P and ADOC for particular workloads.

In conclusion, the performance results show that SILK-O

and ADOC are comparable. However, recall that for SILK,

performance varies considerably depending on the initial set-

ting and that the “optimal” SILK-O setting was manually

obtained. This is in contrast to ADOC being an online tuning

system that does not need human intervention.

As a supplement to the macro benchmark, we also eval-

uate the system under the read-while-writing workload in

db_bench that uses two threads, the reader and writer, to gener-

ate 50M write and read requests, respectively. Note that as the

reader and writer are running concurrently, the reader thread

may request entries that have not yet been persisted by the

writer; we show the percentage of found entries along with the

throughput of the various schemes in Figure 19. The results

show that ADOC achieves 5.2% to 45.3% higher throughput

than SILK-O, and 95% to 135% higher than RocksDB-AT.

6.4 Number of Threads versus Batch Size

Throughout our discussions, we considered the number of

threads and batch size as our tuning parameters. In this section,

we consider the effect of each parameter on ADOC. For this,

we consider the fillrandom workload in Section 6.2 on two

versions of ADOC, ADOC-T and ADOC-B, the former that

only tunes the number of threads and the latter that only tunes

the batch size.

Figure 21: Tuning actions during one-hour execution.

Figure 20 shows the throughput and resource usage of the

two schemes relative to ADOC initially set with the default

values. Observing the throughput for ADOC-T, we see that

it performs well for PM, but that the throughput deteriorates

with slower devices. More specifically, since ADOC-T does

not adjust the batch size, its memory footprint is smaller, but

this comes at the price of performance. The disk bandwidth

and CPU utilization are also high since the batch size is rela-

tively small, resulting in more frequent data movement.

In contrast, we see that ADOC-B is almost the complete op-

posite. It performs well for HDD, but throughput deteriorates

as the devices get more powerful. Since it does not increase

the number of threads, the memory footprint, the CPU uti-

lization, and the bandwidth utilization are all relatively low

as fewer data movement jobs get triggered. That is, while

resources are abundant, there are not enough workers to take

advantage of them. However, for the HDD where bandwidth

is limited, having few threads allow these threads to make full

use of the bandwidth incurring less write stalls.

Figure 21 shows how the number of threads and the batch

size are adjusted when only one parameter is considered with

ADOC-T and ADOC-B, respectively, versus when both are

considered with ADOC. The results show that tuning both

parameters together reduces the frequency and fluctuations of

the adjustments resulting in a much more stable setting.

In conclusion, we find that the number of threads and batch

size have a complementing effect that stabilizes the tuning

process, consequently resulting in better performance.

7 Related Work

Write Stall Issues: LSM-KV experiences periodical perfor-

mance drops when facing heavy writing pressure due to write

stalls. SILK focuses on the long tail latency problem caused

76 21st USENIX Conference on File and Storage Technologies USENIX Association

by write stalls. To remedy this problem, it adjusts the priorities

of background threads and adds rate limiters to these back-

ground threads [7]. It ensures the L0-L1 compaction will be

handled in a timely manner to avoid disk overflow. Other stud-

ies propose new scheduling strategies to align the background

compaction jobs in different levels and align the start time of

each compaction according to the available resources [45,50].

MatrixKV observes the shortcoming of the original SSTable

format and points to the slow L0-L1 compaction as the root

cause of write stalls with PM devices [58]. It redesigns the

format of SSTables for NVM and proposes a new compaction

scheme between the first two levels, which they call column-

compaction. It also reduces the depth of LSM trees to reduce

write amplification.

Deploying LSM-KVs on New Devices: Recent studies also

focus on the design of LSM-KVs to fit in new storage devices,

especially on PM. NoveLSM discusses several possible so-

lutions that accelerate LSM-KV such as storing parts of the

persisted component on PM [37]. It also proposes an in-place

update solution to replace the compaction jobs in shallower

levels. SLM-DB further takes advantage of PM by building

a global B+-tree index in PM [36]. This global index helps

in organizing the entire DB into a single level and uses se-

lective compaction to reduce write amplification. ListDB

deploys the entire LSM-KV in a DRAM-PM only system and

considers the NUMA sensitivity of PM and the overhead of

multiple copying of commit logs [38]. It develops a NUMA-

aware skip list to replace SSTs. This saves the overhead of

merge-sorting in Memtables and entry copying commit logs.

It also uses in-place updates to reduce bandwidth utilization

and the write amplification problem caused by conventional

compaction jobs.

Other approaches to improve LSM-KV systems have been

proposed. In particular, as new devices with much higher

bandwidth and parallelism than conventional devices become

prevalent, software overhead becomes more significant, and

thus, approaches to reduce this overhead have been made.

P2KVS notices the long waiting time on WAL lock [44]. It

adds an accessing layer that batches the incoming requests

and dispatches them into different KV instances, efficiently in-

creasing the scalability of LSM-KVs on NVMe SSD. Studies

such as KVell [43] and SpanDB [11] notice the high software

overhead in conventional IO interfaces and replace the inter-

faces with more efficient ones like libasync or SPDK [57].

To further eliminate the high IO stack overhead, some of

the studies try to reduce the duplicated operations between

devices and the LSM-KV. FlashKV and LOCS use Open

Channel SSDs (OCSSD) to directly control the IO process

of LSM-KVs from the user-level [53, 59]. Other studies like

KVSSD and iLSM try to integrate LSM-KVs and the FTL

(Flash Translation Layer) of SSDs to bypass the IO stack and

achieve lower operation latency [42, 55].

Parameter Tuning of LSM-KVs: There are studies that no-

tice the performance of LSM-KVs can be strongly influenced

by the configuration setting. Monkey extrapolates the worst-

case scenarios for various operations and designs a configu-

ration tuning framework to tune memory allocation policies

and read/write performance for specific workloads based on

these scenarios [13]. Dostoevsky further discusses the impact

of different compaction strategies and develops a mixed com-

paction strategy that determines the input according to the

input level [14]. Rafiki [47] and TiKV [21] use offline train-

ing methods such as Deep Neural Networks (DNN) to study

the best setting combination according to the performance

of the entire workload. They achieve better throughput but

are limited to workload characteristics. Endure concludes that

the tuning method on the worst cases is the Nominal Tun-

ing Problem and provides a system that uses a robust tuning

method to improve the tuning effect when facing uncertain

workloads [22].

8 Conclusion

In this paper, we studied the write stall phenomena in LSM-

KVs by revisiting earlier studies. We showed that the con-

clusions that focus on the individual aspects, though valid,

are not generally applicable. Through a thorough review and

further experiments on a modern LSM-KV, we showed that

data overflow, which refers to the rapid expansion of one or

more components in an LSM-KV system due to a surge in

data flow into one of the components, is able to explain the

formation of write stalls. Our contention was that by balanc-

ing and harmonizing data flow among components, we will

be able to reduce data overflow and thus, write stalls.

We proposed a tuning framework called ADOC (Automatic

Data Overflow Control) to adjust the system configurations

rather than simply waiting for the overflowed data to be con-

sumed as is done by default in RocksDB. Experimental results

with RocksDB showed that ADOC improves throughput by

as much as 322.8% compared with the auto-tuned RocksDB,

which takes a similar auto-tuning approach to ADOC. Com-

pared to the manually optimized state-of-the-art SILK [4],

ADOC achieves up to 66% higher throughput for the syn-

thetic write-intensive workloads, while achieving comparable

performance for the real-world YCSB workloads. However,

SILK attains this performance at the expense of using 22.2%

more main memory on average.

Acknowledgement

We would like to thank our shepherd Sudarsun Kannan and

the anonymous reviewers for their constructive comments

that helped improve the paper. This research was supported

by the MSIT (Ministry of Science and ICT), Korea, under

the ITRC (Information Technology Research Center) sup-

port program (IITP-2022-2021-0-01817) supervised by the

IITP (Institute for Information Communications Technology

Planning Evaluation), and also partially supported by a grant

from the Research Grants Council of the Hong Kong Special

Administrative Region, China (Project No. CityU 11217020).

USENIX Association 21st USENIX Conference on File and Storage Technologies 77

References

[1] Auto-tuned rate limiter. http://rocksdb.org/blog/

2017/12/18/17-auto-tuned-rate-limiter.html.

Accessed on 2022-12-29.

[2] fio - flexible i/o tester. https://fio.readthedocs.

io/en/latest/fio_doc.html. Accessed on 2022-01-

07.

[3] Github - supermt/feat_7.11. https://github.com/

supermt/FEAT_7.11. Accessed on 2022-01-07.

[4] HyperLevelDB: A fork of LevelDB intended to meet

the needs of HyperDex while remaining compati-

ble with LevelDB. https://github.com/rescrv/

HyperLevelDB. Accessed on 2022-09-09.

[5] Perf wiki. https://perf.wiki.kernel.org/index.

php/Main_Page. Accessed on 2022-12-29.

[6] Oana Balmau, Diego Didona, Rachid Guerraoui, Willy

Zwaenepoel, Huapeng Yuan, Aashray Arora, Karan

Gupta, and Pavan Konka. TRIAD: Creating Synergies

Between Memory, Disk and Log in Log Structured Key-

Value Stores. In Proceedings of the 2017 USENIX An-

nual Technical Conference (USENIX ATC 17), pages

363–375, 2017.

[7] Oana Balmau, Florin Dinu, Willy Zwaenepoel, Karan

Gupta, Ravishankar Chandhiramoorthi, and Diego Di-

dona. SILK: Preventing Latency Spikes in Log-

Structured Merge Key-Value Stores. In Proceedings

of the 2019 USENIX Annual Technical Conference

(USENIX ATC 19), pages 753–766, 2019.

[8] Atri Bhattacharyya, Uros Tesic, and Mathias Payer. Mi-

das: Systematic Kernel TOCTTOU Protection. In Pro-

ceedings of 31st USENIX Security Symposium (USENIX

Security 22), pages 107–124, Boston, MA, August 2022.

USENIX Association.

[9] Lin Cai, Xuemin Shen, Jianping Pan, and Jon W. Mark.

Performance Analysis of TCP-friendly AIMD Algo-

rithms for Multimedia Applications. IEEE Transactions

on Multimedia, 7(2):339–355, 2005.

[10] Fay Chang, Jeffrey Dean, Sanjay Ghemawat, Wilson C

Hsieh, Deborah A Wallach, Mike Burrows, Tushar Chan-

dra, Andrew Fikes, and Robert E Gruber. Bigtable: A

Distributed Storage System for Structured Data. ACM

Transactions on Computer Systems (TOCS), 26(2):1–26,

2008.

[11] Hao Chen, Chaoyi Ruan, Cheng Li, Xiaosong Ma, and

Yinlong Xu. SpanDB: A Fast, Cost-Effective LSM-tree

Based KV Store on Hybrid Storage. In Proceedings of

19th USENIX Conference on File and Storage Technolo-

gies (FAST 21), pages 17–32, 2021.

[12] Brian F. Cooper, Adam Silberstein, Erwin Tam, Raghu

Ramakrishnan, and Russell Sears. Benchmarking Cloud

Serving Systems with YCSB. page 143–154, New York,

NY, USA, 2010.

[13] Niv Dayan, Manos Athanassoulis, and Stratos Idreos.

Monkey: Optimal Navigable Key-Value Store. In Pro-

ceedings of the 2017 ACM International Conference on

Management of Data, page 79–94, New York, NY, USA,

2017.

[14] Niv Dayan and Stratos Idreos. Dostoevsky: Better

Space-Time Trade-Offs for LSM-Tree Based Key-Value

Stores via Adaptive Removal of Superfluous Merging.

In Proceedings of the 2018 International Conference

on Management of Data, page 505–520, New York, NY,

USA, 2018.

[15] Siying Dong, Andrew Kryczka, Yanqin Jin, and Michael

Stumm. Evolution of Development Priorities in Key-

value Stores Serving Large-scale Applications: The

RocksDB Experience. In Proceedings of 19th USENIX

Conference on File and Storage Technologies (FAST 21),

pages 33–49, 2021.

[16] Facebook. Leveled Compaction. https:

//github.com/facebook/rocksdb/wiki/

Leveled-Compaction. Accessed on 2022-09-09.

[17] Sanjay Ghemawat and Jeff Dean. Google: Leveldb.

https://github.com/google/leveldb, 2022. Ac-

cessed on 2022-09-09.

[18] Brendan Gregg. The flame graph: This visualization of

software execution is a new necessity for performance

profiling and debugging. Queue, 14(2):91–110, mar

2016.

[19] Shashank Gugnani, Arjun Kashyap, and Xiaoyi Lu. Un-

derstanding the idiosyncrasies of real persistent memory.

Proc. VLDB Endow., 14(4):626–639, feb 2021.

[20] Tom’s Hardware. Intel Kills Optane Memory

Business, Pays $559 Million Inventory Write-

Off. https://www.tomshardware.com/news/

intel-kills-optane-memory-business-for-good.

Accessed on 2022-09-09.

[21] Dongxu Huang, Qi Liu, Qiu Cui, Zhuhe Fang, Xiaoyu

Ma, Fei Xu, Li Shen, Liu Tang, Yuxing Zhou, Menglong

Huang, Wan Wei, Cong Liu, Jian Zhang, Jianjun Li,

Xuelian Wu, Lingyu Song, Ruoxi Sun, Shuaipeng Yu,

Lei Zhao, Nicholas Cameron, Liquan Pei, and Xin Tang.

TiDB: A Raft-Based HTAP Database. Proc. VLDB

Endow., 13(12):3072–3084, aug 2020.

78 21st USENIX Conference on File and Storage Technologies USENIX Association

http://rocksdb.org/blog/2017/12/18/17-auto-tuned-rate-limiter.html
http://rocksdb.org/blog/2017/12/18/17-auto-tuned-rate-limiter.html
https://fio.readthedocs.io/en/latest/fio_doc.html
https://fio.readthedocs.io/en/latest/fio_doc.html
https://github.com/supermt/FEAT_7.11
https://github.com/supermt/FEAT_7.11
https://github.com/rescrv/HyperLevelDB
https://github.com/rescrv/HyperLevelDB
https://perf.wiki.kernel.org/index.php/Main_Page
https://perf.wiki.kernel.org/index.php/Main_Page
https://github.com/facebook/rocksdb/wiki/Leveled-Compaction
https://github.com/facebook/rocksdb/wiki/Leveled-Compaction
https://github.com/facebook/rocksdb/wiki/Leveled-Compaction
https://github.com/google/leveldb
https://www.tomshardware.com/news/intel-kills-optane-memory-business-for-good
https://www.tomshardware.com/news/intel-kills-optane-memory-business-for-good

[22] Andy Huynh, Harshal A. Chaudhari, Evimaria Terzi,

and Manos Athanassoulis. Endure: A Robust Tuning

Paradigm for LSM Trees Under Workload Uncertainty,

2021.

[23] Facebook Inc. Benchmarking tools | RocksDB.

https://github.com/facebook/rocksdb/wiki/

Benchmarking-tools. Accessed on 2022-09-09.

[24] Facebook Inc. facebook/rocksdb. https://github.

com/facebook/rocksdb/tree/v6.11.4. Accessed

on 2022-09-09.

[25] Facebook Inc. RocksDB | A Persistent Key-Value store

| RocksDB. https://rocksdb.org/. Accessed on

2022-09-09.

[26] Facebook Inc. RocksDB Tuning Guide.

https://github.com/facebook/rocksdb/wiki/

RocksDB-Tuning-Guide. Accessed on 2022-09-09.

[27] Facebook Inc. rocksdb/HISTORY.MD. https:

//github.com/facebook/rocksdb/blob/main/

HISTORY.md. Accessed on 2022-09-09.

[28] Facebook Inc. Write Stalls. https://github.com/

facebook/rocksdb/wiki/Write-Stalls. Accessed

on 2022-09-09.

[29] Intel Inc. Intel SSD DC S4500 Series 960GB

2.5in SATA 6Gbs 3D1 TLC Product Specifi-

cations. https://ark.intel.com/content/

www/us/en/ark/products/series/120535/

intel-ssd-dc-s4500-series.html. Accessed

on 2022-09-09.

[30] Samsung Inc. 970 PRO | Consumer SSD | Sam-

sung Semiconductor. https://www.samsung.

com/semiconductor/minisite/ssd/product/

consumer/970pro/. Accessed on 2022-09-09.

[31] Seagate Inc. BarraCuda Hard Drives. https:

//www.seagate.com/products/hard-drives/

barracuda-hard-drive/, 2022. Accessed on

2022-09-09.

[32] InfluxData. InfluxDB: Purpose-Built Open Source

Time Series Database | InfluxData. https://www.

influxdata.com/. Accessed on 2022-09-09.

[33] Joseph Izraelevitz, Jian Yang, Lu Zhang, Juno Kim,

Xiao Liu, Amirsaman Memaripour, Yun Soh, Zixuan

Wang, Yi Xu, Subramanya Dulloor, Jishen Zhao, and

Steven Swanson. Basic Performance Measurements

of the Intel Optane DC Persistent Memory Module.

https://arxiv.org/abs/1903.05714, 03 2019.

[34] Yichen Jia and Feng Chen. From Flash to 3D XPoint:

Performance Bottlenecks and Potentials in RocksDB

with Storage Evolution. In Proceedings of 2020 IEEE

International Symposium on Performance Analysis of

Systems and Software (ISPASS), pages 192–201, 2020.

[35] Myoungsoo Jung. Hello Bytes, Bye Blocks: PCIe Stor-

age Meets Compute Express Link for Memory Expan-

sion (CXL-SSD). HotStorage ’22, page 45–51, 2022.

[36] Olzhas Kaiyrakhmet, Songyi Lee, Beomseok Nam,

Sam H. Noh, and Young ri Choi. SLM-DB: Single-Level

Key-Value store with persistent memory. In Proceed-

ings of 17th USENIX Conference on File and Storage

Technologies (FAST 19), pages 191–205, 2019.

[37] Sudarsun Kannan, Nitish Bhat, Ada Gavrilovska, An-

drea Arpaci-Dusseau, and Remzi Arpaci-Dusseau. Re-

designing LSMs for Nonvolatile Memory with Nov-

eLSM. In Proceedings of 2018 USENIX Annual Tech-

nical Conference (USENIX ATC 18), pages 993–1005,

2018.

[38] Wonbae Kim, Chanyeol Park, Dongui Kim, Hyeongjun

Park, Young ri Choi, Alan Sussman, and Beomseok

Nam. ListDB: Union of Write-Ahead logs and persistent

SkipLists for incremental checkpointing on persistent

memory. In 16th USENIX Symposium on Operating

Systems Design and Implementation (OSDI 22), pages

161–177, Carlsbad, CA, July 2022. USENIX Associa-

tion.

[39] Andrew Kryczka. Auto-tuned Rate Limiter |

RocksDB. https://rocksdb.org/blog/2017/12/

18/17-auto-tuned-rate-limiter.html. Accessed

on 2022-09-09.

[40] Chengdi Lai, Ka-Cheong Leung, and Victor O.K. Li. De-

sign and analysis of TCP AIMD in wireless networks.

In Proceedings of Wireless Communications and Net-

working Conference (WCNC), pages 1422–1427, 2013.

[41] Avinash Lakshman and Prashant Malik. Cassandra:

A Decentralized Structured Storage System. SIGOPS

Oper. Syst. Rev., 44(2):35–40, apr 2010.

[42] Chang-Gyu Lee, Hyeongu Kang, Donggyu Park, Sungy-

ong Park, Youngjae Kim, Jungki Noh, Woosuk Chung,

and Kyoung Park. ilsm-ssd: An intelligent lsm-tree

based key-value ssd for data analytics. In 2019 IEEE

27th International Symposium on Modeling, Analysis,

and Simulation of Computer and Telecommunication

Systems (MASCOTS), pages 384–395, 2019.

[43] Baptiste Lepers, Oana Balmau, Karan Gupta, and Willy

Zwaenepoel. KVell: the Design and Implementation of

a Fast Persistent Key-Value Store. In Proceedings of the

USENIX Association 21st USENIX Conference on File and Storage Technologies 79

https://github.com/facebook/rocksdb/wiki/Benchmarking-tools
https://github.com/facebook/rocksdb/wiki/Benchmarking-tools
https://github.com/facebook/rocksdb/tree/v6.11.4
https://github.com/facebook/rocksdb/tree/v6.11.4
https://rocksdb.org/
https://github.com/facebook/rocksdb/wiki/RocksDB-Tuning-Guide
https://github.com/facebook/rocksdb/wiki/RocksDB-Tuning-Guide
https://github.com/facebook/rocksdb/blob/main/HISTORY.md
https://github.com/facebook/rocksdb/blob/main/HISTORY.md
https://github.com/facebook/rocksdb/blob/main/HISTORY.md
https://github.com/facebook/rocksdb/wiki/Write-Stalls
https://github.com/facebook/rocksdb/wiki/Write-Stalls
https://ark.intel.com/content/www/us/en/ark/products/series/120535/intel-ssd-dc-s4500-series.html
https://ark.intel.com/content/www/us/en/ark/products/series/120535/intel-ssd-dc-s4500-series.html
https://ark.intel.com/content/www/us/en/ark/products/series/120535/intel-ssd-dc-s4500-series.html
https://www.samsung.com/semiconductor/minisite/ssd/product/consumer/970pro/
https://www.samsung.com/semiconductor/minisite/ssd/product/consumer/970pro/
https://www.samsung.com/semiconductor/minisite/ssd/product/consumer/970pro/
https://www.seagate.com/products/hard-drives/barracuda-hard-drive/
https://www.seagate.com/products/hard-drives/barracuda-hard-drive/
https://www.seagate.com/products/hard-drives/barracuda-hard-drive/
https://www.influxdata.com/
https://www.influxdata.com/
https://arxiv.org/abs/1903.05714
https://rocksdb.org/blog/2017/12/18/17-auto-tuned-rate-limiter.html
https://rocksdb.org/blog/2017/12/18/17-auto-tuned-rate-limiter.html

27th ACM Symposium on Operating Systems Principles,

pages 447–461, 2019.

[44] Ziyi Lu, Qiang Cao, Hong Jiang, Shucheng Wang, and

Yuanyuan Dong. P²KVS: A Portable 2-

Dimensional Parallelizing Framework to Improve Scal-

ability of Key-Value Stores on SSDs. page 575–591,

2022.

[45] Chen Luo and Michael J Carey. On performance stabil-

ity in LSM-based storage systems (extended version).

https://arxiv.org/abs/1906.09667, 2019.

[46] Chen Luo and Michael J Carey. LSM-based storage

techniques: a survey. The VLDB Journal, 29(1):393–

418, 2020.

[47] Ashraf Mahgoub, Paul Wood, Sachandhan Ganesh, Sub-

rata Mitra, Wolfgang Gerlach, Travis Harrison, Folker

Meyer, Ananth Grama, Saurabh Bagchi, and Somali

Chaterji. Rafiki: A Middleware for Parameter Tuning of

NoSQL Datastores for Dynamic Metagenomics Work-

loads. In Proceedings of the 18th ACM/IFIP/USENIX

Middleware Conference(Middleware ’17), page 28–40,

2017.

[48] Yoshinori Matsunobu, Siying Dong, and Herman Lee.

MyRocks: LSM-Tree Database Storage Engine Serving

Facebook’s Social Graph. Proceedings of the VLDB

Endowment, 13(12):3217–3230, 2020.

[49] Pandian Raju, Rohan Kadekodi, Vijay Chidambaram,

and Ittai Abraham. PebblesDB: Building Key-Value

Stores Using Fragmented Log-Structured Merge Trees.

In Proceedings of the 26th Symposium on Operating

Systems Principles(SOSP ’17), page 497–514, 2017.

[50] Russell Sears and Raghu Ramakrishnan. bLSM: a gen-

eral purpose log structured merge tree. In Proceedings

of the 2012 ACM SIGMOD International Conference

on Management of Data, pages 217–228, 2012.

[51] Xuan Sun, Jinghuan Yu, Zimeng Zhou, and Chun Jason

Xue. FPGA-based Compaction Engine for Accelerating

LSM-tree Key-Value Stores. In Proceedings of 2020

IEEE 36th International Conference on Data Engineer-

ing (ICDE), pages 1261–1272, 2020.

[52] Mehul Nalin Vora. Hadoop-HBase for large-scale data.

In Proceedings of 2011 International Conference on

Computer Science and Network Technology, pages 601–

605, 2011.

[53] Peng Wang, Guangyu Sun, Song Jiang, Jian Ouyang,

Shiding Lin, Chen Zhang, and Jason Cong. An efficient

design and implementation of lsm-tree based key-value

store on open-channel ssd. In Proceedings of the Ninth

European Conference on Computer Systems, EuroSys

’14, New York, NY, USA, 2014. Association for Com-

puting Machinery.

[54] Kan Wu, Andrea Arpaci-Dusseau, and Remzi Arpaci-

Dusseau. Towards an Unwritten Contract of Intel Op-

tane SSD. In Proceedings of 11th USENIX Workshop

on Hot Topics in Storage and File Systems (HotStorage

19), 2019.

[55] Sung-Ming Wu, Kai-Hsiang Lin, and Li-Pin Chang.

KVSSD: Close integration of LSM trees and flash trans-

lation layer for write-efficient KV store. In 2018 Design,

Automation & Test in Europe Conference & Exhibition

(DATE), pages 563–568, 2018.

[56] Jian Yang, Juno Kim, Morteza Hoseinzadeh, Joseph

Izraelevitz, and Steve Swanson. An Empirical Guide

to the Behavior and Use of Scalable Persistent Memory.

In Proceedings of 18th USENIX Conference on File and

Storage Technologies (FAST 20), pages 169–182, Santa

Clara, CA, 2020.

[57] Ziye Yang, James R. Harris, Benjamin Walker, Daniel

Verkamp, Changpeng Liu, Cunyin Chang, Gang Cao,

Jonathan Stern, Vishal Verma, and Luse E. Paul. Spdk:

A development kit to build high performance storage

applications. In Proceedings of 2017 IEEE Interna-

tional Conference on Cloud Computing Technology and

Science (CloudCom), pages 154–161, 2017.

[58] Ting Yao, Yiwen Zhang, Jiguang Wan, Qiu Cui, Liu

Tang, Hong Jiang, Changsheng Xie, and Xubin He. Ma-

trixKV: Reducing Write Stalls and Write Amplification

in LSM-tree Based KV Stores with Matrix Container in

NVM. In Proceedings of 2020 USENIX Annual Techni-

cal Conference (USENIX ATC 20), pages 17–31, 2020.

[59] Jiacheng Zhang, Youyou Lu, Jiwu Shu, and Xiongjun

Qin. Flashkv: Accelerating kv performance with open-

channel ssds. ACM Trans. Embed. Comput. Syst., 16(5s),

sep 2017.

[60] Teng Zhang, Jianying Wang, Xuntao Cheng, Hao Xu,

Nanlong Yu, Gui Huang, Tieying Zhang, Dengcheng He,

Feifei Li, Wei Cao, Zhongdong Huang, and Jianling Sun.

FPGA-Accelerated Compactions for LSM-based Key-

Value Store. In Proceedings of 18th USENIX Conference

on File and Storage Technologies (FAST 20), pages 225–

237, Santa Clara, CA, 2020.

[61] Zhizhou Zhang, Murali Krishna Ramanathan, Prithvi

Raj, Abhishek Parwal, Timothy Sherwood, and Milind

Chabbi. CRISP: Critical Path Analysis of Large-Scale

Microservice Architectures. In Proceedings of 2022

USENIX Annual Technical Conference (USENIX ATC

22), pages 655–672, Carlsbad, CA, July 2022. USENIX

Association.

80 21st USENIX Conference on File and Storage Technologies USENIX Association

https://arxiv.org/abs/1906.09667

FUSEE: A Fully Memory-Disaggregated Key-Value Store

Jiacheng Shen1∗, Pengfei Zuo2, Xuchuan Luo3, Tianyi Yang1,
Yuxin Su4, Yangfan Zhou3, and Michael R. Lyu1

1The Chinese University of Hong Kong, 2Huawei Cloud, 3Fudan University, 4Sun Yat-sen University

Abstract
Distributed in-memory key-value (KV) stores are embrac-
ing the disaggregated memory (DM) architecture for higher
resource utilization. However, existing KV stores on DM em-
ploy a semi-disaggregated design that stores KV pairs on
DM but manages metadata with monolithic metadata servers,
hence still suffering from low resource efficiency on metadata
servers. To address this issue, this paper proposes FUSEE, a
FUlly memory-diSaggrEgated KV StorE that brings disag-
gregation to metadata management. FUSEE replicates meta-
data, i.e., the index and memory management information, on
memory nodes, manages them directly on the client side, and
handles complex failures under the DM architecture. To scal-
ably replicate the index on clients, FUSEE proposes a client-
centric replication protocol that allows clients to concurrently
access and modify the replicated index. To efficiently manage
disaggregated memory, FUSEE adopts a two-level memory
management scheme that splits the memory management duty
among clients and memory nodes. Finally, to handle the meta-
data corruption under client failures, FUSEE leverages an
embedded operation log scheme to repair metadata with low
log maintenance overhead. We evaluate FUSEE with both mi-
cro and YCSB hybrid benchmarks. The experimental results
show that FUSEE outperforms the state-of-the-art KV stores
on DM by up to 4.5 times with less resource consumption.

1 Introduction
Traditional in-memory key-value (KV) stores on mono-
lithic servers have recently been ported to the disaggre-
gated memory (DM) architecture for better resource effi-
ciency [60, 73]. Compared with monolithic servers, DM de-
couples the compute and memory resources into independent
network-attached compute and memory pools [3,23,25,38,47,
54,55,65]. KV stores on DM can thus enjoy efficient resource
pooling and have higher resource efficiency.

However, constructing KV stores on DM is challenging
because the memory pool generally lacks the compute power
to manage data and metadata. Existing work [60] proposes
a semi-disaggregated design that stores KV pairs in the dis-
aggregated memory pool but retains metadata management
on monolithic servers. In such a design, the KV pair storage
enjoys high resource utilization due to exploiting the DM
architecture, but the metadata management does not. Many

∗Work mainly done during the internship at Huawei Cloud.

additional resources are exclusively assigned to the metadata
servers in order to achieve high overall throughput [13,53,69].

To achieve full resource utilization, it is critical to bring
disaggregation to the metadata management, i.e., building a
fully memory-disaggregated KV store. The metadata, i.e., the
index and memory management information, should be stored
in the memory pool and directly managed by clients rather
than metadata servers. However, it is non-trivial to achieve a
fully memory-disaggregated KV store due to the following
challenges incurred from handling complex failures and the
weak compute power in the memory pool.

1) Client-centric index replication. To tolerate memory
node failures, clients need to replicate the index on memory
nodes in the memory pool and guarantee the consistency
of index replicas. In existing replication approaches, e.g.,
state machine replication [33, 46, 50, 62] and shared regis-
ter protocols [5, 7, 43], the replication protocols are executed
by server-side CPUs. These protocols cannot be executed
on DM due to the weak compute power in the memory
pool. Meanwhile, if clients simply employ consensus pro-
tocols [36, 46, 50] or remote locks [60], the KV store suffers
from poor scalability due to the explicit serialization of con-
flicting requests [4, 11, 64, 70].

2) Remote memory allocation. Existing semi-disaggregated
KV stores manage memory spaces with monolithic metadata
servers. However, in the fully memory-disaggregated setting,
such a server-centric memory management scheme is infeasi-
ble. Specifically, memory nodes cannot handle the compute-
heavy fine-grained memory allocation for KV pairs due to
their poor compute power [25,60]. Meanwhile, clients cannot
efficiently allocate memory spaces because multiple RTTs
are required to modify the memory management information
stored on memory nodes [38].

3) Metadata corruption under client failures. In semi-
disaggregated KV stores, client failures do not affect metadata
because the CPUs of monolithic servers exclusively modify
metadata. However, clients directly access and modify meta-
data on memory nodes in the fully memory-disaggregated
setting. As a result, client failures can leave partially modified
metadata accessible by others, compromising the correctness
of the entire KV store.

To address these challenges, we propose FUSEE, a fully
memory-disaggregated key-value store that has efficient index
replication, memory allocation, and fault-tolerance on DM.

USENIX Association 21st USENIX Conference on File and Storage Technologies 81

First, to maintain the strong consistency of the replicated in-
dex in a scalable manner, FUSEE proposes the SNAPSHOT
replication protocol. The key to achieving scalability is to re-
solve write conflicts without involving the expensive request
serialization [7]. SNAPSHOT adopts three simple yet effec-
tive conflict-resolution rules on clients to allow conflicts to be
resolved collaboratively among clients instead of sequentially.
Second, to achieve efficient remote memory management,
FUSEE employs a two-level memory management scheme
that splits the server-centric memory management process
into compute-light and compute-heavy tasks. The compute-
light coarse-grained memory blocks are managed by the mem-
ory nodes with weak compute power, and the compute-heavy
fine-grained objects are handled by clients. Finally, to deal
with the problem of metadata corruption, FUSEE adopts an
embedded operation log scheme to resume clients’ partially
executed operations. The embedded operation log reuses the
memory allocation order and embeds log entries in KV pairs
to reduce the log-maintenance overhead on DM.

We implement FUSEE from scratch and evaluate its perfor-
mance using both micro and YCSB benchmarks [15]. Com-
pared with Clover and pDPM-Direct [60], two state-of-the-art
KV stores on DM, FUSEE achieves up to 4.5 times higher
overall throughput and exhibits lower operation latency with
less resource consumption. The code of FUSEE is available
at https://github.com/dmemsys/FUSEE.

In summary, this paper makes the following contributions:
• A fully memory-disaggregated KV store with disaggre-

gated metadata and data that is resilient to failures on
DM.

• A client-centric replication protocol that uses conflict
resolution rules to enable clients to resolve conflicts
collaboratively. The protocol is formally verified with
TLA+ [35] for safety and the absence of deadlocks under
crash-stop failures.

• A two-level memory management scheme that leverages
both memory nodes and clients to efficiently manage the
remote memory space.

• An embedded operation log scheme to repair the cor-
rupted metadata with low log maintenance overhead.

• The implementation and evaluation of FUSEE to demon-
strate the efficiency and effectiveness of our design.

2 Background and Motivation
2.1 The Disaggregated Memory Architecture
The disaggregated memory architecture is proposed to address
the resource underutilization issue of traditional datacenters
composed of monolithic servers [25, 38, 47, 54, 55, 65]. DM
separates CPUs and memory of monolithic servers into two
independent hardware resource pools containing compute
nodes (CNs) and memory nodes (MNs) [55, 60, 64, 73]. CNs
have abundant CPU cores and a small amount of memory
as local caches [64]. MNs host various memory media, e.g.,
DRAM and persistent memory, to accommodate different

Compute Pool
Clients

Net.

Memory Pool

KV Pairs Index

MMI

Metadata Server

(a) Clover

Net.

Compute Pool
Clients

Memory Pool

KV Pairs
Index
MMI

(b) FUSEE

Figure 1: Two architectures of memory-disaggregated KV stores.
(a) The semi-disaggregated architecture (Clover [60]). (b) The fully
disaggregated architecture proposed in this paper.

application requirements with weak compute power. CPUs
in CNs directly access memory in MNs with fast remote-
access interconnect techniques, such as one-sided RDMA
(remote direct memory access), Omni-path [16], CXL [42],
and Gen-Z [14]. Each MN provides READ, WRITE, and atomic
operations, i.e., compare-and-swap (CAS) and fetch-and-add
(FAA), for CNs to access memory data. Besides, MNs own
limited compute power (e.g., 1-2 CPU cores) to manage local
memory and establish connections from CNs, providing CNs
with the ALLOC and FREE memory management interfaces.
Without loss of generality, in this paper, we consider CNs
accessing MNs using one-sided RDMA verbs.

2.2 KV Stores on Disaggregated Memory
Clover [60] is a state-of-the-art KV store built on DM. It
adopts a semi-disaggregated design that separates data and
metadata to lower the ownership cost and prevent the compute
power of data nodes from becoming the performance bottle-
neck. As shown in Figure 1a, Clover deploys clients on CNs
and stores KV pairs on MNs. It adopts additional monolithic
metadata servers to manage the metadata, including mem-
ory management information (MMI) and the hash index. For
SEARCH requests, clients look up the addresses of the KV pairs
from metadata servers and then fetch the data on MNs us-
ing RDMA_READ operations. For INSERT and UPDATE requests,
clients allocate memory blocks from metadata servers with
RPCs, write KV pairs to MNs with RDMA_WRITE operations,
and update the hash index on the metadata servers through
RPCs. To prevent clients’ frequent requests from overwhelm-
ing the metadata servers, clients allocate a batch of memory
blocks one at a time and cache the hash index locally. As a re-
sult, Clover achieves higher throughput under read-intensive
workloads with less resource consumption.

However, the semi-disaggregated design of Clover cannot
fully exploit the resource efficiency of the DM architecture
due to its monolithic-server-based metadata management. On
the one hand, monolithic metadata servers consume addi-
tional resources, including CPUs, memory, and RNICs. On
the other hand, many compute and memory resources have to

82 21st USENIX Conference on File and Storage Technologies USENIX Association

https://github.com/dmemsys/FUSEE

1 2 3 4 5 6 7 8
Number of Metadata Server CPUs

0.00

0.25

0.50

0.75

1.00

Th
ro

ug
hp

ut
 (M

op
s/

s) 100% update
80% update
50% update

Figure 2: The throughput of
Clover with an increasing num-
ber of metadata server CPUs.

16 32 48 64 80 96 112 128
Number of Clients

0

10

20

30

Th
ro

ug
hp

ut
 (K

op
s/

s) Derecho
Remote Lock

Figure 3: The throughput of
Derecho [27] and lock-based
approaches.

be reserved and assigned to the metadata server of Clover to
achieve good performance due to the CPU-intensive nature
of metadata management [13, 53, 69]. To show the resource
utilization issue of Clover, we evaluate its throughput with 2
MNs, 64 clients, and a metadata server with different num-
bers of CPU cores. We control the number of CPU cores by
assigning different percentages of CPU time with cgroup [10].
As shown in Figure 2, Clover has a low overall throughput
with a small number of CPU cores assigned to its metadata
server. At least six additional cores have to be assigned until
the metadata server is no longer the performance bottleneck.

To attack the problem, FUSEE adopts a fully memory-
disaggregated design that enables clients to directly access
and modify the hash index and manage memory spaces
on MNs, as shown in Figure 1b. Compared with the semi-
disaggregated design, resource efficiency can be improved
because client-side metadata management eliminates the ad-
ditional metadata servers. The overall throughput can also be
improved because the computation bottleneck of metadata
management no longer exists.

3 Challenges
This section introduces the three challenges of constructing a
fully memory-disaggregated KV store, i.e., index replication,
remote memory allocation, and metadata corruption.

3.1 Client-Centric Index Replication
The index must be replicated to tolerate MN failures. Strong
consistency, i.e., linearizability [26], is the most commonly
adopted correctness standard for data replication because it
reduces the complexity of implementing upper-level applica-
tions [1, 7, 12]. Linearizability requires that operations on an
object appear to be executed in some total order that respects
the operations’ real-time order [26]. The key challenge of
achieving a linearizable replicated hash index under the fully
memory-disaggregated setting comes from the client-centric
computation nature of DM.

First, existing replication methods are not applicable in the
fully memory-disaggregated setting due to their server-centric
nature. State machine replication (SMR) [33, 44, 46, 49, 50,
59, 62] and shared register protocols [7, 43] are two major
replication approaches that achieve linearizability. However,
both approaches are designed with a server-centric assump-
tion that a data replica is exclusively accessed and modified

by the CPU that manages the data. First, the SMR approaches
consider the CPU and the data replica as a state machine
and achieve strong consistency by forcing the state machines
to execute deterministic KV operations in the same global
order [49, 50]. Server CPUs are extensively used to reach a
consensus on a global operation order and apply state transi-
tions to data replicas. Second, shared register protocols view
the CPU and the data replica as a shared register with READ
and WRITE interfaces. Linearizability is achieved with a last-
writer-wins conflict resolution scheme [43] that forces a ma-
jority of shared registers to always hold data with the newest
timestamps. Shared register protocols also heavily rely on
server-side CPUs to compare timestamps and apply data up-
dates. The challenge with the server-centric approaches is
that in the fully memory-disaggregated scenario, there is no
such management CPU because all clients directly access and
modify the hash index with one-sided RDMA verbs.

Second, naively adopting consensus protocols or remote
locks among clients results in poor throughput due to the
expensive request serialization. To show the performance
issues of consensus protocols and remote locks, we store and
replicate a shared object on two MNs and vary the number
of concurrent clients. We use a state-of-the-art consensus
protocol Derecho [27] and an RDMA CAS-based spin lock
to ensure the strong consistency of the replicated object. As
shown in Figure 3, both Derecho and lock-based approaches
exhibit poor overall throughput and cannot scale with the
growing number of concurrent clients.

3.2 Remote Memory Allocation
The key challenge of managing DM is where to execute the
memory-management computation. There are two possible
DM management approaches [38], i.e., compute-centric ones
and memory-centric ones. The compute-centric approaches
store the memory management metadata on MNs and allow
clients to allocate memory spaces by directly modifying the
on-MN metadata. Since the memory management metadata
are shared by all clients, clients’ accesses have to be synchro-
nized. As a result, compute-centric approaches suffer from the
high memory allocation latency incurred by the expensive and
complex remote synchronization process on DM [38]. The
memory-centric approaches maintain all memory manage-
ment metadata on MNs with their weak compute power. Such
approaches are also infeasible because the poor memory-side
compute power can be overwhelmed by the frequent fine-
grained KV allocation requests from clients. Although there
are several approaches that conduct memory management on
DM, they all target page-level memory allocation and rely
on special hardware, i.e., programmable switches [38] and
SmartNICs [25], which are orthogonal to our problem.

3.3 Metadata Corruption
In fully memory-disaggregated KV stores, crashed clients
can leave partially modified metadata accessible by other

USENIX Association 21st USENIX Conference on File and Storage Technologies 83

Compute Pool

CN

App

Client
IPC

MN MN MN

KV Pair (R0)

Index (R1)

MMI (R0)

KV Pair (R2)

Index (R0)

MMI (R1)

KV Pair (R1)

Index (R2)

MMI (R2)

RDMA
Memory Pool

CN

App

Client
IPC

CN

App

Client
IPC

CN

Master

Figure 4: The FUSEE overview (MMI, Index, and KV pairs have
multiple replicas, i.e., R0, R1, and R2. R0 is the primary replica.).

Slot 0 Slot 1 Slot 2 Slot 3 Slot n

old-KV new-KV

UPDATE
in-MN addr Fp

48bit 8bit
Len
8bit

Figure 5: The structure of an index replica.

healthy clients. Since the metadata contains important system
state, metadata corruption compromises the correctness of the
entire KV store. First, crashed clients may leave the index in a
partially modified state. Other healthy clients may not be able
to access data or even access wrong data with the corrupted
index. Second, crashed clients may allocate memory spaces
but not use them, causing severe memory leakage. Hence, in
order to ensure the correctness of the KV store, the corrupted
metadata has to be repaired under client failures.

4 The FUSEE Design
4.1 Overview
As shown in Figure 4, FUSEE consists of clients, MNs,
and a master. Clients provide SEARCH, INSERT, DELETE, and
UPDATE interfaces for applications to access KV pairs. MNs
store the replicated memory management information (MMI),
hash index, and KV pairs. The master is a cluster management
process responsible only for initializing clients and MNs and
recovering data under client and MN failures.

FUSEE replicates both the hash index and KV pairs to
tolerate MN failures. We adopt RACE hashing (Section 4.2)
to index KV pairs and propose the SNAPSHOT replication
protocol to enforce the strong consistency of the replicated
hash index (Section 4.3). A two-level memory management
scheme is adopted to efficiently allocate and replicate variable-
sized KV pairs (Section 4.4). FUSEE uses logs to handle the
corrupted metadata under client failures and adopts an em-
bedded operation log scheme to reduce the log maintenance
overhead (Section 4.5). Other optimizations are introduced in
Section 4.6 to further improve the system performance.

4.2 RACE Hashing
RACE hashing is a one-sided RDMA-friendly hash index. As
shown in Figure 5, it contains multiple 8-byte slots, with each
storing a pointer referring to the address of a KV pair, an 8-bit

A

B

B

C

Primary slot

Backup slot 1

Backup slot 3

Backup slot 2

CBB

22

11

3 3

A

v_list

A B A C

CBB

Client 1 (Last writer)

Swap-Back:

B

AA C

Expected: A

Swap:

Client 2

Swap:

Swap-Back: BB A

A

C

Expected:

Mem Pool

(vold)

(vnew)

v_list

(vold)

(vnew)

Figure 6: The SNAPSHOT replication protocol.

fingerprint (Fp), i.e., a part of the key’s hash value, and the
length of the KV pair (Len) [73]. For SEARCH requests, a client
reads the slots of the hash index according to the hash value of
the target key and then reads the KV pair on MNs according
to the pointer in the slot. For UPDATE, INSERT, and DELETE
requests, RACE hashing adopts an out-of-place modification
scheme. It first writes a KV pair to MNs and then modifies
the corresponding slot in the hash index to the address of the
KV pair atomically with an RDMA_CAS. Nevertheless, RACE
hashing only supports a single replica.

4.3 The SNAPSHOT Replication Protocol
In FUSEE, multiple clients concurrently read or write the
same slot in the replicated hash index to execute SEARCH or
UPDATE requests, as shown in Figure 6. To efficiently main-
tain the strong consistency of slot replicas in the replicated
hash index, FUSEE proposes the SNAPSHOT replication
protocol, a client-centric replication protocol that achieves
linearizability without the expensive request serialization.

There are two main challenges to efficiently achieving lin-
earizability under the fully memory-disaggregated setting.
First, how to protect readers from reading incomplete states
during read-write conflicts. Second, how to resolve write-
write conflicts without expensively serializing all conflicting
requests. To address the first challenge, SNAPSHOT splits the
replicated hash index into a single primary replica and multi-
ple backup replicas and uses backup replicas to resolve write
conflicts. Hence, incomplete states during write conflicts only
appear on backup replicas and the primary replica always
contains the correct and complete value. Readers can simply
read the contents in the primary replica without perceiving the
incomplete states. To address the second challenge, SNAP-
SHOT adopts a last-writer-wins conflict resolution scheme
similar to shared register protocols. SNAPSHOT leverages
the out-of-place modification characteristic of RACE hashing
that conflicting writers always write different values into the
same slot because the values are pointers referring to KV
pairs at different locations. Three conflict-resolution rules are
thus defined based on the values written by conflicting writers
in backup replicas, which enable clients collaboratively to
decide on a single last writer under write conflicts.

Algorithm 1 shows the READ and WRITE processes of the
SNAPSHOT replication protocol. Here we focus on the exe-
cution of SNAPSHOT when no failure occurs and leave the

84 21st USENIX Conference on File and Storage Technologies USENIX Association

Algorithm 1 The SNAPSHOT replication protocol
1: procedure READ(slot)
2: v = RDMA_READ_primary(slot)
3: if v = FAIL then deal with failure
4: return v
5: procedure WRITE(slot,vnew)
6: vold = RDMA_READ_primary(slot)
7: v_list = RDMA_CAS_backups(slot,vold ,vnew)
8: // Change all the volds in the v_list to vnews.
9: v_list = change_list_value(v_list,vold ,vnew)

10: win = EVALUATE_RULES(v_list) ▷ The last writer returns
the winning rule while other writers return LOSE.

11: if win = Rule_1 then
12: RDMA_CAS_primary(slot,vold ,vnew)
13: else if win ∈ {Rule_2,Rule_3} then
14: RDMA_CAS_backups(slot,v_list,vnew)
15: RDMA_CAS_primary(slot,vold ,vnew)
16: else if win = LOSE then
17: repeat
18: sleep a little bit
19: vcheck = RDMA_READ_primary(slot)
20: if notified failure then goto Line 24
21: until vcheck ̸= vold
22: if vcheck = FAIL then goto Line 24
23: else if win = FAIL then
24: deal with failure
25: return

discussion of failure handling in Section 5. We call the slots
in the primary and backup hash indexes primary slots and
backup slots, respectively.

For READ operations, clients directly read the values in
the primary slots using RDMA_READ. For WRITE operations,
SNAPSHOT first resolves write conflicts by letting conflict-
ing writers collaboratively decide on a last writer with three
conflict resolution rules and then let the decided last writer
modify the primary slot. Figure 6 shows the process that two
clients simultaneously WRITE the same slot. The correspond-
ing algorithms are shown in Algorithms 1 and 2. Clients first
read the value in the primary slot as vold (1⃝). Then each
client modifies all backup slots by broadcasting RDMA_CAS
operations (2⃝) with vold as the expected value and vnew as
the swap value. On receiving an RDMA_CAS, the RNICs on
MNs atomically modify the value in the target slot only if
vold matches the current value in the slot. Since all writers
initiate RDMA_CAS operations with the same vold and different
vnews and all backup slots initially hold vold , the atomicity
of RDMA_CAS ensures that each backup slot can only be mod-
ified once by a single writer. As a result, the values in all
backup slots will be fixed after each of them has received one
RDMA_CAS from one writer 1. Meanwhile, since an RDMA_CAS
returns the value in the slot before it is modified, all clients

1That the process that all conflicting clients broadcast RDMA_CASes to
modify backup slots is just like taking a snapshot, which is why the replication
protocol is named SNAPSHOT.

Algorithm 2 The rule evaluation procedure of SNAPSHOT
1: procedure EVALUATE_RULES(v_list,slot,vnew,vold)
2: vma j = The majority value in v_list
3: cntma j = The number of vma j in v_list
4: if FAIL ∈ v_list then
5: return FAIL
6: else if cntma j = Len(v_list) then
7: return Rule 1 if vma j = vnew else LOSE
8: else if 2∗ cntma j > Len(v_list) then
9: return Rule 2 if vma j = vnew else LOSE

10: else if vnew ̸∈ v_list then
11: return LOSE
12: vcheck = RDMA_READ(slot)
13: if vcheck = FAIL then
14: return FAIL
15: else if vcheck ̸= vold then
16: return FINISH
17: else if min(v_list) = vnew then
18: return Rule 3
19: return LOSE

can perceive the new values in the backup slots (3⃝) through
the return values of the broadcast of RDMA_CAS operations.
The return values are denoted as v_list in Algorithm 1.

With v_list, SNAPSHOT defines the following three rules
to let conflicting clients collaboratively decide on a last writer:

Rule 1: A client that has successfully modified all the
backup slots is the last writer.
Rule 2: A client that has successfully modified a majority
of backup slots is the last writer.
Rule 3: If no last writer can be decided with the former
two rules, the client that has written the minimal target
value (vnew) is considered as the last writer.

The three rules are evaluated sequentially as shown in Al-
gorithm 2. Rule 1 provides a fast path when there are no
conflicting modifications. Rule 2 preserves the most success-
ful CAS operations to minimize the overhead of executing
atomic operations on RNICs when conflicts are rare [29]. Fi-
nally, Rule 3 ensures that the protocol can always decide on
the last writer. To ensure the uniqueness of the last write, a
client issues another RDMA_READ to check if the primary slot
has been modified (Line 12, Algorithm 2) before evaluating
Rule 3. If the primary slot has not been modified, then the
RDMA_CAS_backups (Line 7, Algorithm 1) of the client must
happen before the last writer modifies the primary slot. Hence,
it is safe to evaluate Rule 3 because the v_list must contain
the value of the last writer if it has already been decided. Oth-
erwise, Rule 3 will not be evaluated because the modification
of the primary slot means the decision of a last writer. Relying
on the three rules, a unique last writer can be decided without
any further network communications. For example, in Fig-
ure 6, Client 1 is the last writer according to Rule 2. Client 1
then modifies the backup slots that do not yet contain its pro-
posed value using RDMA_CASes and then modifies the primary
slot. Other conflicting clients iteratively READ the value in the

USENIX Association 21st USENIX Conference on File and Storage Technologies 85

Memory Region 0 Memory Region 1

Block 0 Block 1

Memory Region n

Block Allocation Table Block n

16-MB Memory Blocks

Free Bit Map Object 0 Object n

MN-side
Client-side

C
or
as
e-
G
ra
in
ed

Fi
ne

-G
ra
in
ed

Size Class 0

Size Class n Block 2

Block 0 Block 1

8-Byte Each Block

Block 0 Block 1

Block 2

Memory Block ALLOC/FREE

KV pair

KV Pair
ALLOC/FREE

Figure 7: The two-level memory management scheme.

primary slot and return success after finding the change in the
primary slot. The primary slot may remain unmodified only
under the situation when the last writer crashed, which will
be discussed in Section 5.

Correctness. The SNAPSHOT replication protocol guar-
antees linearizability of the replicated hash indexes with
last-writer-wins conflict resolution like shared register proto-
cols [7, 43]. We briefly demonstrate the correctness of SNAP-
SHOT using the notion of the linearizable point of KV op-
erations. A formal proof is shown in the extended version
of this paper [56]. A linearizable point is a point when an
operation atomically takes effect in its invocation and com-
pletion [26]. For READ, the linearizable point happens when it
gets the value in the primary slot. For WRITE operations, the
linearizable point of the last writer happens when it modifies
the primary slot. Linearizable points of other conflicting writ-
ers appear instantly before the last writer modifies the primary
slot. Conflicts between readers and the last writer are resolved
by RNICs because the last writer atomically modifies the pri-
mary slot using RDMA_CAS operations and readers access the
primary slot using RDMA_READ operations.

Performance. SNAPSHOT guarantees a bounded worst-
case latency when clients WRITE the hash index. Under the
situation when Rule 1 is triggered, 3 RTTs are required to
finish a WRITE operation. Under situations when Rule 2 or
Rule 3 is triggered, 4 or 5 RTTs are required, respectively.

4.4 Two-Level Memory Management
Memory management is responsible for allocating, replicat-
ing, and freeing memory spaces for KV pairs on MNs. As dis-
cussed in Section 3.2, the key challenge of DM management is
that conducting the management tasks solely on clients or on
MNs cannot satisfy the performance requirement of frequent
memory allocation for KV requests. FUSEE addresses this
issue via a two-level memory management scheme. The key
idea is to split the server-centric memory management tasks
into compute-light coarse-grained management and compute-
heavy fine-grained management run on MNs and clients.

FUSEE first replicates and partitions the 48-bit memory
space on multiple MNs. Similar to FaRM [18], FUSEE shards
the memory space into 2GB memory regions and maps each
region to r MNs with consistent hashing [32], where r is
the replication factor. Specifically, consistent hashing maps

a region to a position in a hash ring. The replicas are then
stored at the r MNs successively following the position and
the primary region is placed on the first of the r MN.

Figure 7 shows the two-level memory allocation of FUSEE.
Allocating a memory space for a KV pair happens before
writing the KV pair, as introduced in Section 4.1. The first
level is the coarse-grained MN-side memory block allocation
with low computation requirements. Each MN partitions its
local memory regions into coarse-grained memory blocks,
e.g., 16 MB, and maintains a block allocation table ahead of
each region. For each memory block, the block allocation
table records a client ID (CID) that allocates it. Clients allo-
cate memory blocks by sending ALLOC requests to MNs. On
receiving an ALLOC request, an MN allocates a memory block
from one of its primary memory regions, records the client
ID in the block allocation tables of both primary and backup
regions, and replies with the address of the memory block to
the client. The coarse-grained memory allocation information
is thus replicated on r MNs and can survive MN failures. The
second level is the fine-grained client-side object allocation
that allocates small objects to hold KV pairs. Specifically,
clients manage the blocks allocated from MNs exclusively
with slab allocators [6]. The client-side slab allocators split
memory blocks into objects of distinct size classes. A KV
pair is then allocated from the smallest size class that fits it.

The allocated objects can be freed by any client. To effi-
ciently reclaim freed memory objects on client sides, FUSEE
stores a free bit map ahead of each memory block, as shown
in Figure 7, where each bit indicates the allocation state of
one object in the memory block. The free bit map is initialized
to be all zeros when a block is allocated. To free an object,
a client sets the corresponding bit to ‘1’ in the free bit map
with an RDMA_FAA operation. By reading the free bit map,
clients can easily know the freed objects in their memory
blocks and reclaim them locally. FUSEE frees and reclaims
memory objects periodically using background threads in a
batched manner to avoid the additional RDMA operations on
the critical paths of KV accesses. The correctness of concur-
rently accessing KV pairs and reclaiming memory spaces is
guaranteed by RACE hashing [73], where clients check the
key and the CRC of the KV pair on data accesses.

4.5 Embedded Operation Log
Operation logs are generally adopted to repair the partially
modified hash index incurred by crashed clients. Conven-
tional operation logs record a log entry for each KV request
that modifies the hash index. The log entries are generally
written in an append-only manner so that the order of log
entries reflects the execution order of KV requests. The re-
covery process can thus find the crashed request and fix the
corrupted metadata by scanning the ordered log entries. How-
ever, constructing operation logs incurs high log maintenance
overhead on DM because writing log entries adds remote
memory accesses on the critical paths of KV requests.

86 21st USENIX Conference on File and Storage Technologies USENIX Association

UsedNext Pointer Op FieldOld Value
1 bit6 Byte 7 bit8 Byte

Log entryKV data

CRC
1 Byte

Object

Prev Pointer
6 Byte

(a) The embedded log entry.

List Heads

Fr
ee

 L
is

ts Size Class 0

Size Class n
Predefined allocation order

Client-Side
MN-Side

Pre-positioned
next pointer

Pe
r-s

iz
e-

cl
as

s
Li

nk
ed

 L
is

t

Addresses of free objects

(b) The organization of the embedded operation log.

Figure 8: The embedded operation log.

To reduce the log maintenance overhead on DM, FUSEE
adopts an embedded operation log scheme that embeds log
entries into KV pairs. The embedded log entry is written to-
gether with its corresponding KV pair with one RDMA_WRITE
operation. The additional RTTs required for persisting log en-
tries are thus eliminated. However, by embedding log entries
in KV pairs, the execution order of KV requests cannot be
maintained because the log entries are no longer continuous.
To address this problem, the embedded operation log scheme
maintains per-size-class linked lists to organize the log entries
of a client in the execution order of KV requests. As shown
in Figure 8b, a per-size-class linked list is a doubly linked
list that links all allocated objects of the size class in the or-
der of their allocations. The object allocation order reflects
the execution order of KV requests because all KV requests
that modify the hash index, e.g., INSERT and UPDATE, need to
allocate objects for new KV pairs. For DELETE, FUSEE allo-
cates a temporary object recording the log entry and the target
key and reclaims the object on finishing the DELETE request.
FUSEE stores the list heads on MNs during the initialization
of clients, which will be accessed during the recovery process
of clients (Section 5).

An embedded log entry is a 22-byte data structure stored
behind KV pairs, as shown in Figure 8a. It contains a 6-byte
next pointer, a 6-byte prev pointer, an 8-byte old value, a 1-
byte CRC, a 7-bit opcode, and a used bit. The next pointer
points to the next object of the size class that will be allocated
and the prev pointer points to the object allocated before
the current one. The old value records the old value of the
primary slot for recovery proposes, which will be discussed in
Section 5. The 1-byte CRC is adopted to check the integrity of
the old value under client failures. The operation field records
the operation type, i.e., INSERT, UPDATE, or DELETE, so that
the crashed operation can be properly retried during recovery.
The used bit indicates if an object is in-use or free. Storing
the used bit at the end of the entire object can be used to
check the integrity of an entire object. This is because the

order-preserving nature of RDMA_WRITE operations ensures
that the used bit is written only after all other contents in the
object have been successfully written.

FUSEE efficiently organizes per-size-class linked lists by
co-designing the linked list maintenance process with the
memory allocation process. As shown in Figure 8b, for each
size class, a client organizes the addresses of remote free ob-
jects locally as a free list. Since an object is always allocated
from the head of a local free list, the allocation order of each
size class is pre-determined. Based on the pre-determined or-
der, for each allocation, a client pre-positions the next pointer
to point to the free object in the head of the local free list and
the prev pointer to point to the last allocated object of the
size class. Both the next pointer and the prev pointer are thus
known before each allocation and the entire log entry can be
written to MNs with the KV pair in a single RDMA_WRITE.

Combined with the SNAPSHOT replication protocol, the
execution process is shown as follows. First, for each writer, a
log entry with an empty old value and CRC is written with the
KV pair in a single RDMA_WRITE. Then, for the last writer of
the SNAPSHOT replication protocol, the old value is modified
to store the old value of the primary slot before the primary
slot is modified. For other non-last writers, the used bits in
their corresponding KV log entries are reset to ‘0’ after finding
the modification of the primary slot.

4.6 Optimizations
Adaptive index cache. Index caching is widely adopted on
RDMA-based KV stores to reduce request RTTs [60, 66–68].
For a key, the index cache caches the remote addresses of the
replicated index slots and the addresses of the KV pairs locally.
With the cached KV pair addresses, UPDATE, DELETE, and
SEARCH requests can read KV pairs in parallel with searching
the hash index, reducing an RTT on cache hits. To guarantee
cache coherence, an invalidation bit is stored together with
each KV pair, which is used by clients to check whether the
KV pair is valid or invalid. However, by accessing the index
cache, invalid KV pairs (e.g., outdated) can be fetched into
clients, causing read amplification.

To attack the read amplification issue, FUSEE adaptive
bypasses the index cache by distinguishing read-intensive and
write-intensive keys. For each cached key, FUSEE maintains
an access counter and an invalid counter which increases by
1 each time the key is accessed or found to be invalid. A
client calculates an invalid ratio I = invalid counter

access counter for each
cached key. The index cache is bypassed when accessing a
key with I > threshold because the key is write-intensive and
the cached key address points to an invalid KV pair with high
probability. The invalid ratio can adapt to workload changes,
i.e., a write-intensive key becomes read-intensive, because the
access counter of the key keeps increasing while the invalid
counter stops. Besides, the adaptive scheme does not affect
the SEARCH latency for most cases since only write-intensive
keys bypass the cache.

USENIX Association 21st USENIX Conference on File and Storage Technologies 87

1 2 3 4 1 2 3 4 1 2Client

MN 1

MN 2

MN 3 Insert Update & Delete Search

c2 c3

c1 c1

Incomplete old value
Redo on crash

c2 c3

Crash point
Write KV pair
Write log commit
Read index
Read KV pair
CAS index

Incomplete old value
Redo on crash

(Primary)

(Backup1)

(Backup2)

c0 c0

Figure 9: The workflows of different KV requests. INSERT: 1⃝ write the KV pair to all replicas and read the primary index slot. 2⃝ CAS all
backup slots. 3⃝ write the old value to the log header. 4⃝ CAS the primary slot. UPDATE & DELETE: 1⃝ write the KV pair, read the primary
slot, and read the KV pair according to the index cache. 2⃝ CAS backup slots. 3⃝ write the old value to the log header. 4⃝ CAS the primary slot.
SEARCH: 1⃝ read the primary slot and the KV pair according to the index cache. 2⃝ read the KV pair on cache misses.

RDMA-related optimizations. KV requests require multiple
remote memory accesses. FUSEE adopts doorbell batching
and selective signaling [29] to reduce RDMA overhead. Fig-
ure 9 shows the procedures for executing different KV re-
quests. Each request consists of multiple phases with multiple
network operations. For each phase, FUSEE adopts doorbell
batching [29] to reduce the overhead of transmitting network
operations from user space to RNICs and selective signal-
ing to reduce the overhead of polling RDMA completion
queues. Consequently, each phase only incurs 1 network RTT.
For INSERT, DELETE, and UPDATE requests, four RTTs are re-
quired in general cases. For SEARCH requests, at most two
RTTs are required and only one RTT is required in the best
case due to the index cache.

5 Failure Handling
Similar to existing replication protocols [33, 59, 62], FUSEE
relies on a fault-tolerant master with a lease-based member-
ship service [24] to handle failures. The master maintains a
membership lease for both clients and MNs so that clients
always know alive MNs by periodically extending their leases.
The failures of both clients and MNs can be detected by
the master when they no longer extend their leases. Master
crashes are handled by replicating the master with state ma-
chine replication [24, 59, 62]. We formally verify FUSEE in
TLA+ [35] for safety and absence of deadlocks under MN fail-
ures and more details are shown in the extended version [56].

5.1 Failure Model
We consider a partially synchronous system where processes,
i.e., clients and MNs, are equipped with loosely synchronized
clocks [20,24,33]. FUSEE assumes crash-stop failures, where
processes, i.e., clients and MNs, may fail due to crashing and
their operations are non-Byzantine.

Under this failure model, FUSEE guarantees linearizable
operations, i.e., each KV operation is atomically committed
in a time between its invocation and completion [26]. All the
objects of FUSEE are durable and available under an arbitrary
number of client crashes and at most r−1 MN crashes, where
r is the replication factor.

5.2 Memory Node Crashes
MN crashes lead to failed accesses to KV pairs and hash
slots. For accesses to KV pairs, clients can access the backup

replicas according to the consistent hashing scheme.
The complication comes from the unavailable primary and

backup slots that affect the normal execution of index READ
and WRITE operations. FUSEE relies on the fault-tolerant
master to execute operations on clients’ behalves under MN
failures. We first introduce how clients READ/WRITE the repli-
cated slots and then introduce the master’s operations.

When executing index WRITE under MN crashes, FUSEE
allows the last writer decided by the SNAPSHOT replication
protocol to continue modifying all alive slots to the same
value. Other writers send RPC requests to the master and wait
for the master to reply with a correct value in the replicated
slots. Under situations when no last writer can be decided,
the master decides the last writer and modifies all the index
slots on behalf of clients. For READ operations, executions
are not affected under the following two cases. First, if the
primary slot is still alive, clients can read the primary slot
normally. Second, if the primary slot crashes, clients read
all alive backup slots. If all alive backup slots contain the
same value, reading this value is safe because there are no
write conflicts. Otherwise, clients use RPCs and rely on the
master to return a correct value for the crashed slot. Since
READ operations are only affected under write conflicts, most
READ can continue under the read-intensive workloads that
dominate in real-world situations [9, 71].

On detecting MN crashes, the master first blocks clients
from further modifying the crashed slots with the lease ex-
piration. The master then acts as a representative last writer
that modifies all alive slots to the same value. Specifically, the
master selects a value v in an alive backup slot and modifies
all alive slots to v. Since the SNAPSHOT protocol modifies
the backup slots before the primary slot, the values in the
backup slots are always newer than the primary slot. Hence,
the master choosing a value from a backup slot is correct
because it proceeds the conflicting write operations. In cases
where all backup slots crash, the master selects the value in the
primary slot. Clients that receive old values from the master
retry their write operations to guarantee that their new value is
written. The master then writes the old value in the operation
log header to prevent clients from redoing operations when
recovering from crashed clients (Section 5.3). Finally, the
master reconfigures new primary and backup slots and returns
the selected value to all clients that wait for a reply. After the

88 21st USENIX Conference on File and Storage Technologies USENIX Association

reconfiguration of the primary and backup slots, all KV re-
quests can be executed normally without involving the master.
During the whole process, only accesses to the crashed slots
are affected and the blocking time can be short thanks to the
microsecond-scale membership service [24].

5.3 Client Crashes
Crashed clients may result in two issues. First, their allocated
memory blocks remain unmanaged, causing memory leakage.
Second, other clients may be unable to modify a replicated
index slot if the crashed client is the last writer. The master
uses embedded operation logs to address these two issues.

The recovery process is executed in the compute pool and
consists of two steps, i.e., memory re-management and index
repair. Memory re-management restores the coarse-grained
memory blocks allocated by the client and the fine-grained
object usage information of the client. The recovery process
first gets all memory blocks managed by the crashed client by
letting MNs search for their local block allocation tables. Then
the recovery process traverses the per-size-class linked lists
to find all used objects and log entries. With the used objects
and the allocated memory blocks, the recovery process can
easily restore the free object lists of the crashed client. Hence,
all the memory spaces of the crashed client are re-managed.

The index repair procedure then fixes the partially mod-
ified hash index. FUSEE deems all requests at the end of
per-size-class linked lists as potentially crashed requests. For
incomplete log entries, i.e., the used bit at the end of the log
entry is not set, the client must crashes during writing the
KV pair (c0 in Figure 9). The object is directly reclaimed
without further operation since the writing of the object has
not been completed. For a log entry with an incomplete old
value according to the CRC field, FUSEE redoes the request
according to the operation field and the KV pair. Under this
situation, either the request belongs to the last writer that
crashed before committing the log (c1 in Figure 9), or it be-
longs to other non-last writers. In the first case, the values in
the backup slots may not be consistent and the primary slot
has not been modified to a new value. Redoing the request
can make the backup and primary slots consistent. In the sec-
ond case, since the request of crashed non-last writers has not
returned to clients, redoing the request does not violate the
linearizability. For a request with a complete old value, the
request must belong to a last writer. However, the request may
finish (c3) or crash before the primary slot is modified (c2).
The recovery process checks the value in the primary slot (vp)
and the value in the old value (vold) to distinguish c2 from c3.
If vp = vold , the request crashed before the primary was mod-
ified because vold records the value before index modification.
Since all backup slots are consistent, the recovery process
modifies the primary slot to the new value and finishes the
recovery. Otherwise, the request is finished and no further
operation is required. After recovering the request, the master
asynchronously checks content in the volds in log entries of

the crashed client to recover its batched free operations.

5.4 Mixed Crashes
In situations where clients and MNs crash together, FUSEE
recovers the failures separately. FUSEE first lets the master
recover all MN crashes and then starts the recovery processes
for failed clients. KV requests can proceed because the master
acts as the last writer for all blocked KV requests. No request
is committed twice because the master commits the operation
logs on clients’ behalves.

6 Evaluation
6.1 Experiment Setup
Implementation. We implement FUSEE from scratch in C++
with 13k LOC. We implement RACE hashing carefully ac-
cording to the paper due to no available open-source im-
plementations. Coroutines are employed on clients to hide
the RDMA polling overhead, as suggested in [30, 73]. The
design of FUSEE is agnostic to the lower-level memory me-
dia of memory nodes, i.e., any memory node with either per-
sistent memory (PM) or DRAM that provides READ, WRITE,
and 8-byte CAS interfaces is compatible. We adopt mono-
lithic servers with RNICs and DRAM to serve as MNs like
Clover [60] since we do not have access to smartNICs and PM.
Specifically, we start an MN process on a monolithic server to
register RDMA memory regions and serve memory allocation
RPCs with a UDP socket. MN processes serve memory allo-
cation requests with UDP sockets. Since the socket receive
is a blocking system call, the process will be in the blocked
state with no CPU usage most of the time.
Testbed. We run all experiments on 22 physical machines
(5 MNs and 17 CNs) on the APT cluster of CloudLab [19].
Each machine is equipped with an 8-core Intel Xeon E5-2450
processor, 16GB DRAM, and a 56Gbps Mellanox ConnectX-
3 IB RNIC. These machines are interconnected with 56Gbps
Mellanox SX6036G switches.
Comparison. We compare FUSEE with two state-of-the-
art KV stores on DM, i.e., pDPM-Direct and Clover [60].
pDPM-Direct stores and manages the KV index and mem-
ory space on the clients. It uses a distributed consensus pro-
tocol to ensure metadata consistency and locks to resolve
data access conflicts. We extend the open-source version of
pDPM-Direct to support string keys for fair comparison in
our evaluation. Clover is a semi-disaggregated KV store that
adopts monolithic servers to manage memory spaces and
a hash index. All UPDATE and INSERT requests have to go
through the metadata server, requiring additional compute
power. For both pDPM-Direct and Clover, client-side caches
are enabled following their default settings. To show the effec-
tiveness of SNAPSHOT and the adaptive index cache, we im-
plement FUSEE-CR and FUSEE-NC, two alternative versions
of FUSEE. FUSEE-CR replicates index modifications by se-
quentially CASing all replicas to enforce sequential accesses.
FUSEE-NC is the version of FUSEE without a client-side

USENIX Association 21st USENIX Conference on File and Storage Technologies 89

0 20 40 60 80 100
Latency (us)

0.00

0.25

0.50

0.75

1.00
C

D
F

FUSEE
Clover
pDPM-Direct

(a) INSERT latency CDF.

0 20 40 60 80 100
Latency (us)

0.00

0.25

0.50

0.75

1.00

C
D

F

FUSEE
Clover
pDPM-Direct

(b) UPDATE latency CDF.

0 10 20 30 40 50
Latency (us)

0.00

0.25

0.50

0.75

1.00

C
D

F

FUSEE
Clover
pDPM-Direct

(c) SEARCH latency CDF.

10 20 30 40 50
Latency (us)

0.00

0.25

0.50

0.75

1.00

C
D

F

FUSEE
pDPM-Direct

(d) DELETE latency CDF.

Figure 10: The CDFs of different KV request latency under the microbenchmark.

search insert update delete
Operation

0.0

2.5

5.0

7.5

10.0

Th
ro

ug
hp

ut
 (M

op
s/

s)

Clover
pDPM-Direct
FUSEE

Figure 11: The throughputs of mi-
crobenchmark.

YCSB-A YCSB-C
Workloads

0

5

10

15
Th

ro
ug

hp
ut

 (M
op

s/
s) 1024 KV

512 KV
256 KV

Figure 12: The throughput of
FUSEE under different KV sizes.

cache. For all these methods, we evaluate their throughput
and latency with both micro and YCSB [15] benchmarks.

Since the open-source version of Clover and pDPM-Direct
only support one index replica, we compare FUSEE with
these two approaches with a single index replica and two data
replicas in the microbenchmark (Section 6.2) and YCSB per-
formance (Section 6.3) evaluations. When evaluating FUSEE
with a single index replica, the embedded log is constructed,
but the commit of the log is skipped since committing the
log is used to ensure the consistency of multiple index repli-
cas. The performance of FUSEE with multiple replicas is
evaluated in the fault-tolerance evaluation (Section 6.4).

6.2 Microbenchmark Performance
We use microbenchmarks to evaluate the operation throughput
and latency of the three approaches. For FUSEE and pDPM-
Direct, we use 16 CNs and 2 MNs. For Clover, we use 17 CNs
and 2 MNs because it needs an additional metadata server,
consuming 8 more CPU cores and an additional RNIC. We
do not use multiple metadata servers for Clover because the
current open-source implementation of Clover only supports a
single metadata server. We run 128 client processes on the 16
CNs, where each CN holds 8 clients. The DELETE of Clover
is not tested because Clover does not support it.

Latency. To evaluate the latency of KV requests, we use
a single client to iteratively execute each operation 10,000
times. Figure 10 shows the cumulative distribution functions
(CDFs) of the request latency. FUSEE performs the best on
INSERT and UPDATE, since the SNAPSHOT replication pro-
tocol has bounded RTTs. FUSEE has a little higher SEARCH
latency than Clover since FUSEE reads the hash index and the
KV pair in a single RTT, which is slower than only reading
the KV pair in Clover. FUSEE has slightly higher DELETE
latency than pDPM-Direct because FUSEE writes a log entry
and reads the hash index in a single RTT, which is slower than
just reading the hash index in pDPM-Direct.

Throughput. Figure 11 shows the throughput of the three

approaches. The throughput of pDPM-Direct is limited by its
remote lock, which causes extensive lock contention as the
number of clients grows. For Clover, even though it consumes
more hardware resources, i.e., 8 additional CPU cores and
an RNIC, the scalability is still lower than FUSEE. This is
because the CPU processing power of the metadata server
bottlenecks its throughput. On the contrary, FUSEE improves
the overall throughput by eliminating the computation bottle-
neck of the metadata server and efficiently resolving conflicts
with the SNAPSHOT replication protocol.

6.3 YCSB Performance
For YCSB benchmarks [15], we generate 100,000 keys with
the Zipfian distribution (θ = 0.99). We use 1024-byte KV
pairs, which is representative of real-world workloads [9, 15,
17]. The hardware setup is the same as microbenchmarks.

YCSB Throughput. Figure 13 shows the throughput of
three approaches with different numbers of clients. Clover per-
forms the best under a small number of clients since adopting
the metadata server simplifies KV operations. Compared with
Clover, pDPM-Direct and FUSEE require more RDMA oper-
ations to resolve index modification conflicts. As the number
of clients grows, the throughput of Clover and pDPM-Direct
does not increase because the throughput is bottlenecked
by the metadata server and the lock contention, respectively.
Compared with Clover, FUSEE scales better with the growing
number of clients while consuming fewer resources. Com-
pared with pDPM-Direct, FUSEE improves the throughput by
avoiding lock contention. When the number of clients reaches
128, the throughput of FUSEE is 4.9× and 117× higher than
Clover and pDPM-Direct, respectively.

Figure 14 shows the throughput of the three approaches
with a write-intensive workload (YCSB-A) and a read-
intensive workload (YCSB-C) when varying numbers of MNs
from 2 to 5 using 128 clients. The throughput of pDPM-Direct
and Clover does not increase due to being limited by lock con-
tention and the limited compute power of the metadata server,
respectively. As for FUSEE, the throughput improves as the
number of memory nodes increases from 2 to 3. There is no
further throughput improvement because the total throughput
is limited by the number of compute nodes.

Figure 12 shows the throughput of FUSEE under smaller
KV sizes. Since the throughput of FUSEE is limited by the
bandwidth of MN-side RNICs, the YCSB-C throughput of
FUSEE increases by 44.1% and 55.9% with 512B and 256B

90 21st USENIX Conference on File and Storage Technologies USENIX Association

50 100
Number of Clients

0.0

1.0

2.0

3.0
Th

ro
ug

hp
ut

 (M
op

s/
s) FUSEE

Clover
pDPM-Direct

(a) A (SEARCH:UPDATE = 0.5:0.5).

50 100
Number of Clients

0.0

2.0

4.0

6.0

Th
ro

ug
hp

ut
 (M

op
s/

s) FUSEE
Clover
pDPM-Direct

(b) B (SEARCH:UPDATE = 0.95:0.05).

50 100
Number of Clients

0.0

2.5

5.0

7.5

Th
ro

ug
hp

ut
 (M

op
s/

s) FUSEE
Clover
pDPM-Direct

(c) C (100% SEARCH).

50 100
Number of Clients

0.0

2.5

5.0

7.5

Th
ro

ug
hp

ut
 (M

op
s/

s) FUSEE
Clover
pDPM-Direct

(d) D (SEARCH:INSERT = 0.95:0.05).

Figure 13: The scalability of FUSEE under different YCSB workloads.

2 3 4 5
Memory Node Number

0.0

2.5

5.0

7.5

10.0

Th
ro

ug
hp

ut
 (M

op
s/

s)

0.08 0.07 0.08 0.07

Clover
pDPM-Direct
FUSEE

(a) YCSB-A throughput.

2 3 4 5
Memory Node Number

0.0

2.5

5.0

7.5

10.0
Th

ro
ug

hp
ut

 (M
op

s/
s)

0.09 0.08 0.08 0.09

(b) YCSB-C throughput.

Figure 14: The throughput with different numbers of MNs.

0.00 0.25 0.50 0.75 1.00
Search Ratio

0.0

2.5

5.0

7.5

Th
ro

ug
hp

ut
 (M

op
s/

s) FUSEE
Clover
pDPM-Direct

Figure 15: Throughput under dif-
ferent SEARCH-UPDATE ratios.

0.00 0.25 0.50 0.75 1.00
Invalidation Threshold

2.8

3.0

3.2

3.4

Th
ro

ug
hp

ut
 (M

op
s/

s)

Figure 16: Throughput under dif-
ferent adaptive cache thresholds.

KV pairs, respectively. The performance of FUSEE is not
affected by the dataset size because the performance depends
only on the number of RTTs of KV requests, which is deter-
ministic as presented in Section 4.

Read-write performance. Figure 15 shows the throughput
of the three approaches under different SEARCH-UPDATE ratios.
As the portion of UPDATE grows, the throughput of all three
methods decreases because UPDATE requests involve more
RTTs. However, FUSEE exhibits the best throughput due to
eliminating the computation bottleneck of metadata servers.

Adaptive index cache performance. Figure 16 shows the
YCSB-A throughput of FUSEE with different adaptive index
cache thresholds. The throughput of FUSEE decreases with
the increasing thresholds because more bandwidth is wasted
on fetching invalidated KV pairs with a high threshold.

Two-level memory allocation performance. To show the
effectiveness of the two-level memory allocation scheme,
we compare FUSEE with an MN-centric memory allocation
scheme, as shown in Figure 17. The YCSB-A throughput
drops 90.9% due to the limited compute power on MNs, while
the YCSB-C throughput remains the same since no memory
allocation is involved in the read-only setting.

6.4 Fault Tolerance & Elasticity
SNAPSHOT Replication Protocol. Figure 19 shows the me-
dian latency of FUSEE, FUSEE-NC, and FUSEE-CR with
different replication factors under microbenchmarks. We set
both the numbers of index replicas and data replicas to r
where r is the replication factor. The latency of FUSEE-

YCSB-A YCSB-C
Workloads

0

5

10

15

Th
ro

ug
hp

ut
 (M

op
s/

s) Two-Level Allocation
MN-Only Allocation

Figure 17: The throughput of dif-
ferent memory allocation methods.

1 2 3 4 5
Replication Factor

0

10

20

Th
ro

ug
hp

ut
 (M

op
s/

s) A
B

C
D

Figure 18: YCSB throughput un-
der different replication factors.

CR on INSERT, UPDATE, and DELETE grows linearly as the
replication factor because it modifies index replicas sequen-
tially, and the number of RTTs equals the replication factor.
Differently, the latency of FUSEE grows slightly with the
replication factor because SNAPSHOT has a bounded num-
ber of RTTs. For SEARCH requests, FUSEE and FUSEE-CR
have comparable latency since they execute SEARCH simi-
larly. Compared with FUSEE-NC, FUSEE has lower latency
for UPDATE, DELETE, and SEARCH due to fewer RTTs. The
INSERT latency is slightly higher than that of FUSEE-NC
because FUSEE spends additional time to maintain the lo-
cal cache. Figure 18 shows the throughput of FUSEE under
different replication factors. For YCSB-A and YCSB-B, the
throughput drops as the replication factor grows. The YCSB-
D throughput slightly drops from 8.8 Mops to 8.6 Mops due to
the read-intensive nature of YCSB-D. The YCSB-C through-
put remains the same due to no index modifications.

Search under Crashed MNs. FUSEE allows SEARCH re-
quests to continue when MNs crash under read-intensive
workloads. Figure 20 shows the throughput of 9 seconds
of execution, where memory node 1 crashes at the 5th second.
The overall throughput drops to half of the peak throughput
because all data accesses come to one MN. The throughput is
then limited by the network bandwidth of a single RNIC.

Recover from Crashed Clients. To evaluate the efficiency
of a client recovering from failures, we crash and recover a
client after UPDATE 1,000 times. As shown in Table 1, FUSEE
takes 177 milliseconds to recover from a client failure. The
memory registration and connection re-establishment account
for 92% of the total recovery time. The log traversal and KV
request recovery only account for 4% of the recovery time,
which implies the affordable overhead of log traversal.

Elasticity. FUSEE supports dynamically adding and shrink-
ing clients. We show the elasticity of FUSEE by dynamically
adding and removing 16 clients when running the YCSB-C
workload. As shown in Figure 21, the throughput increases
when the number of clients increases from 16 to 32 and re-

USENIX Association 21st USENIX Conference on File and Storage Technologies 91

1 2 3 4 5
Replication Factor

10

20

M
ed

ia
n

La
te

nc
y

(u
s)

FUSEE
FUSEE-CR
FUSEE-NC

(a) UPDATE median latency.

1 2 3 4 5
Replication Factor

10

15

20

25

M
ed

ia
n

La
te

nc
y

(u
s)

FUSEE
FUSEE-CR
FUSEE-NC

(b) DELETE median latency.

1 2 3 4 5
Replication Factor

10

20

M
ed

ia
n

La
te

nc
y

(u
s)

FUSEE
FUSEE-CR
FUSEE-NC

(c) INSERT median latency.

1 2 3 4 5
Replication Factor

6

8

M
ed

ia
n

La
te

nc
y

(u
s) FUSEE

FUSEE-CR
FUSEE-NC

(d) SEARCH median latency.

Figure 19: Median operation latency of FUSEE, FUSEE-NC and FUSEE-CR under different replication factors.

0 2 4 6 8
Execution Time (seconds)

0.0

2.5

5.0

7.5

10.0

Th
ro

ug
hp

ut
 (M

op
s/

s)

MN 1 crashes

Figure 20: YCSB-C throughput
under a crashed memory node.

0 5 10 15
Execution Time (seconds)

0

2

4

6

8
Th

ro
ug

hp
ut

 (M
op

s/
s)

16 clients added

16 clients
removed

Figure 21: The elasticity of
FUSEE.

Table 1: Client recovery time breakdown.

Step Time (ms) Percentage

Recover connection & MR 163.1 92.1%
Get Metadata 0.3 0.2%
Traverse Log 3.5 2.0%
Recover KV Requests 3.5 2.0%
Construct Free List 6.6 3.7%

Total 177.0 100%

sumes to the previous level after removing 16 clients.

7 Related Work
Disaggregated Memory. Existing approaches can be clas-
sified into software-based, hardware-based, and co-design-
based memory disaggregation. Software-based approaches
hide the DM abstraction by modifying operating systems [3,
23,47,55,61], virtual machine monitors [41], or runtimes [54,
63]. Hardware-based ones design memory buses [14, 40] to
enable efficient remote memory access. Co-design-based ap-
proaches co-design software and hardware [8, 25, 38, 65] to
gain better application throughput and latency on DM. The
design of FUSEE is agnostic to the low-level implementations
of all these DM approaches.
Disaggregated Memory Management. MIND [38] and
Clio [25] are the two state-of-the-art memory management
approaches on DM. But they both rely on special hardware to
manage memory spaces. The two-level memory management
of FUSEE resembles the hierarchical memory management of
The Machine [21, 34]. The difference is that FUSEE focuses
on fine-grained KV allocation with commodity RNICs, while
The Machine relies on special SoCs and directly manages
physical memory devices.
Memory-disaggregated KV stores. Clover [60] and Di-
nomo [37] are the most related memory-disaggregated KV
stores. Compared with Clover [60], FUSEE brings disaggre-

gation to metadata management and gains better resource
efficiency and scalability. Finally, Dinomo [37] is a fully-
disaggregated KV store that was developed concurrently with
our system. Dinomo proposes ownership partitioning to re-
duce coordination overheads of managing disaggregated meta-
data. However, it assumes that the disaggregated memory
pool is fault-tolerant, and hence its design does not con-
sider MN failures. In contrast, FUSEE addresses the chal-
lenges of handling MN failures with the SNAPSHOT repli-
cation protocol. There are many related RDMA-based KV
stores [18, 28, 30, 31, 45, 48, 51, 57, 60, 66–68]. They are infea-
sible on DM since they rely on server-side CPUs to execute
KV requests. Besides, there are emerging approaches that use
SmartNICs to construct KV stores [39, 52]. FUSEE can also
benefit from the additional compute power by offloading the
memory management to SmartNICs.
Replication. Both traditional [2, 22, 36, 43, 46, 50, 59, 62] and
RDMA-based [33, 58, 72] replication protocols are designed
to ensure data durability. However, all these approaches are
server-centric replication protocols designed for monolithic
servers. Differently, SNAPSHOT is a client-centric replication
protocol designed for the DM architecture and achieves high
scalability with collaborative conflict resolution.

8 Conclusion
This paper proposes FUSEE, a fully memory-disaggregated
KV store, that achieves both resource efficiency and high per-
formance by disaggregating metadata management. FUSEE
adopts a client-centric replication protocol, a two-level mem-
ory management scheme, and an embedded log scheme to
attack the challenges of weak MN-side compute power and
complex failure situations on DM. Experimental results show
that FUSEE outperforms the state-of-the-art approaches by
up to 4.5× with less resource consumption.

Acknowledgments
We sincerely thank our shepherd Kimberly Keeton and the
anonymous reviewers for their constructive comments and
suggestions. This work was supported by the National Natural
Science Foundation of China (Nos. 62202511 & 61971145),
the Research Grants Council of the Hong Kong Special Ad-
ministrative Region, China (No. CUHK 14210920 of the Gen-
eral Research Fund), and Huawei Cloud. Pengfei Zuo is the
corresponding author (pfzuo.cs@gmail.com).

92 21st USENIX Conference on File and Storage Technologies USENIX Association

References
[1] Phillipe Ajoux, Nathan Bronson, Sanjeev Kumar, Wy-

att Lloyd, and Kaushik Veeraraghavan. Challenges to
adopting stronger consistency at scale. In 15th Workshop
on Hot Topics in Operating Systems, HotOS XV, Kar-
tause Ittingen, Switzerland, May 18-20, 2015. USENIX
Association, 2015.

[2] Peter Alsberg and J. D. Day. A principle for resilient
sharing of distributed resources. In Proceedings of the
2nd International Conference on Software Engineering,
San Francisco, California, USA, October 13-15, 1976,
pages 562–570. IEEE Computer Society, 1976.

[3] Emmanuel Amaro, Christopher Branner-Augmon, Zhi-
hong Luo, Amy Ousterhout, Marcos K. Aguilera, Au-
rojit Panda, Sylvia Ratnasamy, and Scott Shenker. Can
far memory improve job throughput? In EuroSys ’20:
Fifteenth EuroSys Conference 2020, Heraklion, Greece,
April 27-30, 2020, pages 14:1–14:16. ACM, 2020.

[4] Balaji Arun, Sebastiano Peluso, Roberto Palmieri, Giu-
liano Losa, and Binoy Ravindran. Speeding up consen-
sus by chasing fast decisions. In 47th Annual IEEE/IFIP
International Conference on Dependable Systems and
Networks, DSN 2017, Denver, CO, USA, June 26-29,
2017, pages 49–60. IEEE Computer Society, 2017.

[5] Hagit Attiya, Amotz Bar-Noy, and Danny Dolev. Shar-
ing memory robustly in message-passing systems. In
Proceedings of the Ninth Annual ACM Symposium on
Principles of Distributed Computing, Quebec City, Que-
bec, Canada, August 22-24, 1990, pages 363–375. ACM,
1990.

[6] Jeff Bonwick. The slab allocator: An object-caching ker-
nel memory allocator. In USENIX Summer 1994 Techni-
cal Conference, Boston, Massachusetts, USA, June 6-10,
1994, Conference Proceeding, pages 87–98. USENIX
Association, 1994.

[7] Matthew Burke, Audrey Cheng, and Wyatt Lloyd. Gryff:
Unifying consensus and shared registers. In 17th
USENIX Symposium on Networked Systems Design and
Implementation, NSDI 2020, Santa Clara, CA, USA,
February 25-27, 2020, pages 591–617. USENIX As-
sociation, 2020.

[8] Irina Calciu, M. Talha Imran, Ivan Puddu, Sanidhya
Kashyap, Hasan Al Maruf, Onur Mutlu, and Aasheesh
Kolli. Rethinking software runtimes for disaggregated
memory. In ASPLOS ’21: 26th ACM International
Conference on Architectural Support for Programming
Languages and Operating Systems, Virtual Event, USA,
April 19-23, 2021, pages 79–92. ACM, 2021.

[9] Zhichao Cao, Siying Dong, Sagar Vemuri, and David
H. C. Du. Characterizing, modeling, and benchmark-
ing rocksdb key-value workloads at facebook. In 18th
USENIX Conference on File and Storage Technologies,
FAST 2020, Santa Clara, CA, USA, February 24-27,
2020, pages 209–223. USENIX Association, 2020.

[10] cgroups. cgroups. https://man7.org/linux/ma
n-pages/man7/cgroups.7.html, 2022.

[11] Youmin Chen, Youyou Lu, and Jiwu Shu. Scalable
RDMA RPC on reliable connection with efficient re-
source sharing. In Proceedings of the Fourteenth Eu-
roSys Conference 2019, Dresden, Germany, March 25-
28, 2019, pages 19:1–19:14. ACM, 2019.

[12] Yu Lin Chen, Shuai Mu, Jinyang Li, Cheng Huang, Jin
Li, Aaron Ogus, and Douglas Phillips. Giza: Erasure
coding objects across global data centers. In 2017
USENIX Annual Technical Conference, USENIX ATC
2017, Santa Clara, CA, USA, July 12-14, 2017, pages
539–551. USENIX Association, 2017.

[13] Zhiguang Chen, Yu-Bo Liu, Yong-Feng Wang, and Yu-
tong Lu. A gpu-accelerated in-memory metadata man-
agement scheme for large-scale parallel file systems. J.
Comput. Sci. Technol., 36(1):44–55, 2021.

[14] Gen-Z Consortium. Gen-z technology. https://ge
nzconsortium.org/.

[15] Brian F. Cooper, Adam Silberstein, Erwin Tam, Raghu
Ramakrishnan, and Russell Sears. Benchmarking cloud
serving systems with YCSB. In Proceedings of the
1st ACM Symposium on Cloud Computing, SoCC 2010,
Indianapolis, Indiana, USA, June 10-11, 2010, pages
143–154. ACM, 2010.

[16] Intel Corporation. Driving exascale computing and hpc
with intel. https://www.intel.com/content/ww
w/us/en/high-performance-computing-fabrics
/omni-path-driving-exascale-computing.html.

[17] Siying Dong, Andrew Kryczka, Yanqin Jin, and Michael
Stumm. Evolution of development priorities in key-
value stores serving large-scale applications: The
rocksdb experience. In 19th USENIX Conference on
File and Storage Technologies, FAST 2021, February
23-25, 2021, pages 33–49. USENIX Association, 2021.

[18] Aleksandar Dragojevic, Dushyanth Narayanan, Ed-
mund B. Nightingale, Matthew Renzelmann, Alex
Shamis, Anirudh Badam, and Miguel Castro. No
compromises: distributed transactions with consistency,
availability, and performance. In Proceedings of the 25th
Symposium on Operating Systems Principles, SOSP
2015, Monterey, CA, USA, October 4-7, 2015, pages 54–
70. ACM, 2015.

USENIX Association 21st USENIX Conference on File and Storage Technologies 93

https://man7.org/linux/man-pages/man7/cgroups.7.html
https://man7.org/linux/man-pages/man7/cgroups.7.html
https://genzconsortium.org/
https://genzconsortium.org/
https://www.intel.com/content/www/us/en/high-performance-computing-fabrics/omni-path-driving-exascale-computing.html
https://www.intel.com/content/www/us/en/high-performance-computing-fabrics/omni-path-driving-exascale-computing.html
https://www.intel.com/content/www/us/en/high-performance-computing-fabrics/omni-path-driving-exascale-computing.html

[19] Dmitry Duplyakin, Robert Ricci, Aleksander Maricq,
Gary Wong, Jonathon Duerig, Eric Eide, Leigh Stoller,
Mike Hibler, David Johnson, Kirk Webb, Aditya Akella,
Kuang-Ching Wang, Glenn Ricart, Larry Landwe-
ber, Chip Elliott, Michael Zink, Emmanuel Cecchet,
Snigdhaswin Kar, and Prabodh Mishra. The design and
operation of cloudlab. In 2019 USENIX Annual Techni-
cal Conference, USENIX ATC 2019, Renton, WA, USA,
July 10-12, 2019, pages 1–14. USENIX Association,
2019.

[20] Cynthia Dwork, Nancy A. Lynch, and Larry J. Stock-
meyer. Consensus in the presence of partial synchrony.
J. ACM, 35(2):288–323, 1988.

[21] Paolo Faraboschi, Kimberly Keeton, Tim Marsland, and
Dejan S. Milojicic. Beyond processor-centric operat-
ing systems. In George Candea, editor, 15th Workshop
on Hot Topics in Operating Systems, HotOS XV, Kar-
tause Ittingen, Switzerland, May 18-20, 2015. USENIX
Association, 2015.

[22] David K. Gifford. Weighted voting for replicated data.
In Proceedings of the Seventh Symposium on Operating
System Principles, SOSP 1979, Asilomar Conference
Grounds, Pacific Grove, California, USA, 10-12, Decem-
ber 1979, pages 150–162. ACM, 1979.

[23] Juncheng Gu, Youngmoon Lee, Yiwen Zhang, Mosharaf
Chowdhury, and Kang G. Shin. Efficient memory dis-
aggregation with infiniswap. In 14th USENIX Sympo-
sium on Networked Systems Design and Implementation,
NSDI 2017, Boston, MA, USA, March 27-29, 2017, pages
649–667. USENIX Association, 2017.

[24] Rachid Guerraoui, Antoine Murat, Javier Picorel,
Athanasios Xygkis, Huabing Yan, and Pengfei Zuo.
uKharon: A membership service for microsecond appli-
cations. In 2022 USENIX Annual Technical Conference
(USENIX ATC 22), pages 101–120, Carlsbad, CA, 2022.
USENIX Association.

[25] Zhiyuan Guo, Yizhou Shan, Xuhao Luo, Yutong Huang,
and Yiying Zhang. Clio: A hardware-software
co-designed disaggregated memory system. CoRR,
abs/2108.03492, 2021.

[26] Maurice Herlihy and Jeannette M. Wing. Linearizability:
A correctness condition for concurrent objects. ACM
Trans. Program. Lang. Syst., 12(3):463–492, 1990.

[27] Sagar Jha, Jonathan Behrens, Theo Gkountouvas,
Matthew Milano, Weijia Song, Edward Tremel, Rob-
bert van Renesse, Sydney Zink, and Kenneth P. Birman.
Derecho: Fast state machine replication for cloud ser-
vices. ACM Trans. Comput. Syst., 36(2):4:1–4:49, 2019.

[28] Anuj Kalia, Michael Kaminsky, and David G. Ander-
sen. Using RDMA efficiently for key-value services.
In Fabián E. Bustamante, Y. Charlie Hu, Arvind Kr-
ishnamurthy, and Sylvia Ratnasamy, editors, ACM SIG-
COMM 2014 Conference, SIGCOMM’14, Chicago, IL,
USA, August 17-22, 2014, pages 295–306. ACM, 2014.

[29] Anuj Kalia, Michael Kaminsky, and David G. Andersen.
Design guidelines for high performance RDMA systems.
In 2016 USENIX Annual Technical Conference, USENIX
ATC 2016, Denver, CO, USA, June 22-24, 2016, pages
437–450. USENIX Association, 2016.

[30] Anuj Kalia, Michael Kaminsky, and David G. Ander-
sen. Fasst: Fast, scalable and simple distributed trans-
actions with two-sided (RDMA) datagram rpcs. In
12th USENIX Symposium on Operating Systems De-
sign and Implementation, OSDI 2016, Savannah, GA,
USA, November 2-4, 2016, pages 185–201. USENIX
Association, 2016.

[31] Anuj Kalia, Michael Kaminsky, and David G. Andersen.
Datacenter rpcs can be general and fast. In 16th USENIX
Symposium on Networked Systems Design and Imple-
mentation, NSDI 2019, Boston, MA, February 26-28,
2019, pages 1–16. USENIX Association, 2019.

[32] David R. Karger, Eric Lehman, Frank Thomson
Leighton, Rina Panigrahy, Matthew S. Levine, and
Daniel Lewin. Consistent hashing and random trees:
Distributed caching protocols for relieving hot spots on
the world wide web. In Frank Thomson Leighton and
Peter W. Shor, editors, Proceedings of the Twenty-Ninth
Annual ACM Symposium on the Theory of Computing,
El Paso, Texas, USA, May 4-6, 1997, pages 654–663.
ACM, 1997.

[33] Antonios Katsarakis, Vasilis Gavrielatos, M. R. Siavash
Katebzadeh, Arpit Joshi, Aleksandar Dragojevic, Boris
Grot, and Vijay Nagarajan. Hermes: A fast, fault-
tolerant and linearizable replication protocol. In AS-
PLOS ’20: Architectural Support for Programming Lan-
guages and Operating Systems, Lausanne, Switzerland,
March 16-20, 2020, pages 201–217. ACM, 2020.

[34] HP Labs. The machine: A new kind of com-
puter. https://www.hpl.hp.com/research/syst
ems-research/themachine/, 2014.

[35] Leslie Lamport. The temporal logic of actions. ACM
Trans. Program. Lang. Syst., 16(3):872–923, 1994.

[36] Leslie Lamport. The part-time parliament. ACM Trans.
Comput. Syst., 16(2):133–169, 1998.

94 21st USENIX Conference on File and Storage Technologies USENIX Association

https://www.hpl.hp.com/research/systems-research/themachine/
https://www.hpl.hp.com/research/systems-research/themachine/

[37] Se Kwon Lee, Soujanya Ponnapalli, Sharad Singhal,
Marcos K. Aguilera, Kimberly Keeton, and Vijay Chi-
dambaram. DINOMO: an elastic, scalable, high-
performance key-value store for disaggregated persistent
memory. Proc. VLDB Endow., 15(13):4023–4037, 2022.

[38] Seung-seob Lee, Yanpeng Yu, Yupeng Tang, Anurag
Khandelwal, Lin Zhong, and Abhishek Bhattacharjee.
MIND: in-network memory management for disaggre-
gated data centers. In SOSP ’21: ACM SIGOPS 28th
Symposium on Operating Systems Principles, Virtual
Event / Koblenz, Germany, October 26-29, 2021, pages
488–504. ACM, 2021.

[39] Bojie Li, Zhenyuan Ruan, Wencong Xiao, Yuanwei Lu,
Yongqiang Xiong, Andrew Putnam, Enhong Chen, and
Lintao Zhang. Kv-direct: High-performance in-memory
key-value store with programmable NIC. In Proceed-
ings of the 26th Symposium on Operating Systems Prin-
ciples, Shanghai, China, October 28-31, 2017, pages
137–152. ACM, 2017.

[40] Kevin T. Lim, Jichuan Chang, Trevor N. Mudge,
Parthasarathy Ranganathan, Steven K. Reinhardt, and
Thomas F. Wenisch. Disaggregated memory for ex-
pansion and sharing in blade servers. In 36th Inter-
national Symposium on Computer Architecture (ISCA
2009), June 20-24, 2009, Austin, TX, USA, pages 267–
278. ACM, 2009.

[41] Kevin T. Lim, Yoshio Turner, Jose Renato Santos, Alvin
AuYoung, Jichuan Chang, Parthasarathy Ranganathan,
and Thomas F. Wenisch. System-level implications of
disaggregated memory. In 18th IEEE International Sym-
posium on High Performance Computer Architecture,
HPCA 2012, New Orleans, LA, USA, 25-29 February,
2012, pages 189–200. IEEE Computer Society, 2012.

[42] Compute Express Link. Compute express link: The
breakthrough cpu-to-device interconnect. https://
www.computeexpresslink.org/.

[43] Nancy A. Lynch and Alexander A. Shvartsman. Robust
emulation of shared memory using dynamic quorum-
acknowledged broadcasts. In Digest of Papers: FTCS-
27, The Twenty-Seventh Annual International Sympo-
sium on Fault-Tolerant Computing, Seattle, Washington,
USA, June 24-27, 1997, pages 272–281. IEEE Computer
Society, 1997.

[44] Yanhua Mao, Flavio Paiva Junqueira, and Keith
Marzullo. Mencius: Building efficient replicated state
machine for wans. In 8th USENIX Symposium on Oper-
ating Systems Design and Implementation, OSDI 2008,
December 8-10, 2008, San Diego, California, USA, Pro-
ceedings, pages 369–384. USENIX Association, 2008.

[45] Christopher Mitchell, Yifeng Geng, and Jinyang Li. Us-
ing one-sided RDMA reads to build a fast, cpu-efficient
key-value store. In 2013 USENIX Annual Technical Con-
ference, San Jose, CA, USA, June 26-28, 2013, pages
103–114. USENIX Association, 2013.

[46] Iulian Moraru, David G. Andersen, and Michael Kamin-
sky. There is more consensus in egalitarian parliaments.
In ACM SIGOPS 24th Symposium on Operating Systems
Principles, SOSP ’13, Farmington, PA, USA, November
3-6, 2013, pages 358–372. ACM, 2013.

[47] Vlad Nitu, Boris Teabe, Alain Tchana, Canturk Isci, and
Daniel Hagimont. Welcome to zombieland: practical
and energy-efficient memory disaggregation in a data-
center. In Proceedings of the Thirteenth EuroSys Confer-
ence, EuroSys 2018, Porto, Portugal, April 23-26, 2018,
pages 16:1–16:12. ACM, 2018.

[48] Stanko Novakovic, Yizhou Shan, Aasheesh Kolli,
Michael Cui, Yiying Zhang, Haggai Eran, Boris Pis-
menny, Liran Liss, Michael Wei, Dan Tsafrir, and Mar-
cos K. Aguilera. Storm: a fast transactional dataplane
for remote data structures. In Proceedings of the 12th
ACM International Conference on Systems and Stor-
age, SYSTOR 2019, Haifa, Israel, June 3-5, 2019, pages
97–108. ACM, 2019.

[49] Brian M. Oki and Barbara Liskov. Viewstamped repli-
cation: A general primary copy. In Proceedings of the
Seventh Annual ACM Symposium on Principles of Dis-
tributed Computing, Toronto, Ontario, Canada, August
15-17, 1988, pages 8–17. ACM, 1988.

[50] Diego Ongaro and John K. Ousterhout. In search
of an understandable consensus algorithm. In 2014
USENIX Annual Technical Conference, USENIX ATC
’14, Philadelphia, PA, USA, June 19-20, 2014, pages 305–
319. USENIX Association, 2014.

[51] John K. Ousterhout, Arjun Gopalan, Ashish Gupta,
Ankita Kejriwal, Collin Lee, Behnam Montazeri, Diego
Ongaro, Seo Jin Park, Henry Qin, Mendel Rosenblum,
Stephen M. Rumble, Ryan Stutsman, and Stephen Yang.
The ramcloud storage system. ACM Trans. Comput.
Syst., 33(3):7:1–7:55, 2015.

[52] Phitchaya Mangpo Phothilimthana, Ming Liu, Antoine
Kaufmann, Simon Peter, Rastislav Bodík, and Thomas E.
Anderson. Floem: A programming system for nic-
accelerated network applications. In Andrea C. Arpaci-
Dusseau and Geoff Voelker, editors, 13th USENIX Sym-
posium on Operating Systems Design and Implemen-
tation, OSDI 2018, Carlsbad, CA, USA, October 8-10,
2018, pages 663–679. USENIX Association, 2018.

USENIX Association 21st USENIX Conference on File and Storage Technologies 95

https://www.computeexpresslink.org/
https://www.computeexpresslink.org/

[53] Kai Ren, Qing Zheng, Swapnil Patil, and Garth A. Gib-
son. Indexfs: Scaling file system metadata perfor-
mance with stateless caching and bulk insertion. In
Trish Damkroger and Jack J. Dongarra, editors, Inter-
national Conference for High Performance Computing,
Networking, Storage and Analysis, SC 2014, New Or-
leans, LA, USA, November 16-21, 2014, pages 237–248.
IEEE Computer Society, 2014.

[54] Zhenyuan Ruan, Malte Schwarzkopf, Marcos K. Aguil-
era, and Adam Belay. AIFM: high-performance,
application-integrated far memory. In 14th USENIX
Symposium on Operating Systems Design and Imple-
mentation, OSDI 2020, Virtual Event, November 4-6,
2020, pages 315–332. USENIX Association, 2020.

[55] Yizhou Shan, Yutong Huang, Yilun Chen, and Yiying
Zhang. Legoos: A disseminated, distributed OS for hard-
ware resource disaggregation. In 13th USENIX Sympo-
sium on Operating Systems Design and Implementation,
OSDI 2018, Carlsbad, CA, USA, October 8-10, 2018,
pages 69–87. USENIX Association, 2018.

[56] Jiacheng Shen, Pengfei Zuo, Xuchuan Luo, Tianyi
Yang, Yuxin Su, Yangfan Zhou, and Michael R.
Lyu. FUSEE: A fully memory-disaggregated
key-value store (extended version). https:
//github.com/dmemsys/FUSEE/blob/main/doc
uments/fast23_FUSEE_Extended_Version.pdf,
2023.

[57] Maomeng Su, Mingxing Zhang, Kang Chen, Zhenyu
Guo, and Yongwei Wu. RFP: when RPC is faster
than server-bypass with RDMA. In Proceedings of the
Twelfth European Conference on Computer Systems, Eu-
roSys 2017, Belgrade, Serbia, April 23-26, 2017, pages
1–15. ACM, 2017.

[58] Yacine Taleb, Ryan Stutsman, Gabriel Antoniu, and Toni
Cortes. Tailwind: Fast and atomic rdma-based replica-
tion. In 2018 USENIX Annual Technical Conference,
USENIX ATC 2018, Boston, MA, USA, July 11-13, 2018,
pages 851–863. USENIX Association, 2018.

[59] Jeff Terrace and Michael J. Freedman. Object storage
on CRAQ: high-throughput chain replication for read-
mostly workloads. In 2009 USENIX Annual Techni-
cal Conference, San Diego, CA, USA, June 14-19, 2009.
USENIX Association, 2009.

[60] Shin-Yeh Tsai, Yizhou Shan, and Yiying Zhang. Dis-
aggregating persistent memory and controlling them
remotely: An exploration of passive disaggregated key-
value stores. In 2020 USENIX Annual Technical Con-
ference, USENIX ATC 2020, July 15-17, 2020, pages
33–48. USENIX Association, 2020.

[61] Shin-Yeh Tsai and Yiying Zhang. LITE kernel RDMA
support for datacenter applications. In Proceedings of
the 26th Symposium on Operating Systems Principles,
Shanghai, China, October 28-31, 2017, pages 306–324.
ACM, 2017.

[62] Robbert van Renesse and Fred B. Schneider. Chain
replication for supporting high throughput and availabil-
ity. In 6th Symposium on Operating System Design and
Implementation (OSDI 2004), San Francisco, Califor-
nia, USA, December 6-8, 2004, pages 91–104. USENIX
Association, 2004.

[63] Chenxi Wang, Haoran Ma, Shi Liu, Yuanqi Li, Zhenyuan
Ruan, Khanh Nguyen, Michael D. Bond, Ravi Ne-
travali, Miryung Kim, and Guoqing Harry Xu. Semeru:
A memory-disaggregated managed runtime. In 14th
USENIX Symposium on Operating Systems Design and
Implementation, OSDI 2020, Virtual Event, November
4-6, 2020, pages 261–280. USENIX Association, 2020.

[64] Qing Wang, Youyou Lu, and Jiwu Shu. Sherman: A
write-optimized distributed b+tree index on disaggre-
gated memory. CoRR, abs/2112.07320, 2021.

[65] Qing Wang, Youyou Lu, Erci Xu, Junru Li, Youmin
Chen, and Jiwu Shu. Concordia: Distributed shared
memory with in-network cache coherence. In 19th
USENIX Conference on File and Storage Technolo-
gies, FAST 2021, February 23-25, 2021, pages 277–292.
USENIX Association, 2021.

[66] Xingda Wei, Rong Chen, and Haibo Chen. Fast rdma-
based ordered key-value store using remote learned
cache. In 14th USENIX Symposium on Operating Sys-
tems Design and Implementation, OSDI 2020, Virtual
Event, November 4-6, 2020, pages 117–135. USENIX
Association, 2020.

[67] Xingda Wei, Zhiyuan Dong, Rong Chen, and Haibo
Chen. Deconstructing rdma-enabled distributed transac-
tions: Hybrid is better! In 13th USENIX Symposium on
Operating Systems Design and Implementation, OSDI
2018, Carlsbad, CA, USA, October 8-10, 2018, pages
233–251. USENIX Association, 2018.

[68] Xingda Wei, Jiaxin Shi, Yanzhe Chen, Rong Chen, and
Haibo Chen. Fast in-memory transaction processing us-
ing RDMA and HTM. In Proceedings of the 25th Sym-
posium on Operating Systems Principles, SOSP 2015,
Monterey, CA, USA, October 4-7, 2015, pages 87–104.
ACM, 2015.

[69] Sage A. Weil, Scott A. Brandt, Ethan L. Miller, Darrell
D. E. Long, and Carlos Maltzahn. Ceph: A scalable,
high-performance distributed file system. In Brian N.

96 21st USENIX Conference on File and Storage Technologies USENIX Association

https://github.com/dmemsys/FUSEE/blob/main/documents/fast23_FUSEE_Extended_Version.pdf
https://github.com/dmemsys/FUSEE/blob/main/documents/fast23_FUSEE_Extended_Version.pdf
https://github.com/dmemsys/FUSEE/blob/main/documents/fast23_FUSEE_Extended_Version.pdf

Bershad and Jeffrey C. Mogul, editors, 7th Sympo-
sium on Operating Systems Design and Implementation
(OSDI ’06), November 6-8, Seattle, WA, USA, pages 307–
320. USENIX Association, 2006.

[70] Michael Whittaker, Ailidani Ailijiang, Aleksey Chara-
pko, Murat Demirbas, Neil Giridharan, Joseph M.
Hellerstein, Heidi Howard, Ion Stoica, and Adriana
Szekeres. Scaling replicated state machines with com-
partmentalization. Proc. VLDB Endow., 14(11):2203–
2215, 2021.

[71] Juncheng Yang, Yao Yue, and K. V. Rashmi. A large
scale analysis of hundreds of in-memory cache clusters
at twitter. In 14th USENIX Symposium on Operating
Systems Design and Implementation, OSDI 2020, Virtual
Event, November 4-6, 2020, pages 191–208. USENIX
Association, 2020.

[72] Yiying Zhang, Jian Yang, Amir Saman Memaripour,
and Steven Swanson. Mojim: A reliable and highly-
available non-volatile memory system. In Proceedings
of the Twentieth International Conference on Architec-
tural Support for Programming Languages and Oper-
ating Systems, ASPLOS 2015, Istanbul, Turkey, March
14-18, 2015, pages 3–18. ACM, 2015.

[73] Pengfei Zuo, Jiazhao Sun, Liu Yang, Shuangwu Zhang,
and Yu Hua. One-sided rdma-conscious extendible hash-
ing for disaggregated memory. In 2021 USENIX Annual
Technical Conference, USENIX ATC 2021, July 14-16,
2021, pages 15–29. USENIX Association, 2021.

USENIX Association 21st USENIX Conference on File and Storage Technologies 97

ROLEX: A Scalable RDMA-oriented Learned Key-Value Store
for Disaggregated Memory Systems

Pengfei Li, Yu Hua*, Pengfei Zuo, Zhangyu Chen, Jiajie Sheng
Wuhan National Laboratory for Optoelectronics, School of Computer

Huazhong University of Science and Technology
*Corresponding Author: Yu Hua (csyhua@hust.edu.cn)

Abstract
Disaggregated memory systems separate monolithic servers

into different components, including compute and memory

nodes, to enjoy the benefits of high resource utilization, flexi-

ble hardware scalability, and efficient data sharing. By exploit-

ing the high-performance RDMA (Remote Direct Memory

Access), the compute nodes directly access the remote mem-

ory pool without involving remote CPUs. Hence, the ordered

key-value (KV) stores (e.g., B-trees and learned indexes) keep

all data sorted to provide rang query service via the high-

performance network. However, existing ordered KVs fail to

work well on the disaggregated memory systems, due to either

consuming multiple network roundtrips to search the remote

data or heavily relying on the memory nodes equipped with in-

sufficient computing resources to process data modifications.

In this paper, we propose a scalable RDMA-oriented KV store

with learned indexes, called ROLEX, to coalesce the ordered

KV store in the disaggregated systems for efficient data stor-

age and retrieval. ROLEX leverages a retraining-decoupled

learned index scheme to dissociate the model retraining from

data modification operations via adding a bias and some data-

movement constraints to learned models. Based on the opera-

tion decoupling, data modifications are directly executed in

compute nodes via one-sided RDMA verbs with high scala-

bility. The model retraining is hence removed from the crit-

ical path of data modification and asynchronously executed

in memory nodes by using dedicated computing resources.

Our experimental results on YCSB and real-world workloads

demonstrate that ROLEX achieves competitive performance

on the static workloads, as well as significantly improving

the performance on dynamic workloads by up to 2.2× than

state-of-the-art schemes on the disaggregated memory sys-

tems. We have released the open-source codes for public use

in GitHub.

1 Introduction

Recent disaggregated memory systems separate memory, stor-

age, and computing resources into independent pools [16, 34,

42] for high resource utilization, flexible hardware scalability,

and efficient data sharing, which become prevalent in many

datacenters and clouds [2, 3, 8]. The disaggregated system

adopts the RDMA-capable networks for communications due

to the salient features, such as high throughput (40-400 Gbps),

low latency (a few microseconds), and remote CPU/kernel

bypassing [12, 41, 51], which are widely supported by Infini-

Band, RoCE, and OmniPath [16, 29, 36, 41, 49].

The disaggregated memory systems become important in-

frastructures [1, 17, 32, 34, 39, 40, 42] for various applications,

including databases [27, 40] and in-memory key-value (KV)

stores [12, 39, 44, 53]. Among them, tree-based and learned

indexes are two widely used structures for the ordered key-

value stores, which provide efficient range query performance

via identifying items in a given range [7, 24]. In the disaggre-

gated memory systems, the machines in compute and memory

pools are respectively termed as compute and memory nodes,

which are specialized for computing and storage purposes.

Deploying tree-based structures in the disaggregated mem-

ory system becomes inefficient, since the inner nodes con-

sume much memory space and fail to be fully cached, thus

resulting in multiple network roundtrips for traversing the en-

tire tree. Various index caching schemes [31, 43, 52] propose

to alleviate the network penalty via locally caching partial

data, which however still suffer from unavoidable capacity

misses due to the rapid growth of data.

Unlike them, XStore [44] proposes to cache the learned

indexes for remote data accessing, since the learned models

consume less memory footprints than tree-based structures

by up to several orders of magnitude [14,24]. By locally hold-

ing the whole learned index structure, a one-sided RDMA

READ is sufficient for compute nodes to fetch remote data

in the context of static (i.e., read-only) workloads. However,

the design goal of XStore is not to exploit the strengths of

disaggregated memory systems. Instead, XStore relies on the

monolithic servers to process dynamic (i.e., read-write and

write-intensive) workloads. Inspired by XStore, we adopt the

similar idea and construct XStore-D on the diaggregated mem-

ory systems, rather than conventional monolithic context, by

USENIX Association 21st USENIX Conference on File and Storage Technologies 99

transferring data modification requests to memory nodes via

RPCs. We observe that in fact XStore-D becomes inefficient

to handle intensive modification requests, since the computing

resources in the memory nodes are insufficient to meet the

intensive computation requirements [39, 53]. As a result, new

models fail to be retrained in time and the stale models expand

to a large prediction range to search dynamic workloads. The

compute nodes have to consume more network roundtrips on

determining the exact positions, since the positions dynami-

cally change for data modifications. To avoid the penalty of

large expansion, XStore-D transfers the subsequent requests

to memory nodes until new models are retrained, which fur-

ther increases the computing burden upon memory nodes. It is

non-trivial to coalesce ordered KV stores in the disaggregated

memory systems due to the following challenges.

1) Limited computing resources on memory nodes. Ex-

isting ordered KV stores rely on the monolithic servers to

process write-intensive modifications [23, 44]. However, the

memory nodes in the disaggregated systems contain limited

computation capability and fail to meet the requirements of

computing-intensive operations, e.g., modifying the large B-

tree and frequently retraining models. The CPU access bot-

tleneck on the memory nodes decreases the overall system

performance. Moreover, simply adding more CPUs to the

memory pool for data processing decreases the scalability of

the disaggregated memory systems, since the memory and

computing resources fail to be independently scaled out [52].

2) Overloaded bandwidth for data transferring. Offload-

ing data modifications to the compute nodes meets the com-

puting requirements, which however rapidly fills up the entire

bandwidth due to transferring massive data. Specifically, the

compute nodes consume a large amount of network bandwidth

to balance tree-based structures [7,30], e.g., multi-level nodes

splitting and merging, as well as fetching a large amount of

data to retrain models for the learned indexes [10, 14, 37].

The network bandwidth becomes insufficient to enable high

performance for various data requests.

3) Inconsistency issue among different nodes. Guaran-

teeing data consistency among different nodes during mod-

ification is essential to prevent data loss. However, the in-

consistent states occur when different compute nodes fail to

atomically complete the data and model modification oper-

ations, e.g., multiple compute nodes compete for the same

space to insert data and the local cache becomes stale when

the models are updated. The main reason is that the atomic

granularity of an RDMA operation is 8B, which is much

smaller than the size of each index operation. The compute

nodes require multiple network roundtrips to guarantee data

consistency, incurring high overheads for consistency.

To address the aforementioned challenges, we propose a

scalable RDMA-oriented key-value store using learned in-

dexes, called ROLEX, for the disaggregated memory systems,

which processes data requests on the compute nodes via one-

side RDMA operations. The context of “scalable” means that

ROLEX efficiently supports dynamic workloads and scales

out to multiple disaggregated nodes. Although ROLEX adopts

the similar idea with XStore on the static (i.e., read-only) oper-

ations, ROLEX is completely different with XStore in terms

of the application scope, dynamic (i.e., data modification)

operations, and the index structure on memory nodes. Specif-

ically, ROLEX aims to efficiently support both static and

dynamic workloads in the disaggregated memory systems.

Unlike XStore, ROLEX does not maintain a B-tree on mem-

ory nodes to process modifications. Instead, ROLEX directly

stores the sorted data in the assigned leaves (i.e., data arrays)

on memory nodes. By judiciously decoupling the index op-

erations and moving the retraining phase out of the critical

path, the compute nodes efficiently modify the remote data

via one-sided RDMA operations. When there are insufficient

slots, ROLEX leverages a leaf-atomic shift scheme to atomi-

cally allocate a new leaf for accommodating more data. By

using the retraining-decoupled index structure, ROLEX asyn-

chronously retrains model in the memory pool when there are

sufficient computing resources. The compute nodes identify

new models through a shadow redirection scheme and syn-

chronize the retrained models from remote nodes during the

next reading. It is worth noting that the memory node gen-

erally includes dedicated computing resources provided by

FPGA or ARM cores to offload low-computing requirement

operations [17] (e.g., infrequent retraining in ROLEX), rather

than all index operations.

We implement a prototype of ROLEX1 and evaluate the

performance via widely-used YCSB [47], two real-world,

and two synthetic workloads. Our experimental results show

that ROLEX achieves competitive performance with XStore-

D [44] on static workloads, and outperforms state-of-the-art

RDMA-based ordered KV stores by up to 2.2× on dynamic

workloads. In summary, we have the following contributions:

• Scalable ordered KV store for disaggregated memory
systems. We propose ROLEX to directly process data requests

on the compute nodes via one-sided RDMA operations, which

efficiently explores and exploits the hardware benefits of the

disaggregated memory systems, as well as avoiding the com-

puting resources bottleneck in the memory pool.

• Retraining-decoupled learned indexes for one-sided
RDMA execution. We decouple the insertion and retraining

operations for the learned indexes, and enable compute nodes

to directly insert data without waiting for the model retraining.

Non-retrained models are able to index newly inserted data

using the proposed data-movement constraints.

• Atomic remote space allocation. When there are in-

sufficient slots, the compute nodes leverage a leaf-atomic

shift scheme to atomically allocate data arrays in the memory

pool for accommodating new data. In ROLEX, no collisions

occur among different machines due to the atomic metadata

management.

1The source code is available at https://github.com/iotlpf/ROLEX.

100 21st USENIX Conference on File and Storage Technologies USENIX Association

(a) Read on static workloads. (b) Write different numbers of data. (c) The throughput of various read/write ratios.

Figure 1: The system performance for different schemes. (a) Read and (b) write throughputs with different numbers of data,
using 1 CPU core on memory nodes. (c) Normalized throughput with respect to EMT-D for hybrid read/write workloads.

2 Background and Motivation

2.1 Disaggregated Memory Systems
The disaggregated memory systems breaks monolithic servers

into independent network-attached components, which meets

various application requirements via independently scaling

out the hardware resources. Different nodes communicate

with each other via Remote Direct Memory Access (RDMA)

NICs, such as InfiniBand, RoCE, and OmniPath. The sig-

nificant feature over the traditional network is that RDMA

enables the compute nodes to directly access the memory

nodes without involving remote CPUs via one-sided verbs,

including RDMA READ, WRITE, and ATOMIC operations (e.g.,

compare-and-swap (CAS) and fetch-and-add (FAA)). It is worth

noting that the granularity of the ATOMIC operation is 8B, and

multiple READ and WRITE operations are completed via the

doorbell batching [44] to reduce the network latency. More-

over, even though there are no powerful CPUs in the memory

pool, each memory node generally includes dedicated com-

puting resources provided by FPGA or ARM cores in NICs

that are used for operation offloading [17], which efficiently

supports the operation decoupling in ROLEX.

2.2 Network-Attached Ordered KV Store
This paper mainly focuses on the network-attached ordered

key-value stores, including tree-based and learned indexes,

which keep all data sorted and meet range query requirements.

Tree-based Structures. Tree-based structures [7, 20, 30]

(e.g., B+-tree) store data in the leaf nodes and construct multi-

level inner nodes to search the leaves. However, the tree-based

structures become inefficient to leverage one-sided RDMA

for accessing remote data [44], since the local machine fails

to cache the whole index structure and has to consume mul-

tiple RTTs (i.e., the network roundtrip time) for searching

the inner nodes. Recent designs [31, 43, 52] cache top-level

nodes on compute nodes to access the remote data. Among

them, FG [52] designs a fine-grained B-link tree for the dis-

aggregated systems, which distributes tree nodes across mem-

ory nodes and modifies trees with RDMA-based locks. Sher-

man [43] combines RDMA-friendly hardware and software

features to deliver high write performance on the remote B-

link tree, which optimizes the locking phase by constructing

global locks on the on-chip memory of RDMA NICs. How-

ever, tree-based schemes inevitably incur multiple RTTs for

retrieving inner nodes when the data overflow the limited

local cache.

Learned Indexes. Learned indexes show significant ad-

vantages over tree-based structures in terms of searching

speed and memory consumption, due to the easy-to-use and

small-sized learned models. Specifically, the learned indexes

view the process of searching data as a regression model,

which record the positions of all data by approximating

the cumulative distribution function (CDF) of the sorted

keys [10, 14, 15, 24, 37]. The learned models achieve 2-4

orders of magnitude space savings than the inner nodes of the

tree-based structures [14], which enables the local machine

to cache the whole index structures and avoids the penalty of

multiple RTTs to determine the remote data positions.

XStore proposes a hybrid index structure, i.e., maintain-

ing a B-tree to process modifications and locally caching the

learned indexes for remote data accessing. XStore [44] deliv-

ers high search performance due to only requiring one RTT

to access the static workloads. For the dynamic workloads,

XStore handles the data modification requests by modifying

the B-tree on the memory nodes. At the same time, XStore

expands the stale models to large prediction ranges to en-

sure that the newly inserted data are contained. However,

such design becomes inefficient on the disaggregated memory

systems, since the memory nodes have limited computing

resources and fail to efficiently handle the intensive modifica-

tion requests. The new models fail to be retrained in time and

the stale models cause too low accuracy to search the remote

data in one RTT due to the model expansion. As a result, the

local cache becomes invalid and the subsequent data requests

are transferred to the memory nodes via classic RPCs. The

overall performance significantly decreases due to the limited

computing resources of memory nodes.

2.3 Performance Analysis

We evaluate and analyze the performance of existing network-

attached KV stores in the disaggregated memory system.

Among them, FG [52] and Sherman [43] design RDMA-

USENIX Association 21st USENIX Conference on File and Storage Technologies 101

enabled B-link trees, enabling compute nodes to modify B-

link trees via one-sided RDMA verbs. Moreover, we also

equip the memory nodes with limited computing resources

to analyze why RPC-based KV stores are inefficient for the

disaggregated memory system, i.e., adopting the similar ideas

of EMT-D (i.e., the Masstree [30] based on eRPC [23]) and

XStore-D [44] on the computation-constrained memory nodes

for evaluations.

Learned indexes outperforms tree-based structures on
large-scale static workloads. Figure 1a shows the search

throughput on static workloads. As the datasets constantly

increase, XStore-D shows higher throughput than tree-based

structures, since the compute nodes cache the whole learned

index structure, rather than caching partial inner nodes for

tree-based structures, avoiding multiple RTTs to determine

the data positions. XStore-D obtains remote data within one

RTT according to the prediction results of the learned models,

while other schemes fail.

Index cache becomes invalid on dynamic workloads. Fig-

ures 1b shows the throughput on write-intensive workloads.

We observe that XStore-D delivers lower performance than

Sherman, since XStore-D sends requests to memory nodes

via eRPC and relies on the limited computing resources of

memory nodes to process modifications. The local cache

of XStore-D is not fully exploited and becomes invalid dur-

ing the modification phase, while Sherman delivers higher

throughput via one-sided RDMA. However, the performance

of Sherman decreases when storing a large amount of data,

since the increased inner nodes overflow the local cache.

Disaggregated system requires efficient one-sided RDMA
operations. Figure 1c shows the throughputs of different

schemes with respect to EMT-D when configuring various

read/write ratios. FG and Sherman show significant advan-

tages over EMT-D, since all index operations are completed

via one-sided RDMA. The performance of XStore-D signif-

icantly deceases when configuring large write ratios, due to

failing to handle writes via one-sided RDMA operations.

3 ROLEX Design
3.1 Overview
We present a scalable RDMA-oriented key-value store using
learned indexes (ROLEX) for the disaggregated memory sys-

tems. Unlike existing schemes, ROLEX does not maintain a

B-tree on the memory nodes to process data requests. Instead,

ROLEX constructs the retraining-decoupled learned indexes

on the stored data and processes data requests on compute

nodes via the one-sided RDMA operations. The challenges

are how to efficiently avoid the collisions of various index

operations in different compute nodes, as well as enabling all

compute nodes to correctly identify the modified data with

low consistency overheads. Our main insights are to execute

index operations with atomic designs, and asynchronously

retrain models by decoupling the insertion and retraining

Me
mo
ry

 P
oo
l

Co
mp
ut

e
Po
ol

RDMA

Data
Leaf Region

CPU

Learned index

Leaf Upper model PLR modelMetadata

Insert model pointer

Head

Ptr
1

Ptr
2

CirQ:

Learned cacheLearned cache Learned cacheLearned cache Learned cacheLearned cache Learned cacheLearned cache

Figure 2: The design overview of ROLEX.

operations with consistency guarantees.

Figure 2 shows the overview of ROLEX. In the memory

pool, ROLEX stores all data into fixed-size leaves (i.e., arrays)

and constructs a retraining-decoupled learned index based on

these data, as shown in Sections 3.2 and 3.3. To process

dynamic workloads, the compute nodes directly modify the

remote leaves without retraining models, since we decouple

the insertion and retraining operations. By adding a bias and

some data-movement constraints, the non-retrained models

have the ability to correctly identify all data even after in-

serting new data. To construct sufficient data leaves for the

new data with one-sided RDMA, we present a leaf-atomic
shift scheme in Section 3.4, which also keeps all data sorted

for range queries and avoids the collisions among different

compute nodes. The stale models need to be retrained for high

accuracy when a large amount of data are modified. Although

the compute nodes have sufficient computing resources for

retaining, obtaining all the pending retraining data from mem-

ory nodes consumes much network bandwidth. Instead, we

observe that the retraining overheads mainly come from data

merging and resorting, while the complexity of the training

algorithm is only O(N). Hence, the limited computing re-

sources on memory nodes are sufficient to retrain the models,

especially after we have offloaded most index operations to

the compute nodes and moved the retraining phase out of

the critical path. With the aid of leaf tables, ROLEX asyn-
chronously retrains models in-place on the memory nodes,

as shown in Section 3.5. After retraining, ROLEX updates

the models in the memory pool using the shadow redirec-
tion scheme, while the compute nodes won’t synchronize the

retrained models until the next reading.

3.2 Retraining-decoupled Learned Indexes
The challenges of coalescing the learned indexes on dynamic

workloads come from the high overheads of keeping all data

sorted and avoiding data loss from the learned models during

insertion. The reason of data loss is that the models record

the positions of the trained data after training, while failing to

find the new positions after inserting many new data unless

retraining. As shown in Figure 3, the red line represents a

linear regression model that is trained on the black points (i.e.,

the trained data). All data are found in the prediction range,

102 21st USENIX Conference on File and Storage Technologies USENIX Association

[pred − ε, pred + ε] (i.e., the blue block), as long as the data

are not moved out of this range, where ε is the predefined

maximum model error. When some new data are inserted,

point a moves backward to a′, which is out of the prediction

range. To record the new positions, the models are retrained

via step-by-step operations, including resorting data, retrain-

ing models, and synchronizing models to all compute nodes.

The system is blocked until the retraining and synchronization

are completed, thus incurring a long latency and decreasing

the overall system performance.

In fact, we observe that the learned indexes don’t require

frequent retraining as long as the non-retrained models can

find all data. This observation offers an opportunity to address

the dilemma in coalescing the learned indexes in the disag-

gregated memory systems, i.e., new data are written to the

memory pool without waiting for retraining. To achieve this

design goal, we modify the training algorithm and add some

constraints to help the non-retrained models always find all

data without retraining.

Training Algorithm. Leveraging multiple linear regression

models is a common way to learn the data distribution due to

the efficiency of training and memory savings [10, 14, 15, 24].

We use an improved OptimalPLR algorithm to train the piece-

wise linear regression (PLR) models, since OptimalPLR al-

gorithm [46] has been proved to have the minimal number

of PLR models while incurring small time and space com-

plexity (O(N)). The key idea of OptimalPLR is to construct

multiple optimal parallelograms with 2ε width on the trained

data, where the optimal parallelogram is defined as a paral-

lelogram of 2ε width in the vertical direction such that no

trained data are placed outside of the parallelogram, as the

blue blocks shown in Figure 3. We thus obtain the linear

regression model that intersects the two vertical sides and

bisects the parallelogram.

ε >= max| f (Xi)−Yi| ∀i ∈ (0,N)

Prange = [f (Xi)− ε−δ, f (Xi)+ ε+δ]
(1)

To ensure that the trained models find all data even after

insertions, we improve the OptimalPLR algorithm by adding

a bias (represented as δ) to the prediction calculation, as well

as adding some constraints on the data movements. As shown

in Equation 1, the optimal parallelogram is determined by

guaranteeing that the distances between the predicted (f (Xi))
and true (Yi) positions of all data are not larger than the prede-

fined maximum model error (ε), while the prediction range

(Prange) is calculated by adding an extra δ. Hence, the area

covered by the prediction ranges of all data is larger than the

determined optimal parallelogram, i.e., we extend the blue

block to the yellow one, as shown in Figure 3. In this case,

the models don’t require retraining as long as the data move

no more than δ positions, since the δ data movements won’t

exceed the prediction range.

Data-movement constraints. Simply adding a bias to the

prediction calculation is insufficient to achieve the design

key

po
si
ti

on

CDF

CDF

f(x)

one leaf

model: f(x)

b

b’
data movement

a
a’

Figure 3: The retraining-decoupled learned indexes.

goal of operation decoupling, since the data move more than

δ positions when inserting/deleting a large amount of data. To

further address these issues, we add some constraints on the

data movements.

• Moving data within fixed-size leaves. We store the data

into fixed-size arrays (termed as leaves) in the training phase,

and each leaf contains at most δ data. All data are only allowed

to be moved within their assigned leaves. In this case, we

identify all data via existing trained models since no data

move out of Prange calculated from Equation 1. Furthermore,

we transfer the position prediction to the leaf prediction, i.e.,

the learned models provide a range of leaves that may contain

the queried data via Equation 2. Due to not moving out of the

assigned leaves, no data are lost. In the disaggregated memory

systems, the leaves in Lrange are easily obtained via one-sided

RDMA verbs.

Lrange = [
f (Xi)− ε

δ
,

f (Xi)+ ε
δ

] ∀i ∈ (0,N) (2)

• Synonym-leaf sharing. We allocate a new leaf (nl) to

accommodate more data when a leaf (l) has insufficient slots,

where nl shares the same positions (i.e., the labels used for

training) with l. We define nl as a synonym leaf of l, which is

linked via a pointer. The data of synonym leaves move within

each other to facilitate data sorting. Since nl doesn’t change

the positions recorded by models, the learned indexes still

calculate Lrange via Equation 2. Moreover, we need to search

the synonym leaves referred by Lrange, since the data may

locate in the predicted and synonym leaves.

The non-retrained models have the ability to find all data

without retraining, since no data move out of the predicted

leaves. We hence decouple the insertion and retraining opera-

tions for the learned indexes.

3.3 ROLEX Structure

To exploit the hardware benefits of the disaggregated memory

systems, ROLEX stores data on the memory nodes while pro-

cessing requests on the compute nodes, as shown in Figure 2.

Memory pool stores data. Driven by the operation de-

coupling, we store all data into fixed-size leaves and train

a learned index on these data using our improved training

algorithm. All leaves are stored in a continuous area (termed

as leaf region) allocated from an RDMA-registered memory

region. The structure of the leaf region is shown in Figure 2,

USENIX Association 21st USENIX Conference on File and Storage Technologies 103

LT

Learned model 1 bit
lock ptr

7 bit 8 bit 48 bit
LRN LN

Example:

SLT

ptr:3 LN:0
LT SLTentry (8B)

entry (8B)

ptr:0 LN:1
ptr:6 LN:2
ptr:0 LN:4
ptr:0 LN:5

slotuse
...

ptr:0 LN:6

Upper models

PLR models

Leaf region ...
ptr:0 LN:8

0
1
2
3
4

0

6

key w b

parameter

3

Figure 4: The structure of the learned models.

where the first two 8B data are respectively used to indicate

the number of leaves that have been allocated (alloc_num)

and the total number that the leaf region can allocate. The re-

maining leaf region stores a large number of leaves, and each

leaf contains δ pairs of keys and values2. To allocate a new

leaf, we read alloc_num and write it back with (alloc_num+1)

via the atomic FAA. We store data into the leaf pointed by the

obtained alloc_num. The leaves are accessed via adding off-

sets to the start position of the leaf region. Moreover, the

fragmentation and garbage collection can be efficiently miti-

gated in ROLEX, since ROLEX allocates and reclaims space

via fixed-size leaves that are accessed via the atomic-size leaf

numbers.

We train multiple PLR models on the stored leaves and each

model consists of four parts, including the covered smallest

key, the model parameters, a leaf table (LT) and a synonym

leaf table (SLT), as shown in Figure 4. LT and SLT store the

leaf numbers (i.e., the alloc_num when being allocated) to

access leaves. It is worth noting that different models indepen-

dently record the data positions for training, which become

easy to be updated since no position dependency exists among

models. The obtained PLR models are indexed by training

upper models on the smallest keys, where the upper mod-

els don’t contain leaf tables. We repeat this procedure and

construct multi-level models like PGM-index [14] due to the

small space consumption, which are fully cached in the com-

pute nodes. Moreover, we store the models with pointers,

which efficiently support our shadow redirection scheme to

update models, as shown in Section 3.5.

Compute pool caches indexes. The memory pool is shared

across compute nodes, which supports the system scalabil-

ity. Specifically, the newly added compute nodes identify the

shared memory pool via the RNIC, which obtain the start-

ing addresses of the model and leaf regions. After reading

the learned models from the model region, the new compute

nodes efficiently access the remote data according to the pre-

diction range of the learned models, where the entry in the

prediction range contains the leaf region number and the leaf

number, thus indicating the locations of the required data in

the memory pool. ROLEX processes various data requests

(e.g., search, update, insert, and delete) on compute nodes

with one-sided RDMA operations.

2Similar to prior RDMA-based schemes [31, 43, 44], ROLEX stores 8B

values or 8B pointers for variable-length values.

3.4 One-sided Index Operations

Simply executing data modification operations on compute

nodes incurs two challenges, i.e., long latency of multiple

remote operations and inconsistency issues among different

machines. For example, on dynamic workloads, conflicts oc-

cur when different compute nodes write data at the same

address in the memory pool, and inconsistencies occur when

one node constructs new leaves while not notifying others.

The 8B-atomic RDMA verbs fail to guarantee the data consis-

tency among different machines, since the moved data during

insertion are larger than 8B. An intuitive solution is to modify

data leaves and LTs with locks, as well as broadcasting other

nodes to synchronize their indexes after modifications. How-

ever, other nodes could not access or insert data due to the

consistence requirement from the locks until the modification

completes, which blocks the systems for a long time.

To address these problems, we propose a leaf-atomic shift
scheme that provides consistence guarantees for concurrently

modifying data via compute nodes while requiring few remote

RDMA operations. The key insights are to atomically assign

the write regions in the shared memory pool for different

compute nodes, and enable each compute node to access data

via the stale index structure. Specifically, we first show the

structures of LT and SLT that are designed for the leaf-atomic

shift scheme, and then respectively elaborate how different

index operations coalesce with this scheme.

The structures of LT and SLT. We leverage the 8B

alloc_num in the leaf region to enable the lock-free leaf allo-

cations via FAA, as well as using 8B entries in LT to enable

the consistent leaf modifications. The structures of LT and

SLT are shown in Figure 4. The first slot in SLT is preserved

to indicate how many slots (slotuse) of SLT have been used,

which is modified when constructing new synonym leaves.

Other slots of LT and SLT store 8B entries, each of which con-

sists of a lock (1 bit), a leaf-region number (7 bits), a pointer

(8 bits) and a leaf number (48 bits). The lock is lightweight

and fine-grained due to only locking the current leaf rather

than all leaves under the model. We use the leaf-region and

leaf numbers to determine the leaves, while the pointer points

to an offset of SLT to link the synonym leaf. For example, as

shown in Figure 4, the pointer of leaf 0 points to 3, indicating

that leaf 0 has a synonym leaf stored in the 3rd position of

SLT, while this synonym leaf is stored in the 6th position in

the leaf region. The size of LT is determined in the training

phase, while the size of SLT is fixed to contain 28 slots. In

our design, each leaf region registers up to 248 leaves, while

a model is able to construct up to (28-1) synonym leaves.

It is worth noting that the max number of each field can be

adjusted by specifying the bits in the entry of LT.

Point query. For a given key, the compute node searches

remote data via the following steps: � Predict Lrange with the

local learned indexes according to Equation 2. � Translate

the leaf positions into physical addresses by looking up LT

104 21st USENIX Conference on File and Storage Technologies USENIX Association

Network

Compute Node

Memory Node

Write(k, v) Learned Cache

Leaf Region alloc_num Linsert syn

WRITE

Learned Index
LT SLT

FAA

Lrange

synonym leaf

FAA

Figure 5: The worst-case insertion of ROLEX.

and SLT. As shown in Figure 4, we lookup the 1st-3rd entries

in LT when Lrange predicts [1,3], and further read the syn-

onym leaf number in the 6th slot of SLT when the 2nd entry

points to 6. The physical address (phy_addr) of a remote

leaf is calculated via Equation 3, i.e., multiply the leaf num-

ber (lnum) by the leaf size (lsize) and plus the address of the

first leaf in the leaf region (LRaddr). � Read leaves with door-

bell batching according to the physical addresses. � Search

the fetched leaves, and further read the value according to

the value pointer. ROLEX leverages the checksum-based

schemes like existing KV stores [12, 44, 45] to guarantee the

consistency of the read leaves.

The LT and SLT change when constructing new leaves in

the memory pool, which is identified by the compute nodes

when the first slot (i.e., slotuse) of SLT changes in the doorbell-

batch reading. The compute nodes synchronize remote LT

and SLT, and read the new leaves for data consistency.

phy_addr = lnum ∗ lsize +LRaddr (3)

Range query. A range query for [K,N] requires N items

starting from K. Apart from the leaves in Lrange, ROLEX

reads another (N/δ) adjacent leaves to ensure that at least N
items after K are fetched. Like point query, ROLEX reads all

required leaves via a doorbell batching.

Insert. ROLEX executes the insertion operation on com-

pute nodes via the following phases:

� Fetching. The compute node (represented as Cnode)

fetches the remote leaves like point query, without reading

synonym leaves in this phase, since the latest synonym leaves

will be fetched after acquiring the lock.

� Fine-grained locking. Cnode determines the leaf to be

inserted (represented as Linsert) according to the data order,

and locks Linsert by changing the lock bit of LT entry to 1 with

CAS. After locking, Cnode reads Linsert and its synonym leaves

to ensure that the data are up to date. The synonym leaves

share the same lock with the trained leaf to enable the atomic

lock. Even if Linsert and its synonym leaves are modified by

other compute nodes before being locked by Cnode, inserting

data into these leaves still keeps all data sorted, since the

data of Linsert are only allowed to move within Linsert and its

synonym leaves.

� Writing and unlocking. Cnode inserts data into the fetched

leaves according to the data order and unlock Linsert via CAS.

When the fetched leaves have insufficient empty slots,

Cnode constructs a new synonym leaf as shown in Figure 5.

Within one doorbell batching, Cnode fetches and increases

alloc_num of the leaf region and slotuse of SLT by 1 via

FAA. Furthermore, Cnode writes the new synonym leaf in the

memory pool according to the physical address calculated

by Equation 3, and inserts the alloc_num of the newly con-

structed synonym leaf into SLT at position slotuse. Cnode also

changes the pointer field of Linsert to the new leaf and unlocks

Linsert via CAS.

For optimizations, other threads of Cnode can leverage the

acquired lock to modify the same leaves, and the operations

of writing leaves and modifying leaf tables are completed in

one doorbell batching to improve the performance.

Update. Cnode fetches the remote leaves like point query.

When the given key is matched in one of the fetched leaves,

Cnode locks and re-reads the corresponding leaf to ensure

that the data are up to date. The compute node updates the

key-value item and unlocks the remote leaf.

Delete. To delete the data K, Cnode � fetches and � locks

the remote leaves like insertion operations, e.g., Cnode fetches

the leaf L1 and its synonym leaves L5−8. When K is identified

in one of the fetched leaves, e.g., L6, Cnode removes K in L6,

while other leaves are not modified. When L6 becomes empty

after deleting K, Cnode removes L6 by modifying the leaf table,

i.e., linking L5 to L7. �Cnode writes L6 to memory nodes

and unlocks the leaves. Moreover, the empty trained leaf L1

is not removed until next retaining to avoid the prediction

error, as shown in Section 3.5. Other compute nodes identify

the deleted leaf when observing that the data in the synonym

leaves are not sorted, which further synchronize the leaf tables

and read the remote data.

3.5 Asynchronous Retraining

The retraining overheads come from the data resorting and

retraining algorithms [37, 46]. An intuitive solution is to con-

duct retraining on compute nodes, which however consumes

a large amount of available network bandwidth for transfer-

ring the pending retraining data. Instead, we observe that

all data have been sorted by the leaf tables (i.e., LTs and

SLTs) during the runtime, and the OptimalPLR algorithm

has a low complexity (i.e., O(N)) [46] to train data, where N
represents the number of the training data. Hence, ROLEX

asynchronously retrains data in-place on the memory nodes to

achieve an efficient trade-off between the network consump-

tion and computing resource utilization. After offloading most

index operations to the compute nodes, our experimental re-

sults show that the limited computing resources (e.g., one

CPU core) on memory nodes are enough for retraining, as

shown in Section 4.5.

ROLEX maintains a circular queue (CirQ) to identify the

pending retraining models, and concurrently retrains models

USENIX Association 21st USENIX Conference on File and Storage Technologies 105

using the shadow redirection scheme without blocking the

systems. Specifically, the compute nodes insert the pointer of

a model at the end of CirQ when the model consumes 27 slots

of SLT. The memory nodes periodically check the head of

CirQ for retraining, which retrains models in the background

and constructs a new LT to merge the old LT and SLT, while

the compute nodes concurrently access the old models. Both

new and old models access the same data via their own leaf

tables. After retraining, the memory nodes replace the models

with consistency guarantees.

Consistency guarantee. Figure 6 shows the consistency

guarantee when the memory nodes concurrently retrain the

leaves L1−5, where L5 is a synonym leaf of L3. During retrain-

ing, the compute nodes concurrently modify the data, which

lead to inconcistency when the positions of the data are not

retrained by the new model, e.g., 1) constructing a new syn-

onym leaf L8 of L5 and 2) moving data within the synonym

leaves. ROLEX ensures the data consistency by redirecting

the non-retrained data into a new SLT for the new model.

1) ROLEX identifies the newly constructed leaf (e.g., L8)

by checking the leaf tables of both old and new models, where

the entry appearing in old LT or SLT but not appearing in the

new LT is identified as a non-retrained leaf. When replac-

ing the old model with the new one after retraining, ROLEX

locks the old model and inserts L8 to the new SLT, as well as

changing the model pointer to the new model before unlock-

ing, as shown in Figure 6. Hence, the new model correctly

identifies L8 by accessing the new leaf tables, and the com-

pute nodes correctly identify the new model by checking the

model pointer. Similarly, the removed leaves are identified by

checking both old and new leaf tables.

2) ROLEX identifies the new positions of the moved data

by checking the previous trained leaf. As shown in Figure 6,

before the retraining begins, we respectively represent the

leftmost and rightmost data in each leaf as Xl and Xr, e.g., X3l
represents the leftmost data of L3. During retraining, the old

model inserts the new item 15 in L3, and inserts the items

18 and 24 into the newly constructed synonym leaf L9. The

challenge is to ensure that the new model correctly identifies

the data modified by the old model, including the trained data

in the leaves (e.g., the data between X3l and X3r) and the new

data between two sorted leaves (e.g., the data between X3r and

X5l). According to Equation 2, the new model predicts the data

between X3l and X3r in L3 due to recording these data in L3

when the retraining begins. The new model correctly identifies

these modified data in the synonym leaves by checking the

new SLT. However, the inconsistent state occurs for the data

between X3r and X5l (e.g., 24), since the new model may

predict these data in L5 but overlook L3 and L9. To avoid such

error, ROLEX checks the previous leaf (i.e., L3) to correctly

identify the modified data.

ROLEX doesn’t need to resort or move any data for retrain-

ing, since all data have been sorted by the leaf tables during

the runtime. No data are lost during retraining, since all leaves

alloc_num L3 L5 ···

RetrainingLT SLT

Old model

L8

LT SLT

New model

5 7 18 25 29 40 48 5210L3 L5 L8

18 24L9

36 57

X3l X8r

···

X5r X8l

15

Figure 6: The consistency guarantee of concurrent retraining.

are either retrained by the new model or being inserted into

the new SLT.

ROLEX inserts the new data in the synonym leaves, which

triggers retraining when the synonym leaves consume half of

(i.e., 27) the slots in the SLT. Before the retraining completes,

SLT still contains the space to create 27 more synonym leaves

to insert new keys. After retraining, the new models include

new SLTs to accommodate more data. In our experiments,

each leaf contains 16 slots and the model totally inserts 2,048

data before being retrained, while a model covers on aver-

age 1,465 trained data. Hence, a retraining is triggered when

inserting about 1× new data than the trained data, having a

low retraining frequency. The speed of retraining models is

much faster than that of filling all synonym leaves. Moreover,

ROLEX has a priority queue to identify and train the model

with almost full SLT to avoid the scenario where a model has

insufficient slots in SLT.

3.6 System Discussions

Scalability. ROLEX distributes large datasets across multiple

memory nodes by constructing multiple leaf regions. Specifi-

cally, 27 leaf regions form a group and each region contains at

most 248 leaves to store data. A leaf group hence contains 255

leaves and is sufficient to construct a large number of learned

models. By training data in the same group, the learned mod-

els become efficient to determine the location of a leaf via the

leaf-region (7 bits) and leaf numbers (48 bits) of the entry in

LT and SLT. Moreover, ROLEX constructs multiple groups

to scale across multiple memory nodes and becomes efficient

to accommodate a large amount of data.

Durability and fault tolerance. Existing disaggregated

memory systems enable the durability and fault tolerance in

different ways, such as the persistent memory [39,50], battery-

backup system [12], and logging writes [44], while achieving

efficient performance. All these solutions are orthogonal to

ROLEX for efficient durability and fault tolerance.

Emerging heterogeneous technology. ROLEX bene-

fits from the technology integrating emerging accelerators

and specialized hardware into the disaggregated memory

nodes [17], due to the sufficient computing resources. More-

over, the powerful network technology [32] incurs low net-

work penalty on remote data accessing. In this case, ROLEX

needs a fallback mechanism to avoid the lock contention

among many compute nodes, which is our future work.

106 21st USENIX Conference on File and Storage Technologies USENIX Association

4 Performance Evaluation

4.1 Experimental Setup

We run all experiments on a cluster with 3 compute nodes

and 3 memory nodes, and each server node is equipped with

two 26-core Intel(R) Xeon(R) Gold 6320R CPUs @2.10Ghz,

188GB DRAM, and one 100Gb Mellanox ConnectX-5 IB

RNIC. The RNIC in each machine is connected with a

100Gbps IB switch. We limit the computing resources utiliza-

tion (i.e., 1 CPU core in our testbed) for the memory node,

which is reasonable due to the fact of the limited comput-

ing capability in the typical memory pools [17, 43]. During

the initialization, the memory pool registers memory with

huge pages to avoid the penalty of the page translation cache

misses. The registered memory consists of the model and leaf

regions to respectively maintain the learned models and data.

Existing RNIC hardware doesn’t support remote memory al-

location [53], and we hence pre-allocate memory for the leaf

region to support our proposed atomic-leaf shift scheme. All

compute nodes run with 24 threads by default.

Workloads: We use YCSB [47] with both uniform and Zip-

fian request distributions to evaluate the performance, which

contains 6 default workloads, including (A) update heavy

(50% updates), (B) read mostly (95% read), (C) read only,

(D) read latest (5% insert), (E) short ranges (95% range re-

quest), and (F) read-modify-write (50% modifications). Apart

from these workloads, we also evaluate the performance un-

der write-intensive requests with 2 real-world, and 2 synthetic

datasets [24]. Among them, Weblogs and DocID respectively

contains 200 and 16 million key-value pairs with different

data distributions. The two synthetic datasets contain 100 mil-

lion items, and respectively meet the normal and lognormal

data distributions. We configure all workloads with 8B keys

and pointers (i.e., refer to variable-length values) like existing

schemes [24, 44] for comprehensive evaluations.

Counterparts for Comparisons: We compare ROLEX

with four state-of-the-art distributed KV stores. Specifically,

FG [52] and Sherman [43] design RDMA-enabled B-link

trees for the disaggregated memory systems. We directly run

the source codes of Sherman. Since FG is not open-source,

we implement FG from scratch faithfully following the origi-

nal design principles, as well as caching the top-level nodes

on compute nodes for better performance. We also adopt the

similar ideas of EMT-D [23] and XStore-D [44] on the disag-

gregated systems, i.e., using the limited computing resources

of memory nodes to show the performance of RPC-based

schemes. EMT-D transfers all requests to memory nodes via

eRPC (RDMA-based RPC), while XStore-D accesses read-

only workloads via compute nodes and relies on memory

nodes to process write-intensive requests. We configure our

implemented ROLEX with 16 slots in each leaf, as well as

setting 16 as the maximum model error to train PLR models

for efficient system performance. We further leverage 1 CPU

core on the memory node and disable the garbage collection

Uniform

Zipfian

Figure 7: The throughputs on various YCSB workloads.

and durability functions for all counterparts to facilitate fair

comparisons.

4.2 Overall Performance in YCSB

Figure 7 shows the throughputs on various YCSB work-

loads with both Uniform and Zipfian distributions. In general,

ROLEX achieves competitive performance with XStore-D

on static workloads, while achieving higher throughput on

dynamic workloads due to not relying on remote CPUs.

Static workload (YCSB C). On the static workloads,

XStore-D and ROLEX efficiently read remote data via one

RDMA READ according to the prediction results of the learned

models, which achieve higher performance than FG and Sher-

man due to fewer RTTs caused by the local cache. EMT-D

achieves the lowest throughput, since the memory nodes have

insufficient computing resources to process the data requests.

ROLEX achieves higher performance than XStore-D due to

the high model accuracy. Specifically, ROLEX leverages the

OptimalPLR algorithm [46] to train models according to the

data distributions, which guarantees that all model errors are

smaller than the predefined threshold. However, XStore-D

leverages the recurve model index scheme [24] for training

and fails to adaptively train models according to the data dis-

tribution. Some model errors are large when failing to train

sufficient models, causing a large prediction range and lower

performance than ROLEX in the read-only workloads.

Read-write workloads (YCSB A, B, D, F). For data modi-

fications, both XStore-D and EMT-D transfer data requests to

the remote side and achieve low throughput, due to the limited

CPU cores on memory nodes. The performance of FG and

Sherman is limited by the local cache due to the large mem-

ory footprint of inner nodes. ROLEX achieves higher perfor-

mance than other schemes due to exploiting the learned local

cache with the efficient one-sided RDMA WRITE. Specifically,

ROLEX outperforms FG, Sherman, EMT-D, and XStore-D

by up to 2.1×, 1.7×, 2.8×, and 1.3× on workload A, since

ROLEX directly updates the remote data without involving

remote CPUs. For workload D, 5% insertions are mixed with

95% searches, and ROLEX improves the throughput by about

USENIX Association 21st USENIX Conference on File and Storage Technologies 107

(a) Write-only throughput. (b) Write-only latency. (c) Hybrid read/write throughput. (d) Hybrid read/write latency.

Figure 8: The performance with various read/write scenarios.

(a) Read throughput. (b) Write throughput.

Figure 9: The performance under various data distributions.

(a) Read throughput. (b) Write throughput.

Figure 10: Scalability with various CPUs on compute nodes.

1.5× over other schemes. The reason is that the caches of

other schemes become invalid during insertion, while ROLEX

leverages the stale cache to write data in synonym leaves. We

obtain the similar observations on workloads B and F.

Range-query workload (YCSB E). Workload E contains

95% range query and 5% insert requests. We observe that

ROLEX improves the performance by 67% over other

schemes, since all data are kept sorted in the synonym leaves

during insertion and the range queried data are fetched in a

doorbell batching by RDMA READ.

4.3 Performance in Various Scenarios

Apart from YCSB, we have the similar observations on other

representive workloads, including Weblogs, DocID, Normal,

and Lognormal. Figure 8 shows the performance of different

schemes in various scenarios.

Throughput with intensive writes. Figure 8a shows the

throughput of inserting different numbers of data. As we con-

stantly insert data, ROLEX achieves significant performance

improvements over other schemes. Specifically, ROLEX im-

proves the insert throughput by up to 2.1×, 1.8×, 4.5×, and

4.3× over FG, Sherman, EMT-D, and XStore-D. The main

reason is that the local cache is fully exploited by ROLEX

with one-sided RDMA operations, while the footprints of

inner nodes in tree-based schemes overflow the cache and

the remote CPUs limit the write performance of RPC-based

schemes. Moreover, we evaluate the latencies of the insert

operations for different schemes, and the results are shown in

Figure 8b. We observe that ROLEX incurs low latency since

the stale cache identifies the leaf to be inserted according to

the prediction results of the learned models. For the mono-

tonically increasing keys, ROLEX shows low performance

when multiple compute nodes contend for the same leaf lock,

which is alleviated by sharing the leaf lock among multiple

threads of the same compute node.

Performance with hybrid read-writes. Figures 8c and 8d

respectively show the throughput and latency under various

read/write ratios. The performance of EMT-D doesn’t de-

crease much with the increasing write ratios, since the remote

memory nodes suffer from the bottleneck of insufficient com-

puting resources and achieve low performance even under

intensive read requests. XStore-D achieves high performance

on read-heavy workloads, while significantly decreasing the

performance as the write ratio increases, because XStore-D

reads data with one-sided RDMA while transferring most data

requests to the remote side as the number of write requests

increases. ROLEX, FG, and Sherman achieve higher perfor-

mance than other schemes due to not being limited by the

remote CPUs. ROLEX improves the throughput by 2.2× and

1.7× over FG and Sherman, since the improvements mainly

come from the efficient learned local cache. FG and Sherman

have to spend multiple RTTs on retrieving the remote data

when the inner nodes overflow the limited local cache.

The latency of ROLEX is lower than that of RPC-based

schemes in the disaggregated memory systems, since the

latency of accessing remote data comes from the network

roundtrip and the index structure traversal. ROLEX traverses

the cached learned indexes via the compute nodes, while RPC-

based systems traverse the index structures via the memory

nodes. In the disaggregated memory systems, the compute

nodes have sufficient computing resources to support high

concurrent access, while however the memory nodes have

limited computing resources and fail to meet the requirements

for processing intensive index requests.

Performance with various data distributions. The data dis-

tributions impact the model accuracy of the learned indexes,

which decrease the performance when the learned models

deliver low accuracy. Figure 9 shows the throughput on var-

ious workloads with different data distributions, including

108 21st USENIX Conference on File and Storage Technologies USENIX Association

(a) Read with synonym leaves. (b) Write different sized leaves. (c) Write multiple leaves.

PLR model

(d) The latency of training leaves.

Figure 11: In-depth Analysis. We evaluate the latency and network bandwidth consumption when reading/writing/training
different numbers of synonym leaves.

Weblogs, DocID, Normal, and Lognormal. We observe that

ROLEX achieves higher read performance than XStore-D.

The main reason is that the improved OptimalPLR algorithm

trains independent linear regression models with high accu-

racy according to the data distributions.

4.4 Scalability Performance
Figure 10 shows the throughput of various schemes with dif-

ferent numbers of cores on the compute nodes. We observe

that the performance of EMT-D doesn’t increase when config-

uring more cores on compute nodes, since the bottleneck of

EMT-D are the remote CPUs of memory nodes, rather than

the compute nodes. The throughputs of other schemes in-

crease with the number of cores on compute nodes, as shown

in Figure 10a, because FG, Sherman, XStore-D, and ROLEX

don’t rely on the remote CPUs to process the read requests.

However, the write performance of XStore-D fails to scale

out with the number of cores on compute nodes, as shown

in Figure 10b, since XStore-D quickly runs out the available

computing resources of the memory nodes. The read and

write performance of ROLEX increases with the increasing

number of cores on compute nodes, since different threads

don’t block each other.

If the disaggregated memory system is not assumed, in our

evaluation, EMT-D and XStore-D achieve higher performance

than other designs when configuring the memory nodes with

more than 20 CPU cores, since 20 CPU cores in memory

nodes meet the requirements of processing various index op-

erations. However, it is worth noting that our paper mainly

focuses on the disaggregated memory systems, which gener-

ally configure limited computing resources (i.e., much lower

than 20 CPU cores) on the memory nodes.

4.5 In-Depth Analysis
We conduct three optimizations in ROLEX, including op-

eration decoupling, one-sided indexing, and asynchronous

retraining, which efficiently support the system to obtain high

performance. We evaluate the efficiency of different optimiza-

tions in Figure 11.

Operation decoupling. An important insight of ROLEX

is that we decouple the insertion and retaining operations to

enable the compute nodes to directly insert data to the memory

pool, which leverages the stale models to identify the new data.

As shown in Figures 11(a-d), although retraining incurs long

latency, ROLEX achieves low latency to read and write remote

data, since the operation decoupling moves the retraining

phase out of the critical path and enables the compute nodes

to insert data without waiting for the retraining.

One-sided indexing. The compute nodes access remote

data via one-sided indexing, which incurs low latency and

bandwidth consumption when operating on a small range of

data, since one-sided indexing efficiently exploits the bene-

fits of RDMA doorbell batching. We observe that ROLEX

achieves high performance when respectively setting ε and δ
to [8, 256] and [8, 128], which achieve an efficient tradeoff

between the accessing efficiency and the retraining frequency.

Specifically, ε and δ respectively represent the maximum

prediction error and the leaf size. As shown in Figures 11a

and 11c, a large ε provides a large prediction range, which

consumes much network bandwidth and latency to identify

the requested data. ROLEX achieves high performance when

reading/writing 8-256 data, where the number of data is cal-

culated by multiplying the size and the number of the leaves.

Moreover, the small δ provides small-size leaves, which fre-

quently triggers retraining since the leaves have insufficient

slots to accommodate new data. However, as shown in Fig-

ure 11b, too large δ consumes much network bandwidth for

modifying remote data, since ROLEX reads/writes data in the

granularity of a leaf.

Asynchronous retraining. ROLEX asynchronously re-

trains the models to construct new models and leaf tables,

which increases the model accuracy to read and write few

leaves. As shown in Figure 11, the operations upon a small

number of leaves significantly reduce the latency and network

bandwidth consumption. Figure 11d shows the retraining

latency using a single CPU core. We observe that training

models and constructing leaf tables on 128 leaves consume

about 300μs. Unlike conventional learned indexes [10,14,37],

ROLEX doesn’t need to move or resort any data during retrain-

ing, since all data are kept sorted during data modifications.

4.6 Overhead Analysis

Figure 12 shows the memory footprints of the metadata in

different schemes, where the metadata refer to the data that

USENIX Association 21st USENIX Conference on File and Storage Technologies 109

(a) Different numbers of data. (b) Different datasets.

Figure 12: The memory footprints of the metadata. Tree-#
represents that an inner node contains # keys.

are required for caching. For example, the metadata consist of

the inner nodes for the tree-based schemes, while consisting

of trained models and leaf tables for XStore-D and ROLEX.

We observe that the memory overheads in tree-based struc-

tures rapidly increase with the increasing data, because many

levels of inner nodes are constructed for indexing. Moreover,

the metadata overheads significantly increase when using

small inner nodes due to requiring more levels. Unlike tree-

based structures, XStore-D and ROLEX leverage the linear

regression models for indexing, and each model only contains

2 parameters and is much smaller than the inner nodes. As

shown in Table 1, the memory overhead of ROLEX mainly

comes from the LTs, which accounts for 98% of the total

memory consumption. These models can be fully cached by

the compute nodes, while the LTs can be fetched as needed

when the limited cache fails to maintain all LTs.

In general, the compute overhead comes from the training

algorithm with O(N) complexity, where N represents the num-

ber of trained data. On average, ROLEX spends 0.28μs on

training one data to obtain the trained models and store the

data in the leaves.

5 Related Work

The disaggregated memory systems. The promising disaggre-

gated memory systems [27, 33, 34, 38, 42, 52] break a mono-

lithic server into independent components to enhance the

hardware scalability, which achieves high resources utiliza-

tion by scaling out different hardware components [16, 49].

Different components communicate with each other via effi-

cient RDMA techniques [4,5,19,36]. Existing academic stud-

ies attempt to bring the disaggregated memory systems into

practice via hardware designs [27,28]. Recently, Clio [17] pro-

poses a hardware-software co-designed disaggregated mem-

ory system to equip each memory node with dedicated com-

puting resources. LegoOS [34] proposes an OS model to man-

age disaggregated systems. Remote regions [1], LITE [40],

and Semeru [42] are used to efficiently manage the remote

memory resources. AIFM [32] designs a simple API for ap-

plications to use the remote memory. With the widely used

NVM [29, 35, 48], Clover [39] remotely manages the persis-

tent memory with low costs. FORD [50] enables the disag-

gregated memory systems to efficiently support transactions.

Table 1: The metadata analysis for ROLEX.

Number of Data 5∗106 1∗107 5∗107 1∗108 5∗108

Number of Models 5,153 10,283 51,111 101,936 526,236

Size of Models (MB) 0.0798 0.157 0.779 1.555 8.03

Size of LT (MB) 4.768 9.537 47.683 95.367 476.837

Learned indexes for storage systems. The learned in-
dexes [24] leverage calculations to predict positions for the

given keys. Prior designs focus on various scenarios to enable

the learned indexes to be widely used, including dynamically

adapting to new data distributions [10, 14, 15], concurrent

systems [37], LSM-based [9], and network-attached [44] KV

stores. Motivated by the learned indexes, some studies lever-

age machine learning models to construct learned systems,

e.g., DeepDB [18], Tsunami [11], and LISA [26].

Network-attached key-value stores. Due to the salient fea-

tures of RDMA [4,33,36,49], constructing RDMA-enabled in-

memory key-value stores [23,31,44,52] becomes efficient for

distributed storage systems. Existing studies rely on two-sided

RDMA verbs to process the data requests [6,21,23]. However,

such server-centralized designs suffer from the CPU bottle-

neck when processing intensive requests [22, 44, 45] due to

the poor computing capability of memory nodes. Unlike them,

one-side RDMA enables compute nodes to directly access the

remote data without involving remote CPUs [13, 39, 53]. For

the ordered KV stores, Cell [31], FG [52], and Sherman [43]

cache top-level nodes to reduce the number of RTTs based

on B-link trees [25]. XStore [44] proposes a learned cache

to further reduce the network penalty, which incurs one RTT

to access the remote data. Unlike them, we design ROLEX

for the disaggregated memory systems to efficiently process

various requests via one-sided RDMA operations.

6 Conclusion
This paper proposes ROLEX, a scalable RDMA-oriented or-

dered key-value store using learned indexes for the disaggre-

gated memory systems. ROLEX decouples the insertion and

retraining operations, which enables the compute nodes to

directly modify the remote data without retraining models.

Other compute nodes identify the newly modified data via

the stale models with consistency guarantees. ROLEX asyn-

chronously retrains modes to improve the model accuracy.

Our evaluation results demonstrate that ROLEX achieves

high performance on both static and dynamic workloads in

the context of the disaggregated memory systems. We have

released the open-source codes for public use in GitHub.

Acknowledgments
This work was supported in part by National Natural Science

Foundation of China (NSFC) under Grant No. 62125202 and

U22B2022. We are grateful to our shepherd, Rong Chen, and

anonymous reviewers for their comments and suggestions.

110 21st USENIX Conference on File and Storage Technologies USENIX Association

References

[1] Marcos K. Aguilera, Nadav Amit, Irina Calciu, Xavier

Deguillard, Jayneel Gandhi, Stanko Novakovic, Arun

Ramanathan, Pratap Subrahmanyam, Lalith Suresh, Ki-

ran Tati, Rajesh Venkatasubramanian, and Michael Wei.

Remote regions: a simple abstraction for remote mem-

ory. In 2018 USENIX Annual Technical Conference
(ATC), pages 775–787, 2018.

[2] Amazon. Amazon elastic block store. https://aws.
amazon.com/ebs/?nc1=h_ls, 2021.

[3] Amazon. Amazon s3. https://aws.amazon.com/
s3/, 2021.

[4] Carsten Binnig, Andrew Crotty, Alex Galakatos, Tim

Kraska, and Erfan Zamanian. The end of slow networks:

It’s time for a redesign. Proc. VLDB Endow., 9(7):528–

539, 2016.

[5] Amanda Carbonari and Ivan Beschasnikh. Tolerating

faults in disaggregated datacenters. In Proceedings of
the 16th ACM Workshop on Hot Topics in Networks
(HotNets), pages 164–170, 2017.

[6] Youmin Chen, Youyou Lu, and Jiwu Shu. Scalable

rdma rpc on reliable connection with efficient resource

sharing. In Proceedings of the Fourteenth EuroSys Con-
ference 2019 (EuroSys), pages 19:1–19:14, 2019.

[7] Douglas Comer. The ubiquitous b-tree. ACM Comput.
Surv., 11(2):121–137, 1979.

[8] Intel Corporation. Intel rack scale design ar-

chitecture. https://www.intel.com/content/
www/us/en/architecture-and-technology/
rack-scale-design-overview.html, 2021.

[9] Yifan Dai, Yien Xu, Aishwarya Ganesan, Ramnatthan

Alagappan, Brian Kroth, Andrea C. Arpaci-Dusseau,

and Remzi H. Arpaci-Dusseau. From wisckey to bour-

bon: A learned index for log-structured merge trees. In

14th USENIX Symposium on Operating Systems Design
and Implementation (OSDI), pages 155–171, 2020.

[10] Jialin Ding, Umar Farooq Minhas, Jia Yu, Chi Wang,

Jaeyoung Do, Yinan Li, Hantian Zhang, Badrish Chan-

dramouli, Johannes Gehrke, Donald Kossmann, David B.

Lomet, and Tim Kraska. Alex: An updatable adaptive

learned index. In Proceedings of the 2020 International
Conference on Management of Data (SIGMOD), pages

969–984, 2020.

[11] Jialin Ding, Vikram Nathan, Mohammad Alizadeh, and

Tim Kraska. Tsunami: A learned multi-dimensional

index for correlated data and skewed workloads. Proc.
VLDB Endow., 14(2):74–86, 2020.

[12] Aleksandar Dragojevic, Dushyanth Narayanan, Miguel

Castro, and Orion Hodson. Farm: Fast remote mem-

ory. In Proceedings of the 11th USENIX Symposium on
Networked Systems Design and Implementation (NSDI),
pages 401–414, 2014.

[13] Aleksandar Dragojevic, Dushyanth Narayanan, Ed-

mund B. Nightingale, Matthew Renzelmann, Alex

Shamis, Anirudh Badam, and Miguel Castro. No

compromises: distributed transactions with consistency,

availability, and performance. In Proceedings of the 25th
Symposium on Operating Systems Principles (SOSP),
pages 54–70, 2015.

[14] Paolo Ferragina and Giorgio Vinciguerra. The pgm-

index: a fully-dynamic compressed learned index with

provable worst-case bounds. Proc. VLDB Endow.,
13(8):1162–1175, 2020.

[15] Alex Galakatos, Michael Markovitch, Carsten Binnig,

Rodrigo Fonseca, and Tim Kraska. Fiting-tree: A data-

aware index structure. In Proceedings of the 2019 In-
ternational Conference on Management of Data (SIG-
MOD), pages 1189–1206, 2019.

[16] Peter Xiang Gao, Akshay Narayan, Sagar Karandikar,

Joao Carreira, Sangjin Han, Rachit Agarwal, Sylvia Rat-

nasamy, and Scott Shenker. Network requirements for

resource disaggregation. In 12th USENIX Symposium on
Operating Systems Design and Implementation (OSDI),
pages 249–264, 2016.

[17] Zhiyuan Guo, Yizhou Shan, Xuhao Luo, Yutong Huang,

and Yiying Zhang. Clio: A hardware-software co-

designed disaggregated memory system. In 27th ACM
International Conference on Architectural Support for
Programming Languages and Operating Systems (ASP-
LOS), 2022.

[18] Benjamin Hilprecht, Andreas Schmidt, Moritz Kulessa,

Alejandro Molina, Kristian Kersting, and Carsten Binnig.

Deepdb: Learn from data, not from queries! Proc. VLDB
Endow., 13(7):992–1005, 2020.

[19] HP. The machine. https://www.hpl.hp.com/
research/systems-research/themachine/, 2021.

[20] Deukyeon Hwang, Wook-Hee Kim, Youjip Won, and

Beomseok Nam. Endurable transient inconsistency in

byte-addressable persistent b+-tree. In 16th USENIX
Conference on File and Storage Technologies (FAST),
pages 187–200, 2018.

[21] Anuj Kalia, Michael Kaminsky, and David G. Andersen.

Using rdma efficiently for key-value services. In ACM
SIGCOMM 2014 Conference (SIGCOMM), pages 295–

306, 2014.

USENIX Association 21st USENIX Conference on File and Storage Technologies 111

[22] Anuj Kalia, Michael Kaminsky, and David G. Andersen.

Fasst: Fast, scalable and simple distributed transactions

with two-sided (rdma) datagram rpcs. In 12th USENIX
Symposium on Operating Systems Design and Imple-
mentation (OSDI), pages 185–201, 2016.

[23] Anuj Kalia, Michael Kaminsky, and David G. Andersen.

Datacenter rpcs can be general and fast. In 16th USENIX
Symposium on Networked Systems Design and Imple-
mentation, NSDI 2019, Boston, MA, February 26-28,
2019, pages 1–16, 2019.

[24] Tim Kraska, Alex Beutel, Ed H Chi, Jeffrey Dean, and

Neoklis Polyzotis. The case for learned index structures.

In Proceedings of the 2018 International Conference on
Management of Data (SIGMOD), pages 489–504, 2018.

[25] Philip L. Lehman and S. Bing Yao. Efficient locking for

concurrent operations on b-trees. ACM Trans. Database
Syst., 6(4):650–670, 1981.

[26] Pengfei Li, Hua Lu, Qian Zheng, Long Yang, and Gang

Pan. Lisa: A learned index structure for spatial data.

In Proceedings of the 2020 International Conference
on Management of Data (SIGMOD), pages 2119–2133,

2020.

[27] Kevin T. Lim, Jichuan Chang, Trevor N. Mudge,

Parthasarathy Ranganathan, Steven K. Reinhardt, and

Thomas F. Wenisch. Disaggregated memory for expan-

sion and sharing in blade servers. In 36th International
Symposium on Computer Architecture (ISCA), pages

267–278, 2009.

[28] Kevin T. Lim, Yoshio Turner, Jose Renato Santos, Alvin

AuYoung, Jichuan Chang, Parthasarathy Ranganathan,

and Thomas F. Wenisch. System-level implications of

disaggregated memory. In 18th IEEE International Sym-
posium on High Performance Computer Architecture
(HPCA), pages 189–200, 2012.

[29] Youyou Lu, Jiwu Shu, Youmin Chen, and Tao Li. Octo-

pus: an rdma-enabled distributed persistent memory file

system. In 2017 USENIX Annual Technical Conference
(ATC), pages 773–785, 2017.

[30] Yandong Mao, Eddie Kohler, and Robert Tappan Morris.

Cache craftiness for fast multicore key-value storage. In

European Conference on Computer Systems, Proceed-
ings of the Seventh EuroSys Conference 2012 (EuroSys),
pages 183–196, 2012.

[31] Christopher Mitchell, Kate Montgomery, Lamont Nel-

son, Siddhartha Sen, and Jinyang Li. Balancing cpu

and network in the cell distributed b-tree store. In 2016
USENIX Annual Technical Conference (ATC), pages

451–464, 2016.

[32] Zhenyuan Ruan, Malte Schwarzkopf, Marcos K. Aguil-

era, and Adam Belay. Aifm: High-performance,

application-integrated far memory. In 14th USENIX
Symposium on Operating Systems Design and Imple-
mentation (OSDI), pages 315–332, 2020.

[33] Abdallah Salama, Carsten Binnig, Tim Kraska, Ansgar

Scherp, and Tobias Ziegler. Rethinking distributed query

execution on high-speed networks. IEEE Data Eng.
Bull., 40(1):27–37, 2017.

[34] Yizhou Shan, Yutong Huang, Yilun Chen, and Yiying

Zhang. Legoos: A disseminated, distributed os for hard-

ware resource disaggregation. In 13th USENIX Sympo-
sium on Operating Systems Design and Implementation
(OSDI), pages 69–87, 2018.

[35] Yizhou Shan, Shin-Yeh Tsai, and Yiying Zhang. Dis-

tributed shared persistent memory. In Proceedings of the
2017 Symposium on Cloud Computing (SoCC), pages

323–337, 2017.

[36] Vishal Shrivastav, Asaf Valadarsky, Hitesh Ballani,

Paolo Costa, Ki-Suh Lee, Han Wang, Rachit Agarwal,

and Hakim Weatherspoon. Shoal: A network architec-

ture for disaggregated racks. In 16th USENIX Sympo-
sium on Networked Systems Design and Implementation
(NSDI), pages 255–270, 2019.

[37] Chuzhe Tang, Youyun Wang, Zhiyuan Dong, Gansen

Hu, Zhaoguo Wang, Minjie Wang, and Haibo Chen. Xin-

dex: a scalable learned index for multicore data storage.

In 25th ACM SIGPLAN Symposium on Principles and
Practice of Parallel Programming (PPoPP), pages 308–

320, 2020.

[38] Muhammad Tirmazi, Adam Barker, Nan Deng, Md E.

Haque, Zhijing Gene Qin, Steven Hand, Mor Harchol-

Balter, and John Wilkes. Borg: the next generation. In

15th EuroSys Conference 2020 (EuroSys), pages 30:1–

30:14, 2020.

[39] Shin-Yeh Tsai, Yizhou Shan, and Yiying Zhang. Dis-

aggregating persistent memory and controlling them

remotely: An exploration of passive disaggregated key-

value stores. In 2020 USENIX Annual Technical Con-
ference (ATC), pages 33–48, 2020.

[40] Shin-Yeh Tsai and Yiying Zhang. Lite kernel rdma

support for datacenter applications. In Proceedings of
the 26th Symposium on Operating Systems Principles
(SOSP), pages 306–324, 2017.

[41] Jérôme Vienne, Jitong Chen, Md. Wasi-ur-Rahman,

Nusrat S. Islam, Hari Subramoni, and Dhabaleswar K.

Panda. Performance analysis and evaluation of infini-

band fdr and 40gige roce on hpc and cloud computing

112 21st USENIX Conference on File and Storage Technologies USENIX Association

systems. In IEEE 20th Annual Symposium on High-
Performance Interconnects (HOTI), pages 48–55, 2012.

[42] Chenxi Wang, Haoran Ma, Shi Liu, Yuanqi Li, Zhenyuan

Ruan, Khanh Nguyen, Michael D. Bond, Ravi Ne-

travali, Miryung Kim, and Guoqing Harry Xu. Semeru:

A memory-disaggregated managed runtime. In 14th
USENIX Symposium on Operating Systems Design and
Implementation (OSDI), pages 261–280, 2020.

[43] Qing Wang, Youyou Lu, and Jiwu Shu. Sherman: A

write-optimized distributed b+ tree index on disaggre-

gated memory. In Proceedings of the 2022 International
Conference on Management of Data (SIGMOD), 2022.

[44] Xingda Wei, Rong Chen, and Haibo Chen. Fast rdma-

based ordered key-value store using remote learned

cache. In 14th USENIX Symposium on Operating Sys-
tems Design and Implementation (OSDI), pages 117–

135, 2020.

[45] Xingda Wei, Jiaxin Shi, Yanzhe Chen, Rong Chen, and

Haibo Chen. Fast in-memory transaction processing

using rdma and htm. In Proceedings of the 25th Sym-
posium on Operating Systems Principles (SOSP), pages

87–104, 2015.

[46] Qing Xie, Chaoyi Pang, Xiaofang Zhou, Xiangliang

Zhang, and Ke Deng. Maximum error-bounded piece-

wise linear representation for online stream approxima-

tion. VLDB J., 23(6):915–937, 2014.

[47] Yahoo. Yahoo! cloud serving benchmark (ycsb). https:
//github.com/brianfrankcooper/YCSB, 2019.

[48] Jian Yang, Joseph Izraelevitz, and Steven Swanson.

Orion: A distributed file system for non-volatile main

memory and rdma-capable networks. In 17th USENIX
Conference on File and Storage Technologies (FAST),
pages 221–234, 2019.

[49] Erfan Zamanian, Carsten Binnig, Tim Kraska, and Tim

Harris. The end of a myth: Distributed transaction can

scale. Proc. VLDB Endow., 10(6):685–696, 2017.

[50] Ming Zhang, Yu Hua, Pengfei Zuo, and Lurong Liu.

Ford: Fast one-sided rdma-based distributed transactions

for disaggregated persistent memory. In 20th USENIX
Conference on File and Storage Technologies (FAST 22),
pages 51–68, 2022.

[51] Yibo Zhu, Haggai Eran, Daniel Firestone, Chuanxiong

Guo, Marina Lipshteyn, Yehonatan Liron, Jitendra Pad-

hye, Shachar Raindel, Mohamad Haj Yahia, and Ming

Zhang. Congestion control for large-scale rdma deploy-

ments. In Proceedings of the 2015 ACM Conference on
Special Interest Group on Data Communication (SIG-
COMM), pages 523–536, 2015.

[52] Tobias Ziegler, Sumukha Tumkur Vani, Carsten Bin-

nig, Rodrigo Fonseca, and Tim Kraska. Designing

distributed tree-based index structures for fast rdma-

capable networks. In Proceedings of the 2019 Interna-
tional Conference on Management of Data (SIGMOD),
pages 741–758, 2019.

[53] Pengfei Zuo, Jiazhao Sun, Liu Yang, Shuangwu Zhang,

and Yu Hua. One-sided rdma-conscious extendible hash-

ing for disaggregated memory. In 2021 USENIX Annual
Technical Conference (ATC), pages 15–29, 2021.

USENIX Association 21st USENIX Conference on File and Storage Technologies 113

GL-Cache: Group-level learning for efficient and high-performance
caching

Juncheng Yang
Carnegie Mellon University

Ziming Mao
Yale University

Yao Yue
Pelikan Foundation

K. V. Rashmi
Carnegie Mellon University

Abstract
Web applications rely heavily on software caches to achieve
low-latency, high-throughput services. To adapt to changing
workloads, three types of learned caches (learned evictions)
have been designed in recent years: object-level learning,
learning-from-distribution, and learning-from-simple-experts.
However, we argue that the learning granularity in existing ap-
proaches is either too fine (object-level), incurring significant
computation and storage overheads, or too coarse (workload
or expert-level) to capture the differences between objects
and leaves a considerable efficiency gap.

In this work, we propose a new approach for learning in
caches (“group-level learning”), which clusters similar objects
into groups and performs learning and eviction at the group
level. Learning at the group level accumulates more signals
for learning, leverages more features with adaptive weights,
and amortizes overheads over objects, thereby achieving both
high efficiency and high throughput.

We designed and implemented GL-Cache on an open-
source production cache to demonstrate group-level learning.
Evaluations on 118 production block I/O and CDN cache
traces show that GL-Cache has a higher hit ratio and higher
throughput than state-of-the-art designs. Compared to LRB
(object-level learning), GL-Cache improves throughput by
228× and hit ratio by 7% on average across cache sizes. For
10% of the traces (P90), GL-Cache provides a 25% hit ra-
tio increase from LRB. Compared to the best of all learned
caches, GL-Cache achieves a 64% higher throughput, a 3%
higher hit ratio on average, and a 13% hit ratio increase at the
P90.

1 Introduction
Large-scale cache deployments enable the success of to-

day’s Internet. Companies have deployed software caches
throughout various layers of the data center infrastructure:
local and remote storage block I/O caches, in-memory and on-
flash key-value caches. Caches are the key to fast data serving
and consume a vast amount of resources. For example, Twitter
reports that TBs of DRAMs are used for caching [104], and
Netflix reports 10s of PBs of storage in use for caching [70].

The main driving force of cache deployments is the cache’s
ability to serve data with high throughput and low latency.
Retrieving data from a cache (e.g., in DRAM) is thousands of
times faster than retrieving it from the backend (e.g., in spin-
ning disks). Because caches are often deployed on expensive
storage media with limited capacity, the cache sizes are often
much smaller than the dataset sizes. Thus, deciding what data
to store in the cache is critical. A more efficient cache stores
more useful data and serves more requests without hitting
backend storage systems. Cache efficiency is often measured
by hit ratio — the fraction of requests served from the cache
(termed “hits”). When a cache is full, it uses an eviction
algorithm to decide what data to keep and what to evict, and
thus, the eviction algorithm is critical to cache efficiency.

Over the years, many eviction algorithms have been pro-
posed to leverage different object features to make better
eviction decisions. For example, several LRU variants [41–
43,69,76,85] use diverse notions of recency to choose eviction
candidates; some algorithms combine frequency and recency
to score objects in different ways [4, 15, 26, 28, 56, 92]; others
use a composition of frequency and object size [17,20]. Since
different features acquire varying degrees of importance for
different workloads, using a specific way to combine one or
two object features typically only achieves high efficiency
on some workloads (§4.5). Recently, several works have em-
ployed machine learning to improve cache evictions. We call
these designs “learned caches”.

We classify learned caches into three categories. First,
“object-level learning”, such as LRB [87], learns the next
access time for each object using dozens of object features
and evicts the object with the furthest predicted request time.
Second, “learning-from-distribution” models request proba-
bility distributions to inform eviction decisions. For example,
LHD [7] measures object hit density using age and size, and
evicts the object with the lowest hit density. Third, “learning-
from-simple-experts”, such as LeCaR [92] and Cacheus [82],
performs evictions by choosing eviction candidates recom-
mended by experts (e.g., LRU and LFU), and updates experts’
weights based on their past performance on the workload.

Because object-level learning, such as LRB, leverages more

USENIX Association 21st USENIX Conference on File and Storage Technologies 115

Table 1: Comparison of different learned caches (numbers describe the example systems).

Learning approach
Example
system

Learning
granularity

Features
for eviction

Storage overhead
(bytes per object)

Potential
efficiency

Throughput
relative to FIFO

Object-level learning LRB [87] object 44 189 high 0.001-0.01
Learning-from-simple-experts Cacheus [82] expert 2 32 low 0.2-0.25
Learning-from-distribution LHD [7] workload 2 24 medium 0.2-0.25
Group-level learning (this paper) GL-Cache object group 7 <1 high 0.3-0.8

object features, learns the relative feature importance, and
performs fine-grained learning on each cached object, it has
the highest potential for achieving high efficiency. However,
predicting and ranking objects at each eviction incurs signifi-
cant computation and storage overheads as we observe LRB
suffers from a 775× slow down compared to LRU. Learning-
from-distribution has a lower computation and storage over-
head because it models request probability using fewer fea-
tures at a coarser granularity. However, it still has a lower
throughput compared to simple heuristics (e.g., LRU) because
it has to randomly sample and compare many objects at each
eviction. Moreover, the existing design (e.g., LHD [7]) does
not leverage object features other than age and size, limiting
its potential for high efficiency. Lastly, the performance of
learning-from-simple-experts, which learns the weights of
experts, highly depends on the choice of the experts. Existing
systems use simple experts and cannot leverage features not
considered by the experts (§4). We show the comparisons of
the three types of learned caches in Table 1 and discuss each
of these categories more in-depth in §2.2.

To overcome the challenges in the existing approaches to
leverage learning in caching, we propose learning at the level
of object groups (which we call group-level learning). Group-
level learning leverages multiple group-level features to learn
object-group utility for evictions. It reduces the computa-
tion and storage overheads of learning by hundreds of times
through amortization compared to learning at the object level.
Furthermore, object groups accumulate more “signals” for
learning and can leverage a variety of features for prediction,
enabling better eviction decisions.

While group-level learning seems promising, it introduces
several challenges: (1) How to group objects and perform
evictions efficiently? (2) How to measure the usefulness of
object groups (termed “utility”) to determine the best eviction
candidate? (3) How to learn and predict the object-group
utility online?

We present Group-level Learned Cache (GL-Cache) which
leverages group-level learning by overcoming these chal-
lenges. GL-Cache clusters similar objects into groups using
write time (§3.3) and evicts the least useful groups using a
merge-based eviction (§3.6). GL-Cache introduces a group
utility function (§3.4) to rank groups, which enables group-
based eviction to achieve similar efficiency as object-based
eviction (§4.2). GL-Cache uses a hybrid approach for evic-
tion: it performs the heavyweight learning at the group level
(thus amortizing the overheads) to identify the best groups
to evict. And it leverages lightweight object-level metrics to

retain a few highly useful objects from evicted groups. This
two-level eviction enables GL-Cache to achieve a superior
trade-off between learning overhead and cache efficiency.

We implemented GL-Cache in an open-source production
cache and also developed a storage-oblivious implementa-
tion for running microbenchmarks. We compare GL-Cache
with state-of-the-art designs on 118 production block I/O and
CDN cache traces. Compared to object-level learning (LRB),
group-level learning allows GL-Cache to achieve a 228×
higher throughput on average. Moreover, GL-Cache achieves
a slight improvement in hit ratio compared to LRB, with a
7% increase on average and 25% at P90 (10% of the traces)
compared to LRB. Compared to the learned cache with the
highest hit ratio, GL-Cache increases the hit ratio by 3% on
average and 13% at the P90 tail, with a 64% higher through-
put. Varying group sizes allow GL-Cache to change learning
granularity, leading to a spectrum of algorithms. Along with
two other system parameters, this spectrum enables users to
navigate the trade-off between efficiency and throughput.

This paper makes the following contributions.

• We classify existing learned caches into three categories
based on learning granularity and propose a new approach
for learning in caching — group-level learning. Group-level
learning amortizes overheads over objects in the group to
achieve high throughput. By leveraging multiple group
features and accumulating more training signals, group-
level learning also achieves a high hit ratio.

• We design and implement GL-Cache, which overcomes the
challenges of using group-level learning to achieve high
cache efficiency with low-overhead learning. For the first
time (to the best of our knowledge), a group-level utility
function is defined and used for cache eviction.

• We evaluate GL-Cache using a diverse set of 118 production
traces to illustrate and understand the high efficiency and
high throughput of group-level learning.

2 Background and motivation
2.1 Software caches in data centers

Applications rely heavily on caching to speed up data ac-
cess and increase system throughput. The two most important
metrics of cache are efficiency measured using hit ratio and
performance measured using throughput. Hit ratio is the frac-
tion of requests fulfilled by the cache without fetching from
the backend, and it measures the effectiveness of an eviction
algorithm. A cache is more efficient if it achieves a higher hit
ratio. Throughput measures the volume of requests a cache

116 21st USENIX Conference on File and Storage Technologies USENIX Association

can handle in a given duration. Higher throughput means serv-
ing the workload consumes less CPU resources and reduces
expenses.

Over the years, many algorithms have been designed
to improve cache hit ratio under different types of work-
loads [4,7,10,12,13,15,17,21,22,26,28,41–43,45,56,58,59,
68, 69, 76, 79, 82, 85, 87, 92, 98, 103, 109, 110]. However, most
of the algorithms make eviction decisions based on one or two
object features, such as recency in LRU variants [43, 76, 85],
and frequency in LFU variants [4, 48], or a combination of
two features [7, 15, 28, 92]. However, cache workloads are
often too complex to be captured by one or two features, and
different features may acquire different importance across
workloads. Furthermore, the feature importance can be differ-
ent when the same workload is served at different cache sizes,
as we show in §4.5. As a simplified example, assume a work-
load is composed of Zipf and repeated scans. When the cache
size is very small, frequency is more important in selecting
popular objects from the Zipf distribution. However, when
the cache size is large enough to store both popular objects
and repeated scans, recency may become more important in
choosing objects to cache. In addition, prior works [10, 87]
reveal a large hit ratio gap between the state-of-the-art de-
signs and the upper bound (e.g., Belady’s algorithm [8] or
flow-based offline optimal [11]), illustrating the possibility of
improving the cache efficiency further.

2.2 Learning in caching
To make cache eviction algorithms adaptive across work-

loads, cache size, and over time, recent works have explored
the idea of using machine learning in caching [7, 10, 29, 82,
87, 93, 102]. These approaches can be broadly classified into
three classes, which come with their pros and cons, as dis-
cussed below and summarized in Table 1.

2.2.1 Object-level learning
Object-level learning performs learning on each object.

Multiple works have studied the prediction of object reuse
distance [10, 14, 32, 63, 65, 86, 87, 99, 100] and popular-
ity [19, 31, 71, 107]. By predicting reuse distance, a learned
cache can mimic Belady’s algorithm [8], which evicts the ob-
ject requested the furthest in the future using an oracle. How-
ever, predicting reuse distance is challenging [87] because
an object’s reuse distance is not only inherent to the object
but is also affected by the access patterns of the workload.
For example, the reuse distance will increase if a request-
burst or scan happens between the two requests to the same
object. Moreover, cache workloads often follow Zipf distri-
butions [5, 9, 18, 104]. Thus, most objects only get a limited
number of requests. This leads to limited object-level informa-
tion for learning. Meanwhile, it is these less popular objects
that often affect cache efficiency [102]. As a result, exist-
ing works introduce approximations and proxies for learning
reuse distance. For example, LRB [87] introduces Belady
Boundary to reduce the range of reuse distance. While learn-

ing reuse distance is challenging, with careful feature engi-
neering, large enough data, and a complex model, object-level
learning may have the potential to achieve the highest hit ratio
among all learned caches. However, object-level learning
incurs prohibitively high storage and computation overheads.
Storage overhead. Both training and inference require extra
storage. While the storage overhead of training data is often
negligible with optimizations such as sampling and offloading
to cheaper storage, inference data pose a significantly higher
storage overhead. To make predictions on the object level, the
cache needs to track features for each object. For example,
LRB [87] stores 44 features (189 bytes) per object. More-
over, this large per-object metadata overhead is prohibitively
high because it needs to reside in DRAM for frequent up-
dates. Using fewer features is possible, but it leads to worse
performance (§4).
Computation overhead. Both training and inference add
computation overhead. While training data collection and
frequent re-trainings consume CPU cycles, inference is the
major source of computation overhead. The prediction in
object-level learning uses dynamic features (e.g., object age),
and the prediction results cannot be reused over time. There-
fore, object-level learning needs to sample objects and per-
form inference at each write (eviction). For example, LRB
samples 32 objects and copies their features to a matrix for
inference for each eviction. In our measurement, each evic-
tion (including feature copy, inference, and ranking) takes
200 µs on one CPU core, indicating that the cache can evict
at most 5,000 objects on a single core per second. As a com-
parison, a production server achieves over 100,000 requests
per second [75].

2.2.2 Learning-from-simple-experts
Several works use reinforcement learning to choose be-

tween multiple simple experts (eviction algorithms). For
example, LeCaR [93] uses two experts (LRU and LFU). At
each eviction, LeCaR chooses one expert to make an eviction
decision based on the experts’ weights. Similar designs can
be found in ACME [2], FRD [80], and Cacheus [82], which
use different experts and weight adjustment methods.

By using more than one algorithm for eviction, learning-
from-simple-experts can adapt to changing access patterns.
The overhead and efficiency of learning-from-simple-experts
depend on the experts. Existing systems use simple ex-
perts and thus incur lower overhead than object-level learning.
However, existing systems suffer from two problems. First,
a delay exists between a bad eviction and an update on the
expert’s weight. The cache only discovers a bad prior eviction
when the evicted object is requested again. This challenge,
commonly known as “delayed rewards” in reinforcement
learning [3, 36, 47, 90], limits the efficiency of caches that
use learning-from-simple-experts. Second, the cache effi-
ciency is bounded by the experts selected; an efficient policy
requires a good understanding of the workload. Learning-
from-simple-experts cannot leverage features that the experts

USENIX Association 21st USENIX Conference on File and Storage Technologies 117

do not consider. If a feature is important to the workload
and not considered by any of the experts, then learning-from-
simple-experts will not provide a high hit ratio. Some works
used more experts [34] to capture more features. However,
using more experts incurs higher overheads because it needs
more computation and space to evaluate expert performance
and update experts’ weights.
2.2.3 Learning-from-distribution

The third type of learned cache models the request probabil-
ity distribution and makes decisions based on the distribution.
For example, LHD [7] uses the request probability distribu-
tion to calculate hit density (hits-per-space-consumed) as a
metric for eviction. Specifically, LHD learns the request prob-
ability as a function of ages and then modulates it with size to
arrive at hit density. LHD is simple yet effective and does not
require expensive inference computation to compare objects.
However, LHD’s hit density is calculated based only on two
features: age and size, and it is non-trivial to track probability
with more features. Besides, LHD cannot change relative fea-
ture importance (how features are composed). Furthermore,
because hit density does not change monotonically over time,
LHD must sample objects to rank at each eviction, limiting
its throughput due to slow random memory access.
Takeaways. We summarize the potential efficiency and over-
head of the three types of learned caches in Table 1. We ob-
serve that object-level learning has a high potential to achieve
high efficiency, but it incurs huge storage and computation
overheads. Learning-from-distribution only considers a lim-
ited number of features and has lower overhead with lower
potential for high efficiency. Although having a lower learn-
ing overhead, learning-from-distribution requires random
sampling during each eviction, which limits its throughput.
Learning-from-simple-experts highly depends on the experts
used. Existing systems such as LeCaR and Cacheus achieve
a higher hit ratio than a single expert but still leave a large hit
ratio gap compared to other learned caches (§4.3).

3 GL-Cache: Group-level learned cache
To enable a better trade-off between learning granularity

and learning overhead, we propose learning at the level of
object groups (which we term “group-level learning”). The
key idea behind group-level learning is to learn the usefulness
of groups of objects (called “utility”). Based on this idea,
we designed Group-level Learned Cache (GL-Cache), which
learns the object-group utility and evicts the least useful object
groups. We first give a high-level overview of GL-Cache’s
design and then go into the details of each component.

3.1 Overview of GL-Cache
Fig. 1 shows an overview of GL-Cache. In GL-Cache,

objects are clustered into fixed-size groups when writing to
cache (§3.3). The training module in GL-Cache collects train-
ing data online and periodically trains a model to learn the
utility of object groups (§3.5). The inference module pre-
dicts object-group utility and ranks object groups for eviction.

Fig. 1: Overview of GL-Cache. Objects are clustered into groups
for learning: feature tracking, model training, and inference are
performed on the group level.

Group-level learning requires group-level eviction: when the
cache is full, object groups are evicted using a merge-based
eviction which merges multiple groups into one, evicts most
objects, and retains a small portion of popular objects (§3.6).

3.2 Group-level learning
Group-level learning has several advantages over existing

learned caches:
Grouping amortizes overheads. Learning in caching incurs
both computation and storage overheads. In group-level learn-
ing, these overheads are amortized over multiple objects in
the group. In terms of storage, instead of adding huge per-
object metadata, the metadata overhead is only added for each
group. As a result, each object only incurs a tiny overhead
on average (less than one byte in our implementation). The
cost of inference computation is also amortized over objects.
Compared to object-level learning, which performs one infer-
ence per eviction, each inference in group-level learning is
used to evict a group of objects.
Grouping accumulates more signal. Many cache workloads
follow a Zipf distribution [16, 104], and most of the objects
receive very few requests. Because an object group has many
objects, it often receives more requests than an individual
object. More requests lead to more information on the group
level compared to the object level, which makes it easier to
learn and predict.

While group-level learning is promising, several challenges
need to be addressed to leverage the power of learning:

• How to cluster objects into groups (§3.3)?
• How to compare the usefulness of object groups (§3.4)?
• How to learn the utility of object groups (§3.5)?
• How to perform evictions at group level (§3.6)?

While the ideas of grouping [105] and learning [87] have
been studied independently in the context of caching, the com-
bination of the two ideas in group-level learning leads to the
unique challenges of understanding, defining, and learning
group utility. We discuss these challenges and how GL-Cache
overcomes them in this section.

3.3 Object groups
Using group-level learning, both learning and eviction are

performed at the granularity of an object group, which usually
contains tens to thousands of objects. Object grouping hap-
pens when an object enters the cache, and an object should
not switch groups for two reasons. First, changing groups

118 21st USENIX Conference on File and Storage Technologies USENIX Association

102 103 104

Group size
0.00

0.25

0.50

0.75

1.00

Co
ef

fic
ie

nt
 o

f v
ar

ia
tio

n

time-based group
random group

(a)

0 1 2 3 4
time (day)

0

50

100

M
ea

n
re

us
e

tim
e

(h
ou

r)

(b)
Fig. 2: a) Objects grouped using write time have more similar
(smaller coefficient of variation) mean reuse time than objects
grouped randomly. As group size increases, write-time-based group-
ing become closer to random grouping. b) Different object groups
written at different times exhibit a large variation in mean reuse time.

invalidates the learning pipeline. When an object is added to
or removed from a group, the accumulated group information
becomes stale and cannot be used for learning. Second, in
implementation, changing groups often requires copying data
on the storage device. Therefore, the grouping of an object
is decided when entering the cache using simple static object
features. Depending on workload types, such features include
time, tenant id, content type, object size, etc. In this work, we
focus on grouping based on write time, which is available in
all systems and hence more generalizable.

Similar to observations made in prior works [82, 105], we
observe that objects written at a similar time exhibit similar
behaviors. Using traces from the evaluation, we measure the
mean reuse time variation of objects in (1) write-time-based
groups and (2) random groups. Fig. 2a plots the mean coeffi-
cient of variation (standard deviation over mean) of 100,000
groups for the two grouping methods at different group sizes.
Compared to random groups, write-time-based groups aggre-
gate objects with closer mean reuse time. Besides reuse time,
we have similar observations on the frequency and the group
utility defined below (not shown due to the space limit).

While objects within each write-time-based group have
similar reuse, object groups created at different times exhibit
dramatically different mean reuse times. Using a group size of
100 objects on the same trace, Fig. 2b shows that some groups
exhibit more than 10× higher mean reuse time than others.
These high-reuse-time groups are potentially good candidates
for eviction. The two observations illustrate the feasibility of
group-level learning using write-time-based grouping: objects
inside groups are similar. Grouping by write time also allows
an efficient implementation using a log-structured cache.

3.4 Utility of object groups
Identifying a good eviction candidate in object-based evic-

tion has been well-studied. When object size is uniform,
Belady [8] algorithm evicts the object that is requested the
furthest in the future. When object size is not uniform, iden-
tifying the optimal candidate is NP-hard [11]. A common
approximation is to evict the object that has the largest time till
the next request over object size (called “size-aware Belady”).
However, no metric exists that applies to object groups, and

it is not trivial to adapt object-level metrics to the group level.
In this section, we define an object-group utility function to
measure object-group usefulness. A group with a lower util-
ity is less useful and hence should be preferred for eviction.
Because identifying the optimal object for eviction (when ob-
jects do not have the same size) can be reduced to identifying
the optimal group for eviction, and the former is NP-hard [11],
finding the optimal group for eviction is also NP-hard. There-
fore, we define an empirical group utility that satisfies several
properties.

3.4.1 Desired properties
(1) Because large objects occupy more space, the utility

should consider object sizes. Groups composed of larger
objects should have lower utilities.

(2) Similar to Belady, the utility should consider the time
till the next access of objects in the group. A group of objects
that are requested further in the future should have a lower
utility. Importantly, the utility definition should properly
handle objects with no future requests.

(3) When the group size is one object, group-level learning
becomes object-level learning. In this case, ranking using the
defined utility should produce the same result as Belady.

(4) The utility should be easy and accurate to track online.
Calculating the ground truth (used for training) requires fu-
ture information, but the cache cannot wait indefinitely to
calculate it. This property requires that within a limited time
horizon, the online tracked utility should be close to the utility
calculated with complete future information. In other words,
objects requested further in the future, including the ones with
no future requests, should contribute less to the utility.

3.4.2 Utility definition
We observe that the cost of evicting one object is always

only one miss. After a cache miss, the evicted object will be
inserted into the cache. Meanwhile, the benefit of evicting
one object o is proportional to its size so and time till next
access To(t) from current time t. Therefore, similar to the
cost-benefit analysis in LFS [83] and RAMCloud [77, 78],
we define the utility of an object as its cost (one miss) over
benefit (freed space multiplied by time till its next request).

Uo(t) =
1

To(t)× so
(1)

Because GL-Cache evicts object groups, we further define
the group utility as the sum of object utilities.

Ugroup(t) = ∑
o∈group

1
To(t)× so

(2)

The utility of a group measures the penalty of evicting the
group or the benefit of keeping the group. Groups with lower
utilities are thus better candidates for eviction. We remark
that this is one definition of group utility that both satisfies the
desired properties and performs well in our experience (§4).
With this definition, we compare object-group utility and evict
the group with the lowest utility. Since the true utility relies

USENIX Association 21st USENIX Conference on File and Storage Technologies 119

Fig. 3: The read flow in GL-Cache.

on the time till the next request and can only be calculated
with future information, we design GL-Cache, which learns a
model that can predict a group’s utility based on its features.

3.5 Learning object-group utility in GL-Cache
GL-Cache learns a function F that calculates a group’s

utility given its features: F (Xgroup) =Ugroup where Xgroup is
the features of an object group.
Object-group features. Features play a crucial role in learn-
ing [24, 38]. We consider two types of features in GL-Cache.
The first type is static features, which includes request rate,
write rate, miss ratio in the time window when the group was
created (the write time of the first object), and mean object
size. The second type is dynamic features, which includes
age (in seconds), the number of requests, and the number
of requested objects. Dynamic features increase over time.
Static features do not change after creating a group and cap-
ture the workload and cache states (e.g., daily scan, request
spike) during group creation time. We focus on these states
because access pattern changes are often reflected in these
metrics. For example, object groups created from scans are
good candidates for evictions, and they often co-appear with
increased request rates, write rates, and miss ratios. Com-
pared to many of the existing works [87, 100], which mostly
use dynamic features, GL-Cache uses far fewer dynamic fea-
tures because tracking dynamic features is computationally
expensive. We observe that adding more dynamic features
only brings marginal hit ratio improvement, which does not
justify the added computation overhead.

In total, GL-Cache uses seven features occupying 20 bytes
for each group or 28 bytes if mean object size and creation
time are not already tracked.
Learning model and objective function. GL-Cache uses
gradient boosting machines (GBM) because tree models do
not require feature normalization, and they have been shown
to work well in previous works [10, 87] as well as many pro-
duction environments [84,96]. We formulate the learning task
as a regression problem that minimizes the mean square loss
(L2) of object-group utilities. We also explored the ranking
objective function without observing a significant difference.
Training. GL-Cache trains a model using online collected
training data, which consists of features and utilities of object
groups. GL-Cache generates new training data by sampling
cached object groups, and it copies the features of the sampled
groups into a pre-allocated memory region. The utilities of

the sampled groups are initialized to zero at the beginning and
calculated over time. When an object o from a sampled group
is requested, GL-Cache can calculate the To(t) (time till next
request since sampling) and object utility using Eq. 1 and add
the object utility into the group utility. GL-Cache then marks
the object to ensure that it only contributes to the group utility
once. It is possible that some objects may not be requested
before training, and the online calculated group utility may
be lower than the true utility. However, as mentioned in §3.4,
these objects contribute marginally to the group utility due to
their large reuse time.

In addition, a sampled group may be evicted before being
used for training. Such evictions halt the tracking of group
utility. Inspired by prior works [69, 82], GL-Cache keeps
ghost entries for objects which have not been factored into
group utility. A future request on the ghost entry will update
the group utility, bringing it closer to the true utility.

Fig. 3 shows the read flow in GL-Cache. A successful hash
table lookup may find two types of entries: a pointer to the
object or a ghost entry. If it is a regular object, GL-Cache
first updates the group features. Further, if the object is on
a sampled group and has not contributed to the group utility,
GL-Cache also updates the group utility before returning the
data to the user. If it is a ghost entry, GL-Cache updates the
corresponding utility and removes the ghost entry from the
hash table, then returns a cache miss.

Given the access patterns change over time, the model
needs to be retrained regularly. GL-Cache retrains the model
every day (i.e., using wall clock time as a reference) because
many real-world events that trigger requests repeat on a daily
basis, such as cron jobs. In contrast, the other option of retrain-
ing every certain number of requests may cause the system to
enter metastable failure [40] when an access pattern change
increases the system load. Besides, GL-Cache chooses to
retrain from scratch each time because tree models do not
benefit from continuous training. Moreover, the inference
overhead grows with training iterations because a new tree is
added to the model in each iteration.

Inference. When GL-Cache needs to perform evictions, it
predicts the utilities of all object groups and ranks them. GL-
Cache uses the inference/ranking result for multiple evictions,
which reduces the frequency of inference and thus the com-
putation overhead. We denote eviction fraction Feviction as the
fraction of ranked groups to evict using one inference. That
is, GL-Cache performs an inference every Feviction ×Ngroup
groups where Ngroup is the total number of groups. In our
evaluation, Nranked−group is the total number of groups, but we
remark that one can also sample some groups for inference
if the total number of groups is too large. Also, the groups
are evicted over time on demand rather than all at once, and
neither training nor inference need to be on the critical path
of request serving. In summary, GL-Cache only needs to
perform 1

Feviction
inferences to write a full cache of objects.

120 21st USENIX Conference on File and Storage Technologies USENIX Association

Fig. 4: Object group utility prediction and merge-based group evic-
tion in GL-Cache.

3.6 Evictions of object groups
Learning at the object-group level introduces an interesting

challenge to cache eviction: unlike most caches which evict
one object each time, GL-Cache evicts a group of objects.
Although evicting object groups leads to lower overhead due
to batching and amortization, it may evict objects that are still
popular. GL-Cache optimizes the group eviction by using
a merge-based eviction, similar to Segcache [105]. Upon
each eviction, GL-Cache picks the least useful object group
and merges it with the Nmerge −1 object groups that are clos-
est with respect to write time. The merge process retains
Sgroup objects from the merged groups and evicts all other
objects. The retained objects form a new group, and the orig-
inal Nmerge groups are evicted. This is the only time that an
object changes its group membership in GL-Cache. Unlike
group selection, which uses ranking, object selection uses a
simple metric based on object age and size: 1

size·age where age
is the time since the last access. We choose to use this metric
because recency and size are the two most common metrics
used in other eviction algorithms (§2). GL-Cache performs
the heavyweight online learning at the group level to identify
the best groups to evict. It leverages lightweight object-level
metrics to retain a few highly useful objects. This two-level
eviction approach enables GL-Cache to achieve a superior
tradeoff between learning overhead and cache efficiency.

In summary, each eviction evicts Nmerge groups of objects
and retains one group of objects, as illustrated in Fig. 4. The
features (except mean object size) of the merge-produced
group take the mean values of the Nmerge merged groups.
Note that only the first object group is picked based on the
group utility; the next Nmerge −1 object groups are chosen as
ones with write time close to the first group. This ensures
that objects in the new group after a merge-based eviction are
still close in write time and similar. In contrast, objects from
the Nmerge least useful groups may not be similar. Clustering
similar objects into groups is critical for effective group-level
learning. In our experience, merging the Nmerge least use-
ful groups shows lower efficiency with up to 20% decrease
in hit ratio. Compared to evicting one object each time,
group-based eviction evicts more objects than needed at each
eviction, which may reduce the efficiency upper bound group-
level learning can achieve. However, we show in §4.2 that
evicting object groups can achieve hit ratios very close to Be-
lady, indicating that group eviction will not be the bottleneck
for cache efficiency.

Table 2: Parameters used in the design.
Para Meaning
Sgroup Size of an object group (in number of objects or bytes)
Nmerge Number of object groups to merge each eviction
Feviction Each inference evicts Feviction fraction of ranked groups

Table 3: Three sets of 128 traces were used in the evaluation.

Dataset # traces
requests
(millions) Source

CloudPhysics [94] 103 2115 VM disk I/O
MSR [73] 14 410 Disk I/O
Wikimedia [87] 1 2804 CDN requests

3.7 A spectrum of GL-Cache
GL-Cache has three parameters in its design (Table 2): the

size of each object group Sgroup, the number of object groups
to merge at each eviction Nmerge, and how many groups are
evicted using one inference which is determined by Feviction.
Varying these parameters leads to a spectrum of algorithms for
optimizing hit ratio and throughput. A larger Sgroup reduces
learning granularity; a larger Nmerge retains fewer objects; and
a larger Feviction reduces the ranking frequency. Each of these
changes reduces the computation overhead with a potential hit
ratio drop. Therefore, GL-Cache allows the users to navigate
the trade-off between cache efficiency and throughput. For
scenarios that are more sensitive to overheads, such as local
cache deployments, GL-Cache can provide higher throughput
with a slightly lower hit ratio, and vice versa. In §4.6, we
show that these parameters generalize well across workloads.

4 Evaluation
In this section, we evaluate GL-Cache to answer the fol-

lowing questions.
• Will group-based eviction limit the efficiency upper bound

when compared to object-based eviction (§4.2)?
• Can GL-Cache improve hit ratio and efficiency over other

learned caches (§4.3)?
• Can GL-Cache meet production-level throughput require-

ments and how much overhead does GL-Cache add (§4.4)?
• How does GL-Cache improve efficiency without compro-

mising throughput (§4.5)?

4.1 Experiment methodology
Prototype system. GL-Cache groups objects using write time
and can be efficiently implemented using a log-structured
cache. Hence, we implement GL-Cache on top of Seg-
cache [105], an open-source production in-memory cache
that uses segment-structured (log-structured) storage. We
map an object group in GL-Cache to a “segment” in Seg-
cache and replace FIFO with the learned model. We use the
XGBoost [1] library to implement our GBM models and use
the default values for all parameters. GL-Cache has three
parameters (Table 2). In our evaluation, GL-Cache uses 1 MB
group size, merges five groups at each eviction, and evicts
5% of ranked groups after each inference. We compare GL-
Cache with Segcache [105], a segment-structured cache used

USENIX Association 21st USENIX Conference on File and Storage Technologies 121

by Twitter; Cachelib [9], Meta’s production cache library,
which uses slab storage and a throughput-optimized LRU
for eviction; TinyLFU [28], implemented within Cachelib by
Meta engineers. We have also implemented LHD [7] on top
of Pelikan’s slab storage [81].
Micro-implementation. In addition to the prototype system,
we build a storage-oblivious implementation of GL-Cache
in C on top of libCacheSim [101] to compare different evic-
tion algorithms. Our implementation mimics Memcached’s
design but has neither a networking stack nor object value
storage, and we call it micro-implementation. Compared
to the prototype, the micro-implementation only performs
eviction-related metadata operations and does not consider
storage layout or system overheads such as fragmentation.
We use two sets of parameters (Table 2) to demonstrate the
spectrum of GL-Cache. The first demonstrates a better ef-
ficiency and uses Sgroup = 60 objects, Nmerge = 2 groups,
Feviction = 0.02. We call this system GL-Cache-E. The sec-
ond demonstrates a higher throughput using Sgroup = 200
objects, Nmerge = 5 groups and Feviction = 0.1, and we call it
GL-Cache-T. We remark that the parameters are not tuned per
workload. Thus GL-Cache may provide better performance
(hit ratio or throughput) with workload-specific fine-tuning.

Besides GL-Cache, we implement Cacheus [82] in C fol-
lowing the authors’ open-source Python implementation. For
LHD [7] and LRB [87], our micro-implementation used code
open-sourced by the authors. We use default parameters ex-
cept for changing the LRB optimization target from byte miss
ratio to object miss ratio (implemented by LRB’s author).
Besides state-of-the-art designs, we have also implemented
FIFO, LRU, and size-aware Belady [11].

GL-Cache trains the first model after running one day of
workload (using timestamps from the traces). Before a model
is trained, it uses FIFO to perform evictions, GL-Cache then
trains the model once a day from scratch, which has little
overhead as discussed in §3.5.
Workloads. We use a wide variety of traces representing a
diverse set of workloads from three dataset sources (Table 3).
The CloudPhysics [94] dataset includes 103 block I/O traces
with different CPU/DRAM configurations and access pat-
terns. Each trace records the I/O requests from a VM for
around one week. Because 86% of the VMs had DRAM sizes
between 1 GB and 16 GB with a median of 3880 MB, we
performed evaluations at 1 GB, 4GB, and 16 GB cache sizes.
We present only 1 GB and 16 GB for space reasons. We
have also evaluated GL-Cache using 14 block I/O traces (we
ignore the traces which contain fewer than 5 million requests)
from Microsoft Research Cambridge (MSR) [73]. Because
the working set sizes of MSR traces exhibit a very wide range,
we set cache sizes for each trace at 0.01%, 0.1%, and 1%
of each trace’s footprint (size of all objects). Besides block
I/O request traces, we have also evaluated GL-Cache with
the Wikimedia CDN trace used in previous works such as
LRB [87] and LFO [10]. All the workload traces have at least

LRU Belady GL-Cache LRU Belady GL-Cache
0.0

0.5

1.0

1.5

2.0

2.5

3.0

Hi
t r

at
io

 in
cr

ea
se

 o
ve

r F
IF

O 1 GB 16 GB

Fig. 5: With oracle assistance, group eviction can achieve a similar
hit ratio improvement as object eviction.

three fields: the timestamp, id, and size of the requests.
We ran micro-implementation experiments on the Cloud-

lab [25] Utah site using m510 nodes with Intel Xeon D-1548
CPU, 64GB ECC DDR4 DRAM. And we ran prototype ex-
periments on the Cloudlab Clemson site using c6420 nodes
with Intel Xeon Gold 6142 CPU and 384 GB of DRAM.
Metrics. We replayed traces by reading and writing to a local
cache in a closed loop and measured hit ratio and throughput.
Because all traces are week-long traces, we started measure-
ments after finishing the first three days’ requests to make sure
the cache is properly warmed up under all the configurations
considered. We present evaluations using a one-day warmup
time in §4.6, which shows that the observations remain the
same as with a three-day warmup.

We report aggregated results from 103 CloudPhysics
traces and 14 MSR traces using box plots for the micro-
implementation results. Due to the diversity of the work-
loads, both hit ratio and throughput have wide ranges. Hence,
for ease of visual presentation, we report results compared
to FIFO using the following two metrics: hit ratio increase
over FIFO defined as HRalg−HRFIFO

HRFIFO
where HR stands for hit

ratio; throughput relative to FIFO defined as Ralg
RFIFO

where
R is the throughput. The box plots have the following for-
mat: the orange line inside the box is the median, the box
shows 25 and 75 percentiles, and the whiskers show 10 and
90 percentiles. Because several other factors in the prototype
systems (e.g., storage layout) affect efficiency and through-
put, for ease of understanding, we focus our evaluation on
the micro-implementation results. We present raw hit ratio
and throughput numbers using the prototype systems for one
representative trace in §4.3 and §4.4.

4.2 Group-based eviction
Group-level learning evicts most objects in the selected

groups. The bulk eviction may limit the efficiency of group-
level learning. To understand the limitation of group evic-
tion, we compare oracle-assisted group eviction with oracle-
assisted object eviction (size-aware Belady [11]). The oracle-
assisted group eviction uses the same design as GL-Cache
except using future request time to calculate group utility and
retain objects. Size-aware Belady evicts the object that has
the largest (Tnext −Tnow)× so where Tnext is the time of the
next request, and so is the object size.

We compare these two approaches using CloudPhysics

122 21st USENIX Conference on File and Storage Technologies USENIX Association

1 2 4 8 16 32 64
Cache Size (GB)

0.4

0.6

0.8

Hi
t r

at
io

GL-Cache
SegCache
Cachelib

LHD
TinyLFU

(a) Hit ratio

1 2 4 8 16 32 64
Cache Size (GB)

1.0

1.5

2.0

2.5

Th
ro

ug
hp

ut
 (M

QP
S) GL-Cache

SegCache
Cachelib

LHD
TinyLFU

(b) Throughput

Fig. 6: Prototype evaluation of a CloudPhysics trace.

LRU
Cacheus LHD LRB

GL-Cache-E

GL-Cache-T
0.0
0.2
0.4
0.6
0.8
1.0
1.2

Hi
t r

at
io

 in
cr

ea
se

 o
ve

r F
IF

O

(a) CloudPhysics, small cache
size

LRU
Cacheus LHD LRB

GL-Cache-E

GL-Cache-T
0.0

0.2

0.4

0.6

0.8

1.0
Hi

t r
at

io
 in

cr
ea

se
 o

ve
r F

IF
O

(b) CloudPhysics, large cache
size

LRU
Cacheus LHD LRB

GL-Cache-E

GL-Cache-T
0

1

2

3

Hi
t r

at
io

 in
cr

ea
se

 o
ve

r F
IF

O

(c) MSR, small cache size

LRU
Cacheus LHD LRB

GL-Cache-E

GL-Cache-T
0.0

0.2

0.4

0.6

0.8

Hi
t r

at
io

 in
cr

ea
se

 o
ve

r F
IF

O

(d) MSR, large cache size

Fig. 7: Hit ratio increase over FIFO. GL-Cache runs under two
modes, GL-Cache-E is the efficient mode, GL-Cache-T is the
throughput mode.

traces. Fig. 5 shows that group-based eviction can achieve
a hit ratio similar to object-based eviction at both small and
large cache sizes. The similar hit ratios suggest that group
eviction will not become the bottleneck for achieving high
efficiency. While the algorithms in this comparison use oracle
information, in the following sections, we show how GL-
Cache can use learning to replace the oracle and achieve high
cache efficiency.

4.3 Cache efficiency
We compare the efficiency of GL-Cache with state-

of-the-art designs in both the prototype and the micro-
implementation. Fig. 6a shows hit ratios for the prototype
running one CloudPhysics trace at different sizes. Compared
to other systems, GL-Cache consistently achieves the best ef-
ficiency, providing a significant hit ratio increase (up to 40%)
over the best of all baselines. Compared to Segcache, which
uses the same storage layout with FIFO-based group eviction,
group-level learning increases the hit ratio by 60% at 8 GB.
Cachelib uses a throughput-optimized LRU and has the low-
est hit ratio among all the baselines. LHD and TinyLFU use
two object features to make eviction decisions: LHD models
hit density based on age and size; TinyLFU uses frequency
to filter out unpopular objects and uses recency to evict ob-

jects. Leveraging more than one feature to choose eviction
candidates allows LHD and TinyLFU to achieve higher hit
ratios. However, not using more features puts an upper bound
on their potential. In comparison, GL-Cache evicts groups
based on seven features covering recency, frequency, cache,
and workload states at group creation time (miss ratio, write
rate, request rate). Considering multiple features in conjunc-
tion with learned importance allows GL-Cache to make better
eviction decisions and achieves a higher hit ratio. Evaluations
on the other traces show similar results.

To compare with more algorithms and on more traces,
we show hit ratio results from the micro-implementation on
CloudPhysics and MSR traces in Fig. 7. Because of the wide
range of hit ratios across traces, we show the relative hit ratio
increase compared to FIFO instead of the raw hit ratios. We
observe that both LRU and Cacheus improve FIFO’s hit ratio,
but only by a single-digit percentage for the median workload
on both datasets. Meanwhile, LRB, LHD, and GL-Cache
increase FIFO’s hit ratio more prominently.

Among LRB, LHD, and GL-Cache-E, LRB has the small-
est observed hit ratio improvement. We conjecture that learn-
ing at the object level receives limited information on each
object since cache workloads often follow Zipf distributions,
and thus is more challenging to learn compared to learning
at the group level. Compared to LHD, we observe that GL-
Cache-E shows similar efficiency on CloudPhysics traces.
However, on MSR traces, GL-Cache-E is more efficient than
LHD with a 60% hit ratio increase for a median workload
at the small size. This observation suggests that leveraging
more features to make eviction decisions can be very useful
for some workloads at certain cache configurations.

Compared to GL-Cache-E, GL-Cache-T trades hit ratio
for higher throughput (§4.4). However, we observe that GL-
Cache-T’s efficiency is still on-par with LRB. Overall, we
observe that GL-Cache improves the hit ratio by up to 37.8%
compared to LHD and 87% compared to LRB (not shown
in the figure). While LRB uses more features/information
than other eviction algorithms, it does not always provide the
highest hit ratio. More information leads to higher efficiency
only when the information is useful and well-utilized. We
conjecture that perhaps not all the features in LRB are useful,
and the model may not be making the best use of the features.

When comparing prototype and micro-implementation re-
sults, we observe that the hit ratio difference also depends on
the storage design. GL-Cache uses log-structured storage, and
the difference between prototype and micro-implementation
is smaller (<10%); LHD uses slab storage, and sometimes
the prototype can have a significantly lower hit ratio (>20%)
compared to the micro-implementation. This large differ-
ence comes from fragmentation and slab calcification prob-
lems [39, 105]. However, we did not find a way to efficiently
implement LHD on top of log-structured storage because it
requires the storage to have the capability of evicting (remov-
ing) any cached object, while log-structured storage can only

USENIX Association 21st USENIX Conference on File and Storage Technologies 123

Table 4: Comparing LRB and GL-Cache-E on the Wikimedia trace
used in LRB paper [87]. We use miss ratio because it is more
commonly used in web caches.

Algorithm Miss ratio Throughput (MQPS)
Size (GB) 20 200 2000 20 200 2000
FIFO 0.39 0.16 0.025 7.62 7.91 9.68
LRB 0.24 0.048 0.016 0.01 0.04 0.07
GL-Cache-T 0.24 0.065 0.017 4.97 6.53 4.89
GL-Cache-E 0.20 0.041 0.013 2.55 3.91 4.20

LRU
Cacheus LHD LRB

GL-Cache-E

GL-Cache-T
0.0

0.2

0.4

0.6

0.8

1.0

Th
ro

ug
hp

ut
 re

la
tiv

e
to

 F
IF

O

(a) CloudPhysics, small cache
size

LRU
Cacheus LHD LRB

GL-Cache-E

GL-Cache-T
0.0

0.2

0.4

0.6

0.8

1.0
Th

ro
ug

hp
ut

 re
la

tiv
e

to
 F

IF
O

(b) CloudPhysics, large cache
size

LRU
Cacheus LHD LRB

GL-Cache-E

GL-Cache-T
0.0

0.2

0.4

0.6

0.8

1.0

Th
ro

ug
hp

ut
 re

la
tiv

e
to

 F
IF

O

(c) MSR, small cache size

LRU
Cacheus LHD LRB

GL-Cache-E

GL-Cache-T
0.0

0.2

0.4

0.6

0.8

1.0

Th
ro

ug
hp

ut
 re

la
tiv

e
to

 F
IF

O

(d) MSR, large cache size

Fig. 8: Throughput relative to FIFO.

efficiently support sequential write and removal.
Besides block I/O cache traces, we have also evaluated GL-

Cache using the Wikimedia CDN trace from LRB evaluations.
Table 4 shows that learning helps LRB to achieve miss ratios
35% to 70% lower than FIFO. Compared to LRB, GL-Cache-
E further reduces the miss ratio by up to 16%. In summary,
the evaluations on three datasets totaled 118 traces illustrating
the high efficiency and generality of group-level learning.

4.4 Throughput and overheads
Not only does GL-Cache achieve a high hit ratio, but

GL-Cache also achieves high throughput. Fig. 6b shows
the throughput of GL-Cache in the prototype. We observe
that compared to production systems (Cachelib, Segcache),
GL-Cache achieves a similar throughput, indicating that GL-
Cache meets the throughput requirement of a production sys-
tem. Moreover, compared with eviction algorithms such as
LHD and TinyLFU, GL-Cache is 2-3× faster.

Besides the prototype evaluation, Fig. 8 compares the
throughput of GL-Cache with several state-of-the-art algo-
rithms evaluated on all CloudPhysics and MSR traces. While
LRU achieves throughput close to FIFO, all advanced evic-
tion algorithms exhibit a significant slowdown compared to
FIFO. However, among all learned caches, GL-Cache is sig-
nificantly faster than others. Compared to LRB, GL-Cache-E
has a 228× higher throughput, and GL-Cache-T has a 586×
higher throughput on average at the small cache size. Com-

pared to the fastest of all learned caches, GL-Cache-E is on
average 64% faster, and GL-Cache-T is on average 3× faster
at the small cache size. Similarly, on the Wikimedia trace
(Table 4), GL-Cache-E is tens to hundreds of times faster
than LRB and achieves almost half of FIFO’s throughput.

GL-Cache achieves high throughput because it needs very
few metadata updates on cache hits and misses. On a cache
hit, GL-Cache only needs to update the last access time and
group utility if it is on a sampled group (§3.5). On a cache
miss, GL-Cache does not need to update any metadata most
of the time; occasionally, it performs a group eviction and
evicts 100s to 1000s of objects. In contrast, other systems
must update multiple metadata entries on both cache hits and
cache misses. For example, TinyLFU needs to maintain the
frequency counting sketch and the LRU chain; LHD needs to
sample 32 objects, thus having 32 random DRAM accesses
for each eviction. Segcache is simpler than GL-Cache in per-
request operations. However, the lower hit ratio of Segcache
leads to its reduced throughput because of more evictions.

The second reason for GL-Cache’s high throughput is that
the overheads of training and inference are amortized. Be-
cause GL-Cache uses fewer features to learn simpler high-
level patterns instead of per-object access patterns, it uses a
simple model and is only retrained once a day. In our mea-
surement, each training consumes 10 - 50 ms of one CPU
core (not amortized by the number of training samples). In
addition, each inference consumes 0.4 - 3 ms of one CPU
core and is triggered every time 5% of ranked groups are
evicted. Because each inference evicts many groups and each
eviction evicts many objects, the inference computation is
amortized. The amortization is the key reason for GL-Cache’s
high throughput compared to other learned caches. Moreover,
although training and inference are not on the critical path of
request serving, our throughput evaluation measures run time
including both training and inference.

While throughput evaluations show the low computation
overhead of GL-Cache, machine learning in caching also
introduces storage overhead. First, GL-Cache uses DRAM
to store 8000 training samples. The training data storage
is pre-allocated and small (256 KB) compared to the cache
size (GBs). For deployments with very limited memory, the
training data can also be stored on the storage device. Second,
each object group in GL-Cache uses 28 bytes of features —
each object thus adds less than one byte. Besides the group-
level features, GL-Cache tracks each object’s last access time
using 4 bytes. In total, GL-Cache uses 5 bytes of object
metadata for eviction. As a comparison, LRU requires two
pointers with 16 bytes of metadata per object, and LRB uses
192 bytes of features per object.

4.5 Understanding GL-Cache’s efficiency
So far we have demonstrated that GL-Cache has a higher

miss ratio and throughput than existing systems. While amor-
tized overhead explains the high throughput, this section ex-

124 21st USENIX Conference on File and Storage Technologies USENIX Association

frequency age mean
obj size

req
rate

num
active obj

miss
ratio

write
rate

0.0

0.1

0.2

0.3

0.4

0.5
No

rm
al

ize
d

fe
at

ur
e

im
po

rta
nc

e

(a) Feature importance across traces

Traces0.0

0.2

0.4

0.6

0.8

1.0

St
ac

ke
d

fe
at

ur
e

im
po

rta
nc

e

frequency
age
mean obj size

req rate
num active obj

miss ratio
write rate

(b) Feature breakdown across example traces.

Feature
0.00

0.25

0.50

0.75

1.00

1.25

Hi
t r

at
io

 in
cr

ea
se

1 GB 4 GB 16 GB

freq only
freq + recency

freq + recency + size
all feature

(c) Feature utility case study.

Fig. 9: Feature case study.

plores how learning helps GL-Cache achieve high efficiency.
Most eviction algorithms use one or two object features

to decide which object to evict. For example, LRU evicts
the object with the largest access age (recency), LeCaR and
Hyperbolic [15] use recency and frequency to make eviction
decisions, LHD relies on access age and object size to choose
eviction candidates. In contrast, object-level learned cache
such as LRB uses 44 features covering different measure-
ments of recency and frequency, as well as object size, to
compare objects. Similarly, GL-Cache uses seven features
to compare object groups. To better understand GL-Cache’s
efficiency, we examine how GL-Cache uses these features.

We obtained the feature importance score directly from
XGBoost. The importance score is calculated using the num-
ber of times a feature is used to split the data across all trees
and may not represent the ground truth. Fig. 9a shows the nor-
malized feature importance scores of different features across
traces obtained from the models trained for each trace. We
observe that across traces, frequency and age have relatively
high scores with medians of around 0.3. This aligns well with
existing literature on eviction algorithms, which mostly use
recency and frequency to make eviction decisions. The next
important feature is the mean object size, which is essential
for algorithms that consider variable-size objects. Besides
these features, the workload and cache states (request rate,
miss ratio, write rate) at the group creation time have similar
scores with a median of around 0.05. When summed up, they
have a similar importance as the object size.

While we observe that the most commonly used features
(recency, frequency, size) are critical, we also observe that no
feature is dominant across all traces. Fig. 9b shows the feature
importance score for 12 randomly selected traces. For some
traces, frequency is more important, with an importance score
of 0.6. For others, recency or size is more important. GL-
Cache weighing features differently across traces suggests
that GL-Cache can effectively adapt the feature importance
to each workload. For comparison, the algorithms leveraging
more than one feature often combine the features in a way that
cannot adapt to workloads. For example, Hyperbolic scores
an object using f requency

age , leaving the relative importance of
frequency and age unchanged across workloads.

Fig. 9c uses one trace to illustrate the importance of GL-
Cache adaptively using multiple features. It shows how grad-
ually including more features improves the hit ratio. We

1 5 20 60 200 800 1600
Group size

0.0

0.2

0.4

0.6

0.8

Hi
t r

at
io

 in
cr

ea
se

 o
ve

r F
IF

O

(a) Hit ratio

1 5 20 60 200 800 1600
Group size

0.0

0.2

0.4

0.6

0.8

Th
ro

ug
hp

ut
 re

la
tiv

e
to

 F
IF

O

(b) Throughput

Fig. 10: Impact of group size.

observe that the combination of frequency, recency, and size
at small sizes (1 GB and 4 GB) leads to a large hit ratio in-
crease (e.g., 80% at 1 GB). Meanwhile, frequency alone is
insufficient and can only increase the hit ratio by 10% at 1
GB. Using all features increases the hit ratio modestly on this
trace compared to only using frequency, age, and size. More-
over, Fig. 9c shows that feature importance could change with
cache sizes. Object size is more important at 1 GB cache
size, while frequency becomes more important than other
features at 16 GB. This could be because small objects con-
tribute more hits per consumed byte than large objects, so
caching small objects is better when the cache size is small.
Meanwhile, when most small objects are cached at a larger
cache size, choosing between large objects depends on re-
quest frequency. This observation suggests that in GL-Cache,
the choice and use of features adapt not only to the workloads
but also to different configurations such as cache sizes.

In summary, learning at the group level can leverage mul-
tiple features to adapt to both workload and cache sizes, en-
abling higher cache efficiency.

4.6 Sensitivity analysis
We have discussed the three parameters used by GL-Cache

in §3.7, and we have shown the two modes of GL-Cache:
one achieves higher efficiency (GL-Cache-E), and the other
achieves higher throughput (GL-Cache-T). This section
shows in detail how these parameters affect hit ratio and
throughput. In addition, we show that the warmup time does
not significantly change the hit ratios.
Group size. A smaller group indicates a finer granularity
for learning and evictions. Varying group size affects both
throughput and efficiency. First, reducing group size increases
storage and computation overhead due to finer learning gran-
ularity. As a result, throughput increases with group size,
as shown in Fig. 10. Second, the hit ratio increases when

USENIX Association 21st USENIX Conference on File and Storage Technologies 125

0.01 0.05 0.1 0.2
Eviction fraction

0.0

0.2

0.4

0.6

0.8

1.0

Hi
t r

at
io

 in
cr

ea
se

 o
ve

r F
IF

O

(a) Hit ratio

0.01 0.05 0.1 0.2
Eviction fraction

0.0

0.2

0.4

0.6

0.8

Th
ro

ug
hp

ut
 re

la
tiv

e
to

 F
IF

O

(b) Throughput

Fig. 11: Impact of eviction fraction Feviction.

2 3 5 10 20
Number of merged groups

0.0

0.2

0.4

0.6

0.8

1.0

Hi
t r

at
io

 in
cr

ea
se

 o
ve

r F
IF

O

(a) Hit ratio

2 3 5 10 20
Number of merged groups

0.0

0.2

0.4

0.6

0.8
Th

ro
ug

hp
ut

 re
la

tiv
e

to
 F

IF
O

(b) Throughput

Fig. 12: Impact of the number of groups to merge at each eviction.

the group size increases from 1 (object-level learning) to 20,
then decreases as the group size further increases from 60
to 1600. A smaller group indicates that each eviction evicts
fewer objects, enabling a higher hit ratio. However, when
the group size is too small, each group gets too few requests
for group feature learning to be effective, thus decreasing
the hit ratio. The non-monotonic hit ratio change (hit ratio
first increases then decreases) also explains why object-level
learning achieves a lower hit ratio than GL-Cache.
Eviction Fraction. GL-Cache evicts Feviction fraction of
ranked groups between each inference to reduce computa-
tion overhead and better tolerate inaccurate predictions. The
more groups (larger Feviction) evicted per inference, the fewer
inferences, thus higher throughput. However, a larger Feviction
means more (useful) groups are evicted after each inference,
resulting in a lower hit ratio. Fig. 11 shows that increasing
Feviction reduces hit ratio and increases throughput.
Number of groups to merge. The last tunable parameter in
GL-Cache is the number of groups to merge at each eviction.
Because GL-Cache evicts the majority of the objects on the
Nmerge groups and retains one group worth of objects, merging
more groups means that GL-Cache retains fewer objects from
each group. Retaining fewer objects reduces the computation
needed at each eviction, but it also reduces efficiency. Fig. 12
shows that increasing the number of merged groups increases
throughput and reduces the hit ratio.

Besides the above three parameters, the learning compo-
nent also introduces several parameters such as training data
size and retraining frequency. GL-Cache retrains the model
once a day because many events (such as cron jobs and diurnal
patterns) happen on a daily basis. Wall clock time sometimes
is more important than virtual time (reference count), and
has also been recognized by researchers from Google when
they use neural networks to predict the lifetime of a memory
allocation [64]. The retraining interval affects both efficiency
and performance. Note that more frequent retraining does

0 1 2 3
Throughput (MQPS)

0.3

0.4

0.5

0.6

0.7

0.8

Hi
t r

at
io

better

GL-Cache
Segcache

LHD
Cachelib

TinyLFU

(a) Prototype evaluation

0 2 4 6 8
Throughput (MQPS)

0.3

0.4

0.5

0.6

0.7

0.8

Hi
t r

at
io

better

GL-Cache
Cacheus

LHD
LRU

LRB

(b) Micro-implementation

Fig. 13: A spectrum of GL-Caches allow users to tradeoff between
hit ratio and throughput.

not always lead to a higher hit ratio because shorter retrain-
ing intervals reduce the accuracy of the group utilities used
for training as they are accumulated over time. We observe
that the best retraining interval depends on the workload —
some workloads show higher hit ratios with half-day retrain-
ing, and some others benefit from two-day retraining. While
fine-tuning retraining intervals can improve the hit ratio by
up to 10%, one-day retraining achieves a good performance
across workloads as shown. Besides training frequency, an-
other parameter in training is the number of training samples.
Because GL-Cache learns high-level access patterns, which
we conjecture is easier to learn than per-object behavior, GL-
Cache does not require a large amount of training data. While
we cannot prove that 8000 training samples are sufficient for
all workloads under all scenarios, we find that it is sufficient
for the diverse traces in our evaluation.

The sensitivity analysis shows that GL-Cache is relatively
robust to parameter changes. The parameters of GL-Cache-E
and GL-Cache-T were chosen based on evaluations of 10
random traces. Our results show that these two sets of pa-
rameters work well across the diverse traces in the evaluation.
However, like in any other system, a general set of parame-
ters provides reasonable performance but does not guarantee
the best performance. Per-workload fine-tuning can poten-
tially provide larger benefits. GL-Cache provides the oppor-
tunity for users to explore the trade-off between efficiency
and throughput. Fig. 13 shows the throughput and hit ratio
of GL-Cache compared to baselines (we do not plot multiple
close-by points of GL-Cache for clarity). In both prototype
and micro-implementation evaluations, GL-Cache achieves
higher throughput than systems with a similar hit ratio or a
higher hit ratio than systems with a similar throughput. De-
ployments with less computation power can use GL-Cache in
a high-throughput mode with a slightly lower hit ratio. And
deployments that are less sensitive to computation may use
GL-Cache to achieve a higher hit ratio.

Our evaluation so far used a warmup time of three days to
make sure the cache is warmed up for any trace under any
size. We have also evaluated with a one-day warmup time and
presented the results in Fig. 14. We observe that although the
absolute values exhibit some differences, the overall trends
on hit ratio increase are similar when compared to using a
three-day warmup time (Fig. 7). In addition to the hit ratio

126 21st USENIX Conference on File and Storage Technologies USENIX Association

LRU
Cacheus LHD LRB

GL-Cache-E

GL-Cache-T
0.0

0.2

0.4

0.6

0.8

1.0

1.2

Hi
t r

at
io

 in
cr

ea
se

 o
ve

r F
IF

O

(a) Small cache size

LRU
Cacheus LHD LRB

GL-Cache-E

GL-Cache-T
0.0

0.2

0.4

0.6

0.8

Hi
t r

at
io

 in
cr

ea
se

 o
ve

r F
IF

O

(b) Large cache size

Fig. 14: Using one-day warmup, evaluated on CloudPhysics traces.

results, throughput results using a one-day warmup are also
similar to that of a three-day warmup. Similarly, evaluations
on the MSR and Wikimedia traces also exhibit little difference
between using one-day and three-day warmup times.

5 Related work
The study of cache designs has a long history with the ma-

jority of works focusing on improving cache efficiency. With
increasing complexity in cache management, many recent
works have also improved the throughput and scalability.
Better eviction algorithms. Most works improving cache
efficiency focus on cache eviction algorithms, especially how
to define and use recency, frequency, and size to make better
eviction decisions. For example, ARC [69] uses two LRU
lists to balance between recency and frequency; CAR [6],
LIRS [43, 44, 57, 108], Clock-pro [42], 2Q [85], SLRU [41],
LRU-K [76] use a different metric to measure recency; vari-
ants of LFU [4, 48], LRFU [56], tinyLFU [26–28] and hy-
perbolic [15] use a combination of frequency and recency to
make evictions; various greedy-dual algorithms [17,20,45,59]
use two metrics (e.g., frequency and size) to choose eviction
candidates. In addition, several learned caches have been
designed in the past few years, as discussed in detail in §2.2.
Compared to existing learned caches, GL-Cache employs
group-level learning, which amortizes overheads and accu-
mulates stronger learning signals to make better eviction de-
cisions. Moreover, existing learning approaches to caching
cannot be directly applied to group-level learning due to chal-
lenges such as comparing object groups’ usefulness.
Improve cache throughput. Most algorithms that improve
efficiency trade throughput for higher efficiency. With in-
creasing complexity in cache systems, throughput and scal-
ability become critical. MICA [62] uses a holistic design
with a lossy hash table and partitioned log-structured DRAM
storage to achieve high throughput and scalability; Seg-
cache [105] uses an approximate-TTL-indexed segment-chain
with batched eviction to achieve high throughput and scal-
ability; MemC3 [30] uses a cuckoo hash table and Clock
eviction to improve scalability; Cachelib [9] reduces LRU
promotion frequency to improve scalability. These systems
often use weaker eviction algorithms such as FIFO, Clock, or
weak LRU. Compared to these works, GL-Cache improves
efficiency without sacrificing throughput. Specifically, GL-
Cache and Segcache share some design aspects such as object
grouping. However, Segcache primarily innovates on the de-

sign of storage layout for key-value caches, and it uses FIFO
for eviction. Instead, GL-Cache focuses on using learning for
evictions, which is the key to GL-Cache’s efficiency gains.
Use of machine learning to improve system efficiency. Ma-
chine learning has seen increasing use to improve system
efficiency. For example, Google uses machine learning to
improve the efficiency of data center operations [33]. Mi-
crosoft uses machine learning to improve database query
optimizer [46]. Prior works have designed learned com-
ponents to replace various parts of a system, such as in-
dex [23, 50, 54, 55, 74, 97] and query optimizer [66, 67] in
databases, straggler mitigation in inference systems [52, 53],
and FTL for SSD [89]. Moreover, many other works look into
automatic database tuning using machine learning [60,91]. In
caching, in addition to the three categories of learned cache
evictions that we have discussed in §2, recent works have
also looked into using sub-sampling to reduce learned cache’s
time horizon [95], using machine learning to predict memory
access [37], designing cache admission [35, 51], designing
cache prefetching [61, 61, 88, 102] predicting hot records in
LSM-Tree storage [106], using deep recurrent neural network
models for content caching [72], using Markov cache model
for size-aware cache admission policy [13]. Compared to
these works, GL-Cache is the first system to perform learning
on a group of entities and navigates efficiency-throughput
trade-off using coarse-grained learning granularity.

6 Conclusion
We propose a new approach for using machine learning to

improve cache efficiency: group-level learning. Group-level
learning predicts and evicts the least useful object groups.
Group-level learning leverages multiple object-group features
to adapt to workload and cache size, accumulates stronger
signals for learning, and amortizes learning overheads over
objects. As a result, it makes better eviction decisions with
a tiny overhead. We build GL-Cache in a production cache
to demonstrate group-level learning and evaluate it on 118
production block I/O and CDN traces. GL-Cache achieves
a significantly higher throughput as compared to all other
learned caches while retaining a higher hit ratio. Thus, GL-
Cache paves the way for the adoption of learned caches in
production systems.

Acknowledgments
We thank the anonymous reviewers for their valuable feed-

back. In addition, our shepherd Carl Waldspurger has given
very valuable feedback that improved the writing of this pa-
per. This work was supported in part by a Facebook Ph.D.
fellowship, and in part by NSF grants CNS 1901410 and CNS
1956271. The processing and evaluations were performed on
Cloudlab [25] and ChameleonCloud [49].

Availability
We open-source our implementation at https://github.

com/Thesys-lab/fast23-glcache.

USENIX Association 21st USENIX Conference on File and Storage Technologies 127

https://github.com/Thesys-lab/fast23-glcache
https://github.com/Thesys-lab/fast23-glcache

References
[1] Xgboost. https://github.com/dmlc/xgboost.

Accessed: 2022-09-06.

[2] Ismail Ari, Ahmed Amer, Robert B Gramacy, Ethan L
Miller, Scott A Brandt, and Darrell DE Long. Acme:
Adaptive caching using multiple experts. In WDAS,
volume 2, pages 143–158, 2002.

[3] Jose A Arjona-Medina, Michael Gillhofer, Michael
Widrich, Thomas Unterthiner, Johannes Brandstetter,
and Sepp Hochreiter. Rudder: Return decomposition
for delayed rewards. Advances in Neural Information
Processing Systems, 32, 2019.

[4] Martin Arlitt, Rich Friedrich, and Tai Jin. Performance
evaluation of web proxy cache replacement policies. In
International Conference on Modelling Techniques and
Tools for Computer Performance Evaluation, pages
193–206. Springer, 1998.

[5] Berk Atikoglu, Yuehai Xu, Eitan Frachtenberg, Song
Jiang, and Mike Paleczny. Workload analysis of a
large-scale key-value store. In Proceedings of the 12th
ACM SIGMETRICS/PERFORMANCE joint interna-
tional conference on Measurement and Modeling of
Computer Systems, pages 53–64, 2012.

[6] Sorav Bansal and Dharmendra S. Modha. CAR: Clock
with adaptive replacement. In 3rd USENIX Confer-
ence on File and Storage Technologies (FAST 04), San
Francisco, CA, March 2004. USENIX Association.

[7] Nathan Beckmann, Haoxian Chen, and Asaf Cidon.
Lhd : Improving cache hit rate by maximizing hit
density. In 15th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 18), pages
389–403, 2018.

[8] Laszlo A. Belady. A study of replacement algorithms
for a virtual-storage computer. IBM Systems journal,
5(2):78–101, 1966.

[9] Benjamin Berg, Daniel S Berger, Sara McAllister,
Isaac Grosof, Sathya Gunasekar, Jimmy Lu, Michael
Uhlar, Jim Carrig, Nathan Beckmann, Mor Harchol-
Balter, et al. The cachelib caching engine: Design and
experiences at scale. In 14th USENIX Symposium on
Operating Systems Design and Implementation (OSDI
20), pages 753–768, 2020.

[10] Daniel S Berger. Towards lightweight and robust
machine learning for cdn caching. In Proceedings of
the 17th ACM Workshop on Hot Topics in Networks,
pages 134–140, 2018.

[11] Daniel S Berger, Nathan Beckmann, and Mor Harchol-
Balter. Practical bounds on optimal caching with
variable object sizes. Proceedings of the ACM on
Measurement and Analysis of Computing Systems, 2:1–
38, 2018.

[12] Daniel S. Berger, Sebastian Henningsen, Florin Ciucu,
and Jens B. Schmitt. Maximizing cache hit ratios by
variance reduction. SIGMETRICS Perform. Eval. Rev.,
43:57–59, sep 2015.

[13] Daniel S Berger, Ramesh K Sitaraman, and Mor
Harchol-Balter. Adaptsize: Orchestrating the hot ob-
ject memory cache in a content delivery network. In
14th USENIX Symposium on Networked Systems De-
sign and Implementation (NSDI 17), pages 483–498,
2017.

[14] Adit Bhardwaj and Vaishnav Janardhan. Pecc:
Prediction-error correcting cache. In Workshop on
ML for Systems at NeurIPS, volume 32, 2018.

[15] Aaron Blankstein, Siddhartha Sen, and Michael J
Freedman. Hyperbolic caching: Flexible caching for
web applications. In 2017 USENIX Annual Technical
Conference (USENIX ATC 17), pages 499–511, 2017.

[16] Lee Breslau, Pei Cao, Li Fan, Graham Phillips, and
Scott Shenker. Web caching and zipf-like distributions:
Evidence and implications. In IEEE INFOCOM’99.
Conference on Computer Communications. Proceed-
ings. Eighteenth Annual Joint Conference of the IEEE
Computer and Communications Societies. The Future
is Now (Cat. No. 99CH36320), volume 1, pages 126–
134. IEEE, 1999.

[17] Pei Cao and Sandy Irani. Cost-aware www proxy
caching algorithms. In Proceedings of the USENIX
Symposium on Internet Technologies and Systems on
USENIX Symposium on Internet Technologies and Sys-
tems, USITS’97, page 18, USA, 1997. USENIX Asso-
ciation.

[18] Zhichao Cao, Siying Dong, Sagar Vemuri, and
David HC Du. Characterizing, modeling, and bench-
marking rocksdb key-value workloads at facebook. In
18th USENIX Conference on File and Storage Tech-
nologies (FAST 20), pages 209–223, 2020.

[19] Zheng Chang, Lei Lei, Zhenyu Zhou, Shiwen Mao,
and Tapani Ristaniemi. Learn to cache: Machine
learning for network edge caching in the big data era.
IEEE Wireless Communications, 25(3):28–35, 2018.

[20] Ludmila Cherkasova. Improving WWW proxies perfor-
mance with greedy-dual-size-frequency caching policy.
Hewlett-Packard Laboratories, 1998.

128 21st USENIX Conference on File and Storage Technologies USENIX Association

https://github.com/dmlc/xgboost

[21] Asaf Cidon, Assaf Eisenman, Mohammad Alizadeh,
and Sachin Katti. Dynacache: Dynamic cloud caching.
In 7th USENIX Workshop on Hot Topics in Cloud Com-
puting (HotCloud 15), 2015.

[22] Asaf Cidon, Assaf Eisenman, Mohammad Alizadeh,
and Sachin Katti. Cliffhanger: Scaling performance
cliffs in web memory caches. In 13th USENIX Sympo-
sium on Networked Systems Design and Implementa-
tion (NSDI 16), pages 379–392, 2016.

[23] Jialin Ding, Umar Farooq Minhas, Jia Yu, Chi Wang,
Jaeyoung Do, Yinan Li, Hantian Zhang, Badrish Chan-
dramouli, Johannes Gehrke, Donald Kossmann, et al.
Alex: an updatable adaptive learned index. In Proceed-
ings of the 2020 ACM SIGMOD International Confer-
ence on Management of Data, pages 969–984, 2020.

[24] Pedro Domingos. A few useful things to know about
machine learning. Communications of the ACM,
55(10):78–87, 2012.

[25] Dmitry Duplyakin, Robert Ricci, Aleksander Mar-
icq, Gary Wong, Jonathon Duerig, Eric Eide, Leigh
Stoller, Mike Hibler, David Johnson, Kirk Webb,
Aditya Akella, Kuangching Wang, Glenn Ricart, Larry
Landweber, Chip Elliott, Michael Zink, Emmanuel
Cecchet, Snigdhaswin Kar, and Prabodh Mishra. The
design and operation of CloudLab. In Proceedings
of the USENIX Annual Technical Conference (ATC),
pages 1–14, July 2019.

[26] Gil Einziger, Ohad Eytan, Roy Friedman, and Ben
Manes. Adaptive software cache management. In
Proceedings of the 19th International Middleware Con-
ference, pages 94–106, 2018.

[27] Gil Einziger, Ohad Eytan, Roy Friedman, and Ben
Manes. Adaptive software cache management. In
Proceedings of the 19th International Middleware Con-
ference, page 94–106. ACM, Nov 2018.

[28] Gil Einziger, Roy Friedman, and Ben Manes. Tinylfu:
A highly efficient cache admission policy. ACM Trans-
actions on Storage (ToS), 13(4):1–31, 2017.

[29] Assaf Eisenman, Asaf Cidon, Evgenya Pergament,
Or Haimovich, Ryan Stutsman, Mohammad Alizadeh,
and Sachin Katti. Flashield: a hybrid key-value cache
that controls flash write amplification. In 16th USENIX
Symposium on Networked Systems Design and Imple-
mentation (NSDI 19), pages 65–78, 2019.

[30] Bin Fan, David G Andersen, and Michael Kamin-
sky. Memc3: Compact and concurrent memcache with
dumber caching and smarter hashing. In Presented
as part of the 10th USENIX Symposium on Networked

Systems Design and Implementation (NSDI 13), pages
371–384, 2013.

[31] Qilin Fan, Jian Li, Xiuhua Li, Qiang He, Shu Fu, and
Sen Wang. Pa-cache: Learning-based popularity-
aware content caching in edge networks. arXiv
preprint arXiv:2002.08805, 2020.

[32] Vladyslav Fedchenko, Giovanni Neglia, and Bruno
Ribeiro. Feedforward neural networks for caching: N
enough or too much? SIGMETRICS Perform. Eval.
Rev., 46:139–142, jan 2019.

[33] Jim Gao. Machine learning applications for
data center optimization. https://static.
googleusercontent.com/media/research.
google.com/en//pubs/archive/42542.pdf, 2014.
Accessed: 2022-04-06.

[34] Robert B. Gramacy, Manfred K. Warmuth, Scott A.
Brandt, and Ismail Ari. Adaptive caching by refetching.
In Proceedings of the 15th International Conference
on Neural Information Processing Systems, NIPS’02,
page 1489–1496, Cambridge, MA, USA, 2002. MIT
Press.

[35] Yu Guan, Xinggong Zhang, and Zongming Guo. Caca:
Learning-based content-aware cache admission for
video content in edge caching. In Proceedings of the
27th ACM International Conference on Multimedia,
pages 456–464, 2019.

[36] Beining Han, Zhizhou Ren, Zuofan Wu, Yuan Zhou,
and Jian Peng. Off-policy reinforcement learning with
delayed rewards, 2021.

[37] Milad Hashemi, Kevin Swersky, Jamie Smith, Grant
Ayers, Heiner Litz, Jichuan Chang, Christos Kozyrakis,
and Parthasarathy Ranganathan. Learning memory ac-
cess patterns. In International Conference on Machine
Learning, pages 1919–1928. PMLR, 2018.

[38] Jeff Heaton. An empirical analysis of feature engineer-
ing for predictive modeling. In SoutheastCon 2016,
pages 1–6. IEEE, 2016.

[39] Xiameng Hu, Xiaolin Wang, Yechen Li, Lan Zhou,
Yingwei Luo, Chen Ding, Song Jiang, and Zhenlin
Wang. Lama: Optimized locality-aware memory allo-
cation for key-value cache. In 2015 USENIX Annual
Technical Conference (USENIX ATC 15), pages 57–69,
2015.

[40] Lexiang Huang, Matthew Magnusson, Abishek Ban-
galore Muralikrishna, Salman Estyak, Rebecca Isaacs,
Abutalib Aghayev, Timothy Zhu, and Aleksey Chara-
pko. Metastable failures in the wild. In 16th USENIX

USENIX Association 21st USENIX Conference on File and Storage Technologies 129

https://static.googleusercontent.com/media/research.google.com/en//pubs/archive/42542.pdf
https://static.googleusercontent.com/media/research.google.com/en//pubs/archive/42542.pdf
https://static.googleusercontent.com/media/research.google.com/en//pubs/archive/42542.pdf

Symposium on Operating Systems Design and Imple-
mentation (OSDI 22), pages 73–90, Carlsbad, CA, July
2022. USENIX Association.

[41] Qi Huang, Ken Birman, Robbert Van Renesse, Wyatt
Lloyd, Sanjeev Kumar, and Harry C Li. An analysis
of facebook photo caching. In Proceedings of the
Twenty-Fourth ACM Symposium on Operating Systems
Principles, pages 167–181, 2013.

[42] Song Jiang, Feng Chen, and Xiaodong Zhang. Clock-
pro: An effective improvement of the clock replace-
ment. In USENIX Annual Technical Conference, Gen-
eral Track, pages 323–336, 2005.

[43] Song Jiang and Xiaodong Zhang. Lirs: An efficient
low inter-reference recency set replacement policy to
improve buffer cache performance. ACM SIGMET-
RICS Performance Evaluation Review, 30(1):31–42,
2002.

[44] Song Jiang and Xiaodong Zhang. Making lru friendly
to weak locality workloads: A novel replacement al-
gorithm to improve buffer cache performance. IEEE
Transactions on Computers, 54(8):939–952, 2005.

[45] Shudong Jin and A. Bestavros. Popularity-aware
greedy dual-size web proxy caching algorithms. In
Proceedings 20th IEEE International Conference on
Distributed Computing Systems, pages 254–261, 2000.

[46] Alekh Jindal, Shi Qiao, Rathijit Sen, and Hiren Patel.
Microlearner: A fine-grained learning optimizer for
big data workloads at microsoft. In 2021 IEEE 37th
International Conference on Data Engineering (ICDE),
pages 2423–2434. IEEE, 2021.

[47] Leslie Pack Kaelbling, Michael L Littman, and An-
drew W Moore. Reinforcement learning: A survey.
Journal of artificial intelligence research, 4:237–285,
1996.

[48] George Karakostas and D Serpanos. Practical lfu
implementation for web caching. Technical Report
TR-622–00, 2000.

[49] Kate Keahey, Jason Anderson, Zhuo Zhen, Pierre
Riteau, Paul Ruth, Dan Stanzione, Mert Cevik, Ja-
cob Colleran, Haryadi S. Gunawi, Cody Hammock,
Joe Mambretti, Alexander Barnes, François Halbach,
Alex Rocha, and Joe Stubbs. Lessons learned from
the chameleon testbed. In Proceedings of the 2020
USENIX Annual Technical Conference (USENIX ATC
’20). USENIX Association, July 2020.

[50] Andreas Kipf, Ryan Marcus, Alexander van Renen, Mi-
hail Stoian, Alfons Kemper, Tim Kraska, and Thomas
Neumann. Sosd: A benchmark for learned indexes.
arXiv preprint arXiv:1911.13014, 2019.

[51] Vadim Kirilin, Aditya Sundarrajan, Sergey Gorinsky,
and Ramesh K Sitaraman. Rl-cache: Learning-based
cache admission for content delivery. IEEE Journal on
Selected Areas in Communications, 38(10):2372–2385,
2020.

[52] Jack Kosaian, K. V. Rashmi, and Shivaram Venkatara-
man. Parity Models: Erasure-Coded Resilience for
Prediction Serving Systems. ACM Symposium on
Operating Systems Principles (SOSP), 2019.

[53] Jack Kosaian, KV Rashmi, and Shivaram Venkatara-
man. Learning-based coded computation. IEEE
Journal on Selected Areas in Information Theory
(JSAIT special issue on deep learning: mathematical
foundations and applications to information science),
1(1):227–236, 2020.

[54] Tim Kraska, Mohammad Alizadeh, Alex Beutel, H Chi,
Ani Kristo, Guillaume Leclerc, Samuel Madden,
Hongzi Mao, and Vikram Nathan. Sagedb: A learned
database system. In CIDR, 2019.

[55] Tim Kraska, Alex Beutel, Ed H Chi, Jeffrey Dean,
and Neoklis Polyzotis. The case for learned index
structures. In Proceedings of the 2018 International
Conference on Management of Data, pages 489–504,
2018.

[56] Donghee Lee, Jongmoo Choi, Jong-Hun Kim, Sam H
Noh, Sang Lyul Min, Yookun Cho, and Chong Sang
Kim. Lrfu: A spectrum of policies that subsumes the
least recently used and least frequently used policies.
IEEE transactions on Computers, 50(12):1352–1361,
2001.

[57] Cong Li. Dlirs: Improving low inter-reference recency
set cache replacement policy with dynamics. In Pro-
ceedings of the 11th ACM International Systems and
Storage Conference, pages 59–64, 2018.

[58] Cong Li. CLOCK-pro+: improving CLOCK-pro
cache replacement with utility-driven adaptation. In
Proceedings of the 12th ACM International Conference
on Systems and Storage, pages 1–7, Haifa Israel, May
2019. ACM.

[59] Conglong Li and Alan L Cox. Gd-wheel: a cost-aware
replacement policy for key-value stores. In Proceed-
ings of the Tenth European Conference on Computer
Systems, pages 1–15, 2015.

[60] Guoliang Li, Xuanhe Zhou, Shifu Li, and Bo Gao.
Qtune: A query-aware database tuning system with
deep reinforcement learning. Proceedings of the VLDB
Endowment, 12(12):2118–2130, 2019.

130 21st USENIX Conference on File and Storage Technologies USENIX Association

[61] Zhenmin Li, Zhifeng Chen, Sudarshan M Srinivasan,
Yuanyuan Zhou, et al. C-miner: Mining block corre-
lations in storage systems. In FAST, volume 4, pages
173–186, 2004.

[62] Hyeontaek Lim, Dongsu Han, David G Andersen, and
Michael Kaminsky. Mica : A holistic approach to
fast in-memory key-value storage. In 11th USENIX
Symposium on Networked Systems Design and Imple-
mentation (NSDI 14), pages 429–444, 2014.

[63] Evan Liu, Milad Hashemi, Kevin Swersky,
Parthasarathy Ranganathan, and Junwhan Ahn.
An imitation learning approach for cache replacement.
In Proceedings of the 37th International Conference
on Machine Learning, page 6237–6247. PMLR, Nov
2020.

[64] Martin Maas, David G. Andersen, Michael Isard, Mo-
hammad Mahdi Javanmard, Kathryn S. McKinley, and
Colin Raffel. Learning-based memory allocation for
c++ server workloads. In 25th ACM International
Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS), 2020.

[65] Ayush Mangal, Jitesh Jain, Keerat Kaur Guliani, and
Omkar Bhalerao. Deap cache: Deep eviction ad-
mission and prefetching for cache. arXiv preprint
arXiv:2009.09206, 2020.

[66] Ryan Marcus, Parimarjan Negi, Hongzi Mao, Nesime
Tatbul, Mohammad Alizadeh, and Tim Kraska. Bao:
Learning to steer query optimizers. arXiv preprint
arXiv:2004.03814, 2020.

[67] Ryan Marcus, Parimarjan Negi, Hongzi Mao, Chi
Zhang, Mohammad Alizadeh, Tim Kraska, Olga Pa-
paemmanouil, and Nesime Tatbul. Neo: A learned
query optimizer. arXiv preprint arXiv:1904.03711,
2019.

[68] Sara McAllister, Benjamin Berg, Julian Tutuncu-
Macias, Juncheng Yang, Sathya Gunasekar, Jimmy Lu,
Daniel S Berger, Nathan Beckmann, and Gregory R
Ganger. Kangaroo: Caching billions of tiny objects
on flash. In Proceedings of the ACM SIGOPS 28th
Symposium on Operating Systems Principles, pages
243–262, 2021.

[69] Nimrod Megiddo and Dharmendra S Modha. Arc: A
self-tuning, low overhead replacement cache. In 2nd
USENIX Conference on File and Storage Technologies
(FAST 03), volume 3, pages 115–130, 2003.

[70] Sailesh Mukil, Prudhviraj Karumanchi, Tharanga
Gamaethige, and Shashi Madappa. Cache warm-
ing: Leveraging ebs for moving petabytes of data.

https://netflixtechblog.medium.com/cache-
warming-leveraging-ebs-for-moving-
petabytes-of-data-adcf7a4a78c3. Accessed:
2022-09-16.

[71] Arvind Narayanan, Saurabh Verma, Eman Ramadan,
Pariya Babaie, and Zhi-Li Zhang. Deepcache: A deep
learning based framework for content caching. In
Proceedings of the 2018 Workshop on Network Meets
AI & ML, NetAI’18, page 48–53, New York, NY, USA,
2018. Association for Computing Machinery.

[72] Arvind Narayanan, Saurabh Verma, Eman Ramadan,
Pariya Babaie, and Zhi-Li Zhang. Deepcache: A deep
learning based framework for content caching. In
Proceedings of the 2018 Workshop on Network Meets
AI & ML, pages 48–53, 2018.

[73] Dushyanth Narayanan, Austin Donnelly, and Antony
Rowstron. Write off-loading: Practical power manage-
ment for enterprise storage. ACM Trans. Storage, 4(3),
November 2008.

[74] Vikram Nathan, Jialin Ding, Mohammad Alizadeh,
and Tim Kraska. Learning multi-dimensional indexes.
In Proceedings of the 2020 ACM SIGMOD Interna-
tional Conference on Management of Data, pages 985–
1000, 2020.

[75] Rajesh Nishtala, Hans Fugal, Steven Grimm, Marc
Kwiatkowski, Herman Lee, Harry C Li, Ryan McElroy,
Mike Paleczny, Daniel Peek, Paul Saab, et al. Scaling
memcache at facebook. In Presented as part of the
10th USENIX Symposium on Networked Systems De-
sign and Implementation (NSDI 13), pages 385–398,
2013.

[76] Elizabeth J O’neil, Patrick E O’neil, and Gerhard
Weikum. The lru-k page replacement algorithm
for database disk buffering. Acm Sigmod Record,
22(2):297–306, 1993.

[77] John Ousterhout, Parag Agrawal, David Erickson,
Christos Kozyrakis, Jacob Leverich, David Mazières,
Subhasish Mitra, Aravind Narayanan, Guru Parulkar,
Mendel Rosenblum, et al. The case for ramclouds:
scalable high-performance storage entirely in dram.
ACM SIGOPS Operating Systems Review, 43(4):92–
105, 2010.

[78] John Ousterhout, Arjun Gopalan, Ashish Gupta,
Ankita Kejriwal, Collin Lee, Behnam Montazeri,
Diego Ongaro, Seo Jin Park, Henry Qin, Mendel
Rosenblum, et al. The ramcloud storage system. ACM
Transactions on Computer Systems (TOCS), 33(3):1–
55, 2015.

USENIX Association 21st USENIX Conference on File and Storage Technologies 131

https://netflixtechblog.medium.com/cache-warming-leveraging-ebs-for-moving-petabytes-of-data-adcf7a4a78c3
https://netflixtechblog.medium.com/cache-warming-leveraging-ebs-for-moving-petabytes-of-data-adcf7a4a78c3
https://netflixtechblog.medium.com/cache-warming-leveraging-ebs-for-moving-petabytes-of-data-adcf7a4a78c3

[79] Cheng Pan, Yingwei Luo, Xiaolin Wang, and Zhenlin
Wang. predis: Penalty and locality aware memory allo-
cation in redis. In Proceedings of the ACM Symposium
on Cloud Computing, pages 193–205, 2019.

[80] Sejin Park and Chanik Park. Frd: A filtering based
buffer cache algorithm that considers both frequency
and reuse distance. In Proc. of the 33rd IEEE Inter-
national Conference on Massive Storage Systems and
Technology (MSST), 2017.

[81] Pelikan. https://github.com/twitter/pelikan.
Accessed: 2022-09-06.

[82] Liana V Rodriguez, Farzana Yusuf, Steven Lyons,
Eysler Paz, Raju Rangaswami, Jason Liu, Ming Zhao,
and Giri Narasimhan. Learning cache replacement
with cacheus. In 19th USENIX Conference on File
and Storage Technologies (FAST 21), pages 341–354,
2021.

[83] Mendel Rosenblum and John K Ousterhout. The de-
sign and implementation of a log-structured file sys-
tem. ACM Transactions on Computer Systems (TOCS),
10(1):26–52, 1992.

[84] Amazon SageMaker. Xgboost algorithm.
https://docs.aws.amazon.com/sagemaker/
latest/dg/xgboost.html. Accessed: 2022-09-06.

[85] D Shasha and T Johnson. 2q: A low overhead high
performance buffer management replacement algoritm.
In Proc. 20th Int. Conf. Very Large Databases, pages
439–450, 1994.

[86] Wanxin Shi, Qing Li, Chao Wang, Gengbiao Shen,
Weichao Li, Yu Wu, and Yong Jiang. Leap: learning-
based smart edge with caching and prefetching for
adaptive video streaming. In Proceedings of the Inter-
national Symposium on Quality of Service, pages 1–10,
2019.

[87] Zhenyu Song, Daniel S. Berger, Kai Li, and Wyatt
Lloyd. Learning relaxed belady for content distribution
network caching. In 17th USENIX Symposium on
Networked Systems Design and Implementation (NSDI
20), pages 529–544, Santa Clara, CA, February 2020.
USENIX Association.

[88] Gokul Soundararajan, Madalin Mihailescu, and Cris-
tiana Amza. Context-aware prefetching at the storage
server. In 2008 USENIX Annual Technical Conference
(USENIX ATC 08), 2008.

[89] Jinghan Sun, Shaobo Li, Yunxin Sun, Chao Sun, Dejan
Vucinic, and Jian Huang. Leaftl: A learning-based
flash translation layer for solid-state drives. arXiv
preprint arXiv:2301.00072, 2022.

[90] Richard S Sutton. Introduction: The challenge of
reinforcement learning. In Reinforcement Learning,
pages 1–3. Springer, 1992.

[91] Dana Van Aken, Andrew Pavlo, Geoffrey J Gordon,
and Bohan Zhang. Automatic database management
system tuning through large-scale machine learning. In
Proceedings of the 2017 ACM international conference
on management of data, pages 1009–1024, 2017.

[92] Giuseppe Vietri, Liana V. Rodriguez, Wendy A. Mar-
tinez, Steven Lyons, Jason Liu, Raju Rangaswami,
Ming Zhao, and Giri Narasimhan. Driving cache
replacement with ml-based lecar. In 10th USENIX
Workshop on Hot Topics in Storage and File Systems
(HotStorage 18), Boston, MA, July 2018. USENIX
Association.

[93] Giuseppe Vietri, Liana V Rodriguez, Wendy A Mar-
tinez, Steven Lyons, Jason Liu, Raju Rangaswami,
Ming Zhao, and Giri Narasimhan. Driving cache
replacement with ml-based lecar. In 10th USENIX
Workshop on Hot Topics in Storage and File Systems
(HotStorage 18), 2018.

[94] Carl A. Waldspurger, Nohhyun Park, Alexander Garth-
waite, and Irfan Ahmad. Efficient MRC construction
with SHARDS. In 13th USENIX Conference on File
and Storage Technologies (FAST 15), pages 95–110,
Santa Clara, CA, February 2015. USENIX Associa-
tion.

[95] Haonan Wang, Hao He, Mohammad Alizadeh, and
Hongzi Mao. Learning caching policies with sub-
sampling. In NeurIPS Machine Learning for Systems
Workshop, 2019.

[96] Joseph Wang, Anne Holler, Mingshi Wang, and
Michael Mui. Productionizing distributed xgboost
to train deep tree models with large data sets at
uber. https://eng.uber.com/productionizing-
distributed-xgboost/. Accessed: 2022-04-06.

[97] Xingda Wei, Rong Chen, and Haibo Chen. Fast rdma-
based ordered key-value store using remote learned
cache. In 14th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 20), pages
117–135. USENIX Association, November 2020.

[98] Kan Wu, Zhihan Guo, Guanzhou Hu, Kaiwei Tu, Ram-
natthan Alagappan, Rathijit Sen, Kwanghyun Park,
Andrea C. Arpaci-Dusseau, and Remzi H. Arpaci-
Dusseau. The storage hierarchy is not a hierarchy:
Optimizing caching on modern storage devices with
orthus. In 19th USENIX Conference on File and Stor-
age Technologies (FAST 21), pages 307–323. USENIX
Association, February 2021.

132 21st USENIX Conference on File and Storage Technologies USENIX Association

https://github.com/twitter/pelikan
https://docs.aws.amazon.com/sagemaker/latest/dg/xgboost.html
https://docs.aws.amazon.com/sagemaker/latest/dg/xgboost.html
https://eng.uber.com/productionizing-distributed-xgboost/
https://eng.uber.com/productionizing-distributed-xgboost/

[99] Nan Wu and Pengcheng Li. Phoebe: Reuse-aware
online caching with reinforcement learning for emerg-
ing storage models. arXiv preprint arXiv:2011.07160,
2020.

[100] Gang Yan and Jian Li. Rl-bélády: A unified learning
framework for content caching. In Proceedings of the
28th ACM International Conference on Multimedia,
pages 1009–1017, 2020.

[101] Juncheng Yang. libcachesim. https://github.com/
1a1a11a/libCacheSim. Accessed: 2022-12-16.

[102] Juncheng Yang, Reza Karimi, Trausti Sæmundsson,
Avani Wildani, and Ymir Vigfusson. Mithril: mining
sporadic associations for cache prefetching. In Pro-
ceedings of the 2017 Symposium on Cloud Computing,
pages 66–79, 2017.

[103] Juncheng Yang, Anirudh Sabnis, Daniel S. Berger,
K. V. Rashmi, and Ramesh K. Sitaraman. C2DN:
How to harness erasure codes at the edge for efficient
content delivery. In 19th USENIX Symposium on Net-
worked Systems Design and Implementation (NSDI 22),
pages 1159–1177, Renton, WA, April 2022. USENIX
Association.

[104] Juncheng Yang, Yao Yue, and K. V. Rashmi. A large
scale analysis of hundreds of in-memory cache clusters
at twitter. In 14th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 20), pages
191–208. USENIX Association, November 2020.

[105] Juncheng Yang, Yao Yue, and Rashmi Vinayak. Seg-
cache: a memory-efficient and scalable in-memory
key-value cache for small objects. In 18th USENIX
Symposium on Networked Systems Design and Imple-
mentation (NSDI 21). USENIX Association, April
2021.

[106] Lei Yang, Hong Wu, Tieying Zhang, Xuntao Cheng,
Feifei Li, Lei Zou, Yujie Wang, Rongyao Chen, Jiany-
ing Wang, and Gui Huang. Leaper: a learned
prefetcher for cache invalidation in lsm-tree based stor-
age engines. Proceedings of the VLDB Endowment,
13(12):1976–1989, 2020.

[107] Yuchao Zhang, Pengmiao Li, Zhili Zhang, Bo Bai,
Gong Zhang, Wendong Wang, Bo Lian, and Ke Xu.
Autosight: Distributed edge caching in short video
network. IEEE Network, 34:194–199, May 2020.

[108] Chen Zhong, Xingsheng Zhao, and Song Jiang. Lirs2:
an improved lirs replacement algorithm. In SYS-
TOR’21: Proceedings of the 14th ACM International
Conference on Systems and Storage, 2021.

[109] Yuanyuan Zhou, Zhifeng Chen, and Kai Li. Second-
level buffer cache management. IEEE Transactions on
parallel and distributed systems, 15(6):505–519, 2004.

[110] Yuanyuan Zhou, James Philbin, and Kai Li. The multi-
queue replacement algorithm for second level buffer
caches. In USENIX Annual Technical Conference,
General Track, pages 91–104, 2001.

USENIX Association 21st USENIX Conference on File and Storage Technologies 133

https://github.com/1a1a11a/libCacheSim
https://github.com/1a1a11a/libCacheSim

SHADE: Enable Fundamental Cacheability for Distributed Deep Learning Training

Redwan Ibne Seraj Khan
Virginia Tech

Ahmad Hossein Yazdani
Virginia Tech

Yuqi Fu
University of Virginia

Arnab K. Paul
BITS Pilani, Goa

Bo Ji
Virginia Tech

Xun Jian
Virginia Tech

Yue Cheng
University of Virginia

Ali R. Butt
Virginia Tech

Abstract
Deep learning training (DLT) applications exhibit unique

I/O workload behaviors that pose new challenges for storage
system design. DLT is I/O intensive since data samples need
to be fetched continuously from a remote storage. Accelera-
tors such as GPUs have been extensively used to support these
applications. As accelerators become more powerful and more
data-hungry, the I/O performance lags behind. This creates a
crucial performance bottleneck, especially in distributed DLT.
At the same time, the exponentially growing dataset sizes
make it impossible to store these datasets entirely in memory.
While today’s DLT frameworks typically use a random sam-
pling policy that treat all samples uniformly equally, recent
findings indicate that not all samples are equally important
and different data samples contribute differently towards im-
proving the accuracy of a model. This observation creates an
opportunity for DLT I/O optimizations by exploiting the data
locality enabled by importance sampling.

To this end, we design and implement SHADE, a new DLT-
aware caching system that detects fine-grained importance
variations at per-sample level and leverages the variance to
make informed caching decisions for a distributed DLT job.
SHADE adopts a novel, rank-based approach, which captures
the relative importance of data samples across different mini-
batches. SHADE then dynamically updates the importance
scores of all samples during training. With these techniques,
SHADE manages to significantly improve the cache hit ratio
of the DLT job, and thus, improves the job’s training perfor-
mance. Evaluation with representative computer vision (CV)
models shows that SHADE, with a small cache, improves the
cache hit ratio by up to 4.5× compared to the LRU caching
policy.

1 Introduction

Deep learning (DL) approaches are increasingly being em-
ployed to solve crucial complex problems. The use of DL
has become common in disparate domains such as health
sciences [28, 29, 43, 64], environmental sciences [41, 47],

bio-technical systems [48], high-energy scientific experi-
ments [16], finance [25,33,35,39], smart cities [12,19], indus-
trial production [13, 79], autonomous vehicles, and IoT sys-
tems [45, 58, 72]. Moreover, DL has given rise to a huge mar-
ket that is expected to reach 12.12 billion dollars by 2025 [4].
To meet the demands of unprecedented scale and performance,
DL researchers and practitioners are developing distributed
DL, which employs distributed computing and storage re-
sources to support DL. While promising, the approach poses
numerous challenges in handling massive workloads while
keeping the usage cost in check.

DLT is extremely compute-intensive and data-
intensive [24], and the resource demands vary at different
phases of the process [22, 42]. A key challenge is efficiently
matching the DL application needs with available system
resources. A common practice is to scale up/out a DL
training job using multiple compute accelerators such as
GPUs, FPGAs, or custom ASICs; that is, by using data
parallelism [71] with each accelerator, e.g., GPU, holding a
replica of the model and processing a subset of the training
data in parallel.

A large body of research has focused on optimizing the
efficiency of computing [53, 57], scheduling [37, 82], and
data communication [74, 77, 81] for DL jobs. This is be-
cause data-parallel DL training is both compute-intensive—
typically requiring multiple GPUs to train in parallel—
and communication-intensive [17, 59, 75]—newly calculated
model gradients are transferred or broadcast to all the involved
GPUs for iterative model updates. However, as state-of-the-art
research [14, 56] demonstrates, the efficiency of data storage
and retrieval can also significantly impact the end-to-end per-
formance of DL training.

To better understand the impact of data storage configu-
ration on distributed DL training efficiency, we perform an
experiment to study the performance difference when dis-
tributed DL jobs are run using a local or a remote storage
medium. Figure 1 shows that remote storage mediums can
significantly impact the training time (∼ 2.5×) compared to
faster storage mediums, i.e., RAM, even though all the rest

USENIX Association 21st USENIX Conference on File and Storage Technologies 135

RAM Remote SSD
Storage Medium

0

10

20

30

40
Tr

ai
ni

ng
 T

im
e

(m
in

)

0

1

2

3

4

T
hroughput (Im

age/m
sec)

total time throughputtotal time throughput

Figure 1: Training throughput and time comparison of a sin-
gle job using 2 nodes and 8 GPUs with ResNet-18. Remote
storage comprises of SSDs on a BeeGFS server.

of the training configurations were kept the same. This re-
sult is in line with recent studies [20, 70], which show that
I/O can take up from 85-90% of the total training time. As
high-performing accelerators can consume the training data
samples faster, efficient I/O can significantly reduce the train-
ing time.

However, it remains challenging to improve the I/O effi-
ciency for distributed DLT as the I/O workloads of a DLT job
exhibit unique patterns: (1) full-object, sequential, read-only
accesses at per-object level; (2) dominant, small, random I/Os
spread across the whole training sample dataset [88]; and
(3) highly concurrent I/Os [70]. Today’s high-performance
and distributed storage systems, such as parallel file systems
(PFS) [21, 40], network file systems (NFS) [63], and cloud
object stores [2, 5] are inefficient at supporting dsitributed
DL applications. This is especially true given the excessive
metadata overhead for small-I/O-intensive accesses [85].

For efficient I/O, faster storage mediums like RAM are
needed, but compared to increasingly large training datasets
that can range from terabytes [36, 67] to petabytes [10], these
resources are often too small, even on large supercomputers
like Piz Daint (64GB RAM/node) [3] and Fugaku (32GB
RAM/node) [8]. Moreover, because of the high cost of GPUs,
DL jobs are mainly run by renting GPU Spot VMs [1, 9, 15,
49, 56, 78] that are 6-8× cheaper than dedicated VMs. As
these VMs are preemptive, meaning these can be terminated
at any time depending on available resources, DL training has
to be resumed from a checkpoint on a different VM leading to
the loss of local SSD state. As a result, instead of local SSDs,
large datasets are put in persistent cloud storage, and training
is conducted on VMs that access the cloud storage remotely.

Worse, conventional wisdom holds that the I/O workload
of a DL training job is not cache-friendly due to the aforemen-
tioned I/O randomness and lack of data locality [85]. This
property renders existing caching policies (such as LRU and
LFU) ineffective, as there is no recency or frequency pattern
to exploit. Recent work such as Mercury [84], CoorDL [65],
Quiver [56], and Hoard [69] try to solve this I/O problem
by employing caching techniques. Unfortunately, none of
them provides fundamental solutions that enable the ability
to cache (i.e., cacheability) a DLT job’s working set. The

main reason is that these works consider that each sample
will only be accessed once in every epoch (one iteration over
the dataset). However, as has been shown by prior work [50],
some samples are more important than others in DL training.
Hence, if we can design effective mechanisms and policies
to exploit this importance variance, we can fundamentally
improve the cacheability for DL training.

In this paper, we show that we can deliver better cacheabil-
ity by designing a new dataset sampling algorithm inspired
by importance-sampling [61] and an effective caching pol-
icy atop that. DL models are trained on a dataset in batches
(multiple equal partitions of the entire dataset). Our sampling
algorithm combines the intra-batch importance of individual
data samples with inter-batch importance to detect the most
important samples for placing in the in-memory pooled cache.
We develop a novel technique of rank-based importance that
ranks the training samples within a batch based on their con-
tributions to increasing the overall accuracy of the model.
Rank-based importance further helps increase the probability
of identifying (predicting) the most important samples in later
epochs. Using this technique, we further design a priority-
based sampling strategy that ensures multiple accesses to the
important samples within an epoch to train more on hard-
to-learn samples to increase the accuracy improvement rate.
As a result, our caching solution keeps the most important
samples in the cache and avoids random evictions, which in
turn improves the cache hit ratio and training throughput.

Specifically, this paper makes the following contributions.
• We introduce a novel, rank-based importance calculation

approach to precisely identify the relative importance of
data samples for DLT jobs.

• We design a priority-based sampling policy to exploit the
data locality of samples.

• We present the design and implementation of SHADE, a new
DLT-aware caching system that incorporates rank-based
importance scores and the priority-based sampling policy
to improve the I/O efficiency for DLT jobs.

• We incorporate and evaluate SHADE in the widely-used
DLT framework PyTorch and compare SHADE against a
series of baseline and advanced caching and sampling meth-
ods. Our results show that SHADE: improves the read hit
ratio by up to 4.5× given the same cache size, increases the
training throughput by up to 2.7×, and reaches accuracy
convergence by up to 3.3× faster compared to a baseline
LRU caching policy.

SHADE is open source and publicly available at:
https://github.com/R-I-S-Khan/SHADE.

2 Background

2.1 Distributed Deep Learning Training
There are mainly three types of distributed DL training
techniques: data-parallel training [71], model-parallel train-

136 21st USENIX Conference on File and Storage Technologies USENIX Association

https://github.com/R-I-S-Khan/SHADE

ing [30], and pipeline parallelism [44] that combines data-
parallel and model-parallel training. While this paper focuses
mainly on data-parallel training based on Stochastic Gradient
Descent (SGD), our approach is applicable to other training
methods as well.

A Deep Neural Network (DNN) model consists of multi-
ple layers of computation units whose output is the input for
subsequent units. DNN model training consists of a forward
propagation method, which sequentially moves information
related to the input data through all model layers and generates
a prediction. For example, in an image recognition applica-
tion, image pixels information is moved through the layers
for predicting image contents. To generate the prediction, DL
defines a cost/loss function with respect to the forward propa-
gation output and ground truth labels. The DL process aims
to minimize the cost function through a process of increasing
or decreasing the weights of the outputs of the intermedi-
ary layers of the model so that it can improve its prediction.
This step is known as backward propagation, which adjusts
the parameters of the DL model starting from the outermost
layer back up to the input layer through a technique known as
gradient descent optimization. Gradient descent adjusts the
parameters in the opposite direction of the gradient. SGD is
a stochastic approximation of gradient descent optimization;
instead of calculating the gradient from the entire data set,
SGD randomly selects a subset of training data samples from
the entire dataset to reduce computation cost.

In a typical data-parallel, SGD-based training, the whole
training dataset is partitioned and processed in parallel by mul-
tiple GPU devices. Each GPU has a replica of the same DNN
model, which is iteratively synchronized with other GPUs
using centralized communication techniques, e.g., parameter
server [59]) or decentralized communication techniques, e.g.,
all-reduce [17].

2.2 I/O Characteristics of Data-Parallel DL
Training

DL training applications feature unique characteristics that
differentiate them from conventional data-intensive applica-
tions such as big data analytics [31, 83] and web applica-
tions [6, 7]. A DL training job typically runs multiple epochs,
with each epoch consuming the entire training dataset once
in a random permutation order. Each epoch is further divided
into multiple batches. At the beginning of processing a batch,
each GPU process loads a randomly-sampled bulk (i.e., a mini-
batch) of training data whose size is configurable. These be-
haviors lead to highly-concurrent, read-only, repetitive, and to-
tally random I/O accesses. Therefore, a common belief is that
such I/O patterns are not cache-friendly to traditional caching
policies that exploit recency and/or frequency-based data lo-
cality, such as the widely used LRU, LFU, and ARC [62].

2.3 DL Training with Importance Sampling

Traditionally, SGD-based DL training is oblivious to the “im-
portance” of training samples and simply applies random
sampling or shuffling to generate a random permutation order
at the end of each training epoch, thereby treating all training
samples equally. Recently, researchers found that in SGD-
based DL training, a specific set of training samples tend to
generate little-to-no impact on the model quality and, there-
fore, can be ignored [50, 61]. This process of finding the set
of training samples that are more important than others, i.e.,
contribute the greatest towards the loss function, is known as
importance sampling. That is, a few samples would lead to
a higher loss between hidden layer output and target label in
backward propagation after a few epochs.

Therefore, by prioritizing training using samples with rela-
tively higher importance, i.e., the ability to contribute towards
building model accuracy, a DL training job can achieve im-
provement in both training time and test errors [46, 50].

In SGD, gradient g(x) is estimated by sampling from a uni-
form distribution p where x is a data sample from a minibatch.
Importance sampling estimates g(x) using a new data distri-
bution q (such that q(x)> 0 whenever p(x)> 0) to speed up
the process. That is,

Ep(x)[g(x)] = Eq(x)[
p(x)
q(x)

g(x)] (1)

It has been proved [11] that the variance of gradient is mini-
mized when Eq. 2 is maintained, i.e., to ensure gradient vari-
ance reduction, optimal data distribution q∗(x) should be pro-
portional to sample’s gradient norm |g(x)|.

q∗(x)∝ p(x)|g(x)| (2)

In practice, the feed-forward loss is often used to measure the
importance of each data sample as an alternative of gradient.

3 Motivation

3.1 Exploiting Importance Sampling

As discussed earlier, the shuffling-based sampling method
passes over the entire training dataset in each epoch, making
DL training not cache-friendly and failing to make efficient
use of faster storage mediums such as main memory or SSDs.
However, as observed in Figure 1, there exists ample opportu-
nity to make efficient use of faster storage devices to enhance
the performance of DL training. In this regard, importance
sampling treats training samples differently and introduces in-
herent data locality that can be exploited by a caching system
to make better use of faster storage mediums.

To better understand the implication of importance sam-
pling on DL training and dataset caching, we analyze impor-
tance sampling based training over benchmarking datasets.

USENIX Association 21st USENIX Conference on File and Storage Technologies 137

(a) Sample access pattern in epoch 1. (b) Sample access pattern in epoch 20. (c) Sample access pattern in epoch 89.

Figure 2: Frequency of samples accessed across different epochs in default single process importance sampling (CIFAR-10).

0 20 40 60 80 100
Data Importance (%)

0
1000
2000
3000
4000
5000
6000
7000

Da
ta
 A
m
ou

nt

(a) Epoch 1.

0 20 40 60 80 100
Data Importance (%)

0
250
500
750

1000
1250
1500
1750
2000

Da
ta
 A
m
ou

nt

(b) Epoch 20.

0 20 40 60 80 100
Data Importance (%)

0

500

1000

1500

2000

Da
ta
 A
m
ou

nt

(c) Epoch 89.

Figure 3: Distribution of data importance as the number of epochs increases in single process default importance sampling on
the CIFAR-10 dataset. Data importance is the ability of a sample to contribute towards improving the accuracy of the model.

Sample Access Pattern. We first analyze the sample ac-
cess pattern of importance sampling. We use the CIFAR-10
dataset [54] to train a ResNet-18 DNN model using a loss-
based importance sampling algorithm [50] for a single GPU.
As shown in Figure 2, 26.5%, 26.6%, and 26.2% of the sam-
ples are accessed more than once in epochs 1, 20, and 89,
respectively. More importantly, 9.6% of the samples are ac-
cessed 3 times or more in epoch 89, indicating a good data
locality within a training epoch.

Data Importance Distribution. We further analyze the im-
portance scores of training samples. Unlike standard random
sampling, which treats each sample equally, not all samples
contribute equally to model training. As shown in Figure 3(a)-
(c), in epoch 1, the importance scores of all samples are
clustered towards the least-important end of the spectrum;
whereas during epochs 20 and 89, more samples become
more important. In particular, in epoch 20, around 49.91%
of samples have a normalized importance score greater than
30%. This observation further implies that the importance
information could be exploited by a priority caching policy
to optimize the I/O efficiency of DL training.

Impact of Importance Sampling on Training. Next, we an-
alyze the impact of importance sampling on training quality.
In this test, we use the CIFAR-10 and CIFAR-100 datasets
and train a ResNet-18 model using standard random sampling
and a loss-based importance sampling method. As shown in
Figure 4(a)-(b), we verify that importance sampling incurs
negligible impact on the model accuracy for the CIFAR-10

dataset. The CIFAR-100 dataset is much harder to predict
than CIFAR-10 due to the larger number of classes present in
the dataset. Figure 4(c) shows that importance sampling does
not have a drastic loss degradation implying that it has a good
learning rate, which further contributes to its improved accu-
racy. Figure 4(d) shows that importance sampling can achieve
better accuracy in under 20 epochs than the accuracy achieved
by normal baseline random sampling in 100 epochs. This is
because random sampling just shuffles the dataset indices,
which does not contribute much towards quickly learning
fine-grained details of the dataset.

4 SHADE Design

Our study in §2 sheds light on the potential to enable fun-
damental data locality for DL training workloads and moti-
vates a new caching system co-designed with the DL training
framework. This section presents the challenges and design
principles of SHADE, followed by the design detail.

4.1 Challenges
Our goal is to achieve a caching system that can exploit impor-
tance sampling to improve the cache efficiency for DLT’s I/O
workload. One may think that a priority-based caching pol-
icy that always prioritizes the most important samples could
effectively improve the read hit ratio. However, as shown in
Figure 5, a naive priority-based caching policy achieves the
same low read hit ratio as standard LRU and LFU. Ideally,

138 21st USENIX Conference on File and Storage Technologies USENIX Association

0 20 40 60 80 100

Epoch

200

400

600

800

1000

1200

1400

Lo
ss

Normal

Importance Sampling

(a) Loss vs. Epoch (CIFAR-10).

0 20 40 60 80 100

Epoch

50

60

70

80

A
cc

ur
ac

y

Normal

Importance Sampling

(b) Accuracy vs. Epoch (CIFAR-10).

0 20 40 60 80 100

Epoch

0

500

1000

1500

2000

2500

3000

Lo
ss

Normal

Importance Sampling

(c) Loss vs. Epoch (CIFAR-100).

0 20 40 60 80 100

Epoch

15

20

25

30

35

40

45

50

A
cc

ur
ac

y

Normal

Importance Sampling

(d) Accuracy vs. Epoch (CIFAR-100).

Figure 4: Comparison of loss and accuracy convergence of ResNet-18 model using single process default importance sampling
against baseline training on the CIFAR-10 and CIFAR-100 datasets.

10 20 30 40 50 60 70 80 90
Cache Size (% of WSS)

0

20

40

60

80

Hi
t r
at
e
(P
er
ce
nt
)

MIN
Priority
LRU
LFU

Figure 5: Comparison of different caching policies during
ResNet-18 model training over the CIFAR-10 dataset. Work-
ing Set Size (WSS) denotes the percentage of cached dataset.

Belady’s MIN cache replacement policy [18] achieves an
optimal read hit ratio assuming perfect future knowledge: Be-
lady’s MIN replaces the item that will be accessed furthest in
the future (Figure 5). In the context of DLT, an ideal priority
caching policy would accurately capture the priorities (i.e.,
importance scores) of training samples, resembling the opti-
mal behavior of the offline MIN. To make it even better, the
policy could take advantage of the importance information
to prefetch important samples into the cache. This way, the
new policy can potentially outperform Belady’s MIN when
incorporating prefetching [87].

The key insight of this paper is that DLT treats different
training samples differently and that the priorities of I/O ac-
cesses are inherently predictable, therefore exposing interest-
ing exploitation opportunities to fundamentally improve the
I/O efficiency. However, it also poses non-trivial challenges to
effectively translate the potential exploitation opportunities
to the I/O efficiency improvement.

First, default importance sampling (importance sampling
considered in prior works) assigns per-minibatch scores,
which are too coarse-grained and inaccurate. That is, all sam-
ples of a single minibatch are, by default, assigned the same
importance scores. This creates ambiguity, which leads to
inaccurate estimation of the per-sample importance and, thus,
loss of cache efficiency. Ideally, we would want an importance
score that precisely tells us the relative importance that each

sample carries within a minibatch.
Second, even if important samples are identified properly,

aggressively feeding the DL model with repetitive samples
might make training model biased. Thus, it is necessary to
ensure that the accuracy is not compromised while trying to
increase the hit rate of samples.

Third, importance scores are constantly changing and may
get stale quickly. The same sample in a later minibatch may
contribute differently toward the model than it did in an earlier
minibatch. Thus, capturing the most up-to-date importance
score information is imperative to make informed caching
decisions.

In the next section, we discuss how we use four novel
techniques to address each of these challenges.

4.2 SHADE Overview
SHADE consists of two main components—the control layer
and the data layer. The control layer provides the data layer
with the list of samples needed for training. For the first itera-
tion, the data layer fetches samples from a remote storage and
populates the cache with the samples that are to be accessed
first. During training, the control layer finds the importance
(loss decomposition + ranking) associated with the samples
and the priority queue (PQ) and ghost cache tracking the im-
portance of samples in the data layer are updated. Based on
the newer importance, a sampler in the control layer prepares
a samples list with associated repetitions information. When
the data layer receives the list of samples, it checks whether
it is beneficial to cache a newer item instead of evicting a
cached prior sample. Let’s suppose the sample being accessed
has higher importance than the min_sample (sample having
lowest importance in the current cache). In this case, the
min_sample is evicted, and the current sample is cached us-
ing our new Adaptive Priority-aware Prediction (APP) cache
policy. This process is repeated throughout the entire DL
training. As SHADE keeps the most important samples in
the distributed cache and repeatedly uses these hard-to-learn
samples for training, it can ensure improved rate of accuracy
and a good cache hit ratio. Figure 6 shows the architecture of
SHADE along with the components and interactions therein.

USENIX Association 21st USENIX Conference on File and Storage Technologies 139

Loss decomposition

Sample ranking

Sampling (PADS)

APP caching policy

PQ

Most important Least important

Ghost

cache
…

Most important Least important

C
o

n
tr

o
l
la

y
e
r

D
a
ta

 L
a
y
e
r

Memory

cache
Remote

storage

T
ra

in
in

g
 p

ro
c
e
s
s

Model training

(a) SHADE’s logical architecture.

a b c d e

Data layer
Miss

Remote storage

Memory cache

a b c d e

a bPQ

4. Update importance

in PQ and ghost cache

Control layer

Loss decompose

Rank samples

Train model

c b d a e

b a

Ghost cache

Most

important

Least

important

PADS sample

c c b b d

c b

c b d a e

a

8. score(d) < score(b)

d is a miss, skip the cache

Directly fetch d from storage

7. score(c) > score(a)

Evict a and cache c

Evicted

c b

c b d a e

1. Generate

sample list

2. Fetch from storage and

insert cache if importance

is higher && it is a miss
3. Compute new importance

scores and rank samples

5. Send updated

importance to sampler

6. Generate sample sequence

based on importance

Cached

Next

epoch

Data layer

APP caching policy c c b b d

Hit Hit Hit MissMiss

Cache state

Hit

Workflow

Last

epoch

APP caching policy

…

(b) SHADE’s workflow.

Figure 6: SHADE architecture overview. (b) In illustration of how SHADE’s components interact in a single epoch.

4.2.1 Control Layer

The SHADE control layer performs two main functions. (1) It
calculates the importance scores associated with data samples,
and (2) it samples the data for different training processes.
The importance scores are then transferred to the data layer
in real time for making prefetching and caching decisions.

The SHADE control layer features three techniques to find
accurate, fine-grained importance scores for each data sample.
The first technique finds out the importance of samples in
per-sample granularity (i.e., fine-grained). The second tech-
nique uses fine-grained importance and ranks the samples to
make them suitable for priority-based caching. Finally, the
third technique uses rank-based importance to build a list of
important samples with repetitions to be used for training that
will increase the read hit ratio and maintain a good learning
curve.
Loss Decomposition. In default importance sampling, the
forward training loss is calculated for minibatches, and this
forward loss is then assigned as the importance score for all
the samples in the minibatch [61]. As a result, the default
importance sampling method calculates the ability of a mini-
batch to contribute towards improving the overall accuracy of
the model instead of the data samples themselves. However,
as expected, not all the samples of a minibatch contribute
equally to the accuracy improvement of the model. Therefore,
we need the sample-level loss information, i.e., the loss of
individual samples of a minibatch, to calculate the importance
score of each data sample.

To address the first challenge concerning the coarse-grained
importance scores at the minibatch granularity, SHADE uses
both the sample-level and minibatch-level cross entropy loss
information to decompose the coarse-grained importance
scores into per-sample scores. The cross entropy for each
sample denotes the uncertainty with which the model could
predict the class label for a sample. Measuring the uncertainty
helps SHADE to detect the importance of a sample.

Assume a minibatch has S data samples, and T represents
the number of class labels. This constructs an output layer

for the DNN model with a matrix that has a dimension of
S×T . Each row of the matrix encodes the raw likelihood or
logits of a sample for each of the T -class labels. To capture
the contribution of each data sample, SHADE decomposes
the loss function and calculates the loss corresponding to
each sample in the minibatch. SHADE decomposes the loss
function using two steps. In the first step, SHADE calculates
the categorical-cross entropy for each sample in the minibatch.
The categorical-cross entropy for each sample, Esample, is
defined in Eq. 3:

Esample =−
T

∑
i=1

Ti logSi, (3)

where Ti represents the hot-encoded truth label for a given
sample under class i, and Si denotes the softmax probability
for a sample in a minibatch for the class i.

Si is calculated using Eq. 4:

Si =
eri

∑
T
j=1 er j

, (4)

where ri denotes the raw likelihood of a sample for class i,
and the denominator is a normalization term. SHADE uses a
softmax normalization over a standard normalization method
for two reasons. (i) This method can effectively identify small
and large variations in raw logit values and thus assign the
importance scores accordingly. (ii) The raw logit values can
be negative, so taking exponents ensures that we always end
up with a positive value. SHADE uses the per-sample-based
entropy loss for finding and feeding the model with the most
important samples.

The second step of the loss decomposition involves calcu-
lating the minibatch importance necessary for adjusting the
model weights. As softmax is continuously differentiable, it
is possible to calculate the derivative of the cost function with
respect to every weight of a DNN model. SHADE uses all the
per-sample-based entropy losses found from the first stage
(Eq. 3) for calculating a mean entropy loss according to Eq. 5:

140 21st USENIX Conference on File and Storage Technologies USENIX Association

Ebatch =
∑

S
k=1 Esamplek

S
(5)

A higher entropy for a sample means that the model gener-
ates multiple predictions for a single sample out of the several
T different possibilities, i.e., the model faces more difficul-
ties in generating a single accurate prediction for that sample.
Correspondingly, a lower entropy for a single sample signifies
that the model can generate a single prediction for it with high
enough accuracy. Thus, a lower entropy value for a sample
means that the sample is not highly important in increasing
the accuracy of the model in later epochs, and a higher entropy
value signifies the opposite. The reason is straightforward:
samples that the model has already learned cannot help much
in increasing the accuracy of the model in later epochs, and
only by learning the harder samples can the DLT job improve
the accuracy. Ideally, an entropy value of zero means that the
difference between the predicted and ground-truth label is an
absolute zero and that the sample is accurately learned. In
practice, however, the entropy cannot reach zero as there are
no useful models that have 100% accuracy.

Our goal is to prioritize samples that have higher entropy
during model training so that the model can learn these hard-
to-learn samples better. Consequently, the loss decomposition
method enables SHADE to capture hard-to-learn samples from
a minibatch without extra transformation of the raw data.
Rank-based Importance Score. Even though the per-sample
entropy score provides a simple tool for quantifying the impor-
tance of different samples, it does not tell how much different
samples contribute to the accuracy of the model when sam-
pled together in a single minibatch. The relative rankings
allow SHADE to prioritize the most important set of samples
from each minibatch and, thus, the entire training dataset. To
identify the relative contribution of a sample in a minibatch,
we derive a log-based ranking method shown in Eq. 6:

ranki = log(
B

∑
k=1,k ̸=i

I(li > lk)+b0) (6)

The rank-based importance score for the ith sample in a mini-
batch with B samples is denoted by ranki. li and lk denote the
entropy loss for the ith and kth sample, respectively. b0 is a
bias term used for fixing the range of ranks in the log scale. I
is an identity function that returns 1 when the condition li > lk
is true, and 0 otherwise. For each k item in a batch B, this
condition helps to place each sample in the proper rank in a
minibatch. A sample having a higher loss gets a higher rank.

Consider the following example. Assume two minibatches,
B1 and B2, contain samples <4, 5, 6> and <7, 8, 9>, respec-
tively. Assume the samples in B1 have entropy scores of <0.3,
0.5, 0.4> and samples in B2 have <0.6, 1.2, 0.8>, respectively.
These entropy values are raw values, which will be prob-
lematic when comparing the sample importance across mini-
batches. For example, a priority-queue-based cache would
rank sample 5 from B1 in the lower half globally when sorting

all samples from both the two minibatches, even though sam-
ple 5 is the most important one in B1. Sorting these samples by
the entropy scores would give us a relative rank with respect
to each of the two minibatches B1 and B2, meaning sample 5
and 8 are the most important in B1 and B2, respectively.

To get the accurate changes in importance score, i.e.,
whether the importance score is increasing, staying un-
changed, or decreasing, SHADE uses the log scale. In this
case, the relative importance scores remain in the same range
and can be used for priority differentiation in a priority queue
data structure. Relative scores are desirable for three reasons.

First, our method guarantees that the per-sample-based im-
portance scores from different minibatches and epochs are in
the same range in order to precisely differentiate their priori-
ties in the cache. Different samples from different minibatches
would share the same rank in our method if they contributed
the same proportion in improving the accuracy of the model
when grouped in their corresponding minibatches. Whereas in
the default importance sampling method, all samples from the
same minibatch are assigned the same importance, resulting
in at most one minibatch that will have the highest importance
score, rmax. This is erroneous as all samples in the same mini-
batch do not contribute equally to improving the accuracy.
When the number of minibatches is more than the minibatch
size, SHADE is guaranteed to capture more important samples
than the default method, and this, in turn, helps in improving
the read hit ratio of the cache. Specifically, if the DLT job is
configured to train on N samples with a minibatch size of B,
where N is significantly larger than B (which is the common
case in DLT), then SHADE can effectively identify (N/B) im-
portant samples in one epoch. In contrast, the default method
can only capture B important samples.

Second, although models are constantly being updated dur-
ing the training, training against harder-to-learn samples may
help mitigate the high volatility of the accuracy rate, therefore
leading to smooth model training.

Third, the relative ranks make it easy to predict the data
importance online: the top x% important data in a minibatch
is guaranteed to be within the set of the top x% of the whole
dataset according to our defined importance score. Based on
this property, SHADE effectively offers an implicit prefetching
mechanism, which will be described in Algorithm 1.
Priority-based Adaptive Data Sampling (PADS). At the
end of an epoch, when SHADE has calculated the (rank-based)
importance of samples, the SHADE sampler sends the data
layer the list of sample indices that should be used for training.

However, instead of naive random shuffling, the SHADE
sampler first prioritizes the samples that contributed the most
to the accuracy of the model by constructing a multinomial
probability distribution of the data samples, as there are many
possible outcomes/selections of the dataset. Based on the
generated distribution, the sampler builds a list of important
samples for shuffling and sharding across different DLT pro-
cesses. SHADE seamlessly combines prefetching and caching:

USENIX Association 21st USENIX Conference on File and Storage Technologies 141

based on the updated importance scores and the list of sam-
ples provided by the sampler, SHADE data layer prefetches the
most important samples to the distributed in-memory cache.
The sampler provides the data layer with a list of repetitive
samples, which helps the data layer automatically prefetch
important samples in real-time. The design strikes a balance
between the cache efficiency (read hit ratio) and model ac-
curacy. SHADE keeps track of the loss convergence of the
model in real-time to decide the number of repetitive sample
accesses in order to boost the hit rate without sacrificing the
accuracy of the model. To do so, on noticing a steep decline
in the loss convergence curve or a stagnant accuracy curve,
SHADE intentionally shuffles the important samples to avoid
training against a small subset of the most important samples.
This way, the system is able to mitigate aggressive importance
sampling, which minimizes training biases.

SHADE’s PADS policy plays a crucial role in increasing the
hit rate of a limited-sized cache and, in certain cases, can even
outperform offline MIN. Consider the following example.
Assume we have ten samples <1, 2, 3, 4, 5, 6, 7, 8, 9, 10>
during training. The samples have no repetitions, as random
sampling does not consider the importance of the samples.
Assume each training process trains on five samples, and
the cache holds two samples. Assume the sampler provides
samples [1, 3, 5, 6, 8] randomly for training. Then, offline
Belady’s MIN will put any of the two samples that will be
used by the training process. Assume it puts [1, 3] in the cache.
In this case, the hit rate will be only 40% <hits 1, 3>.

In the case for SHADE, PADS would create a samples list
with repetitions based on importance. Assume the samples are
[4, 7, 3, 5, 3, 5, 2, 2, 1, 10] and samples 3, 5, and 2 are the most
important. Then PADS would provide the training process
with the samples <3, 3, 5, 5, 2> from the list of samples so
that <3, 5> can be cached. The hit rate is now 80% <hits 3 3
5 5>. Even if we consider repetitions in the case of Belady’s
MIN, it is bounded by the access pattern of the sample list
provided by the random sampler. For example, if the sampler
provides <4, 5, 5, 1, 10> to the training process, on knowing
the future, Belady’s MIN can, at most, cache 5 (as it is needed
twice) along with another sample. Assume it caches <5, 10>,
so the hit rate will be only 60% <hits 5, 5, 10>.

SHADE’s sampling method is fully decentralized and does
not require a centralized server to coordinate. Decentralized
sampling means that each training process derives the impor-
tance scores of the samples independently based on its own
local model training.

4.2.2 Data Layer

The SHADE data layer provides mechanisms and policies for
cache eviction and prefetching.

A challenge regarding sample caching is that the impor-
tance scores are constantly changing, even within an epoch,
as one data sample can be accessed in multiple minibatches.

In order to address this challenge, we design a new cache
policy called Adaptive Priority-Aware Prediction (APP), a
dynamic policy that updates the importance score of a data
sample as soon as the importance score changes.

SHADE’s data layer consists of two components: an indexer
and a pooled in-memory cache that spans multiple key-value
storage (KVS) servers. The index uses two heap-based pri-
ority queues (PQ and ghost cache) for tracking the samples
along with their associated rank and access frequency for each
training process.

The data layer introduces index numbering for each indi-
vidual data sample. Index numbering enables the control layer
to assign importance score at the sample granularity. Once
the control layer calculates and assigns importance scores for
the data samples, the indexer inserts the data sample index
numbers, but not the actual sample data, into the PQ (priority
queue for the current state of the cache). During data loading,
the cache will use the importance scores provided by the in-
dexer to make informed prefetching and eviction decisions.
The data layer also performs serialization and deserialization
when inserting and fetching image samples to and from the
cache. The APP caching policy is shown in Algorithm 1.

The PQ and the ghost cache are sorted by the importance
scores. PQ keeps track of the metadata state of currently
cached samples in the cache, while the ghost cache tracks all
the metadata state of the samples that have ever been cached
(including those that have been evicted). The ghost cache
entries do not store the actual data samples, but rather store
a mapping between the data sample ID (the sample index)
and the metadata tuple record of <ir, a f >, where ir is the
importance score and a f is the access frequency.

During training, a cached sample might lose its importance
if it is well-learned; that is, it might lose its priority in the
cache and gets evicted. At the same time, another sample that
has been evicted previously might turn out to be important
and therefore gets inserted into the cache. The ghost cache
helps decide whether a previously-evicted sample could be
brought back into the cache.

When the cache is full, and the data sample to be pro-
cessed is a miss, SHADE checks ghost cache for the previous
importance score of the data sample (Algorithm 1 line 12):
if this data sample had been previously evicted out of the
cache, it should be included in the ghost cache. If the most
recent importance score of this data sample is greater than or
equal to that of the cached sample that has the smallest im-
portance score, the currently-cached least-important sample
(min_sample) is evicted from the data cache as well as from
PQ. After the eviction, the data sample that is to be processed
(and was previously evicted) is inserted in the cache (line 18).

In summary, by comparing the current importance scores of
data samples already in the cache and that of the most recent
importance score of the current data sample being processed,
SHADE’s data layer predicts and maximizes the likelihood of
a sample being reused in the cache in the future.

142 21st USENIX Conference on File and Storage Technologies USENIX Association

Algorithm 1: Adaptive Priority-aware Prediction (APP) Cache.

1 Input and Initialization:
2 PQ: Priority queue for currently-cached samples, ghost_cache: Priority queue for all previously-trained samples
3 for epoch in total_epochs do
4 for s in sample_dataset do
5 v = score(s) # Calculate importance score based on Eq 3 and Eq 6
6 ghost_cache.set(s,v) # Insert/update in ghost_cache
7 if cache_hit then
8 cache.get(s)
9 else if cache_miss and cache_not_full then

10 cache.insert(s) and PQ.set(s,v)
11 else
12 if cache_miss and ghost_cache.exist(s) then
13 x = ghost_cache.get(s).score # Get the most recent score of data sample
14 min_sample,min_score = PQ.min() # Find the sample with the minimal score in the cache
15 # Check if the sample to be processed is more important than the least important one stored in the cache
16 if x ≥ min_score then
17 cache.evict(PQ.pop(min_sample)) # Evict the least important sample from cache
18 cache.insert(s) and PQ.set(s,v) # Insert this sample into the cache and PQ
19 else
20 read_from_storage(s) # The data is less important than any samples currently cached, skip caching

21 else
22 read_from_storage(s) # Evicting a known sample for an unknown one may not be beneficial, skip caching

5 Implementation

SHADE is implemented in PyTorch 1.7. PyTorch has three
main components: Dataset, Sampler, and DataLoader.
Dataset class provides the image dataset access points and ex-
poses a __get_item__ method that fetches a sample along
with its target label for a given index. Sampler provides
subsets of samples of the dataset to the training processes
in random permutations. DataLoader uses the information
provided by the sampler to load the samples in minibatches
with the help of worker processes. In SHADE, we implement
a new class by inheriting the PyTorch Dataset class. The
ShadeDataset class has functionalities to combine the sam-
ples and their corresponding class labels so that Dataloader
can fetch data samples easily from the remote storage.

We extend the DistributedSampler class to prepare the
ShadeSampler class that has the main logic of the SHADE’s
PADS policy. It has APIs for communicating with the training
processes to receive the calculated per-sample entropy value
for each minibatch. At the end of each epoch, ShadeSampler
forwards the important samples to the training processes.

We introduce the logic for the data layer by overriding
the __get_item__ and __len__ method in the ShadeDataset
class. The __len__ method returns the total length of the
ShadeDataset, and the __get_item__ method exposes the in-
dices associated with the data samples that enables the client
layer to find importance in per-sample granularity. In addi-

tion, the __get_item__ method is connected to the in-memory
pooled cache to make decisions on caching and eviction based
on the heap-based PQs of the data layer using the APP cache
policy. For the in-memory pooled cache, we use Redis [7].

We have implemented an analysis framework atop the setup
to facilitate experimentation and statistics collection. The
framework takes as input the configurations of the experi-
ment, which include paths of the training dataset, master’s
address:port, number of training nodes, number of GPU de-
vices, number of epochs to run the test, the batch size, and the
DNN model to be trained. The framework then sets up the
environment accordingly. It collects GPU-related statistics
using nvidia-smi [66] and I/O-related statistics using sar [73].
SHADE’s implementation is system agnostic – DL practition-
ers do not need to write new code to use SHADE in their sys-
tems. SHADE does not use any extra system-level resources
compared to a normal DL training with local/global caching.

6 Evaluation

6.1 Experimental Setup
Our study covers distributed training with multiple GPUs and
a remote storage deployed on Chameleon Cloud [51]. Several
recent works [26, 27, 52] have used Chameleon Cloud for
conducting high-performance experiments, making it a repre-

USENIX Association 21st USENIX Conference on File and Storage Technologies 143

sentative testing platform. Our method is compared against
baseline distributed training in PyTorch—one of the most
popular frameworks for deep learning [68]. Although caching
policies are not publicly available in PyTorch, we have built an
LRU caching policy on top of PyTorch to ensure a thorough
evaluation of our proposed storage caching policy. In addi-
tion, we have evaluated SHADE against importance sampling
with six different caching policies to perform a robust abla-
tion study. For our analysis, an HDD-based NFS Server [63]
is used as remote storage. For training, we have used eight
NVIDIA P100 GPUs (PCIe with 16 GB memory) spread
across four nodes. All the GPU nodes and storage nodes are
connected via a 10 Gbps interconnect.

Our experiments primarily use the ImageNet-1K
dataset [32], which contains ∼1.2 million images with a total
size of 138 GB spanning 1,000 object classes. We also use
CIFAR-10 [54]. We conduct our study on four representative
computer vision (CV) distributed DL models, namely,
Alexnet [55], ResNet-18, ResNet-50 [38], and VggNet [76].
The setup we use to evaluate our system is representative of
CV distributed DL training, which has been used to evaluate
prior research works [20, 56, 69, 84]. In the following, the
reported percentages for cache size indicate the portion of the
dataset that had been cached.

6.2 Cache Hit Ratio
In this set of experiments, we evaluate the performance of
our APP caching policy against several other policies. This
will help explain the extent to which SHADE is able to make
better utilization of the limited cache space. The baseline

uses PyTorch’s default random sampling and LRU caching
policy for eviction. We also implement and evaluate the offline
Belady’s MIN policy. In addition, we evaluate six SHADE
policy variants based on importance sampling:
1. Priority-based LFU policy (sh_pqlfu), which evicts the

samples with the least importance score based on a hybrid
priority that combines the batch-forward loss (i.e., coarse-
grained score) and sample access frequency. If the forward
loss is the same, then eviction decision is made based on
the access frequency of samples.

2. Priority-based policy (sh_pq), which uses the batch-based,
goarse-grained forward loss as the importance score.

3. LRU (sh_lru), which uses the coarse-grained forward loss
but evicts samples based on the recency of the items and
not the importance scores.

4. LFU (sh_lfu), which uses the coarse-grained forward loss
but evicts the least-frequently-used sample.

5. Random (sh_rand), which performs random evictions.
6. APP (sh_app), which makes eviction decisions using our

APP policy but does not use loss decomposition, rank-
based importance score, and PADS sampling.

Figure 7 shows the the average read hit ratios when training
the three DL models (Alexnet, ResNet-50, VggNet) over the

10 25 50 75
Cache Sizes (% of WSS)

0

20

40

60

80

100

Hi
t R

at
e

(P
er

ce
nt

)

baseline
sh_app
sh_pqlfu
sh_pq
sh_lru

sh_lfu
sh_rand
MIN
SHADE

Figure 7: Comparison of the read hit ratio of various caching
policies and cache sizes. The sh_ prefix denotes a baseline ver-
sion of SHADE that uses the coarse-grained importance. SHADE
denotes our contribution, SHADE, with all techniques enabled.
WSS denotes working set size.

CIFAR-10 dataset under the studied policies with different
cache sizes.

We observe that the margin by which SHADE performs
better than policy 1–6 increases as the cache size becomes
smaller. When only 10% of the WSS is cached, SHADE,
with all techniques incorporated, shows a 4.5× higher read
hit rate than the baseline LRU. SHADE without the impor-
tance derivation techniques (sh_app) can achieve 2.67× and
SHADE without the APP cache policy (all the SHADE sh_

baselines except sh_app) can achieve around 1.94× higher
hit rates than the baseline. The reason for the improved hit
rate is that our techniques are able to predict which samples
the training processes would need in the future for better ac-
curacy, and hence it approaches the hit rates of the optimal
MIN and even outperforms MIN in some cases (WSS 50%
and 75%). This is because MIN’s knowledge about samples’
future access pattern relies on the sampler. However, SHADE
manipulates the sampler to create the desired future sample
access pattern, which will benefit the DLT job the most in
terms of both training duration and accuracy. This sample
access pattern comprising multiple hard-to-learn samples en-
ables precise I/O prediction and maximizes the likelihood
of a sample being reused in the cache in the future. By en-
suring a higher hit rate with limited available cache space,
SHADE holds effectively more data in the limited cache space,
therefore achieving higher DLT efficiency.

6.3 Accuracy vs. Time
In our next tests, we evaluate how model accuracy changes
over time for SHADE when compared to the baseline at dif-
ferent WSS. This shows how quickly SHADE is able to train
a model and increase the accuracy using a very small cache
even when the baseline has the advantage of using more cache
space than SHADE.

Figure 8 shows that SHADE has a better accuracy improve-
ment rate compared to baseline policy. For example, SHADE
can achieve up to 3× faster accuracy convergence compared

144 21st USENIX Conference on File and Storage Technologies USENIX Association

0 4000 8000 12000
Time (sec)

0

20

40

60

80
Ac

cu
ra
cy
 (P

er
ce
nt
)

baseline 10%
baseline 25%
baseline 50%
baseline 75%
SHADE 10%
SHADE 25%
SHADE 50%
SHADE 75%

(a) Alexnet

0 200 400 600
Time (hour)

0

20

40

60

80

Ac
cu
ra
cy
 (P

er
ce
nt
)

baseline 10%
baseline 25%
baseline 50%
baseline 75%
SHADE 10%
SHADE 25%
SHADE 50%
SHADE 75%

(b) ResNet-50

Figure 8: Accuracy improvement rate of SHADE against
baseline LRU when different portions of the entire dataset is
cached (denoted by the percentages).

to baseline storing 10% of the dataset in the cache when being
trained on the Alexnet model. Fine-grained relative impor-
tance of samples helps SHADE detect the most important, i.e.,
hard-to-learn samples, train more on them and thus improve
the accuracy quickly to reach convergence. Again when be-
ing trained on the ResNet-50 model, SHADE continuously
maintains a better accuracy improvement rate compared to
baseline at similar WSS. SHADE can reach accuracy conver-
gence 3.3× faster compared to baseline at 75% WSS. The
accuracy improvement rate of the baseline with a larger cache
is not always better in Figure 8(a) because the baseline uses
random sampling. Random sampling places equal emphasis
on all of the samples and hence cannot improve the accu-
racy quickly by training more on the hard-to-learn samples.
The improvement in accuracy vs. time curve for the baseline
comes only from caching more data. Hence, our results show
that even if a larger portion of the dataset is cached, naively
caching data items without proper techniques to exploit data
locality can not guarantee improved performance.

6.4 Throughput
In our next experiment, we evaluate the throughput of SHADE,
which help demonstrate the superiority of SHADE in process-
ing data while storing a limited portion of the dataset. Fig-
ure 9(a) shows that SHADE while caching just 10% of the
dataset has around 2.3× better throughput compared to base-
line policy caching 10% of the dataset. The baseline matches

0 4000 8000 12000
Time (sec)

0

1

2

3

4

5

Im
ag

es
 P
ro
ce
ss
ed

×106

baseline 10%
baseline 25%
baseline 50%
baseline 75%
SHADE 10%
SHADE 25%
SHADE 50%
SHADE 75%

(a) Alexnet

0 100 200 300 400 500 600
Time (hour)

0.0

0.4

0.8

1.2

Im
ag
es
 P
ro
ce
ss
ed

×1011

baseline 10%
baseline 25%
baseline 50%
baseline 75%
SHADE 10%
SHADE 25%
SHADE 50%
SHADE 75%

(b) ResNet-50

Figure 9: Throughput of SHADE against baseline LRU when
different portions of the entire dataset is cached (denoted by
the percentages).

the throughput performance of SHADE only when the base-
line is caching 7.5× more data compared to SHADE. In the
experiment with ResNet-50, shown in Figure 9(b), we observe
that SHADE at 75% WSS has 2.7× higher throughput com-
pared to baseline at similar WSS. Even at lower WSS, SHADE
can achieve higher throughput compared to baseline at higher
WSS. For example, SHADE at 50% WSS has a 1.14× higher
throughput than baseline at 75% WSS. The improvement in
the ability to process more images is due to the ability of
SHADE to exploit data locality with APP cache policy. Al-
though baseline at 75% WSS has a slightly higher throughput
compared to SHADE at 25% WSS, it is unable to get a better
accuracy improvement rate seen in Figure 8(b). This is be-
cause SHADE can exploit data locality and has techniques to
train on important samples which ensures a better accuracy
improvement rate.

6.5 Minibatch Load Time

In our next test, we evaluate the performance gain observed
in minibatch load time. Consistency in minibatch load time
is important so that all the training processes can remain
coordinated. It also shows the effectiveness that a caching
policy has in exploiting data locality. Figure 10 shows the
average minibatch load time of the GPUs during the course of
training with the vertical lines showing the standard deviation
of the load time within a single epoch.

USENIX Association 21st USENIX Conference on File and Storage Technologies 145

base 10%
SHADE 10%base 25%

SHADE 25%base 50%
SHADE 50%base 75%

SHADE 75%
0

4

8

12

16

20

Ti
m

e
(S

ec
on

d)

Average load time
Load time Std

Figure 10: GPUs’ minibatch load time when training ResNet-
50. Percentages denote the amount of cached dataset.

As we can see in the figure, SHADE can achieve a lower
mean load time compared to baseline at similar and higher
WSS. The baseline at 50% and 75% WSS has 2.5× and 1.7×
higher minibatch load time compared to SHADE at 50% WSS.
Moreover, SHADE can maintain a small standard deviation in
minibatch load time. Ideally, we would expect the standard
deviation in minibatch load times to be low if larger portions
of the dataset get cached because of using a higher portion of
the fast RAM storage. However, it is not the case for baseline,
even if it caches larger portions of the dataset in the cache.
Average minibatch load time is highly variant for baseline
caching 50% and 75% of the dataset. The baseline at 75%
WSS has a 3.9× higher standard deviation in minibatch load
time compared to SHADE at 75%.

6.6 End-to-End System Comparison

In our last set of experiments, we compare the performance of
SHADE against NoPFS [34], a state-of-the-art storage system
for improving the I/Os of DLT workloads. NoPFS exploits the
seeds that generate the random access pattern when perform-
ing SGD-based DLT to predict when and where a training
sample will be accessed. Similar to our baseline, NoPFS uses
random sampling of indices. The difference lies in that NoPFS
does not consider importance and uses Clairvoyance (i.e.,
seeds that generate random access patterns) to approximate
“future distances” of Belady’s MIN [18]. SHADE considers
fine-grained importance of samples and uses PADS policy to
prioritize samples for training.

For fair comparison, we keep the experimental setup and
training parameters the same for both SHADE and NoPFS
while training on the CIFAR-10 dataset. Figure 11 shows
that NoPFS incurs a 4.5× and 2.4× increase in training time
to reach accuracy convergence compared to SHADE at 75%
and 50% WSS, respectively. At the same time, SHADE has
2.2× and 1.6× better throughput compared to NoPFS when
working at 75% and 50% WSS, respectively. SHADE can still
attain accuracy convergence faster even at 10% WSS. SHADE
performs better than NoPFS as it adopts a prefetching system
that aims to approximate Belady’s MIN; it is bounded by the
sample access pattern provided by the sampling policy and

0 2 4 6 8
Time (hours)

40
50
60
70
80
90

Ac
cu

ra
cy

 (P
er

ce
nt

)

NoPFS
SHADE 10%
SHADE 25%
SHADE 50%
SHADE 75%

(a) Accuracy vs. time.

0 10000 20000 30000 40000
Time (sec)

0
1
2
3
4
5

Im
ag

es
 P
ro
ce

ss
ed

×106

NoPFS
SHADE 10%
SHADE 25%
SHADE 50%
SHADE 75%

(b) Throughput.

Figure 11: Comparison of SHADE and NoPFS [34]. Percent-
age denotes the percentage of cached dataset.

Emul_Coor Emul_Quiv SHADE

10
20
30
40
50
60
70
80

Hi
t R

at
io

Figure 12: Comparison of the read hit ratio of different
caching policies at 20% WSS of CIFAR-10.

hence prioritizes all samples equally. As a result, it takes more
time to reach accuracy convergence compared to SHADE,
which trains more on hard-to-learn samples to increase the
accuracy improvement rate faster.

We further compare the cache hit ratios of SHADE with
state-of-the-art DLT caching policies. we configure a small
cache space of 20% of the WSS over the CIFAR-10 dataset
using the ResNet-18 model against emulated caching poli-
cies including CoorDL [65] and Quiver [56]. To understand
the impact of these techniques in importance-aware training,
we use a loss-based importance sampling technique [50] in-
spired by Mercury [84]. For emulating CoorDL and Quiver,
we create our own implementations of the core techniques
of CoorDL and Quiver, which we name as Emul_Coor and
Emul_Quiv, respectively. Both Emul_Coor and Emul_Quiv use a
KVS as a cache similar to SHADE. Emul_Coor ensures that no
items are ever evicted from the cache once these are inserted
in the cache. In the case of Emul_Quiv, we implement the sub-
stitutability technique, which replaces a missed sample with
a sample already in the cache to avoid memory thrashing.

Figure 12 shows that both Emul_Coor and Emul_Quiv can
only extend their utilization up to the size of the cache

146 21st USENIX Conference on File and Storage Technologies USENIX Association

(∼ 20%) because these caching policies are not importance-
aware and therefore cannot exploit the data locality of the im-
portant samples perfectly in importance-aware training. Both
of these policies populate the cache using random samples
and hence are unable to get a good hit rate by exploiting the
repetitions among samples that occur throughout training. On
the other hand, as SHADE can manipulate the sampling pro-
cess (PADS policy) and keep repeated samples in the cache,
it can achieve a higher hit ratio (72.5%) and thus outperforms
both Emul_Quiv and Emul_Coor by 3.6×.

7 Related Work

Several recent works have explored the use of importance
sampling for optimizing the system efficiency of DL work-
loads [23, 84]. iCACHE [23] is an importance-sampling-
informed DLT cache. Although this approach uses a form
of fine-grained importance similar to SHADE, it does not have
a rank-based relative score scheme and SHADE’s PADS sam-
pling approach, due to which it may suffer from a lower cache
hit ratio than SHADE. Moreover, in case of a cache miss,
iCACHE uses substitutability, which may impact the training
accuracy convergence.

Mercury [84] improves DL training efficiency by exploiting
the important samples. Mercury is not an I/O cache, and
therefore, unlike SHADE, it does not handle data replacement
and eviction.

CoorDL [65] analyzes the data retrieval process in PyTorch
and proposes a MinIO cache, which populates the cache with
a random set of data items from the first epoch, and keeps
these items in the cache during the training with no item being
ever evicted. However, as shown in Figure 12, simply caching
random samples does not provide the expected performance
gain.

A body of work is focused on optimizing the I/O compo-
nents of DL applications. NoPFS [20] adopts a prefetching ap-
proach that uses hardware level configurations to take caching
decisions based on a sample access pattern obtained from try-
ing to approximate Belady’s MIN. However, in common on-
line training like hyperparameter tuning experiments [60] with
different random seeds, such sample access patterns change
constantly and hence are not readily available. We address
this constant change in sample access pattern through our
dynamic cache management policy without depending on
hardware configurations for boosting our performance.

Hoard [69], Quiver [56], and FanStore [86] explore the idea
of adding a global caching layer to the GPU cluster for improv-
ing the training performance of DL workloads. DeepIO [88]
proposes an entropy-aware mechanism for determining next
minibatches but it does not offer any cache eviction policies
and suffers from lack of dataset randomization. DIESEL [80]
is a comprehensive storage solution that supports key-value-
based metadata service, task-level caching, and chunk-based
shuffling. However, these works do not focus on how to enable

fundamental data locality for DLT jobs. SHADE, on the other
hand, exploits importance sampling to enable data locality for
DLT jobs.

8 Conclusion
The I/O pipeline is a major bottleneck in distributed DLT
when data is read from a remote storage. To address this
bottleneck, ad hoc solutions such as using faster local stor-
age devices (e.g., SSDs) had been employed. However, those
ad hoc solutions cannot fundamentally address the I/O effi-
ciency of DLT workloads. Although caching is possible for
DLT, naively caching redundant samples does not provide
any benefits. SHADE realizes a DLT-aware caching policy,
which takes advantage of the fine-grained importance scores
of data samples in order to enable a high level of data locality,
and therefore, fundamental cacheability for DLT jobs. Our
evaluation demonstrates that SHADE improves the read hit
ratio of a small memory cache (of only 10% of the WSS of
the dataset) by up to 4.5× compared to traditional, non-DLT-
aware caching policies, thus significantly improving the DLT
performance.

9 Acknowledgments
We thank our shepherd, Raju Rangaswami, and our anony-
mous reviewers for their detailed feedback and valuable sug-
gestions. This work is sponsored in part by the NSF un-
der the grants: CSR-2106634, CCF-1919113/1919075, CNS-
2045680, OAC-2004751, and OAC-2106446. Results pre-
sented in this paper were obtained using the Chameleon
testbed supported by the NSF.

References

[1] Amazon EC2 Spot Instances. Run Fault Tolerant work-
loads for up to 90% off. https://aws.amazon.com/
ec2/spot/.

[2] Amazon S3. https://aws.amazon.com/pm/
serv-s3/.

[3] CSCS. 2021. Piz Daint. https://www.cscs.ch/
computers/piz-daint/.

[4] Global Conversational AI Market Report 2021. https:
//tinyurl.com/Global-AI-Market-Report-2021.

[5] Google Cloud Storage. https://cloud.google.com/
storage.

[6] Memcached. https://memcached.org/.

[7] Redis. https://redis.io/.

[8] RIKEN Center for Computational Science. 2021.
About Fugaku. https://www.r-ccs.riken.jp/en/
fugaku/about/.

USENIX Association 21st USENIX Conference on File and Storage Technologies 147

https://aws.amazon.com/ec2/spot/
https://aws.amazon.com/ec2/spot/
https://aws.amazon.com/pm/serv-s3/
https://aws.amazon.com/pm/serv-s3/
 https://www.cscs.ch/computers/piz-daint/
 https://www.cscs.ch/computers/piz-daint/
https://tinyurl.com/Global-AI-Market-Report-2021
https://tinyurl.com/Global-AI-Market-Report-2021
https://cloud.google.com/storage
https://cloud.google.com/storage
https://memcached.org/
https://redis.io/
https://www.r-ccs.riken.jp/en/fugaku/about/
https://www.r-ccs.riken.jp/en/fugaku/about/

[9] Use Spot VMs with Batch. https://
learn.microsoft.com/en-us/azure/batch/
batch-spot-vms.

[10] Franklin Abodo, Robert Rittmuller, Brian Sumner, and
Andrew Berthaume. Detecting work zones in shrp 2 nds
videos using deep learning based computer vision. In
2018 17th IEEE International Conference on Machine
Learning and Applications (ICMLA), pages 679–686.
IEEE, 2018.

[11] Guillaume Alain, Alex Lamb, Chinnadhurai Sankar,
Aaron Courville, and Yoshua Bengio. Variance reduc-
tion in sgd by distributed importance sampling. arXiv
preprint arXiv:1511.06481, 2015.

[12] Muhammad Aqib, Rashid Mehmood, Aiiad Albeshri,
and Ahmed Alzahrani. Disaster management in smart
cities by forecasting traffic plan using deep learning and
gpus. In International Conference on Smart Cities, In-
frastructure, Technologies and Applications, pages 139–
154. Springer, 2017.

[13] Jorge F Arinez, Qing Chang, Robert X Gao, Chengy-
ing Xu, and Jianjing Zhang. Artificial intelligence in
advanced manufacturing: Current status and future out-
look. Journal of Manufacturing Science and Engineer-
ing, 142(11), 2020.

[14] Jonghyun Bae, Jongsung Lee, Yunho Jin, Sam Son,
Shine Kim, Hakbeom Jang, Tae Jun Ham, and Jae W
Lee. Flashneuron: Ssd-enabled large-batch training of
very deep neural networks. In 19th {USENIX} Con-
ference on File and Storage Technologies ({FAST} 21),
pages 387–401, 2021.

[15] Stephen Balaban. Deep learning and face recognition:
the state of the art. Biometric and surveillance technol-
ogy for human and activity identification XII, 9457:68–
75, 2015.

[16] Pierre Baldi, Peter Sadowski, and Daniel Whiteson.
Searching for exotic particles in high-energy physics
with deep learning. Nature communications, 5(1):1–9,
2014.

[17] Yixin Bao, Yanghua Peng, Yangrui Chen, and Chuan
Wu. Preemptive all-reduce scheduling for expediting
distributed dnn training. In IEEE INFOCOM 2020-
IEEE Conference on Computer Communications, pages
626–635. IEEE, 2020.

[18] Laszlo A. Belady. A study of replacement algorithms
for a virtual-storage computer. IBM Systems journal,
5(2):78–101, 1966.

[19] Sweta Bhattacharya, Siva Rama Krishnan Somayaji,
Thippa Reddy Gadekallu, Mamoun Alazab, and Praveen

Kumar Reddy Maddikunta. A review on deep learning
for future smart cities. Internet Technology Letters, page
e187, 2020.

[20] Roman Böhringer, Nikoli Dryden, Tal Ben-Nun, and
Torsten Hoefler. Clairvoyant prefetching for distributed
machine learning i/o. arXiv preprint arXiv:2101.08734,
2021.

[21] Peter Braam. The lustre storage architecture. arXiv
preprint arXiv:1903.01955, 2019.

[22] CL Philip Chen and Chun-Yang Zhang. Data-intensive
applications, challenges, techniques and technologies: A
survey on big data. Information sciences, 275:314–347,
2014.

[23] Weijian Chen, Shuibing He, Yaowen Xu, Xuechen
Zhang, Siling Yang, Shuang Hu, Sun Xian-He, and Gang
Chen. icache: An importance-sampling-informed cache
for accelerating i/o-bound dnn model training. In 2023
IEEE International Symposium on High-Performance
Computer Architecture, 2023.

[24] Xue-Wen Chen and Xiaotong Lin. Big data deep learn-
ing: challenges and perspectives. IEEE access, 2:514–
525, 2014.

[25] Eunsuk Chong, Chulwoo Han, and Frank C Park. Deep
learning networks for stock market analysis and pre-
diction: Methodology, data representations, and case
studies. Expert Systems with Applications, 83:187–205,
2017.

[26] Joon Yee Chuah. Machine learning gpu power measure-
ment on chameleon cloud. In Proceedings of the10th
International Conference on Utility and Cloud Comput-
ing, pages 181–181, 2017.

[27] Joaquin Chung, Zhengchun Liu, Rajkumar Kettimuthu,
and Ian Foster. Elastic data transfer infrastructure (dti)
on the chameleon cloud. In 2019 IEEE 27th Interna-
tional Conference on Network Protocols (ICNP), pages
1–2. IEEE, 2019.

[28] Angel Cruz-Roa, Hannah Gilmore, Ajay Basavanhally,
Michael Feldman, Shridar Ganesan, Natalie NC Shih,
John Tomaszewski, Fabio A González, and Anant Mad-
abhushi. Accurate and reproducible invasive breast can-
cer detection in whole-slide images: A deep learning
approach for quantifying tumor extent. Scientific reports,
7:46450, 2017.

[29] Padideh Danaee, Reza Ghaeini, and David A Hendrix. A
deep learning approach for cancer detection and relevant
gene identification. In PACIFIC SYMPOSIUM ON BIO-
COMPUTING 2017, pages 219–229. World Scientific,
2017.

148 21st USENIX Conference on File and Storage Technologies USENIX Association

https://learn.microsoft.com/en-us/azure/batch/batch-spot-vms
https://learn.microsoft.com/en-us/azure/batch/batch-spot-vms
https://learn.microsoft.com/en-us/azure/batch/batch-spot-vms

[30] Jeffrey Dean, Greg Corrado, Rajat Monga, Kai Chen,
Matthieu Devin, Mark Mao, Marc' aurelio Ranzato, An-
drew Senior, Paul Tucker, Ke Yang, Quoc Le, and An-
drew Ng. Large scale distributed deep networks. In
F. Pereira, C. J. C. Burges, L. Bottou, and K. Q. Wein-
berger, editors, Advances in Neural Information Pro-
cessing Systems, volume 25. Curran Associates, Inc.,
2012.

[31] Jeffrey Dean and Sanjay Ghemawat. Mapreduce: Sim-
plified data processing on large clusters. 2004.

[32] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li,
and Li Fei-Fei. Imagenet: A large-scale hierarchical
image database. In 2009 IEEE conference on computer
vision and pattern recognition, pages 248–255. Ieee,
2009.

[33] Xiao Ding, Yue Zhang, Ting Liu, and Junwen Duan.
Deep learning for event-driven stock prediction. In
Twenty-fourth international joint conference on artificial
intelligence, 2015.

[34] Nikoli Dryden, Roman Böhringer, Tal Ben-Nun, and
Torsten Hoefler. Clairvoyant prefetching for distributed
machine learning i/o. In Proceedings of the Interna-
tional Conference for High Performance Computing,
Networking, Storage and Analysis, pages 1–15, 2021.

[35] J Fombellida, I Martín-Rubio, S Torres-Alegre, and
D Andina. Tackling business intelligence with bioin-
spired deep learning. Neural Computing and Applica-
tions, pages 1–8, 2018.

[36] Google. YouTube-8M Segments Dataset. https://
research.google.com/youtube8m/.

[37] Sayed Hadi Hashemi, Sangeetha Abdu Jyothi, and
Roy H Campbell. Tictac: Accelerating distributed deep
learning with communication scheduling. arXiv preprint
arXiv:1803.03288, 2018.

[38] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian
Sun. Deep residual learning for image recognition. In
Proceedings of the IEEE conference on computer vision
and pattern recognition, pages 770–778, 2016.

[39] James B Heaton, Nick G Polson, and Jan Hendrik Witte.
Deep learning for finance: deep portfolios. Applied
Stochastic Models in Business and Industry, 33(1):3–12,
2017.

[40] Jan Heichler. An introduction to beegfs, 2014.

[41] M Shamim Hossain and Ghulam Muhammad. Envi-
ronment classification for urban big data using deep
learning. IEEE Communications Magazine, 56(11):44–
50, 2018.

[42] Jeremy Howard and Sylvain Gugger. Fastai: a layered
api for deep learning. Information, 11(2):108, 2020.

[43] Zilong Hu, Jinshan Tang, Ziming Wang, Kai Zhang,
Ling Zhang, and Qingling Sun. Deep learning for image-
based cancer detection and diagnosis- a survey. Pattern
Recognition, 83:134–149, 2018.

[44] Yanping Huang, Youlong Cheng, Ankur Bapna, Orhan
Firat, Dehao Chen, Mia Chen, HyoukJoong Lee, Jiquan
Ngiam, Quoc V Le, Yonghui Wu, and zhifeng Chen.
Gpipe: Efficient training of giant neural networks us-
ing pipeline parallelism. In H. Wallach, H. Larochelle,
A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett,
editors, Advances in Neural Information Processing Sys-
tems, volume 32. Curran Associates, Inc., 2019.

[45] Brody Huval, Tao Wang, Sameep Tandon, Jeff Kiske,
Will Song, Joel Pazhayampallil, Mykhaylo Andriluka,
Pranav Rajpurkar, Toki Migimatsu, Royce Cheng-Yue,
et al. An empirical evaluation of deep learning on high-
way driving. arXiv preprint arXiv:1504.01716, 2015.

[46] Tyler B Johnson and Carlos Guestrin. Training deep
models faster with robust, approximate importance sam-
pling. Advances in Neural Information Processing Sys-
tems, 31:7265–7275, 2018.

[47] Brigitte Juanals and Jean-Luc Minel. Categorizing air
quality information flow on twitter using deep learning
tools. In International Conference on Computational
Collective Intelligence, pages 109–118. Springer, 2018.

[48] Vanessa Isabell Jurtz, Alexander Rosenberg Johansen,
Morten Nielsen, Jose Juan Almagro Armenteros, Hen-
rik Nielsen, Casper Kaae Sønderby, Ole Winther, and
Søren Kaae Sønderby. An introduction to deep learning
on biological sequence data: examples and solutions.
Bioinformatics, 33(22):3685–3690, 2017.

[49] Jaret M Karnuta, Michael P Murphy, Bryan C Luu,
Michael J Ryan, Heather S Haeberle, Nicholas M Brown,
Richard Iorio, Antonia F Chen, and Prem N Ramkumar.
Artificial intelligence for automated implant identifica-
tion in total hip arthroplasty: A multicenter external val-
idation study exceeding two million plain radiographs.
The Journal of Arthroplasty, 2022.

[50] Angelos Katharopoulos and Francois Fleuret. Not all
samples are created equal: Deep learning with impor-
tance sampling. In Jennifer Dy and Andreas Krause,
editors, Proceedings of the 35th International Confer-
ence on Machine Learning, volume 80 of Proceedings of
Machine Learning Research, pages 2525–2534. PMLR,
10–15 Jul 2018.

USENIX Association 21st USENIX Conference on File and Storage Technologies 149

https://research.google.com/youtube8m/
https://research.google.com/youtube8m/

[51] Kate Keahey, Jason Anderson, Zhuo Zhen, Pierre Riteau,
Paul Ruth, Dan Stanzione, Mert Cevik, Jacob Colleran,
Haryadi S. Gunawi, Cody Hammock, Joe Mambretti,
Alexander Barnes, François Halbach, Alex Rocha, and
Joe Stubbs. Lessons learned from the chameleon testbed.
In Proceedings of the 2020 USENIX Annual Technical
Conference (USENIX ATC ’20). USENIX Association,
July 2020.

[52] Kate Keahey, Pierre Riteau, Dan Stanzione, Tim Cocker-
ill, Joe Mambretti, Paul Rad, and Paul Ruth. Chameleon:
a scalable production testbed for computer science re-
search. In Contemporary High Performance Computing,
pages 123–148. CRC Press, 2019.

[53] Mohammad Khan, Didrik Nielsen, Voot Tangkaratt,
Wu Lin, Yarin Gal, and Akash Srivastava. Fast and
scalable Bayesian deep learning by weight-perturbation
in Adam. In Jennifer Dy and Andreas Krause, editors,
Proceedings of the 35th International Conference on Ma-
chine Learning, volume 80 of Proceedings of Machine
Learning Research, pages 2611–2620. PMLR, 10–15
Jul 2018.

[54] Alex Krizhevsky, Geoffrey Hinton, et al. Learning mul-
tiple layers of features from tiny images. 2009.

[55] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton.
Imagenet classification with deep convolutional neural
networks. Advances in neural information processing
systems, 25:1097–1105, 2012.

[56] Abhishek Vijaya Kumar and Muthian Sivathanu. Quiver:
An informed storage cache for deep learning. In 18th
{USENIX} Conference on File and Storage Technolo-
gies ({FAST} 20), pages 283–296, 2020.

[57] Quoc V Le, Jiquan Ngiam, Adam Coates, Ahbik Lahiri,
Bobby Prochnow, and Andrew Y Ng. On optimization
methods for deep learning. In ICML, 2011.

[58] He Li, Kaoru Ota, and Mianxiong Dong. Learning iot
in edge: Deep learning for the internet of things with
edge computing. IEEE network, 32(1):96–101, 2018.

[59] Mu Li, Li Zhou, Zichao Yang, Aaron Li, Fei Xia,
David G Andersen, and Alexander Smola. Parameter
server for distributed machine learning. In Big Learning
NIPS Workshop, volume 6, page 2, 2013.

[60] Lizhi Liao, Heng Li, Weiyi Shang, and Lei Ma. An
empirical study of the impact of hyperparameter tuning
and model optimization on the performance properties
of deep neural networks. ACM Transactions on Software
Engineering and Methodology (TOSEM), 31(3):1–40,
2022.

[61] Ilya Loshchilov and Frank Hutter. Online batch selection
for faster training of neural networks. arXiv preprint
arXiv:1511.06343, 2015.

[62] Nimrod Megiddo and Dharmendra S Modha. {ARC}: A
{Self-Tuning}, low overhead replacement cache. In 2nd
USENIX Conference on File and Storage Technologies
(FAST 03), 2003.

[63] Sun Microsystems. Rfc1094: Nfs: Network file system
protocol specification, 1989.

[64] Riccardo Miotto, Fei Wang, Shuang Wang, Xiaoqian
Jiang, and Joel T Dudley. Deep learning for health-
care: review, opportunities and challenges. Briefings in
bioinformatics, 19(6):1236–1246, 2018.

[65] Jayashree Mohan, Amar Phanishayee, Ashish Raniwala,
and Vijay Chidambaram. Analyzing and mitigating data
stalls in dnn training. arXiv preprint arXiv:2007.06775,
2020.

[66] NVIDIA Corporation. nvidia-smi - NVIDIA
System Management Interface program. http:
//manpages.ubuntu.com/manpages/precise/
man1/alt-nvidia-current-smi.1.html.

[67] Yosuke Oyama, Naoya Maruyama, Nikoli Dryden, Erin
McCarthy, Peter Harrington, Jan Balewski, Satoshi Mat-
suoka, Peter Nugent, and Brian Van Essen. The case for
strong scaling in deep learning: Training large 3d cnns
with hybrid parallelism. IEEE Transactions on Parallel
and Distributed Systems, 32(7):1641–1652, 2020.

[68] Adam Paszke, Sam Gross, Francisco Massa, Adam
Lerer, James Bradbury, Gregory Chanan, Trevor Killeen,
Zeming Lin, Natalia Gimelshein, Luca Antiga, et al.
Pytorch: An imperative style, high-performance deep
learning library. In Advances in neural information
processing systems, pages 8026–8037, 2019.

[69] Christian Pinto, Yiannis Gkoufas, Andrea Reale,
Seetharami Seelam, and Steven Eliuk. Hoard: A dis-
tributed data caching system to accelerate deep learning
training on the cloud. arXiv preprint arXiv:1812.00669,
2018.

[70] Sarunya Pumma, Min Si, Wu-Chun Feng, and Pavan
Balaji. Scalable deep learning via i/o analysis and op-
timization. ACM Transactions on Parallel Computing
(TOPC), 6(2):1–34, 2019.

[71] Rajat Raina, Anand Madhavan, and Andrew Y Ng.
Large-scale deep unsupervised learning using graphics
processors. In Proceedings of the 26th annual interna-
tional conference on machine learning, pages 873–880,
2009.

150 21st USENIX Conference on File and Storage Technologies USENIX Association

http://manpages.ubuntu.com/manpages/precise/man1/alt-nvidia-current-smi.1.html
http://manpages.ubuntu.com/manpages/precise/man1/alt-nvidia-current-smi.1.html
http://manpages.ubuntu.com/manpages/precise/man1/alt-nvidia-current-smi.1.html

[72] Viktor Rausch, Andreas Hansen, Eugen Solowjow,
Chang Liu, Edwin Kreuzer, and J Karl Hedrick. Learn-
ing a deep neural net policy for end-to-end control of
autonomous vehicles. In 2017 American Control Con-
ference (ACC), pages 4914–4919. IEEE, 2017.

[73] Sebastien Godard. sar(1) - Linux Man Page, 2021.
https://linux.die.net/man/1/sar.

[74] Shaohuai Shi, Qiang Wang, Xiaowen Chu, and Bo Li.
A dag model of synchronous stochastic gradient descent
in distributed deep learning. In 2018 IEEE 24th Interna-
tional Conference on Parallel and Distributed Systems
(ICPADS), pages 425–432. IEEE, 2018.

[75] Shaohuai Shi, Qiang Wang, Xiaowen Chu, Bo Li, Yang
Qin, Ruihao Liu, and Xinxiao Zhao. Communication-
efficient distributed deep learning with merged gradient
sparsification on gpus. In IEEE INFOCOM 2020-IEEE
Conference on Computer Communications, pages 406–
415. IEEE, 2020.

[76] Karen Simonyan and Andrew Zisserman. Very deep con-
volutional networks for large-scale image recognition.
arXiv preprint arXiv:1409.1556, 2014.

[77] Zhenheng Tang, Shaohuai Shi, Xiaowen Chu, Wei Wang,
and Bo Li. Communication-efficient distributed deep
learning: A comprehensive survey. arXiv preprint
arXiv:2003.06307, 2020.

[78] Arnold Tunick. On benchmarking multiple gpu com-
puting resources for faster training of deep neural net-
works. Technical report, CCDC Army Research Labo-
ratory Adelphi United States, 2020.

[79] Jinjiang Wang, Yulin Ma, Laibin Zhang, Robert X Gao,
and Dazhong Wu. Deep learning for smart manufactur-
ing: Methods and applications. Journal of Manufactur-
ing Systems, 48:144–156, 2018.

[80] Lipeng Wang, Songgao Ye, Baichen Yang, Youyou Lu,
Hequan Zhang, Shengen Yan, and Qiong Luo. Diesel: A
dataset-based distributed storage and caching system for
large-scale deep learning training. In 49th International
Conference on Parallel Processing-ICPP, pages 1–11,
2020.

[81] Wei Wen, Cong Xu, Feng Yan, Chunpeng Wu, Yandan
Wang, Yiran Chen, and Hai Li. Terngrad: Ternary gradi-
ents to reduce communication in distributed deep learn-
ing. arXiv preprint arXiv:1705.07878, 2017.

[82] Wencong Xiao, Romil Bhardwaj, Ramachandran Ram-
jee, Muthian Sivathanu, Nipun Kwatra, Zhenhua Han,
Pratyush Patel, Xuan Peng, Hanyu Zhao, Quanlu Zhang,
et al. Gandiva: Introspective cluster scheduling for deep
learning. In 13th {USENIX} Symposium on Operat-
ing Systems Design and Implementation ({OSDI} 18),
pages 595–610, 2018.

[83] Matei Zaharia, Reynold S Xin, Patrick Wendell, Tatha-
gata Das, Michael Armbrust, Ankur Dave, Xiangrui
Meng, Josh Rosen, Shivaram Venkataraman, Michael J
Franklin, et al. Apache spark: a unified engine for
big data processing. Communications of the ACM,
59(11):56–65, 2016.

[84] Xiao Zeng, Ming Yan, and Mi Zhang. Mercury: Effi-
cient on-device distributed dnn training via stochastic
importance sampling. In Proceedings of the 19th ACM
Conference on Embedded Networked Sensor Systems,
pages 29–41, 2021.

[85] Zhao Zhang, Lei Huang, Uri Manor, Linjing Fang,
Gabriele Merlo, Craig Michoski, John Cazes, and Niall
Gaffney. Fanstore: Enabling efficient and scalable i/o
for distributed deep learning, 2018.

[86] Zhao Zhang, Lei Huang, J Gregory Pauloski, and Ian T
Foster. Efficient i/o for neural network training with
compressed data. In 2020 IEEE International Parallel
and Distributed Processing Symposium (IPDPS), pages
409–418. IEEE, 2020.

[87] Ke Zhou, Si Sun, Hua Wang, Ping Huang, Xubin He,
Rui Lan, Wenyan Li, Wenjie Liu, and Tianming Yang.
Demystifying cache policies for photo stores at scale:
A tencent case study. In Proceedings of the 2018 Inter-
national Conference on Supercomputing, ICS ’18, page
284–294, New York, NY, USA, 2018. Association for
Computing Machinery.

[88] Yue Zhu, Fahim Chowdhury, Huansong Fu, Adam
Moody, Kathryn Mohror, Kento Sato, and Weikuan Yu.
Entropy-aware i/o pipelining for large-scale deep learn-
ing on hpc systems. In 2018 IEEE 26th International
Symposium on Modeling, Analysis, and Simulation of
Computer and Telecommunication Systems (MASCOTS),
pages 145–156. IEEE, 2018.

USENIX Association 21st USENIX Conference on File and Storage Technologies 151

https://linux.die.net/man/1/sar

Intelligent Resource Scheduling for Co-located Latency-critical Services:
A Multi-Model Collaborative Learning Approach

Lei Liu1∗, Xinglei Dou2, Yuetao Chen2

1Beihang University; 2ICT, CAS; Sys-Inventor Lab

Abstract
Latency-critical services have been widely deployed in cloud
environments. For cost-efficiency, multiple services are usu-
ally co-located on a server. Thus, run-time resource schedul-
ing becomes the pivot for QoS control in these complicated
co-location cases. However, the scheduling exploration space
enlarges rapidly with the increasing server resources, making
schedulers unable to provide ideal solutions quickly and effi-
ciently. More importantly, we observe that there are “resource
cliffs” in the scheduling exploration space. They affect the
exploration efficiency and always lead to severe QoS fluctua-
tions in previous schedulers. To address these problems, we
propose a novel ML-based intelligent scheduler – OSML. It
learns the correlation between architectural hints (e.g., IPC,
cache misses, memory footprint, etc.), scheduling solutions
and the QoS demands. OSML employs multiple ML models
to work collaboratively to predict QoS variations, shepherd
the scheduling, and recover from QoS violations in compli-
cated co-location cases. OSML can intelligently avoid re-
source cliffs during scheduling and reach an optimal solution
much faster than previous approaches for co-located applica-
tions. Experimental results show that OSML supports higher
loads and meets QoS targets with lower scheduling overheads
and shorter convergence time than previous studies.

1 Introduction
Cloud applications are shifting from monolithic architec-
tures to loosely-coupled designs, consisting of many latency-
critical (LC) services (e.g., some microservices, interactive
services) with strict QoS requirements [18,19,52,53]. Many
cloud providers, including Amazon, Alibaba, Facebook, Google,
and LinkedIn, employ this loosely-coupled design to improve
productivity, scalability, functionality, and reliability of their
cloud systems [2,3,18,52].

QoS-driven resource scheduling faces more challenges in
this era. The cost-efficiency policy drives providers to co-
locate as many applications as possible on a server. However,
these co-located services exhibit diverse behaviors across the
storage hierarchy, including multiple interactive resources
such as CPU cores, cache, memory/IO bandwidth, and main
memory banks. These behaviors also can be drastically dif-
ferent from demand to demand and change within seconds.
Moreover, with the increasing number of cores, more threads
contend for the shared LLC (last-level cache) and memory
bandwidth. Notably, these shared resources interact with
each other [32,33,45,80]. All these issues make resource
∗Corresponding author (PI): lei.liu@zoho.com; liulei2010@buaa.edu.cn.

scheduling for co-located LC services more complicated and
time-consuming. Moreover, in reality, end-users keep increas-
ing demands for quick responses from the cloud [15,47,53].
According to Amazon’s estimation, even if the end-users
experience a 1-second delay, they tend to abort the transac-
tions, translating to $1.6 billion loss annually [1]. Briefly,
unprecedented challenges are posed for resource scheduling
mechanisms [8,10,31,47,52].

Some previous studies [17,31,33,45,61] design clustering
approaches to allocate LLC or LLC together with main mem-
ory bandwidth to cores for scheduling single-threaded appli-
cations. Yet, they are not suitable in cloud environments, as
the cloud services often have many concurrent threads and
strict QoS constraints (i.e., latency-critical). Alternatively,
the existing representative studies either use heuristic algo-
rithms – increasing/decreasing one resource at a time and
observing the performance variations [10] or use learning-
based algorithms (e.g., Bayesian optimization [46]) in a rela-
tively straightforward manner. The studies in [10,46] show
that scheduling five co-located interactive services to meet
certain QoS constraints can take more than 20 seconds on
average. Existing schedulers still have room for improve-
ment in scheduling convergence time, intelligence, and how
to schedule complicated interactive resources (e.g., parallel
computing units and complex memory/storage hierarchies) in
a timely fashion. Moreover, the existing schedulers cannot
easily avoid “resource cliffs”, i.e., decreasing a resource only
slightly during scheduling leads to a significant QoS slow-
down. To the best of our knowledge, our community has been
expecting new directions on developing resource-scheduling
mechanisms to handle co-located LC services [16,30,31,45].

To this end, we design OSML, a novel machine learning
(ML) based resource scheduler for LC services on large-scale
servers. Using ML models significantly improves scheduling
exploration efficiency for multiple co-located cloud services
and can handle the complicated resource sharing, under/over-
provision cases timely. ML has achieved tremendous suc-
cess in improving speech recognition [54], benefiting image
recognition [25], and helping the machine to beat the human
champion at Go [13,24,51]. In OSML, we make progress
in leveraging ML for resource scheduling, and we make the
following contributions.
(1) Investigation in RCliff for Multiple Resources during
Scheduling. In the context of cloud environment, we study
resource cliff (RCliff, i.e., reducing a resource only slightly
leads to a significant QoS slowdown) for computing and cache
resources. More importantly, we show that RCliffs commonly

USENIX Association 21st USENIX Conference on File and Storage Technologies 153

Table 1: Latency-critical (LC) services, including micro-/interactive
services [18,19,52,68,46]. The max load - max RPS - is with the
99th percentile tail latency QoS target [10,18,46,52].

LC service Domain RPS (Requests Per Second)
Img-dnn [62] Image recognition 2000,3000,4000,5000,6000 (Max)
Masstree [62] Key-value store 3000,3400,3800,4200,4600

Memcached [65] Key-value store 256k,512k,768k,1024k,1280k
MongoDB [64] Persistent database 1000,3000,5000,7000,9000

Moses [62] RT translation 2200,2400,2600,2800,3000
Nginx [66] Web server 60k,120k,180k,240k,300k

Specjbb [62] Java middleware 7000,9000,11000,13000,15000
Sphinx [62] Speech recognition 1,4,8,12,16
Xapian [62] Online search 3600,4400,5200,6000,6800
Login [68] Login 300,600,900,1200,1500
Ads [68,52] Online renting ads 10,100,1000

exist in many widely used LC services and challenge existing
schedulers (Sec.3.3). Furthermore, we show ML can be an
ideal approach that benefits scheduling (Sec.4.4).
(2) Collaborative ML Models for Intelligent Scheduling.
OSML is an ML-based scheduler that intelligently schedules
multiple interactive resources to meet co-located services’ QoS
targets. OSML learns the correlation between architectural
hints (e.g., IPC, cache misses, memory footprint, etc.), opti-
mal scheduling solutions, and the QoS demands. It employs
MLP models to avoid RCliffs intelligently, thus avoiding the
sudden QoS slowdown often incurred by the RCliffs in prior
schedulers; it predicts the QoS variations and resource margins,
and then delivers appropriate resource allocations. It leverages
an enhanced DQN to shepherd the allocations and recover from
the QoS violation and resource over-provision cases. Moreover,
as OSML’s models are lightweight and their functions are clearly
defined, it is easy to locate the problems and debug them.
(3) An Open-sourced Data Set for Low-overhead ML. We have
collected the performance traces for widely deployed LC services
(in Table 1), covering 62,720,264 resource allocation cases that
contain around 2-billion samples (Sec.4). These data have a
rich set of information, e.g., the RCliffs for multiple resources;
the interactions between workload features and the mainstream
architectures. Our models can be trained and generalized with
these data and then used on new platforms with low-overhead
transfer learning. People can study the data set and train their
models without a long period for data collection.
(4) Real Implementation and Detailed Comparisons. We
implement OSML based on latest Linux. OSML is designed
as a co-worker of the OS scheduler located between the OS
kernel and the user layer. We compare OSML with the most
related open-source studies [10,46] and show the advantages.

OSML captures the applications’ online behaviors, for-
wards them to the ML models running on CPU or GPU, and
schedules resources accordingly. Compared with [10,46],
OSML takes 36~55% less time to meet the QoS targets; and
supports 10~50% higher loads in 58% cases where Moses,
Img-dnn, and Xapian can be co-scheduled in our experiments.
Its ML models have low run-time overheads. OSML project
and its ecological construction receive support from industry
and academia; a version for research will be open-sourced via

Table 2: Our platform specification vs. a server in 2010~14 [80].
Conf. / Servers Our Platform Server (2010s)

CPU Model Intel Xeon E5-2697 v4 Intel i7-860
Logical Processor Cores 36 Cores (18 phy. cores) 8 Cores (4 phy. cores)

Processor Speed 2.3GHz 2.8GHz
Main Memory /
Channel / BW

256GB, 2400MHz DDR4 /
4 Channels / 76.8GB/s

8GB, 1600MHz DDR3 /
2 Channels / 25.6GB/s

Private L1 & L2
Cache Size 32KB and 256KB 32KB and 256KB

Shared L3 Cache Size 45MB - 20 ways 8MB - 16 ways
Disk 1TB,7200 RPM,HD 500GB,5400 RPM,HD

GPU NVIDIA GP104
[GTX 1080], 8GB Memory N/A

https://github.com/Sys-Inventor-Lab/AI4System-OSML.

2 Background and Motivation
The cloud environment has a trend towards a new model
[3,18,52], in which cloud applications comprise numerous
distributed LC services (i.e., micro/interactive services), such
as key-value storing, database serving, and business applica-
tions serving [18,19]. Table 1 includes some widely used ones,
and they form a significant fraction of cloud applications [18].
These services have different features and resource demands.

In terms of the datacenter servers, at present, new servers
can have an increased number of cores, larger LLC capac-
ity, larger main memory capacity, higher bandwidth, and the
resource scheduling exploration space becomes much larger
than ever before as a result. Table 2 compares the two typical
servers used at different times. On the one hand, although
modern servers can have more cores and memory resources
than ever before, they are not fully exploited in today’s cloud
environments. For instance, in Google’s datacenter, the CPU
utilization is about 45~53% and memory utilization ranges
from 25~77% during 25 days, while Alibaba’s cluster ex-
hibits a lower and unstable trend, i.e., 18~40% for CPU and
42~60% for memory in 12 hours [32,49], indicating that a
lot of resources are wasted. On the other hand, the larger re-
source scheduling exploration space, which consists of more
diverse resources, prohibits the schedulers from achieving
the optimal solution quickly. Additionally, cloud applications
can have dozens of concurrent threads [10,46]. When several
cloud applications run on a server, they share and contend
resources across multiple resource layers – cores, LLC, mem-
ory bandwidth/banks. Previous studies show they may incur
severe performance degradation and unpredictable QoS viola-
tions, and propose the scheduling approaches at architecture
[9,23,44], OS [31,45,50,80], and user-level [10,37,38]. Yet,
do they perform ideally for scheduling co-located LC services
on modern datacenter servers?

3 Resource Scheduling for LC Services
To answer the above question, we study the LC services
(Table 1) that are widely deployed in cloud environments.

3.1 Understanding the LC Services - Resource Cliff
We study how sensitive these LC services are to the criti-
cal resources, e.g., the number of cores and LLC capacity,

154 21st USENIX Conference on File and Storage Technologies USENIX Association

Figure 1: The resource scheduling exploration space for cores and LLC ways. All services here are with 36 threads. These figures show
the sensitivity to resource allocation under different policies. Each col./row represents a specific number of LLC ways/cores allocated to an
application. Each cell denotes the LC service’s response latency under the given number of cores and LLC ways. The Redline highlights the
RCliff (can be obtained by selecting the knee solution [69]). The green color cells show allocation policies that bring better performance (low
response latency). OAA (Optimal Allocation Area) is also illustrated for each LC service. We test all of the LC services in Table 1, and we find
the RCliff and OAA are always existing, though the RPS varies [79]. We only show several of them for the sake of saving space.
on a commercial platform (“our platform” in Table 2). For
Moses, as illustrated in Figure 1-a, with the increasing number
of cores, more threads are mapped on them simultaneously.
Meanwhile, for a specific amount of cores, more LLC ways
can benefit performance. Thus, we observe the response la-
tency is low when computing and LLC resources are ample
(i.e., below 10ms in the area within green color). The overall
trends are also observed from other LC services.

However, we observe the Cliff phenomenon for these ser-
vices. In Figure 1-a, in the cases where 6 cores are allocated
to Moses, the response latency is increased significantly from
34ms to 4644ms if merely one LLC way is reduced (i.e.,
from 10 ways to 9 ways). Similar phenomena also happen
in cases where computing resources are reduced. As slight
resource re-allocations bring a significant performance slow-
down, we denote this phenomenon as Resource Cliff (RCliff).
It is defined as the resource allocation cases that could in-
cur the most significant performance slowdown if resources
(e.g., core, cache) are deprived via a fine-grain way in the
scheduling exploration space. Take Moses as an example,
on the RCliff (denoted by the red box in Figure 1-a), there
would be a sharp performance slowdown if only one core or
one LLC way (or both) is deprived. Figure 1-b and c show
RCliffs for Img-dnn and MongoDB, respectively. They ex-
hibit computing-sensitive features and have RCliff only for
cores. From another angle, RCliff means that a little bit more
resources will bring significant performance improvement.
Figure 1-a shows that Moses exhibits RCliff for both core and
LLC. Moreover, we test the services in Table 1 across various
RPS and find the RCliffs always exist, though the RCliffs
vary (8.8% on average) according to different RPS.

The underlying reason for the cache cliff is locality; for the
core cliff, the fundamental reason is on queuing theory - the
latency will increase drastically when the request arrival rate
exceeds the available cores. RCliff alerts the scheduler not to
allocate resources close to it because it is “dangerous to fall off
the cliff” and incurs a significant performance slowdown, i.e.,
even a slight resource reduction can incur a severe slowdown.
Notably, in Figure 1, we highlight each LC service’s Optimal
Allocation Area (OAA) in the scheduling exploration space,

Figure 2: OAA exists regardless of the num. of concurrent threads.
defined as the ideal number of allocated cores and LLC ways
to bring an acceptable QoS. More resources than OAA cannot
deliver more significant performance, but fewer resources
lead to the danger of falling off the RCliff. OAA is the goal
that schedulers should achieve.

3.2 Is OAA Sensitive to the Number of Threads?
In practice, an LC service may have many threads for higher
performance. Therefore, we come up with the question: is
the OAA sensitive to the number of threads, i.e., if someone
starts more threads, will the OAA change?

To answer this question, for a specific LC service, we start
a different number of threads and map them across a different
number of cores (the num. of threads can be larger than the
num. of cores). Through the experiments, we observe - (i)
More threads do not necessarily bring more benefits. Take
Moses as an example, when more threads are started (e.g.,
20/28/36) and mapped across a different number of cores, the
overall response latency can be higher (as illustrated in Figure
2). The underlying reason lies in more memory contentions
at memory hierarchy and more context switch overheads,
leading to a higher response latency [20,36]. (ii) The OAA
is not sensitive to the number of concurrent threads. For
Moses in Figure 2, even if 20/28/36 threads are mapped to
10~25 cores, around 8/9-core cases always perform ideally.
Other LC services in Table 1 also show a similar phenomenon,
though their OAAs are different for different applications.

In practice, if the QoS for a specific LC service is satisfied,
LLC ways should be allocated as less as possible, saving
LLC space for other applications. Similarly, we also try to
allocate fewer cores for saving computing resources. Here,
we conclude that the OAA is not sensitive to the number

USENIX Association 21st USENIX Conference on File and Storage Technologies 155

Table 3: The input parameters for ML models.
Feature Description Models

IPC Instructions per clock A/A’/B/B’/C
Cache Misses LLC misses per second A/A’/B/B’/C

MBL Local memory bandwidth A/A’/B/B’/C
CPU Usage The sum of each core’s utilization A/A’/B/B’/C

Virt. Memory Virtual memory in use by an app A/A’/B/B’
Res. Memory Resident memory in use by an app A/A’/B/B’

Allocated Cores The number of allocated cores A/A’/B/B’/C
Allocated Cache The capacity of allocated cache A/A’/B/B’/C
Core Frequency Core Frequency during run time A/A’/B/B’/C
QoS Slowdown Percentage of QoS slowdown B
Expected Cores Expected cores after deprivation B’
Expected Cache Expected cache after deprivation B’
Cores used by N. Cores used by Neighbors A’/B/B’
Cache used by N. Cache capacity used by Neighbors A’/B/B’
MBL used by N. Memory BW used by Neighbors A’/B/B’
Resp. Latency Average latency of a LC service C

of threads. We should further reveal: how do the existing
schedulers perform in front of OAAs and RCliffs?

3.3 Issues the Existing Schedulers May Meet
We find three main shortcomings in the existing schedulers
when dealing with OAAs and RCliffs. (1) Entangling with
RCliffs. Many schedulers often employ heuristic scheduling
algorithms, i.e., they increase/reduce resources until the moni-
tor alerts that the system performance is suffering a significant
change (e.g., a severe slowdown). Yet, these approaches could
incur unpredictable latency spiking. For example, if the current
resource allocation for an LC service is in the base of RCliff
(i.e., the yellow color area in Figure 1-a/b/c), the scheduler
has to try to achieve OAA. However, as the scheduler doesn’t
know the “location” of OAA in the exploration space, it has
to increase resources step by step in a fine-grain way, thus the
entire scheduling process from the base of the RCliff will incur
very high response latency. For another example, if the current
resource allocation is on the RCliff or close to RCliff, a slight
resource reduction for any purpose could incur a sudden and
sharp performance drop for LC services. The previous efforts
[10,32,50,53] find there would be about hundreds/thousands of
times latency jitter, indicating the QoS cannot be guaranteed
during these periods. Thus, RCliffs should not be neglected
when designing a scheduler. (2) Unable to accurately and
simultaneously schedule a combination of multiple interac-
tive resources (e.g., cores, LLC ways) to achieve OAAs in
low overheads. Prior studies [10,31,32,45] show that the core
computing ability, cache hierarchy, and memory bandwidth are
interactive factors for resource scheduling. Solely considering
a single dimension in scheduling often leads to sub-optimal
QoS. However, the existing schedulers using heuristic or model-
based algorithms usually schedule one dimension resource at
a time and bring high overheads on scheduling multiple inter-
active resources. For example, PARTIES [10] takes around
20~30 seconds on average (up to 60 seconds in the worst cases)
to find ideal allocations when 3~6 LC services are co-running.
The efforts in [16,41,42] also show the heuristics inefficiency
due to the high overheads on scheduling various resources with

complex configurations. (3) Unable to provide accurate QoS
predictions. Therefore, the scheduler can hardly balance the
global QoS and resource allocations across all co-located appli-
cations, leading to QoS violations or resource over-provision.

An ideal scheduler should avoid the RCliff and quickly achieve
the OAA from any positions in the scheduling space. We claim
it is time to design a new scheduler, and using ML can be a good
approach to handle such complicated cases with low overheads.

4 Leveraging ML for Scheduling
We design a new resource scheduler - OSML. It differs from
the previous studies in the following ways. We divide the re-
source scheduling for co-located services into several routines
and design ML models to handle them, respectively. These
models work collaboratively in OSML to perform schedul-
ing. OSML uses data-driven static ML models (Model-A/B)
to predict the OAA/RCliff, and balances the QoS and re-
source allocations among co-located LC services, and uses
the reinforcement learning model (Model-C) to shepherd the
allocations dynamically. Moreover, we collect extensive real
traces for widely deployed LC services.

4.1 Model-A: Aiming OAA
Model-A Description. The neural network used in Model-A
is a 3-layer multi-layer perceptron (MLP); each layer is a
set of nonlinear functions of a weighted sum of all outputs
that are fully connected from the prior one [21,24]. There
are 40 neurons in each hidden layer. There is a dropout layer
with a loss rate of 30% behind each fully connected layer
to prevent overfitting. For each LC service, the inputs of
the MLP include 9 items in Table 3 and the outputs include
the OAA for multiple interactive resources, OAA bandwidth
(bandwidth requirement for OAA), and the RCliff. Model-A
has a shadow – A’, which has the same MLP structure and 12
input parameters (Table 3), providing solutions when multiple
LC services are running together.

Model-A Training. Collecting training data is an offline
job. We have collected the performance traces that involve
the parameters in Table 3 for the LC services in Table 1 on
“our platform” in Table 2. The parameters are normalized
into [0,1] according to the function: Normalized_Feature =
(Feature−Min)/(Max−Min). Feature is the original value;
Max and Min are predefined according to different metrics.

For each LC service with every common RPS demand,
we sweep 36 threads to 1 thread across LLC allocation poli-
cies ranging from 1 to 20 ways and map the threads on a
certain number of cores and collect the performance trace
data accordingly. In each case, we label the corresponding
OAA, RCliff and OAA bandwidth. For example, Figure 3
shows a data collection case where 8 threads are mapped
onto 7 cores with 4 LLC ways. We feed the LC services
with diverse RPS (Table 1), covering most of the common
cases. Moreover, to train Model-A’s shadow (A’), we map LC
services on the remaining resources in the above process and
get the traces for co-location cases. Note that the resources

156 21st USENIX Conference on File and Storage Technologies USENIX Association

Figure 3: Model-A data collection. Figure 4: Model-B training.
are partitioned among applications. We test comprehensive
co-location cases for LC services in Table 1, and find the LC
services’ RCliffs vary from 2.8% to 38.9%, and OAAs vary
from 5.6% to 36.1%, respectively, when multiple LC services
are co-running. Finally, we collect 43,299,135 samples (data
tuples), covering 1,308,296 allocation cases with different
numbers of cores, LLC ways, and bandwidth allocations. A
large amount of traces may lead to higher accuracy for ML
models. The workload characteristics are converted to traces
consisting of hardware parameters used for fitting and training
MLP to provide predictions.

4.2 Model-B: Balancing QoS and Resources
Model-B Description. Model-B employs an MLP with the
same structure in Model-A’ plus one more input item, i.e.,
QoS slowdown (Table 3). Model-B outputs the resources
that a service can be deprived of under allowable QoS slow-
down. As the computing units and memory resource can
be fungible [10], Model-B’s outputs include three policies,
i.e., <cores, LLC ways>, <cores dominated, LLC ways> and
<cores, LLC ways dominated>, respectively. The tuple items
are the number of cores, LLC ways deprived and reallocated
to others with the allowable QoS slowdown. The term “cores
dominated” indicates the policy using more cores to trade the
LLC ways, and vice versa. The allowable QoS slowdown
is determined according to the user requirement or the LC
services’ priority and controlled by the OSML’s central logic.
We denote Model-B’s outputs as B-Points.

Model-B trades QoS for resources. For example, when an
LC service (E) comes to a server that already has 4 co-located
services, OSML enables Model-A’ to obtain <n+, m+>, which
denotes at least n more cores and m more LLC ways should
be provided to meet E’s QoS. Then, OSML enables Model-B
and uses the allowable QoS slowdown as an input to infer B-
Points for obtaining resources from other co-located services.
B-Points include the “can be deprived” resources from E’s
neighbors with the allowable QoS slowdown. Finally, OSML
finds the best solution to match <n+, m+> with B-Points,
which has a minimal impact on the co-located applications’
current allocation state. Detailed logic is in Algo._1. Besides,
we design Model-B’ (a shadow of Model-B) to predict how
much QoS slowdown will suffer if a certain amount of re-
sources is deprived of a specific service. Model-B’ has an
MLP with the same structure in Model-A’ plus the items that
indicate the remaining cache ways and cores after deprivation.

Figure 5: Model-C in a nutshell.
Model-B Training. For training Model-B and B’, we

reduce the allocated resources for a specific LC service from
its OAA by fine-grain approaches, as illustrated in Figure
4. The reduction has three angles, i.e., horizontal, oblique,
and vertical, i.e., B-Points include <cores dominated, LLC
ways>, <cores, LLC ways>, <cores, LLC ways dominated>,
respectively. For each fine-grain resource reduction step, we
collect the corresponding QoS slowdowns and then label them
as less equal to (≤) 5%, 10%, 15%, and so on, respectively.
Examples are illustrated in Figure 4, which shows the B-
Points with the corresponding QoS slowdown. We collect the
training data set for every LC service in Table 1. The data set
contains 65,998,227 data tuples, covering 549,987 cases.

Model-B Function. We design a new loss function:

L =
1
n

n

∑
t=1

(
yt

yt + c
× (st −yt)

)2

,

in which st is the prediction output value of Model-B, yt is the
labeled value in practice, and ‘c’ is a constant that is infinitely
close to zero. We multiply the difference between st and yt by

yt
yt+c for avoiding adjusting the weights during backpropaga-
tion in the cases where yt = 0 and yt

yt+c = 0 caused by some
non-existent cases (we label the non-existent cases as 0, i.e.,
yt = 0, indicating we don’t find a resource-QoS trading policy
in the data collection process).

4.3 Model-C: Handling the Changes On the Fly
Model-C Description. Model-C corrects the resource
under-/over-provision and conducts online training. Fig-
ure 5 shows the Model-C in a nutshell. Model-C’s core
component is an enhanced Deep Q-Network (DQN) [43],
consisting of two neural networks, i.e., Policy Network
and Target Network. The Policy and Target Network em-
ploy the 3-layer MLP, and each hidden layer has 30 neu-
rons. Policy Network’s inputs consist of the parameters
in Table 3, and the outputs are resource scheduling ac-
tions (e.g., reducing/increasing a specific number of cores
or LLC ways) and the corresponding expectations (defined
as Q(action)). These actions numbered 0~48 are defined
as Action_Function:{< m,n > |m ∈ [−3,3],n ∈ [−3,3]}, in
which a positive m denotes allocating m more cores (i.e., add
operation) for an application and a negative m means depriv-
ing it of m cores (i.e., sub operation); n indicates the actions
on LLC ways. Figure 5 illustrates Model-C’s logic. The
scheduling action with the maximum expectation value (i.e.,

USENIX Association 21st USENIX Conference on File and Storage Technologies 157

the action towards the best solution) will be selected in ①
and executed in ②. In ③, Model-C will get the Reward value
according to the Reward Function. Then, the tuple <Status,
Action, Reward, Status’> will be saved in the Experience
Pool in ④, which will be used during online training. The
terms Status and Status’ denote system’s status described by
the parameters in Table 3 before and after the Action is taken.
Model-C can quickly have the ideal solutions in practice
(about 2 or 3 actions). Please note that in ①, Model-C might
randomly select an Action instead of the best Action with a
5% chance. By doing so, OSML avoids falling into a local
optimum [43]. These random actions have a 44% chance
of causing QoS violations when Model-C reduces resources.
But OSML can handle the QoS violations by withdrawing the
action (line 9 in Algo._3).

Model-C’s Reward Function. The reward function of
Model-C is defined as follow:
If Latencyt−1 > Latencyt :

Rt = log(1+Latencyt−1 −Latencyt)− (∆CoreNum+∆CacheWay)
If Latencyt−1 < Latencyt :

Rt =− log(1+Latencyt −Latencyt−1)− (∆CoreNum+∆CacheWay)
If Latencyt−1 = Latencyt :

Rt =−(∆CoreNum+∆CacheWay),
where Latencyt−1 and Latencyt denote the latency in previous
and current status, respectively; ∆CoreNum and ∆CacheWay
represent the changes in the number of cores and LLC ways,
respectively. This function gives higher reward and expec-
tation to Action that brings less resource usage and lower
latency. Thus, Model-C can allocate appropriate resources.
Algo._2 and 3 show the logic on using Model-C in detail.

Offline Training. A training data tuple includes Status,
Status’, Action and Reward, which denote the current status
of a LC service, the status after these actions are conducted
(e.g., reduce several cores or allocate more LLC ways) and
the reward calculated using the above functions, respectively.

To create the training data set for Model-C, we resort to
the data set used in Model-A training. The process is as
follows. Two tuples in Model-A training data set are selected
to denote Status and Status’, and we further get the differences
of the resource allocations between the two status (i.e., the
actions that cause the status shifting). Then, we use the reward
function to have the reward accordingly. These 4 values form
a specific tuple in Model-C training data set. In practice, as
there are a large number of data tuples in Model-A training
data set, it is impossible to try every pair of tuples in the
data set, we only select two tuples from resource allocation
policies that have less than or equal to 3 cores, or 3 LLC
ways differences. Moreover, we also collect the training data
in the cases where cache way sharing happens and preserve
them in the experience pool. Therefore, Model-C can work
in resource-sharing cases. To sum up, we have 1,521,549,190
tuples in Model-C training data set.

Online Training. Model-C collects online traces. The
training flow is in the right part of Figure 5. Model-C ran-
domly selects some data tuples (200 by default) from the

Table 4: The Summary of ML models in OSML.

ML Model Features Model
Size Loss Function Gradient

Descent
Activation
Function

A MLP 9 144 KB Mean Square
Error (MSE) Adam

Optimizer ReLU
A’ MLP 12 155 KB
B MLP 13 110 KB Modified MSE
B’ MLP 14 106 KB MSE
C DQN 8 141 KB Modified MSE RMSProp

Experience Pool. For each tuple, Model-C uses the Policy
Network to get the Action’s expectation value (i.e., Q(Action)
[43]) with the Status. In Model-C, the target of the Ac-
tion’s expectation value is the Reward observed plus the
weighted best expectation value of the next status (i.e., Sta-
tus’). As illustrated in Figure 5, Model-C uses the Target
Network to have the expectation values of Status’ for the
actions in Action_Function and then finds the best one, i.e.,
Max(Q(Action′)). We design a new Loss Function based on
MSE: (Reward+ γMax(Q(Action′))−Q(Action))2. It helps
the Policy Network predict closer to the target. The Policy
Network is updated during online training. The Target Net-
work’s weights are synchronized periodically with the Policy
Network’s weights. Doing so enables the Target Network
to provide stable predictions for the best expectation value
of Status’ within a predefined number of time steps, thus
improving the stability of the training and prediction.

4.4 Discussions on the design of ML Models
(1) Why using MLPs. Table 4 characterizes the ML models
used in OSML. We employ three-layered MLPs in Model-
A and B, because they can fit continuous functions with an
arbitrary precision given a sufficient number of neurons in
each layer [67], and we can use extensive training data to im-
prove the accuracy of MLPs for predicting OAAs and RCliffs.
Moreover, after offline training, using MLPs brings negligi-
ble run-time overheads to OSML. (2) Why do we need the
Three models? We divide the OSML’s scheduling logic into
three parts, which the three models cover, respectively. Models
work in different scheduling phases, and no single model can
handle all cases. For example, model-A predicts the RCliffs
and OAAs; Model-B predicts the QoS variations and resource
margins in co-location cases. DQN in Model-C learns online
to shepherd the scheduling results from Model-A/B. They are
necessary and work cooperatively to cover the main schedul-
ing cases. Moreover, they are easier to generalize than other
approaches, e.g., a table lookup approach (Sec.6.4). Why Not
Only use the online learning Model-C? Model-C uses DQN
that depends on the start points. It starts with Model-A/B’s
outputs to avoid exploring the whole (large) scheduling space.
Without the approximate OAA provided by Model-A for many
unseen cases, only using Model-C will incur more schedul-
ing actions (overheads). (3) Insights on Generalization for
Unseen apps and New servers. (i) We use “hold-out cross
validation”, i.e., the training data (70% of the whole data set)
excludes the testing data (30%) for each LC service. (ii) We
train models with extensive representative traces from many

158 21st USENIX Conference on File and Storage Technologies USENIX Association

Figure 6: The overview of the system design of OSML.
typical services (e.g., memory/CPU intensive, random memory
access, etc. [10,46]), fitting the correlation between archi-
tectural hints for mainstream features (e.g., IPC, cache miss,
memory footprint, CPU/LLC utilization and MBL), OAA, and
the QoS demands. For instance, the spearman correlation co-
efficient is 0.571, 0.499, and -0.457 between OAA and cache
miss, MBL, and IPC, respectively. On different platforms or
for new/unseen applications, these numbers might be varied;
however, this correlation trend is not changed, enabling OSML
to generalize to other situations. Even for errors caused by de-
viations from the training dataset for unseen applications/new
platforms, model-C can learn online and correct them. (iii)
Using transfer learning, collecting new traces on a new server
for several hours will make OSML work well for it (refer to
Sec.6.4). (iv) OSML is a long-term project open to the com-
munity; we continue adding new traces collected from new
applications and new servers to the data set for enhancing
models’ performance for new cases.

5 OSML: System Design
5.1 The Central Control Logic
The overview of OSML is in Figure 6. OSML is a per-node
scheduler. The central controller of OSML coordinates the
ML models, manages the data/control flow, and reports the
scheduling results. Figure 7 shows its overall control logic.

Allocating Resources for LC services. Algo._1 shows
how OSML uses Model-A and B in practice. Figure 7
highlights its operations. For a newly coming LC service,
the central controller calls Model-A via the interface mod-
elA_oaa_rcliff() to get the OAA and RCliff. Suppose the
current idle resources are not sufficient to satisfy the new LC
service. In that case, OSML will enable Model-B through the
interface modelB_trade_qos_res() to deprive some resources
of other LC services with the allowable QoS slowdown (con-
trolled by the upper-level scheduler) and then allocate them to
the new one. The upper-level scheduler manages the cluster
consisting of nodes using OSML. In the depriving process for
a specific LC service, OSML reduces its allocated resources
and gets close to the RCliff, but it will not easily fall off the
RCliff unless expressly permitted (refer to Algo._4).

Dynamic Adjusting. Figure 7 shows the dynamic adjusting
of Algo._2 and 3, in which Model-C works as a dominant role.
During the run time, OSML monitors each LC service’s QoS
status for every second. If the QoS violation is detected, the cen-
tral controller will enable Algo._2 and call Model-C to allocate
more resources to achieve the ideal QoS. The interface is mod-
elC_upsize(). If OSML finds an LC service is over-provisioned
(i.e., wasting resources), Algo._3 will be used to reclaim them,

QoS
satisfied after
deprivation?

Yes

Yes

No
QoS

slowdown
acceptable?

NoYes

Model-B' predicts
neighbors' QoS
slowdown after
Res. sharing

LLC sharing

Yes

Yes

New app.
arrived?

Model-A/A'
 returns OAA

Idle
Res. enough?

Yes No

Yes

No

Algo._1

Can
the policy

work?

Model-C returns
adjustment actions

Move to OAA

Reclaim
wasted Res.No

If the app. must be
placed, call Algo._4

Yes
Try to share resource

Central Control
Logic

Allocate Res.
to QoS-

violated app.

Available?

Model-C returns
adjustment

actions

Model-B
returns

B-Points with
acceptable

QoS slowdown

Allocate
Res. to
the app.

Model-B
returns

B-Points with
acceptable

QoS slowdown

Allocate
Res. to
the app.

QoS violation
 detected?

Res. waste
detected?

Withdraw
the action

Conduct
Res.

deprivation

Algo._2 Algo._4 Algo._3

No No No

Share
Res. with
neighbor

Migrate
the app.

Share
Res. with
neighbor

Migrate
the app.

Figure 7: OSML’s central logic.
and Model-C will be called via modelC_downsize().

Moreover, Algo._4 will enable resource sharing (the default
scheduling is to do hard partitioning of cores/LLC ways), if
all of the co-located LC services are close to their RCliff and
the upper scheduler still wants to increase loads on this server.
Model-A and B work cooperatively to accomplish this goal in
Algo._4. In practice, to minimize the adverse effects, resource
sharing usually happens between only two applications. Note
that Algo._4 might incur the resource sharing over the RCliff,
and thus may bring higher response latency for one or more LC
services. OSML will report the potential QoS slowdown to the
upper scheduler and ask for the decisions. If the slowdown is
not allowed, the corresponding actions will not be conducted.

Bandwidth Scheduling. OSML partitions the overall band-
width for each co-located LC service according to the ratio
BWj/∑BWi. BWj is a LC service’s OAA bandwidth re-
quirement, which is obtained from the Model-A. Note that
such scheduling needs Memory Bandwidth Allocation (MBA)
mechanism [4,5] in CPU.

5.2 Implementation
OSML learns whether the LC services have met their QoS
targets. OSML monitors the run-time parameters for each
co-located LC service using performance counters for ev-
ery second (default). If the observation period is too short,
other factors (e.g., cache data evicted from the cache hierar-
chy, context switch) may interfere with the sampling results.
Moreover, OSML performs well with other interval settings
and allows configuration flexibility (e.g., 1.5 or 2 seconds).

We design OSML that works cooperatively with OS (Fig-
ure 6). As the kernel space lacks the support of ML libraries,
OSML lies in the user space and exchanges information with
the OS kernel. OSML is implemented using python and C. It
employs Intel CAT technology [4] to control the cache way
allocations, and it supports dynamically adjusting. OSML
uses Linux’s taskset and MBA [5] to allocate specific cores
and bandwidth to an LC service. OSML captures the online
performance parameters by using the pqos tool [4] and PMU

USENIX Association 21st USENIX Conference on File and Storage Technologies 159

[5]. The ML models are based on TensorFlow [6] with the
version 2.0.4, and can be run on either CPU or GPU.

6 Evaluations
6.1 Methodology
We evaluate the per-node OSML performance on our platform
in Table 2. Details on LC services are in Table 1. The met-
rics involve the QoS (similar to [10], the QoS target of each
application is the 99th percentile latency of the knee of the
latency-RPS curve. Latency higher than the QoS target is a
violation.); Effective Machine Utilization (EMU) [10] (the
max aggregated load of all co-located LC services) – higher is
better. We first evaluate the scenarios where LC services run
at constant loads, and the loads are from 10% - 100%. Then,
we explore workload churn. We inject applications with loads
from 20% - 100% of their respective max load. Furthermore,
to evaluate the generalization of OSML, we employ some
new/unseen applications that are not in Table 1 and the new
platform in our experiments. If an allocation in which all appli-
cations meet their QoS cannot be found after 3 mins, we signal
that the scheduler cannot deliver QoS for that configuration.

6.2 OSML Effectiveness
We compare OSML with the most related approaches in
[10,46] based on the latest open-source version.
PARTIES [10]. It makes incremental adjustments in one-
dimension resource at a time until QoS is satisfied – “trial

and error” – for all of the applications. The core mechanism
in [10] is like an FSM [60].
CLITE [46]. It conducts various allocation policies and
samples each of them; it then feeds the sampling results – the
QoS and run-time parameters for resources – to a Bayesian
optimizer to predict the next scheduling policy.
Unmanaged Allocation (baseline). This policy doesn’t con-
trol the allocation policies on cores, LLC, and other shared
resources for co-located LC services. This policy relies on
the original OS schedulers.
ORACLE. We obtain these results by exhaustive offline sam-
pling and find the best allocation policy. It indicates the
ceiling that the schedulers try to achieve.

We show the effectiveness of OSML as follow.
(1) OSML exhibits a shorter scheduling convergence time.

Using ML models, OSML achieves OAA quickly and effi-
ciently handles cases with diverse loads. Figure 8-a shows the
distributions of the scheduling results of 104 loads for OSML,

160 21st USENIX Conference on File and Storage Technologies USENIX Association

PARTIES and CLITE, respectively. Every dot represents a
specific workload that contains 3 co-located LC services with
different RPS. We launch the applications in turn and use a
scheduler to handle QoS violations until all applications meet
their QoS targets. The x-axis shows the convergence time;
the y-axis denotes the achieved EMU. Generally, OSML can
achieve the same EMU with a shorter convergence time for
a specific load. Figure 8-b shows the violin plots of conver-
gence time for these loads. On average, OSML takes 20.9
seconds to converge, while PARTIES and CLITE take 32.7
and 46.3 seconds, respectively. OSML converges 1.56X and
2.22X faster than PARTIES and CLITE. OSML performs
stably – the convergence time ranges from 5.3s (best case)
to 80.0s (worst case). By contrast, the convergence time in
PARTIES ranges from 5.5s to 111.1s, and CLITE is from
14.0s to 140.6s. OSML converges faster mainly because
the start point in the scheduling space provided by Model-A
is close to OAA. PARTIES and CLITE take a longer con-
vergence time, indicating that they require high scheduling
overheads in cloud environments. In Cloud, jobs come and
go frequently; thus, scheduling occurs frequently, and longer
scheduling convergence time often leads to unstable/low QoS.

We further analyze how these schedulers work in detail.
Figure 9-a/b/c show the actions used in OSML, PARTIES, and
CLITE’s scheduling process for case A in Figure 8. This case
includes Moses, Img-dnn, and Xapian with 40%, 60%, and
50% of their maximum loads. For this load, PARTIES, CLITE
and OSML take 14.5 seconds, 72.6 seconds and 8.2 seconds to
converge, respectively. Figure 9 highlights scheduling actions
using solid red lines to represent increasing resources and blue
dotted lines to denote reducing resources. Figure 9-a shows
PARTIES takes 7 actions for scheduling cores and 1 action
for cache ways. It schedules in a fine-grained way by increas-
ing/decreasing one resource at a time. CLITE relies on the
sampling points in the scheduling exploration space. Figure
9-b shows CLITE repeats sampling until the “expected im-
provement” in CLITE drops below a certain threshold. CLITE
only performs five scheduling actions according to its latest
open-source version; but it takes the longest convergence time
(72.6 seconds). The underlying reason is that CLITE’s sam-
pling/scheduling doesn’t have clear targets. In practice, the
improper resource partitions/allocations during sampling lead
to the accumulation of requests, and the requests cannot be
handled due to resource under-provision. Therefore, it brings
a significant increase in response latency. Moreover, due to
the early termination of CLITE’s scheduling process, CLITE
cannot schedule resources to handle QoS violations in a timely
manner, leading to a long convergence time. Figure 9-c shows
OSML achieves OAA for each LC service with 5 actions.
Compared with prior schedulers, OSML has clear aims and
schedules multiple resources simultaneously to achieve them.
It has the shortest convergence time – 8.2 seconds.

Moreover, as the scheduling is fast, OSML often supports
more loads. Figure 10 shows the OSML’s results on schedul-

Figure 8: (a) The performance distributions for 104 loads that OSML,
PARTIES and CLITE can all converge. (b) Violin plots of conver-
gence time for loads in (a).
ing the three LC services – Moses, Img-dnn, and Xapian. For
a specific scheduling phase, by using ML to achieve OAA,
OSML supports 10~50% higher loads than PARTIES and
CLITE in highlighted cells in Figure 10-d, accounting for
58% of the cases that can be scheduled. All schedulers per-
form better than the Unmanaged (Figure 10-a), as they reduce
the resource contentions.

(2) Compared with PARTIES and CLITE, OSML consumes
fewer resources to support the same loads to meet the QoS
targets. On average, for the 104 loads in Figure 8-a, OSML
uses 34 cores and 16 LLC ways; by contrast, PARTIES and
CLITE exhaust all the platform’s 36 cores and 20 LLC ways.
As illustrated in Figure 9-a, PARTIES partitions the LLC
ways and cores equally for each LC service at the begin-
ning; once it meets the QoS target (using 8 actions), it stops.
Thus, PARTIES drops the opportunities to explore alterna-
tive better solutions (i.e., using fewer cores or cache ways to
meet identical QoS targets). PARTIES allocates all cores and
LLC ways finally. CLITE also uses all cores and cache ways
shown in Figure 9-b. By contrast, OSML schedules accord-
ing to applications’ resource requirements instead of using
all resources. Figure 9-c shows that using Model-A, OSML
achieves each LC service’s OAA (the optimal solution) after 5
actions. OSML detects and reclaims over-provided resources
using Model-C. For example, the last action in Figure 9-c re-
claims 3 cores and 2 LLC ways from Xapian. Finally, OSML
saves 3 cores and 9 LLC ways. As OSML is designed for LC
services that are executed for a long period, saving resources
means saving budgets for cloud providers.

(3) Using ML models, OSML provides solutions for shar-
ing some cores and LLC ways among LC services, therefore
supporting higher loads. PARTIES and CLITE don’t show
resource sharing in the original design. Using Algo._4, OSML
lists some potential resource sharing solutions, and then en-
ables Model-B’ to predict the QoS slowdown for each case.
The sharing solution with a relatively lower QoS slowdown
is selected. More details refer to Figure 7. Figure 9-d shows
how OSML shares resources for the highlighted case B in
Figure 10-d. OSML enables Model-C to add resources for
Moses in Algo._2 and uses Algo._4 to share 2 CPU cores with
Xapian. Finally, the QoS is met. By enabling resource sharing,
OSML can support higher loads than PARTIES and CLITE,
and can even be close to ORACLE in Figure 10-e. If not

USENIX Association 21st USENIX Conference on File and Storage Technologies 161

Figure 9: Resource usage comparisons for OSML, PARTIES, and CLITE.

Figure 10: Co-location of Moses, Img-dnn and Xapian. The heatmap values are the percentage
of the third LC service’s (i.e., Xapian) achieved max load without QoS violations in these cases.
The x- and y-axis denote the first and second app’s fraction of their max loads (with QoS target),
respectively. Cross means QoS target cannot be met. The related studies [10,46] use heat maps to
show their effectiveness, so we also use heat maps for comparisons in this work.

Figure 11: Throughput distribution.

Figure 13: Highlighted the scheduling
traces in scheduling space for all sched-
ulers from time point 180 to 228 in Figure
12. Each circle denotes a specific schedul-
ing policy conducted by a specific sched-
uler. The number in a circle denotes the
sequence of these scheduling actions dur-
ing the scheduling phase.

OSML, however, the “trial and error” approach has to try to
share core/cache way in a fine-grain way among applications,
and then observes the real-time latency for making a further
decision, inevitably incurring higher scheduling overheads
and bringing sharp QoS slowdown if falling off the RCliff.

(4) OSML promptly handles the resource under/over-
provision and QoS violations using Model-C. Based on
Model-A/B’s results, Model-C shepherds and adjusts the al-
locations with several actions for each application in our
experiments and converges more quickly than previous ap-
proaches. More experiments on dynamic, complicated cases
can be found in Sec.6.3. Can we only use Model-C or only
use Model-A/B? Enabling the three models is necessary for
OSML. For the case in Figure 9-c, when OSML uses the
three models collaboratively for scheduling, it takes 8.2s and
5 actions to achieve OAA for all applications. By contrast,
if only enabling Model-C, it takes 18.5s and 13 actions. Be-
cause Model-A/B can at least provide an approximate OAA
for scheduling, thus reducing the convergence time. Just us-
ing Model-A/B may lead to 4-core errors for an unseen LC

service (Table 5). So, Model-C is needed to correct the errors.
We cannot disable any models in OSML in practice.

(5) OSML performs well in various cases. Figure 11 shows
the EMU distribution for converged loads among 302 loads
(each has 3 apps with diverse RPS). EMU reflects the system
throughput [10,32]. OSML can have scheduling results for
285 loads; PARTIES and CLITE can work for 260 and 148
loads, respectively. OSML’s distribution in Figure 11 is wider
than PARTIES and CLITE. This indicates that OSML works
for more loads, including those with a high EMU (e.g., 130-
180%). Even for the loads that OSML, PARTIES, and CLITE
can all converge, OSML can converge faster (Figure 8).

6.3 Performance for Workload Churn
We evaluate how OSML behaves with dynamically changing
loads. Each LC service’s QoS is normalized to the solely
running case. As illustrated in Figure 12-a, in the beginning,
Moses with 60% of max load arrives; then Sphinx with 20%
of max load and Img-dnn with 60% of max load arrive. We
observe their response latency increases caused by the re-

162 21st USENIX Conference on File and Storage Technologies USENIX Association

Figure 12: OSML’s performance in reality with varying loads.
source contentions among them. In Figure 12-b, PARTIES
aids the QoS violations step by step. During the scheduling,
Moses always has high latency until it ends at 80 seconds.
CLITE’s scheduling relies on sampling and Bayesian opti-
mizer. CLITE starts scheduling at time point 16, where all
the three services arrive. At 32s, CLITE obtains the schedul-
ing solution for these LC services after five sampling steps.
But it doesn’t satisfy these services’ QoS targets. In Fig-
ure 12-c, Moses and Img-dnn still have high latency. By
contrast, with Model-A’s OAA predictions and Model-C’s
online scheduling, OSML quickly provides better scheduling
solutions at time point 48 for all three services. During the
identical scheduling phase (e.g., the time point 16 to 80), we
can observe the lowest overall normalized latency in Figure
12-d. Moreover, Figure 12-e and f illustrate OSML’s schedul-
ing actions for achieving ideal solutions. In short, within a
few scheduling actions (scheduling overheads) that schedule
multiple resources, OSML quickly meets the QoS targets.

From 180 to 228, we increase the load for Img-dnn as
illustrated in Figure 12-a. OSML meets Img-dnn’s chang-
ing demands by using Model-C. PARTIES does not reflect
quickly for this change, and it works for other services. Thus,
as illustrated in Figure 12-b, the QoS violation is not aided un-
til 244s, when Img-dnn’s load decreases. For CLITE, it has to
sample each time when the load changes. But during the sam-
pling, a specific service might not have sufficient resources
to handle the requests; thus, the requests are accumulated,
leading to QoS fluctuations/violations during the scheduling
(Figure 12-c). Figure 13 highlights the scheduling actions

Table 5: ML Models’ performance on average. The units of errors
are the number of cores/LLC ways. For Model B’, the unit is the
percentage of QoS slowdown.

ML Outputs Error
Errors for
unseen LC

services

Err on new
platforms

(TL) MSE Over-
heads

Core LLC Core LLC Core LLC

A RCliff 0.589 0.288 1.266 0.198 2.142 0.542 0.0025 0.20s
OAA 0.580 0.360 1.276 0.191 2.004 0.865

A’ RCliff 1.072 0.815 3.403 1.835 0.772 0.411 0.0135 0.20s
OAA 1.072 0.814 3.404 1.835 0.790 0.413

B

B-Points 0.612 0.053 4.012 0.167 2.320 0.969

0.0012 0.18s
B-Points,Core

dominated 0.314 0.048 3.434 0.937 2.250 0.815

B-Points,Cache
dominated 0.093 0.462 0.789 0.783 1.868 1.519

B’ QoS reduction 7.87% 8.33% 11.28% 0.0035 0.19s

C Scheduling
actions 0.908 0.782 0.844 0.841 1.390 1.801 0.7051 0.20s

for Img-dnn from 180 to 228. During this phase, PARTIES
does not add resources for Img-dnn; but it add more resources
for Specjbb and Xapian as they are with higher latency. Img-
dnn’s response latency keeps increasing. CLITE samples
several scheduling policies in the scheduling space, but does
not converge and thus incurs QoS fluctuations. By contrast,
OSML’s Model-C can handle QoS violations of Img-dnn even
the load increases. Moreover, as mentioned before, OSML
saves resources and thus it can serve more workloads. For ex-
ample, as shown in Figure 12, Mysql (an unseen workload in
training) comes at time point 180; OSML allocates the saved
cores to it without sharing or depriving other LC services of
resources.

6.4 New/Unseen Apps and New Platforms
Generalization. Based on our data set, the ML models can be
well trained. It will be at most 4-core error for unseen applica-
tions (Table 5). We evaluate OSML using unseen applications
that are not used in training, i.e., Silo [62], Shore[62], Mysql
[70], Redis [77], and Node.js [78]. They exhibit diverse com-
puting/memory patterns. We evaluate the convergence time
of OSML with 3 groups of workloads. Each group has 15
workloads, and each workload has 3 LC services. The work-
loads in Group 1 have 1 unseen application. The workloads
in Group 2 and 3 have 2 and all unseen applications, respec-
tively. OSML takes 24.6s, 29.3s, and 31.0s to converge for
the 3 groups of workloads, on average, respectively. OSML
performs well, even for unseen cases, showing good general-
ization performance. PARTIES uses 34.9s, 43.6s, and 42.8s;
CLITE uses 58.5s, 60.6s, and 46.5s for these applications.
Note that PARTIES and CLITE’s scheduling don’t need previ-
ous knowledge for applications, so their performance doesn’t
depend on whether the application is seen/unseen.

For new platforms, we use fine-tuning in transfer learning
(TL). We freeze the first hidden layer of the MLPs; we retrain
the last two-hidden layers and the output layer using the traces
collected on two new platforms (w/ CPU Xeon Gold 6240M
and E5-2630 v4, respectively). For each LC service, based
on our data set, collecting new traces on a new platform for

USENIX Association 21st USENIX Conference on File and Storage Technologies 163

several hours will be sufficient (covering the more allocation
cases, the better). The model updating can be accomplished
in hours. The time consumption will be shorter if using
multiple machines in parallel. Table 5 shows the average
values of ML models’ quality. The new models’ prediction
errors are slightly higher than the previous models on the
original platforms, but OSML still handles them well. By
contrast, if we use a table lookup approach instead, we have
to use additional memory to store the data tuples, e.g., 60GB
will be wasted for the current data set to replace Model-A.
More importantly, this approach is difficult to generalize for
new/unseen applications or platforms, as their traces and the
corresponding OAAs don’t exist in the current data set.

Overheads. OSML takes 0.2s of a single core for each
time during the interval setting (e.g., 1 second by default in
Sec.5.2). 0.01s for ML model and 0.19s for online monitoring.
As our models are light-weighted (OSML uses only one core),
running them on CPU and GPU has a similar overhead. If
models are on GPU, it takes an extra 0.03s for receiving results
from GPU. OSML doesn’t monopolize GPU. Generally, the
overhead doesn’t hinder the overall performance. In the cloud,
applications’ behaviors may change every second due to the
diversity of user demands. Thus, OSML plays a critical role
during the entire run time. For building models, using our
current data set on platform in Table 2, it takes 3.3 mins, 5 mins,
and 8.3 hours to train Model-A, B, and C for one epoch (all
training samples are used to train once), respectively. We train
models for ten epochs. Training can be accelerated using the
popular Multi-GPU training technology. Doing so is practical
in datacenters, and training time will not impede practice.

7 Related Work and Our Novelty
ML for System Optimizations. The work in [55] employs
DNN to optimize the buffer size for the database systems.
The efforts in [22,56,34] leverage ML to optimize computer
architecture or resource management in the network to meet
various workloads. The studies in [9,39] use ML to manage
on-chip hardware resources. CALOREE [41] can learn key
control parameters to meet latency requirements with minimal
energy in complex environments. The studies in [26,31,58,59]
optimize the OS components with learned rules or propose
insights on designing new learned OS. In OSML, we design
an intelligent multi-model collaborative learning approach,
providing better co-location solutions to meet QoS targets for
LC services faster than the latest work stably.
ML for Scheduling. Decima [35] designs cluster-level data
processing job scheduling using RL. Resource Central [12]
builds a system that contains the historical resource utilization
information of the workloads used in Azure and employs ML
to predict resource management for VMs. The study in [40]
uses RL to predict which subsets of operations in a Tensor-
Flow graph should run on the available devices. Paragon [14]
classifies and learns workload interference. Quasar [15] deter-
mines jobs’ resource preferences on clusters. Sinan [74] uses

ML models to determine the performance dependencies be-
tween microservices in clusters. They are cluster schedulers
[14,15,74]. By contrast, OSML deeply studies scheduling
in co-location cases. Selecta [72] predicts near-optimal con-
figurations of computing and storage resources for analytics
workloads based on profiling data. CLITE [46] uses Bayesian
optimization for scheduling on-node resources. The work
in [48] applies ML to predict the end-to-end tail latency of
LC service workflows. Twig [63] uses RL to characterize
tail latency for energy-efficient task management. CuttleSys
[76] leverages data mining to identify suitable core and cache
configurations for co-scheduled applications. For compli-
cated co-location cases, OSML can avoid RCliffs and quickly
achieve the ideal allocations (OAA) for multiple interactive
resources simultaneously for LC services. Moreover, OSML
performs well in generalization.
Resource Partitioning. PARTIES [10] partitions cache, main
memory, I/O, network, disk bandwidth, etc., to provide QoS
for co-located services. The studies in [17,28,57,71] design
some new LLC partitioning/sharing policies. The efforts
in [23,27,44,45,73] show that considering cooperative parti-
tioning on LLC, memory banks and channels outperforms
one-level memory partitioning. However, the cooperative
partitioning policies need to be carefully designed [29,30,37],
and [16,32] show the heuristic resource scheduling approach
could be ineffective in many QoS-constrained cases. [7,11]
study the “performance cliff” on cache for SPECCPU 2006
applications and Memcached. Caladan [75] doesn’t involve
cache optimizations, and core/cache cliffs cannot be avoided,
causing QoS fluctuations in some cases. By contrast, OSML is
the first work that profoundly explores cache cliff and core cliff
simultaneously (i.e., RCliff) for many widely used LC services
in co-location cases. OSML is a representative work using
ML to guide the multiple resources partitioning in co-location
cases; OSML is cost-effective in new cloud environments.

8 Conclusion
We present OSML, an ML-based resource scheduler for co-
located LC services. We learn that straightforwardly using a
simple ML model might not handle all of the processes during
the scheduling. Therefore, using multiple ML models cooper-
atively in a pipe-lined way can be an ideal approach. More
importantly, we advocate the new solution, i.e., leveraging
ML to enhance resource scheduling, could have an immense
potential for OS design. In a world where co-location and
sharing are a fundamental reality, our solution should grow in
importance and benefits our community.

Acknowledgement
We thank the reviewers and our shepherd Young-ri Choi for the
invaluable comments. This work is supported by the Key-Area
R&D Program of Guangdong (No.2021B0101310002), NSFC
(No.62072432). L. Liu thanks Hecheng’s arriving. X. Dou and
Y. Chen are students in Sys-Inventor Lab led by L. Liu.

164 21st USENIX Conference on File and Storage Technologies USENIX Association

References
[1] “How 1s could cost amazon $1.6 billion in sales.”

https://www.fastcompany.com/1825005/how-one-second-could-
cost-amazon-16-billion-sales

[2] “Microservices workshop: Why, what, and how to get there,”
http://www.slideshare.net/adriancockcroft/microservices-workshop-
craft-conference

[3] “State of the Cloud Report,” http://www.righscale.com/lp/state-of-the-
cloud. Accessed: 2019-01-28

[4] “Improving real-time performance by uti-
lizing cache allocation technology,”
https://www.intel.com/content/dam/www/public/us/en/documents/white-
papers/cache-allocation-technology-white-paper.pdf, Intel Corporation,
April, 2015

[5] “Intel 64 and IA-32 Architectures Software Developer’s Manual,”
https://software.intel.com/en-us/articles/intel-sdm, Intel Corporation,
October, 2016

[6] Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy
Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Geoffrey Irv-
ing, Michael Isard, Manjunath Kudlur, Josh Levenberg, Rajat Monga,
Sherry Moore, Derek G. Murray, Benoit Steiner, Paul Tucker, Vijay Va-
sudevan, Pete Warden, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng,
“TensorFlow: A System for Large-Scale Machine Learning,” in OSDI,
2016

[7] Nathan Beckmann, Daniel Sanchez, “Talus: A Simple Way to Remove
Cliffs in Cache Performance,” in HPCA, 2015

[8] Daniel S. Berger, Benjamin Berg, Timothy Zhu, Siddhartha Sen, Mor
Harchol-Balter, “RobinHood: Tail Latency Aware Caching – Dynamic
Reallocation from Cache-Rich to Cache-Poor,” in OSDI, 2018

[9] Ramazan Bitirgen, Engin Ipek, Jose F. Martinez, “Coordinated Man-
agement of Multiple Interacting Resources in Chip Multiprocessors: A
Machine Learning Approach,” in Micro, 2008

[10] Shuang Chen, Christina Delimitrou, José F. Martínez, “PARTIES: QoS-
Aware Resource Partitioning for Multiple Interactive Services,” in AS-
PLOS, 2019

[11] Asaf Cidon, Assaf Eisenman, Mohammad Alizadeh, Sachin Katti,
“Cliffhanger: Scaling Performance Cliffs in Web Memory Caches,” in
NSDI, 2016

[12] Eli Cortez, Anand Bonde, Alexandre Muzio, Mark Russinovich, Mar-
cus Fontoura, Ricardo Bianchini, “Resource Central: Understanding
and Predicting Worloads for Improved Resource Management in Large
Cloud Platforms,” in SOSP, 2017

[13] Jeff Dean, David A. Patterson, Cliff Young, “A New Golden Age in
Computer Architecture: Empowering the Machine-Learning Revolu-
tion,” in IEEE Micro, 2018

[14] Christina Delimitrou, Christos Kozyrakis, “QoS-Aware Scheduling in
Heterogenous Datacenters with Paragon,” in ACM TOCS, 2013

[15] Christina Delimitrou, Christos Kozyrakis, “Quasar: Resource-Efficient
and QoS-Aware Cluster Management,” in ASPLOS, 2014

[16] Yi Ding, Nikita Mishra, Henry Hoffmann, “Generative and Multi-phase
Learning for Computer Systems Optimization,” in ISCA, 2019

[17] Nosayba El-Sayed, Anurag Mukkara, Po-An Tsai, Harshad Kasture,
Xiaosong Ma, Daniel Sanchez, “KPart: A hybrid Cache Partitioning-
Sharing Technique for Commodity Multicores,” in HPCA, 2018

[18] Yu Gan and Christina Delimitrou, “The Architectural Implications of
Cloud Microservices,” in IEEE Computer Architecture Letters, 2018

[19] Yu Gan, Yanqi Zhang, Kelvin Hu, Dailun Cheng, Yuan He, Meghna
Pancholi, Christina Delimitrou, “Leveraging Deep Learning to Improve
Performance Predictability in Cloud Microservices with Seer,” in ACM
SIGOPS Operating Systems Review, 2019

[20] Mark D. Hill, Michael R. Marty, “Amdahl’s Law in the Multicore Era,”
in IEEE Computers, 2008

[21] Kurt Hornik, “Approximation Capabilities of Multilayer Feedforward
Networks,” in Neural Networks, 1991

[22] Engin Ipek, Onur Mutlu, José F. Martínez, Rich Caruana, “Self-
Optimizing Memory Controllers: A Reinforcement Learning Ap-

proach,” in ISCA, 2008

[23] Min Kyu Jeong, Doe Hyun Yoon, Dam Sunwoo, Michael Sullivan,
Ikhwan Lee, Mattan Erez,“Balancing DRAM Locality and Parallelism
in Shared Memory CMP Systems,”in HPCA, 2012

[24] Norman P. Jouppi, Cliff Young, Nishant Patil, David Patterson, Gaurav
Agrawal, Raminder Bajwa, Sarah Bates, Suresh Bhatia, Nan Boden, Al
Borchers, Rick Boyle, Pierre-luc Cantin, Clifford Chao, Chris Clark,
Jeremy Coriell, Mike Daley, Matt Dau, Jeffrey Dean, Ben Gelb, Tara
Vazir Ghaemmaghami, Rajendra Gottipati, William Gulland, Robert
Hagmann, C. Richard Ho, Doug Hogberg, John Hu, Robert Hundt,
Dan Hurt, Julian Ibarz, Aaron Jaffey, Alek Jaworski, Alexander Ka-
plan, Harshit Khaitan, Daniel Killebrew, Andy Koch, Naveen Kumar,
Steve Lacy, James Laudon, James Law, Diemthu Le, Chris Leary,
Zhuyuan Liu, Kyle Lucke, Alan Lundin, Gordon MacKean, Adri-
ana Maggiore, Maire Mahony, Kieran Miller, Rahul Nagarajan, Ravi
Narayanaswami, Ray Ni, Kathy Nix, Thomas Norrie, Mark Omernick,
Narayana Penukonda, Andy Phelps, Jonathan Ross, Matt Ross, Amir
Salek, Emad Samadiani, Chris Severn, Gregory Sizikov, Matthew Snel-
ham, Jed Souter, Dan Steinberg, Andy Swing, Mercedes Tan, Gregory
Thorson, Bo Tian, Horia Toma, Erick Tuttle, Vijay Vasudevan, Richard
Walter, Walter Wang, Eric Wilcox, Doe Hyun Yoon, “In-Datacenter
Performance Analysis of a Tensor Processing Unit,” in ISCA, 2017

[25] Alex Krizhevsky, Ilya Sutskever, Geoffrey Hinton, "ImageNet Classi-
fication with Deep Convolutional Neural Networks," in Advances in
neural information processing systems, 2012

[26] Yanjing Li, Onur Mutlu, Subhasish Mitra, “Operating System Schedul-
ing for Efficient Online Self-Test in Robust Systems,” in ICCAD, 2009

[27] Lei Liu, et al, “A Software Memory Partition Approach for Eliminating
Bank-level Interference in Multicore Systems,” in PACT, 2012

[28] Jiang Lin, Qingda Lu, Xiaoning Ding, Zhao Zhang, Xiaodong Zhang, P.
Sadayappan, “Gaining insights into mlticore cache partitioning: bridg-
ing the gap between simulation and real systems,” in HPCA, 2008

[29] Fang Liu, Yan Solihin, “Studying the Impact of Hardware Prefetching
and Bandwidth Partitioning in Chip-Multiprocessors,” in Sigmetrics,
2011

[30] Seung-Hwan Lim, Jae-Seok Huh, Yougjae Kim, Galen M. Shipman,
Chita R. Das, “D-Factor: A Quantitative Model of Application Slow-
Down in Multi-Resource Shared Systems,” in Sigmetrics, 2012

[31] Lei Liu, et al, “Rethinking Memory Management in Modern Operating
System: Horizontal, Vertical or Random?” in IEEE Trans. on Comput-
ers, 2016

[32] David Lo, Liqun Cheng, Rama Govindaraju, Parthasarathy Ran-
ganathan, Christos Kozyrakis, "Heracles: Improving Resource Effi-
ciency at Scale," in ISCA, 2015

[33] Lei Liu, et al, “Hierarchical Hybrid Memory Management in OS for
Tiered Memory Systems,” in IEEE Trans. on Parallel and Distributed
Systems, 2019

[34] Hongzi Mao, Mohammad Alizadeh, Ishai Menache, Srikanth Kan-
dula, “Resource Management with Deep Reinforcement Learning,” in
HotNet-XV, 2016

[35] Hongzi Mao, Malte Schwarzkopf, Shaileshh B. Venkatakrishnan, Zili
Memg, Mohammad Alizadeh, “Learning Scheduling Algorithms for
Data Processing Clusters,” in SIGCOMM, 2019

[36] Yashwant Marathe, Nagendra Gulur, Jee Ho Ryoo, Shuang Song, and
Lizy K. John, “CSALT: Context Switch Aware Large TLB,” in Micro,
2017

[37] Jason Mars, Lingjia Tang, Robert Hundt, Kevin Skadron, Mary Lou
Soffa, “Bubble-Up: Increasing Utilization in Modern Warehouse Scale
Computers via Sensible Co-locations,” in Micro, 2011

[38] Jason Mars, Lingjia Tang, Mary Lou Soffa, “Directly Characterizing
Cross Core Interference Through Contention Synthesis,” in HiPEAC,
2011

[39] Jose F. Martinez, Egin Ipek, “Dynamic multicore resource management:
A machine learning approach,” in IEEE Micro 29 (5):8-17 (2009)

[40] Azalia Mirhoseini, Hieu Pham, Quoc V. Le, Benoit Steiner, Rasmus
Larsen, Yuefeng Zhou, Naveen Kumar, Mohammad Norouzi, Samy
Bengio, Jeff Dean, "Learning Device Placement in Tensorflow Compu-
tations," in Arxiv 1706.04972

[41] Nikita Mishra, Connor Imes, John D. Lafferty, Henry Hoffmann,

USENIX Association 21st USENIX Conference on File and Storage Technologies 165

“CALOREE: Learning Control for Predictable Latency and Low En-
ergy,” in ASPLOS, 2018

[42] Nikita Mishra, Harper Zhang, John Lafferty, Henry Hoffmann, “A
probabilistic Graphical Model-based Approach for Minimizing Energy
Under Performance Constraints,” in ASPLOS, 2015

[43] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A. Rusu,
Joel Veness, Marc G. Bellemare, Alex Graves, Martin Riedmiller,
Andreas K. Fidjeland, Georg Ostrovski, Stig Petersen, Charles Beattie,
Amir Sadik, Ioannis Antonoglou, Helen King, Dharshan Kumaran,
Daan Wierstra, Shane Legg, Demis Hassabis, “Human-level control
through deep reinforcement learning,” in Nature 518 (7540): 529-533,
2015

[44] Sai Prashanth Muralidhara, Lavanya Subramanian, Onur Mutlu, Mah-
mut Kandemir, Thomas Moscibroda, “Reducing Memory Interference
in Multicore Systems via Application-Aware Memory Channel Parti-
tioning,” in Micro, 2011

[45] Jinsu Park, Seongbeom Park, Woongki Baek, “CoPart: Coordinated
Partitioning of Last-Level Cache and Memory Bandwidth for Fairness-
Aware Workload Consolidation on Commodity Servers,” in EuroSys,
2019

[46] Tirthak Patel, Devesh Tiwari, “CLITE: Efficient and QoS-Aware Co-
Location of Multiple Latency-Critical Jobs for Warehouse Scale Com-
puters,” in HPCA, 2020

[47] Henry Qin, Qian Li, Jacqueline Speiser, Peter Kraft, and John Ouster-
hout, “Arachne: Core-Aware Thread Management,” in OSDI, 2018

[48] Joy Rahman, Palden Lama, “Predicting the End-to-End Tail Latency of
Containerized Microservices in the Cloud,” in IC2E, 2019

[49] Yizhou Shan, Yutong Huang, Yilun Chen, Yiying Zhang, “LegoOS: A
Disseminated, Distributed OS for Hardware Resource Disaggregation,”
in OSDI, 2018

[50] Prateek Sharma, Ahmed Ali-Eldin, Prashant Shenoy, “Resource De-
flation: A New Approach For Transient Resource Reclamation,” in
EuroSys, 2019

[51] David Silver, Aja Huang, Chris J. Maddison, Arthur Guez, Lau-
rent Sifre, George van den Driessche, Julian Schrittwieser, Ioannis
Antonoglou, Veda Panneershelvam, Marc Lanctot, Sander Dieleman,
Dominik Grewe, John Nham, Nal Kalchbrenner, Ilya Sutskever, Timo-
thy Lillicrap, Madeleine Leach, Koray Kavukcuoglu, Thore Graepel,
Demis Hassabis, “Mastering the game of Go with deep neural networks
and tree search,” in Nature, 529 (7587), 2016

[52] Akshitha Sriraman, Abhishek Dhanotia, Thomas F. Wenisch, “Soft-
SKU: Optimizing Server Architectures for Microservice Diversity
@Scale,” in ISCA, 2019

[53] Akshitha Sriraman, Thomas F. Wenisch, “µTune: Auto-Tuned Thread-
ing for OLDI Microservices,” in OSDI, 2018

[54] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scoott
Reed, Dragomir Anguelov, Dumitru Erhan, Vincent Vanhoucke, An-
drew Rabinovich, “Going deeper with convolutions,” in CVPR, 2015

[55] Jian Tan, Tieying Zhang, Feifei Li, Jie Chen, Qixing Zheng, Ping Zhang,
Honglin Qiao, Yue Shi, Wei Cao, Rui Zhang, “iBTune: Individualized
Buffer Tuning for Large-scale Cloud Databases,” in VLDB, 2019

[56] Stephen J. Tarsa, Rangeen Basu Roy Chowdhury, Julien Sebot, Gau-
tham Chinya, Jayesh Gaur, Karthik Sankaranarayanan, Chit-Kwan
Lin, Robert Chappell, Ronak Singhal, Hong Wang, “Post-Silicon CPU
Adaptations Made Practical Using Machine Learning,” in ISCA, 2019

[57] Xiaodong Wang, Shuang Chen, Jeff Setter, Jose F. Martínez, “SWAP:
Effective Fine-Grain Management of Shared Last-Level Caches with
Minimum Hardware Support,” in HPCA, 2017

[58] Zi Yan, Daniel Lustig, David Nellans, and Abhishek Bhattacharjee,
“Nimble Page Management for Tiered Memory Systems,” in ASPLOS,
2019

[59] Yiying Zhang, Yutong Huang, “Learned Operating Systems,” in ACM
SIGOPS Operating Systems Review, 2019

[60] Zhijia Zhao, Bo Wu, Xipeng Shen, “Challenging the "Embarrassingly
Sequential": Parallelizing Finite State Machine-based Computations
through Principled Speculation,” in ASPLOS, 2014

[61] Xiaoya Xiang, Chen Ding, Hao Luo, Bin Bao, “HOTL: A higher order
theory of locality,” in ASPLOS, 2013

[62] Harshad Kasture, Daniel Sanchez, “Tailbench: a benchmark suite and
evaluation methodology for latency-critical applications,” in IISWC,
2016

[63] Rajiv Nishtala, Vinicius Petrucci, Paul Carpenter, Magnus Sjalander,
“Twig: Multi-Agent Task Management for Colocated Latency-Critical
Cloud Services,” in HPCA, 2020

[64] MongoDB official website. http://www.mongodb.com

[65] Memcached official website. https://memcached.org

[66] NGINX official website. http://nginx.org

[67] https://en.wikipedia.org/wiki/Universal_approximation_theorem

[68] Yu Gan, Yanqi Zhang, Dailun Cheng, Ankitha Shetty, Priyal Rathi,
Nayan Katarki, Ariana Bruno, Justin Hu, Brian Ritchken, Brendon
Jackson, Kelvin Hu, Meghna Pancholi, Yuan He, Brett Clancy, Chris
Colen, Fukang Wen, Catherine Leung, Siyuan Wang, Leon Zaruvinsky,
Mateo Espinosa, Rick Lin, Zhongling Liu, Jake Padilla, Christina
Delimitrou, “An Open-Source Benchmark Suite for Microservices and
Their Hardware-Software Implications for Cloud & Edge Systems,” in
ASPLOS, 2019

[69] Kalyanmoy Deb, Shivam Gupta, “Understanding Knee Points in Bicri-
teria Problems and Their Implications as Preferred Solution Principles,”
in Engineering Optimization, 43 (11), 2011

[70] www.mysql.com

[71] Harshad Kasture, Daniel Sanchez, “Ubik: Efficient Cache Sharing with
Strict QoS for Latency-Critical Workloads,” in ASPLOS, 2014

[72] Ana Klimovic, Heiner Litz, Christos Kozyrakis, “Selecta: Learning
Heterogeneous Cloud Storage Configuration for Data Analytics,” in
USENIX ATC, 2018

[73] Harshad Kasture, Xu Ji, Nosayba El-Sayed, Xiaosong Ma, Daniel
Sanchez, “Improving Datacenter Efficiency Through Partitioning-
Aware Scheduling,” in PACT, 2017

[74] Yanqi Zhang, Weizhe Hua, Zhuangzhuang Zhou, G. Edward Suh,
Christina Delimitrou, “Sinan: ML-Based and QoS-Aware Resource
Management for Cloud Microservices,” in ASPLOS, 2021

[75] Joshua Fried, Zhenyuan Ruan, Amy Ousterhout, Adam Belay, “Cal-
adan: Mitigating Interference at Microsecond Timescales,” in OSDI,
2020

[76] Neeraj Kulkarni, Gonzalo Gonzalez-Pumariega, Amulya Khurana,
Christine A Shoemaker, Christina Delimitrou, David H Albonesi, “Cut-
tlesys: Data-driven Resource Management for Interactive Services on
Re configurable Multicores,” in Micro, 2020

[77] Redis official website. https://redis.io/

[78] Node.js official website. https://nodejs.org/en/

[79] Lei Liu, “QoS-Aware Resources Scheduling for Microservices:
A Multi-Model Collaborative Learning-based Approach,” in
arXiv:1911.13208v2, 2019

[80] Lei Liu, et al, “Going Vertical in Memory Management: Handling
Multiplicity by Multi-policy,” in ISCA, 2014

166 21st USENIX Conference on File and Storage Technologies USENIX Association

CJFS: Concurrent Journaling for Better Scalability

Joontaek Oh∗ Seung Won Yoo∗ Hojin Nam∗ Changwoo Min † Youjip Won ∗
∗KAIST †Virginia Tech

Abstract
In this paper, we propose CJFS, Concurrent Jour-

naling Filesystem. CJFS extends EXT4 and addresses
the fundamental limitations of the EXT4 journaling de-
sign, which are the main cause of the poor scalability of
EXT4. The heavy-weight EXT4 journal suffers from two
limitations. First, the journal commit is a strictly serial
activity. Second, the journal commit uses the original
page cache entry, not the copy of it, and subsequently
any access to the in-flight page cache entry is blocked.
To address these limitations, we propose four techniques,
namely Dual Thread Journaling, Multi-version Shadow
Paging, Opportunistic Coalescing, and Compound Flush.
With Dual Thread design, CJFS can commit a transac-
tion before the preceding journal commit finishes. With
Multi-version Shadow Paging, CJFS can be free from the
transaction conflict even though there can exist multiple
committing transactions. With Opportunistic Coalesc-
ing, CJFS can mitigate the transaction lock-up overhead
in journal commit so that it can increase the coalescing
degree – i.e., the number of system calls associated with a
single transaction – of a running transaction. With Com-
pound Flush, CJFS minimizes the number of flush calls.
CJFS improves the throughput by 81%, 68% and 125%
in filebench varmail, dbench, and OLTP-Insert on MySQL,
respectively, against EXT4 by removing the transaction
conflict and lock-up overhead.

1 Introduction
Filesystem scalability gets emphasized further as

the computer system is loaded with hundreds of CPU
cores [6,7,17,22,28,32,33,35]. A single server machine can
simultaneously run hundreds of containers [2,43,50], each
of which may frequently synchronize its local filesystem
state to the disk [13,31]. The throughput of the server
machine hinges upon the scalability of the filesystem
journaling of the host filesystem.

In this paper, we address the scalability issue of the
EXT4 journaling. EXT4 journaling uses page granularity
physical logging [47,48]. EXT4 journaling suffers from
two critical drawbacks; serial commit and committing
the original page cache entry. In EXT4, journal commit
is strictly serial activity. It can commit the following
journal transaction only after the preceding journal com-
mit finishes. As a result, in EXT4, there can be at most
one running transaction and at most one committing
transaction at a time. Moreover, EXT4 uses the original
page cache entry in committing the updated contents to

the disk. It does not create a copy of the updates for the
journal commit. In this paper, we address both issues
and propose a new filesystem, CJFS, by Concurrent
Journaling Filesystem.

A fair amount of works have been dedicated to ad-
dressing the scalability issue of the filesystem journal-
ing [6,8,15,17,24,44]. A few works proposed to maintain
the multiple running transactions in EXT4 so that con-
tention on the global running transaction is mitigated.
ScaleFS [15] allocates a running transaction per each
CPU core [6,8], where each core is allocated the separate
filesystem partition. Son et al. [44] adopts a lock-free
data structure to the journal transaction. Another body
of works proposed to maintain the multiple committing
transactions. IceFS [24] and SpanFS [15] partition the
filesystem into multiple regions. They allocate a sepa-
rate journal area for each region. The journal commit
operations to each journal area can proceed in parallel.

Despite all the sophisticated approaches mentioned
above, these variants of EXT4 journaling still fail to
address the fundamental limitations of the EXT4 jour-
naling; serial commit and committing the original page
cache entry. In these works, the journal commit opera-
tions for the same journal region are still serialized [15,24].
Multiple running transactions and multiple committing
transactions can conflict with each other and if the con-
current transactions conflict with each other, they are
serialized.

In this paper, we address the fundamental limitations
of the EXT4 journaling mechanism; serial commit and
using the original page cache entry in the journal commit.
The contribution of CJFS can be summarized as follows:

• Dual Thread Journaling: We separate the journal
commit operation into two separate tasks; transferring
the log blocks to the disk and making them durable.
We allocate a separate thread for each operation. With
Dual Thread Journaling, CJFS can commit a trans-
action while the preceding journal commit is still in
progress.

• Multi-Version Shadow Paging: CJFS adopts
multi-version shadow paging to resolve the transac-
tion conflict. With multi-version shadow paging, CJFS
uses the “copy” of the updated page cache entry in
journal commit, so the transaction is free from the
transaction conflict.

• Opportunistic Transaction Coalescing: CJFS
adopts opportunistic coalescing to mitigate the trans-

USENIX Association 21st USENIX Conference on File and Storage Technologies 167

action lock-up overhead. To increase the compound
degree of the journal transaction, CJFS releases the
running transaction from the LOCKED state when it
finds that the running transaction conflicts with one
of the committing transactions.

• Compound Flush: CJFS creates a large number of
flush commands since it creates the multiple commit-
ting transactions in-flight, each of which issues a flush
command separately to make its journal transaction
durable. To relieve the overhead of servicing the flush
commands, CJFS compounds multiple consecutive
flushes from the concurrent transactions into a sin-
gle flush. Compound flush significantly reduces the
latency of the individual fsync() calls.

We implement the CJFS in Linux 5.18.18. CJFS
yields superior performance not only to Vanilla EXT4 but
also to the other recent works including BarrierFS [49],
SpanFS [15] and FastCommit [42] in varmail, dbench and
OLTP-Insert workloads.

2 Background and Motivation
2.1 Journaling in EXT4

Block granularity physical logging. A journaling
filesystem logs the updated metadata either in a block
granularity, e.g. EXT4 [36] or in a metadata granularity,
e.g. XFS [45]. Physical block granularity logging of EXT4
is not only expensive but also unable to scale.

EXT4 maintains a set of page cache entries that need
to be logged to the disk for journaling. It is called running
transaction. When the system call updates the filesystem
metadata, it first acquires a lock on the associated kernel
object (e.g., directory mutex) and obtains the journal
handle. A journal handle is a kind of ticket-like permis-
sion to add page cache entries to the running transaction.
After the application is granted with the lock and the
journal handle, the application modifies page cache en-
tries. After modifying page cache entries, it inserts the
updated page cache entries to the running transaction.

EXT4 commits the running transaction either peri-
odically or by the explicit request from the application,
e.g., fsync(). EXT4 commits the original page cache
entry of the modified data. The application that needs
to update the filesystem state is blocked if the associated
page cache entry is being committed to the disk. We
call this situation transaction conflict described in S2.2.
Block granularity logging leaves the EXT4 journaling un-
der frequent transaction conflict and subsequently under
scalability failure.
Serial journal commit. In EXT4, journal commit is
strictly serial activity. EXT4 allocates a separate thread
for journal commit, JBD thread. JBD thread can commit

the following journal transaction only after the preceding
journal transaction becomes durable.

Figure 1: fsync() in EXT4
We illustrate the behavior of an fsync(). Let D, JL, and

JC be file dirty data pages, journal log blocks and journal
commit block. When an application thread calls fsync(),
it writes the dirty data pages (D) to the storage, and then
it wakes up the JBD thread. The JBD thread changes
the transaction state from running to committing and
writes the log blocks (JL) to the storage. Once all the log
blocks are transferred (i.e., DMA-ed) to the storage, the
JBD thread writes the journal commit block (JC) to the
storage with REQ_PREFLUSH and REQ_FUA [1] flags to ensure
that the journal commit block is made durable only
after the dirty data pages and the journal log blocks do.
REQ_PREFLUSH flag instructs the storage controller to flush
the writeback cache in a storage device before servicing
the associated write command. REQ_FUA command writes
the associated data block directly to the storage media
bypassing the writeback cache of the storage. Once the
write command for commit block returns, the JBD thread
finishes committing a transaction.

Figure 1 illustrates the timing diagram of servicing two
consecutive fsync()’s. The first fsync() and the second
fsync() are issued at t1 and at t2, respectively. We mark
the journal transactions for the preceding fsync() and
the following fsync() as Tx1 and Tx2, respectively. JBD
thread starts committing Tx2 (at t3) only after it finishes
committing Tx1.
2.2 Concurrency Control in Filesystem Jour-

naling
To partly address the drawback of serial journal com-

mit, EXT4 journaling adopts compound journaling and
the shadow paging to increase its concurrency. The com-
pound journaling commits multiple file operations with a
single journal commit. The shadow paging allows the file
operation and the journal commit operation to proceed
in parallel while they share the same page cache entry.
Compound journaling inevitably accompanies transac-
tion lock-up phase when it needs to commit the running
transaction. Journal commit operation should exclusively
lock the page cache entry when it needs to write the
page cache entry to the storage. Transaction lock-up and

168 21st USENIX Conference on File and Storage Technologies USENIX Association

page granularity exclusive locking temporarily blocks
the file operations and can severely interfere with the
overall system performance. Let us explain the details
of individual phases of journaling.

Figure 2: Dissection of EXT4 journaling phases

(i) Coalescing in Running Transaction. In coalesc-
ing phase, the application can modify the metadata and
insert the associated page cache entry to the running
transaction. EXT4 journaling adopts compound trans-
action which is also known as a group commit [12] to
increase the throughput. In Figure 2, a file operation
modifying page cache entries P1 and P2 and another file
operation modifying page cache entries P2 and P3, shar-
ing the commonly modified page cache entry P2. EXT4
creates a compound transaction of P1, P2, and P3.
(ii) Transaction Lock-Up in Running Transaction.
When the JBD thread needs to commit the running trans-
action, the JBD thread stops issuing the journal handle
to prohibit the new file operation to modify the running
transaction. Then, it waits for the outstanding file op-
erations which already have a journal handle to finish.
Otherwise, starting the journal commit can be postponed
indefinitely. When all file operations which already have
a journal handle finish, JBD thread changes the trans-
action state from running to committing. We call this
time period during which the JBD thread stops issuing
the journal handle as transaction lock-up phase. Any file
operations that update the metadata are blocked when
the running transaction is in lock-up phase. In Figure 2,
during the transaction lock-up phase, the file operation
that modifies P4 is blocked. The file operation wakes up
when the lock-up phase of Tx1 is released and adds P4 to
the new running transaction, Tx2.
(iii) Shadow Paging in Committing Transaction.
After the transaction state is changed to committing,
JBD thread prepares the page cache entries for DMA
transfer. EXT4 journaling adopts very limited form of
Shadow Paging to handle the transaction conflict during
this time interval. It allows only one shadow page and
does not allow more multiples versions. When there
occurs transaction conflict when the JBD thread prepares
the page cache entries for DMA transfer, JBD thread

creates the shadow copy of the conflict page and uses a
shadow copy of the original page cache entry for DMA
transfer [47]. With shadow paging, a file operation can
modify the original page cache entry in the committing
transaction without waiting for the completion of the
transaction commit. EXT4 journaling can create up
to only one shadow page. If two or more transactions
attempt to update the same page, only one can proceed
and the others are blocked until the associated page is
committed to the storage. In Figure 2, during the shadow
paging phase, the file operation tries to modify P3, which
is in the committing transaction, Tx1. The file operation
creates the shadow page, P’3, and adds the original page
cache entry, P3 to the new running transaction, Tx2.
(iv) DMA in Committing Transaction. When the
log block of the committing transaction is transferred
to the storage (DMA), the host establishes an exclu-
sive lock on the associated page cache entry. This is to
prohibit the file operation from blindly updating the
page cache entry of the committing transaction that is
being transferred and from migrating it to the running
transaction compromising the atomicity of the journal
commit. During DMA phase, any file operations that up-
date the locked page cache entry are blocked. In Figure 2,
the DMA phase is marked in gray. While a compound
transaction of P1, P2, and P’3 is under DMA, an attempt
to modify page P2 will be blocked. Because P’3 is the
shadow page and the shadow page is being transferred,
the file operation which modifies P3 is not blocked and
modifies the original page cache entry, P3. An attempt
to modify a page cache entry, P5, which is not in a com-
mitting transaction will successfully add the page to the
new running transaction, Tx2.

2.3 Existing Solutions to Scale Journaling
A number of approaches have been proposed to

increase the concurrency in the filesystem journal-
ing [15,17,24,32,45,49]. They can be categorized with
respect to the number of threads that are used to handle
a single journal commit; (i) single-threaded journal com-
mit and (ii) multi-threaded commit. They also can be
categorized with respect to how they allocate the journal
transaction in the filesystem; per-core basis or per-region
basis. Table 1 summarizes the approaches in the existing
scalable filesystem journaling techniques.

Filesystems Concurrent Transactions Multi-Threaded
Per-core Per-region Commit

Z-journal [17] ⃝ ⃝
SpanFS [15] ⃝
IceFS [24] ⃝
MQFS [23] ⃝

BarrierFS [49] △
XFS [45] ⃝

iJournaling [32] ⃝
ScaleFS [6] ⃝

Table 1: Categories of existing scalable filesystems

USENIX Association 21st USENIX Conference on File and Storage Technologies 169

In the concurrent transaction approach, the journal-
ing filesystem allows multiple running transactions, mul-
tiple committing transactions or both, to proceed in
parallel. In per-core basis approach, they allocate the
transaction for each CPU core (per-core basis) [32] . In
per-region basis approach, filesystem is partitioned into
multiple regions and allocates dedicated journal area
for each filesystem region [15, 17, 24]. In per-region ba-
sis approach, the journaling filesystem maintains the
running transaction and/or committing transaction in
per-region basis. The filesystem can commit the multiple
transactions concurrently for each filesystem region. Per-
region approach requires changing the on-disk layout of
the existing filesystem partition [15,17,32]. In per-core
approach, the transactions may conflict with each other,
i.e. they modify the same page cache entry. Resolving
the transaction conflict accompanies substantial over-
head, e.g. [17] compromises fsync() durability or journal
commit is subject to excessive tail latency [15].

In multi-threaded journal commit approach, the filesys-
tem divides a journal commit operation into multiple
phases and allocates the separate threads for handling
each of the journal commit phases. With this multi-
threaded organization, a thread can start processing the
following journal transaction before the preceding jour-
nal commit finishes in pipelined manner. In XFS, one
thread is responsible for making the journal transaction
durable and the other thread is responsible for ensur-
ing that all preceding transactions are durable after the
journal transaction becomes durable [16]. In BarrierFS,
one thread is responsible for issuing the IO requests for
journal commit, and the other thread is responsible for
making the journal transaction durable [49]. Both XFS
and BarrierFS can start a new journal commit without
waiting for the preceding journal commit to finish. In
BarrierFS, the journal commit operation is serialized in
most cases due to frequent transaction conflict.

To ensure the storage order between the log blocks
and the journal commit block in committing a journal
transaction, the filesystem interleaves the write requests
for the log blocks and the write request for commit
block with the FLUSH command. Recently, a number of
works have been proposed order-preserving IO stack to
mitigate the FLUSH overhead associated with ensuring
the storage order in journal commit operation [9, 21,
23,49]. The order-preserving IO stack consists of order-
preserving block layer [23, 49] and order-preserving FTL
[9,21,49]. Order-preserving FTL can be implemented via
exploiting the cache-barrier command [49], via imposing
a global sequence number on the IO commands [9] or
via exploiting non-volatile cache at SSD [21]. These
works show that order-preserving FTL can be realized
without substantial overhead and renders the identical
performance as legacy FTL.

3 Scalability of EXT4 Journaling
3.1 Workloads

We used four filesystem macro benchmarks – two vari-
ants of varmail (varmail-shared and varmail-split)
in filebench [26], dbench [46], and OLTP-Insert [19] –
to cover wide variety of real-world application behaviors.
Each benchmark has a different mix of file operations
(Table 2) and stresses various parts of the filesystem
(Table 3).

Benchmarks create() unlink() write() read() fsync() rename()

varmail 7.7% 7.7% 15.4% 15.4% 15.4% 0%
dbench 16.6% 3.5% 8.6% 27.1% 5.2% 0.7%

OLTP-Insert 0% 0% 77.8% 12.2% 10.0% 0%

Table 2: Ratio of filesystem operations in benchmarks

Benchmarks Directory In-memory On-disk
contention logging logging

varmail-shared High Moderate High
varmail-split No Moderate High
dbench No Moderate Moderate

OLTP-Insert No low low

Table 3: Filesystem contention in benchmarks

Mail server: varmail [26]. The varmail bench-
mark simulates the behavior of mail server. In the var-
mail workload, each thread repeats a set of create(),
unlink(), and fsync() operations. Varmail is known for
intensive fsync() calls. In the original varmail work-
load, all threads share the same directory yielding the
lock contention on the shared directory. We call it
varmail-shared. We modify the varmail workload so
that each thread works on its own directory. We call
it varmail-split. We use varmail-split how the filesys-
tem journaling scales in the absence of the contention
on the shared directory.
File server: dbench [46]. The dbench simulates the
behavior of the fileserver. It is metadata-intensive work-
load calling unlink() and rename() followed by fsync()
(with a –sync-dir option enabled). In dbench, fsync()
calls account for 5.2% of all filesystem calls. Dbench
calls read() and write() with various IO sizes; 4KB IO
accounts for 60% of the read() and write().
OLTP: OLTP-Insert on MySQL [19] OLTP-Insert
simulates the server for online transaction processing. In
this workload, write() followed by fsync() is frequently
invoked. The write size ranges from 8KB to 32KB; 8KB
write accounts for 81%. Among the four workloads, the
contention (or transaction conflict) degree of this work-
load is the lowest. We use this workload to test the be-
havior of journaling under the circumstances that there
is only little contention (or transaction conflict).
3.2 Scalability Results

We compare the performance of the four benchmarks
under EXT4 and BarrierFS [49]. BarrierFS is the variant

170 21st USENIX Conference on File and Storage Technologies USENIX Association

 0

 30

 60

 90

 120

 0 10 20 30 40

T
h
ro

u
g
h
p
u
t
(k

o
p
s
/s

)

of threads

Varmail-shared
Varmail-split

(a) EXT4

 0

 30

 60

 90

 120

 0 10 20 30 40

of threads

Dbench

OLTP-Insert

(b) BarrierFS
Figure 3: Scalability of EXT4 and BarrierFS

of EXT4 which can commit multiple transactions con-
currently. We used two SSDs – Samsung 860 Pro (MLC
Flash, SATA interface) and 970 Pro (MLC Flash, NVMe
interface) in this experiment. However, we omitted the
results with 860 Pro since the performance trends on
these two SSDs are almost identical. Please refer to S6.1
for the details of our evaluation setup.

As Figure 3 shows, the performance and scalability of
both filesystems get worse as fsync() accounts for more
dominant fraction of the entire system calls. The dbench
which renders the least significant fsync() calls is the
most performant and scalable.

As shown in Figure 3(b), BarrierFS increases the per-
formance of dbench, OLTP-Insert and varmail-split by
28%, 61% and 21% against EXT4 in forty threads, re-
spectively, thanks to its concurrent journaling scheme.
However, the performance of varmail-shared is not at
all scalable and moreover is even worse than EXT4. We
found that the main problem is the transaction con-
flict. As presented in Table 3, varmail-shared has con-
tention on a shared directory. When the modified shared
directory pages are under DMA, the other concurrent
transaction cannot make progress, significantly limiting
scalability until the IO completes.
3.3 Analysis on Scalability Bottleneck

We examine the scalability bottlenecks in filesystem
journaling with EXT4 performing serial journal com-
mit and BarrierFS performing concurrent journaling.
We identify four main components that affect the per-
formance scalability in EXT4 and BarrierFS; trans-
action conflict (S3.3.1), serial flush (S3.3.1), length
of a transaction lock-up interval (S3.3.2) and coalesc-
ing degree of compound journaling (S3.3.3). We present
varmail-shared results only since the other workloads
show the similar performance behavior.
3.3.1 Transaction Conflict

EXT4. Figure 4 shows the number of transaction con-
flicts (varmail-shared). The number of transaction con-
flicts – the number of file operations trying to modify
the log blocks that are under DMA. At varmail-shared,
the number of blocked file operations ranges from 6,360

 0

 5

 10

 15

 20

10 20 30 40

C
o
n
fl
ic

t
C

o
u
n
t/

T
x

of threads

EXT4 BarrierFS

Figure 4: The average number of conflicts in a transaction
(EXT4 and BarrierFS, varmail-shared workload)

to 15,809. It accounts for 4.7% of all file operations. De-
spite the shadow paging feature of EXT4 to resolve the
transaction conflict, EXT4 journaling still suffers from a
significant amount of transaction conflicts.
BarrierFS. BarrierFS renders significantly worse per-
formance than EXT4 in varmail-shared workload (Fig-
ure 3(a) vs. Figure 3(b)). We found that the concurrent
journaling design of BarrierFS increases the number of
transaction conflicts substantially and it causes the scal-
ability meltdown. BarrierFS can start committing the
following transaction before the preceding transaction
commit finishes. Technically, there can be multiple com-
mitting transactions in-flight in BarrierFS. In reality,
BarrierFS fails to commit multiple transactions concur-
rently. There are two reasons; transaction conflict and
serial flush. We find that most journal transactions share
some pages in common, e.g., inode block and bitmap, and
is subject to the transaction conflict [17]. The following
journal transaction cannot be committed till the preced-
ing transactions which it conflicts with are made durable
at the storage. In BarrierFS, the flush thread issues the
flush command of the following committing transaction
only after the preceding transaction becomes durable.
Even though BarrierFS commits multiple transactions
concurrently, it flushes each of them with a separate flush
command. Since each journal commit yields a separate
flush at the storage device, the benefit of concurrent
journaling design of BarrierFS is marginal.

Moreover, when running transactions are trying to
modify log blocks under flush, they all are conflicted and
blocked. Shadow paging (inherited from EXT4) does not
help because it can create only one version in a certain
condition. As a result, higher concurrency in committing
transactions and limited shadow paging causes nearly
100% of file operations suffering from transaction con-
flicts in all threads.
3.3.2 Transaction Lock-up

One of the main causes of scalability failure in concur-
rent journaling is the extended lock-up interval.
EXT4. In EXT4, the length of transaction lock-up
interval is negligible as in Figure 5(a). In EXT4, the
lock-up period is just a duration waiting for outstanding
file operations to finish, which is very short in general.

USENIX Association 21st USENIX Conference on File and Storage Technologies 171

Also, as Figure 6(a) shows, fsync() latency is high but
the latency of create() and unlink() is still low. In other
words, the short lock-up period does not interfere other
file operations, create() and unlink().
BarrierFS. In BarrierFS, the transaction lock-up la-
tency accounts for approximately half of the entire
transaction commit latency (Figure 5(b)). We found
that transaction conflict and concurrent journaling nega-
tively interfere with each other and significantly extend
the transaction lock-up period. Because the running
transaction waits for resolving of transaction conflict in
LOCKED state.

In both EXT4 and BarrierFS, JBD thread first places
a running transaction in the LOCKED state when it
starts committing the running transaction. There is a
critical difference between EXT4 and BarrierFS from
the aspect of the LOCKED state. In EXT4, when JBD
thread places the running transaction in the LOCKED
state, the running transaction is guaranteed to be free
from transaction conflict. That is because, in EXT4,
journal commit is strictly serial activity. In EXT4, the
running transaction can be released from the LOCKED
state if all outstanding filesystem operations finish.

In BarrierFS, the running transaction can be placed in
the LOCKED state while the preceding journal commit
is still in flight. BarrierFS can prematurely place the
running transaction at the LOCKED state before the
running transaction becomes free from the transaction
conflict. BarrierFS waits to release the running trans-
action from the LOCKED state till all outstanding file
operations finish and till all conflicts are resolved. As
a result, a running transaction stays at the LOCKED
state in much longer interval in BarrierFS than in EXT4.

 0

 2

 4

 6

 8

10 20 30 40

L
a
te

n
c
y
(m

s
)

of threads

Locked Total

(a) EXT4

 0

 2

 4

 6

 8

10 20 30 40

L
a
te

n
c
y
(m

s
)

of threads

Locked Total

(b) BarrierFS
Figure 5: Transaction lock-up interval in varmail-shared

 0
 2
 4
 6
 8

 10

 10 20 30 40

L
a
te

n
c
y
(m

s
)

of threads

create
unlink
fsync

(a) EXT4

 0

 10

 20

 10 20 30 40

L
a
te

n
c
y
(m

s
)

of threads

(b) BarrierFS
Figure 6: Latency of unlink(), create() and fsync() in
varmail-shared

Figure 7: Excessive Lock-Up overhead in Concurrent
Journaling (BarrierFS)

Figure 7 illustrates this situation. The running transac-
tion, Tx2, is created at t1. The application calls fsync()
at t2. Tx2 is placed on the LOCKED state immediately
without waiting for the current committing transaction
Tx1 is made durable. If Tx2 conflicts with Tx1 (in most
cases it does), Tx2 can be released from the LOCKED
state only after Tx1 is committed to the storage.

3.3.3 Limited Coalescing Degree

The key ingredient that governs the performance scala-
bility of the filesystem journaling is the coalescing degree
of the journal transaction – the number of filesystem
operations in a journal transaction.

EXT4. EXT4 scales well in varmail-shared work-
load (Figure 3). Ironically, the strict serial nature of
EXT4 journaling actually helps itself to increase the
coalescing degree of the compound journaling. EXT4
can start committing the running transaction only when
the preceding journal commit finishes. When the jour-
nal commit is in progress, all updates associated with
the incoming file operations are inserted at the running
transaction. Therefore, there is a higher coalescing op-
portunity as the number of threads increases. Figure 8(a)
confirms that the number of handles (i.e., file operations)
in a transaction increases linearly with the number of
threads. At the same time, we observe that the journal
commit latency increases with the number of threads.
This is because journal transaction tends to get larger
as the number of threads increases. As shown in Fig-
ure 8(c), median and 99.99% latencies increase 11% and
7%, respectively, from 10 to 40 threads.

BarrierFS. BarrierFS fails to scale in varmail-shared
workload (Figure 3) due to its limited coalescing degree.
This is because BarrierFS places the running transac-
tion into LOCKED state prematurely and leaves less
chance to coalesce the multiple file operations into a
single journal transaction. Figure 8(b) confirms that in
BarrierFS the coalescing degree remains the same while
the number of threads increases. Since the coalescing
degree does not increase, the latency of journal com-
mit remains the same irrespective of the increase in the
number of threads (Figure 8(d)).

172 21st USENIX Conference on File and Storage Technologies USENIX Association

 0

 40

 80

 120

 160

10 20 30 40

#
 o

f
h
a
n
d

le
s
 /
 t
x

of threads

Handles/TX

(a) Coalescing degree (EXT4)

 0

 40

 80

 120

 160

10 20 30 40

#
 o

f
h
a
n
d

le
s
 /
 t
x

of threads

Handles/TX

(b) Coalescing degree (BarrierFS)

 0
 0.2
 0.4
 0.6
 0.8

 1

 0 2 4 6 8 10 12

C
D

F
 (

X
<

x
)

latency(ms)

thr 10
thr 20
thr 30
thr 40

(c) fsync() latency (EXT4)

 0
 0.2
 0.4
 0.6
 0.8

 1

 0 2 4 6 8 10 12

C
D

F
 (

X
<

x
)

latency(ms)

thr 10
thr 20
thr 30
thr 40

(d) fsync() latency (BarrierFS)

Figure 8: Coalescing degree and CDF of fsync() latency
in EXT4 and BarrierFS for varmail-shared workload

4 Design
In this section, we present the design of CJFS, a Con-

current Journaling Filesystem. CJFS consists of four key
technical ingredients; (1) dual thread journaling (S4.1),
(2) multi-version shadow paging (S4.2), (3) opportunistic
coalescing (S4.3), and (4) compound flush (S4.4) – to
overcome all the bottlenecks discussed in S3.3 and to
scale filesystem journaling.
4.1 Dual Thread Journaling

For concurrent journaling, we separate the journal com-
mit procedure into two phases, the commit phase and
the flush phase and allocate separate threads, namely
commit thread and the flush thread, for each phase. The
commit thread is responsible for issuing the write re-
quests for journal transaction to the storage. Once this
completes, the storage device sends an interrupt to the
host notifying about the completion of servicing the re-
quests. The flush thread is responsible for making the log
blocks and the commit block durable. Once the interrupt
arrives, the flush thread wakes up and issues the flush
command to the storage to make the log blocks and the
commit block durable. Via separating the commit thread
and the flush thread, CJFS can commit the following
transaction without waiting for the preceding journal
commit to finish.

Figure 9 illustrates the mechanism of Dual Thread
Journaling. CJFS maintains a single running transaction.
In fsync(), the flush thread waits till all dirty pages, log
blocks, and the commit block are transferred to the disk.
Once this completes, it issues the flush command to
the storage. Our journaling module leverages the cache
barrier command [14,36,49], which efficiently preserves
the partial order between the issue order and the persist
order in a commodity storage device.

Figure 9: Concurrent Transaction Commit in Dual
Thread Journaling. CJFS performs Tx1’s flush phase
and Tx2 commit phase concurrently

4.2 Multi-Version Shadow Paging
Most filesystems cluster the filesystem metadata to-

gether in their filesystem partition. This is to exploit the
spatial locality of the disk access. The filesystem oper-
ations, e.g.,create() or write(), access a few common
blocks which contain the popular filesystem metadata,
e.g., the allocation bitmap or inode.

EXT4 adopts the page granularity physical logging
and uses the original page cache entry. When it commits
the journal transaction, it establishes an exclusive lock
on the page cache entry associated with the journal
transaction till the journal transaction becomes durable.
Transaction conflict is particularly harmful to concurrent
journaling since it serializes the journal commits. If the
transaction conflict happens frequently, the concurrent
journaling of CJFS becomes barely effective and resorts
to serial journal commit as in EXT4.

To address the transaction conflict, we propose
Multi-Version Shadow Paging (MVSP). In multi-version
shadow paging, when the commit thread starts the jour-
nal commit, it creates the shadow copy of all pages in
the journal transaction. In committing the journal trans-
action, the commit thread uses the shadow copy of each
page in the transaction for transferring the journal trans-
action to the storage device instead of using the original
one. Since the journaling module uses the shadow page
for the journal commit, the subsequent file operation can
update the original page.

There can be multiple shadow copies for a given page
cache entry. Assume that the shadow copy of page P is
being committed to the storage. An application updates
the P to P′ and calls fsync(). Then, the commit thread
creates the shadow copy of P′ and commits the shadow
copy of P′ to the storage. While the shadow copy of P′ is
being transferred by the journal commit, another appli-
cation may update the P′ to P′′ and calls fsync(). Then,
there exist two shadow copies for P, P′ and P′′. CJFS
defines the maximum number of shadow pages that can
be associated with a single page. The maximum number
of versions is an administrator-configurable parameter

USENIX Association 21st USENIX Conference on File and Storage Technologies 173

Figure 10: Multi-Version Shadow Paging

and initialized when CJFS is mounted.
Figure 10 illustrates the behavior of CJFS when the

transaction conflict exists. Tx1, Tx2 and Tx3 are created
in order. Each of them is in a different phase. There
are one running transaction, Tx3, and two committing
transactions, Tx2 and Tx1. Tx1 has three pages P1, P2
and P3. When the commit thread commits Tx1, CJFS
creates the shadow copies P′1, P′2 and P′3 for the pages
in Tx1. The subsequent filesystem operation updates P1,
P2 and P4. Then, the filesystem triggers another journal
commit. The following transaction, Tx2, consists of P1,
P2 and P4. In committing Tx2, the commit thread creates
the shadow copies P′′1 (second shadow copy of P1), P′′2
(second shadow copy of P2) and P′4 for each page in Tx2.
Two transactions, Tx1 and Tx2 are being committed to
the storage. Subsequent file operations update P1, P2 and
P3. Since these pages are available for the update, the
file operations update these pages and insert them to
the running transaction.

Multi-version shadow paging in CJFS is a variant of
versioning which is widely used in transaction concur-
rency control [18,30,51]. Multi-version shadow paging of
CJFS is different from the versioning in Copy-On-Write
filesystems [20,37–40]. These filesystems retain the his-
tory of updates for individual file blocks to make the IO
workload sequential and/or to construct the filesystem
snapshot easily.

4.3 Opportunistic Coalescing
CJFS pre-allocates a fixed number of pages for shadow

paging. Since the number of shadow pages is limited,
the transaction conflict can still occur if all pre-allocated
shadow pages are used to hold the logs. If the transaction
conflict occurs, the running transaction is put in the
LOCKED state and all subsequent file operations that
modify the filesystem state are blocked. To resolve this
problem, we propose the Opportunistic Coalescing. The
proposed opportunistic coalescing shares the same idea
with try_lock [4].

Algorithm 1 shows the pseudo-code for opportunistic
coalescing. At first, the commit thread puts the running
transaction at the LOCKED state (Line 4), After the

Algorithm 1: Opportunistic Coalescing
1 function journal_commit_transaction(journal)
2 while true do
3 tx = journal→running_tx;
4 tx → state = LOCKED;
5 if outstanding system calls > 0 then
6 wait (outstanding system calls == 0);
7 end
8 if transaction conflict then
9 tx → state = RUNNING;

10 wakeup(user thread waiting on LOCKED);
11 wait(preceding transaction to commit);
12 continue;
13 end
14 break;
15 end
16 journal → committing_tx = tx;
17 journal → running_tx = NULL;
18 submit_bio_tx(tx);
19 insert_committing_tx_list(tx);
20 end

Figure 11: Illustration of Opportunistic Coalescing

running transaction is put at the LOCKED state, the
commit thread waits for the outstanding file operation
which already has a journal handle to finish (Line 6).
When all outstanding file operations finish, the commit
thread checks if there exists any conflict (Line 8). If there
exists a conflict, the commit thread places the transaction
back to the RUNNING state and is blocked (Line 9-11).
The running transaction can continue accommodating
the newly incoming log blocks while the commit thread is
blocked. Each time when the transaction commit finishes,
the flush thread wakes up the commit thread. When
the commit thread wakes up, it checks if the running
transaction is free from the conflicts. If it is free from
the conflicts, it changes the state of the transaction to
LOCKED state again (Line 12).

Figure 11 illustrates how the opportunistic coalescing
works. There arrive two consecutive transactions (Tx1
and Tx2). In Figure 11, Tx2 is put into LOCKED state
twice; at t2 and at t4. Tx2 is in RUNNING state during the
period between two LOCKED states. After the state of the
running transaction becomes RUNNING state, all pending
file operations, which were blocked waiting for the journal
handle, are issued the journal handles. With Opportunis-
tic Coalescing, CJFS can coalesce larger number of file
operations into the running transaction.

174 21st USENIX Conference on File and Storage Technologies USENIX Association

4.4 Compound Flush

CJFS splits the journal commit operation into two
phases; (i) transferring the log blocks and the commit
block (commit thread) and (ii) making them durable
(flush thread). For journaling of CJFS to work in a fully
concurrent fashion, both the commit thread and the flush
thread should be able to handle the associated tasks in a
concurrent manner. In CJFS, the commit thread handles
the transaction concurrently; it can commit the following
transaction while the preceding transaction is in-flight.
However the flush thread handles the transaction in serial
fashion; it can flush the following transaction only after
the preceding transaction is flushed.

To ensure that the journal transactions are made
durable in order, the flush thread issues the flush com-
mand for the following transaction only after the flush
command for the preceding transaction returns. As a
result, the behavior of the flush thread is serial, which
makes the concurrent journal mechanism of CJFS only
partially complete. Figure 12(a) illustrates the concur-
rent journaling with serial flush. Commit thread can
start committing the following transaction Tx2 before
the preceding transaction Tx1 commit finishes. However,
the flush thread can flush the following transaction Tx2
only after the transaction Tx1 is flushed to the storage.

(a) without compound flush

(b) with compound flush

Figure 12: Comparison of the flush procedure with and
without Compound Flush

To address the serial flush issue of CJFS, we pro-
pose Compound Flush. Compound Flush exploits the
cache barrier command [14,36]. Compound Flush works
as follows. When the flush thread is about to send the
flush command, it checks if there exist any following
committing transactions. If following committing trans-
action does not exist, it sends the flush command. If
the following committing transaction exists, it sends
the cache barrier command instead. Compound Flush
delegates the task of persisting the transaction to the fol-
lowing transaction commit request. An fsync() returns

only when the associated journal transaction becomes
durable. To prevent the Compound Flush from delaying
the transaction commit indefinitely, we limit the number
of transactions that can be flushed with a single flush
command. When the number of transactions waiting
for the flush reaches its limit or when there is no more
committing transactions in-flight, the flush thread sends
a flush command to the storage. With cache barrier
commands, the storage controller ensures that the log
blocks of the individual transactions are made durable
in order. When the flush command returns, the flush
thread wakes up all application threads that are waiting
for their fsync() to return.

Figure 12(b) illustrates how Compound Flush works.
When the flush thread finishes transferring the transac-
tion Tx1, the flush thread starts transferring the transac-
tion Tx2 instead of calling flush for flushing the transac-
tion Tx1. When the flush thread finishes transferring the
transaction Tx2, it finds that there are no other commit-
ting transactions in flight. Then, it calls flush to make
the transaction Tx1 and transaction Tx2 durable.

5 Discussion
We compare CJFS with the closest filesystem of this

sort, BarrierFS [49]. Dual Thread Journaling of CJFS
and Dual Mode Journaling of BarrierFS are similar in
that both allocate separate threads for transaction com-
mit and transaction flush, respectively. However, Barri-
erFS’s dual thread design is to efficiently support the two
journaling modes; “ordered” mode and the “durability”
mode. It is not designed for concurrent journaling.

There are three key differences between CJFS and
BarrierFS. First is how to handle the transaction conflict.
BarrierFS cannot commit the running transaction if the
running transaction conflicts with any of the ongoing
committing transactions. CJFS can commit the running
transaction even if there is a conflict. CJFS uses multi-
version shadow paging to resolve the conflict between the
running transaction and the committing transactions.
The second is how to handle the transaction lock-up. In
BarrierFS, transaction lock-up is non-preemptive. Once
the running transaction is locked-up, it waits for all com-
mitting transactions that it conflicts with to finish. In
CJFS, transaction lock-up is preemptive. When a run-
ning transaction is locked-up, CJFS checks if the running
transaction conflicts with any of committing transactions.
If it finds a conflict, the running transaction is unlocked.
The third is how to flush the committing transactions.
For a set of committing transactions that proceed concur-
rently, BarrierFS flushes each of them separately. CJFS
flushes a number of concurrent transactions together,
reducing the flush overhead substantially.

The Opportunistic Coalescing and Compound Flush
can be used in the other journaling filesystems such as

USENIX Association 21st USENIX Conference on File and Storage Technologies 175

XFS [45]. In journal commit, XFS copies the logs in
the log list to the log buffer and then flushes the log
buffer to the log area in storage. With Opportunistic
Coalescing, XFS can insert more logs to the log list by
releasing the lock on the log list. With Compound Flush,
XFS can flush the multiple log buffers with a single flush
command. Dual-Thread Journaling and Multi-Version
Shadow Paging are already used widely in other filesys-
tems [20,37,38,45,49] or DBMS [18,29,30].

6 Evaluation
6.1 Experiment Setup

We implemented CJFS [49] on Linux Kernel 5.18.18.
We used a 40-core server (two Intel Xeon Gold 6230
processors and 512 GB DRAM) and Samsung 970 Pro
SSD (MLC Flash, NVMe) for our experiment. We as-
sume that the SSD supports cache barrier command as
a mobile flash products (eMMC) support cache barrier
command [3,5]. They do not render any significant perfor-
mance deficiency against the ones without cache barrier
support. Also, previous studies [9, 49] showed the FTL
overhead of supporting the cache barrier command is
less than 2%. Given all these, we carefully believe that it
is reasonable to assume that SSD can support cache bar-
rier command without significant performance overhead.
We compare CJFS against BarrierFS [49], SpanFS [15],
Vanilla EXT4, and EXT4 with Fast-Commit [42]. We
used three macro benchmarks; varmail for mail server,
dbench for file server, and OLTP-Insert on MySQL. Please
refer to S3.1 for details of the benchmarks. We set the
maximum number of versions in CJFS to five1.

6.2 Effect of Individual Techniques

Dual Thread Journaling. We examine the com-
mand queue depth of the JBD thread (Figure 13) at
varmail-shared. In result, CJFS shows higher command
queue depth than EXT4 and BarrierFS. Because of the
serial transaction commit in EXT4, the maximum queue
depth of EXT4 is one. Although BarrierFS adopts dual
thread design, its maximum queue depth is two due to the
transaction conflict. CJFS fully exploits the queue depth
of the storage with Dual Thread design. While BarrierFS
suffers from the transaction conflict, CJFS resolves the
transaction conflict with Multi-Version Shadow Paging.
The performance effect of the Multi-Version Shadow Pag-
ing is described separately. With the higher queue depth,
it renders higher SSD IO utilization.
Multi-Version Shadow Paging. We vary the max-
imum number of versions in MVSP and examine the
throughput, the latency, and the number of conflicts per
transaction. We examine the effectiveness of MVSP un-

1We found that we do not need more than five shadow pages
to eliminate transaction conflict in our experiment setup.

 0
 2
 4
 6
 8

 10
 12

 0 1 2 3 4 5 6

Q
u
e
u
e
 D

e
p
th

Time (msec)

CJFS
BarFS
EXT4

Figure 13: Queue depth of JBD thread in CJFS, Barri-
erFS (BarFS), and EXT4

der three different maximum numbers of versions; one
(EXT4 and BarrierFS), three (noted as CJFS-V3), and
five (noted as CJFS-V5). Note that EXT4 and Barri-
erFS can have up to one shadow page. In the absence
of any versioning feature, BarrierFS is subject to fre-
quent transaction conflicts. Transaction conflict becomes
more harmful when the filesystem allows the concurrent
journal commit (BarrierFS) since it extends the trans-
action lock-up interval. As a result, BarrierFS renders
worse performance than EXT4. With forty threads, the
performance of BarrierFS is 60% of EXT4.

Multi-version shadow paging brings additional memory
pressure and the overhead of preparing the shadow page.
The total memory pressure for multi-version shadow
paging corresponds to the sum of the shadow pages
associated with the concurrent transactions. The aver-
age transaction size is 33 blocks in varmail-shared (40
threads). CJFS with five versions (CJFS-V5) consumes
660KByte (5*33*4KByte) additional memory. Accord-
ing to our physical measurement, preparing the shadow
page takes approximately 80 usec for a transaction in
varmail-shared (40 threads). The average transaction
commit latency decreases from 4.4 msec in EXT4 to
2.2 msec in CJFS in varmail-shared (40 threads). In
CJFS, the reduction in the journal commit latency far
outweighs the overhead of shadow paging.

We examine the fsync() latency of four filesystems
(Figure 14(b)). CJFS and BarrierFS yield the short-
est latency. The average latency of EXT4, BarrierFS
CJFS (V3), and CJFS (V5) are 8.1ms, 4.6ms 6.1ms,
and 4.7ms, respectively. CJFS yields the shortest tail
latency (99.9%) among the four filesytstems. The tail la-
tency of EXT4, BarrierFS, CJFS (V3), and CJFS (V5)
are 17.0ms, 13.5ms, 16.3ms and 11.8ms, respectively. Bar-
rierFS and CJFS-V5 has similar latency but CJFS-V5
has a better throughput than BarrierFS because of the
transaction conflict. In BarrierFS, file operations are
blocked when the transaction conflict occurs. However,
CJFS-V5 is free from the transaction conflict. File oper-
ations return without waiting for the transaction conflict.

We examine the number of conflicting blocks. The
average number of conflicted blocks in a transaction is
eleven or larger in EXT4 and BarrierFS but less than
two in CJFS (Figure 15). The number of conflicts per

176 21st USENIX Conference on File and Storage Technologies USENIX Association

 0
 10
 20
 30
 40
 50

 0 10 20 30 40

K
 o

p
s
/s

e
c

of threads

EXT4
BarFS

CJFS-V3
CJFS-V5

(a) Throughput

 0
 0.2
 0.4
 0.6
 0.8

 1

 0 3 6 9 12

C
D

F
 (

X
<

x
)

latency(ms)

EXT4
BarFS

CJFS-V3
CJFS-V5

(b) fsync() latency (40 threads)

Figure 14: Throughput and Latency of varmail-shared:
CJFS, BarrierFS (BarFS), and Vanila EXT4 (EXT4)

transaction is inversely proportional to the benchmark
performance. CJFS with five versions (CJFS-V5) out-
performs EXT4 1.7× at 40 threads.

 0

 10

 20

 30

10 20 30 40

C
o
n

fl
ic

ts
 /
 T

x

of threads

EXT4 BarFS CJFS-V3 CJFS-V5

Figure 15: Average number of conflicts per transaction

Opportunistic Coalescing. Opportunistic Coalesc-
ing improves the filesystem performance by 2.5× (Fig-
ure 16(a)). With Opportunistic Coalescing, the coalesc-
ing degree of the journal transaction increases by 3.3×
(Figure 17).

 0

 20

 40

 60

 10 20 30 40

K
 o

p
s
/s

e
c

of threads

wo OC w OC

(a) Opportunistic Coalescing

 0

 20

 40

 60

 10 20 30 40

K
 o

p
s
/s

e
c

of threads

w CF
wo CF

(b) Compound Flush

Figure 16: Effect of Opportunistic Coalescing and Com-
pound Flush for varmail-shared in CJFS

Compound Flush. We ran varmail-shared to see the
performance impact of Compound Flush. We set the
maximum version number to five. Figure 16(b) shows
that Compound Flush improves throughput up to 2.14×.
By merging the multiple flush commands into one, Com-
pound Flush reduces the average fsync() latency from
11.8ms to 4.7ms.
6.3 Macro Benchmarks

Mail server: varmail-shared and varmail-split. Fig-
ure 18(a) and Figure 18(b) shows the throughput of
varmail-shared and varmails-split, respectively. Since
all threads share the same directory in varmail-shared,
the transaction conflicts occur much more frequently.

 0

 30

 60

 90

 120

 150

10 20 30 40

H
a

n
d
le

s
/T

x

of threads

CJFS without OC

CJFS with OC

Figure 17: Comparison of coalescing degree with and
without Opportunistic Coalescing for varmail-shared

For varmail-shared, CJFS outperforms EXT4 and Bar-
rierFS by 62% and 173%, respectively. For varmail-split,
the throughput of CJFS is 82% and 15% higher than
that of EXT4 and BarrierFS, respectively. CJFS mani-
fest itself in varmail-shared because MVSP of effectively
handles the transaction conflict. In varmail-shared, Bar-
rierFS becomes subject to the severe performance degra-
dation due to frequent transaction conflicts.
File Server: dbench. As Figure 18(c) shows, CJFS
increases throughput 68% over EXT4. Dbench does not
have the directory contention (similar to varmail-split)
and it is less fsync()-heavy than varmail-shared, incur-
ring less transaction conflicts. Hence BarrierFS scales
better in dbench than in varmail workload.
OLTP-Insert on MySQL : Here, the transaction conflict
rarely occurs. CJFS scales well even when there is little
or no transaction conflict. As Figure 18(d) shows, CJFS
increases throughput up to 2.25× over EXT4 in ten
threads. Moreover, CJFS increases the throughput by
15% compared to BarrierFS in ten threads.
Analysis : Fast commit [42] uses metadata-granularity
physical logging. Despite its data structural elegance,
Fast commit yields second to lowest throughput among
the five. Fast commit trades the fsync() throughput
with the fsync() latency. Due to its finer transaction
granularity, Fast commit tends to make the smaller jour-
nal transaction. As a result, the fsync() latency becomes
shorter in Fast commit. However, we observe that the
number of flushes, i.e., the number of journal commits,
increases significantly when EXT4 employs Fast commit.
As a result, in terms of journaling throughput and scala-
bility, Fast commit in EXT4 leaves substantial room for
improvement. Fast commit is particularly detrimental to
the journaling performance when there are a large num-
ber of threads. SpanFS [15] yields the worst performance
among the five due to its serial journal commit. SpanFS
defines the running transaction for each filesystem region.
In SpanFS, these transactions can be committed in paral-
lel. However, when the two or more transactions modify
the shared filesystem metadata, e.g. root directory, the
following running transaction can only be committed
after the preceding running transaction is made durable.
When there exists multiple concurrent running transac-
tions (SpanFS), the performance becomes actually worse

USENIX Association 21st USENIX Conference on File and Storage Technologies 177

 0

 25

 50

 0 10 20 30 40

K
 o

p
s
/s

e
c

of threads

EXT4

(a) varmail-shared

 0

 10

 20

 30

 40

 0 10 20 30 40

of threads

BarFS

(b) varmail-split

 0

 50

 100

 0 10 20 30 40

of threads

FC SpanFS

(c) dbench

 0

 1

 2

 3

 4

 0 10 20 30 40

of threads

CJFS

(d) OLTP-Insert

Figure 18: Throughput: EXT4, BarrierFS (BarFS), Fast commit (FC), SpanFS, and CJFS

than when there allows only one running transaction
(EXT4). This is because SpanFS creates large number of
small running transactions and all small running trans-
actions are committed in serial fashion. On the other
hand, EXT4 commits a large amount of the filesystem
updates with a single running transaction.

6.4 Crash Consistency

CJFS uses the same on-disk structure and the recovery
routine with EXT4. We use CrashMonkey [25] to examine
if CJFS recovers the filesystem properly under unex-
pected system crashes. Crashmonkey generates a number
of crash scenarios and checks if the filesystem recovers
correctly. We use two scenarios, rename_root_to_sub and
create_delete. CJFS passed all 10,000 test cases. We
also generate sudden-power-off condition and examine
if CJFS recovers the filesystem state into a consistent
one. We confirmed that the recovery routine of CJFS
correctly replays the transactions in the journal region
and places the filesystem state into the consistent state.

7 Related Work

Multiple journal regions. IceFS [24] creates multi-
ple journal regions in a filesystem partition for better
isolation. ScaleFS [6], SpanFS [15], and Z-journal [17]
manage multiple (or per-core) journal regions to reduce
contention on journaling and to achieve high scalability.
However, they still serially commit a journal transaction
for each journal region and they are subject to trans-
action conflict when multiple threads access the same
storage region. Note that Z-journal compromises the
durability of fsync() for scalability.
Per-core running transaction. ScaleFS [6] and
MQFS [23] maintain per-core running transaction to
avoid contention in concurrent journaling. While these
works can concurrently commit the multiple transactions
in different cores, they commit the transactions in serial
fashion in each core. In addition, while this approach
minimizes the contention on journaling, it also loses the
chance of transaction coalescing, which we found critical
in achieving high performance and scalability.
Parallel journal commit. BarrierFS [49] and XFS [45]

process a journal transaction commit in a separate thread
to make a single journal commit parallel. However, Bar-
rierFS serializes the journal commit when there is a
conflict between a running transaction and committing
transactions. Also, XFS suffers from excessive flush calls
for guaranteeing a write order or a durability [16].
Reducing flush overhead. There have been efforts
to reduce costly flush overhead in filesystem journaling.
RFLUSH [52] specifies an fsync() range and iJournal-
ing [32] performs per-file journaling. IRON filesysem [34]
omits flushing the journal commit block by using transac-
tional checksum. BarrierFS [10] leverages a cache barrier
command to reduce flush overhead.
Soft Updates. Soft Updates [11,27,41] is an alternative
to the filesystem journaling. It enforces write ordering
with an expensive transfer-and-flush mechanism [49].
CJFS can guarantee the storage order without using
transfer-and-flush mechanism.

8 Conclusion
We propose CJFS, Concurrent Journaling Filesys-

tem. CJFS overcomes the scalability limitations of the
heavy-weight EXT4 journaling mechanism with four
novel techniques, namely Dual Thread Journaling, Multi-
Version Shadow Paging, Opportunistic Coalescing, and
Compound Flush. At a high level, CJFS parallelizes
the journaling activity (Dual Thread Journaling) and
avoids a page under IO being a bottleneck (Multi-Version
Shadow Paging). Whenever the contention is inevitable,
CJFS actively lowers the overhead by coalescing concur-
rent requests at thread level (Opportunistic Coalescing)
and storage device level (Compound Flush). Our ex-
tensive evaluation shows CJFS achieves the significant
throughput and latency improvement with multicore scal-
ability and high storage device utilization against the
state-of-the-art filesystems.
Acknowledgements We are deeply indebted to our
shepherd, Yu Hua, for helping shaping the final version
of this paper. We are also grateful to the anonymous
reviewers for their comments. This work was supported
by NRF, Korea (grant No. NRF-2020R1A2C3008525),
and Samsung Electronics (HiPER SCOUT).

178 21st USENIX Conference on File and Storage Technologies USENIX Association

References
[1] block: update documentation for REQ_FLUSH

/ REQ_FUA. https://patchwork.kernel.
org/project/dm-devel/patch/20100826095413.
GA9750@lst.de/.

[2] The docker containerization platform. https://
www.docker.com/.

[3] eMMC5.1 solution in SK hynix. https://www.
skhynix.com/kor/product/nandEMMC.jsp.

[4] pthread_mutex_trylock(3) - Linux man page.
https://linux.die.net/man/3/pthread_mutex_
trylock.

[5] Toshiba Expands Line-up of e-MMC Ver-
sion 5.1 Compliant Embedded NAND
Flash Memory Modules. http://toshiba.
semicon-storage.com/us/company/taec/news/
2015/03/memory-20150323-1.html.

[6] Srivatsa S Bhat, Rasha Eqbal, Austin T Clements,
M Frans Kaashoek, and Nickolai Zeldovich. Scaling
a file system to many cores using an operation log.
In Proc. of 26th ACM Symposium on Operating
Systems Principles (SOSP), 2017.

[7] Silas Boyd-Wickizer, Austin T Clements, Yandong
Mao, Aleksey Pesterev, M Frans Kaashoek, Robert
Morris, Nickolai Zeldovich, et al. An Analysis of
Linux Scalability to Many Cores. In Proc. of 9th
USENIX Symposium on Operating Systems Design
and Implementation (OSDI), 2010.

[8] Silas Boyd-Wickizer, M Frans Kaashoek, Robert
Morris, and Nickolai Zeldovich. OpLog: a library
for scaling update-heavy data structures. Technical
Report MIT-CSAIL-TR-2014-019, 2014.

[9] Yun-Sheng Chang and Ren-Shuo Liu. OPTR:
Order-Preserving Translation and Recovery Design
for SSDs with a Standard Block Device Interface.
In Proc. of 2019 USENIX Annual Technical Con-
ference (ATC), 2019.

[10] Jonathan Corbet. Barriers and journaling filesys-
tems. http://lwn.net/Articles/283161/, 2010.

[11] Gregory R. Ganger, Marshall K. McKusick, Craig
A. N. Soules, and Yale N. Patt. Soft updates: a solu-
tion to the metadata update problem in file systems.
ACM Transactions on Computer Systems (TOCS),
18(2):127–153, 2000.

[12] Robert Hagmann. Reimplementing the Cedar file
system using logging and group commit. In Proc.
of the 11th ACM Symposium on Operating Systems
Principles (SOSP), 1987.

[13] Sooman Jeong, Kisung Lee, Seongjin Lee, Seoung-
bum Son, and Youjip Won. I/O stack optimization
for smartphones. In Proc. of 2013 USENIX Annual
Technical Conference (ATC), 2013.

[14] JEDEC Standard JESD84-B51. Embedded Multi-
Media Card (eMMC) Electrical Standard (5.1).
2015.

[15] Junbin Kang, Benlong Zhang, Tianyu Wo, Weiren
Yu, Lian Du, Shuai Ma, and Jinpeng Huai. SpanFS:
A Scalable File System on Fast Storage Devices. In
Proc. of 2015 USENIX Annual Technical Conference
(ATC), 2015.

[16] Dohyun Kim, Kwangwon Min, Joontaek Oh, and
Youjip Won. ScaleXFS: Getting scalability of XFS
back on the ring. In Proc. of 20th USENIX Con-
ference on File and Storage Technologies (FAST),
2022.

[17] Jongseok Kim, Cassiano Campes, Joo-Young Hwang,
Jinkyu Jeong, and Euiseong Seo. Z-Journal: Scalable
Per-Core Journaling. In Proc. of 2021 USENIX
Annual Technical Conference (ATC), 2021.

[18] Wook-Hee Kim, Beomseok Nam, Dongil Park, and
Youji Won. Resolving Journaling of Journal
Anomaly in Android I/O:Multi-Version B-tree with
Lazy Split. In Proc. of 12th USENIX Conference
on File and Storage Technologies (FAST), 2014.

[19] Alexey Kopytov. Sysbench manual. MySQL AB,
pages 2–3, 2012.

[20] Changman Lee, Dongho Sim, Jooyoung Hwang, and
Sangyeun Cho. F2FS: A New File System for Flash
Storage. In Proc. of 13th USENIX Conference on
File and Storage Technologies (FAST), 2015.

[21] Xiaojian Liao, Youyou Lu, Erci Xu, and Jiwu Shu.
Write Dependency Disentanglement with HORAE.
In Proc. of 14th USENIX Symposium on Operating
Systems Design and Implementation (OSDI), 2020.

[22] Xiaojian Liao, Youyou Lu, Erci Xu, and Jiwu Shu.
Max: A Multicore-Accelerated File System for Flash
Storage. In Proc. of 2021 USENIX Annual Technical
Conference (ATC), 2021.

[23] Xiaojian Liao, Youyou Lu, Zhe Yang, and Jiwu Shu.
Crash Consistent Non-Volatile Memory Express. In
Proc. of 28th ACM Symposium on Operating Sys-
tems Principles (SOSP), 2021.

[24] Lanyue Lu, Yupu Zhang, Thanh Do, Samer Al-
Kiswany, Andrea C Arpaci-Dusseau, and Remzi H
Arpaci-Dusseau. Physical disentanglement in a

USENIX Association 21st USENIX Conference on File and Storage Technologies 179

https://patchwork.kernel.org/project/dm-devel/patch/20100826095413.GA9750@lst.de/
https://patchwork.kernel.org/project/dm-devel/patch/20100826095413.GA9750@lst.de/
https://patchwork.kernel.org/project/dm-devel/patch/20100826095413.GA9750@lst.de/
https://www.docker.com/
https://www.docker.com/
https://www.skhynix.com/kor/product/nandEMMC.jsp
https://www.skhynix.com/kor/product/nandEMMC.jsp
https://linux.die.net/man/3/pthread_mutex_trylock
https://linux.die.net/man/3/pthread_mutex_trylock
http://toshiba.semicon-storage.com/us/company/taec/news/2015/03/memory-20150323-1.html
http://toshiba.semicon-storage.com/us/company/taec/news/2015/03/memory-20150323-1.html
http://toshiba.semicon-storage.com/us/company/taec/news/2015/03/memory-20150323-1.html
http://lwn.net/Articles/283161/

container-based file system. In Proc. of 11th
USENIX Symposium on Operating Systems Design
and Implementation (OSDI), 2014.

[25] Ashlie Martinez and Vijay Chidambaram. Crash-
monkey: A framework to systematically test file-
system crash consistency. In Proc. of the 9th
USENIX Conference on Hot Topics in Storage and
File Systems (HotStorage), 2017.

[26] Richard McDougall and Jim Mauro. FileBench.
http://www.nfsv4bat.org/Documents/nasconf/
2004/filebench, 2005.

[27] Marshall K. McKusick and Gregory R. Ganger. Soft
Updates: A Technique for Eliminating Most Syn-
chronous Writes in the Fast Filesystem. In Proc. of
1999 USENIX Annual Technical Conference (ATC),
1999.

[28] Changwoo Min, Sanidhya Kashyap, Steffen Maass,
and Taesoo Kim. Understanding Manycore Scala-
bility of File Systems. In Proc. of 2016 USENIX
Annual Technical Conference (ATC), 2016.

[29] Erik T Mueller, Johanna D Moore, and Gerald J
Popek. A nested transaction mechanism for LO-
CUS. In Proc. of 9th ACM Symposium on Operating
Systems Principles (SOSP), 1983.

[30] Shojiro Muro, Tiko Kameda, and Toshimi Minoura.
Multi-version concurrency control scheme for a
database system. Journal of Computer and System
Sciences, 29(2):207–224, 1984.

[31] Jiaxin Ou, Jiwu Shu, and Youyou Lu. A high per-
formance file system for non-volatile main memory.
In Proc. of 11th European Conference on Computer
Systems (EuroSys), 2016.

[32] Daejun Park and Dongkun Shin. iJournaling: Fine-
grained journaling for improving the latency of fsync
system call. In Proc. of 2017 USENIX Annual
Technical Conference (ATC), 2017.

[33] Jeoungahn Park, Taeho Hwang, Jongmoo Choi,
Changwoo Min, and Youjip Won. LODIC: Log-
ical Distributed Counting for Scalable File Access.
In Proc. of 2021 USENIX Annual Technical Con-
ference (ATC), 2021.

[34] Vijayan Prabhakaran, Lakshmi N. Bairavasun-
daram, Nitin Agrawal, Haryadi S. Gunawi, An-
drea C. Arpaci-Dusseau, and Remzi H. Arpaci-
Dusseau. IRON File Systems. In Proc. of 20th
ACM Symposium on Operating Systems Principles
(SOSP), 2005.

[35] Amanda Raybuck, Tim Stamler, Wei Zhang, Mattan
Erez, and Simon Peter. HeMem: Scalable Tiered
Memory Management for Big Data Applications and
Real NVM. In Proc. of 28th ACM Symposium on
Operating Systems Principles (SOSP), 2021.

[36] Nikilesh Reddy. Using Cache barriers in
lieu of REQ_FLUSH and REQ_FUA for emmc
5.1. https://lists.openwall.net/linux-ext4/
2015/09/15/5.

[37] Ohad Rodeh, Josef Bacik, and Chris Mason.
BTRFS: The Linux B-tree filesystem. ACM Trans-
actions on Storage (TOS), 9(3):1–32, 2013.

[38] Ohad Rodeh and Avi Teperman. zFS-a scalable
distributed file system using object disks. In Proc.
of 20th IEEE/11th Conference on Mass Storage
Systems and Technologies (MSST), 2003.

[39] Mendel Rosenblum and John K Ousterhout. The
design and implementation of a log-structured file
system. ACM Transactions on Computer Systems
(TOCS), 10(1):26–52, 1992.

[40] Margo I Seltzer, Keith Bostic, Marshall K McKusick,
Carl Staelin, et al. An implementation of a log-
structured file system for unix. In Proc. of 1993
USENIX Winter, 1993.

[41] Margo I. Seltzer, Gregory R. Ganger, Marshall K.
McKusick, Keith A. Smith, Craig A. N. Soules, and
Christopher A. Stein. Journaling Versus Soft Up-
dates: Asynchronous Meta-data Protection in File
Systems. In Proc. of 2000 USENIX Annual Techni-
cal Conference, 2000.

[42] Harshad Shirwadkar. ext4: add fast commits feature.
https://lwn.net/Articles/826620/.

[43] Dimitrios Skarlatos, Umur Darbaz, Bhargava
Gopireddy, Nam Sung Kim, and Josep Torrellas.
BabelFish: Fusing address translations for contain-
ers. In Proc. of 2020 ACM/IEEE 47th Annual
International Symposium on Computer Architecture
(ISCA), 2020.

[44] Yongseok Son, Sunggon Kim, Heon Y Yeom, and
Hyuck Han. High-performance transaction process-
ing in journaling file systems. In Proc. of 16th
USENIX Conference on File and Storage Technolo-
gies (FAST), 2018.

[45] Adam Sweeney, Doug Doucette, Wei Hu, Curtis An-
derson, Mike Nishimoto, and Geoff Peck. Scalability
in the XFS File System. In Proc. of 1996 USENIX
Annual Technical Conference (ATC), 1996.

180 21st USENIX Conference on File and Storage Technologies USENIX Association

http://www.nfsv4bat. org/Documents/nasconf/2004/filebench
http://www.nfsv4bat. org/Documents/nasconf/2004/filebench
https://lists.openwall.net/linux-ext4/2015/09/15/5
https://lists.openwall.net/linux-ext4/2015/09/15/5
https://lwn.net/Articles/826620/

[46] Andrew Tridgell and Ronnie Sahlberg. DBENCH.
https://dbench.samba.org/.

[47] Stephen Tweedie. Ext3, journaling filesystem. In
Proc. of Ottawa Linux Symposium, 2000.

[48] Stephen C. Tweedie et al. Journaling the Linux
ext2fs filesystem. In Proc. of 4th Annual Linux
Expo. Durham, North Carolina, 1998.

[49] Youjip Won, Jaemin Jung, Gyeongyeol Choi, Joon-
taek Oh, Seongbae Son, Jooyoung Hwang, and
Sangyeun Cho. Barrier-Enabled IO Stack for Flash
Storage. In Proc. of 16th USENIX Conference on
File and Storage Technologies (FAST), 2018.

[50] Haitao Wu, Guohan Lu, Dan Li, Chuanxiong Guo,
and Yongguang Zhang. MDCube: a high perfor-
mance network structure for modular data center
interconnection. In Proc. of 5th International Con-
ference on Emerging Networking Experiments and
Technologies (CoNEXT), 2009.

[51] Yingjun Wu, Joy Arulraj, Jiexi Lin, Ran Xian,
and Andrew Pavlo. An empirical evaluation of
in-memory multi-version concurrency control. Proc.
VLDB Endow., 10(7):781–792, mar 2017.

[52] Jeseong Yeon, Minseong Jeong, Sungjin Lee, and
Eunji Lee. RFLUSH: Rethink the Flush. In Proc.
of 16th USENIX Conference on File and Storage
Technologies (FAST), 2018.

USENIX Association 21st USENIX Conference on File and Storage Technologies 181

https://dbench.samba.org/

Unsafe at Any Copy: Name Collisions from Mixing Case Sensitivities

Aditya Basu∗

aditya.basu@psu.edu
John Sampson∗

jms1257@psu.edu
Zhiyun Qian†

zhiyunq@cs.ucr.edu
Trent Jaeger∗

trj1@psu.edu
∗The Pennsylvania State University †University of California, Riverside

Abstract
File name confusion attacks, such as malicious symlinks and
file squatting, have long been studied as sources of security
vulnerabilities. However, a recently emerged type, i.e., case-
sensitivity-induced name collisions, has not been scrutinized.
These collisions are introduced by differences in name reso-
lution under case-sensitive and case-insensitive file systems
or directories. A prominent example is the recent Git vulnera-
bility (CVE-2021-21300) which can lead to code execution
on a victim client when it clones a maliciously crafted reposi-
tory onto a case-insensitive file system. With trends includ-
ing ext4 adding support for per-directory case-insensitivity
and the broad deployment of the Windows Subsystem for
Linux, the prerequisites for such vulnerabilities are increas-
ingly likely to exist even in a single system.

In this paper, we make a first effort to investigate how and
where the lack of any uniform approach to handling name
collisions leads to a diffusion of responsibility and resultant
vulnerabilities. Interestingly, we demonstrate the existence of
a range of novel security challenges arising from name colli-
sions and their inconsistent handling by low-level utilities and
applications. Specifically, our experiments show that utilities
handle many name collision scenarios unsafely, leaving the
responsibility to applications whose developers are unfortu-
nately not yet aware of the threats. We examine three case
studies as a first step towards systematically understanding
the emerging type of name collision vulnerability.

1 Introduction
A fundamental file system design choice is whether it will
allow file names to be case sensitive or not, and modern file
systems are diverse in their selection. A case-sensitive file
system is one that allows the definition of multiple files whose
names differ only in their case, such as Foo.c and foo.c. In
a case-insensitive file system, only one file can be defined
whose names differ only in their case. Historically, UNIX file
systems are case sensitive, whereas Windows file systems are
case insensitive. Further, case-insensitive file systems may
be either case preserving (e.g. Apple File System (APFS),
NTFS, etc.) or not (FAT), where a case-preserving file sys-
tem preserves the case chosen (i.e., either Foo.c or foo.c),
rather than converting all names to one case choice (e.g., all
lowercase). Importantly, while choices in case sensitivity for

a single file system may appear to be arbitrary or aesthetically
driven, the precise semantics of interactions between two file
systems with different case sensitivities can range from subtle
to ill-defined, with associated consequences.

Practitioners have long had concerns about the implica-
tions of leaving case sensitivity as an open design choice [31]
Historically, these concerns were not considered as pressing
when file systems were associated with their respective oper-
ating systems and associated singular assumptions about case.
However, individual systems now frequently support a mixture
of case-sensitive and case-insensitive file systems, creating
opportunities for files to be moved between file systems with
different cases and file identifier encodings. More troublingly,
several file systems now support allowing the choice of case
for individual directories [12], complicating file operations
by having multiple case and encoding semantics within the
same file system.

Security risks related to this design choice therefore appear
to be increasing. First, the Windows Subsystem for Linux [58]
(WSL) integrates Linux and Windows platforms leading to
expectations that files may be routinely copied from Linux
(i.e., case-sensitive) to Windows (i.e., case-insensitive) file
systems. Second, Linux ext4 now supports case-sensitive and
case-insensitive naming in the same partition, configurable
per directory [12, 34]. Linus Torvalds expressed concerns
about adding such support to ext4 [31], stating that such
features often cause “actual and very subtle security issues”.

Indeed, security issues caused by moving files from case-
sensitive to case-insensitive file systems are starting to appear.
For example, the git distributed version control system has
suffered from multiple vulnerabilities (e.g., CVE-2014-9390,
CVE-2021-21300), caused by how git clones repositories
from case-sensitive file systems to case-insensitive file sys-
tems.

To exploit this, an adversary creates a repository in a case-
sensitive file system with a directory whose name will collide
(i.e., only differs in case) with a symbolic link (to another
directory) added by git when the repository is cloned to
a case-insensitive file system. The name collision between
the directory and the symbolic link enables adversaries to
overwrite the scripts that git executes. Such attacks can
alter both the target resource’s content and/or its metadata,
including its permission assignments.

USENIX Association 21st USENIX Conference on File and Storage Technologies 183

mailto:aditya.basu@psu.edu
mailto:jms1257@psu.edu
mailto:zhiyunq@cs.ucr.edu
mailto:trj1@psu.edu

Researchers have long been aware of hazards that may oc-
cur during file system name resolution [3, 4], particularly that
programmers must validate safe use of symbolic links and
check for "squatted" files when creating a new files. Many de-
fenses have been proposed [7–9, 30, 40–42, 50–52, 55]. How-
ever, to the best of our knowledge, ours is the first work
studying how case interplays cause name collisions that lead
to incorrect, and in some cases, vulnerable behaviors. We
show that utilities and applications currently do not recognize
unsafe use of case-insensitive file systems, leading to these
problems. This paper demonstrates the potential implications
of the name collision problem, focusing on Linux and its
supported file systems, thereby motivating both more and
broader (e.g., other OS-FS combination) investigations. We
identify potential gaps in the existing contract between the ap-
plications and the underlying file system that results in unsafe
behaviors (see §8). We make the following contributions:

• We examine the security and correctness implications of
name collisions, when two distinct file system resources
with two distinct names map to to a single name, due to
file system case sensitivity and/or encoding mismatches.

• We show that improper handling of case-[in]sensitivity
and encoding can result in silent data loss and corruption,
symbolic link traversal, unexpected hardlink creation, in-
secure merging of directory contents, and data disclosure
due to incorrect overwriting of file system resources.

• We developed an automated method to test common
Linux utilities for unsafe reactions to name collisions,
finding a wide variety of responses, many of which are
unsafe and possibly exploitable.

• We demonstrate novel exploits on three programs dpkg,
rsync, and Apache httpd, showing how they operate
incorrectly in the face of name collisions and how they
would be exploited when deployed on case-insensitive
directories.

2 Background: From Cases to Collisions
Beyond traditional, i.e. operating-system-entailed, decisions
made with respect to case sensitivity, even Linux files sys-
tems now represent a surprising diversity of case sensitivity
decisions. In particular, the desire to support some non-native
applications, such as WINE and Samba from Windows sys-
tems, has motivated Linux file systems to support the case-
insensitive file naming used in these non-native file systems.

The ability to create case-insensitive file systems has long
been possible in some Linux file systems, such as ZFS, JFS,
and ciopfs. However, these options are applied to the entire
filesystem, rather than just the relevant directories for individ-
ual applications. In 2019, Linux kernel version 5.2 added sup-
port for per-directory case-insensitivity to ext4 [12, 34]. Later
in 2019, similar support was added to the Flash-Friendly File
System (F2FS) in Linux kernel version 5.4 [13, 14]. For case-
insensitive directories, these file systems are case-preserving
in nature.

2.1 Motivations for Increasing Case Diversity
Samba Samba [45] implements the Common Internet File
System (CIFS) protocol which allows for sharing file systems
over a network. Its primary use is sharing files with Win-
dows clients that expect a case-insensitive file system. Hence,
Samba implements user-space case-insensitive lookups even
if the underlying file system is case-sensitive. Furthermore, it
allows turning on/off case-sensitivity and case-preservation
on a per-mount basis [46]. Note that this feature only works
for non-Windows clients, which means that the actual file
system can contain files differing only in case. This can lead
to unexpected behaviors where Samba will choose to show
only a subset of files. Deleting files which have collisions
will now show the alternate versions, thereby giving rise to
inconsistent behavior from the end user’s perspective.

Samba’s requirement of case-insensitive matching, which is
done in user-space, incurs a huge performance overhead [37]
thereby motivating the support for case-insensitivity in the
ext4 file system [34–36]. Other programs/systems such as
Wine [57], Network File System (NFS), SteamOS [48, 49]
and Android [32, 59] would also benefit from in-kernel case-
insensitivity support.

ext4 For ext4, the idea is that the filesystem at large can
be configured to be "casefolding," which permits the mix-
ing of case-sensitive and case-insensitive directories in the
same file system. When creating an ext4 file system, the case-
fold option is applied, e.g., mkfs -t ext4 -O casefold
/dev/sda. Setting the +F inode attribute on an empty di-
rectory makes it case-insensitive, e.g., mkdir foo; chattr
+F foo. Note that case-insensitive directories can contain
case-sensitive directories. This means that for a given path,
/foo/bar/bin/baz, any of foo, bar and bin can either be
case-sensitive or case-insensitive.

tmpfs tmpfs recently added case-insensitivity support [33].
The use cases are similar to that of ext4 with the addition of
supporting sandboxing and container tools such as Flatpak.

2.2 Name Collisions
A name collision occurs when a file system maps two distinct
names of two distinct resources to the same name. Name
collisions can cause problems to occur if the names of dis-
tinct resources collide when those resources are replicated
to a target directory that does not provide a 1:1 mapping for
all replicated objects. Suppose one directory has two files
with distinct names in that file system. Should those files
be copied to a second directory in which the two file names
collide (i.e., are mapped to the same name), then only one file
will be created, which may be either of the original files or an
unpredictable combination of the two files’ content and meta-
data. Variation in case sensitivity between two file systems is
a common origin of collisions, but diversity in other encoding
properties, such as character choice (e.g., FAT does not sup-

184 21st USENIX Conference on File and Storage Technologies USENIX Association

port “, :, ∗, etc. 1) and canonicalization processes, can lead
to the same effect. For example, NTFS uses UTF-16 while
APFS (macOS) and ext4 (Linux) use UTF-8 and older file
systems can use other encoding schemes, such as iso8859-1.

Modern encoding schemes such as Unicode (e.g., UTF-8,
UTF-16, etc.) have support for non-English characters that
requires case folding [6] to perform case-insensitive match-
ing. Unlike traditional techniques, case folding uses lookup
tables to transform each character of the filename to a pre-
determined case. Furthermore, individual characters in Uni-
code can have multiple binary representations. Hence, a nor-
malization scheme also needs to be applied to the case folded
filename to ensure that the same characters are encoded us-
ing identical binary sequences. Consider the filenames floß,
FLOSS and floss. All can coexist on a case-sensitive file
system supporting reasonable character encodings, but since
case-folding for both floß and FLOSS is floss, attempting
to move these files to a case-insensitive system may only
preserve one of the original triple.

In addition, case folding rules and normalization tech-
niques can differ across file systems. The locale (or language)
also influences the case folding rules. Due to such differences,
‘temp_200K’ (where K = Kelvin Sign or Unicode code point
U+212A) and ‘temp_200k’ are considered identical on NTFS
and APFS, but on ZFS2 these filenames are considered differ-
ent when using case-insensitive lookups. As a result, when
two files of these names are copied from a ZFS file system to
an NTFS file system, they will collide and only one filename
and only one file will be created. For clarity and concise-
ness, we will use examples of ASCII-based, case-insensitive
matching throughout the rest of the paper.

We propose a taxonomy for name confusions, shown in
Figure 1, that captures the types of incorrect program be-
haviors that may stem from the ambiguous uses of names
for file system resources. Name collisions are a subset of
this broader class. Name confusions may be caused by three
reasons: (1) because multiple names may refer to the same
resource (i.e., aliasing); (2) because an adversary may create
a resource of that name before the victim (i.e., squat); and
(3) because the multiple resources may be associated with
the same name (i.e., collisions). Of these, however, name
collisions are the least explored for their correctness and se-
curity implications. As Linux is adding more support for
case-insensitivity, it is crucial to understand the pitfalls and
problems such functionality may incur. This work aims to
study these issues.

3 From Collisions to Calamities
Name collisions can impair system functionality by modi-
fying the content and/or metadata of files and directories in
unexpected ways. Some name collisions have already led to

1http://elm-chan.org/fsw/ff/doc/filename.html
2By default, the ZFS file system does not perform normalization. We use

this default behavior for the given example.

Name Confusion (NC)

Alias

Symlink Hardlink Bind mount

Squat

File Other

Collision

Case Encoding

Figure 1: Taxonomy of name confusion vulnerabilities di-
vided into alias (i.e., multiple names for a resource), collision
(i.e., multiple resources for a name), and squat (temporal
ambiguities in names vs. resources) classes

security vulnerabilities [24]. In this section, we define the
conditions in which a name collision occurs, the conditions
under which such a collision may be exploitable by an adver-
sary, and describe a known vulnerability that is caused by a
name collision.

3.1 Causes of Name Collisions
A process may cause a name collision under the following
conditions.

• There exists a source resource (e.g., file or directory) in
a case-sensitive file system, whose name is source name.

• The process uses a relocation operation to place the
source resource in a target directory, where the target
directory is a case-insensitive or case-preserving direc-
tory. Examples of relocation operations include copy
(e.g., cp, rsync, or an archive operation, such as tar or
unzip) or move (e.g., mv).

• The relocation operation produces a destination name
from the source name for the name of the source resource
when placed in the target directory.

• There is a target resource with a target name whose
name differs from the source name, but maps to the
same name as the destination name does in the target
directory (e.g., due to differences in case-folding rules
between the source and target directory).

• If the process is authorized to modify the target resource,
the process’s relocation operation results in a name col-
lision between the target and source resources.

• If the relocation operation proceeds despite the name
collision, then the target resource’s content and/or its
metadata may be modified using the source resource
content and/or metadata.

When these conditions are met, a name collision occurs
such that the target resource in the target directory will be
modified using the source resource. In most cases, modifying
a target resource using a source resource of a different name
is an unexpected result. We test how common Linux utilities
react to name collisions and examine case studies where name
collisions cause incorrect operation.

Given the above conditions, there are several clear scenar-
ios where the movement of files involving the following types
of file systems (following the categorization in §2.2) could
result in name collisions:

USENIX Association 21st USENIX Conference on File and Storage Technologies 185

http://elm-chan.org/fsw/ff/doc/filename.html

• Case-sensitive and case-insensitive file systems.
• Two distinct case-insensitive file systems with different

case folding rules, e.g. ZFS to NTFS, etc.
• Two file system whose locales are different but they still

use the same file system format (such as ext4).
• A single file system that supports per-directory case-

insensitivity, e.g. ext4.

Clearly, name collisions may impact system functionality
by causing collateral damage to resources supposedly un-
related to the operation, even removing the target resource
entirely. In addition, name collisions may be used to exploit
the process performing the relocation operation in a version
of a confused deputy attack [25]. An adversary only requires
write access to the source directory to produce source names
that may lead to name collisions to perform an attack. We
note that adversaries require fewer permissions to perform at-
tacks using name collisions than other name confusion classes,
which require write access to a directory used in name resolu-
tion of the target resource [54]. Thus, remote attacks using
file system archives, such as tarballs and zip files, as well
as file repositories, such as GitHub, can be the sources of
attacks.

In practice, to perform a successful attack using a name
collision, the victim process has to help the adversary in
two ways. First, the victim process has to use the source
resource in a relocation operation planted by an adversary
as described above. In addition to archives, other activities,
such as backups, may provide opportunities for exploitation
of name collisions. In addition, ad hoc user actions copying
files, e.g., from Linux to Windows in the Windows Subsystem
for Linux, may result in unexpected and exploitable collisions.
Second, the target directory of the relocation operation has
to be predictable by the adversary to enable them to produce
a source name that leads to a colliding destination name.
Archives make this task much easier because the archive itself
may be crafted to provide the target resource that is exploited
by creating a collision with another archive file. A recent
vulnerability in the git distributed revision control system
demonstrates exactly this, as described below.

3.2 An Example Collision Vulnerability
Security vulnerabilities due to filename collisions across dif-
ferent file systems have been demonstrated in the wild. Con-
sider a recent vulnerability in the git distributed version
control system (CVE-2021-21300). This vulnerability re-
sults in remote code execution after cloning a maliciously
crafted repository created on a case-sensitive file system to a
case-insensitive file system.

Figure 2 depicts the maliciously crafted repository struc-
ture. Note that this directory structure works correctly on
a case-sensitive file system. However, on case-insensitive
file systems, the presence of the ‘a’ (small) and ‘A’ (capital)
directories creates a collision that exposes a vulnerability.
This collision results in a vulnerability when using git’s

repo/

.git/...............................(contents omitted)
A/

file1

file2

post-checkout..................(executable script)
a...............................(symlink to .git/hooks/)

Figure 2: Example for Git CVE-2021-21300

out-of-order checkout machinery. Git Large File Storage
(LFS) uses out-of-order checkouts for downloading binaries
in the background. Say the repository creator (adversary)
marks ‘A/post-checkout’ for an out-of-order checkout. When
a user clones this repository to a case-insensitive file system
(e.g., NTFS), git performs a sequence of operations that:
(1) replaces ‘A’ with the symbolic link ‘a’ and (2) writes the
script file ‘A/post-checkout’ to ‘.git/hooks/post-checkout’ due
to the symbolic link ‘a’. After the files are downloaded, git
runs the script ‘.git/hooks/post-checkout’ that the adversary
provided, which is obviously undesirable.

In this case, a maliciously crafted git repository can be
designed to provide a target resource of the symbolic link ‘a’,
which when collided by ‘A’ in resolving the source resource
‘A/post-checkout’ redirects the operation to a directory chosen
by the adversary using the symbolic link.

3.3 The State of Defenses for Name Confu-
sions

Currently, operating systems provide no innate defenses to
prevent name collisions, leaving the challenge to program-
mers. However, researchers have studied problems due to
other types of name confusions extensively, proposing a va-
riety of defenses [7–9, 30, 40–42, 44, 50–52]. However, re-
searchers have shown that comprehensive program defenses
are expensive [55] and that system-only defenses will always
be prone to some false positives [5]. Leveraging limited pro-
gram information [28, 53] still results in some false positives.

As a result, library commands for opening files have been
extended in a variety of ways to prevent name confusions
from occurring. The open command has been extended with
flags to detect file squats (i.e., O_EXCL|O_CREAT to detect the
presence of an existing file during file creation) and prevent
unexpected use of aliases (i.e., O_NOFOLLOW to prevent follow-
ing symbolic links). However, the use of squats and aliases
is desirable in some applications, despite their risks. Further
complicating the matter is that adversaries may exploit the
gap between when a program validates a file system resource
and opens that resource to create name confusions, known
as time-of-check-to-time-of-use (TOCTTOU) attacks [4, 39].
The openat command has been added to enable program-
mers to avoid TOCTTOU attacks, by opening a file from a
validated directory (i.e., file descriptor to the directory of the
desired file). However, the successful use of openat requires
the programmer to check for unwanted squats or aliases them-

186 21st USENIX Conference on File and Storage Technologies USENIX Association

selves. An alternative is proposed by the openat2 command
instead controls how files may be opened, such as requiring all
file components accessed to be descendants of the directory
from which the operation originates. However, openat2 can-
not prevent name confusions for some cases (e.g., using links
across file systems). openat and openat2 reduce the attack
surface of squat and alias attacks, but do not eliminate them
entirely, and depend on the programmer’s additional actions
to configure these commands and to check for TOCTTOU
attacks.

At present, the above commands make no effort to help
programmers address name collisions. As a result, utilities
to perform copy and move operations and applications that
may utilize file systems with multiple or mixed (e.g., ext4
and F2FS) case sensitivities or encodings may not detect
and resolve name collisions correctly. We will examine the
possible defenses for name collisions in §8.

4 Overview
In this paper, we aim to explore the impact that name colli-
sions may have on file system security. To do this, we propose
to examine three research questions.

RQ1: How do applications invoke utilities that may allow
unsafe name collisions? In §6, we examine Linux packages
to determine the most common options that applications em-
ploy for the utilities used to perform copies. We examine how
frequently application packages use utilities in copy opera-
tions by scanning their scripts for such operations, as shown
in Table 1.

RQ2: When do the utilities for performing copy opera-
tions allow unsafe name collisions? Recall that §3.1 defines
the conditions under which an unsafe name collision may
occur. This research question asks whether the utilities that
applications may use to perform copy operations (e.g., cp
and tar) prevent unsafe effects when a name collisions occur.
For these utilities and the common options found in RQ1, we
examine a variety of name collision scenarios to determine
whether the utilities allow name collisions and their unsafe
effects to occur as shown in Table 2a.

RQ3: What correctness and security problems are caused
by name collisions? In §7, we examine three case studies
where we show how name collisions cause programs to be-
have incorrectly. In particular, we show concretely how ap-
plications can be vulnerable to name collisions when target
resources are deployed on case-insensitive or case-preserving
file systems.

Impacts: A preview of our result is that: (1) many appli-
cations rely on these utilities to copy file system resources
and repositories/archives; (2) the utilities used to copy file
system resources and repositories/archives often allow unsafe
name collisions, although the specific responses vary in ad
hoc ways; and (3) applications currently lack defenses against
name collisions, which can lead to incorrect operation and
exploitable vulnerabilities.

5 Testing for Name Collisions
This section details an automated tool for testing the responses
of common Linux utilities used for relocation operations to
name collisions. As described in §3.1, a name collision is
caused by creating a source name that will be converted to a
destination name by the relocation operation that is equal to
a target name in the target directory of the operation. Thus,
our aim is develop a method to automate the generation of
source resources with names that will lead to name collisions
when relocated to case-insensitive targets and identify when
operations allow the name collision to occur, detecting the
effects of those operations.

5.1 Test Case Generation
The individual test cases are generated to test file system
resources of various types, including regular files, directories,
symbolic links (to files and directories), hard links, pipes, and
devices. In addition, we have found that creating collisions
in non-trivial directory structures may also lead to incorrect
behaviors. Figure 3 shows an example test case where the
directories as well as their contents result in a collision when
transferred to a case-insensitive file system. As a result, we
aim to generate test cases that result in name collisions at
different depths of the directory being copied, as evidenced
by the collision between directory names at depth 2 (i.e., "dir"
and "DIR") and the impact on colliding resources of different
types (i.e., a regular file "foo" and a pipe "foo").

INPUT

src/

dir/

foo*

DIR/

foo|

COPY EFFECT

target/

dir/

foo*|

Figure 3: An example of squashing case-sensitive directory
names and file names of two different types. Here, ‘*’ means
a regular file and ‘|’ means file type is a named pipe.

Since we are testing the behavior of various utilities that
perform relocation operations, we can control the source and
target names in creating test cases. As a result, the choice
of names is trivial. We create source directories that contain
both the target resource (i.e., a resource copied first from the
source to the target) and the source resource (i.e., a resource
copied later by the utility to collide with the target resource
(i.e., now in the target directory). This is similar to the way
name collisions would occur when copying an archive or
repository that causes a collision, as the git vulnerability.
Since different utilities may process resources in different
orders, we generate test cases with both orderings of resources
that may cause collisions.

The only decisions then are what are the resource types of
the source and target resources and where to place them in the
source directory hierarchy to cause the desired collision to be
created. Symbolic links, pipes, and devices only create inter-

USENIX Association 21st USENIX Conference on File and Storage Technologies 187

esting behaviors when used as target resources. For symbolic
links, the unsafe effect is to follow the link to another file
system resources, which only happens with the symbolic link
as the target resource. For pipes and devices, the unsafe effect
is to send the source resource’s content to the pipe or device,
which also is only possible if these are target resources.

As a result, the automated test generation produces test
cases consisting of source and target resources of all combina-
tions of potentially unsafe resource types and places these test
cases at depth one and/or two of the file system hierarchy. For
rsync, we specifically found an issue caused by a collision
at depth two, but not at depth one (see §7.2).

5.2 Detecting Collision Effects
The key idea is to record the file system operations sufficiently
to detect that an unsafe name collision has occurred. Since we
design the test cases to create a name collision on a relocation
operation, we want to detect when such an operation is a
successful collision. Then, we need to determine the impact
of the operation to classify the effect according to one of the
ten effect options defined in §6.1.

We monitor file system operations using auditd to detect
successful collisions. An example of a log indicating a colli-
sion is shown in Figure 4. In this example, a create operation
creates a target resource named “root” using openat com-
mand, but a later use operation to the same resource (i.e.,
same device-inode pair, see below) is associated with a name
“ROOT”, which differs from the name used when the resource
was created. Note that although the target resource was cre-
ated on a case-insensitive file system, multiple names may be
used that are resolved to the same name.

We say that a collision is successful when we detect a
use of a target resource with a different name than that used
to create the target resource. To detect such collisions, we
first identify the file system operations that create a target
resource, recording its combination of device3 and inode
identifiers, which form a unique resource identifier and its
pathname. In Figure 4, the name component “root” will be
important to detecting the collision. We then capture all the
file system operations that use the target resource. In Figure 4,
the pathname of the use operation differs between “root” and
“ROOT”, indicating a name collision.

3On Unix-like systems, each device is assigned a major and minor number.
auditd reports these numbers (in hexadecimal) as XX:YY, where XX is the
minor number and YY is the major number. Each file system mount point
can be uniquely identified using these numbers.

We also record a positive when a use operation deletes and
replaces a resource from a prior create operation, as some
collisions may cause the target resource to be deleted and
the source resource to replace it. We validate that there is a
create operation for the colliding destination name to verify
the cause of the deletion is a collision.

To detect the effect of a name collision, we examine the
resulting resource that now maps to the target name. We
compare the source resource and target resource content and
metadata to the resultant resource to determine whose content
and/or metadata (i.e., source, target, or neither) the resource
has. For tests on directories and hardlinks, we examine the
directories and the resultant directory entries.

6 Name Collisions on Linux Copy Utilities
In this section, we examine how common Linux utilities
that applications use to copy files from one part of the file
system to another react when the copy operation causes a
name collision in a case-insensitive directory. We note that
the impact on move operations is similar because in most
cases it simply performs a copy first and then deletes the
source. However, when both the source and target are on
the same file system, the underlying file system may directly
relocate the contents of the source. This can result in unusual
consequences on file systems that support per-directory case-
[in]sensitivity. E.g., on ext4, moving a case-sensitive directory
into a case-insensitive directory will preserve case-sensitive
characteristics of the moved (or source) directory. However,
when copying, the directories are newly created and these
directories inherit the case-[in]sensitive characteristic from
the parent directory. If the copy does not preserve attributes
on directories, then all new directories will be case-insensitive
under this scenario. Even though move works differently in
certain cases, the collisions that may result from move have
the same effect as that of copy. Hence, we only assess Linux
utilities that perform copy operations below.

To quantify the ubiquity of these utilities, we survey their
use by packages on Debian 11.2.0. We retrieve all packages
from the Debian installation DVD and count the number of
times the copy utilities are used inside the packages’ scripts.
The results are summarized in Table 1. Note that the listed
uses of these utilities are lower bounds because we do not
parse executable binaries. Hence, we miss uses where the
utilities are invoked via system calls such as system(...),
execve(...), etc.

USE [msg=10960,‘cp’.openat] 00:39|2389| /mnt/folding/dst/ROOT ←↩
CREATE [msg=10957,‘cp’. openat] 00:39|2389| /mnt/folding/dst/root

device | inodeprogram

accessed pathsyscallauditd id
operation

Figure 4: Example violation reported by name collision testing.

188 21st USENIX Conference on File and Storage Technologies USENIX Association

Table 1: Prevalence of copy utilities

tar zip cp cp* rsync

10 mc
8 perl-modules
7 libkf5libkleo-data
6 pluma
6 mc-data

. . .

107 TOTAL

21 texlive-plain-generic
15 aspell
11 libarchive-zip-perl
7 texlive-latex-recommended
5 texlive-pictures

. . .

69 TOTAL

78 hplip-data
32 dkms
22 libltdl-dev
20 autoconf
18 ucf

. . .

538 TOTAL

12 dkms
2 udev
2 debian-reference-it
2 debian-reference-es
1 zsh-common

. . .

25 TOTAL

28 mariadb-server
5 duplicity
4 texlive-pictures
2 vim-runtime
1 rsync

. . .

42 TOTAL

We calculate the number of times that each command (tar, zip, etc.) is used inside scripts from various packages. We investigate 4752 .deb packages from the
installation disk (DVD #1) of Debian 11.2.0. Only the top-five packages are shown (entries are sorted in descending order for each command).

6.1 Collecting Responses to Name Collisions
The name collision test cases and the responses of copy util-
ities are shown in Table 2a. The ‘Target Type’ column rep-
resents the resource type of the target resource that may be
overwritten. The ‘Source Type’ represents the resource type
of the source that collides with the target. The rest of the
columns represent individual utilities and their responses to
name collisions between a source resource of the source type
and a target resource of the target type.

Below is a comprehensive list of the types of responses ob-
served. Only "Deny" and "Rename" prevent name collisions
from causing unsafe and possibly exploitable behaviors, al-
though both may block legitimate functionality in some cases.
"Ask the User" may result in an unsafe response if the user
allows the target resource to be overwritten. Note that more
than one response is possible for each test case.

Delete & Recreate (×) Delete the target resource and cre-
ate a new resource based on the source resource. The new
resource’s type, as well as its data and metadata, is deter-
mined by the source resource. The target resource is lost
without any notification.

Overwrite (+) Overwrite the data and metadata of the target
resource using the source resource. Unlike Delete & Recre-
ate, the name of the target resource is preserved. If file foo
is being overwritten with file FOO, then the final file will be
named foo but will have the contents and metadata of file
FOO.

Corrupt (C) Contents of a resource that is not involved in
name collision (i.e., not the target resource) is modified.
For a more in-depth discussion, refer to §6.2.5.

Metadata Mismatch (6=) After a successful copy of a given
source resource, some metadata, such as its name, UNIX
permissions, user or group ID, extended attributes, or times-
tamp, remain from the target resource, creating a resource
with a mismatch between the data (from the source) and
the metadata (from the target).

Follow Symlink (T) Follow (or traverse) symbolic links,
even when explicitly directed not to do so.

Rename (R) The source name is renamed automatically to
avoid creating a name collision, such as by appending a
counter, resulting in a copy of the source resource in the

target resource’s directory with a non-colliding name.
Ask the User (A) To resolve a collision, ask the user to

choose from a list of actions, such as to overwrite the target
resource, skip copying the source resource, rename the
target resource, abort, etc.
Note that the user can still choose a response that results
in adverse consequences. For instance, if the user chooses
to overwrite the target, the target’s data and metadata are
modified using the source.

Deny (E) Deny the copy associated with a collision and re-
port an error.

Crashes (∞) Collisions can result in the program hanging
(e.g., going into an infinite loop) or crashing.

Unsupported file type (−) Does not support copying a re-
source if the source resource is of this file type. Note that
if hardlinks are not recognized by a utility, then it simply
creates a fresh copy of the underlying file.
The exact command-line flags used used to generate Ta-

ble 2a are listed in Table 2b. To identify these flags, we
analyzed 4,752 .deb packages on Debian 11.2.0’s installa-
tion DVD. We found that the most commonly used flags
enabled the following functionality.

• Support recursively copying all directories.
• Support copying symbolic-links and hard-links as-is but

do not follow them.
• Preserve metadata such as UNIX permissions, extended

attributes (xattr), timestamps, and owner/group IDs
(uid/gid).

Before examining the responses in Table 2a, we briefly
note some additional context for two of the columns.
cp vs. cp* Both of these represent the same executable
binary. The difference is in the way the command-line argu-
ments are passed to the binary. Specifically, the format of
specifying the source directories is different.

Consider that the source directory (to be copied) is foo.
For cp, we will pass it as foo/ while for cp* we will use
foo. Note the trailing / is missing in the latter case. Just this
difference significantly changes the behavior of cp as noted
in Table 2a.

We use the cp* method of invocation coupled with shell
completion, e.g., ‘cp src/* /target’ where the shell re-

USENIX Association 21st USENIX Conference on File and Storage Technologies 189

Table 2: Name Collision Responses for Popular Linux Utilities

Name Collision between
Target Type Source Type tar zip cp cp* rsync Dropbox

file file × A E +6= +6= R
symlink (to file) file × A E +T +6= R
pipe/device file × − E + + −
hardlink file × − E +6= +6= −
hardlink hardlink C× − E C× C+6= −

directory directory +6= +6= E +6= +6= R
symlink (to directory) directory + ∞ E E +T R

(a) This table shows results of copying files/directories from a case-sensitive to a case-insensitive
file system. cp* refers to cp being used with shell completion. For e.g., ‘cp * /target’ which
copies all items from the current directory to /target directory.

Utility Version Flags

tar 1.30 -cf/-x
zip 3.0 -r -symlinks
cp 8.30 -a
rsync 3.1.3 -aH

(b) This table lists the version of util-
ities and command-line flags used for
the experiments. For tar, -cf was
used to create the archive and -x to
expand the archive.

× Delete existing file and create new file
+ Overwrite existing file. For directories,

merge their contents.
6= Mismatch between content and metadata

A Ask user to resolve the collision
T Follow (or traverse) symlink
C Corrupts non-colliding files
E Deny operation and report error

∞ Program crashes, or hangs
− Ignore unsupported file type (for hardlinks

create regular file instead)
R Rename colliding file/directory

places src/* with each individual entry present inside src
sans the trailing /. When testing the cp method, we change
the command to ‘cp src/ /target’.

Dropbox Strictly speaking, Dropbox [11] is not a copy
utility but a popular file synchronization utility. It is intended
to replicate entire directories across multiple machines and
file systems.

We mention Dropbox to highlight its distinct response to
handling potential name collisions. Even when the underly-
ing file system is case-sensitive, Dropbox treats it as case-
insensitive. It proactively renames the files and directories
to avoid name collisions that could occur if they were trans-
ferred to a case-insensitive file system. Note, however, that
its renaming strategy is not even uniform across platforms:
For example, the Dropbox application appends “(Case Con-
flicts)”, “(Case Conflicts 1)”, etc. to the file/directory names
in case of a potential collision, whereas, when using their
web-based interface, they append “(1)”, “(2)”, etc. instead.

6.2 Unsafe Responses to Name Collisions
Several responses shown in Table 2a demonstrate that utilities
often allow unsafe responses to name collisions. In this sec-
tion, we examine some of the more concerning responses to
show how utilities delegate responsibility for security against
name collisions to the applications that invoke them. For the
examples in upcoming sections, src/ and target/ are on
case-sensitive and case-insensitive file systems respectively.

6.2.1 Silent data loss with tar, cp* & rsync
Name collisions involving files generally result in silent data
loss. From Table 2a, we can see that tar deletes and recreates
(×) files when collisions occur. Hence, when there is a name
collision between foo and FOO, only one of these files will
remain in the target directory. The other file is permanently
lost without any notification.

Similar to tar, cp* and rsync also lose files silently. How-
ever, their behavior of overwriting (+) files results in other
problems that are discussed later in this section.

Unlike tar, zip and cp will ask a user for next steps (A)
or report an error (E) respectively. Hence, they are not prone
to silently losing files.

6.2.2 Merge directories with tar, zip, rsync & cp*
Name collisions involving two directories results in their
contents (files, directories, etc. inside the directory) being
merged. All of tar, zip, rsync, and cp* will silently
merge directory contents without notifying the user. Figure 5
highlights this issue using a directory listing.

src/

dir/

subdir/

file1

file2

DIR/

file2

— copy→ target/

dir/

subdir/

file1

file2

Figure 5: Impact of merging directories

In this example in Figure 5, the data of file file2 is over-
written by the content written last in the copy operation. For
example, if src/DIR’s contents are written last, then its con-
tent for file2 is preserved and src/dir’s is lost.

Furthermore, when the colliding directories have different
UNIX permissions, a collision results in metadata mismatch
(6=). With respect to Table 2a, the UNIX permissions of the
target resource are overwritten with permissions of the source
resource.

In Figure 5, consider src/dir/ with perms=700 and an
adversary who creates src/DIR/ with perms=777. After a
copy (using any of the above utilities), target/dir/ will
have perms=777 effectively giving the adversary permission

190 21st USENIX Conference on File and Storage Technologies USENIX Association

to the contents of the original src/dir/.

6.2.3 Stale names
Whenever utilities resort to overwriting (+), we end up with
stale file/directory names. For example, consider a name col-
lision between a target resource foo (file content: ‘bar’) and a
source resource FOO (file content: ‘BAR’). After copying with
rsync or cp*, we will end up with file foo whose contents
are ‘BAR’.

The problem with such name collisions is that to the end
user (or other programs), it will appear that foo was success-
fully copied while in reality FOO was copied. Just using the
filename is not enough to discern which files were success-
fully copied. This is especially true for case-preserving file
systems where the user has the expectation of the filenames
being preserved. Hence, it is not unreasonable for the user to
expect foo should contain bar.

6.2.4 Symbolic link traversal at target
Name collisions between symlink (to file) and a regular file
results in cp* following the symlink (T) and overwriting (+)
its target’s contents with that of the regular source file. With
regards to Table 2a, if the target resource is a symbolic link
and the source resource is a file, then cp* ends up following
the symlink and writing data to the resource referenced by the
symlink.

src/

dat...(to /foo)
DAT....= pawn

/foo........= bar

— cp*→ target/

dat...(to /foo)
/foo......= pawn

Figure 6: Following symlink

Figure 6 illustrates this case with an example. src/dat is a
symbolic link to /foo and /foo contains ‘bar’. Mallory (our
adversary) does not have write access to /foo but does have
access to src/. She creates src/DAT which contains ‘pawn’.

Then the administrator starts the copy using: cp -a
src/* target/. At this point, cp first creates the symlink
target/dat. Then it overwrites (+) this symlink with the
contents of src/DAT, effectively updating the file /foo. After
the copy has completed, /foo contains ‘pawn’.

cp* has no command-line options to prevent traversal of
symbolic links at the target. Only link traversal at the source
can be turned off via command-line flags.

6.2.5 The case of hardlink – hardlink name collisions
During a copy when hardlinks (whose targets are different)
collide, it can corrupt (C) other non-colliding files and create
spurious hardlinks. Table 2a shows that this behavior is ex-
hibited by tar, cp*, and rsync. An interesting observation
is that, regardless of whether the utility’s behavior is Delete
& Recreate (×) or Overwrite (+), this problem affects both.

To understand this scenario, consider Figure 7 that uses
rsync to perform the copy. The same color coding represents
files that are hard-linked to each other. So src/hfoo and

src/

hfoo....=foo
zzz.....=foo
hbar....=bar
ZZZ =bar

— rsync→ target/

hfoo....=bar
zzz =bar
hbar....=bar

Figure 7: hardlink – hardlink name collision

src/zzz are hard-linked, representing the same file. These
files contain ‘foo’. Similarly, src/hbar and src/ZZZ are
hard-linked and they contain ‘bar’.

After copying using rsync, target/ contains three files
that are all hard-linked to each other. Unlike the src/ di-
rectory, target/hfoo, target/hbar, target/zzz are all
hardlinks of each other and they contain ‘bar’.

Additionally, note that although the name collision hap-
pened between zzz and ZZZ, the contents of hfoo were re-
placed. Even tar, which deletes the old file and recreates it,
exhibits this behavior.

The following order of operations undertaken by rsync
result in this behavior.

1. Copy src/hbar to target/hbar. Now target/hbar
contains ‘bar’.

2. Copy src/zzz to target/zzz. Now target/zzz con-
tains ‘foo’.

3. In target/, hardlink ZZZ to hbar. Due to name colli-
sion, this effectively changes zzz to be hard-linked to
hbar. Now target/zzz contains ‘bar’.

4. In target/, hardlink hfoo to zzz. Now target/foo
contains ‘bar’. Additionally, all three files inside
target/ are hard-linked to each other.

The above copy is semantically different from the src/.
Specifically, name collision results in distinct sets of files
getting hard-linked with each other at the target/.

7 Case Studies
In this section, we examine case studies where name colli-
sions cause unsafe behaviors, some of which are exploitable.

7.1 dpkg Package Manager
dpkg is the package manager on Debian OS and its derivatives
such as Ubuntu. dpkg packages are compressed tarballs with
extension .deb. When dpkg processes a package, it tracks
all files it creates during package installations in a database.
Before installing a new package, dpkg leverages this database
to ensure that any files of previously installed packages will
not by overwritten by this new package thereby preventing
potentially malformed packages from corrupting the system.

On the other hand, we have observed that dpkg will allow
a package installation to replace any file whose name is not in
its database, even privileged user files. Thus, as long as a file
in a package has a filename that does not match the filename
of another package’s file, dpkg will install the file, silently
replacing any existing file.

USENIX Association 21st USENIX Conference on File and Storage Technologies 191

However, regardless of the underlying file system, the
above database is matched in a case-sensitive manner. This
allows new packages to replace files of previously installed
packages via name collisions effectively circumventing the
safeguards in dpkg.

In addition, and perhaps even more seriously, dpkg may
allow an adversary to replace a package’s customized con-
fig file with the default, reverting important changes. deb
packages can mark certain files as configuration (or config)
files. During package upgrades, if dpkg spots modifications
to these config files then it prompts the user to review the
changes.

However, the config files are also matched in a case-
sensitive manner. Under name collisions, dpkg will just re-
place the original package’s config file with the config file
of the new package. For services, such as sshd, httpd, etc.,
config files are critical to their security, so such overwrites
can potentially make the system vulnerable..

Reporting We have reported these issues to the maintainers
of dpkg. The maintainers of dpkg have since updated their
package documentation [10] to warn end user communities
not to use dpkg where targets may be case-insensitive (i.e.
specific directories, or entire file systems).

During our discussions, we analyzed 74,688 packages and
found 12,237 filenames from those packages would collide
if a case-insensitive file system were used, breaking multi-
ple packages that contain these files. The name collision
problem is fundamentally entrenched into the way dpkg is im-
plemented because it reasons about names without involving
the underlying file system(s).

7.2 Rsync
rsync demonstrates vulnerable behavior when processing
name collisions involving directories. During copy, the de-
fault behavior of rsync is to simply recreate the symbolic
links present at source. However, when colliding directo-
ries contain sub-directories and symbolic links with the same
name, the collision causes rsync to suffer from link traver-
sal4.

Consider the source directory listed in Figure 8. Here, the
directories topdir/ and TOPDIR/ only differ in case. So
when copying to a case-insensitive file system, rsync will
encounter a name collision.

src/

topdir/

secret/...........................symlink to /tmp

TOPDIR/

secret/

confidential regular file

Figure 8: Case-sensitive source that rsync is copying

4In this case, the name collision makes the alias exploitable, again com-
bining name confusions.

We use the following command to perform the copy:

rsync -a src/ dst/

where,
-a recursively copy directories, preserve symlinks,

timestamps, and discretionary access control per-
missions

src/ is case-sensitive
dst/ is case-insensitive

After the copy is completed, the newly created files are
shown in Figure 9. Note that the file named confidential
ends up in /tmp.

dst/

TOPDIR/

secret/...........................symlink to /tmp

/tmp/confidential......................... link traversal

Figure 9: After copying to case-insensitive destination

rsync has created the /tmp/confidential file by follow-
ing the symbolic link dst/TOPDIR/secret.

Below, we describe how this situation can be exploited.
Consider an adversary who wants to access a confidential
file in TOPDIR/ to which she lacks any access. However,
she knows that TOPDIR/ is processed by a backup operation
using rsync. If she can create a sibling directory topdir/, to
which she will have read-write access, she can direct rsync
to write the confidential file (inside TOPDIR/) to any directory
of her choosing by creating a symbolic link inside topdir/
to that directory.

Reporting We reported this issue to the rsync maintainers,
and they told us that user’s should not use rsync with non-
case honoring file systems. However, we have concerns about
the user community following such a recommendation in this
case, since rsync is often used by individuals.

In the course of these discussions, we learned the cause
of the incorrect behavior. rsync assumes a one-to-one map-
ping of directories between source and target file systems.
When a name collision results in two source directories be-
ing mapped to a single directory in the target, rsync can be
tricked into incorrectly predicting the target file type. In the
presented scenario, a symbolic link src/topdir/secret (to
a directory) is incorrectly inferred to be a regular directory
src/TOPDIR/secret.
rsync uses the O_NOFOLLOW flag with open() to prevent

link traversal and uses openat()/openat2() to contain link
traversals within a directory hierarchy, but this strategy fails
when the symbolic link is treated as a directory.

7.3 Apache httpd
Security of certain applications relies on the security param-
eters of the underlying file system. One such application is
Apache’s httpd. It allows access to the underlying file sys-
tem via the HTTP protocol, relying on the UNIX Discretionary

192 21st USENIX Conference on File and Storage Technologies USENIX Association

Access Control (DAC) permissions5 to mediate the access.
For example, files are accessible over HTTP only if: (i) its
UNIX group is www-data and has read permission for the
group, or (ii) has world-readable UNIX permissions.

Using utilities for copying directories between systems
can silently alter these DAC permissions in unintended ways,
leading to serious security lapses. We illustrate this scenario
using Apache httpd and migration of its data using tar. To
study the impact of name collisions on the security parameters,
we assume that the migration happens from a case-sensitive to
a case-insensitive file system. The behavior of tar discussed
below draws from the discussion of Table 2a.

To protect sensitive directories, httpd can be configured to
only allow authenticated users to access specific directories.
A commonly used approach is to configure authentication
via the .htaccess file [1] which lists the valid users/groups
allowed to access a specific directory over HTTP. All sub-
directories inside the sensitive directory are also protected.
We show that the use of additional security-oriented files can
be exploited under the presence of name collisions.
Scenario httpd serves the contents of www/ (of Figure 10)
over HTTP. Initially, www/ is stored on a case-senstive file
system. The directory hidden/ is inaccessible over HTTP
since the others permissions are cleared. Next, protected/
is configured to be accessible only to specific users using the
.htaccess file.

www/
hidden/ perm=700

secret.txt
protected/..........group=www-data, perm=750

.htaccess.............(only allow valid users)
user-file1.txt

index.html

Figure 10: www/ on case-sensitive file system

Adversary A UNIX user called Mallory has read-write
access to www/ directory. However, DAC permissions prevent
her from accessing hidden/ directory because its owner is
another user. Additionally, protected is inaccessible since
Mallory does not belong to the group www-data.

She modifies www/ as shown in Figure 11 and adds the
HIDDEN/ and PROTECTED/ directories with the intent of gain-
ing access to hidden/ and protected/ via a name collision.
Vulnerability tar is used to migrate the adversary-modified
www/ directory to another system that uses a case-insensitive
file system. Figure 12 shows the state of the file system once
the tarball (archive format of tar) is extracted.

Now, the previously inaccessible hidden/ directory is now
accessible over HTTP. Additionally, since the .htaccess
file is cleared, unauthenticated users will be allowed to view
protected/ over HTTP.

5If the system supports Mandatory Access Control (MAC), then DAC is
used in conjunction with MAC.

www/

hidden/....................................perm=700
secret.txt

HIDDEN/....................................perm=755
protected/...............group=www-data, perm=750

.htaccess..................(only allow valid users)
user-file1.txt

PROTECTED/................................perm=755
.htaccess.............................(empty file)

index.html

Figure 11: Adversary modified www/ on the case-sensitive file
system

www/

hidden/....................................perm=755
secret.txt

protected/................................perm=755
.htaccess.............................(empty file)
user-file1.txt

index.html

Figure 12: www/ after migrating to case-insensitive file system

Reporting We have reported this scenario to the Apache
maintainers, but have not yet reached a resolution. Using
Table 2a, we can reason about the above problems. Under
a directory – directory collision, tar incorrectly modifies
metadata. This happens for the hidden/ – HIDDEN/ collision.
Here, DAC permissions of the latter are applied to the former
resulting in the leakage of secret files.

For directory – directory collisions, tar will also merge
contents of both directories. For protected/ – PROTECTED/
collision, this merger results in the empty .htaccess file
overwriting the original one that restricts access to authorized
users. The end result is that all users are now allowed access
to the new protected/ directory.

8 Potential Defenses
As discussed in the context of name confusion attacks in
general in §3.3, it can be difficult to produce defenses to
prevent name collisions as well. In this section, we discuss
some options and their limitations.

Name collisions are due to differences in case folding rules
among file systems, e.g., case sensitivity and encodings, so
it is difficult to ensure that name collisions cannot happen.
Suppose a system has only one file system. Even then, an
archive constructed on another file system using conflicting
case folding rules may cause name collisions to occur when
expanding the archive. Since user-space programs cannot
determine the case-folding rules that may be applied to a file,
user-space solutions alone will be unreliable. In addition, they
may be prone to TOCTTOU attacks [3, 4]. Thus, extending
library calls like realpath to detect name collisions will not
sufficiently solve the problem. In addition, system solutions

USENIX Association 21st USENIX Conference on File and Storage Technologies 193

lack knowledge of the programmer intent that caused the col-
lision and hence, a systems-only defense for name confusion
will suffer from false positives [5].

For example, one idea may be to write a wrapper to vet
archives prior to expansion operations (e.g., tar and zip) to
validate that each file in the archive will result in a distinct file
after expansion. One way to do this is to check for name col-
lisions among all the files in the archive. Although the notion
that no two files in an archive should collide seems intuitively
reasonable, there are critical drawbacks to this defense. First,
the target directory may already have files that may result in
collisions, limiting its utility. Second, targets that support per-
directory case-sensitivity can switch between case-sensitive
and case-insensitive lookups when resolving a filepath, lead-
ing to incorrect assumptions about case-sensitivity and being
prone to race conditions. Finally, the case folding rules ap-
plied by such a wrapper are not guaranteed to be the same as
those of the target directory.

As a result, we envision that defenses for name colli-
sions will evolve in a manner similar to defenses for name
confusions that utilize the open commands (i.e., openat
and openat2). Consider that these commands have flags
to check whether a file of a corresponding name exists at
creation time, only opening that file when created anew
(i.e., O_CREAT|O_EXCL). This call prevents a name collision
from overwriting an existing file, but it may be too strong a
defense. Suppose one really wants to overwrite files of the
same name, but prevent name collisions from modifying files
that actually have differing names (i.e., that only match due
to case folding). In this case, a new flag is necessary, such as
O_EXCL_NAME, which prevents opening a file when the names
differ, but not when such names match. Using this flag would
enable the virtual file system to compare names in a case-
insensitive manner (i.e., based on the case folding and nor-
malization for target directory) to detect collisions and com-
pare names in a case-sensitive manner to determine matches.
However, at present, the virtual file system cannot choose
the type of matching (case-sensitive or case-insensitive), nor
can it identify the type of matching done by the underlying
physical file system.

Unfortunately, even with variants of the open command
and other defenses, such as FileProvider classes in Android,
programmers continue to make mistakes that lead to errors
and vulnerabilities. The challenge is for programmers to
determine the intent of their operation, understand the threats
faced in such an operation, and configure these complex, low-
level commands in such a way that they block the threats
while satisfying the intent. Until file system APIs enable this
combination of requirements, errors will remain common.

9 Related Work
Researchers have proposed defenses to thwart name confusion
attacks for alias and squat cases. To the best of our knowledge,
no defenses for name collisions have been proposed.

System Defenses Researchers have long known about name
confusion attacks [3,4] and have proposed a variety of system
defenses [7–9, 30, 40–42, 44, 50–52]. In a system defense,
the operating system aims to enforce an invariant that pre-
vents name confusion attacks from succeeding. However, as
discussed in §8, without programmer intent such defenses
will suffer from false positives [5]. Hybrid defenses have
also been proposed [53, 55] where the operating system intro-
spects into the process to leverage program state along with
file system state in enforcement. Even though false positives
are reduced, these techniques lack explicit programmer intent
to fully eliminate all false positives.
Program Defenses As a result, systems provide APIs for
programmers to decide how to handle name confusion attacks.
Several file system APIs include flags to avoid using symbolic
links entirely (e.g., O_NOFOLLOW flag for the open system
call), but in many cases programmers want to be able to
use symbolic links. Researchers have proposed program-
specific defenses to configure APIs or program frameworks
for preventing name confusion attacks [27, 43, 47, 56]. More
advanced commands for file allow programmers to manage
how files are open, including the impact of symbolic links.
For example, the openat system call enables the user to open
a directory first to validate its legitimacy before opening the
remaining path. openat2 explicitly constrains how name
resolution is performed to reduce the potential for attacks.

10 Conclusion
Interactions among file systems with differing encoding/case-
sensitivity semantics can lead to name collisions when per-
forming maliciously crafted, or even ostensibly benign, copy
operations. We explored the impact that these name colli-
sions can have on file system security. Current operating
systems do not directly prevent name collision-based attacks,
delegating that responsibility to the programmers. In inves-
tigating the utilities used to copy file system resources and
repositories/archives, we demonstrate that they often allow
unsafe name collisions and lack the sort of uniformity in name-
collision handling against which safer use policies could be
easily crafted. Further, we show that many applications rely
on potentially unsafe use of these utilities, opening them-
selves up to exploitable vulnerabilities. We examine three
case studies demonstrating concrete vulnerabilities to name
collisions. Finally, we suggest directions for future research
to systematically defend against name collision attacks.

Artifacts
The artifacts produced during the work can be found at
https://github.com/mitthu/name-confusion. It con-
tains scripts to generate the test cases and run commands
required to create Table 2a. Furthermore, it contains the tool
for analyzing auditd traces and extracting relevant create-use
pairs (see §5.2). Finally, there are proof-of-concept scripts to
reproduce the vulnerabilities in dpkg and rsync.

194 21st USENIX Conference on File and Storage Technologies USENIX Association

https://github.com/mitthu/name-confusion

References
[1] Apache HTTP Server: Authentication and autho-

rization. https://httpd.apache.org/docs/2.4/
howto/auth.html#gettingitworking.

[2] Bazaar’s handling of case insentitive file sys-
tems. http://doc.bazaar.canonical.com/
bzr.1.12/developers/case-insensitive-file-
systems.html.

[3] Richard Bisbey, Gerald Popek, Jim Carlstedt, et al. Pro-
tection errors in operating systems: Inconsistency of a
single data value over time. Technical report, University
Of Southern California Marina Del Rey Information
Sciences, 1975.

[4] Matt Bishop, Michael Dilger, et al. Checking for
race conditions in file accesses. Computing Systems,
2(2):131–152, 1996.

[5] Xiang Cai, Yuwei Gui, and Rob Johnson. Exploiting
UNIX file-system races via algorithmic complexity at-
tacks. In 2009 30th IEEE Symposium on Security and
Privacy, pages 27–41. IEEE, 2009.

[6] Case mapping vs. case folding. https://www.w3.
org/TR/charmod-norm/#definitionCaseFolding.

[7] Suresh Chari, Shai Halevi, and Wietse Z. Venema.
Where do you want to go today? Escalating privileges
by pathname manipulation. In NDSS. Citeseer, 2010.

[8] Crispin Cowan, Steve Beattie, Chris Wright, and Greg
Kroah-Hartman. RaceGuard: Kernel protection from
temporary file race vulnerabilities. In 10th USENIX
Security Symposium (USENIX Security 01), 2001.

[9] Drew Dean and Alan J. Hu. Fixing races for fun
and profit: How to use access (2). In 13th USENIX
Security Symposium (USENIX Security 04), pages 195–
206, 2004.

[10] dpkg FAQ: diff of updated documentation.
https://wiki.debian.org/Teams/Dpkg/FAQ?
action=diff&rev2=78&rev1=77.

[11] Dropbox. https://www.dropbox.com/.

[12] Linux kernel documentation (v5.2): ext4 sup-
port. https://www.kernel.org/doc/html/v5.2/
admin-guide/ext4.html.

[13] Linux kernel documentation: Flash-friendly file system
(F2FS). https://docs.kernel.org/filesystems/
f2fs.html.

[14] F2FS: Support case-insensitive file name lookups
(patch). https://patchwork.kernel.org/
project/linux-fsdevel/patch/20190719000322.
106163-3-drosen@google.com/.

[15] ciopfs: case insensitive on purpose filesystem. https:
//www.brain-dump.org/projects/ciopfs/.

[16] ext3ci – case insensitive ext3 filesystem for Linux 2.6.32.
http://bill.herrin.us/freebies/.

[17] Linux kernel documentation: FUSE. https://
www.kernel.org/doc/html/latest/filesystems/
fuse.html.

[18] IOMap. https://www.mono-project.com/docs/
advanced/iomap/.

[19] JFS filesystem (man page). https://www.unix.com/
man-page/redhat/8/mkfs.jfs/.

[20] Linux kernel documentation: NTFS3. https://docs.
kernel.org/filesystems/ntfs3.html.

[21] NTFS-3G driver. https://github.com/tuxera/
ntfs-3g.

[22] XFS filesystem (man page). https://manpages.
ubuntu.com/manpages/trusty/man8/mkfs.xfs.8.
html.

[23] ZFS on Linux project. https://zfsonlinux.org/.

[24] Git’s patch for CVE-2021-21300.
https://github.com/git/git/commit/
684dd4c2b414bcf648505e74498a608f28de4592.

[25] Norman Hardy. The confused deputy (or why capabili-
ties might have been invented). ACM SIGOPS Operat-
ing Systems Review, 22:36–38, October 1988.

[26] Daniel Kachakil. Multiple vulnerabilities in
Android’s Download Provider (CVE-2018-9468,
CVE-2018-9493, CVE-2018-9546). https:
//ioactive.com/multiple-vulnerabilities-
in-androids-download-provider-cve-2018-
9468-cve-2018-9493-cve-2018-9546/.

[27] Maxwell Krohn, Alexander Yip, Micah Brodsky, Natan
Cliffer, M. Frans Kaashoek, Eddie Kohler, and Robert
Morris. Information flow control for standard OS ab-
stractions. ACM SIGOPS Operating Systems Review,
41(6):321–334, 2007.

[28] James A. Kupsch and Barton P. Miller. How to open a
file and not get hacked. In 2008 Third International Con-
ference on Availability, Reliability and Security, pages
1196–1203. IEEE, 2008.

[29] Yu-Tsung Lee, William Enck, Haining Chen,
Hayawardh Vijayakumar, Ninghui Li, Zhiyun Qian,
Daimeng Wang, Giuseppe Petracca, and Trent Jaeger.
PolyScope: Multi-Policy access control analysis
to compute authorized attack operations in android

USENIX Association 21st USENIX Conference on File and Storage Technologies 195

https://httpd.apache.org/docs/2.4/howto/auth.html#gettingitworking
https://httpd.apache.org/docs/2.4/howto/auth.html#gettingitworking
http://doc.bazaar.canonical.com/bzr.1.12/developers/case-insensitive-file-systems.html
http://doc.bazaar.canonical.com/bzr.1.12/developers/case-insensitive-file-systems.html
http://doc.bazaar.canonical.com/bzr.1.12/developers/case-insensitive-file-systems.html
https://www.w3.org/TR/charmod-norm/#definitionCaseFolding
https://www.w3.org/TR/charmod-norm/#definitionCaseFolding
https://wiki.debian.org/Teams/Dpkg/FAQ?action=diff&rev2=78&rev1=77
https://wiki.debian.org/Teams/Dpkg/FAQ?action=diff&rev2=78&rev1=77
https://www.dropbox.com/
https://www.kernel.org/doc/html/v5.2/admin-guide/ext4.html
https://www.kernel.org/doc/html/v5.2/admin-guide/ext4.html
https://docs.kernel.org/filesystems/f2fs.html
https://docs.kernel.org/filesystems/f2fs.html
https://patchwork.kernel.org/project/linux-fsdevel/patch/20190719000322.106163-3-drosen@google.com/
https://patchwork.kernel.org/project/linux-fsdevel/patch/20190719000322.106163-3-drosen@google.com/
https://patchwork.kernel.org/project/linux-fsdevel/patch/20190719000322.106163-3-drosen@google.com/
https://www.brain-dump.org/projects/ciopfs/
https://www.brain-dump.org/projects/ciopfs/
http://bill.herrin.us/freebies/
https://www.kernel.org/doc/html/latest/filesystems/fuse.html
https://www.kernel.org/doc/html/latest/filesystems/fuse.html
https://www.kernel.org/doc/html/latest/filesystems/fuse.html
https://www.mono-project.com/docs/advanced/iomap/
https://www.mono-project.com/docs/advanced/iomap/
https://www.unix.com/man-page/redhat/8/mkfs.jfs/
https://www.unix.com/man-page/redhat/8/mkfs.jfs/
https://docs.kernel.org/filesystems/ntfs3.html
https://docs.kernel.org/filesystems/ntfs3.html
https://github.com/tuxera/ntfs-3g
https://github.com/tuxera/ntfs-3g
https://manpages.ubuntu.com/manpages/trusty/man8/mkfs.xfs.8.html
https://manpages.ubuntu.com/manpages/trusty/man8/mkfs.xfs.8.html
https://manpages.ubuntu.com/manpages/trusty/man8/mkfs.xfs.8.html
https://zfsonlinux.org/
https://github.com/git/git/commit/684dd4c2b414bcf648505e74498a608f28de4592
https://github.com/git/git/commit/684dd4c2b414bcf648505e74498a608f28de4592
https://ioactive.com/multiple-vulnerabilities-in-androids-download-provider-cve-2018-9468-cve-2018-9493-cve-2018-9546/
https://ioactive.com/multiple-vulnerabilities-in-androids-download-provider-cve-2018-9468-cve-2018-9493-cve-2018-9546/
https://ioactive.com/multiple-vulnerabilities-in-androids-download-provider-cve-2018-9468-cve-2018-9493-cve-2018-9546/
https://ioactive.com/multiple-vulnerabilities-in-androids-download-provider-cve-2018-9468-cve-2018-9493-cve-2018-9546/

systems. In 30th USENIX Security Symposium
(USENIX Security 21), pages 2579–2596, 2021.

[30] Kyung-Suk Lhee and Steve J. Chapin. Detection of
file-based race conditions. International Journal of
Information Security, 4(1):105–119, 2005.

[31] Linus Torvalds’s comments on case-insensitive file sys-
tems. https://patchwork.kernel.org/project/
linux-fsdevel/cover/20181206230903.30011-1-
krisman@collabora.com/#22369005.

[32] Eliminating Android wrapfs “hackery”. https://lwn.
net/Articles/718640/.

[33] mm: shmem: Add case-insensitive support for tmpfs.
https://lwn.net/Articles/850214/.

[34] Case-insensitive ext4. https://lwn.net/Articles/
784041/.

[35] Filesystems and case-insensitivity. https://lwn.net/
Articles/772960/.

[36] Case-insensitive filesystem lookups. https://lwn.
net/Articles/754508/.

[37] Network filesystem topics. https://lwn.net/
Articles/685431/.

[38] Slava Makkaveev. Man-in-the-Disk: Android
apps exposed via external storage. https:
//research.checkpoint.com/2018/androids-
man-in-the-disk/.

[39] William S. McPhee. Operating system integrity in
OS/VS2. IBM Systems Journal, 13(3):230–252, 1974.

[40] OpenWall Project - Information security software for
open environments. http://www.openwall.com/.

[41] Jongwoon Park, Gunhee Lee, Sangha Lee, and Dong-
Kyoo Kim. RPS: An extension of reference monitor
to prevent race-attacks. In Pacific-Rim Conference on
Multimedia, pages 556–563. Springer, 2004.

[42] Mathias Payer and Thomas R. Gross. Protecting appli-
cations against TOCTTOU races by user-space caching
of file metadata. In Proceedings of the 8th ACM SIG-
PLAN/SIGOPS conference on Virtual Execution Envi-
ronments, pages 215–226, 2012.

[43] Donald E. Porter, Owen S. Hofmann, Christopher J.
Rossbach, Alexander Benn, and Emmett Witchel. Oper-
ating system transactions. In Proceedings of the ACM
SIGOPS 22nd symposium on Operating systems princi-
ples, pages 161–176, 2009.

[44] Calton Pu and Jinpeng Wei. A methodical defense
against TOCTTOU attacks: The EDGI approach. In
Proceedings of the 2006 International Symposium on
Secure Software Engineering, 2006.

[45] Samba: Implementation of SMB/CIFS protocol. https:
//www.samba.org/.

[46] smb.conf.5 (man). https://www.samba.org/samba/
docs/4.15/man-html/smb.conf.5.html.

[47] Jonathan S. Shapiro, Jonathan M. Smith, and David J.
Farber. EROS: a fast capability system. In Proceed-
ings of the seventeenth ACM symposium on Operating
systems principles, pages 170–185, 1999.

[48] Case-sensitive filesystems not supported on Mac.
https://help.steampowered.com/en/faqs/view/
0395-A862-13F3-6E82.

[49] SteamOS. https://store.steampowered.com/
steamos.

[50] Dan Tsafrir, Tomer Hertz, David Wagner, and Dilma
Da Silva. Portably solving file TOCTTOU races with
hardness amplification. In FAST, volume 8, pages 1–18,
2008.

[51] Eugene Tsyrklevich and Bennet Yee. Dynamic detection
and prevention of race conditions in file accesses. In
12th USENIX Security Symposium (USENIX Security
03), 2003.

[52] Prem Uppuluri, Uday Joshi, and Arnab Ray. Preventing
race condition attacks on file-systems. In Proceedings
of the 2005 ACM symposium on Applied computing,
pages 346–353, 2005.

[53] Hayawardh Vijayakumar, Xinyang Ge, Mathias Payer,
and Trent Jaeger. JIGSAW: Protecting resource access
by inferring programmer expectations. In 23rd USENIX
Security Symposium (USENIX Security 14), pages 973–
988, 2014.

[54] Hayawardh Vijayakumar, Joshua Schiffman, and Trent
Jaeger. STING: Finding name resolution vulnerabilities
in programs. In 21st USENIX Security Symposium
(USENIX Security 12), pages 585–599, 2012.

[55] Hayawardh Vijayakumar, Joshua Schiffman, and Trent
Jaeger. Process firewalls: Protecting processes during
resource access. In Proceedings of the 8th ACM Euro-
pean Conference on Computer Systems, pages 57–70,
2013.

[56] Robert N. M. Watson, Jonathan Anderson, Ben Laurie,
and Kris Kennaway. Capsicum: Practical capabili-
ties for UNIX. In 19th USENIX Security Symposium
(USENIX Security 10), 2010.

196 21st USENIX Conference on File and Storage Technologies USENIX Association

https://patchwork.kernel.org/project/linux-fsdevel/cover/20181206230903.30011-1-krisman@collabora.com/#22369005
https://patchwork.kernel.org/project/linux-fsdevel/cover/20181206230903.30011-1-krisman@collabora.com/#22369005
https://patchwork.kernel.org/project/linux-fsdevel/cover/20181206230903.30011-1-krisman@collabora.com/#22369005
https://lwn.net/Articles/718640/
https://lwn.net/Articles/718640/
https://lwn.net/Articles/850214/
https://lwn.net/Articles/784041/
https://lwn.net/Articles/784041/
https://lwn.net/Articles/772960/
https://lwn.net/Articles/772960/
https://lwn.net/Articles/754508/
https://lwn.net/Articles/754508/
https://lwn.net/Articles/685431/
https://lwn.net/Articles/685431/
https://research.checkpoint.com/2018/androids-man-in-the-disk/
https://research.checkpoint.com/2018/androids-man-in-the-disk/
https://research.checkpoint.com/2018/androids-man-in-the-disk/
http://www.openwall.com/
https://www.samba.org/
https://www.samba.org/
https://www.samba.org/samba/docs/4.15/man-html/smb.conf.5.html
https://www.samba.org/samba/docs/4.15/man-html/smb.conf.5.html
https://help.steampowered.com/en/faqs/view/0395-A862-13F3-6E82
https://help.steampowered.com/en/faqs/view/0395-A862-13F3-6E82
https://store.steampowered.com/steamos
https://store.steampowered.com/steamos

[57] Wine: Wine is not an emulator. https://www.winehq.
org/.

[58] What is the Windows subsystem for Linux? https://
docs.microsoft.com/en-us/windows/wsl/about.

[59] Diving into SDCardFS: How Google’s
FUSE replacement will reduce I/O overhead.
https://www.xda-developers.com/diving-into-
sdcardfs-how-googles-fuse-replacement-
will-reduce-io-overhead/.

USENIX Association 21st USENIX Conference on File and Storage Technologies 197

https://www.winehq.org/
https://www.winehq.org/
https://docs.microsoft.com/en-us/windows/wsl/about
https://docs.microsoft.com/en-us/windows/wsl/about
 https://www.xda-developers.com/diving-into-sdcardfs-how-googles-fuse-replacement-will-reduce-io-overhead/
 https://www.xda-developers.com/diving-into-sdcardfs-how-googles-fuse-replacement-will-reduce-io-overhead/
 https://www.xda-developers.com/diving-into-sdcardfs-how-googles-fuse-replacement-will-reduce-io-overhead/

CONFD: Analyzing Configuration Dependencies of File Systems for Fun and Profit

Tabassum Mahmud, Om Rameshwar Gatla, Duo Zhang, Carson Love, Ryan Bumann, Mai Zheng
Department of Electrical and Computer Engineering, Iowa State University, Ames, IA

Abstract
File systems play an essential role in modern society for

managing precious data. To meet diverse needs, they of-
ten support many configuration parameters. Such flexibility
comes at the price of additional complexity which can lead to
subtle configuration-related issues. To address this challenge,
we study the configuration-related issues of two major file
systems (i.e., Ext4 and XFS) in depth, and identify a prevalent
pattern called multilevel configuration dependencies. Based
on the study, we build an extensible tool called CONFD to
extract the dependencies automatically, and create six plugins
to address different configuration-related issues. Our experi-
ments on Ext4 and XFS show that CONFD can extract more
than 150 configuration dependencies for the file systems with
a low false positive rate. Moreover, the dependency-guided
plugins can identify various configuration issues (e.g., mis-
handling of configurations, regression test failures induced by
valid configurations).

1 Introduction

File systems (FS), such as Ext4 [54] and XFS [89] on Linux-
based operating systems (OS) and NTFS [76] on Windows
OS, play an essential role in modern society. They directly
manage various files on desktops, laptops, and smartphones
for numerous end users [12]. Moreover, they often serve
as the local storage backend for distributed storage systems
(e.g., Lustre [63], GFS [1], HopsFS [22], MySQL NDB Clus-
ter [73]) to enable storage management at scale.

To meet diverse needs, many file systems are designed with
a wide range of configuration parameters controllable via
utilities [41, 45, 48, 52, 56, 58, 94, 100], which enables users
to tune the systems with different tradeoffs. For example, Ext4
contains more than 85 configuration parameters which can
be modified through a set of utilities called e2fsprogs [52].
The combination of the configuration parameters represents
over 1037 configuration states [32].

While configuration parameters have improved the system
flexibility, they introduce additional complexity for reliability.

Figure 1: A Configuration-Related Issue of Ext4. When
sparse_super2 feature is enabled and the size parameter
of resize2fs is larger than the Ext4 size, expanding the file
system results in metadata corruption.

Subtle correctness issues often rely on specific parameters to
trigger [6, 13]; consequently, they may elude intensive testing
and affect end users negatively. For example, in December
2020, users of Windows OS observed that the checker utility
of NTFS (i.e., ChkDsk [45]) may destroy NTFS on SSDs [60,
88]. The incident turned out to be configuration-related: two
specific parameters must be satisfied to manifest the issue, in-
cluding the ‘/f’ parameter of ChkDsk and another (unnamed)
parameter in Windows OS [87].

Similarly, Figure 1 shows another configuration-related
issue involving Ext4 and its mke2fs and resize2fs utili-
ties [52]. Two conditions must hold to trigger the bug: (1)
the sparse_super2 feature is enabled in Ext4 (via mke2fs);
(2) the value of the size parameter of resize2fs must be
larger than the size of Ext4 (i.e., expanding the file system).
Once triggered, the bug will corrupt the Ext4 metadata with
incorrect free blocks. The root cause behind the issue was
logical: with the specific configuration, the free block count
of the last block group of Ext4 was calculated before adding
new blocks for expansion.

Due to the combinatorial explosion of configuration states
and the substantial time needed to scrutinize a file system

USENIX Association 21st USENIX Conference on File and Storage Technologies 199

under each configuration state, it is practically impossible to
exhaust all states for thorough testing today [9]. Moreover,
with more and more heterogeneous devices and advanced fea-
tures being introduced [65, 83, 86], the configuration states
are expected to grow. Therefore, effective methods to help
improve configuration-related testing and identify critical con-
figuration issues efficiently are much needed.

1.1 Limitations of the State of the Art
There are practical test suites to ensure the correctness of file
systems under different configurations (e.g., xfstests [95]).
Unfortunately, their coverage in terms of configuration is lim-
ited: fewer than half of configuration parameters are used
based on our study, which reflects the need for better tool sup-
port. Also, configuration-related issues have emerged in other
software systems and have received much attention [4, 13, 24,
33, 35]. But unfortunately, existing efforts mainly focus on
relatively simple configuration issues (e.g., typos [4]) within
one single application, which is limited for addressing the file
system configuration challenge involving multiple programs.
Please refer to §2 for more details.

1.2 Our Efforts & Contributions
This paper presents one of the first steps to address the in-
creasing configuration challenge of file systems. Inspired by
a recent study [33] on configuration issues in Hadoop [40]
and OpenStack [77], we focus on configuration dependency,
which describes the dependent relations among configuration
parameters [33]. Such dependency has been identified as a
key source of complexity caused problems, and capturing the
dependency is essential for improving configuration design
and tooling [13, 19, 33].

While the basic concept of configuration dependency has
been proposed in the literature (see §2), the understanding of
specific dependency patterns and implications in the context
of file systems is still limited. Therefore, we first conducted
an empirical study on 78 configuration-related issues in two
major file systems (i.e., Ext4 and XFS). By scrutinizing real-
world bugs and the relevant source code, we answer one im-
portant question: What critical configuration dependencies
exist in file systems?

Our study reveals a prevalent pattern called multilevel con-
figuration dependencies. Besides the relatively simple config-
uration constraints (e.g., value range [13]), there are implicit
dependencies among parameters from different utilities of
a file system. The majority (96.2%) of issues in our dataset
requires meeting such deep configuration dependencies to
manifest. Interestingly, the workloads applied to the file sys-
tem do not have to be configuration-specific: 71.8% issues
only involve generic file system operations.

Based on the study, we built an extensible framework called
CONFD to extract the multilevel configuration dependencies

automatically and leverage dependency-guided configuration
states for further analysis. One key challenge is how to es-
tablish the correlation between parameters specified through
different utilities which have different ways of configuration
handling. We address the challenge by metadata-assisted taint
analysis, which leverages the fact that all utilities of a given
file system share the same metadata structures. Moreover,
based on the dependencies extracted, we created six plugins
to help address configuration-related issues in file systems
from different angles.

Our experiments show that CONFD can extract 154 dif-
ferent configuration dependencies with a low false positive
rate (8.4%) for Ext4 and XFS. Moreover, with the depen-
dency guidance, the CONFD plugins can identify various
configuration-related issues, including inaccurate documenta-
tions, configuration handling issues, and regression test fail-
ures induced by valid configurations.

In summary, this paper makes the following contributions:

• Deriving a taxonomy of critical configuration dependen-
cies of file systems based on real-world issues.

• Building the CONFD prototype 1 to extract configuration
dependencies and expose relevant issues in file systems.

• Integrating with multiple practical tools (e.g.,fault injec-
tor [25], fuzzer [29], regression test suites [51, 95]) to
improve their configuration coverage and effectiveness.

• Evaluating the methodology on two widely used file
systems and demonstrating the effectiveness.

The rest of the paper is organized as follows: §2 introduces
the background and related work; §3 presents the empirical
study and findings; §4 describes the CONFD framework; §5
shows experimental results; §6 discusses limitations and po-
tential extensions; §7 concludes the paper.

2 Background & Related Work

2.1 Background

File System Configurations. The configuration methods of
file systems are different from that of many applications,
which makes the problem arguably more challenging. As
shown in Figure 2, a typical file system may be configured
through a set of utilities at four different stages:

• Create. When creating file systems, the mkfs utility (e.g.,
mke2fs for Ext4) generates the initial configurations.

• Mount. When mounting file systems, certain configu-
rations can be specified via mount (e.g., ‘-o dax’ to
enable the Direct Access or DAX feature [65]).

1CONFD is on https://github.com/data-storage-lab/ConfD

200 21st USENIX Conference on File and Storage Technologies USENIX Association

https://github.com/data-storage-lab/ConfD

Figure 2: Methods of Configuring File Systems. This figure
shows four typical stages to configure a file system: (a) at
creation (e.g., mke2fs) or mount time (mount) before usage;
(b) via online utilities (e.g., e4defrag); (c) via offline utilities.

• Online. Many utilities can change the configurations of a
mounted file system directly by modifying the metadata
online (e.g., Ext4 defragmenter e4defrag [53], Win-
dows NTFS checker ChkDsk [45]).

• Offline. Offline utilities can also modify file sys-
tem images and change the configurations (e.g.,
resize2fs [79], e2fsck [50])

Note that all the utilities have different configuration pa-
rameters to control their own behaviors, which will eventu-
ally affect the file system state. Moreover, the configuration
parameters may affect the behavior of the file system long
after the FS image is created, and some configurations can-
not be changed later. Also, the validation of parameters may
occur at both user level and kernel level. For example, the
‘-O inline_data’ parameter of mke2fs and the ‘-o dax’ of
mount are further validated in the ext4_fill_super func-
tion of Ext4. Therefore, we believe it is necessary to consider
the file system itself as well as all the associated utilities as
an FS ecosystem to address the configuration challenge. For
simplicity, we call the file system and utilities as components
within the FS ecosystem.

The multi-stage configuration method is common among
file systems. As listed in Table 1, many popular file systems
follow similar modular designs and can be configured via
different utilities at different stages. Therefore, we believe
that the multi-component configuration challenge is general.
We focus on Ext4 and XFS in this work because they are
two major file systems on Linux and they support the latest
DAX [65] configuration for non-volatile memories (NVM).
We leave the others as future work (§6).

FS Test Suites. Practical test suites have been created to
ensure the correctness of file systems under various config-
urations. Unfortunately, due to the complexity of configura-
tions, their coverage in terms of configuration is limited. As
shown in Table 2, fewer than half of configuration parame-
ters are used in the standard test suites of Linux file systems
(i.e., xfstests [95], e2fsprogs/tests [51]) based on our
study. Since each parameter may have a wide range of val-
ues representing different states, the total number of missed

FS (OS) Four Stages of Configuration
Create Mount Online Offline

Ext4 (Linux) [66] [69] [53], [79] [50], [79]
XFS (Linux) [68] [69] [91], [92] [90], [93]

BtrFS (Linux) [67] [69] [41], [43] [42]
UFS (FreeBSD) [75] [70] [59], [80] [49], [58]
ZFS (FreeBSD) [96] [98] [99], [100] [97]

NTFS (Windows) [55] [72] [45], [46] [45], [81]
APFS (MacOS) [48] [71] [48] [48], [57]

Table 1: Examples of configuration methods for different
file systems. The last four columns list example utilities that
can affect the file system configuration states.

Test Target # of Conf. Param.
Suite Software Total Used

xfstests Ext4 >85 29 (< 34.1%)
e2fsprogs e2fsck >35 6 (< 17.1%)
/tests resize2fs >15 7 (< 46.7%)

Table 2: Configuration Coverage of Test Suites.

configuration states is much more than the number of unused
parameters, which implies the need for better tool support.
Configuration Constraints & Dependencies. Configuration
constraints specify the configuration requirements (e.g., data
type, value range) of software [13]. Intuitively, such infor-
mation can help identify important configuration states, and
it has proved to be effective for addressing configuration-
related issues in a wide range of applications [4, 8, 13, 14, 33].
Configuration dependency is one special type of constraint
describing the dependent correlation among parameters [13,
33], which has shown recently to be critical for addressing
complex configuration issues in cloud systems [33]. For sim-
plicity, we use constraints and dependencies interchangeably
in the rest of the paper. Note that although the basic concepts
have been proposed, there is limited understanding of them in
the context of file systems. This paper attempts to fill the gap.

2.2 Related Work
Analysis of Software Configurations. Configuration issues
have been studied in many software applications [4, 6, 7, 13,
14, 24, 33, 35]. For example, ConfErr [4] manipulates param-
eters to emulate human errors; Ctests [35] detects failure-
inducing configuration changes. In general, these works do
not analyze deep dependencies within the software. The
closest work is cDEP [33], which notably observes inter-
component dependencies in Hadoop [40] and OpenStack [77].
Unfortunately, their solution is largely inapplicable for file
systems. This is because their target components share config-
uration specifications (e.g., XML) and libraries [39], which
makes them equivalent to one single program in terms of
configuration. In contrast, the configuration dependencies in
file systems may cross different programs and the user-kernel
boundary, which requires non-trivial mechanisms to extract.

USENIX Association 21st USENIX Conference on File and Storage Technologies 201

In addition, cDEP relies on a Java framework [82] which
cannot handle C-based file systems.

Reliability of File Systems. Great efforts have been made to
improve the reliability of file systems [2, 10, 17, 18, 29] and
their utilities [3, 25, 26, 27, 78]. For example, Prabhakaran et
al. [2] apply fault injection to analyze the failure policies of
file systems and propose improved designs based on the IRON
taxonomy; Xu et al. [30] and Kim et al. [29] use fuzzing to
detect file system bugs; SQCK [3] and RFSCK [25] improve
the checker utilities of file systems to avoid inaccurate fixes.
While effective for their original goals, these works do not
consider multi-component configuration issues. On the other
hand, the configuration dependencies from this work may be
integrated with these existing efforts to improve their coverage
(see §4.2). Therefore, we view them as complementary.

Configuration Management Tools. Faced by the increasing
challenge, practitioners have created dedicated frameworks
for configuration management [31, 44]. For example, Face-
book HYDRA [31] supports managing hierarchical configu-
rations elegantly. While helpful for developing new applica-
tions, refactoring FS ecosystems to leverage such frameworks
would require substantial efforts (if possible at all). Notably,
the framework supports running a program with different
compositions of configurations automatically. Nevertheless,
since it does not understand configuration dependencies, it
may generate many invalid configuration states (see §5.2.3).
This work aims to address such limitations.

3 Configuration Dependencies in File Systems
In this section, we present a study on the Ext4 and XFS
ecosystems to understand the potential patterns of config-
uration issues and guide the design of solutions. We discuss
the methodology and findings in §3.1 and §3.2, respectively.

3.1 Methodology
Our dateset includes two parts: (1) the source code of
Ext4 and XFS and seven important utilities including
mke2fs, mount, e4defrag, resize2fs, e2fsck, mkfs.xfs,
and xfs_repair, which are described in Table 3; (2) a set of
78 configuration-related bug patches for the two FS ecosys-
tems, which are collected from the commit histories of their
source code repositories via a combination of keyword search
(e.g., ‘configuration’, ‘parameter’, ‘option’), random sam-
pling, and manual validation. Note that the patch collection
method is inspired by previous studies of real-world bugs [5,
12, 36]. While time-consuming, it has proved to be valuable
for driving system improvements [5, 12]. On the other hand,
similar to previous studies, the findings of our study should
be interpreted with the method in mind. For example, the 78
patches only represent a subset of issues that have been trig-
gered and fixed; there are likely other configuration-related
issues not yet discovered (see §6 for further discussion).

3.2 Findings

Based on the dataset, we analyzed each patch and the relevant
source code in depth to understand the logic, which enables
us to identify the configuration usage scenarios as well as
configuration constraints that are critical. We summarize our
findings in Table 3 and Table 4 and discuss them below.

Finding #1: The majority of cases (96.2%) involve critical
parameters from more than one component. The first column
of Table 3 shows six typical usage scenarios of file systems
which cover all bug cases in our dataset (78 in total). 96.2%
of the bug cases require specific parameters from at least two
key utilities (i.e., the utilities in bold in each usage scenario)
to manifest. This reflects the complexity of the issues and
suggests that we cannot only consider one single component.

Finding #2: There is a hierarchy of configuration dependen-
cies. We classify the configuration constraints derived from
our dataset into three major categories as follows:

• Self Dependency (SD) means individual parameters
must satisfy their own constraints (e.g., data type or
value range). For example, the blocksize parameter
of mke2fs has a value range of 1024 - 65536 and must
be a power of 2.

• Cross-Parameter Dependency (CPD) means multiple
parameters of the same component must satisfy rela-
tive relation constraints (e.g., two mke2fs parameters
meta_bg and resize_inode cannot be used together).

• Cross-Component Dependency (CCD) means the pa-
rameters or behaviors of one component depend on the
parameters of another component. Both dependencies
in Figure 1 belong to this category becasue they in-
volve parameters of mke2fs and the (buggy) behavior of
resize2fs depend on them.

As summarized in Table 4, each major category may con-
tain a couple of sub-categories which describe more spe-
cific constraints. Together, these constraints form a hierarchy
which we call multilevel configuration dependencies. Note
that we only observed 7 out of 8 sub-categories in the dataset.
We include the unseen “Value” sub-category in CPD based
on the literature [13] for completeness.

Moreover, among all the dependencies, there is a subset
which directly contribute to the manifestation of the bugs in
our dataset: the relevant parameters are explicitly mentioned
in the bug patches, and modifications to the corresponding
functionalities are needed to fix the bugs (i.e., they are related
to the root causes). We call this subset of dependencies as
critical dependencies. The count of the critical dependencies
for each sub-category is shown in the last column of Table 4.
We are able to derive 168 critical dependencies manually
in total, which is larger than the number of bug cases. This
is because multiple critical dependencies may be needed to

202 21st USENIX Conference on File and Storage Technologies USENIX Association

FS Usage Scenarios Description # of Multilevel Config. Dependencies
(key configuration utilities are in bold) Bug SD CPD CCD
1 mke2fs - mount - Ext4 create & mount an Ext4 to use 13 13 (100%) 1 (7.7%) 13 (100%)
2 mke2fs - mount - Ext4 - e4defrag online defragmentation 1 1 (100%) – –
3 mke2fs - mount - Ext4 - umount - resize2fs resize an umounted Ext4 17 17 (100%) – 17 (100%)
4 mke2fs - mount - Ext4 - umount - e2fsck check Ext4 & fix inconsistencies 36 36 (100%) 4 (11.1%) 34 (94.4%)
5 mkfs.xfs - mount - XFS create & mount an XFS to use 5 5 (100%) 2 (40%) 5 (100%)
6 mkfs.xfs - mount - XFS - umount - xfs_repair check XFS & fix inconsistencies 6 6 (100%) 1 (16.7%) 6 (100%)

Total 78 78 (100%) 8 (10.3%) 75 (96.2%)

Table 3: Distribution of Configuration Bugs in Six Scenarios. This table shows the distribution of 78 configuration bugs in six
typical usage scenarios of file system. The last three columns shows the percentages of bug cases that involve Self-Dependency
(SD), Cross-Parameter Dependency (CPD), and Cross-Component Dependency (CCD), respectively.

Multilevel Config. Dependencies Description Observed? Count
Self Dependency Data Type parameter P must be of a specific data type (e.g., integer) Y 44

(SD) Value Range P must be within a specific value range (e.g., P < 4096) Y 41
Cross-Parameter Control P1 of C1 can be enabled iff P2 of C1 is enabled/disabled Y 5

Dependency Value P1’s value depends on P2 ’s value (e.g., P1 < P2) N –
(CPD) Behavioral component C1’s behavior depends on P1 and P2 of component C1 Y 1

Cross-Component Control P1 of C1 can be enabled iff P2 of C2 is enabled/disabled Y 1
Dependency Value P1’s value depends on P2 from another component Y 1

(CCD) Behavioral component C1’s behavior depends on P2 of C2 Y 75
Total 7/8 168

Table 4: Multilevel Configuration Dependencies. This table describes the multilevel configuration dependencies observed. Pn
means parameter, Cn means component. The last column shows the count of each sub-category of dependency observed.

trigger a bug. For example, both dependencies in Figure 1 are
critical dependencies for this bug case.

As shown in the last three columns of Table 3, SD and CCD
are almost always involved in all scenarios (100% and 96.2%
respectively), while CPD is non-negligible (10.3%). This is
because SD represents relatively simple constraints which
always need to be satisfied first to make the target component
work (e.g., correct spelling). SD is relatively easy to check
and has been the focus of previous work [4]. However, this
does not mean that 100% of the bugs could be avoided if
SD is checked or satisfied. For example, a bug related to
both the bigalloc and extent parameters (i.e., there is a
CPD involved) may still occur even if the two parameters
are spelled correctly. In other words, only considering simple
constraints of individual parameters is not enough.

Interestingly, we observed both CPD and CCD between the
DAX feature and other seemingly irrelevant configurations. In
one case, a corruption was triggered when ‘-O inline_data’
was used in mke2fs and the image was mounted with ‘-o
dax’ subsequently. In another case, the DAX feature con-
flicted with the ‘has_journal’ configuration, which may
lead to corruptions when changing the journaling mode on-
line. Such unexpected dependencies implies the complexity
of adding the DAX support to the Linux kernel.

Finding #3: Configuration parameters are handled in hetero-
geneous ways in an FS ecosystem. We identified four major
sources of heterogeneity in FS configurations. First, different

parameters may be mapped to different types of variables
in the code. For example, the parameters of Ext4 may be
stored in (at least) four different ways including (i) a local
variable, (ii) a global variable, (iii) a bit in a bitmap accessed
via bit operations, and (iv) directly in the superblock. Second,
within the superblock, parameters may be kept either in one
single field (e.g., s_log_block_size) or as one member of
a compound field. Third, parameters can be loaded from the
superblock either directly or through library calls. Lastly, dif-
ferent components may use different functions for handling
configurations (e.g., resize2fs uses the “main” function,
while mke2fs invokes a special function called “PRS”). Such
heterogeneity makes previous solutions mostly inapplicable.
Finding #4: The majority of cases (71.8%) do not require
configuration-specific workloads to manifest. Interestingly,
despite the complexity, many bugs can be triggered without
applying configuration-specific workloads. This suggests that
we may re-use existing efforts on stressing file systems [51,
95] to analyze configuration-related issues effectively.

4 Extracting & Using Multilevel Configuration
Dependencies

Based on the study, we built an extensible framework called
CONFD to leverage the dependency information to address
configuration-related issues. As shown in Figure 3, CONFD
consists of two main parts: (1) ConfD-core (yellow box) for
extracting multilevel configuration dependencies and generat-

USENIX Association 21st USENIX Conference on File and Storage Technologies 203

Figure 3: Overview of CONFD. There are two parts: (1)
ConfD-core (yellow) for extracting configuration dependen-
cies and generating critical states; (2) ConfD-plugins (green)
for detecting various configuration-related issues.

ing critical configuration states, which further contains three
sub-modules (i.e., Taint Analyzer, Dependency Analyzer, and
State Generator); (2) ConfD-plugins (green box) for detecting
various configuration-related issues based on the generated
configuration states. We elaborate on the two parts in the
following two subsections respectively.

4.1 Extracting Configuration Dependencies
4.1.1 Metadata-assisted Taint Analysis
As the first step, the Taint Analyzer of CONFD performs
metadata-assisted taint analysis and generates taint traces to
capture the propagation flow of configuration parameters in
the target FS ecosystem.

It takes the source code of the target system as input, and
uses the LLVM compiler infrastructure [85] to generate inter-
mediate representation (IR) of the source code. It then tracks
the propagation of each configuration parameter along the
data-flow paths in IR based on the classic taint analysis algo-
rithm [21]. We maintain a set to keep the initial configuration
variables and any variables derived from the initial configura-
tion variables while traversing the IR. When a new variable is
added to the set, we add the corresponding IR instruction to
the taint trace. We maintain a mapping between each configu-
ration parameter and the variables derived from it to enable
tracking if a variable may be derived from multiple parame-
ters, which is essential for establishing the correlation across
parameters. Our taint analysis is context-sensitive and can
handle both intra-procedural and inter-procedural analysis.
Context-sensitivity is important for inter-procedural analysis
because one function can be called from different contexts,
which is also crucial for deriving accurate dependency across
different taint traces (§4.1.2).

One unique challenge we encounter is how to establish the
mapping between parameters of different components of the
FS ecosystem. As mentioned in §3.2, the components in the

FS ecosystem tend to load configurations in different ways
and process equivalent FS information using different vari-
ables or functions. We address this challenge based on one key
observation: all components need to access the same FS meta-
data structures. We can leverage shared metadata structures
to connect relevant parameters of different components.

More specifically, the parameter values relevant to the
FS configuration are (eventually) stored in the superblock
structure of the file system. For example, the parameter -I
inode-size from mke2fs is stored as the 27th member of
the superblock (s_inode_size). When another component
(e.g., e2fsck) loads the s_inode_size from the superblock
to access it, it is essentially dependent on the -I inode-size
parameter of mke2fs. We map the mke2fs parameter values
to relevant superblock fields by tracking where the parameter
value is being written in the superblock. Similarly, the ac-
cesses to the superblock in other components are also tracked.
Based on the mapping to the same superblock fields (e.g.,
s_inode_size), we can establish the connection between
taint traces from different components.

Note that since CONFD implements the taint analysis at
the LLVM IR level, any file system that can be compiled to
LLVM IR may benefit from it for configuration dependency
analysis. The current prototype uses the Clang frontend of
LLVM which supports C/C++/Objective-C languages [85].

4.1.2 Multilevel Dependency Analysis
Given the taint trace of every configuration parameter, the De-
pendency Analyzer further analyzes the potential correlations
between parameters based on the multilevel dependencies
derived from our study (§3).

Specifically, the self-dependency (SD) for each parameter
is derived from their individual taint traces based on the data
type and value range of the variables. We also examine the
error statement immediately following a range check based
on the observation that an error statement may indicate an
invalid range. For CPD and CCD, we compare taint traces of
multiple parameters. If there are common lines (which are
context-sensitive), we consider them to be dependent. More-
over, after getting the dependent parameters, we also leverage
the subsequent error statements to further analyze the specific
types of dependency (e.g., should be enabled or disabled to-
gether). For example, the two parameters resize_inode and
meta_bg from mke2fs cannot be enabled together, so there
must be a common error statement immediately following
the condition check shared by the two taint traces. All of the
extracted dependencies are stored in the JSON format [61] to
describe both the parameters and the corresponding dependent
relations concisely.

4.1.3 Dependency-guided State Generation

With the dependency information, the State Generator gener-
ates concrete configuration states for further analysis. Instead

204 21st USENIX Conference on File and Storage Technologies USENIX Association

of randomly generating combinations of configurations which
may easily lead to useless states (§5.2.3), it leverages the ex-
tracted multilevel dependencies to generate states selectively.

Specifically, the State Generator uses a tree structure to
maintain different configuration states. The root of the tree
represents a default configuration state, and each child node
on the tree represents a configuration state with exactly one
modification made from its parent. The module operates simi-
lar to a Depth First Search (DFS) on a tree, except it leverages
the dependency information to guide which children nodes
are worth pursuing. For example, given the cross-parameter
dependency (CPD) between the bigalloc and blocksize
parameters of mke2fs, if the current node modifies bigalloc,
then the child node to consider will be a state with a modifi-
cation to blocksize.

Moreover, the module has a number of options that allow
for tuning based on needs. The first option is ‘depth’, which
dictates how deep the DFS is allowed to go. A larger value
results in a greater number of states being generated. The
default ‘depth’ is 3 which worked well in our experiments.
Another option is the ‘policy’ under which the State Generator
operates. There are two basic policies as follows:

Following Dependency. Under this policy, we always honor
the extracted multilevel dependencies when creating a con-
figuration state. For example, sparse_super should al-
ways be enabled if resize_inode is enabled for mke2fs
according to the multilevel dependency, so the module
may generate a state with both parameters (i.e., ‘mk2fs
-O resize_inode,sparse_super’). Essentially, this policy
only generates valid configuration states involving critical
parameters for the target FS ecosystem, which is the basic re-
quirement for running many FS applications or tools properly.
Note that this policy is consistent with recent work on testing
configuration changes which shows that valid configuration
changes may induce production failures [35].

Violating Dependency. Under this policy, we intention-
ally violate the multilevel dependencies when creating a
configuration state. For example, the resize_inode and
sparse_super parameters of mke2fs have a cross-parameter
dependency (CPD): sparse_super must be enabled if we
want to enable resize_inode. To violate the CPD, the
module may intentionally generate a state which disables
the sparse_super parameter while enabling resize_inode
(i.e., ‘mke2fs -O resize_inode,ˆsparse_super’). By
generating invalid configuration states on purpose, we enable
examining the (mis)configuration handling of the target sys-
tem. Note that this policy is inspired by the previous work on
simulating human errors in configuration [4]. However, differ-
ent from the relatively shallow violations (e.g., typos) which
have been largely handled in matured systems, we consider
more subtle violations that involve non-trivial dependencies.

In addition, to provide more flexibility for different use
cases, the State Generator supports customizing the two ba-

sic policies further with different tradeoffs (e.g., the num-
ber of parameters to consider, the type of dependency (i.e.,
SD/CPD/CCD) to use). As mentioned, a key challenge with
analyzing configurations of file systems is that the space is
too huge to exhaust. For example, mke2fs itself has more
than 8 trillion possible parameter combinations. With the
dependency guidance, CONFD can reduce the space to hun-
dreds or tens of thousands depending on the use case (§4.2),
which makes the configuration testing much more man-
ageable in practice. And as will be shown in §5.2.1, the
dependency-guided state generation will be more effective
than dependency-agnostic alternatives for exposing configu-
ration issues.

4.1.4 User Input

ConfD-core needs three types of input information from the
user, which can be specified in one single JSON file. First, to
start the taint analysis, the Taint Analyzer needs a function
name as the entry point. In the case of a utility program, the
function (which may invoke sub-functions) is expected to be
the major function for processing configurations. In the case
of the file system itself, the function can be either a function
for processing configurations, or a function that is interesting
(e.g., a newly added FS function). Second, the taint analysis
also requires the names of the variables representing the con-
figurations and the superblock in the source code, which are
often different across programs based on our experience on
Ext4 and XFS ecosystems. Third, to generate valid config-
uration states, the State Generator needs the command-line
syntax of FS configurations. Note that all the input can be
specified in the JSON format, and it is a one-time effort for
each program to be analysed.

4.2 Leveraging Configuration Dependencies

The dependency information and the dependency-guided con-
figuration states may be used in different ways to address
different issues [4, 13, 33]. As mentioned in §2.2, there are
existing efforts to improve FS ecosystems which cover a
wide range of techniques including fault injection [2, 25],
fuzzing [29, 30], regression test suites [51, 95], etc. While
these tools are excellent for their original design goals, they
are mostly agnostic to configuration dependencies and thus
cannot address tricky configuration-related issues effectively.
The CONFD plugin interface is designed to bridge the gap by
introducing dependency awareness to the traditional method-
ologies and thus amplify the effectiveness.

The current prototype of CONFD includes six plugins. As
summarized in Table 5, the first two plugins (#1 and #2) are
built from scratch, the next two plugins (#3 and #4) are based
on open-source research prototypes (R), and the last two (#5
and #6) are designed for enhancing standard test suites (S).
We discuss them in more details below:

USENIX Association 21st USENIX Conference on File and Storage Technologies 205

Plugin ID Description Base Tool (type) CONFD Plugin
#1 Configuration specification checker for Linux file systems N/A ConfD-specCk
#2 Misconfiguration handling checker for Linux file systems N/A ConfD-handlingCk
#3 An open-source fault injector for file system utilities rfsck [25] (R) ConfD-rfsck
#4 An open-source fuzzer for file systems gt-hydra [29] (R) ConfD-gt-hydra
#5 Regression test suite for Linux file systems xfstests [95] (S) ConfD-xfstests
#6 Regression test suite for Ext4 utilities e2fsprogs/tests [51] (S) ConfD-e2fsprogs

Table 5: Summary of CONFD Plugins. ‘Base Tool’ means existing tools that have been integrated with CONFD through the
corresponding plugins; ‘R’ means open-source Research prototype, ‘S’ means Standard test suites for file systems and utilities.

Plugin #1: Configuration Specification Checker. The spec-
ifications for the configurations of Linux file systems are
maintained through the Linux man-pages project [84]. Un-
fortunately, due to a variety of reasons (e.g., constant sys-
tem upgrades, feature additions, bug fixes), the specifications
may become inaccurate easily, which may confuse end users
and/or lead to configuration-induced failures [35, 64]. The
ConfD-specCk plugin is designed to mitigate the problem.
It parses the Linux man-pages related to the file system con-
figurations (e.g., mke2fs, mkfs.xfs) and checks a subset of
multilevel dependencies (Table 4) based on keywords. For
example, resize_inode and meta_bg cannot be enabled to-
gether for mke2fs (i.e., CPD), so meta_bg should appear in
the description of resize_inode with ‘disable’ (or similar
keywords) and vice versa. Similarly, value ranges (i.e., SD)
and other value dependencies (e.g., cluster_size needs to
be ‘equal’ or ‘greater’ than block_size) should also be spec-
ified in the descriptions accordingly. Such dependencies from
man-pages are stored in the JSON format for further compari-
son with the dependencies extracted from the source code by
ConfD-core (§4.1). A mismatch implies a potential specifica-
tion issue.

Plugin #2: Misconfiguration Handling Checker. A well
designed file system should be able to handle wrong config-
urations from end users (either by mistake or by intention)
gracefully. Failing to handle misconfigurations elegantly im-
plies misconfiguration vulnerabilities that could hurt system
reliability and/or security [13]. The ConfD-handlingCk plu-
gin is designed to expose the potential issues in misconfigura-
tion handling. Thanks to the built-in ‘Violating Dependency’
policy (§4.1.3), the plugin can directly leverage the invalid
configuration states generated by CONFD which violate inher-
ent configuration dependencies. It applies such automatically
generated misconfigurations to drive the target file systems
and utilities, and records the symptoms accordingly for post-
moterm analysis.

Plugin #3: Dependency-aware Fault Injector. Fault injec-
tion techniques have been applied to improve both file systems
and utilities [2, 15, 25, 28, 51]. By systematically generating
corrupted file system states, they enable analyzing the ro-
bustness of FS ecosystems thoroughly. However, given the
complexity of file system metadata, one open challenge is how
to generate vulnerable states efficiently. To mitigate the chal-

lenge, we integrate one open-source fault injector rfsck [25]
with CONFD through the ConfD-rfsck plugin. Instead of
relying on the default configuration, ConfD-rfsck leverages
dependency-guided configurations to generate input images
to initiate the fault injection campaign. Since the input im-
ages are configured with dependent parameters identified by
CONFD, they represent more complicated states that are more
difficult to remain consistent under fault. Note that the plugin
only needs to provide an FS image with a different configu-
ration as input to rfsck. No modification to the source code
of rfsck is required. As will be shown in §5.2, this simple
strategy can help trigger vulnerabilities effectively.

Plugin #4: Dependency-aware FS Fuzzer. Fuzzing tech-
niques have also been applied to improve the reliability of
file systems [11, 29]. Nevertheless, fuzzing file systems is
still challenging due to the lengthy state exploration time
needed to exercise a practical file system under each con-
figuration (e.g., it may take multiple weeks to trigger one
bug [29]). In other words, the time penalty for exploring a
less interesting configuration state is high. To mitigate the
challenge, we integrate one open-source fuzzer gt-hydra 2

with CONFD through the ConfD-gt-hydra plugin. Similar
to plugin #3, ConfD-gt-hydra leverages dependency-guided
configurations generated by CONFD to create FS images with
more complicated dependencies and thus more chances of
vulnerability for fuzzing. The plugin only changes the config-
urations of the input images for gt-hydra; no modification
to the source code of the base tool is needed.

Plugin #5 & #6: Dependency-aware Regression Test Suites.
Besides research prototypes, there are standard regression test
suites developed for file systems (e.g., xfstests [95] and
e2fsprogs/tests [51]), which include carefully designed
workloads and test oracles to ensure the quality of the tar-
get. Nevertheless, existing test suites only use a subset of
configuration parameters and they are mostly dependency-
agnostic. To address the limitation, we create two plugins:
ConfD-xfstests and ConfD-e2fsprogs, for xfstests and
e2fsprogs/tests respectively. The plugins scan the test
scripts and automatically replace the built-in FS configura-
tions of the test cases with the configuration states generated

2To avoid confusion, we use gt-hydra to refer to the Hydra fuzzing
framework created by GaTech researchers [29], and use FB-HYDRA to refer
to the Hydra configuration management framework created by Facebook [31].

206 21st USENIX Conference on File and Storage Technologies USENIX Association

Target FS Self Dependency (SD) Cross-Parameter Dep. (CPD) Cross-Component Dep. (CCD) All Level Combined
Ecosystem Extracted FP Extracted FP Extracted FP Extracted FP

Ext4 17 0 48 1 (2.1%) 46 3 (6.5%) 111 4 (3.6%)
XFS 18 2 (11.1%) 10 3 (30.0%) 15 4 (26.7%) 43 9 (20.9%)

Total 35 2 (5.7%) 58 4 (6.9%) 61 7 (11.5%) 154 13 (8.4%)

Table 6: Multilevel Configuration Dependencies Extracted by CONFD. This table shows the numbers of multilevel dependen-
cies extracted from Ext4 and XFS ecosystems automatically. ‘FP’ means False Positive rate.

Target FS # of Uncorrectable Images Reported
Ecosystem rfsck (1) ConfD-rfsck (25)

Ext4 11 < 11 (4) = 11 (4) > 11 (17)

Table 7: Comparison of Two FS Fault Injectors. rfsck
explores 1 default configuration state and reports 11 uncor-
rectable images. ConfD-rfsck explores 25 configuration
states; it reports > 11 uncorrectable images (i.e., better than
rfsck) in 17 out of 25 configuration states.

by CONFD. The two plugins use the ‘Follow Dependency’
policy of CONFD to drive the test cases deeply into the target
functionalities without early termination due to superficial
configuration errors. In doing so, we reuse the well designed
test logic and enhance the test suites with dependency aware-
ness. If any test case fails with the valid configurations pro-
vided by CONFD, the result is saved for postmortem analysis.

Note that CONFD plugins are not limited to the six above.
By modularizing the core module of CONFD (Figure 3), we
expect that other software may benefit from CONFD conve-
niently via plugins (see §6 for more discussion).

5 Experimental Results

In this section, we describe the experimental results of ap-
plying CONFD to analyze Ext4 and XFS. First (§5.1), we
show that CONFD can extract 154 multilevel configuration
dependencies from the target systems effectively with a low
false positive rate (8.4%). Second (§5.2), we demonstrate
that CONFD can help address configuration-related issues
more effectively compared to existing dependency-agnostic
solutions. Through the experiments, we have identified var-
ious configuration-related issues including 17 specification
issues, 18 configuration handling issues, and 10 regression
test failures induced by valid configurations.

5.1 Can CONFD extract multilevel dependen-
cies?

Table 6 summarizes the multilevel configuration dependencies
extracted by CONFD from Ext4 and XFS automatically. As
shown in the table, we were able to extract 154 unique depen-
dencies in total, including 35 Self Dependency (SD), 58 Cross-
Parameter Dependency (CPD), and 61 Cross-Component De-
pendency (CCD). The multilevel dependencies have been
observed on both Ext4 and XFS, which is consistent with our

ID Symptom of Triggered?
Uncorrectable Corruption rfsck ConfD-rfsck

1 Unable to mount the FS N Y (6)
2 Invalid file data N Y (24)
3 Truncated file data Y (11) Y (250)

Total 11 280

Table 8: Comparison of Corruption Symptoms Triggered.
ConfD-rfsck triggered (‘Y’) more types of corruptions. The
counts are in parentheses.

manual study (§3).
We manually examined all the 154 dependencies extracted

by CONFD automatically and found that the overall false
positive rate is 8.4% (13/154), which is similar to that of the
previous work on analyzing configuration constraints in other
software systems [13, 33]. Note that CONFD is designed to
handle the unique configuration methods of FS ecosystems
(§2 and §3.2) which is arguably more challenging to analyze
compared to the targets of existing work.

5.2 Can CONFD help address configuration
issues?

5.2.1 Dependency-agnostic vs. Dependency-guided

In this section, we compare the effectiveness of two
open-source research prototypes (i.e., rfsck [25] and
gt-hydra [29]) with and without CONFD support. We focus
on the two research prototypes and the corresponding plug-
ins for comparison because they provide quantitative metrics
to measure the effectiveness straightforwardly. We defer the
results of other plugins to the next section.

In the first experiment, we applied fault injectors rfsck and
ConfD-rfsck to analyze Ext4 and its checker utility e2fsck.
The fault injectors interrupt the checker operation and ex-
amine if the interrupted checker could lead to uncorrectable
corruptions on the file system (i.e., cannot be fixed by another
run of checker). They report the number of repaired FS images
containing uncorrectable corruptions (i.e., “uncorrectable im-
age”). Each uncorrectable image implies a vulnerability in
the FS ecosystem that could lead to data loss [25].

The result of the experiment is summarized in Table 7.
rfsck reports 11 uncorrectable images with the default con-
figuration. ConfD-rfsck can explore different configuration
states and we analyze the reports generated under 25 con-
figuration states for comparison. In 4 out of the 25 states,

USENIX Association 21st USENIX Conference on File and Storage Technologies 207

Target FS # of Issues Reported (in two weeks)
gt-hydra ConfD-gt-hydra

Ext4 1 17

Table 9: Comparison of Two FS Fuzzers. ConfD-gt-hydra
reports more hangs given the same fuzzing time.

ConfD-rfsck generates less than 11 uncorrectable images;
in 4 states, ConfD-rfsck generates the same amount of un-
correctable images (i.e., ‘= 11’); in the majority states (17),
ConfD-rfsck generates more uncorrectable images (i.e., ‘>
11’), which suggests it is more effective in exposing potential
vulnerabilities in the FS ecosystem.

Table 8 further compares the symptoms of uncorrectable
corruptions triggered by rfsck and ConfD-rfsck. Overall,
ConfD-rfsck triggers three different types of symptoms,
while rfsck only triggers one symptom in our experiment.
Since different symptoms typically imply different vulnerabil-
ities in metadata protection and/or recovery in the FS ecosys-
tem, the result also suggests that the dependency-guided con-
figuration states used by ConfD-rfsck can help improve the
effectiveness of rfsck.

In the second experiment, we applied gt-hydra and
ConfD-gt-hydra to fuzz the Ext4 file system. The fuzzers
systematically generate various inputs (i.e., FS metadata cor-
ruptions and system calls) to explore different code paths in
the file system for triggering latent bugs [29]. We run each
fuzzer continuously for two weeks. The fuzzers report the
number of reliability issues detected on the target file system
within the running period. The issues may include different
types depending on the bug checkers used. We use the default
SYMC3 checker which can detect crash inconsistency bugs.
Meanwhile, since the fuzzers are based on the AFL fuzzer
[38], they also report crash and hang issues (detected by AFL)
by default. Note that the only difference ConfD-gt-hydra
introduces is the dependency-guided configurations, i.e., it
does not change the test logic or criteria for reporting issues.
Therefore, both the types of issues (e.g., ‘crash’, ‘hang’, ‘crash
inconsistency’) and the number of issues reported can be used
as the metric to evaluate effectiveness.

The result of the fuzzing experiment is summarized in Ta-
ble 9. To make the comparison fair, we limit the two fuzzers
to the same total execution time (i.e., two weeks each). We set
the ConfD-gt-hydra to switch to a new dependency-guided
configuration state every 12 hours, which leads to 28 critical
configuration states being explored within two weeks. While
each configuration in ConfD-gt-hydra is explored with only
1/28 of the time used by gt-hydra for its configuration, the
overall result of ConfD-gt-hydra is better: gt-hydra only
detects 1 issue on Ext4 by the end of the two week period,
while ConfD-gt-hydra detects 17 issues in total. Interest-
ingly, all issues reported in the experiment are ‘hang’. This is
expected because triggering more complicated semantic bugs
may require multiple weeks.

CONFD Plugin # of Issue Reported
(Type of Issue Reported) Ext4 XFS Total
ConfD-specCk (undoc./wrong dep.) 13 4 17
ConfD-handlingCk (bad reaction) 13 5 18
ConfD-xfstests (test case failure) 5 4 9
ConfD-e2fsprogs (test case failure) 1 N/A 1
ConfD-rfsck (uncorrectable image) 280 – 280
ConfD-gt-hydra (hang) 17 – 17

Table 10: Summary of Issues. This table summarizes
configuration-related issues observed via CONFD plugins.

Target FS # of Undocumented/Wrong Dep. Total
Ecosystem SD CPD CCD

Ext4 7 4 2 13
XFS 2 2 0 4

Total 9 6 2 17

Table 11: Specification Issues. This table summarizes the
undocumented or wrong dependencies observed. ‘SD’, ‘CPD’,
and ‘CCD’ are defined in Table 4.

In summary, the two sets of comparison experiments above
show that CONFD can amplify the effectiveness of existing FS
tools for identifying vulnerabilities quickly, which is particu-
larly valuable for time-consuming methodologies like fault
injection or fuzzing. Note that in all experiments, we do not
randomly generate combinations of configurations. This is
because a naive algorithm without any knowledge of inherent
dependencies can easily lead to time-wasting configurations,
as will be demonstrated further in §5.2.3.

5.2.2 Summary of Configuration Issues

Table 10 summarizes the configuration-related issues trig-
gered by CONFD plugins in our experiments. Overall, we
observed more than 300 issues of various types. The issues
are diverse because the plugins are created for different pur-
poses or based on different base tools (Table 5). Note that
all the issues require dependency-guided configuration states
generated by CONFD to manifest. In other words, continu-
ously running the original research prototypes or standard test
suites cannot expose the issues. Also, since we do not change
the test logic of the base tools, the enhancement is purely con-
tributed by the dependency information from CONFD. Since
ConfD-rfsck and ConfD-gt-hydra have been discussed in
§5.2.1, we focus on others below.

Table 11 summarizes the specification issues detected by
ConfD-specCk. We have identified 17 inaccurate specifica-
tion issues in total. The issues mainly manifest as undocu-
mented critical dependencies or wrong dependencies, which
may occur to both Ext4 and XFS and involve SD, CPD, and
CCD. For example, there is a CPD extracted by CONFD
which specifies that two parameters of mke2fs (i.e., meta_bg
and resize_inode) cannot be used together, but this CPD is
missing from the Linux man-pages. As another example, there

208 21st USENIX Conference on File and Storage Technologies USENIX Association

ID Reaction Description Observed?
1 Early Termination the utility program exits w/o pinpointing the configuration error Y
2 Functional Failure the utility fails functional testing w/o pinpointing the configuration error Y
3 Silent Violation the system changes input configurations to different values w/o notifying users Y
4 Silent Ignorance the system ignores input configurations N
5 Crash/Hang the system crashes or hangs N
6 Partial Report the utility partially identify the violated configuration dependencies Y

Table 12: Suboptimal Reaction of Configuration Dependency Violation. This table summarizes the bad handling behaviors
observed when the configuration dependencies are violated. The first five are based on the definitions from [13].

is a CCD which implies that resize2fs may not be used for
Ext4 when the bigalloc feature is enabled through mke2fs.
Violating the CCD may corrupt the file system, which is un-
fortunately not mentioned in the specification.

Table 12 summarizes the suboptimal handling of misconfig-
urations identified through ConfD-handlingCk. We follow
the criteria in the literature [13]: when a misconfiguration
occurs (i.e., a dependency is violated), the system should
pinpoint either the offending parameter’s name/value or its lo-
cation information; failing to do so implies misconfiguration
vulnerabilities. Specifically, there are six types of misconfigu-
ration vulnerabilities based on different reactions, including
‘Early Termination’, ‘Functional Failure’, ‘Silent Violation’,
‘Silent Ignorance’, ‘Crash/Hang’, and ‘Partial Report’. The
first five types are based on the definitions from [13], while
the last one is unique in our study because we consider more
complicated multilevel dependencies.

As an example, the mke2fs parameter -E encoding en-
ables the casefold feature and set the encoding in Ext4. But
if the user tries to disable the casefold feature when using
the -E encoding, instead of showing an error or warning, the
utility enables the casefold feature silently without inform-
ing the user. We consider this as ‘Silent Violation’.

When more than one dependency is violated, utilities of-
ten only show a partial message (i.e., ‘Partial Report’). For
example, the mkfs.xfs parameter sunit involves two depen-
dencies: (1) it does not allow unit suffixes, and (2) it cannot
be specified together with su. But when both dependencies
are violated, the utility may only show one of the violations.

In total, we have observed 4 out of the 6 types of suboptimal
reactions, which suggests that FS ecosystems are not immune
from misconfiguration vulnerabilities reported in other prac-
tical systems. Note that ConfD-handlingCk leverages the
static analysis of CONFD to violate specific dependencies
carefully, which avoids many duplicate and valid configura-
tion states for testing. This reduces the manual effort needed
for the post-mortem analysis.

In terms of ConfD-xfstests and ConfD-e2fsprogs, we
have observed 10 new test case failures which can be induced
by valid configuration states generated by CONFD. For ex-
ample, ConfD-xfstests triggers an Ext4 corruption when
applying the online defragmentation tool e4defrag to the file
system with the bigalloc feature enabled. Note that a FS

Framework # of States # of Duplicate # of Invalid
FB-HYDRA 56,592 42,745 (75.5%) 15,146 (26.8%)

CONFD 30 0 0

Table 13: Comparison of State Generation.

test case may involve multiple utilities. Due to the complexity
of the test case and the FS ecosystems, a test case may fail
for various subtle reasons (e.g., timing at mount) in practice,
which is time-consuming to diagnose even for developers [47].
In our experiments, we observed more than 10 newly failed
test cases after changing with valid configurations. We only
count the cases that we have manually verified and repro-
duced at the time of this writing. Also, since CONFD limits
the change to the configuration states without modifying the
test logic, it may help narrow down the root cause of a test
case failure to the configuration-related code paths.

5.2.3 State Generation: FB-HYDRA vs. CONFD
One unique feature of CONFD is it generates configuration
states based on multilevel dependencies, which is critical for
analyzing configuration issues given the huge configuration
space. To the best of our knowledge, the FB-HYDRA con-
figuration management framework [31] provides the most
similar functionality. It includes a “multirun” feature to sup-
port running an application with different configurations in
different runs automatically. We compare the configuration
states generated by FB-HYDRA and CONFD in this section
to demonstrate the difference.

Table 13 shows the states generated by FB-HYDRA and
CONFD for the same program (i.e., mke2fs) given the same
set of configuration parameters. For simplicity, we only use
10 parameters with limited ranges in this experiment. As
shown in the table, even with this simplified scenario, FB-
HYDRA may generate many duplicated or invalid states.
This is because FB-HYDRA is agnostic to the configuration
constraints of mke2fs. Specifically, FB-HYDRA maintains
a list for each parameter and its possible values. It passes all
lists to the itertools.product() function which returns
the cartesian product of the values in the lists. Such a sim-
ple algorithm is incompatible with FS ecosystems. For ex-
ample, ‘mke2fs -b 1024 -C 2048’ and ‘mke2fs -C 2048
-b 1024’ are equivalent in practice but are considered as dif-
ferent in FB-HYDRA. Moreover, invalid states can easily

USENIX Association 21st USENIX Conference on File and Storage Technologies 209

be created by FB-HYDRA due to violation of dependencies,
which suggests the importance of dependency analysis.

Note that FB-HYDRA has other features that CONFD does
not have (e.g., Python library support). Also, FB-HYDRA sup-
ports plugins which makes it possible to benefit from the state
generation of CONFD (see §6 for more discussion). Therefore,
we view FB-HYDRA and CONFD as complementary.

6 Limitations & Future Work
No study or tool is perfect, and our work is no exception. We
discuss the limitations of our work as well as a few promising
extensions in this section.

Limitations of the multilevel taxonomy. As briefly men-
tioned in §3.1, the multilevel configuration dependencies
should be interpreted with the study methodology in mind, be-
cause they are derived from an incomplete set of configuration-
related issues from two FS ecosystems. It is likely that there
are more complex dependencies in FS ecosystems, which
deserves further investigation.

Limitations of the CONFD framework. The current proto-
type requires a few user inputs (§4.1.4) to guide the automated
dependency analysis, which we hope to reduce through more
sophisticated state analysis. Also, CONFD can only handle
a subset of LLVM IR for taint analysis and it only consid-
ers two parameters at a time for CPD and CCD, which may
lead to incomplete dependency or false positives. We hope to
improve these through more advanced software engineering
efforts in the future, which will likely improve the effective-
ness further. Similarly, there are limitations in plugins. For
example, ConfD-handlingCk only induces at most two vio-
lations for one configuration state for simplicity; there may be
more issues if we consider more than two. ConfD-xfstests
only transforms a subset of the test suite due to the irregu-
lar configuration handling. Despite the limitations, CONFD
has been effective in analyzing dependencies and exposing
configuration-related issues in our experiments, so we believe
that it will be valuable to the community.

Integration with other file systems and tools. As mentioned
in Table 1, many file systems can be configured through dif-
ferent utilities, which could potentially benefit from the multi-
level dependency analysis of CONFD after minor customiza-
tion (e.g., providing FS-specific inputs in JSON format 4.1.4).
Also, CONFD is complementary to other modern tools be-
sides the base tools used in current plugins. For example, FB-
HYDRA [31] uses YAML files to store configurations which
is compatible with the JSON files used by CONFD. Moreover,
it supports a set of plugins called “Sweepers” to manipu-
late the selection of parameters. The dependency-based state
generation in CONFD could be implemented as one special
“Sweeper” for FB-HYDRA [31]. Similarly, the configurations
generated by CONFD could potentially be integrated into
CI/CD frameworks [62] to enable pipelined configuration-
oriented testing and deployment. We leave the integration

with other file systems (e.g., ZFS) and tools as future work.

Support for other software. Configuration dependency is
not limited to file systems. For example, NDCTL [74] is a
utility to configure the libnvdimm subsystem in Linux. We
expect that adding NDCTL to the dependency analysis will
likely help address NVM-specific configuration issues more
effectively. Also, researchers have observed functionality or
correctness dependencies between local file systems and other
software (e.g., databases [16], distributed storage systems [20,
23, 34, 37]), many of which are also related to configurations.
The dependencies studied in this work may serve as a founda-
tion for investigating such configuration-related issues beyond
file systems. Also, since LLVM supports compiling a wide set
of languages (e.g., C++, Rust, Swift) to IR through various
frontends [85], the core analysis of CONFD is expected to be
applicable to software written in other languages as well.

Better configuration design. An alternate perspective of the
configuration challenge studied in this work is that we may
have too many parameters today. One might argue that it is
perhaps better to reduce the parameters to avoid vulnerabili-
ties or confusions, instead of adding new configurations for
more features. Also, one might suggest that (in theory) we
can implement every utility functionality in the file system
itself to avoid tricky cross-component configuration depen-
dencies. Essentially, these are trade-offs of the file system and
configuration design that deserve more investigation from
the community. We hope that by studying real-world configu-
ration issues and releasing the CONFD prototype, our work
can help identify problematic configuration parameters and
further help with the reduction of such parameters to improve
the configuration design in general.

7 Conclusion
We have presented a study on 78 real-world configuration
issues and built an extensible framework called CONFD for
addressing various configuration issues. Our experiments on
Ext4 and XFS demonstrate that CONFD can help address
configuration issues effectively by leveraging configuration
dependencies. In the future, we would like to improve CONFD
further and investigate other systems as discussed in §6. We
hope that CONFD can facilitate follow-up research on address-
ing the increasing challenge of configurations in general.

Acknowledgments
We thank Ethan Miller, our shepherd, and the anonymous
reviewers for their tremendous feedback. We also thank Run-
zhou Han and Wei Xu for their help on validating and re-
producing a few bug cases. This work was supported in part
by National Science Foundation (NSF) under grants CNS-
1855565, CCF-1853714, CCF-1910747 and CNS-1943204.
Any opinions, findings, and conclusions expressed in this ma-
terial are those of the authors and do not necessarily reflect
the views of the sponsor.

210 21st USENIX Conference on File and Storage Technologies USENIX Association

References

[1] Sanjay Ghemawat et al. “The Google file system”. In:
Proceedings of the 19th ACM Symposium on Operat-
ing Systems Principles (SOSP). 2003.

[2] Vijayan Prabhakaran et al. “IRON File Systems”. In:
Proceedings of the Twentieth ACM Symposium on
Operating Systems Principles (SOSP). 2005.

[3] Haryadi S. Gunawi et al. “SQCK: A Declarative File
System Checker”. In: Proceedings of the 8th USENIX
Conference on Operating Systems Design and Imple-
mentation (OSDI). 2008.

[4] Lorenzo Keller et al. “ConfErr: A tool for assessing
resilience to human configuration errors”. In: Pro-
ceedings of the 38th IEEE International Conference
on Dependable Systems and Networks (DSN). 2008.

[5] Shan Lu et al. “Learning from Mistakes: A Compre-
hensive Study on Real World Concurrency Bug Char-
acteristics”. In: Proceedings of the 13th International
Conference on Architectural Support for Program-
ming Languages and Operating Systems (ASPLOS).
2008.

[6] Huning Dai et al. “CONFU: Configuration Fuzzing
Testing Framework for Software Vulnerability Detec-
tion”. In: Int. J. Secur. Softw. Eng.) 1.3 (2010).

[7] Ariel Rabkin et al. “Static extraction of program con-
figuration options”. In: Proceedings of the 33rd Inter-
national Conference on Software Engineering (ICSE).
2011.

[8] Zuoning Yin et al. “An Empirical Study on Configura-
tion Errors in Commercial and Open Source Systems”.
In: Proceedings of the Twenty-Third ACM Symposium
on Operating Systems Principles (SOSP). 2011.

[9] Edmund Clarke et al. “Model Checking and the State
Explosion Problem”. In: Tools for Practical Software
Verification. Jan. 2012.

[10] Daniel Fryer et al. “Recon: Verifying File System
Consistency at Runtime”. In: Proceedings of the 10th
USENIX Conference on File and Storage Technolo-
gies (FAST). 2012.

[11] Christoph Albrecht et al. “Janus: Optimal Flash Pro-
visioning for Cloud Storage Workloads”. In: Proceed-
ings of the 2013 USENIX Conference on Annual Tech-
nical Conference (ATC). 2013.

[12] Lanyue Lu et al. “A Study of Linux File System Evo-
lution”. In: Proceedings of the 11th USENIX Confer-
ence on File and Storage Technologies (FAST). 2013.

[13] Tianyin Xu et al. “Do Not Blame Users for Miscon-
figurations”. In: Proceedings of the Twenty-Fourth
ACM Symposium on Operating Systems Principles
(SOSP). 2013.

[14] Dongpu Jin et al. “Configurations Everywhere: Im-
plications for Testing and Debugging in Practice”. In:
Proceedings of the 36th International Conference on
Software Engineering (ICSE). 2014.

[15] Thanumalayan Sankaranarayana Pillai et al. “All File
Systems Are Not Created Equal: On the Complex-
ity of Crafting Crash-Consistent Applications”. In:
Proceedings of the 11th USENIX Conference on Op-
erating Systems Design and Implementation (OSDI).
2014.

[16] Mai Zheng et al. “Torturing Databases for Fun and
Profit”. In: Proceedings of the 11th USENIX Confer-
ence on Operating Systems Design and Implementa-
tion (OSDI). 2014.

[17] Changwoo Min et al. “Cross-Checking Semantic Cor-
rectness: The Case of Finding File System Bugs”.
In: Proceedings of the 25th Symposium on Operating
Systems Principles (SOSP). 2015.

[18] James Bornholt et al. “Specifying and checking file
system crash-consistency models”. In: SIGPLAN Not.
51.4 (2016).

[19] Scott Klemmer Tianyin Xu Vineet Pandey. “An HCI
View of Configuration Problems”. In: arXiv. 2016.

[20] Aishwarya Ganesan et al. “Redundancy Does Not
Imply Fault Tolerance: Analysis of Distributed Stor-
age Reactions to Single Errors and Corruptions”. In:
Proceedings of the 15th Usenix Conference on File
and Storage Technologies (FAST). 2017.

[21] Aravind Machiry et al. “DR. Checker: A Soundy
Analysis for Linux Kernel Drivers”. In: Proceedings
of the 26th USENIX Conference on Security Sympo-
sium (SEC). 2017.

[22] Salman Niazi et al. “HopsFS: Scaling Hierarchical
File System Metadata Using NewSQL Databases”.
In: Proceedings of the 15th USENIX Conference on
File and Storage Technologies (FAST). 2017.

[23] Jinrui Cao et al. “PFault: A General Framework for
Analyzing the Reliability of High-Performance Paral-
lel File Systems”. In: Proceedings of the 2018 Inter-
national Conference on Supercomputing (ICS). 2018.

[24] Mikaela Cashman et al. “Navigating the Maze: The
Impact of Configurability in Bioinformatics Soft-
ware”. In: Proceedings of the 33rd ACM/IEEE In-
ternational Conference on Automated Software Engi-
neering (ASE). 2018.

[25] Om Rameshwar Gatla et al. “Towards Robust File
System Checkers”. In: Proceedings of the 16th
USENIX Conference on File and Storage Technolo-
gies (FAST). 2018.

USENIX Association 21st USENIX Conference on File and Storage Technologies 211

[26] Om Rameshwar Gatla et al. “Towards Robust File
System Checkers”. In: ACM Transactions on Storage
(TOS) 14.4 (2018).

[27] Kuei Sun et al. “Spiffy: Enabling File-System Aware
Storage Applications”. In: Proceedings of the 16th
USENIX Conference on File and Storage Technolo-
gies (FAST). 2018.

[28] Shehbaz Jaffer et al. “Evaluating File System Relia-
bility on Solid State Drives”. In: Proceedings of the
2019 USENIX Annual Technical Conference (ATC).
2019.

[29] Seulbae Kim et al. “Finding Semantic Bugs in File
Systems with an Extensible Fuzzing Framework”. In:
Proceedings of the 27th ACM Symposium on Operat-
ing Systems Principles (SOSP). 2019.

[30] Wen Xu et al. “Fuzzing file systems via two-
dimensional input space exploration”. In: 2019 IEEE
Symposium on Security and Privacy (SP). 2019.

[31] Omry Yadan. Hydra - A framework for elegantly con-
figuring complex applications. Github. 2019. URL:
https : / / github . com / facebookresearch /
hydra.

[32] Zhen Cao et al. “Carver: Finding Important Param-
eters for Storage System Tuning”. In: Proceedings
of the 18th USENIX Conference on File and Storage
Technologies (FAST). 2020.

[33] Qingrong Chen et al. “Understanding and Discover-
ing Software Configuration Dependencies in Cloud
and Datacenter Systems”. In: Proceedings of the 28th
ACM Joint Meeting on European Software Engineer-
ing Conference and Symposium on the Foundations
of Software Engineering (ESEC/FSE). 2020.

[34] Runzhou Han et al. “Fingerprinting the Checker Poli-
cies of Parallel File Systems”. In: IEEE/ACM Fifth In-
ternational Parallel Data Systems Workshop (PDSW).
2020.

[35] Xudong Sun et al. “Testing Configuration Changes
in Context to Prevent Production Failures”. In: PPro-
ceedings of the 14th USENIX Symposium on Oper-
ating Systems Design and Implementation (OSDI).
2020.

[36] Duo Zhang et al. “A Study of Persistent Memory
Bugs in the Linux Kernel”. In: Proceedings of the
14th ACM International Conference on Systems and
Storage (SYSTOR). 2021.

[37] Runzhou Han et al. “A Study of Failure Recovery and
Logging of High-Performance Parallel File Systems”.
In: ACM Transactions on Storage (TOS) 18.2 (2022).

[38] American Fuzzy Lop. https://lcamtuf.coredump.
cx/afl/.

[39] Apache Common Configuraitons. https : / /
commons . apache . org / proper / commons -
configuration / userguide / upgradeto2 _ 0 .
html.

[40] Apache Hadoop. https://hadoop.apache.org/.

[41] btrfs-balance. https://man7.org/linux/man-
pages/man8/btrfs-balance.8.html.

[42] btrfs-check. https : / / man7 . org / linux / man -
pages/man8/btrfs-check.8.html.

[43] btrfs-scrub. https : / / man7 . org / linux / man -
pages/man8/btrfs-scrub.8.html.

[44] CFEngine. https : / / github . com / cfengine /
core.

[45] chkdsk. https : / / docs . microsoft . com / en -
us/windows-server/administration/windows-
commands/chkdsk.

[46] defrag. https : / / docs . microsoft . com / en -
us/windows-server/administration/windows-
commands/defrag.

[47] Discussion between Ext4 developers and newbie on
finding bugs on Ext4. https://lore.kernel.org/
linux-ext4/Yx9fUHiiZaKXeLUw@mit.edu/.

[48] disk utility. https : / / www . dssw . co . uk /
reference/diskutil.html.

[49] dump. https : / / www . freebsd . org / cgi / man .
cgi ? query = dump & apropos = 0 & sektion = 8 &
manpath=FreeBSD+13.1-RELEASE+and+Ports&
arch=default&format=html.

[50] e2fsck. https://linux.die.net/man/8/e2fsck.

[51] e2fsprogs-test. https : / / sourceforge . net /
projects/e2fsprogs/files/e2fsprogs-TEST/.

[52] E2fsprogs: Ext2/3/4 Filesystem Utilities. https://
e2fsprogs.sourceforge.net/.

[53] e4defrag. https://man7.org/linux/man-pages/
man8/e4defrag.8.html.

[54] Ext4. https://ext4.wiki.kernel.org/index.
php/Main_Page.

[55] format. https : / / docs . microsoft . com / en -
us/windows-server/administration/windows-
commands/format.

[56] fsck. https://man.minix3.org/cgi-bin/man.
cgi?query=fsck.

[57] fsck_apfs. https://www.manpagez.com/man/8/
fsck_apfs/.

[58] fsck_ufs. https://www.freebsd.org/cgi/man.
cgi?query=fsck_ufs.

[59] growfs. https://www.freebsd.org/cgi/man.
cgi?growfs(8).

212 21st USENIX Conference on File and Storage Technologies USENIX Association

https://github.com/facebookresearch/hydra
https://github.com/facebookresearch/hydra
https://lcamtuf.coredump.cx/afl/
https://lcamtuf.coredump.cx/afl/
https://commons.apache.org/proper/commons-configuration/userguide/upgradeto2_0.html
https://commons.apache.org/proper/commons-configuration/userguide/upgradeto2_0.html
https://commons.apache.org/proper/commons-configuration/userguide/upgradeto2_0.html
https://commons.apache.org/proper/commons-configuration/userguide/upgradeto2_0.html
https://hadoop.apache.org/
https://man7.org/linux/man-pages/man8/btrfs-balance.8.html
https://man7.org/linux/man-pages/man8/btrfs-balance.8.html
https://man7.org/linux/man-pages/man8/btrfs-check.8.html
https://man7.org/linux/man-pages/man8/btrfs-check.8.html
https://man7.org/linux/man-pages/man8/btrfs-scrub.8.html
https://man7.org/linux/man-pages/man8/btrfs-scrub.8.html
https://github.com/cfengine/core
https://github.com/cfengine/core
https://docs.microsoft.com/en-us/windows-server/administration/windows-commands/chkdsk
https://docs.microsoft.com/en-us/windows-server/administration/windows-commands/chkdsk
https://docs.microsoft.com/en-us/windows-server/administration/windows-commands/chkdsk
https://docs.microsoft.com/en-us/windows-server/administration/windows-commands/defrag
https://docs.microsoft.com/en-us/windows-server/administration/windows-commands/defrag
https://docs.microsoft.com/en-us/windows-server/administration/windows-commands/defrag
https://lore.kernel.org/linux-ext4/Yx9fUHiiZaKXeLUw@mit.edu/
https://lore.kernel.org/linux-ext4/Yx9fUHiiZaKXeLUw@mit.edu/
https://www.dssw.co.uk/reference/diskutil.html
https://www.dssw.co.uk/reference/diskutil.html
https://www.freebsd.org/cgi/man.cgi?query=dump&apropos=0&sektion=8&manpath=FreeBSD+13.1-RELEASE+and+Ports&arch=default&format=html
https://www.freebsd.org/cgi/man.cgi?query=dump&apropos=0&sektion=8&manpath=FreeBSD+13.1-RELEASE+and+Ports&arch=default&format=html
https://www.freebsd.org/cgi/man.cgi?query=dump&apropos=0&sektion=8&manpath=FreeBSD+13.1-RELEASE+and+Ports&arch=default&format=html
https://www.freebsd.org/cgi/man.cgi?query=dump&apropos=0&sektion=8&manpath=FreeBSD+13.1-RELEASE+and+Ports&arch=default&format=html
https://linux.die.net/man/8/e2fsck
https://sourceforge.net/projects/e2fsprogs/files/e2fsprogs-TEST/
https://sourceforge.net/projects/e2fsprogs/files/e2fsprogs-TEST/
https://e2fsprogs.sourceforge.net/
https://e2fsprogs.sourceforge.net/
https://man7.org/linux/man-pages/man8/e4defrag.8.html
https://man7.org/linux/man-pages/man8/e4defrag.8.html
https://ext4.wiki.kernel.org/index.php/Main_Page
https://ext4.wiki.kernel.org/index.php/Main_Page
https://docs.microsoft.com/en-us/windows-server/administration/windows-commands/format
https://docs.microsoft.com/en-us/windows-server/administration/windows-commands/format
https://docs.microsoft.com/en-us/windows-server/administration/windows-commands/format
https://man.minix3.org/cgi-bin/man.cgi?query=fsck
https://man.minix3.org/cgi-bin/man.cgi?query=fsck
https://www.manpagez.com/man/8/fsck_apfs/
https://www.manpagez.com/man/8/fsck_apfs/
https://www.freebsd.org/cgi/man.cgi?query=fsck_ufs
https://www.freebsd.org/cgi/man.cgi?query=fsck_ufs
https://www.freebsd.org/cgi/man.cgi?growfs(8)
https://www.freebsd.org/cgi/man.cgi?growfs(8)

[60] HotHardware: Windows 10 20H2 Update Report-
edly Damages SSD File Systems If You Run ChkDsk.
https://hothardware.com/news/windows-10-
20h2 - update - damages - ssd - file - systems -
chkdsk.

[61] JavaScript Object Notation. https://www.json.
org/json-en.html.

[62] Jenkins. https://www.jenkins.io/.

[63] Lustre. https://www.lustre.org/.

[64] Maintaining Linux man-pages. https : / / www .
kernel . org / doc / man - pages / maintaining .
html.

[65] Wilcox Matthew. DAX: Page cache bypass for filesys-
tems on memory storage. https : / / lwn . net /
Articles/618064/.

[66] mke2fs. https://linux.die.net/man/8/mke2fs.

[67] mkfs.btrfs. https : / / man7 . org / linux / man -
pages/man8/mkfs.btrfs.8.html.

[68] mkfs.xfs. https://man7.org/linux/man-pages/
man8/mkfs.xfs.8.html.

[69] mount. https://man7.org/linux/man-pages/
man8/mount.8.html.

[70] mount. https://www.freebsd.org/cgi/man.
cgi?query=mount.

[71] mount_apfs. https://www.manpagez.com/man/8/
mount_apfs/.

[72] mountvol. https://docs.microsoft.com/en-
us/windows-server/administration/windows-
commands/mountvol.

[73] MySQL NDB Cluster. https://en.wikipedia.
org/wiki/NDB_Cluster.

[74] NDCTL. https://github.com/pmem/ndctl.

[75] newfs. https://www.freebsd.org/cgi/man.
cgi?newfs(8).

[76] NTFS. https://www.ntfs.com/index.html.

[77] OpenStack. https://www.openstack.org/.

[78] OpenStack Swift. https://docs.openstack.org/
swift/latest/.

[79] resize2fs. https : / / linux . die . net / man / 8 /
resize2fs.

[80] restore. https://www.freebsd.org/cgi/man.
cgi?query=restore.

[81] shrink. https : / / docs . microsoft . com / en -
us/windows-server/administration/windows-
commands/shrink.

[82] Soot - A framework for analyzing and transforming
Java and Android. http://soot-oss.github.io/
soot/.

[83] The First and Only Adaptive Computational Stor-
age Platform. https : / / www . xilinx . com /
applications / data - center / computational -
storage/smartssd.html.

[84] The Linux man-pages Project. https : / / www .
kernel . org / doc / man - pages / maintaining .
html.

[85] The LLVM Compiler Infrastructure. https://llvm.
org/.

[86] Trim. https://en.wikipedia.org/wiki/Trim_
(computing).

[87] Windows 10 2004/20H2: Microsoft fixes chkdsk issue
in update KB4592438. https://borncity.com/
win / 2020 / 12 / 21 / windows - 10 - 2004 - 20h2 -
microsoft-fixes-chkdsk-issue-in-update-
kb4592438/.

[88] Windows 10 20H2: ChkDsk damages file system on
SSDs with Update KB4592438 installed. https://
borncity.com/win/2020/12/18/windows-10-
20h2-chkdsk-damages-file-system-on-ssds-
with-update-kb4592438-installed/.

[89] XFS. https://xfs.wiki.kernel.org/.

[90] xfs_admin. https : / / man7 . org / linux / man -
pages/man8/xfs_admin.8.html.

[91] xfs_fsr. https://man7.org/linux/man-pages/
man8/xfs_fsr.8.html.

[92] xfs_growfs. https : / / man7 . org / linux / man -
pages/man8/xfs_growfs.8.html.

[93] xfs_repair. https : / / man7 . org / linux / man -
pages/man8/xfs_repair.8.html.

[94] xfsprogs. https://www.linuxfromscratch.org/
blfs/view/svn/postlfs/xfsprogs.html.

[95] xfstests. https://github.com/kdave/xfstests.

[96] zfs-create. https://www.freebsd.org/cgi/man.
cgi?query=zfs-create.

[97] zfs-destroy. https://www.freebsd.org/cgi/man.
cgi?query=zfs-destroy.

[98] zfs-mount. https://www.freebsd.org/cgi/man.
cgi?query=zfs-mount.

[99] zfs-rollback. https://www.freebsd.org/cgi/
man.cgi?query=zfs-rollback.

[100] zfs-set. https://www.freebsd.org/cgi/man.
cgi?query=zfs-set.

USENIX Association 21st USENIX Conference on File and Storage Technologies 213

https://hothardware.com/news/windows-10-20h2-update-damages-ssd-file-systems-chkdsk
https://hothardware.com/news/windows-10-20h2-update-damages-ssd-file-systems-chkdsk
https://hothardware.com/news/windows-10-20h2-update-damages-ssd-file-systems-chkdsk
https://www.json.org/json-en.html
https://www.json.org/json-en.html
https://www.jenkins.io/
https://www.lustre.org/
https://www.kernel.org/doc/man-pages/maintaining.html
https://www.kernel.org/doc/man-pages/maintaining.html
https://www.kernel.org/doc/man-pages/maintaining.html
https://lwn.net/Articles/618064/
https://lwn.net/Articles/618064/
https://linux.die.net/man/8/mke2fs
https://man7.org/linux/man-pages/man8/mkfs.btrfs.8.html
https://man7.org/linux/man-pages/man8/mkfs.btrfs.8.html
https://man7.org/linux/man-pages/man8/mkfs.xfs.8.html
https://man7.org/linux/man-pages/man8/mkfs.xfs.8.html
https://man7.org/linux/man-pages/man8/mount.8.html
https://man7.org/linux/man-pages/man8/mount.8.html
https://www.freebsd.org/cgi/man.cgi?query=mount
https://www.freebsd.org/cgi/man.cgi?query=mount
https://www.manpagez.com/man/8/mount_apfs/
https://www.manpagez.com/man/8/mount_apfs/
https://docs.microsoft.com/en-us/windows-server/administration/windows-commands/mountvol
https://docs.microsoft.com/en-us/windows-server/administration/windows-commands/mountvol
https://docs.microsoft.com/en-us/windows-server/administration/windows-commands/mountvol
https://en.wikipedia.org/wiki/NDB_Cluster
https://en.wikipedia.org/wiki/NDB_Cluster
https://github.com/pmem/ndctl
https://www.freebsd.org/cgi/man.cgi?newfs(8)
https://www.freebsd.org/cgi/man.cgi?newfs(8)
https://www.ntfs.com/index.html
https://www.openstack.org/
https://docs.openstack.org/swift/latest/
https://docs.openstack.org/swift/latest/
https://linux.die.net/man/8/resize2fs
https://linux.die.net/man/8/resize2fs
https://www.freebsd.org/cgi/man.cgi?query=restore
https://www.freebsd.org/cgi/man.cgi?query=restore
https://docs.microsoft.com/en-us/windows-server/administration/windows-commands/shrink
https://docs.microsoft.com/en-us/windows-server/administration/windows-commands/shrink
https://docs.microsoft.com/en-us/windows-server/administration/windows-commands/shrink
http://soot-oss.github.io/soot/
http://soot-oss.github.io/soot/
https://www.xilinx.com/applications/data-center/computational-storage/smartssd.html
https://www.xilinx.com/applications/data-center/computational-storage/smartssd.html
https://www.xilinx.com/applications/data-center/computational-storage/smartssd.html
https://www.kernel.org/doc/man-pages/maintaining.html
https://www.kernel.org/doc/man-pages/maintaining.html
https://www.kernel.org/doc/man-pages/maintaining.html
 https://llvm.org/
 https://llvm.org/
https://en.wikipedia.org/wiki/Trim_(computing)
https://en.wikipedia.org/wiki/Trim_(computing)
https://borncity.com/win/2020/12/21/windows-10-2004-20h2-microsoft-fixes-chkdsk-issue-in-update-kb4592438/
https://borncity.com/win/2020/12/21/windows-10-2004-20h2-microsoft-fixes-chkdsk-issue-in-update-kb4592438/
https://borncity.com/win/2020/12/21/windows-10-2004-20h2-microsoft-fixes-chkdsk-issue-in-update-kb4592438/
https://borncity.com/win/2020/12/21/windows-10-2004-20h2-microsoft-fixes-chkdsk-issue-in-update-kb4592438/
https://borncity.com/win/2020/12/18/windows-10-20h2-chkdsk-damages-file-system-on-ssds-with-update-kb4592438-installed/
https://borncity.com/win/2020/12/18/windows-10-20h2-chkdsk-damages-file-system-on-ssds-with-update-kb4592438-installed/
https://borncity.com/win/2020/12/18/windows-10-20h2-chkdsk-damages-file-system-on-ssds-with-update-kb4592438-installed/
https://borncity.com/win/2020/12/18/windows-10-20h2-chkdsk-damages-file-system-on-ssds-with-update-kb4592438-installed/
https://xfs.wiki.kernel.org/
https://man7.org/linux/man-pages/man8/xfs_admin.8.html
https://man7.org/linux/man-pages/man8/xfs_admin.8.html
https://man7.org/linux/man-pages/man8/xfs_fsr.8.html
https://man7.org/linux/man-pages/man8/xfs_fsr.8.html
https://man7.org/linux/man-pages/man8/xfs_growfs.8.html
https://man7.org/linux/man-pages/man8/xfs_growfs.8.html
https://man7.org/linux/man-pages/man8/xfs_repair.8.html
https://man7.org/linux/man-pages/man8/xfs_repair.8.html
https://www.linuxfromscratch.org/blfs/view/svn/postlfs/xfsprogs.html
https://www.linuxfromscratch.org/blfs/view/svn/postlfs/xfsprogs.html
https://github.com/kdave/xfstests
https://www.freebsd.org/cgi/man.cgi?query=zfs-create
https://www.freebsd.org/cgi/man.cgi?query=zfs-create
https://www.freebsd.org/cgi/man.cgi?query=zfs-destroy
https://www.freebsd.org/cgi/man.cgi?query=zfs-destroy
https://www.freebsd.org/cgi/man.cgi?query=zfs-mount
https://www.freebsd.org/cgi/man.cgi?query=zfs-mount
https://www.freebsd.org/cgi/man.cgi?query=zfs-rollback
https://www.freebsd.org/cgi/man.cgi?query=zfs-rollback
https://www.freebsd.org/cgi/man.cgi?query=zfs-set
https://www.freebsd.org/cgi/man.cgi?query=zfs-set

HadaFS: A File System Bridging the Local and Shared Burst Buffer for Exascale
Supercomputers

Xiaobin He1, Bin Yang2 1∗, Jie Gao1, Wei Xiao1, Qi Chen2, Shupeng Shi1,
Dexun Chen1, Weiguo Liu4, Wei Xue2 3 1, Zuo-ning Chen5†

1National Supercomputing Center in Wuxi, 2Tsinghua University, Dept. of C.S,
3Tsinghua University, BNRist.,4Shandong University, 5Chinese Academy of Engineering

Abstract
Current supercomputers introduce SSDs to form a Burst
Buffer (BB) layer to meet the HPC application’s growing
I/O requirements. BBs can be divided into two types by de-
ployment location. One is the local BB, which is known for
its scalability and performance. The other is the shared BB,
which has the advantage of data sharing and deployment costs.
How to unify the advantages of the local BB and the shared
BB is a key issue in the HPC community.

We propose a novel BB file system named HadaFS that pro-
vides the advantages of local BB deployments to shared BB
deployments. First, HadaFS offers a new Localized Triage Ar-
chitecture (LTA) to solve the problem of ultra-scale expansion
and data sharing. Then, HadaFS proposes a full-path indexing
approach with three metadata synchronization strategies to
solve the problem of complex metadata management of tra-
ditional file systems and mismatch with the application I/O
behaviors. Moreover, HadaFS integrates a data management
tool named Hadash, which supports efficient data query in the
BB and accelerates data migration between the BB and tradi-
tional HPC storage. HadaFS has been deployed on the Sun-
way New-generation Supercomputer (SNS), serving hundreds
of applications and supporting a maximum of 600,000-client
scaling.

1 Introduction

High Performance Computing (HPC) is experiencing an era of
explosive growth in computing scale and data. In order to meet
the growing I/O demands of HPC applications, researchers
propose Burst Buffer (BB) [35] to build a data acceleration
layer through new storage media such as SSDs to serve appli-
cations’ I/O quickly. Since 2016, more and more supercom-
puters have introduced Burst Buffer, such as Frontier [44],
Fugaku [18], LUMI [15], Summit [43], Tianhe-2 [63], etc.

∗First Author and Second Author contribute equally to this work.
†Zuo-ning Chen is the corresponding author, email: chenzuon-

ing@vip.163.com.

Depending on the deployment location of SSDs, BBs can be
classified into two types [10]: 1) local BB, which means SSDs
are deployed on each computing node as local disks;2) shared
BB, which means SSDs are deployed on dedicated nodes that
can be accessed by computing nodes, such as I/O forwarding
nodes [5] to support shared data access.

Since each BB node in the local BB is dedicated to serving
one computing node, the local BB can achieve good scalabil-
ity, and its performance can grow linearly with the number
of computing nodes. However, it still has some limitations:
1) The local BB is not suitable for scenarios such as N-1 I/O
mode (all processes share one file) and workflow due to the
difficulty of data sharing. 2) The local BB architecture re-
sults in significant resource waste due to the large variance
in I/O load between HPC applications and the relatively low
percentage of data-intensive applications [67]. 3) The deploy-
ment cost of the local BB will rise sharply in the future as
supercomputers scale up rapidly.

In contrast, the shared BB has the advantage of data shar-
ing and deployment costs compared to the local BB. But
it is challenging to support ultra-scale supercomputers with
hundreds of thousands of clients [71], and existing work has
many limitations. For example, Qian et al. [48] proposed
LPCC, a caching technique that integrates SSDs in the Lus-
tre [8] clients to improve read/write performance. However,
LPCC is inefficient for data sharing and metadata-intensive
access because data stored on the Lustre clients’ SSDs must
be flushed to the Lustre server before being shared. Herold
et al. [25] proposed BeeOND, which functions similarly to
LPCC but inherits the scalability and cache sharing limita-
tions of BeeGFS.

Currently, we have entered the era of exascale supercom-
puters, which leads to a sharp increase in concurrent I/O. At
the same time, the I/O requirements of HPC applications vary
widely. How to unify the advantages of local BB and shared
BB to meet the various application requirements and reduce
the cost of building BB is an urgent problem to solve. More-
over, both the local BB and the shared BB have the advantage
of high performance compared with the traditional global

USENIX Association 21st USENIX Conference on File and Storage Technologies 215

file system (e.g., Lustre, and we will use “GFS” to represent
“global file system” in this paper.) but have the disadvan-
tage of small capacity. So, BBs must work in conjunction
with the GFS to meet capacity requirements. But the existing
BBs either run in a static data migration mode [16, 43, 48]
or require applications to migrate data through computing
nodes [24, 51, 52], which has low migration efficiency and
leads to a waste of computing resources. Large-scale BB data
management and migration is also a problem that needs to be
solved.

To solve these problems, we propose a novel BB file sys-
tem, HadaFS, building on the shared BB deployment, which
combines the scalability and performance advantages of local
BB with the data sharing and deployment costs advantages
of shared BB. HadaFS proposes a new architecture named
Localized Triage Architecture (LTA) to solve the problem of
insufficient scalability of the shared BB. LTA constructs all
HadaFS servers as a shared storage pool, flexibly controlling
the concurrency scale between clients and servers to ensure
convenient data sharing. Additionally, HadaFS proposes a
runtime user-level interface to ensure that I/O requests can be
processed on the nearest server, helping clients use the BB in
a manner that approximates the local BB. To solve the per-
formance problems caused by the strong POSIX consistency,
HadaFS proposes a full-path indexing approach, using the K-
V approach instead of the traditional directory tree, supporting
three-category metadata management policies. What’s more,
HadaFS integrates a data management tool to help users man-
age data in the BB, and migrate data between the BB and the
GFS quickly and efficiently.

HadaFS has been deployed on the Sunway New-generation
Supercomputer (SNS) [36], serving hundreds of applications,
supporting a maximum of 600,000-client scaling, with an I/O
aggregation bandwidth of 3.1 TB/s. The main contributions
of this paper include:

• This paper describes a novel BB file system named
HadaFS and performs a comprehensive experimental
study on the SNS to evaluate its effectiveness.

• This paper proposes the LTA architecture, which enables
the application-oriented data layout, achieves scalability
on par with node-local BBs, and reduces interference
caused by a large number of connections on a single
server.

• HadaFS proposes three metadata synchronization strate-
gies to address the mismatch between traditional file
systems’ complex metadata management and HPC ap-
plications’ various consistent semantics requirements.

• This paper proposes a localized data management
method that enables all BB nodes to execute data man-
agement commands in parallel via a pipeline, enabling
efficient data query and fast data migration between the
BBs and the GFS.

2 Motivation and Background

2.1 Motivation
As I/O requirements for HPC applications continue to grow,
BBs have been introduced to many cutting-edge supercom-
puters. However, the existing major types of BB technologies
still have many limitations.

2.1.1 The contradiction between BBs’ scalibility and ap-
plication behaviors

With the barrier to exascale computing being broken, the
I/O concurrency of cutting-edge supercomputers can reach
hundreds of thousands, which stresses the scalability of BBs.
At the same time, the increase in the proportion of data sharing
applications such as AI and workflow has led to changes in
I/O requirements, and high-speed sharing of large-scale data
has become much more important [45].

Building a more flexible BB architecture to meet the new
changes in supercomputer systems and application require-
ments has become a challenge for the design of exascale super-
computers. Currently, some cutting-edge supercomputers use
different solutions. For example, Frontier is an exascale super-
computer and uses independent hardware to build the local BB
and the shared BB, respectively [44]. But this method requires
many acceleration devices (SSDs) and high construction and
maintenance costs. Fugaku deploys the shared BB and uses
software to provide storage services similar to the local BB
and the shared BB with different name spaces [21]. But their
implementation is static and is challenging to control perfor-
mance contention during large-scale I/O concurrency. Summit
deploys the local BB and supports data sharing through the
software [43]. But this method requires data sharing through
GFS storage, which is inefficient.

In summary, the above methods have obvious advantages
and disadvantages. Since shared BB can also be deployed
on computing or data forwarding nodes [21, 66], from the
perspective of cost control, we believe the shared BB deploy-
ment is more suitable for future ultra-large-scale computing
node systems. To this end, in this paper we investigate how,
starting from a shared BB model, we can attain the benefits
of the local BB model to better address the requirements of
HPC applications at exascale and beyond.

2.1.2 Complex metadata management mismatches ap-
plication behaviors

Traditional file systems are designed for generality, so their
file management is implemented in the directory tree structure
and strictly follows the POSIX protocol. However, in HPC,
computing nodes are generally responsible for reading and
writing data and rarely perform directory tree access [32].
So relaxation of POSIX has become a common choice for
many file systems [6, 12, 43, 59] to improve the performance.

216 21st USENIX Conference on File and Storage Technologies USENIX Association

However, due to the wide variety of HPC applications, how
to relax POSIX remains a huge challenge.

Table 1: Applications and their suitable consistency semantics
Consistency Semantics Applications

Strong consistency –
Commit consistency FLASH-HDF5 [60]
Session consistency NWChem [58], QMCPACK [29], VASP [55]

LBANN [20], Chombo [4], VPIC-IO [64]
Eventual consistency ENZO [9], pF3D-IO [31], HACC-IO [38]

Wang et al. [60] studied the requirements of some typical
HPC applications and classified the consistency semantics of
HPC file systems into strong consistency semantics, commit
consistency semantics, session consistency semantics, and
eventual consistency semantics, as shown in Table 1. The
higher the degree of consistency a system supports, the more
adaptable it is, but at the cost of higher overhead. And different
HPC applications have different requirements for consistency.
Therefore, it is a big challenge to choose consistency seman-
tics flexibly to balance the application’s requirements and
exploit the BB performance.

2.1.3 Inefficiencies in data management

A recent study found that although most applications on Sum-
mit and Cori can use the BB to speed up I/O performance, the
BB utilization is low, and it is necessary to develop flexible
data management tools for users [7]. Besides, the BB is not a
place for applications to persistent store data in most cases.
On the one hand, the BB capacity is smaller than the GFS
capacity, e.g., Summit’s BB capacity is 7.4PB while its GFS
capacity is 250PB [26], Fugaku’s BB capacity is 16PB while
its GFS capacity is 100PB [21]. On the other hand, some typi-
cal HPC applications require hundreds of terabytes of data to
input or output, e.g., NICAM-LETKF [69] has nearly 300,000
files and over 400 terabytes, Tokmark [65] has 32,768 files
and nearly 100 terabytes. So, the BB system needs to consider
efficiently and conveniently migrating data between the BB
and the GFS.

Data migration between the BB and the GFS can be divided
into two types: transparent and non-transparent. In transpar-
ent data migration, software automatically migrates the BB
data to the GFS in blocks or files [16, 43, 48], which may
cause a large amount of unnecessary data migration. In non-
transparent migration, data migration often needs computing
nodes to participate, leading to the computing resource being
idle during the data migration process [24, 51, 52] and wast-
ing resources. Both of the above types support loading data
from the GFS to the BB asynchronously statically in advance,
which can satisfy the data readahead requirements. However,
neither of the above two types could support users to dynam-
ically manage the BB data migration during the application
running, which is very unfavorable for efficient utilization of
the BB.

2.2 Background

The SNS is built on Sunway’s new-generation heterogeneous
high-performance many-core processors and interconnection
network chips and adopts a similar architecture to Sunway
TaihuLight [13]. The supercomputer consists of a computing
system, interconnection network system, software system,
storage system, maintenance and diagnosis system, power
supply system, and cooling system. Figure 1 shows the overall
architecture.

Figure 1: Architecture of the SNS

Each computing node contains one Sunway new-generation
many-core processor SW26010P, which adopts a heteroge-
neous architecture similar to SW26010 and has 6 CGs (Core
Groups [36]) with 390 computing cores. These components
are interconnected through a ring network. The whole system
is composed of more than 100,000 SW26010P processors,
which are interconnected by a fat-tree network called SWnet.

The computing nodes are connected to the I/O forward-
ing nodes through the interconnection network, and the I/O
forwarding nodes provide I/O request forwarding or storage.
When providing I/O request forwarding, the SNS adopts a sim-
ilar software architecture to TaihuLight (LWFS+Lustre [13])
and connects to the storage nodes through a separate storage
network. When providing storage services, the SNS adopts
a new software architecture and deploys a burst buffer file
system, HadaFS, which is proposed in this paper. The I/O
forwarding nodes serve as the HadaFS servers and use NVMe
SSDs to handle users I/O requests.

3 Design and Implementation

3.1 Overview of HadaFS

Figure 2 shows the overall architecture of HadaFS, includ-
ing the HadaFS client, HadaFS server, and data management
tool. HadaFS serves as a shared burst buffer file system and
can provide a global view for each client. The HadaFS client
runs on the computing nodes and serves as a static/dynamic
library that intercepts and redirects the POSIX I/O requests
from applications to the HadaFS server, which means the

USENIX Association 21st USENIX Conference on File and Storage Technologies 217

lifecycle of the HadaFS client is entirely dependent on ap-
plications. Note that HadaFS does not support the move, re-
name, or link operation as recent studies have demonstrated
that these functions are rarely or not used at all during par-
allel application running [32]. The HadaFS server runs on
the dedicated burst buffer nodes where NVMe SSDs are
deployed, providing global data and metadata storage ser-
vices. Each file in HadaFS is associated with two types of
servers. One type is the data storage server that stores the
HadaFS file’s data through the basic file system on NVMe
SSDs, and the other type is the metadata storage server that
stores the HadaFS file’s metadata through a high-performance
database (RocksDB [17]). The data management tool, named
Hadash, runs on the user login nodes and is used to manage
the data migration between the global file system and HadaFS.
More details can be seen in Section 3.7.

Global File System
(Disk array & storage server)

...

...

Applications running on computing nodes

Hadash Server
(Redis node)

Hadash UI
(Manage node)

Server
(Buffer node)

NVMe SSD

Server
(Buffer node)

NVMe SSD

Server
(Buffer node)

NVMe SSD

User

Client
(Rank 0)

HPC App

Client
(Rank 1)

HPC App

Client
(Rank N)

HPC App

HadaFS Hadash

Figure 2: Architecture of HadaFS

3.2 Localized Triage Architecture

The traditional kernel file system handles the application’s
I/O requests by mounting the file system through the operat-
ing system, requiring to implement the full POSIX semantics
and introducing the kernel’s overhead of I/O requests stage-in
and stage-out. An alternative method is to mount the file sys-
tem through the application and bypass the kernel. Although
this method can help clients avoid many rules that the kernel
imposes on a file system and reduce the overhead of I/O re-
quests stage-in and stage-out of the kernel, too many links
are not conducive to large-scale expansion and may lead to
service instability [71]. For example, for a computing node
with 24 CPU cores, a file system client running in the kernel
mode can be accessed by all processes running on the node
only after mounting once. In contrast, each application pro-
cess has to mount a client for a file system running in the
user space. Obviously, both methods have certain limitations.
HadaFS combines both advantages in a new approach named
Localized Triage Architecture (LTA).

HadaFS follows the idea of bypassing the kernel and uses
it by directly mounting the client into the application. In order
to control the number of clients served by a single server at the
same time and avoid the performance bottleneck caused by
too many clients connected to a single server, HadaFS adopts
the method of connecting only one server per client. For a
HadaFS client, we call the HadaFS server connected to it the

bridge server. The bridge server is responsible for handling
all I/O requests generated by the client and writes data to the
underlying file based on the offset and size of the I/O request
initiated by the client. Each file corresponds to an independent
file in the underlying file system(ext4) on the bridge server.
When the client needs to access data on another server, it must
be forwarded through the bridge server. Therefore, servers
are a fully connected structure. Note that if the storage space
of one bridge server is filled up, all the clients connected to it
will automatically switch to another HadaFS server.

Considering that the number of clients (computing node
processes) in an ultra-scale supercomputer will be much larger
than the number of servers (storage nodes), it is a better way
to perform the necessary I/O forwarding through the full
connection of the server. In order to ensure that most I/O
requests are processed on the bridge server and reduce the
forwarding ratio of requests, HadaFS proposes an interface
(mount(mount_point,Seq)) to allow applications to control
the selection of bridge servers when this is advantageous.
mount_point stands for the mount point and is a prefix for
a file path in HadaFS. Seq can be set flexibly according to
changes in the application data sharing mode, network topol-
ogy differences, and other factors to adapt to the application’s
data parallelism and system architecture parallelism. Cur-
rently, HadaFS supports three types of settings:

• Seq is set to the MPI_RANK of the application, which
will connect the server for the client in a round-robin
manner. This setting is suitable when the application is
submitted to different computing nodes multiple times
to ensure that each application process can connect pre-
cisely to the original bridge server, thus reducing the
data forwarding during data access.

• Seq is set to the computing node ID, which can be used
to match the topology between the specific computing
node and the BB node, and helps ensure that the com-
puting node can store data in the nearest BB node in the
network.

• Seq is set according to the application’s actual data dis-
tribution and sharing requirements, which means each
client can specify any server it wants to connect to. So
applications can improve the efficiency of data access
by flexibly controlling the mapping between the clients
and the servers.

LTA not only provides each computing node with a bridge
server that runs as the local BB but also supports the shar-
ing of all clients through the full interconnection between all
bridge servers, combining the advantages of the local BB and
the shared BB. Moreover, mount_point and Seq can be con-
trolled by the environment variables, so HadaFS can support
transparent mounting for users by loading the HadaFS library
to read environment variables in advance before the applica-
tion starts. However, to fully exploit the high performance

218 21st USENIX Conference on File and Storage Technologies USENIX Association

of HadaFS, especially for read performance, we advise ap-
plications to change their code to specify the client-to-server
mapping, which can help reduce the data forwarding. Af-
ter HadaFS mounted, applications can perform I/O with the
interface, which is exactly the same as POSIX file operations.

3.3 Namespace and metadata handling
In order to improve the scalability and performance,
HadaFS abandons the idea of directory trees and employs
a full-path indexing approach like CHFS [57] and Vesta [14].
For a file in HadaFS, its data is stored on the bridge server
of the HadaFS client that generated the file, and its metadata
storage location is determined by the path hash. Files’ meta-
data are stored by key-value, and the file path is a globally
unique ID (key). The HadaFS client performs compliance
checking on the absolute path of files based on its specific
prefix mount point instead of checking layer by layer in the
form of a directory tree. When multiple files need to be ac-
cessed, the load can be distributed to various servers, thus
significantly improving metadata performance [57].

The metadata of HadaFS is compatible with the metadata
items under the stat structure in Linux, including name, ino,
owner, mode, timestamp, etc. HadaFS divides its metadata
information into four categories:

• The first category is maintained during the file creation,
including name, owner, mode, etc.

• The second category is maintained during the file access,
including f ile size, modi f ication time, access time, etc.

• The third category is information that HadaFS does
not need to maintain, such as ino, stdev, etc. Since
HadaFS adopts the file path as the globally unique ID,
this information has no meaning in HadaFS.

• The fourth category is an ordered list of the location
information of the file segments. Each item in the list
is sorted by offset, consisting of server name, fragment
offset, size, writing time, and other information.

Two kinds of metadata databases are maintained on each
HadaFS server, and their data structures are shown in Fig-
ure 3. One is the local metadata database (LMDB), which
stores the first and fourth category metadata information of
the file locally, and the file’s local identification (LID) is the
local path corresponding to the file. The other is the global
metadata database (GMDB), which stores the first two and
the fourth categories of metadata information. The metadata
of a HadaFS file is stored in a unique GMDB on a HadaFS
server located by hashing the full path of the file.

Both metadata databases are built based on the RocksDB
[50], which is also used to maintain metadata by many other
famous file systems, such as GekkoFS [59], MadFS [28], etc.
Although RocksDB does not support multi-threaded shared

writing, it doesn’t constitute a bottleneck, and this is demon-
strated by both production-run and test scenarios. The keys of
the two metadata databases are composed of the user’s UID,
GID, and PAT H. The GID and UID are used to control the
range of string retrieval because HadaFS uses string prefix
matching to retrieve files. For the N-N I/O mode, each client
writes the independent file, and the metadata stored in the
LMDB matches the category one and four metadata stored
in the GMDB. For the N-1 I/O mode, multiple clients share
the same file and may use different HadaFS bridge servers.
At this time, GMDB is responsible for merging file metadata
from multiple LMDBs.

During the file reading and writing, LMDB records the
change of its metadata, maintains an ordered list of local
data segment locations, and sends the data to the GMDB to
which the HadaFS file belongs. GMDB is responsible for
maintaining a global list of data segment locations for files to
support the global sharing of data between HadaFS servers.
More details can be seen in Section 3.6.2.

The GMDB server of PATH1 is
determined by its hash value

GMDB

Key

Server X

Value

uid:gid:PATHX

uid:gid:PATHM

Server\Segment-list

Server\Segment-list

.
uid:gid:PATH1 Server\Segment-list

Server 1

LMDB

Key Value

Local data in SSD

uid:gid:PATH1 Metadata1-1

LID1 LID2 LIDM...

HASH by
PATH1

LMDB

Key Value

Local data in SSD

uid:gid:PATH1 Metadata1-2

LID1 LID2 LIDM...

HASH by
PATH1

Server 2

Figure 3: Two K-V tables on the HadaFS server

3.4 HadaFS I/O control and data flow
Here, we discuss the control and data flow details of HadaFS.
Figure 4 shows an example with three HadaFS clients and
three HadaFS servers:

• Client A performs an I/O request to create a file F1 and
write 100-MB data. The data will be written directly to
client A’s bridge server, X.

• Server X writes the metadata information and location
information of F1 to the LMDB.

• Based on the file path of F1, the metadata of F1 is calcu-
lated to be stored on server Y. Then, server X writes the
metadata information and location information of F1 to
the GMDB on server Y.

• Client C performs an I/O request to read a file F1.

• Client C’s bridge server, Z, receives the I/O request and
gets the metadata and location information of F1 from
server Y based on the path of F1.

• Server Z reads data from server X and forwards it to
client C.

USENIX Association 21st USENIX Conference on File and Storage Technologies 219

Note that ensuring local writes and global readability of
data streams is advantageous, especially for scenarios where
the application needs to output checkpoints frequently. Be-
sides, read-intensive applications can also achieve high per-
formance through the mount interface, which can control the
mapping relationship between the client and the bridge server
to reduce the probability of forwarding as much as possi-
ble and improve read performance. In summary, approaches
proposed by HadaFS not only help constrain the number of
clients undertaken by each server and reduce performance
jitter but also lay the foundation for the storage system to
support the application’s parallelism fully.

r2: get
metadata

Client A

Client B

Client C

Server Y

Server X Server Z

Rank M:
write segment (PATH,

offset 1MB, size 2MB)

Rank N:
read segment (PATH, offset

1MB, size 1MB)

w1: send write
request

r1: send read
request

r3: read segment
data

w2: put metadata to
LMDB

w3: put
metadata to

GMDB

Figure 4: An example of HadaFS I/O control and data flow

Hadash UI
(Manage node)

Hadash server
(Redis node)

1

2 2
2

…

Hadash Agent

LMDB

3 4

5

GMDB

Data in local SSD

Burst buffer node

HadaFS server

GFS Client

Hadash Agent

LMDB

3 4

5

GMDB

Data in local SSD

Burst buffer node

HadaFS server

GFS Client

Hadash Agent

LMDB

3 4

5

GMDB

Data in local SSD

Burst buffer node

HadaFS server

GFS Client

Figure 5: The stage-out flow of Hadash

3.5 Data management tool
We seek to overcome some disadvantages of existing BB ap-
proaches, such as LPCC [48] and Datawarp [24]. LPCC may
result in the migration of large amounts of temporary data.
Datawarp requires the application to specify the migration
between the BB and GFS in their source code or job sub-
mission scripts, which is usually a static migration approach
and requires computing nodes to participate in the migration.
HadaFS provides a data management tool named Hadash to
support users in retrieving and managing files in the directory
tree view, which is divided into two categories according to
functions: metadata information query and data migration.

The metadata information query mainly provides com-
mands such as ls, du, f ind, grep, etc. Among them, ls and
f ind support file information query with directory tree view.
Hadash obtains information from the metadata database for
these query-type operations and presents them in commands
commonly used in the Linux shell. The other commands
involve data migration, such as rm, get, put, etc. Hadash
sends the commands to the data management modules on

the HadaFS servers through a specific Redis [49] pipeline.
Then, the data management module on each HadaFS server
uses LMDB for local data location and executes these com-
mands in parallel.

Figure 5 shows an example of the data migration flow from
HadaFS to the GFS. Firstly, the user sends a data manage-
ment command to the Hadash server via Hadash UI. Secondly,
the Hadash server receives and forwards the command to all
Hadash agents on the BB nodes. Thirdly, the Hadash agents
parse the command, obtain the list of files specified by the
command from LMDB, and then read these files from the
local SSDs. Finally, the Hadash agents write these files to
the GFS. When all files have finished writing, the Hadash
agents will return success via another Redis pipeline, and then
Hadash will tell the user that the stage-out has been completed.
If the file to be migrated is continuously appended, Hadash
will also continuously copy the newly written data. This be-
havior is the same as that of Linux’s default data copying tool,
cp. It is worth mentioning that Hadash uses a prefix-matching
approach to present a virtual directory tree in data manage-
ment, and the prefix-matching approach could be executed
locally through the LMDB, thus reducing the impact on the
GMDB.

Hadash uses a distributed management method to support
data localization management. During the data management
process, there is no need to know all the data views on the BB
nodes, so its performance can grow linearly with the number
of BB nodes (the main bottleneck is the GFS client).

3.6 Optimizations on HadaFS

3.6.1 Consistency semantics and metadata optimization

HadaFS adopts the idea of relaxed consistency semantics as
other file systems [59]. HadaFS does not support cache data
on the client and the server. It relies on the cache mecha-
nism of the basic file system (ext4) to increase performance,
and its consistency semantics mainly depend on metadata
synchronization. Thus, HadaFS proposes three metadata syn-
chronization strategies for different application scenarios to
avoid the over-designing of traditional file systems.

The first strategy (called mode1) is to update all metadata
asynchronously (corresponding to eventual consistency se-
mantics). All operations are executed locally on the bridge
servers first during file opening, deletion, reading, and writ-
ing, and metadata will be updated asynchronously from the
LMDB to the GMDB later, which is the highest performance
metadata update mode. This strategy is equivalent to provid-
ing node-local storage for computing nodes and is suitable
for scenarios without data dependencies.

The second strategy (called mode2) is to update part of
the metadata synchronously and part of the metadata asyn-
chronously (corresponding to session consistency semantics
and commit consistency semantics). The first metadata cat-

220 21st USENIX Conference on File and Storage Technologies USENIX Association

egory mentioned above (such as name, owner, etc.) will be
updated synchronously when the file is created. The second
metadata category (such as f ile size, modi f y time, etc.) will
be updated asynchronously during file reading and writing or
be updated synchronously by the flush operation. The second
strategy is the default way to use and beneficial to improving
file reading and writing performance.

The third strategy (called mode3) is to synchronize the
metadata in all open, read, and write operations during the
file access processes (slightly weaker than strong consistency
semantics since HadaFS does not support overlapping writes).
All servers need to get the file location first to ensure the syn-
chronization of the first metadata category, and all operations
such as open, write, read and flush need to synchronize the
second metadata category.

HadaFS has special data location rules and does not use
a distributed lock mechanism, so it isn’t easy to ensure data
consistency by HadaFS itself. If the application uses the N-N
I/O mode (also known as File Per Process), then there is no
data conflict because there is no file sharing. However, for the
N-1 write scenario, since HadaFS requires that the data be
written to the bridge server locally, it cannot support the over-
lap write in the N-1 Mode. In addition, atomic write is only
supported under the third metadata synchronization strategy.
To ensure data consistency, users must at least understand the
file-sharing mode of the application, which could be obtained
through Darshan [11], Beacon [67], etc.

3.6.2 Optimization on the shared file

The LTA architecture is suitable for N-N I/O mode, which
can realize multi-file parallelism and help fully utilize the
performance of the BBs. For N-1 I/O mode, HadaFS pro-
poses a management method similar to ADIOS BP file lay-
out [40] to improve the performance, where each client writes
its own data in an independent file (corresponding to BP’s
process group), and the GMDB maintains the file’s meta-
data(corresponding to BP’s group index). In this way, a shared
file can be stored on multiple servers, and the reading and writ-
ing of the shared file can be converted into concurrent reading
and writing. However, since the HadaFS server stores data
in file format, the data layout of each process is completely
unknown, so the amount of fragment information managed by
the GMDB may be high in extreme scenarios, which affects
system performance. For example, suppose there are 100,000
processes concurrently writing a shared file, and each process
writes 6 times consecutively. In a completely random case
(no fragment information to merge), it may produce 600,000
file fragments.

To this end, HadaFS uses a list sorted by offset to store seg-
ment location information and merges location information
for adjacent segments of the same bridge server to improve the
performance of the segment management. The average time
complexity of segment insertion and retrieval during write

and read is O(logN), where N is the number of segments in
the file. All three metadata synchronization strategies support
N-1 mode, and the metadata of a file will only be stored in one
GMDB. Each GMDB uses one thread to access the RocksDB,
and the peak IOPS of a GMDB is the peak IOPS for accessing
a single file when using the third metadata strategy.

3.6.3 Interference avoidance

As we all know, there are many jobs running simultane-
ously on supercomputers. These jobs tend to compete for
shared resources, resulting in I/O interference. I/O interfer-
ence is a serious problem known to modern supercomputer
users [19, 30, 33]. Many studies have also proved that dy-
namically mapping the client to the server is also helpful in
improving application performance [27, 72]. Since the shared
BBs support data sharing for many applications, the clients be-
longing to different jobs may share the same server, resulting
in resource competition and performance degradation. Thanks
to the flexible design of HadaFS, users can dynamically for-
mulate the connection relationship from the HadaFS clients
to the HadaFS servers, which can effectively help isolate
the BB resources for different applications to solve the I/O
interference between jobs. Section 4.4.3 demonstrates the
effectiveness of HadaFS in avoiding interference with five
real-world applications.

Moreover, we have also noticed that the flexible design
of HadaFS has also led to high requirements for users who
want to fully utilize HadaFS, as mentioned in Section 3.6.1
and Section 3.2. In order to reduce the burden on users, the
HadaFS team is developing an automatic server assignment
tool based on the monitoring tool [67] and adaptive I/O opti-
mization framework [68]. This tool can automatically assign
underlying BB resources, set the mount environment vari-
ables, and select the metadata synchronization strategy for ap-
plications, helping users isolate the underlying BB resources
and improve the performance of their applications.

3.7 HadaFS on the SNS

HadaFS has been deployed on the SNS for over a year and
supports hundreds of applications, including the 2021 Gor-
don Bell Award finalist application (Tokamak Plasma Sim-
ulation) [65] that scales to 480,000 processes (32,768 I/O
processes) via HadaFS with an I/O aggregation bandwidth of
700 GB/s. Figure 6 shows the deployment of HadaFS. There
are two HadaFS server on every I/O forwarding node, and
each HadaFS server uses an NVMe SSD to support the stor-
age of the HadaFS file’s data (with ext4) and metadata (with
LMDB and GMDB).

As we all know, the overhead of achieving fault tolerance
can be significant. Therefore, HPC storage systems often
transfer high availability to the application layer for implemen-
tation to pursue higher performance. Most HPC applications

USENIX Association 21st USENIX Conference on File and Storage Technologies 221

generally use periodic write checkpoints [6] to reduce the cost
of restoring applications after failures occur. So, HadaFS is
positioned as a temporary high-performance BB system, sim-
ilar to the BB system on Frontier [44], Summit [43], etc. The
Sunway new generation supercomputer doesn’t adopt erasure
code or data redundancy to handle node failures. If a BB node
fails, HadaFS can be available after the BB node recovery as
long as the SSD is not damaged. Moreover, in order to reduce
the cost of recovering data in case of failure, HadaFS sup-
ports applications to periodically back up key data to the GFS.
There have been 15 BB node failures but no SSD corruptions
for over a year of deployment.

Storage server & disk array for Lustre file system

...

Hadash
agent

Ext4 on a 3.2TB NVMe SSD

LMDBGMDB

HadaFS Server1

HadaFS Client

App. process

HadaFS Client

App. process
... Computing

node

High performance network
(SWNet)

I/O
forwarding

node

I/O forwarding node

High performance network
(SWNet)

600
I/O forwarding nodes

Over 100, 000
computing nodes

...

Hadash
agent

Ext4 on a 3.2TB NVMe SSD

LMDBGMDB

HadaFS Server2

Computing node

Computing
node

Computing
node

I/O
forwarding

node

Figure 6: The deployment of HadaFS

4 Evaluation

We carry out the evaluation on the SNS to test the perfor-
mance of HadaFS. The SNS contains more than 100,000
computing nodes, and each node can start up to 6 MPI pro-
cesses and 6 HadaFS clients. That means the whole ma-
chine can support more than 600,000 MPI processes and
600,000 HadaFS clients. It has a total of 600 I/O forward-
ing nodes, and each I/O forwarding node is configured with
two 3.2TB NVMe SSDs (Each NVMe SSD corresponds to
a HadaFS server). All nodes are interconnected using the
SWnet network, and HadaFS uses the SWnet-based RDMA
protocol to transfer data. We compare the performance of
HadaFS with BeeGFS (a popular parallel file system that
many supercomputers have used to manage the BB [3,25,41])
and GFS (the traditional parallel file system used by the SNS
based on LWFS [67] and Lustre [8]). To ensure the evaluation
fairness, we slightly modify BeeGFS (version: 7.2.5) to make
it better suited to the SNS, including using the SWnet to pro-
vide the high-speed RDMA communication and increasing
the number of processes for managing services to achieve
high-speed mounting performance. And, BeeGFS is config-
ured with the same number of storage servers and metadata
servers as HadaFS. For GFS, it uses a similar forwarding
architecture as Sunway TaihuLight [13], consisting of 132
OSSs and 4 MDSs.

4.1 Metadata performance evalutaion
In order to improve the metadata performance, HadaFS pro-
poses three metadata management strategies. Here, we use
mode1, mode2, and mode3 to represent these three strategies

as mentioned in Section 3.6.1.
We first use MDTest [2] (A benchmark for metadata per-

formance evaluation) to compare the metadata performance
differences of HadaFS, GFS, and BeeGFS with parallel scales
of 1024, 4096, 16384, and 65536 processes. 4, 16, 64, and 256
I/O forwarding nodes are used for HadaFS and BeeGFS, each
running a data server and a metadata server on a common
SSD. Note that the number of the GFS metadata servers in
this experiment is 4 due to the limited metadata servers of the
Lustre file system.

Figure 7(a), 7(b), and 7(c) show the OPS comparison of
Create, Stat, and Remove, respectively. Mode1 has the highest
performance. Mode2 has comparable performance to mode3
because there is no read/write operation in the MDTest set-
ting. BeeGFS metadata performance is similar to HadaFS’s
mode2 and mode3 for 1024 processes. When the number of
test processes increases, both HadaFS and BeeGFS obtain
the higher performance, but the performance of BeeGFS is
slightly slower than HadaFS. Besides, BeeGFS can not scale
up to 65,536 processes. The main reason is that BeeGFS
needs to mount 16384 clients to support 65,536 processes
on the SNS, but it cannot mount successfully at such a large
scale due to the limitation of centralized management service
(It isn’t easy to successfully mount clients in batches after
exceeding 10,000 nodes). Unsurprisingly, the traditional file
system GFS has the lowest performance due to the perfor-
mance overhead caused by data forwarding software LWFS
and the limited metadata servers of Lustre.

4.2 Data performance evaluation

Here, we use IOR [53] (A benchmark for data performance
evaluation) to compare the I/O bandwidth differences between
HadaFS, GFS, and BeeGFS with parallel scales of 1024, 4096,
16384, and 65536 processes. The request size is set to 8 KB
for random read/write and 1 MB for sequential read/write. 4,
16, 64, and 256 I/O forwarding nodes are used for HadaFS and
BeeGFS, each running a data server and a metadata server on
a common SSD. Specifically, for GFS, the data server is the
Lustre OSS, and the metadata server is the Lustre MDS. All
132 OSSs (located on the storage nodes) and 4 MDS are used
in the experiment.

Figure 8 shows the results. For HadaFS, mode1 has the
highest performance, followed by mode2, and finally mode3.
HadaFS does not show a significant performance advantage
at smaller scales, but as the scale reaches 65,536 processes,
HadaFS performs much better than other file systems. For
read operations, HadaFS can approach the theoretical perfor-
mance limit of SSDs. For write operations, random writes are
not conducive to the performance of HadaFS due to the in-
ability to utilize the kernel caching mechanism. For BeeGFS,
it can perform close to mode1 and mode2 sometimes but still
cannot scale to 65,536 processes. Expectantly, GFS has the
lowest performance again due to the forwarding overhead (see

222 21st USENIX Conference on File and Storage Technologies USENIX Association

1024 4096 16384 65536

Number of processes

0

0.5

1

1.5

2

2.5

3

3.5
C

re
a
te

 O
P

S
10

6

HadaFS-mode1

HadaFS-mode2

HadaFS-mode3

GFS

BeeGFS

(a) create OPS

1024 4096 16384 65536

Number of processes

0

0.5

1

1.5

2

S
ta

t
O

P
S

10
7

HadaFS-mode1

HadaFS-mode2

HadaFS-mode3

GFS

BeeGFS

(b) stat OPS

1024 4096 16384 65536

Number of processes

0

1

2

3

4

5

6

7

R
e
m

o
v
e
 O

P
S

10
6

HadaFS-mode1

HadaFS-mode2

HadaFS-mode3

GFS

BeeGFS

(c) remove OPS

Figure 7: Metadata performance comparison

Section 4.1) and the storage medium (OSTs are constructed
by HDDs).

In addition, we also scale HadaFS to 600,000 clients and
1200 servers, and Figure 9 shows the experiment results. Since
mode2 is a default metadata management strategy of HadaFS,
all tests are done based on mode2, and the request size is set to
1 MB. Comparing the theoretical performance of 1200 NVMe
SSDs (3.4 TB/s and 3.1 TB/s for read and write, respectively),
the bandwidth utilization of the SSDs is close to 90% under
ultra-large-scale concurrent data access.

4.3 Data migration evaluation

In order to manage data migration between the BB system
and the GFS quickly and efficiently, HadaFS provides a data
management tool named Hadash. Here, we evaluate Hadash in
terms of its I/O throughput and its ability to migrate small files
compared with Datawarp [24] simulated by Slurm-LUA [52]
(Datawarp and LUA are the only two BB plugins supported
by Slurm). And like BeeGFS, we construct a new LUA script
based on a BB-LUA-example provided by Slurm to fit the
experimental environment to ensure fairness. HadaFS is con-
figured with 256 data servers and 256 metadata servers, and
Datawrap is configured with 4096 processes for data migra-
tion.

First, we use 4096 files for the data stage-in and stage-out
experiments, and the total data volume of these files ranges
from 256 MB to 64 TB. Figure 11 shows the results of the
experiment. When the total volume of the files to be migrated
is relatively small (less than 64 GB for stage-in and less than
16 GB for stag-out), Hadash obtains a slightly worse perfor-
mance than Datawarp. This is because when the total volume
is small, the size of the individual files is also small, resulting
in the command distribution and result acquisition mechanism
based on the Redis pipeline occupying a larger proportion of
the time. However, as the total volume and the individual file
size get larger, the I/O throughput of Hadash stabilizes around
100 GB/s (for stage-in) and 140 GB/s (for stage-out), which
is much higher than Datawarp.

Additionally, we found that the stage-out performance is

significantly better than the stage-in performance. The write
performance of the GFS and the read performance of the
BB determines the stage-out performance, while the read per-
formance of the GFS and the write performance of the BB
determines the stage-in performance. In our test, the GFS
(Lustre) client has a write cache, so the write performance of
the GFS is higher than the read performance, and the read per-
formance of the BB is also higher than the write performance,
which leads to the higher stage-out performance.

1024 4096 16384 65536

Number of processes

0

200

400

600

800

I/
O

 t
h

ro
u

g
h

p
u

t
(G

B
/s

)

mode1 read
mode2 read
mode3 read
GFS read
BeeGFS read
SSD peak read

(a) Sequential read performance

1024 4096 16384 65536

Number of processes

0

100

200

300

400

500

600

700

I/
O

 t
h

ro
u

g
h

p
u

t
(G

B
/s

)

mode1 write
mode2 write
mode3 write
GFS write
BeeGFS write
SSD peak write

(b) Sequential write performance

1024 4096 16384 65536

Number of processes

0

20

40

60

80

100

120

I/
O

 t
h

ro
u

g
h

p
u

t
(G

B
/s

)

mode1 read
mode2 read
mode3 read
GFS read
BeeGFS read
SSD peak read

(c) Random read performance

1024 4096 16384 65536

Number of processes

0

20

40

60

80

100

120

140

I/
O

 t
h

ro
u

g
h

p
u

t
(G

B
/s

)

mode1 write
mode2 write
mode3 write
GFS write
BeeGFS write
SSD peak write

(d) Random write performance

Figure 8: I/O throughput comparison

79506 491520 600268

Number of processes

0

1

2

3

I/
O

 t
h

ro
u

g
h

p
u

t
(T

B
/s

)

HadaFS read

HadaFS write

Figure 9: Ultra-scale performance

We also evaluated Hadash’s ability to handle large amounts
of small files. Figure 12 shows the result of the experiment
using different numbers of 4-KB small files for the data stage-
in and stage-out. For stage-in, Hadash outperforms Datawarp
significantly when the number of small files exceeds 10,000

USENIX Association 21st USENIX Conference on File and Storage Technologies 223

while Datawarp’s performance varies less. For stage-out,
Hadash outperforms Datawarp significantly when the number
of small files exceeds 100,000.

Again, the performance of stage-out is better. One of the
reasons is as stated above, and another reason is as follows.
In the stage-in flow, Hadash needs to read all files in a single
directory from the GFS, and this process takes longer as the
number of files in a single directory increases. In contrast,
Hadash does not need to read any files in the directory from
the GFS in the stage-out flow and only needs to create files.

4.4 Evaluation with real-world applications
4.4.1 Performance evaluation on the shared files

For the shared file access pattern, HadaFS adopts the idea
of BP files similar to ADIOS [39] and further improves the
shared file access performance by merging adjacent segments
through ordered lists. This subsection compares the perfor-
mance differences between HadaFS and BeeGFS on shared
file access using several applications. Both HadaFS and
BeeGFS are configured with 16 servers, each running on a
common SSD. Figure 10 shows the results.

First, we use VPIC-IO [64] (provides scalable writing
HDF5 data by VPIC) to evaluate the performance of
HadaFS when writing shared files. Applications’ parallelism
scales from 1 to 4096, and each process writes about 1.1-
GB data to a shared file containing 8 variables. Figure 10(a)
shows the results. BeeGFS performs better than HadaFS when
the application’s parallelism is less than 64. This is because
BeeGFS clients can use the kernel’s cache, and the striping
technique used by BeeGFS can ensure a low probability of
conflict at small scales. However, as the parallelism gets larger,
HadaFS outperforms BeeGFS significantly due to its good
scalability.

1 4 16 64 256 1024 4096

Number of processes

0

5

10

15

20

I/
O

 t
h

ro
u

g
p

u
t

(G
B

/s
)

VPIC-IO:HadaFS

VPIC-IO:BeeGFS

(a) Write performance

1 4 16 64 256 1024 4096

Number of processes

0

5

10

15

20

25

30

35

40

I/
O

 t
h

ro
u

g
p

u
t

(G
B

/s
)

BD-CATS-IO:HadaFS

BD-CATS-IO:BeeGFS

(b) Read performance

Figure 10: Performance evaluation on the shared file

Then, we use BD-CATS-IO [46] (provides scalable read-
ing HDF5 data by the VPIC) to evaluate the performance
of HadaFS when reading shared files. Applications’ paral-
lelism also scales from 1 to 4096, and each process reads
about 1.1-GB data from a shared HDF5 file. Figure 10(b)
shows the results. BeeGFS and HadaFS have almost the same
performance when the parallelism of applications is less than
256. Similar to the write performance, when the application
scale gets larger, the performance of HadaFS will be signifi-

cantly better than that of BeeGFS, as HadaFS uses the LTA
architecture to better isolate I/O conflicts between different
clients.

4.4.2 Performance evaluation on the mount policy

Compared to the traditional fully connected mount approach,
HadaFScannot guarantee that the data demanded by the client
is always on its bridged server, so we first evaluate the perfor-
mance impact of I/O forwarding on HadaFS. We distribute
files evenly and regularly on the server according to the
RANK number in advance and then accurately control the
forwarding of generated data between servers through the
mount interface.

We use one process to evaluate the latency variation of dif-
ferent block sizes due to the I/O forwarding, and Figure 13(a)
shows the results. The solid line in the figure represents the
client’s direct access latency to its bridge server, while the
dashed line represents the I/O forwarding latency. I/O for-
warding does cause an increase in latency. The larger the
block size, the smaller the proportional increase in latency.
For 8-KB and 1-MB block sizes, the latency increases by
34.4% and 17.7%, respectively.

256MB 1GB 4GB 16GB 64GB 256GB 1TB 4TB 16TB 64TB

Data volume

0

50

100

150
I/

O
 t

h
ro

u
g

p
u

t
(G

B
/s

) Stage-in:HadaFS
Stage-in:Datawarp
Stage-out:HadaFS
Stage-out:Datawarp

Figure 11: Data migration throughput comparison

1000 10000 100000 1000000 2000000

Number of Files

0

2

4

6

8

10

O
P

S

10
4

Stage-in:HadaFS
Stage-in:Datawarp
Stage-out:HadaFS
Stage-out:Datawarp

Figure 12: Number of files migrated per second comparison

We then evaluate the impact of the data forwarding ratio
on the bandwidth of HadaFS. The higher the data forwarding
ratio, the more data needs to be forwarded through the bridge
server. In the experiment, HadaFS is configured with 16,384
clients and 64 servers, and the I/O request size is set to 1 MB
for sequential read and 8 KB for random read. Figure 13(b)
shows the results. As the I/O forwarding ratio increases, the
throughput of HadaFS decreases, with a maximum loss of
18% for sequential read and 54% for random read. This is
because the smaller the block size, the larger the forwarding
overhead, and the larger the throughput loss.

However, note that HadaFS provides a runtime mount in-
terface to control the mapping relationships flexibly, which
can significantly reduce I/O forwarding. Let’s take NEMO
(a state-of-the-art modeling framework for research activi-
ties and forecasting services in the ocean and climate sci-

224 21st USENIX Conference on File and Storage Technologies USENIX Association

ences) [70] and its post-processing as an example to illustrate
the advantages of the runtime mount interface. NEMO uses
N-N I/O mode (also known as File Per Process) to read and
write NetCDF files and is configured with 65,536 processes.
And its post-processing is configured with 512, 1024, and
2048 processes. It is worth mentioning that in real application
scenarios, the parallelism of the post-processing is signifi-
cantly smaller than the parallelism of the module application.
All 250,000 files (the total volume is more than 5 TB) output
by NEMO are stored in 16 HadaFS servers.

Figure 14 shows the results. In the default configuration,
the individual post-processing processes often need to ac-
cess data that is not on the bridge server. So, the forwarding
rate is high(up to 93%), and the performance is poor. After
re-mapping the client-to-server connections with the mount
interface, the forwarding rate can be greatly reduced, and
performance can be significantly improved, up to 30% or
more. This demonstrates that the flexible mount interface of
HadaFS can significantly improve the performance of appli-
cations that need to share data.

8 16 64 256 1024

Request size (KB)

0

1000

2000

3000

4000

5000

L
a

te
n

c
y

 (
u

s
)

Direct read
Forwarding read

(a) Forwarding latency

0 10 20 30 40 50 60 70 80 90 100

Forwarding ratio (%)

0

50

100

150

200

250

300

I/
O

 t
h

ro
u

g
h

p
u

t
(G

B
/s

)

Sequential read
Random read

(b) Forwarding throughput

Figure 13: Forwarding evaluation of HadaFS

512 1024 2048

Number of processes

0

20

40

60

80

I/
O

 t
h

ro
u

g
h

p
u

t
(G

B
/s

)

Before tuning
After tuning

Figure 14: Performance improvement with mount interface

4.4.3 Performance evaluation on the interference

In this subsection, we evaluate HadaFS as a shared file sys-
tem with 5 real-world applications, including APT (a particle
dynamics simulation application) [62], WRF (a regional nu-
merical weather prediction system) [1], Shentu (an extreme-
scale graph engine) [34], CAM (a standalone global atmo-
spheric model deriving from the CESM project for climate
simulation/projection) [54], and DNDC (a biogeochemistry
application for agroecosystems) [22].

First, we simulate the common I/O interference caused by
sharing resources between jobs in HPC by co-running two
applications on the same HadaFS server, and each application
runs with 512 processes. Figure 15(a) shows the results. Each
block’s darkness reflects the application’s slowdown factor
at the row header by the application at the column header.

As we can see, since different applications have different I/O
behaviors, they share HadaFS with each other resulting in
varying levels of performance slowdown. For example, WRF
is a traditional serial I/O application that uses only one I/O
process to access files through the NetCDF library, and its I/O
load is very low (I/O bandwidth less than 200 MB/s). When
WRF shares HadaFS server with other applications, it has less
impact on them, as marked by the red box. On the contrary,
Shentu is an I/O intensive application with N-N I/O mode, so
its I/O bandwidth is very high (up to 2.5 GB/s). When Shentu
shares HadaFS server with other applications, it has a high
impact on them (up to 5x performance slowdown for other
applications), as marked by the blue box.

HadaFS supports a runtime user-level mount interface and
can assign the service resources according to the group name
mentioned in Section 3.6.3. So in the production environment,
HadaFS can flexibly change the mapping relationship from
HadaFS clients to HadaFS servers through the mount interface
to avoid I/O interference. Figure 15(b) shows the performance
of avoiding sharing HadaFS server with other applications
through the mount interface. This experiment demonstrates
that the flexible mount approach provided by HadaFS can be
beneficial for applications to avoid I/O interference.

(a) Before tuning (b) After tuning

Figure 15: Impact of HadaFS’s interference avoidance on
pairwise application co-run slowdown

4.4.4 Evaluation with large scale applications

This subsection shows the usage of HadaFS in five real-world
large-scale applications, including NEMO [70], TK (Tokamak
Plasma Simulation, 2021 Gorden Bell Prize finalist) [65],
DiDA (an AI-enabled large-scale parallel atmospheric data-
assimilation system) [23], Jstack (a debugging tool for the
SNS) [47], and SWLBM (an efficient and scalable LBM) [37].

Figure 16 shows that applications can achieve significant
I/O improvement (at least 7x) and reduce their runtimes and
I/O ratios after using HadaFS, proving the effectiveness of
HadaFS in improving the large-scale applications’ perfor-
mance. Details are as follows. TK runs with 32,768 I/O pro-
cesses and 960 HadaFS servers, and the total runtime is more
than 48 hours. With HadaFS, the I/O percentage of the to-
tal runtime dropped from 9.4% to 1.5%. NEMO runs with
480,000 I/O processes and 1200 HadaFS servers, and the total
runtime of a model-year simulation is about 114 hours. With
HadaFS, the I/O percentage of the total runtime dropped from

USENIX Association 21st USENIX Conference on File and Storage Technologies 225

1.3% to 0.13%. DIDA runs with 65,536 I/O processes and
1200 HadaFS servers, and the total runtime is more than 2
hours. With HadaFS, the I/O percentage of the total runtime
dropped from 4.1% to 0.5%. Jstack runs with 100,000 I/O pro-
cesses and 256 HadaFS servers, and the total runtime is about
100 minutes every day. With HadaFS, the I/O percentage of
the total runtime dropped from 5.0% to 0.46%. SunwayLBM
runs with 18,000 I/O processes and 256 HadaFS servers, and
the average runtime is about 7 days. With HadaFS, the I/O
percentage of the total runtime dropped from 14.2% to 2.6%.

TK NEMO DIDA Jstack SWLBM

Application name

0

500

1000

1500

2000

2500

I/
O

 t
h

ro
u

g
h

p
u

t
(G

B
/s

)

With GFS

With HadaFS

Figure 16: Performance improvement for large-scale real-
world applications

5 Related work

Burst buffer on Top computers Many supercomputers
deploy Burst Buffers to accelerate applications’ I/O perfor-
mance. Summit [26] adopts the local BBs technology and
deploys SSDs on each computing node. To support data stag-
ing and migrate applications data to the GFS, Summit uses
two technologies. One is Spectral, which provides the block-
level data cache for applications. The other is SymphonyFS,
which provides the file-level data cache for applications [43].
Fugaku [18] deploys the shared SSDs on the dedicated BB
nodes (also used as the computing nodes but have two more
cores), with each BB node serving a portion of the computing
nodes, and provides users with three namespaces for differ-
ent BB usage through LILO [21]. Applications can select
the corresponding namespace according to the shared ac-
cess requirements of the data (intra-node, intra-application,
or inter-applications). As the world’s first exascale supercom-
puter, Frontier [44] builds both the local BB and the shared
BB. The local BB provides a burst data cache within the
node, while the shared BB provides a shared data cache. In
summary, the above situation shows that BB technology is
moving towards integrating the local BB and the shared BB
to support HPC applications’ various requirements. For su-
percomputers with more than 100,000 nodes, local BB needs
to deploy NVMe SSDs on each computing node, which will
undoubtedly increase the cost. HadaFS combines the advan-
tages of local BB and shared BB through the LTA architecture
and the application-controllable mount interface, which can
be deployed on ultra-scale supercomputers with more than
100000 nodes at a relatively low cost.

Researches for Burst Buffer Research on BBs has re-
cently become a hot topic and can be divided into three tech-
nical routes. The first one is to improve the traditional dis-
tributed file systems and add new functions to support BBs,

such as Lustre LPCC [48], which can cache data in client
SSDs for transparent data caching. However, this mechanism
inherits the scalability problems of traditional distributed file
systems and is difficult to scale to ultra-scale. Similarly, there
is BeeOND, which is based on BeeGFS [3]. The second one is
to add data-sharing mechanisms based on the local BBs, such
as Unifyfs [42], Burstfs [61], CHFS [57], Gfarm/BB [56],
etc. These file systems run on the user layer and will be cre-
ated when the job is submitted and destroyed when the job
completes. In order to take advantage of BB’s performance,
these file systems also use a consistent relaxation protocol
similar to HadaFS but does not consider data staging. The
third one is to build a full-featured persistent BB storage
system, e.g., DAOS [39]. DAOS [39] is an object storage
system developed based on SPDK/PMDK. It is organized in
an object-centric manner, supports transaction and multiple
consistency management methods, and supports POSIX se-
mantics based on object storage. Compared with the above
works, HadaFS is built based on Shared BB, which has more
advantages in scalability and has passed the verification of
ultra-large-scale deployment of more than 100,000 nodes. In
addition, HadaFS can provide applications with flexible and
controllable POSIX consistency semantics.

6 Conclusion

We present a Burst Buffer file system named HadaFS, bridg-
ing the local BB and the shared BB based on the shared BB
deployment. HadaFS can support ultra-scale deployments and
balance the performance and the overhead with the novel ar-
chitecture LTA and hierarchical metadata management mech-
anism. Besides, HadaFS integrates an internal data manage-
ment tool named Hadash, which can provide a global data
view and efficient data migration for users. HadaFS has been
deployed on the SNS (over 100,000 computing nodes) and
supports hundreds of applications. Especially, HadaFS sup-
ports several ultra-scale applications, providing stable and
high-performance I/O services for these applications in prepa-
ration for the ACM Gordon Bell bid. Moreover, We demon-
strate the high performance, high scalability, and low cost of
HadaFS through a comprehensive experimental study.

Acknowledgement

We appreciate the thorough and constructive com-
ments/suggestions from all reviewers. We thank our
shepherd, Rob Ross, for his guidance during the revision
process. This work is partially supported by the National
Key R&D Program of China (Grant No. 2020YFB0204800),
Marine S&T Fund of Shandong Province for Laoshan
Laboratory (LSKJ202202100), National Natural Science
Foundation of China (Grant No. U2242210), and the Major
Key Project of PCL (No. PCL2022A05).

226 21st USENIX Conference on File and Storage Technologies USENIX Association

References

[1] A description of the advanced research WRF version 3.
http://www2.mmm.ucar.edu/wrf/users/.

[2] Mdtest hpc benchmark, 2010. https://sourceforge.
net/projects/mdtest/.

[3] David Abramson, Chao Jin, Justin Luong, and Jake
Carroll. A beegfs-based caching file system for data-
intensive parallel computing. In Asian Conference on
Supercomputing Frontiers, pages 3–22. Springer, Cham,
2020.

[4] Mark F. Adams, Phillip Colella, Daniel T. Graves, Jef-
frey N. Johnson, Hans Johansen, Noel Keen, Terry J.
Ligocki, Daniel F. Martin, Peter McCorquodale, David
Modiano, Peter O. Schwartz, T. D. Sternberg, and Brian
van Straalen. Chombo software package for amr appli-
cations design document. 2014.

[5] Nawab Ali, Philip Carns, Kamil Iskra, Dries Kimpe,
Samuel Lang, Robert Latham, Robert Ross, Lee Ward,
and Ponnuswamy Sadayappan. Scalable i/o forwarding
framework for high-performance computing systems. In
2009 IEEE International Conference on Cluster Com-
puting and Workshops, pages 1–10. IEEE, 2009.

[6] John Bent, Garth Gibson, Gary Grider, Ben McClel-
land, Paul Nowoczynski, James Nunez, Milo Polte, and
Meghan Wingate. Plfs: a checkpoint filesystem for par-
allel applications. In Proceedings of the Conference on
High Performance Computing Networking, Storage and
Analysis, pages 1–12. IEEE, 2009.

[7] Jean Luca Bez, Ahmad Karimi, Arnab Paul, Bing Xie,
Suren Byna, Philip Carns, Sarp Oral, Feiyi Wang, and
Jesse Hanley. Access patterns and performance behav-
iors of multi-layer supercomputer i/o subsystems under
production load. pages 43–55, 06 2022.

[8] Peter Braam. The lustre storage architecture. arXiv
preprint arXiv:1903.01955, 2019.

[9] Corey Brummel-Smith, Greg L. Bryan, Iryna S. Butsky,
Lauren Corlies, et al. Enzo: An adaptive mesh refine-
ment code for astrophysics. The Astrophysical Journal
Supplement Series, 211, 2019.

[10] Lei Cao, Bradley W. Settlemyer, and John Bent. To share
or not to share: comparing burst buffer architectures. In
SpringSim, 2017.

[11] Philip Carns, Robert Latham, Robert Ross, Kamil Iskra,
Samuel Lang, and Katherine Riley. 24/7 characterization
of petascale i/o workloads. In International Conference
on Cluster Computing and Workshops, pages 1–10, New
Orleans, 2009. IEEE.

[12] Philip H Carns, Walter B Ligon III, Robert B Ross, and
Rajeev Thakur. {PVFS}: A parallel file system for linux
clusters. In 4th Annual Linux Showcase & Conference
(ALS 2000), 2000.

[13] Qi Chen, Kang Chen, Zuo-Ning Chen, Wei Xue, Xu Ji,
and Bin Yang. Lessons learned from optimizing the
sunway storage system for higher application i/o perfor-
mance. Journal of Computer Science and Technology,
35(1):47–60, 2020.

[14] Peter F Corbett and Dror G Feitelson. The vesta parallel
file system. ACM Transactions on Computer Systems
(TOCS), 14(3):225–264, 1996.

[15] Cray. Lumi supercomputer, 2022. https://www.
lumi-supercomputer.eu/.

[16] Bin Dong, Surendra Byna, Kesheng Wu, Prabhat, Hans
Johansen, Jeffrey N. Johnson, and Noel Keen. Data el-
evator: Low-contention data movement in hierarchical
storage system. 2016 IEEE 23rd International Confer-
ence on High Performance Computing (HiPC), pages
152–161, 2016.

[17] Siying Dong, Andrew Kryczka, Yanqin Jin, and Michael
Stumm. Rocksdb: Evolution of development priorities
in a key-value store serving large-scale applications.
TOS, 17(4):1–32, 2021.

[18] Jack Dongarra. Report on the fujitsu fugaku system.
University of Tennessee-Knoxville Innovative Comput-
ing Laboratory, Tech. Rep. ICLUT-20-06, 2020.

[19] Matthieu Dorier, Gabriel Antoniu, Robert Ross, Dries
Kimpe, and Shadi Ibrahim. CALCioM: Mitigating I/O
interference in HPC systems through cross-application
coordination. In IEEE International Parallel and Dis-
tributed Processing Symposium (IPDPS), 2014.

[20] Brian C. Van Essen, Hyojin Kim, Roger A. Pearce, Kofi
Boakye, and Barry Y. Chen. Lbann: livermore big ar-
tificial neural network hpc toolkit. Proceedings of the
Workshop on Machine Learning in High-Performance
Computing Environments, 2015.

[21] Fujitsu. File system and power management en-
hanced for supercomputer fugaku, 2021. https://www.
fujitsu.com/.

[22] Donna L Giltrap, Changsheng Li, and Surinder Sag-
gar. DNDC: A process-based model of greenhouse gas
fluxes from agricultural soils. Agriculture, Ecosystems
& Environment, 2010.

[23] Thomas M Hamill. Ensemble-based atmospheric data
assimilation. Predictability of weather and climate,
124:156, 2006.

USENIX Association 21st USENIX Conference on File and Storage Technologies 227

http://www2.mmm.ucar.edu/wrf/users/
https://sourceforge.net/projects/mdtest/
https://sourceforge.net/projects/mdtest/
https://www.lumi-supercomputer.eu/
https://www.lumi-supercomputer.eu/
https://www.fujitsu.com/
https://www.fujitsu.com/

[24] Dave Henseler, Benjamin Landsteiner, Doug Petesch,
Cornell Wright, and Nicholas J Wright. Architecture
and design of cray datawarp. Cray User Group CUG,
2016.

[25] Frank Herold, Sven Breuner, and Jan Heichler. An in-
troduction to beegfs, 2014.

[26] Jonathan Hines. Stepping up to summit. Computing in
science & engineering, 20(2):78–82, 2018.

[27] Xu Ji, Bin Yang, Tianyu Zhang, Xiaosong Ma, Xiupeng
Zhu, et al. Automatic, application-aware i/o forwarding
resource allocation. In 17th USENIX Conference on File
and Storage Technologies, pages 265–279, 2019.

[28] chen Kang, Wu Yongwei, and zheng Weiming. Madfs:
a high performance burst buffer file system. Big Data,
7(3):150, 2021.

[29] Jeongnim Kim, Andrew D. Baczewski, Todd D. Beaudet,
Anouar Benali, et al. Qmcpack: an open source ab
initio quantum monte carlo package for the electronic
structure of atoms, molecules and solids. Journal of
Physics: Condensed Matter, 30, 2018.

[30] Youngjae Kim, Scott Atchley, and Galen M. Shipman.
LADS: Optimizing data transfers using layout-aware
data scheduling. In 13th USENIX Conference on File
and Storage Technologies (FAST), 2015.

[31] Steven Langer, Abhinav Bhatele, and Charles H. Still.
pf3d simulations of laser-plasma interactions in national
ignition facility experiments. Computing in Science &
Engineering, 16:42–50, 2014.

[32] Paul Hermann Lensing, Toni Cortes, Jim Hughes, and
André Brinkmann. File system scalability with highly
decentralized metadata on independent storage devices.
In 2016 16th IEEE/ACM International Symposium on
Cluster, Cloud and Grid Computing (CCGrid), pages
366–375. IEEE, 2016.

[33] Yan Li, Xiaoyuan Lu, Ethan L. Miller, and Darrell D. E.
Long. ASCAR: Automating contention management
for high-performance storage systems. In IEEE Inter-
national Conference on Massive Storage Systems and
Technology (MSST), 2015.

[34] Heng Lin, Xiaowei Zhu, Bowen Yu, Xiongchao Tang,
Wei Xue, Wenguang Chen, Lufei Zhang, Torsten Hoefler,
Xiaosong Ma, Xin Liu, et al. Shentu: processing multi-
trillion edge graphs on millions of cores in seconds. In
SC18: International Conference for High Performance
Computing, Networking, Storage and Analysis, pages
706–716. IEEE, 2018.

[35] Ning Liu, Jason Cope, Philip Carns, Christopher
Carothers, Robert Ross, Gary Grider, Adam Crume,
and Carlos Maltzahn. On the role of burst buffers in
leadership-class storage systems. In 2012 IEEE 28th
Symposium on Mass Storage Systems and Technologies
(MSST), pages 1–11. IEEE, 2012.

[36] Yong Liu, Xin Liu, Fang Li, Haohuan Fu, Yuling Yang,
Jiawei Song, Pengpeng Zhao, Zhen Wang, Dajia Peng,
Huarong Chen, et al. Closing the" quantum supremacy"
gap: achieving real-time simulation of a random quan-
tum circuit using a new sunway supercomputer. In
Proceedings of the International Conference for High
Performance Computing, Networking, Storage and Anal-
ysis, pages 1–12, 2021.

[37] Zhao Liu, XueSen Chu, Xiaojing Lv, Hongsong Meng,
Shupeng Shi, Wenji Han, Jingheng Xu, Haohuan Fu,
and Guangwen Yang. Sunwaylb: Enabling extreme-
scale lattice boltzmann method based computing fluid
dynamics simulations on sunway taihulight. In 2019
IEEE International Parallel and Distributed Processing
Symposium (IPDPS), pages 557–566. IEEE, 2019.

[38] LLNL. Hacc i/o benchmark summary, 2017.
https://asc.llnl.gov/sites/asc/files/
2020-06/HACC_IO_Summary_v1.0.pdf.

[39] Jay Lofstead, Ivo Jimenez, Carlos Maltzahn, Quincey
Koziol, John Bent, and Eric Barton. Daos and friends:
a proposal for an exascale storage system. In SC’16:
Proceedings of the International Conference for High
Performance Computing, Networking, Storage and Anal-
ysis, pages 585–596. IEEE, 2016.

[40] Jay Lofstead, Fang Zheng, Scott Klasky, and Karsten
Schwan. Input/output apis and data organization for
high performance scientific computing. In 2008 3rd
Petascale Data Storage Workshop, pages 1–6. IEEE,
2008.

[41] Satoshi Matsuoka. Being “bytes-oriented” in hpc leads
to an open big data/ai ecosystem and further advances
into the post-moore era. In 2017 IEEE International
Conference on Big Data (Big Data), pages 5–5. IEEE
Computer Society, 2017.

[42] Adam Moody, Danielle Sikich, Ned Bass, Michael J.
Brim, and others. Unifyfs: A distributed burst buffer file
system - 0.1.0, 10 2017.

[43] Sarp Oral, Sudharshan S Vazhkudai, Feiyi Wang,
Christopher Zimmer, Christopher Brumgard, Jesse Han-
ley, George Markomanolis, Ross Miller, Dustin Lever-
man, Scott Atchley, et al. End-to-end i/o portfolio for
the summit supercomputing ecosystem. In Proceedings
of the International Conference for High Performance

228 21st USENIX Conference on File and Storage Technologies USENIX Association

https://asc.llnl.gov/sites/asc/files/2020-06/HACC_IO_Summary_v1.0.pdf
https://asc.llnl.gov/sites/asc/files/2020-06/HACC_IO_Summary_v1.0.pdf

Computing, Networking, Storage and Analysis, pages
1–14, 2019.

[44] ORNL. Frontier exascale system, 2022. https://www.
olcf.ornl.gov/frontier/.

[45] Tirthak Patel, Suren Byna, Glenn K Lockwood,
Nicholas J Wright, Philip Carns, Robert Ross, and De-
vesh Tiwari. Uncovering access, reuse, and sharing
characteristics of {I/O-Intensive} files on {Large-Scale}
production {HPC} systems. In 18th USENIX Confer-
ence on File and Storage Technologies (FAST 20), pages
91–101, 2020.

[46] Md Mostofa Ali Patwary, Suren Byna, Nadathur Ra-
jagopalan Satish, Narayanan Sundaram, Zarija Lukić,
Vadim Roytershteyn, Michael J Anderson, Yushu Yao,
Pradeep Dubey, et al. Bd-cats: big data clustering at
trillion particle scale. In SC’15: Proceedings of the
International Conference for High Performance Com-
puting, Networking, Storage and Analysis, pages 1–12.
IEEE, 2015.

[47] Dajia Peng, Yunlong Feng, Yong Liu, Xin Liu, Wei Xue,
Dexun Chen, Jiawei Song, and Zuoning Chen. Jdebug: A
fast, non-intrusive and scalable fault locating tool for ten-
million-scale parallel applications. IEEE Transactions
on Parallel and Distributed Systems, 2022.

[48] Yingjin Qian, Xi Li, Shuichi Ihara, Andreas Dilger, Car-
los Thomaz, Shilong Wang, Wen Cheng, Chunyan Li,
Lingfang Zeng, Fang Wang, et al. Lpcc: hierarchical
persistent client caching for lustre. In Proceedings of the
International Conference for High Performance Com-
puting, Networking, Storage and Analysis, pages 1–14,
2019.

[49] WG Redis. Redis, 2016. http://redis.io/topics/
faqAccessedNovember.

[50] RocksDB. A persistent key-value store for fast storage
environments, 2022. http://rocksdb.org/.

[51] RSE-Cambridge. The data accelerator, 2022. https:
//www.hpc.cam.ac.uk/research/data-acc.

[52] SchedMD. Slurm workload manager, 2022. https:
//slurm.schedmd.com/overview.html.

[53] Hongzhang Shan and John Shalf. Using ior to analyze
the i/o performance for hpc platforms. Technical report,
Ernest Orlando Lawrence Berkeley NationalLaboratory,
Berkeley, CA (US), 2007.

[54] RD Smith and PR Gent. Reference manual for the Par-
allel Ocean Program (POP), ocean component of the
Community Climate System Model (CCSM2. 0 and

3.0). Technical report, Technical Report LA-UR-02-
2484, Los Alamos National Laboratory, Los Alamos.,
(2002).

[55] Guangyu Sun, Jenő Kürti, Péter Rajczy, Miklós Kertész,
Jürgen Hafner, and Georg Kresse. Performance of the
vienna ab initio simulation package (vasp) in chemical
applications. Journal of Molecular Structure-theochem,
624:37–45, 2003.

[56] Osamu Tatebe, Shukuko Moriwake, and Yoshihiro
Oyama. Gfarm/bb — gfarm file system for node-local
burst buffer. Journal of Computer Science and Technol-
ogy, 35:61–71, 2020.

[57] Osamu Tatebe, Kazuki Obata, Kohei Hiraga, and Hiroki
Ohtsuji. Chfs: Parallel consistent hashing file system for
node-local persistent memory. International Conference
on High Performance Computing in Asia-Pacific Region,
2022.

[58] Marat Valiev, Eric J. Bylaska, Niranjan Govind, Karol
Kowalski, Tjerk P. Straatsma, Hubertus Van Dam,
D. Wang, Jarek Nieplocha, Edoardo Aprá, Theresa L.
Windus, and Wibe A. de Jong. Nwchem: A compre-
hensive and scalable open-source solution for large
scale molecular simulations. Comput. Phys. Commun.,
181:1477–1489, 2010.

[59] Marc-André Vef, Nafiseh Moti, Tim Süß, Tommaso
Tocci, Ramon Nou, Alberto Miranda, Toni Cortes, and
André Brinkmann. Gekkofs-a temporary distributed file
system for hpc applications. In 2018 IEEE International
Conference on Cluster Computing (CLUSTER), pages
319–324. IEEE, 2018.

[60] Chen Wang, Kathryn Mohror, and Marc Snir. File sys-
tem semantics requirements of hpc applications. In
Proceedings of the 30th International Symposium on
High-Performance Parallel and Distributed Computing,
pages 19–30, 2021.

[61] Teng Wang, W Yu, K Sato, A Moody, and K Mohror.
Burstfs: A distributed burst buffer file system for scien-
tific applications. Technical report, Lawrence Livermore
National Lab.(LLNL), Livermore, CA (United States),
2016.

[62] Yulei Wang, Jian Liu, Hong Qin, Zhi Yu, and Yicun Yao.
The accurate particle tracer code. Computer Physics
Communications, 2017.

[63] Junjie Wu, Yong Liu, Baida Zhang, Xianmin Jin, Yang
Wang, Huiquan Wang, and Xuejun Yang. A benchmark
test of boson sampling on tianhe-2 supercomputer. Na-
tional Science Review, 5(5):715–720, 2018.

USENIX Association 21st USENIX Conference on File and Storage Technologies 229

https://www.olcf.ornl.gov/frontier/
https://www.olcf.ornl.gov/frontier/
http://redis.io/topics/faq Accessed November
http://redis.io/topics/faq Accessed November
http://rocksdb.org/
https://www.hpc.cam.ac.uk/research/data-acc
https://www.hpc.cam.ac.uk/research/data-acc
https://slurm.schedmd.com/overview.html
https://slurm.schedmd.com/overview.html

[64] Kesheng Wu, Surendra Byna, and Bin Dong. Vpic io
utilities. Technical report, Lawrence Berkeley National
Lab.(LBNL), Berkeley, CA (United States), 2018.

[65] Jianyuan Xiao, Junshi Chen, Jiangshan Zheng, Hong
An, Shenghong Huang, et al. Symplectic structure-
preserving particle-in-cell whole-volume simulation of
tokamak plasmas to 111.3 trillion particles and 25.7
billion grids. In Proceedings of the International Con-
ference for High Performance Computing, Networking,
Storage and Analysis, pages 1–13, 2021.

[66] Weixia Xu, Yutong Lu, Qiong Li, Enqiang Zhou, Zhen-
long Song, Yong Dong, Wei Zhang, Dengping Wei, Xi-
aoming Zhang, Haitao Chen, et al. Hybrid hierarchy
storage system in milkyway-2 supercomputer. Frontiers
of Computer Science, 8(3):367–377, 2014.

[67] Bin Yang, Xu Ji, Xiaosong Ma, Xiyang Wang, Tianyu
Zhang, Xiupeng Zhu, Nosayba El-Sayed, Haidong Lan,
Yibo Yang, Jidong Zhai, et al. End-to-end {I/O} mon-
itoring on a leading supercomputer. In 16th USENIX
Symposium on Networked Systems Design and Imple-
mentation (NSDI 19), pages 379–394, 2019.

[68] Bin Yang, Yanliang Zou, Weiguo Liu, and Wei Xue. An
end-to-end and adaptive i/o optimization tool for modern
hpc storage systems. In 2022 IEEE International Par-
allel and Distributed Processing Symposium (IPDPS),
pages 1294–1304. IEEE, 2022.

[69] Hisashi Yashiro, Koji Terasaki, Yuta Kawai, Shuhei
Kudo, Takemasa Miyoshi, Toshiyuki Imamura, Kazuo
Minami, Masuo Nakano, Chihiro Kodama, Masaki
Satoh, et al. The nicam 3.5 km-1024 ensemble sim-
ulation: Performance optimization and scalability of
nicam-letkf on supercomputer fugaku. In EGU General
Assembly Conference Abstracts, pages EGU21–4771,
2021.

[70] Y. Ye, Z. Song, S. Zhou, Y. Liu, Q. Shu, B. Wang,
W. Liu, F. Qiao, and L. Wang. swnemo_v4.0: an ocean
model based on nemo4 for the new-generation sun-
way supercomputer. Geoscientific Model Development,
15(14):5739–5756, 2022.

[71] Orcun Yildiz, Matthieu Dorier, Shadi Ibrahim, Rob
Ross, and Gabriel Antoniu. On the root causes of
cross-application i/o interference in hpc storage systems.
pages 750–759, 05 2016.

[72] Hao Yu, Ramendra K Sahoo, C Howson, George Al-
masi, José G Castanos, Manish Gupta, José E Moreira,
Jeffrey J Parker, TE Engelsiepen, Robert B Ross, et al.
High performance file i/o for the blue gene/l supercom-
puter. In The Twelfth International Symposium on High-
Performance Computer Architecture, 2006., pages 187–
196. IEEE, 2006.

230 21st USENIX Conference on File and Storage Technologies USENIX Association

Fisc: A Large-scale Cloud-native-oriented File System

Qiang Li⋄, Lulu Chen†⋄, Xiaoliang Wang‡, Shuo Huang⋄, Qiao Xiang⋆,
Yuanyuan Dong⋄, Wenhui Yao⋄, Minfei Huang⋄, Puyuan Yang⋄, Shanyang Liu⋄,

Zhaosheng Zhu⋄, Huayong Wang⋄, Haonan Qiu⋄, Derui Liu⋄, Shaozong Liu⋄, Yujie Zhou⋄,
Yaohui Wu⋄, Zhiwu Wu⋄, Shang Gao⋄, Chao Han⋄, Zicheng Luo⋄, Yuchao Shao⋄,

Gexiao Tian⋄, Zhongjie Wu⋄, Zheng Cao⋄, Jinbo Wu⋄, Jiwu Shu⋆, Jie Wu†, Jiesheng Wu⋄,
⋄Alibaba Group, †Fudan University, ‡Nanjing University, ⋆Xiamen University

Abstract
Despite the progress of cloud-native technologies, existing

distributed file systems are ill-suited for multi-tenant cloud-
native applications for two reasons, First, their clients are typ-
ically heavyweight, resulting in a low level of resource multi-
plexing among containers. Second, their architecture is based
on network gateway and falls short in providing efficient,
highly-available and scalable I/O services for cloud-native ap-
plications. In this paper, we propose Fisc, a large-scale, cloud-
native-oriented distributed file system. Fisc introduces three
key designs: (1) a lightweight file system client to improve
the multiplexing of resources with a two-layer resource aggre-
gation, (2) a storage-aware distributed gateway to improve the
performance, availability and scalability of I/O services, and
(3) a DPU-based virtio-Fisc device offloading key functions
to hardware. Fisc has been deployed in production for over
three years and now serves cloud applications running over
3 million cores. Results show that Fisc client only consumes
69% CPU resources compared to the traditional file system
client. The production environment shows that the average
latency of online searching tasks is less than 500 µs when
they access their files in Fisc.

1 Introduction
Many applications, such as data analytics [1], machine

learning [2], and transactional workflows [3, 4] are deployed
in public clouds. The emerging cloud-native technologies are
shifting virtualization in clouds from virtual machines (VM)
to containers and pushing up the abstraction provided to ten-
ants from resources (e.g., CPU and memory) to services (e.g.,
database and object storage service). As such, cloud service
providers (CSPs) must rethink their fundamental services to
provide efficient, flexible support to cloud-native applications.

Specifically, file system (FS) is one such fundamental
service, with which applications can store and access their
data [5–7]. Tenants typically employ FS in the cloud in one
of two modes. They either purchase cloud storage (e.g., SSD)
and deploy their own FS, or directly use the FS service pro-
vided by CSPs. As CSPs gradually switch from server- cen-

tric to resource-disaggregated architectures, tenants increas-
ingly use the second approach for its elasticity, flexibility,
on-demand charging, and ease of use [6, 8, 9].
File systems need to be redesigned to support cloud-native
applications. Existing distributed file systems (e.g., [5–7])
are ill-suited for multi-tenant cloud-native applications for
two reasons. First, clients in these systems have a low level of
resource multiplexing among containers. That hinders CSPs
from achieving high efficiency of resources and makes it dif-
ficult for each computation server to support a large number
of containers for cloud-native applications. Specifically, these
clients typically adopt a heavyweight design to provide many
functionalities, including interfaces for interacting with ap-
plications, storage protocols for data persistence and failure
handling, network-related functions for communications with
data nodes and metadata masters, and security-related func-
tions for authorization checking. As such, each client needs
to reserve many exclusive resources, and a server can host
only a small number of containers concurrently, resulting in
inefficient use of resources.

Second, a centralized network gateway employed for file
system service in the cloud cannot satisfy the requirement of
cloud-native applications for performance, availability, and
load balancing. A network gateway is a component that con-
nects clients in the virtual domain of users to backend proxies
in the physical domain of CSPs. This network-gateway-based
architecture has a series of limitations, including (1) a sub-
optimal, ms-level latency to pass through the gateway, (2)
the incapability of data locality optimization and fast failure
handling due to the unawareness of file semantics and storage
protocols, (3) the incompatibility with high-performance net-
work stack like RDMA without intrusive changes to clients,
and (4) the load balancing gap between network connections
and files. Besides, to match the throughput of a large-scale file
system of thousands of nodes, it would take non-negligible
costs for CSPs. Luna and Solar [10] propose storage network
stacks for Alibaba’s EBS service. However, they only focus
on achieving high performance within the physical domain of
CSPs. They cannot provide high performance for the whole

USENIX Association 21st USENIX Conference on File and Storage Technologies 231

path from the file clients in the virtual domain of users to the
storage clusters in the physical domain of CSPs.
Fisc: a cloud-native-oriented file system. In this paper,
we design Fisc, a cloud-native-oriented distributed file sys-
tem service to provide cloud-native applications with high-
performance, high-availability storage services at low cost.
Fisc consists of two key components: lightweight clients and
a storage-aware distributed gateway (SaDGW).

First, with a two-layer aggregation, Fisc moves user-
unaware functionalities (e.g., network stacks and storage pro-
tocols) out of clients in the containers and offloads them to the
Data Processing Units (DPU) of computation servers and the
backend storage nodes of CSPs to aggregate their resources,
respectively. As a result, the resources used for these func-
tionalities can be fully multiplexed, lowering the amortized
cost. Meanwhile, as each client consumes substantially fewer
resources, a computation server can host a large number of
containers for cloud-native applications.

Second, Fisc introduces SaDGW to provide a direct high-
way with a high-performance network stack [10] between the
computation and storage servers. Specifically, we leverage the
file system semantics on the highway path to build a storage-
aware routing mechanism to route clients’ file requests from
the frontend virtual domain of tenants to the backend physical
domain of CSPs with a granularity of files instead of network
flows. We design a series of mechanisms, such as storage-
aware failure handling and locality-aware read optimization,
to improve the availability of Fisc. We have also employed
a file-based fine-grained scheduling mechanism to balance
loads of proxies at storage nodes.
Implementing Fisc with a software-hardware co-design.
Realizing lightweight clients and SaDGW completely in soft-
ware is inefficient. As such, we leverage the emerging DPUs
to implement part of the functionalities of clients and the core
functionalities of SaDGW. We adopt a virtio-Fisc device in
DPU to offload the network stacks and storage protocols and
provide secure and high-efficient passthrough from the users’
virtual domain containers to the file system of CSP’s physical
domain. We also leverage the fast path in DPU to acceler-
ate the I/O processing, further improving the performance of
Fisc.
Production deployment. Fisc has been deployed in produc-
tion DCN for three years and serves applications running
on over 3 million cores in Alibaba. For large-scale develop-
ment, it presents an abstracted virtual RPC (vRPC) based on
SaDGW and virtio-Fisc devices, which is easy to use and can
be adopted by other cloud-native services like Function as a
Service (FaaS). Compared to the on-premise Pangu client, the
CPU and memory consumption of the Fisc client is reduced
by 69% and 20%, respectively. The availability is improved
by an order of magnitude (e.g., failure recovery from a second-
level to a 100ms-level). For the online-search query service,
its average and P999 latency in Fisc are <500 µs and <60 ms,
respectively. Its average latency jitter is less than 5%.

2 Background and Motivation
2.1 File Systems

File system (FS) is a fundamental service for users to store
and access their data. Large-scale distributed file systems like
Tectonic [7], Colossus [5], and Pangu [6] have been devel-
oped by different companies in their datacenters. Generally,
they consist of three components, masters, data servers, and
clients. The masters manage data servers and maintain the
metadata of the whole system (e.g., the file namespace and the
mapping from file chunks to data servers). The data servers
are storage nodes responsible for managing file chunks and
storing their data on storage media (e.g., HDDs and SSD).
The clients interact with the masters for metadata and the data
servers for data. Notice that clients in representative large-
scale file systems (e.g., Tectonic [7] and Colossus [5]) are
heavyweight. They provide complex functions, including not
only storage protocols for data persistence and failure han-
dling but communication with masters and data servers, as
well as security-related functions such as authorization.

Pangu [11] is a large-scale distributed storage system in Al-
ibaba and provides append-only file semantics like HDFS [12].
It works as a unified storage core of Alibaba Cloud. Multi-
ple businesses (e.g., Elastic Block Service [10, 13], Object
Storage Service [14], Network Attached Storage [15], and
MaxCompute [16]) are built on top of Pangu. They adopt
the Pangu clients for persistent, append-only file storage, em-
ploy a key/value-like index mapping to update data, and use
a garbage collection mechanism to compress historical data.

2.2 Cloud Native
With the development of cloud-native technology (e.g., mi-

croservice, container, and serverless computing), more and
more tenants are deploying their applications into the public
cloud and directly using the services provided by CSPs (e.g.,
database and object storage service). In 2020, Alibaba also
migrated all its core businesses, such as Taobao and Tmall, to
cloud-native containers. Cloud-native technologies substan-
tially simplify the development and operation of tenants and
demonstrate two characteristics. First, with fine-grained con-
tainers being used instead of VMs, the number of containers
in a computation server can exceed 1000 [17, 18], i.e., ∼10
times more than that of VMs. Second, cloud-native technolo-
gies push up the abstraction provided to tenants from VMs to
services. The implementation of services is transparent to ten-
ants but must provide high performance under heterogeneous
workloads. To this end, bare-metal DPUs are increasingly
used to accelerate cloud-native applications. For example,
AWS adopts Nitro [19] and Alibaba adopts X-Dragon [20,21].
These bare-metal DPUs utilize the virtio technology for I/O
virtualization and can provide high-performance support to a
broad range of cloud services.

2.3 Motivation
Cloud-native applications bring new challenges for CSPs

to provide file system service.

232 21st USENIX Conference on File and Storage Technologies USENIX Association

100 200 300 400 500 600 700 800 900 1000

0
2

4
C

PU
 c

or
es Writestorage-related

network-related

200 400 600 800 1000 1200 1400 1600 1800 2000
Bandwidth (MB/s)

0
1

2
C

PU
 c

or
es ReadStorage-related

Network-related

Figure 1: The CPU consumption of an HDFS client under
different I/O bandwidths.

Isolated file system clients cause low resource utilization.
In traditional file systems [5, 7], a client is responsible for
multiple tasks, including storage protocols of reliability and
consistency, failure handling, network-related functions, and
authorization-related functions. As such, applications usually
pre-allocate I/O threads and reserve memory resources and
network connections for file system clients. Because the re-
sources of FS clients in containers are isolated from each
other, the resource utilization of CSPs is low. As a result,
achieving a high density of over 1,000 containers in a com-
putation server is difficult. Take the resource consumption of
an HDFS client in a Hadoop-2.10.2 cluster of three Intel(R)
Xeon(R) Gold 5218 servers as an example. Figure 1 plots the
CPU consumption of the HDFS client under different read
and write bandwidths. Even if the client writes files at a band-
width of 200 MB/s, it consumes 1.1 CPU cores. Consider a
typical scenario where a container is allocated two cores. It
means over 50% CPU resources are spent on I/O.

We make a key observation that many common functions
(e.g., storage protocols and network stacks) of different FS
clients can be aggregated to achieve more efficient resource
sharing. With this aggregation, we can provide a lightweight
file system interface for different tenants, and simplify the
maintenance and upgrade of FS clients.
Network gateway becomes the bottleneck. FS clients of
cloud-native applications are in the virtual domain of users,
while the file system resides in the physical domain of CSPs.
For security reasons, clients cannot directly access the file
system but have to use a network gateway (i.e., network load
balancer) to access the data. However, this network gateway
cannot satisfy the requirements of cloud-native applications
on file services in terms of performance, availability, load
balance, and cost.
• Performance. Performance-critical cloud-native applica-

tions (e.g., interactive applications [22]) require a 100µs-
level storage access latency. Although file systems such
as Pangu are equipped with high-performance SSD and
RDMA in the backend cluster [6], which provides a 100µs-
level latency, an I/O request needs to go through multiple
hops in a network-gateway-based architecture, resulting in
a second-level or ms-level latency [23, 24].

• Availability. Cloud-native applications often require a ms-
level recovery latency [25] in the case of storage system

failures (e.g., network jitters and server breaking down).
However, with a network gateway, file systems can only
support second-level failure handling [26, 27] due to the
gap between files and network connections. Specifically, the
network-connection-based Service Level Agreement (SLA)
is substantially different from the file-based SLA of file
systems. As such, it is hard to leverage storage protocols
in a network-gateway-based architecture to improve the
availability of file systems.

• Load balance. The network gateway distributes the load
to different proxies based on the number of network con-
nections. That may lead to a significant load imbalance of
files among the proxies due to the semantics gap between
files and connections. For example, the load among proxies
can be as much as ten-fold different in the NAS service in
Alibaba Cloud [15]. In addition, the gateway may direct a
read request to a storage server with no requested data. The
server must forward the request to another storage server
that has the data, which will amplify the traffic.

• Cost. A large-scale file system requires a large amount
of hardware dedicated to the network gateway in order
to match the total throughput of its storage cluster, which
typically consists of thousands of storage nodes. Given a
cluster of 10,000 storage nodes, each of which is equipped
with a 25×2 Gbps NIC, its total throughput is 500 Tbps.
If the throughput of a network gateway machine is 100
Gbps, we need 5,000 gateway machines to match the total
throughput of the cluster, which introduces a non-negligible
cost for CSPs.

3 Overview of Fisc
In this section, we give an overview of Fisc, including its

design rationale, architecture and basic workflow.

3.1 Design Rationale
Aggregating the resources of FS clients. Resource aggrega-
tion is the nature of cloud computing, which can improve
resource utilization and provide elastic, efficient, and on-
demand cloud service. In contrast to the traditional resource-
intensive FS clients, we aggregate functions like storage pro-
tocol and network-related functions by offloading them to
the CSP’s domain (e.g., the DPUs at computation and storage
servers). Meanwhile, this aggregation allows CSP to provide a
reservation-only interface with a lightweight client for cloud-
native applications. As such, it allows a computation server
to host a large number of application containers concurrently.
Storage-aware distributed gateway. Instead of using a cen-
tralized network gateway, we resort to a distributed storage-
aware gateway to set up direct highways between each com-
putation server and its corresponding remote storage nodes.
This design allows us to adopt high-performance network
protocols connecting the virtual and physical domains. It also
leverages storage semantics on the highways to improve the
availability and locality of file access requests and guarantee
the load balance among storage nodes.

USENIX Association 21st USENIX Conference on File and Storage Technologies 233

Pangu file system

Storage cluster

Computation server

Fisc
client

Proxy
master

Fisc
proxy

Fisc
client

Fisc agent

Virtio-Fisc device

Computation server

Fisc
client

Fisc
client

Fisc agent
DPU

Virtio-Fisc device

DPU

SaDGW

In
te

rfa
ce

la

ye
r

st
or

ag
e-

aw
ar

e
di

st
rib

ut
ed

 g
at

ew
ay

Pe
rs

ist
en

ce
la

ye
r

Fisc
control
plane

Open APIs

control flow

data flow

Fisc
proxy

container container container container

Figure 2: The architecture of Fisc.
Software and hardware co-design. To improve the efficiency
and performance of the file system service, we leverage the
emerging DPUs deployed in physical servers. Through careful
hardware and software co-design, we can implement secure,
efficient passthrough from the users’ containers in the virtual
domain to the file system of CSP’s physical domain. More-
over, we can also introduce a fast path in DPU to accelerate
the I/O processing.

3.2 Architecture
As shown in Figure 2, Fisc consists of a control plane

and a data plane. The control plane provides open APIs for
tenants to create Fisc FS instances, mount the Fisc FS to their
VM/containers, and allocate virtio devices to accelerate the
passthrough from the virtual domain to the physical domain.

Fisc’s data plane consists of three layers: interface layer,
storage-aware distributed gateway, and persistence layer. The
lightweight Fisc client is placed in the frontend, which pro-
vides FS service interfaces for applications. The distributed
storage-aware distributed gateway (SaDGW) is in the middle
layer, composed of Fisc agents in the DPU of each compu-
tation server, Fisc proxies in each storage node, and a group
of Fisc proxy masters in the storage cluster. The Fisc proxy
masters are responsible for managing Fisc proxies and Fisc
agents. The backend persistence layer is Pangu, which is re-
sponsible for processing the requests and persisting the data
in storage media.
Lightweight Fisc client. The aggregation of client resources
occurs at the Fisc agent in the DPU of each computation server
and the Fisc proxy in each storage server. We dissect the func-
tions of FS clients and make careful aggregation tradeoffs to
decide where these functions should be aggregated (i.e., Fisc
agents or proxies). We also design mechanisms to simplify
the implementation of Fisc clients and maintain compatibility
across different versions of their software libraries.
SaDGW. This gateway gives full play to the 100µs-level
high-speed SSD and RDMA technologies via direct and high-
performance network connections between Fisc agents and
Fisc proxies. Based on the file granularity routing in each
Fisc Agent, it leverages the storage semantics on the route

to eliminate the gap between network and file to achieve a
P999 ms-level SLA. Moreover, it implements a locality-aware
read mechanism that avoids the read traffic amplification and
doubles the read throughput.

HW and SW co-design on DPU. Fisc provides a virtio-
Fisc device to build up secure and efficient passthrough from
virtual containers to the physical storage cluster. Based on
the device, a co-designed FPGA cache is presented as a fast
path to further improve Fisc’s performance. With regard to
the scarce resource of DPU, optimizations for CPU, memory,
and network are proposed.

With these three modules, we further provide a vRPC (vir-
tual RPC) abstraction for storage service, which can be easily
adopted by cloud-native services. Besides, Fisc adopts an
end-to-end (E2E) QoS mechanism for different priority ap-
plications like online search and offline training. With proxy
master scheduling, Fisc builds up file-granularity load balanc-
ing among Fisc Proxies, which avoids the imbalance caused
by traditional network connection-based scheduling.

3.3 Workflow of Fisc
In the control plane, when a tenant calls the open APIs to

create a Fisc instance, Fisc control plane maps the instance
to the backend Pangu file system, and pushes the information
of the tenant and the mount point to the Fisc proxy masters
deployed in the Pangu storage cluster. The Fisc proxy master
pushes the proxy mapping (i.e., the mapping between the
mount point and the Fisc proxies) to the Fisc agent whenever
the tenant attaches the mount point to a VM/container. In
the end, the control plane attaches a virtio-Fisc device to the
corresponding VM/container.

The workflow of the data plane mainly involves SaDGW
with a fine-granularity route table. Given a meta operation
request of files of the mount point, it arrives at the Fisc
agent through the virtio-Fisc device. The Fisc agent randomly
chooses a Fisc proxy according to the mapping between the
mount point and Fisc proxies. If it is an open operation for
a file, a route entry associated with the opened file will be
constructed with its file handle and the Fisc proxy location.
Afterwards, the subsequent read/write requests of the file will
be routed according to the route entry. More details of storage-
aware routing optimizations are in §4.2.

4 Design and Implementation
4.1 Lightweight Fisc Client

We adopt a lightweight design for Fisc clients by offloading
most of their functions to Fisc agents in the DPU of computa-
tions servers and Fisc proxies on the storage nodes. Through
this two-layer function aggregation, Fisc achieves a high level
of resource multiplexing. In addition, we also introduce a
unified RPC-based method to simplify the implementation of
Fisc clients and a mechanism similar to Protocol Buffers (PB)
to maintain compatibility across their different versions.

234 21st USENIX Conference on File and Storage Technologies USENIX Association

4.1.1 Function Offloading and Aggregation Tradeoff
Typical heavyweight FS clients [5–7] provide four types

of functions: (1) file interfaces and structures (e.g., APIs and
file handlers), (2) storage-related protocols (e.g., replication
reliability, data consistency, and failure handling), (3) secu-
rity and authentication (e.g., authorization checking) and (4)
network-related protocols (e.g., RPC with data nodes or meta-
data nodes). We make a key observation that in cloud-native
applications, users are only interested in the first type of func-
tions and the implementations of other functions are transpar-
ent to users. Therefore, we can move the latter three functions
out of Fisc clients and aggregate them to achieve a high level
of multiplexing on resources. However, the locations where
they are aggregated (i.e., Fisc agents or Fisc proxy) have a
great impact on the effects of multiplexing. We elaborate on
our offloading designs of different functions.
Offloading network-related functions to Fisc agent. We
offload the network-related functions of conventional clients
to the Fisc agent in the DPU of the computation server.
This is motivated by the recent success of DPU-based high-
performance network stacks (e.g., Luna/Solar [10] and Nitro
SRD [28]) in the physical domain of CSPs. In particular, a
Fisc agent extends Luna/Solar network stack and aggregates
multiple network connections of Fisc clients on the same
computation server. This substantially reduces the CPU and
memory resources each client needs to reserve for network-
related operations.
Offloading security-related functions to Fisc agent. We
adopt an early-checking design to perform security checks
(e.g., authentication and authorization) in Fisc agent when it
receives requests from Fisc clients. Different from the meth-
ods with network gateway, which deal with the malicious
traffic at their proxies, this design prevents malicious traffic
from consuming the resources of backend storage clusters.
Offloading storage-protocol functions to Fisc proxy. We
choose to offload storage-protocol functions to Fisc proxies
in the storage clusters, instead of Fisc clients, for three rea-
sons. First, the DPU in the computation server has limited
resources. After spending resources on network-related func-
tions, security-related functions and bare-metal virtualization
of virtio-Fisc device, the DPU does not have sufficient re-
sources to implement complex storage protocols. Second, of-
floading these functions to the storage clusters helps move the
storage traffic between the computation servers and the stor-
age clusters in the backend network within storage clusters,
saving the scarce network resources in the compute-storage
disaggregated architecture. Third, it allows us to adopt storage-
oriented optimization and hardware-assisted accelerations in
the storage clusters to improve the overall system performance
and reduce costs.
4.1.2 Simplification and Compatibility

Implementing an FS client and maintaining its compati-
bility across different versions of its software library is chal-
lenging because a typical FS client has a large number of

APIs (e.g., the HDFS client has more than 100 APIs [29]).
We introduce a unified RPC-based method to simplify the
implementation of Fisc clients and a mechanism similar to
protocol buffers for compatibility maintenance.
Simplifying client implementation using RPC. We imple-
ment the APIs in the Fisc client using RPC stubs. When the
application invokes an API, the Fisc client passes the param-
eters of the API to its corresponding RPC stub. The stub
encodes these parameters, the file handle, and the tenant in-
formation into an RPC request. This request is sent to the
Fisc agent in the DPU with a virtio-Fisc device (§4.3.1). The
Fisc agent checks the authorization of tenants and looks up
the file handle in its route table (§4.2.1) to forward the RPC
request to a corresponding Fisc proxy. Upon receiving the
request, the Fisc proxy resolves it and invokes the correspond-
ing RPC service of the API, which completes the API and
encodes its return value in an RPC response. The response is
returned to the Fisc client along the opposite path of the RPC
request and resolved by the client. This design makes it easier
to implement and add APIs in Fisc clients.
Maintaining compatibility using a PB-based mechanism.
Building on top of the RPC-based API implementation, we
introduce a PB-based mechanism to maintain the compatibil-
ity of Fisc clients across different versions. Directly applying
the PB protocol [30] would introduce extra data center tax of
(de)serialization [31], wasting the limited resources in DPU.
To this end, we categorize Fisc APIs into data-related ones
(e.g., read and append) and meta-related ones (e.g., create,
delete, open and close). Although the former has fewer APIs,
it is more frequently used than the latter. Thus, for data-related
APIs, we adopt several carefully designed, efficient data struc-
tures to maintain their compatibility. For the meta APIs, we
use the PB protocol as it is. In this way, we can achieve a
balance between performance and compatibility.

4.2 Storage-aware Distributed Gateway
SaDGW is a distributed gateway that sets up direct con-

nections, referred to as "direct highways" in the paper, be-
tween the Fisc agents and the Fisc proxy. As such, Fisc can
adopt high-performance network stacks on these direct high-
ways, and further leverage storage semantics to build a file-
granularity storage-aware routing. It improves the availability
through storage-aware failure handling and improves the read
throughput through locality optimizations.

4.2.1 Direct Highway Between Agents and Proxies
Direct highway. With the help of DPUs, Fisc builds direct
highways between Fisc agents and Fisc proxies, where no net-
work gateways are needed. Considering a storage cluster with
thousands of nodes, this would be a significant cost saving.
On the highways, we adopt high-performance network stacks
of Luna/Solar [10], which is transparent to cloud-native appli-
cations, instead of the TCP/IP stack. Raw data structures [32]
are adopted to eliminate the overhead of (de)serialization
between Fisc agents and proxies.

USENIX Association 21st USENIX Conference on File and Storage Technologies 235

Fisc proxy
Chunk server

index file handle proxy

0x0000 fd1 10.10.1.4

0xffff fd2 10.10.1.8

… … …

file_handle_index = Open (“mountpoint.cluster1/file1”, …)

Read(file_handle_index, offset, length, ..)

Proxy
master

Master

Storage cluster

10.10.1.4

open path

read path

Fisc client

Fisc agent

Route
table

Fisc proxy
Chunk server

10.10.1.8

…

Figure 3: The routing process of Fisc.

File granularity route table. SaDGW manages highways
through a centralized control mechanism (§3.3). As shown
in Figure 3, Fisc agent adopts a file-granularity route table
for routing file requests to Fisc proxies, which records the
file handle information and the location of the Fisc proxy
serving the file. For the route table, one entry is inserted once
a file is opened for the first time. When Fisc agent receives
a file open request, it randomly chooses a Fisc proxy from
the proxy mapping. An entry is constructed when a response
of successful file open is returned. The entry includes the
returned file handle, the location of the chosen proxy, and the
SLA-related attributes mentioned below. Afterwards, when
an I/O request arrives at the Fisc agent, it looks up a proxy
in the route table with the file handle of the request and then
transmits the request to the proxy. Due to the scarce memory
in DPU, Fisc uses an LRU policy to control the size of the
route table.

4.2.2 Storage-aware Failure Handling
Enhanced route entry. Based on the file granularity route
table, Fisc further leverages storage semantics to improve its
availability. For failure handling of storage protocols, three
main factors are considered: retry timeout, retry destination,
and highway quality. 1) The retry timeout means the max-
imum number of times the Fisc agent retries the failed re-
quests, which is related to the request timeout set by users and
highway quality; 2) The retry destination denotes the proxy
location in the entry, which will be replaced by a new proxy if
retry timeout occurs; and 3) The highway quality is measured
by the average latency to estimate the network quality to the
proxy. Therefore, we enhance the route table to support fail-
ure handling. Besides the file handle and proxy location, each
route entry is extended with three items: retry times, retry
timeout, and avg-latency, which record when the agent reset
the connection, the condition under which the agent gives up,
and the average latency of requests, respectively. We make use
of these items to implement storage-aware failure handling.
Failure handling. Fisc leverages several mechanisms in the
Fisc agent to conduct failure handling.
• Retry. When detecting a failed request, the Fisc agent re-

tries the request several times until it receives a success-
ful response or it exceeds the timeout defined by users.

Since users usually set a relatively large timeout for their re-
quests, the Fisc agent initially sets a small empirical timeout
(i.e., ten times the average latency) to detect failed requests.
When such a request is found, the agent doubles the timeout
to execute the retry. This mechanism deals with temporary
failures (e.g., network jitters and burst proxy load).

• Blacklist. Upon detecting consecutive failures of requests
or an abnormally large average latency to a Fisc proxy,
the Fisc agent puts this Fisc proxy into the blacklist. A
background thread periodically pings these proxies and will
remove the successful pinged proxy from the blacklist. The
metadata requests in the metadata path will exclude the
proxies in the blacklist when choosing Fisc proxies. The
data operations in the data path will involve the following
reopen mechanism.

• Reopen. If the destination Fisc proxy of a request is in the
blacklist, Fisc agent will select a new Fisc proxy to reopen
the file and update the route entry. Otherwise, for a failed
request, it adopts a threshold of retry times to make sure
that there is still time left after the retry. In the remaining
time, it reopens the file by retrying the request to a new Fisc
proxy. This operation provides the opportunity to complete
the request with the new proxy and avoid request failure.
These mechanisms are transparent to cloud-native applica-

tions. It provides flexibility for CSPs to upgrade the failure
handling policy and helps keep the Fisc client lightweight.
4.2.3 Locality-aware Read

For a read operation, its request is first sent to a Fisc proxy
and then sent to the Pangu chunkserver where the data to read
is located by the proxy. The read response with the data to
read is returned along the opposite path: from the chunkserver
to the proxy and then to the client. It results in a two-time
amplification of the read traffic, which consumes extra band-
width and reduces the read throughput of the whole cluster by
half. Considering that each storage node is deployed with a
Fisc proxy process and chunkserver process, we design the
locality-aware read by letting Fisc agent record the locations
of file chunks and sending read requests to the proxy, where
the concurrently deployed chunkserver holds their required
chunks.
Predicted locations in a range table. When an open or read
response returns to Fisc agents, the location information of
the file chunks is piggybacked, as shown in Figure 4. The
proxy returns the chunk information that would be read in the
near future by the read prediction mechanism of Pangu. The
number of the predicted chunks is empirically set to 16. Then
the location information is encoded as range and location
pairs and inserted into a range table. Each entry of the range
table corresponds to a file, and the total number of range
pairs in an entry is limited to 64 due to the scarce resource
of DPU. For the 64 MB chunk size, its spanned range is 4
GB, which covers a large range space of files. The index of a
file’s corresponding range table entry is stored as a read hint
attribute in a route table entry.

236 21st USENIX Conference on File and Storage Technologies USENIX Association

Fisc client

Fisc agent

Fisc proxy
Chunk server

Fisc proxy
Chunk server

… … … …

Range entry 1

Open Read

Proxy
master

Master

Storage cluster

<file handle, Range, chunk server IP>

10.10.1.4 10.10.1.8

open path

read path

10.10.2.6

Replica 1
location

Range

Range1
(offset, length)

Range2
(offset, length) 10.10.1.8

Replica 2
location

10.10.2.4

Replica 3
location

10.10.1.5

10.10.1.5

10.10.2.6

Range entry 2

… … … …

… … … …

… … … …

… … … …

Range table index, which is stored as the read hint in the route table

Figure 4: The design of locality-aware read.

DPU

Virtio-Fisc
back-end

NIC

Fisc agent

CPU

FPGA

Virtio-Fisc
frond-end

Cached
route table Route table

fast path

slow path

Figure 5: The design of fast path.

Fisc
proxy

Storage cluster

Client

Computation server

Fisc agent
routing

failure handling

Client
(vRPC client)

Server
(vRPC server)

Fisc agent
(Plugin adaptor)

vRPC

DPU…

Fisc
proxy

vitio-Fisc device

High performance
network

…

Figure 6: The abstracted vRPC.

Shared memory instead of cross-node communication.
When a request arrives at a Fisc agent, the Fisc agent looks
up its route entry and finds the read hint, which is an index
of the range table. With the index, the Fisc agent then looks
up the range table and finds the matching range and location
pair. If a pair hits, the read request will be sent to the location
in the pair. In some cases, the range for a read, with the offset
adding the length to read, is larger than the range of a hit pair.
In this case, due to the limitation of CPU resources, we do
not divide a read request into multiple ones to avoid complex
processing in DPU, such as segmentation, combination and
failure handing. When the Fisc proxy of the location receives
the read request, it calls the Pangu client to complete the re-
quest. As the Pangu client finds that the chunkserver and the
proxy is located in the same physical node, it uses shared-
memory communication instead of the network. As a result,
the data to read is only transmitted once through the network,
and increase the total read-throughput of a storage cluster.

4.3 SW/HW Co-design with DPU
Fisc adopts X-Dragon DPU [33] to build a novel virtio-

Fisc device to accelerate its secure passthrough from the
virtual domain of users to the physical domain of CSPs. To
meet the requirements of cloud-native applications, a fast path
is applied in DPU, and many optimizations are adopted to
mitigate the impact of the scarce resources of DPU.
4.3.1 DPU-based Virtio-Fisc Device

The virtio-Fisc device is a PCIe device following the virtio
standard. It consists of two parts, the frontend in VMs/contain-
ers and the backend in DPUs. Fisc client puts requests in the
virtio hardware queues through the frontend, and Fisc agents
running on the processor of DPU process the requests of the
hardware queues. Agents send the requests to the Fisc prox-
ies, and put the returned responses into the virtio hardware
queues, which are consumed by the frontend. Two generations
of virtio-Fisc devices are adopted in Fisc:
Virtio-Fisc devices based on virtio-block. We adopt virtio-
block device for its compatibility with major operating sys-
tems and can be used by most VMs/containers without modi-
fication. With virtio-block interface, the front-end is the same
as the standard virtio-block device, and a lightweight com-
munication library is implemented with block read and write

operations for Fisc client. However, the backend is quite dif-
ferent, and requests in hardware queues are processed with
Fisc agents instead of the traditional virtio-block software, as
mentioned in [20]. In fact, it only makes use of the virtio-block
interface and works as a virtio-Fisc device.
Virtio-Fisc devices based on customized design. We de-
sign a novel vitio-Fisc device to eliminate the limitation of
virtio-block. For example, the depth of a virtio-block queue is
limited to 128 in most operating systems. Though it is enough
for virtio-block but not for nonblocking requests of Fisc. The
novel virtio device is more like a NIC device. We further
leverage its interface to the RPC level, which can be suitable
for cloud-native services like FaaS. It makes use of virtio
queues to transmit commands for RPC requests and receive
responses. We equip the device driver in our released OS in
Alibaba.
4.3.2 Fast Path

We adopt a cache of route table in FPGA of DPU, which
generates a fast path to speed up the processing of file requests.
As shown in Figure 5, the mapping between the file handle and
network connection is cached in the FPGA. With the cache,
when a request with its file handle comes to the customized
virtio-Fisc device in the FPGA, the FPGA resolves the file
handle from the request and looks up the table. If it hits,
the request will be directly packed as network packets and
transmitted to the network connection. Otherwise, the request
will be sent to Fisc agents via the slow path. Entries of the
cache are controlled and updated by Fisc agent in software
to relieve the complexity of the FPGA implementation of
the cache. And to control network transmission bandwidth,
the transmission window of each connection is also set and
updated in cache entries by the Fisc agent.
4.3.3 Resource Optimizations

With regard to the scarce resources of DPU, optimizations
for its CPU, memory and network are applied.
CPU optimization. We leverage two methods to optimize
the CPU usage in DPU. 1) Batch operation. Fisc gathers
multiple requests into one to share the processing of virtio
protocols between Fisc clients and agents. 2) Manual PB
(De)Serialization. Fisc adopts manual PB (De)Serialization
methods. They are customized for particular data types of

USENIX Association 21st USENIX Conference on File and Storage Technologies 237

Fisc and are more efficient than compiler-generated ones.
According to our experiment with the manual methods, the
IOPS can be improved by about 1.5% for 4 KB requests with
one processor core of a DPU.
Memory optimization. The route table and range table oc-
cupy most memory in Fisc agent. To save memory, Fisc com-
presses the memory space of their entries. As the number of
storage nodes is less than 1 million, we adopt 20 bits to repre-
sent the location IP instead of 32 bits, i.e. 4 bytes, in general.
For locations of 3 replicas for a chunk, it consumes 8 bytes in
total. A file with 64 predicted chunks for locality-aware read
occupies 512 bytes. Taking file handle and tenant information
into account, the total size of the memory space for a file in
Fisc agent is no more than 1 KB. Thus, 1 GB of memory can
hold up to 1 million files.

To further save the memory, we pass the range table to Fisc
client as a hint. In this way, there is no need to store a large
number of locations for locality-read in the range table in
DPU. Instead, they can be stored in Fisc client. Fisc client
is aware of the range of chunks and can find the location
corresponding to its read request. When Fisc client sends
a request, it is accompanied by the hint. Then Fisc agent
first checks the file handle and tenant information with the
route table in DPU. For a passed request, Fisc agent sends the
request to the Fisc proxy according to the hint. For security,
the location hint passed to Fisc client is encoded with an index
and has no meaning to users. To avoid applications changing
the hint maliciously, the index is checked in Fisc agents and
Fisc proxies. If the check fails, the locality-read mechanism
for the tenants will be forbidden for a period of time in Fisc
agent. It then falls back to using the route table of fewer
locations in DPU. Thus, with the hint, Fisc can save a lot of
memory and support more range table entries in DPU.
Network optimization. SaDGW carefully deals with the
number of connections for the direct highway. First, it adopts
the shared-connection mechanism [13] to reduce the con-
nections between Fisc agents and Fisc proxies. Second, it
recycles the resources of network connections by periodically
tearing down idle connections. Third, for the narrow inter-
region Tbps-level network bandwidth compared to that of
intra-region, Fisc agents only connect parts of proxies in dif-
ferent regions where there can be thousands of storage nodes.
In this way, it is sufficient for inter-region network throughput
and reduces the number of connections.

4.4 Large-scale Deployment
Fisc carefully deals with ease of use, load balance, and QoS

to support applications running over 3 million CPU cores.

4.4.1 vRPC
As shown in Figure 6, we abstract a vRPC service from

Fisc. It is similar to the traditional RPC mechanism of RPC
client and RPC server. Clients placed in containers call an
RPC request by vRPC stub in Fisc client, and the request is
processed by the vRPC Server in Fisc proxy. For a cloud-

native service, developers only need to concern the RPC stub
for clients in containers and its RPC service for servers in the
backend clusters. The implementation details of vRPC such
as virtio device and SaDGW, are transparent to both clients
and servers, which is different from the traditional RPC as fol-
lows. First, it provides a secure passthrough from the virtual
domain to the physical domain with an efficient hardware-
assisted virtio device. Second, its RPC request can be retried
in Fisc agent, which is transparent to vRPC client, and high-
performance network stacks can also be transparently adopted.
Third, it gives an opportunity to adopt an adapter for a ser-
vice, which can be integrated into Fisc agent to improve the
availability of the service by its developers. vRPC can not
only support Fisc FS but also other cloud-native services.

4.4.2 Load Balance
Fisc introduces two mechanisms for the load balance

among thousands of Fisc proxies in storage clusters.
File granularity schedule. Traditional load balance relies
on connection-based scheduling of network gateway, which
focuses on balancing the number of network connections
among proxies. However, a gap exists between the number of
network connections and that of files. This means the number
of connections may be balanced, but that of files in each proxy
may be significantly different. To tackle this problem, Fisc
eliminates the gap and presents a file-granularity schedule
for load balance. Fisc agent forwards each file to a random
Fisc proxy according to the hash value of its file name and
other information such as access time. In this way, the files are
evenly distributed among Fisc proxies. With locality-aware
read optimization, as the chunks of files are evenly distributed
to each data server by Pangu, it leads to an even balance of
read requests to Fisc proxies, which are currently deployed
with data servers in storage nodes.
The centralized re-scheduling. As Fisc proxy masters pe-
riodically collect the load of each proxy, they can schedule
and migrate part of the files from a high-load Fisc proxy to a
low-load one. The migration is transparent to the applications
of tenants, and Fisc agent accordingly reopens these files after
the migration. Meanwhile, Fisc proxy masters also push the
load information to Fisc agents. After receiving the informa-
tion, Fisc agents reduce the hash weight of high-load Fisc
proxies and improve that of low-load ones. In this way, Fisc
implements a centralized re-scheduling.

4.4.3 E2E QoS
Fisc supports hybrid file access for online real-time applica-

tions and offline batch-processing applications, the demands
of which are represented by high priority and low priority.
Hardware-based QoS. Vitio-Fisc devices, NICs, and net-
works adopt hardware-based QoS mechanism. Virtio-Fisc
devices and NICs make use of their hardware queues of high
and low priorities. We set DSCP values in the IP packet header
through the networking library to leverage the priority queues
of network switches.

238 21st USENIX Conference on File and Storage Technologies USENIX Association

1j1d 2j1d 8j32d0.0

0.1

0.2

0.3

0.4

C
PU

 c
or

es

WriteLC
TC

(a) Client’s CPU utilization.

1j1d 2j1d 8j32d0

100

200

300

M
em

or
y

(M
B

)

WriteLC
TC

(b) Client’s memory consumption.

8j1d 8j16d 8j32d0

2

4

C
PU

 c
or

es

ReadLC
TC

(c) Client’s CPU utilization.

8j1d 8j16d 8j32d0

200

400

600
M

em
or

y
(M

B
)

ReadLC
TC

(d) Client’s memory consumption.

Figure 7: The resource consumption of LC and TC when
writing/reading data to/from the storage cluster.

Software-based QoS. Fisc client, Fisc agent and Fisc proxy
adopt a software-based QoS mechanism, utilizing a hybrid
thread model of exclusive threads for high-priority and low-
priority requests, respectively. The reason for the hybrid
thread model is to avoid head-of-line (HOL) blocking prob-
lems. To conserve the scarce CPU resource of DPU, a large
offline request is not divided into separate smaller ones to
avoid the complex request combination and failure dealing.
As a result, if high and low priority requests are in the same
thread, there may be a HOL blocking problem between them.
And the other reason is the lack of cache isolation capability
of NIC like CAT for Intel CPU [34]. The buffer cache of NIC
may be full-filled with low-priority packets if a DPDK-based
polling thread [35] stops polling network packets. Therefore,
if high and low priority network packets are processed in
the same thread, the low-priority queue of NIC should keep
polling. Otherwise, the buffer cache may be full-filled and
eventually affect high priority traffic. However, the non-stop
polling for low-priority requests in a thread makes it hard to
guarantee the high-priority requests.

Besides Fisc modules, the backend Pangu also adopts
software-based QoS for NVMe SSDs, as current SSDs lack
of hardware-level QoS mechanism. Therefore, Fisc enables
end-to-end priority classification.

5 Evaluations
We evaluate Fisc through extensive experiments in a testbed

and demonstrate its performance in a production environment.
We focus on the following measurements:

• The efficiency of Fisc lightweight client (§5.2).
• The performance of I/O requests in Fisc (§5.3).
• The availability of I/O requests in Fisc (§5.4).
• The impact of QoS scheme on multi-applications (§5.5).
• The effectiveness of load balancing in Fisc (§5.6).

5.1 Testbed Setup
Our testbed is a disaggregated cluster consisting of one

computation server and a storage cluster of 43 commodity
storage servers. The computation server is equipped with a
DPU. The storage cluster is equipped with the Pangu stor-
age system [6]. We use FIO [36] to generate different I/O
workloads in the computation server and record the CPU and
memory consumption of the client. The number of threads
to issue I/O requests is denoted by num jobs. The number
of inflight I/O is denoted by iodepth. For simplicity, we use
njmd in figures to represent the workload of num jobs = n,
iodepth = m.

5.2 Lightweight Client
We first compare the resource consumption of Fisc client,

denoted as LC, with that of a traditional FS client, which
integrates the storage-related protocols (e.g., three replicas)
and network-related stacks (e.g., RPC and TCP/IP) and is
denoted as TC.
Microbenchmark. To test the resource utilization of clients
with different data sizes, we write data to the file system with
a granularity of 4 KB and read the file with a granularity
of 128 KB. Figure 7 shows that LC has substantially lower
CPU utilization and memory consumption than TC for both
write and read operations. For example, when writing data
with 8j32d (i.e., num jobs = 8 and iodepth = 32), LC and
TC each consumes 0.3 and 0.46 CPU cores, respectively. In
another experiment where we let one FIO job write data to
the storage cluster at a fixed rate of 1.75 GB/s, LC consumes
less CPU and memory resources than TC by 69% and 20%,
respectively.
Production environment. We also evaluate Fisc in a pro-
duction system, which consists of thousands of servers and
provides Swift service, a distributed streaming service similar
to Kafka [37]. Figure 8 shows the bandwidth and CPU and
memory consumption of Swift in one month when writing
data to the remote storage cluster. Swift initially uses TC and
switches to LC on day 18. After the switch, LC maintains the
same high bandwidth performance as TC does, but consumes
16% and 57% less CPU and memory, respectively, than TC.
Specifically, when we only offload erasure coding to Fisc
proxies, the CPU and memory consumption of containers is
reduced by 9% and 40%, respectively.

These results in the testbed and production environment
demonstrate the efficiency and efficacy of the Fisc lightweight
client in supporting cloud-native applications with high per-
formance while consuming substantially fewer resources.

5.3 Latency
To evaluate the latency of I/O requests in Fisc, we first

compare Fisc with a network-gateway-based load balancing
solution [38], denoted as LB. We then validate the effective-
ness of locality-aware read in the testbed.
Microbenchmark. We first start different FIO tasks on the
computation server and measure the end-to-end latency of I/O

USENIX Association 21st USENIX Conference on File and Storage Technologies 239

Figure 8: The bandwidth, CPU utilization, and memory consumption in a month. Results are given in the range of [0, 100].

(a) The write and read latency of a
single job with a data size of 8 KB.

(b) The write latency with 64 jobs, a
data size of 8 KB, and a fixed band-
width of 100 MB/s.

Figure 9: The comparison of latency between Fisc and LB.

(a) The latency of sequential read. (b) The latency of random read.

Figure 10: The effectivenss of locality-aware read.

requests. Figure 9(a) shows that the write and read latency of
Fisc is 63% and 61% lower than those of LB when launching
I/O requests with a data size of 8 KB. In the next experiment,
we let Fisc and LB write files with 64 jobs and a data size of 8
KB at a fixed bandwidth of 100 MB/s. Figure 9(b) shows that
Fisc reduces the average and P999 tail latency compared to
LB by 76% and 92%, respectively. This latency improvement
results from two optimizations: (1) the SaDGW provides one-
hop communication instead of the two-hop communication in
a centralized network gateway; (2) the SaDGW transparently
adopts the high-performance networking stack to replace the
inefficient TCP/IP stack.

To verify the benefits of locality-aware read, we further
compare the latency of FIO tasks in sequential read and ran-
dom read scenarios with a data size of 16 KB and 256 KB.
As shown in Figure 10, the latency of read requests reduces
in both scenarios (e.g., by 25% when randomly reading files

with a data size of 256 KB). It shows that the locality infor-
mation in the range table is effective in helping route the
read requests directly to the target storage server, reducing
the end-to-end latency.

Production environment. We plot the average write latency
of an online search workload over 30 days. As shown in Fig-
ure 11, the average latency is stable at ∼500 µs even when
the workloads reach as high as millions-level IOPS. This re-
sult demonstrates that Fisc provides a low-latency file system
service for cloud-native applications. In contrast, this latency
becomes several milliseconds when the file system service is
provided through LB.

5.4 Availability
We use the P999 tail latency as a key metric to measure the

effectiveness of Fisc’s storage-aware failure handling mecha-
nisms in guaranteeing the availability of file system services.

Microbenchmark. To verify the impact of proxy failure on
tail latency, we randomly kill some proxy processes in the
storage cluster of 80 storage servers and record the tail latency
for all I/O requests. As shown in Figure 13, we kill one proxy
at t1 and then kill five proxy processes at t2. We observe
that the tail latency increases to <40 ms for a short time and
quickly returns to the previous level. This result shows that
proxy failures in the storage cluster have a limited effect on
the tail latency. It is because Fisc can retry the failed I/O
requests with its storage-aware failure handling methods. As
a result, such failures have a limited impact on applications.

Production environment. Figure 12 illustrates the P999 tail
latency of online searching tasks over the same 30-day period.
Most of the time, it stays under 30 ms. We analyze the spikes
in the figure. The spikes t1, t2, t3, and t4 happen due to the
upgrade of FS, at which we launch/stop some proxies in the
storage cluster. Other spikes are caused by network jitters
and storage node breakdowns. However, after each spike, the
P999 tail latency quickly returns to a low level with the help
of Fisc’s storage-aware failure handling mechanisms.

240 21st USENIX Conference on File and Storage Technologies USENIX Association

Figure 11: The average write latency and IOPS in one month.

Figure 12: The P999 tail latency of write in one month in production environment.

Figure 13: The P999 tail latency of write in micro-benchmark.

5.5 QoS
We demonstrate Fisc’s ability to guarantee the QoS across

different applications by measuring the latency of online
searching tasks and the throughput of offline AI training tasks
in a production environment. Both tasks are deployed in the
same computation cluster and share the same storage clus-
ter. Figure 14 shows that the latency of online search tasks
stays stable and is barely affected by the fluctuated offline
AI training tasks. It is because Fisc assigns a high priority
to latency-critical tasks like online search and guarantees the
corresponding QoS with an E2E QoS mechanism.

5.6 Load Balancing
To study the load-balancing capability of Fisc, We ran-

domly choose six storage servers from our storage cluster
and measure their normalized read IOPS over seven days. We
compute the coefficient of variation of these nodes as a mea-
surement of Fisc’s load-balancing capability [39]. As shown
in Figure 15, the coefficient of variation of read IOPS is <
5%. This result indicates that the read requests are evenly
distributed among Fisc proxies and proves that Fisc achieves
a similar quality of load balancing as Maglev, Google’s in-
house load balancer [39], whose coefficient of variation is 6-
7%. This efficacy is due to Fisc’s fine-grained storage-aware
load-balancing strategy. Specifically, Fisc agents forward I/O
requests with a granularity of files. In contrast, network-based
load balancing methods forward I/O requests with a granular-
ity of network connections, causing unbalanced numbers of
files forwarded to different storage nodes.

6 Discussion
Not just migration. The two-layer aggregation of Fisc of-
floads network-related functions and storage protocols to Fisc
agent in DPU and Fisc proxy in the storage node. The ques-
tion is whether Fisc merely transfers the resource consump-

tion from containers of users to DPUs and back-end storage
clusters of CSPs but does not reduce the total amount of con-
sumed resources. The answer is that Fisc not just migrates
resources spatially but can significantly reduce resource con-
sumption, because it "aggregates" the resource for storage
protocols and network stacks processing in terms of tenants,
applications and workloads. For example, one application in
containers usually pre-allocate I/O threads and reserve mem-
ory and network connections, which cannot be shared with
the applications in other containers. However, in Fisc, these
resources are "migrated" and "aggregated" in Fisc agents
and proxies, and they are efficiently shared by multiple ap-
plications to achieve high resource utilization. Furthermore,
with function offloading, Fisc can leverage modern hardware-
assisted acceleration for these storage protocols and advanced
network-related stacks to improve their efficiency. For exam-
ple, the Erasure-coding and CRC operation can be accelerated
by hardware in the storage cluster.

With the development of cloud-native applications, more
cloud-native services should aggregate their service-related
resources among containers. Based on the traditional aggre-
gation of VM resources, it will further improve the resource
efficiency of CSPs.
Ecosystem service. The ecosystem is vital for cloud-native
applications. Fisc extends its ecosystem in two aspects:
compatibility with HDFS ecosystem and virtio-Fisc devices
for different operating systems. For the former one, Fisc
Client adopts a Java Native Interface (JNI) method to use
its lightweight client of C language, and many optimizations
have been introduced for the semantics compatibility between
HDFS and Pangu. For the latter issue, we abstract virtio-Fisc
devices to more general virtio-RPC devices, which are suit-
able for more cloud-native services. And we develop the
virtio-Fisc driver in our released OS and will submit it to the
open source community.
Resource in DPU. The resources in DPU are scarce, and
Fisc also has to share these resources with other virtualiza-
tion services, such as virtual networking and block services.
Therefore, Fisc adopts a variety of optimization technologies
to economize resource utilization, as mentioned in §4.3.3.
With the development of DPUs such as Intel IPU [40] and

USENIX Association 21st USENIX Conference on File and Storage Technologies 241

Figure 14: The latency of online tasks with background offline tasks in one month.

Figure 15: The load distribution of read IOPS of six storage nodes in one week.

Nvidia DPU [41], the processing capability of embedded pro-
cessors of DPU has been greatly improved. Meanwhile, more
hardware acceleration functions like compression have been
integrated. These new features help Fisc agents adopt more
complex policies to deal with failure handling and locality-
aware read mechanisms. It is noteworthy that careful resource
optimizations are still needed with the increase of throughput
from 25 Gbps to 100 Gbps or 200 Gbps.

7 Related Work
Infrastructure support for cloud-native applications.
Many studies [4, 42–51] have investigated how to provide
efficient infrastructure support for emerging cloud-native ap-
plications (e.g., microservice, container and serverless com-
puting), including state management [43–45], runtime [46],
data storage [47], fault tolerance [4] and performance opti-
mization [48–51]. Some work [52,53] also looked into design-
ing efficient service interfaces for cloud-native applications.
For example, LogBook [52] provides logging interfaces for
stateful serverless applications and uses a metalog to address
log ordering, read consistency, and fault tolerance. Fluid [53]
provides a unified data abstraction for cloud-native deep learn-
ing applications. In this paper, we design Fisc, a large-scale
file system that provides high-performance file system ser-
vices for cloud-native applications.
High-performance distributed file systems. Many dis-
tributed file systems have been designed and deployed (e.g.,
pNFS [54], NAS [15], Facebook Tectonic [7], Google Colos-
sos [5], and Alibaba Pangu [6]) to provide high-performance
storage services for applications. However, they are ill-suited
for cloud-native applications because they use heavyweight
clients and a centralized network gateway. To this end, some
studies (e.g., OFC [55], FaaSCache [56], FLASHCUBE [57],
and Pocket [58]) proposed adding cache to the persistence
layer to improve the performance. However, they still suffer
from a low level of resource multiplexing. In contrast, Fisc
proposes the design of a lightweight client and storage-aware
gateway, and resorts to a software-hardware co-design to pro-
vide high-performance file system services for cloud-native

applications.
Bare-metal DPUs in clouds. The cloud computing com-
munity is increasingly developing and deploying bare-metal
DPUs in clouds (e.g., Nitro [19], BM-Hive [20], ELI [59],
Splinter [60], and Bluebird [61]). Some studies also use DPUs
to accelerate file system services (e.g., LineFS [62], Gim-
bal [63], and Leapio [64]). However, they are not designed
to provide cross-domain file system services between tenants
and CSPs. In contrast, Fisc leverages the X-Dragon DPU in
the computation server and introduces a new virtio device to
provide secure, high-performance cross-domain file system
services.

8 Conclusion
The trend of cloud-native brings new challenges and oppor-

tunities for CSPs to revisit their file system services. In this
paper, we present Fisc, a large-scale cloud-native-oriented file
system, which adopts a two-layer aggregation mechanism to
multiplex resources of file clients among containers and a
distributed storage-aware gateway to improve performance,
availability and load balance of I/O requests. Fisc also adopts
virtio-Fisc device with DPU for high performance and secure
passthrough from users’ virtual domain to CSPs’ physical
domain. Fisc has been deployed in a production DCN for over
three years and provides large-scale file system service for
cloud-native applications.

Acknowledgements
We are extremely grateful to our shepherd, Liuba Shrira,

and the anonymous FAST’23 reviewers for their invaluable
feedback. We also thank Yuxin Wang, Ridi Wen, and Hao-
hao Song for their help during the preparation of the paper.
Lulu Chen and Jie Wu are supported in part by the National
Key R&D Program of China 2021YFC3300600 and an Al-
ibaba Innovative Research Award. Qiao Xiang is supported
in part by an Alibaba Innovative Research Award, NSFC
Award 62172345, Open Research Projects of Zhejiang Lab
2022QA0AB05, and NSF-Fujian-China 2022J01004. Xiao-
liang Wang is supported by NSFC Award 62172204.

242 21st USENIX Conference on File and Storage Technologies USENIX Association

References
[1] Qifan Pu, Shivaram Venkataraman, and Ion Stoica. Shuf-

fling, Fast and Slow: Scalable Analytics on Serverless
Infrastructure. In NSDI’19, pages 193–206. USENIX
Association, 2019.

[2] Jiawei Jiang, Shaoduo Gan, Yue Liu, Fanlin Wang, Gus-
tavo Alonso, Ana Klimovic, Ankit Singla, Wentao Wu,
and Ce Zhang. Towards Demystifying Serverless Ma-
chine Learning Training. In SIGMOD’21, pages 857–
871. ACM, 2021.

[3] Swaroop Kotni, Ajay Nayak, Vinod Ganapathy, and
Arkaprava Basu. Faastlane: Accelerating Function-
as-a-Service Workflows. In ATC’21, pages 957–971.
USENIX Association, 2021.

[4] Haoran Zhang, Adney Cardoza, Peter Baile Chen, Sebas-
tian Angel, and Vincent Liu. Fault-Tolerant and Trans-
actional Stateful Serverless Workflows. In OSDI’20,
pages 1187–1204. USENIX Association, 2020.

[5] Google. A peek into Google’s scalable storage sys-
tem. https://cloud.google.com/blog/products
/storage-data-transfer/a-peek-behind-colos
sus-googles-file-system, 2022.

[6] Pangu. The High Performance Distributed File System
by Alibaba Cloud. https://www.alibabacloud.com
/blog/, 2022.

[7] Satadru Pan, Theano Stavrinos, Yunqiao Zhang, Atul
Sikaria, Pavel Zakharov, Abhinav Sharma, Mike Shuey,
Richard Wareing, Monika Gangapuram, Guanglei Cao,
et al. Facebook’s Tectonic Filesystem: Efficiency from
Exascale. In FAST’21, pages 217–231. USENIX Asso-
ciation, 2021.

[8] Amazon. AWS Elastic File System. https://docs.a
ws.amazon.com/efs/latest/ug/whatisefs.html,
2022.

[9] Microsoft. Azure Data Lake Storage Gen2. https://
learn.microsoft.com/en-us/azure/storage/bl
obs/data-lake-storage-introduction, 2022.

[10] Rui Miao, Lingjun Zhu, Shu Ma, Kun Qian, Shu-
jun Zhuang, Bo Li, Shuguang Cheng, Jiaqi Gao,
Yan Zhuang, Pengcheng Zhang, Rong Liu, Chao Shi,
Binzhang Fu, Jiaji Zhu, Jiesheng Wu, Dennis Cai, and
Hongqiang Harry Liu. From Luna to Solar: The Evolu-
tions of the Compute-to-Storage Networks in Alibaba
Cloud. In SIGCOMM’22, pages 753–766. ACM, 2022.

[11] Qiang Li, Qiao Xiang, Yuxin Wang, Haohao Song, Ridi
Wen, Wenhui Wang, Yuanyuan Dong, Shuqi Zhao, Shuo
Huang, Zhaosheng Zhu, Huayong Wang, Shanyang Liu,
Lulu Chen, Zhiwu Wu, Haonan Qiu, Derui Liu, Gexiao

Tian, Chao Han, Shaozong Liu, Yaohui Wu, Zicheng
Luo, Yuchao Shao, Junping Wu, Zheng Cao, Zhongjie
Wu, Jinbo Wu, Jiwu Shu, and Jiesheng Wu. Deployed
System: More Than Capacity, Performance-oriented
Evolution of Pangu in Alibaba. In FAST’23. USENIX
Association, 2023.

[12] Hdfs. Hadoop HDFS. https://hadoop.apache.org/
docs/r1.2.1/hdfs_design.html, 2022.

[13] Yixiao Gao, Qiang Li, Lingbo Tang, Yongqing Xi,
Pengcheng Zhang, Wenwen Peng, Bo Li, Yaohui Wu,
Shaozong Liu, Lei Yan, et al. When Cloud Storage
Meets RDMA. In NSDI’21, pages 519–533. USENIX
Association, 2021.

[14] Alibaba cloud. Object Storage Service. https://www.
alibabacloud.com/help/en/object-storage-se
rvice, 2022.

[15] Alibaba cloud. Apsara File Storage NAS. https://ww
w.aliyun.com/product/nas, 2022.

[16] Alibaba. Maxcompute. https://www.alibabacloud
.com/product/maxcompute, 2022.

[17] Alibaba cloud. The exploration of cloud-native. https:
//developer.aliyun.com/article/721889, 2021.

[18] Zijun Li, Jiagan Cheng, Quan Chen, Eryu Guan, Zizheng
Bian, Yi Tao, Bin Zha, Qiang Wang, Weidong Han,
and Minyi Guo. RunD: A Lightweight Secure Con-
tainer Runtime for High-density Deployment and High-
concurrency Startup in Serverless Computing. In
ATC’22, pages 53–68. USENIX Association, 2022.

[19] Amazon. AWS nitro system. https://aws.amazon.c
om/cn/ec2/nitro/, 2022.

[20] Xiantao Zhang, Xiao Zheng, Zhi Wang, Hang Yang,
Yibin Shen, and Xin Long. High-density Multi-tenant
Bare-metal Cloud. In ASPLOS’20, pages 483–495.
ACM, 2020.

[21] Xiantao Zhang, Xiao Zheng, and Justin Song. High-
density Multi-tenant Bare-metal Cloud with Memory Ex-
pansion SoC and Power Management. In HotChips’20,
pages 1–18. IEEE, 2020.

[22] Yuyu Luo, Chengliang Chai, Xuedi Qin, Nan Tang, and
Guoliang Li. Visclean: Interactive cleaning for progres-
sive visualization. Proceedings of the VLDB Endow-
ment, 13(12):2821–2824, 2020.

[23] Michael Vrable, Stefan Savage, and Geoffrey M Voelker.
Bluesky: A Cloud-backed File System for the Enterprise.
In FAST’12, pages 1–14. USENIX Association, 2012.

USENIX Association 21st USENIX Conference on File and Storage Technologies 243

https://cloud.google.com/blog/products/storage-data-transfer/a-peek-behind-colossus-googles-file-system
https://cloud.google.com/blog/products/storage-data-transfer/a-peek-behind-colossus-googles-file-system
https://cloud.google.com/blog/products/storage-data-transfer/a-peek-behind-colossus-googles-file-system
https://www.alibabacloud.com/blog/
https://www.alibabacloud.com/blog/
https://docs.aws.amazon.com/efs/latest/ug/whatisefs.html
https://docs.aws.amazon.com/efs/latest/ug/whatisefs.html
https://learn.microsoft.com/en-us/azure/storage/blobs/data-lake-storage-introduction
https://learn.microsoft.com/en-us/azure/storage/blobs/data-lake-storage-introduction
https://learn.microsoft.com/en-us/azure/storage/blobs/data-lake-storage-introduction
https://hadoop.apache.org/docs/r1.2.1/hdfs_design.html
https://hadoop.apache.org/docs/r1.2.1/hdfs_design.html
https://www.alibabacloud.com/help/en/object-storage-service
https://www.alibabacloud.com/help/en/object-storage-service
https://www.alibabacloud.com/help/en/object-storage-service
https://www.aliyun.com/product/nas
https://www.aliyun.com/product/nas
https://www.alibabacloud.com/product/maxcompute
https://www.alibabacloud.com/product/maxcompute
https://developer.aliyun.com/article/721889
https://developer.aliyun.com/article/721889
https://aws.amazon.com/cn/ec2/nitro/
https://aws.amazon.com/cn/ec2/nitro/

[24] Alysson Bessani, Miguel Correia, Bruno Quaresma, Fer-
nando André, and Paulo Sousa. Depsky: Dependable
and Secure Storage in a Cloud-of-Clouds. ACM Trans-
actions on Storage, 9(4):1–33, 2013.

[25] Yilong Li, Seo Jin Park, and John Ousterhout. MilliSort
and MilliQuery:Large-Scale Data-Intensive Computing
in Milliseconds. In NSDI’21, pages 593–611. USENIX
Association, 2021.

[26] Amazon. AWS storage gateway. https://aws.amazon
.com/cn/blogs/storage/deploy-a-highly-avai
lable-aws-storage-gateway-on-a-vmware-vsph
ere-cluster/, 2022.

[27] Digitalocean. DigitalOcean. https://www.digita
locean.com/community/tutorials/how-to-crea
te-a-high-availability-setup-with-heartbea
t-and-reserved-ips-on-ubuntu-14-04, 2022.

[28] Leah Shalev, Hani Ayoub, Nafea Bshara, and Erez Sab-
bag. A Cloud-optimized Transport Protocol for Elastic
and Scalable HPC. Micro, 40(6):67–73, 2020.

[29] Apache. HDFS APIs. https://github.com/apache/
hadoop/blob/trunk/hadoop-common-project/ha
doop-common/src/main/java/org/apache/hadoo
p/fs/FileSystem.java, 2022.

[30] Google. Protocol Buffers. https://developers.goo
gle.com/protocol-buffers, 2022.

[31] Svilen Nikolaev Kanev. Efficiency in Warehouse-scale
Computers: A Datacenter Tax Study. PhD thesis, Har-
vard University, pages 1–24, 2017.

[32] John Biddiscombe, Anton Bikineev, Thomas Heller, and
Hartmut Kaiser. Zero Copy Serialization Using RMA in
the HPX Distributed Task-based Runtime. In Proceed-
ings of the International Conference on WWW/Internet
2017 and Applied Computing, pages 1–8. IADIS, 2017.

[33] Shuangchen Li, Dimin Niu, Yuhao Wang, Wei Han, Zhe
Zhang, Tianchan Guan, Yijin Guan, Heng Liu, Linyong
Huang, Zhaoyang Du, et al. Hyperscale FPGA-as-a-
Service Architecture for Large-scale Distributed Graph
Neural Network. In ISCA’22, pages 946–961. IEEE,
2022.

[34] Intel. Introduction to Cache Allocation Technol-
ogy. https://www.intel.com/content/www/us/e
n/developer/articles/technical/introductio
n-to-cache-allocation-technology.html, 2022.

[35] DPDK. DPDK Poll Mode Driver. https://doc.dp
dk.org/guides/prog_guide/poll_mode_drv.htm
l, 2022.

[36] Flexible i/o tester. Flexible I/O tester. https://fio.re
adthedocs.io/en/latest/, 2022.

[37] Apache. Kafka. https://kafka.apache.org/intro,
2022.

[38] What is ALB. Server Load Balancer. https://www.al
ibabacloud.com/help/en/server-load-balance
r/latest/what-is-application-load-balancer,
2022.

[39] Daniel E Eisenbud, Cheng Yi, Carlo Contavalli, Cody
Smith, Roman Kononov, Eric Mann-Hielscher, Ardas
Cilingiroglu, Bin Cheyney, Wentao Shang, and Jin-
nah Dylan Hosein. Maglev: A Fast and Reliable Soft-
ware Network Load Balancer. In NSDI’16, pages 523–
535. USENIX Association, 2016.

[40] Intel. Intel® Infrastructure Processing Unit (Intel® IPU).
https://www.intel.com/content/www/us/en/pr
oducts/details/network-io/ipu.html, 2022.

[41] Nvidia. NVIDIA BlueField Data Processing Units).
https://www.nvidia.com/en-us/networking/pr
oducts/data-processing-unit/, 2022.

[42] Sadjad Fouladi, Francisco Romero, Dan Iter, Qian Li,
Shuvo Chatterjee, Christos Kozyrakis, Matei Zaharia,
and Keith Winstein. From Laptop to Lambda: Outsourc-
ing Everyday Jobs to Thousands of Transient Functional
Containers. In ATC’19, pages 475–488. USENIX Asso-
ciation, 2019.

[43] Zijun Li, Linsong Guo, Quan Chen, Jiagan Cheng,
Chuhao Xu, Deze Zeng, Zhuo Song, Tao Ma, Yong Yang,
Chao Li, and Minyi Guo. Help Rather than Recycle: Al-
leviating Cold Startup in Serverless Computing through
Inter-Function Container Sharing. In ATC’22, pages
69–84. USENIX Association, 2022.

[44] Vikram Sreekanti, Chenggang Wu, Xiayue Charles Lin,
Johann Schleier-Smith, Jose M Faleiro, Joseph E Gonza-
lez, Joseph M Hellerstein, and Alexey Tumanov. Cloud-
burst: Stateful Functions-As-A-Service. arXiv preprint
arXiv:2001.04592, pages 1–15, 2020.

[45] Zhe Wang, Teng Ma, Linghe Kong, Zhenzao Wen, Jingx-
uan Li, Zhuo Song, Yang Lu, Guihai Chen, and Wei Cao.
Zero Overhead Monitoring for Cloud-native Infrastruc-
ture using RDMA. In ATC’22, pages 639–654. USENIX
Association, 2022.

[46] Dong Du, Qingyuan Liu, Xueqiang Jiang, Yubin Xia,
Binyu Zang, and Haibo Chen. Serverless Computing
on Heterogeneous Computers. In ASPLOS’22, pages
797–813. ACM, 2022.

244 21st USENIX Conference on File and Storage Technologies USENIX Association

https://aws.amazon.com/cn/blogs/storage/deploy-a-highly-available-aws-storage-gateway-on-a-vmware-vsphere-cluster/
https://aws.amazon.com/cn/blogs/storage/deploy-a-highly-available-aws-storage-gateway-on-a-vmware-vsphere-cluster/
https://aws.amazon.com/cn/blogs/storage/deploy-a-highly-available-aws-storage-gateway-on-a-vmware-vsphere-cluster/
https://aws.amazon.com/cn/blogs/storage/deploy-a-highly-available-aws-storage-gateway-on-a-vmware-vsphere-cluster/
https://www.digitalocean.com/community/tutorials/how-to-create-a-high-availability-setup-with-heartbeat-and-reserved-ips-on-ubuntu-14-04
https://www.digitalocean.com/community/tutorials/how-to-create-a-high-availability-setup-with-heartbeat-and-reserved-ips-on-ubuntu-14-04
https://www.digitalocean.com/community/tutorials/how-to-create-a-high-availability-setup-with-heartbeat-and-reserved-ips-on-ubuntu-14-04
https://www.digitalocean.com/community/tutorials/how-to-create-a-high-availability-setup-with-heartbeat-and-reserved-ips-on-ubuntu-14-04
https://github.com/apache/hadoop/blob/trunk/hadoop-common-project/hadoop-common/src/main/java/org/apache/hadoop/fs/FileSystem.java
https://github.com/apache/hadoop/blob/trunk/hadoop-common-project/hadoop-common/src/main/java/org/apache/hadoop/fs/FileSystem.java
https://github.com/apache/hadoop/blob/trunk/hadoop-common-project/hadoop-common/src/main/java/org/apache/hadoop/fs/FileSystem.java
https://github.com/apache/hadoop/blob/trunk/hadoop-common-project/hadoop-common/src/main/java/org/apache/hadoop/fs/FileSystem.java
https://developers.google.com/protocol-buffers
https://developers.google.com/protocol-buffers
https://www.intel.com/content/www/us/en/developer/articles/technical/introduction-to-cache-allocation-technology.html
https://www.intel.com/content/www/us/en/developer/articles/technical/introduction-to-cache-allocation-technology.html
https://www.intel.com/content/www/us/en/developer/articles/technical/introduction-to-cache-allocation-technology.html
https://doc.dpdk.org/guides/prog_guide/poll_mode_drv.html
https://doc.dpdk.org/guides/prog_guide/poll_mode_drv.html
https://doc.dpdk.org/guides/prog_guide/poll_mode_drv.html
https://fio.readthedocs.io/en/latest/
https://fio.readthedocs.io/en/latest/
https://kafka.apache.org/intro
https://www.alibabacloud.com/help/en/server-load-balancer/latest/what-is-application-load-balancer
https://www.alibabacloud.com/help/en/server-load-balancer/latest/what-is-application-load-balancer
https://www.alibabacloud.com/help/en/server-load-balancer/latest/what-is-application-load-balancer
https://www.intel.com/content/www/us/en/products/details/network-io/ipu.html
https://www.intel.com/content/www/us/en/products/details/network-io/ipu.html
https://www.nvidia.com/en-us/networking/products/data-processing-unit/
https://www.nvidia.com/en-us/networking/products/data-processing-unit/

[47] Zijun Li, Yushi Liu, Linsong Guo, Quan Chen, Jiagan
Cheng, Wenli Zheng, and Minyi Guo. FaaSFlow: Enable
Efficient Workflow Execution for Function-as-a-Service.
In ASPLOS’22, page 782–796. ACM, 2022.

[48] Ashraf Mahgoub, Edgardo Barsallo Yi, Karthick
Shankar, Sameh Elnikety, Somali Chaterji, and Saurabh
Bagchi. ORION and the Three Rights: Sizing, Bundling,
and Prewarming for Serverless DAGs. In OSDI’22,
pages 303–320. USENIX Association, 2022.

[49] Yanan Yang, Laiping Zhao, Yiming Li, Huanyu Zhang,
Jie Li, Mingyang Zhao, Xingzhen Chen, and Keqiu Li.
INFless: A Native Serverless System for Low-latency,
High-Throughput Inference. In ASPLOS’22, pages 768–
781. ACM, 2022.

[50] Rohan Basu Roy, Tirthak Patel, and Devesh Tiwari. Ice-
Breaker: Warming Serverless Functions Better with Het-
erogeneity. In ASPLOS’22, page 753–767. ACM, 2022.

[51] Hong Zhang, Yupeng Tang, Anurag Khandelwal, Jin-
grong Chen, and Ion Stoica. Caerus: NIMBLE Task
Scheduling for Serverless Analytics. In NSDI’21, pages
653–669. USENIX Association, 2021.

[52] Zhipeng Jia and Emmett Witchel. Boki: Stateful Server-
less Computing with Shared Logs. In SOSP’21, pages
691–707. ACM, 2021.

[53] Rong Gu, Kai Zhang, Zhihao Xu, Yang Che, Bin Fan,
Haojun Hou, Haipeng Dai, Li Yi, Yu Ding, Guihai Chen,
et al. Fluid: Dataset Abstraction and Elastic Accelera-
tion for Cloud-native Deep Learning Training Jobs. In
ICDE’22, pages 2182–2195. IEEE, 2022.

[54] Dave Hitz, James Lau, and Michael A Malcolm. File
System Design for an NFS File Server Appliance. In
WTEC’94, pages 1–23. USENIX Association, 1994.

[55] Djob Mvondo, Mathieu Bacou, Kevin Nguetchouang,
Lucien Ngale, Stéphane Pouget, Josiane Kouam, Renaud
Lachaize, Jinho Hwang, Tim Wood, Daniel Hagimont,
et al. OFC: An Opportunistic Caching System for FaaS
Platforms. In EuroSys’21, pages 228–244. ACM, 2021.

[56] Alexander Fuerst and Prateek Sharma. FaasCache:
Keeping Serverless Computing Alive with Greedy-Dual
Caching. In ASPLOS’21, pages 386–400. ACM, 2021.

[57] Zhen Lin, Kao-Feng Hsieh, Yu Sun, Seunghee Shin, and
Hui Lu. FlashCube: Fast Provisioning of Serverless
Functions with Streamlined Container Runtimes. In
PLOS’21, pages 38–45. ACM, 2021.

[58] Ana Klimovic, Yawen Wang, Patrick Stuedi, Animesh
Trivedi, Jonas Pfefferle, and Christos Kozyrakis. Pocket:
Elastic Ephemeral Storage for Serverless Analytics. In
OSDI’18, pages 427–444. USENIX Association, 2018.

[59] Abel Gordon, Nadav Amit, Nadav Har’El, Muli Ben-
Yehuda, Alex Landau, Assaf Schuster, and Dan Tsafrir.
ELI: Bare-Metal Performance for I/O Virtualization.
SIGPLAN, 47(4):411–422, 2012.

[60] Chinmay Kulkarni, Sara Moore, Mazhar Naqvi, Tian
Zhang, Robert Ricci, and Ryan Stutsman. Splinter:
Bare-metal Extensions for Multi-tenant Low-latency
Storage. In OSDI’18, pages 627–643. USENIX As-
sociation, 2018.

[61] Manikandan Arumugam, Deepak Bansal, Navdeep Bha-
tia, James Boerner, Simon Capper, Changhoon Kim,
Sarah McClure, Neeraj Motwani, Ranga Narasimhan,
Urvish Panchal, Tommaso Pimpo, Ariff Premji, Pran-
jal Shrivastava, and Rishabh Tewari. Bluebird: High-
performance SDN for Bare-metal Cloud Services. In
NSDI’22, pages 355–370. USENIX Association, 2022.

[62] Jongyul Kim, Insu Jang, Waleed Reda, Jaeseong Im,
Marco Canini, Dejan Kostić, Youngjin Kwon, Simon
Peter, and Emmett Witchel. LineFS: Efficient Smart-
NIC Offload of a Distributed File System with Pipeline
Parallelism. In SOSP’21, pages 756–771. ACM, 2021.

[63] Jaehong Min, Ming Liu, Tapan Chugh, Chenxingyu
Zhao, Andrew Wei, In Hwan Doh, and Arvind Krish-
namurthy. Gimbal: Enabling Multi-tenant Storage Dis-
aggregation on SmartNIC JBOFs. In SIGCOMM’21,
pages 106–122. ACM, 2021.

[64] Huaicheng Li, Mingzhe Hao, Stanko Novakovic, Vaib-
hav Gogte, Sriram Govindan, Dan RK Ports, Irene
Zhang, Ricardo Bianchini, Haryadi S Gunawi, and
Anirudh Badam. Leapio: Efficient and Portable Vir-
tual NVMe Storage on ARM SoCs. In ASPLOS’20,
pages 591–605. ACM, 2020.

USENIX Association 21st USENIX Conference on File and Storage Technologies 245

TENET: Memory Safe and Fault Tolerant Persistent Transactional Memory
R. Madhava Krishnan Diyu Zhou* Wook-Hee Kim† Sudarsun Kannan‡ Sanidhya Kashyap* Changwoo Min

Virginia Tech EPFL* Konkuk University† Rutgers University‡

Abstract
Byte-addressable non-volatile memory (NVM) allows pro-

grams to directly access storage using memory interface with-
out going through the expensive conventional storage stack.
However, direct access to NVM makes the NVM data vulnera-
ble to software bugs and hardware errors. This issue is critical
because, unlike DRAM, corrupted data can persist forever,
even after the system restart. Albeit the plethora of research on
NVM programs and systems, there is little focus on protecting
NVM data from software bugs and hardware errors.

In this paper, we propose TENET, a new NVM program-
ming framework, which guarantees memory safety and fault
tolerance to protect NVM data against software bugs and hard-
ware errors. TENET provides the popular persistent transac-
tional memory (PTM) programming model. TENET leverages
the concurrency guarantees (i.e., ACID properties) of PTM
to provide performant and cost-efficient memory safety and
fault tolerance. Our evaluations show that TENET offers an
enhanced protection scope at a modest performance overhead
and storage cost as compared to other PTMs with partial or
no memory safety and fault tolerance support.

1 Introduction
Byte-addressable non-volatile memory (NVM) opens a new
paradigm in designing storage stack. NVM provides byte-
addressability and low-access latency like DRAM and it of-
fers data persistence like storage. A program can directly map
(mmap) an NVM region to its address space and access it using
load/store instructions without storage stack overhead (re-
ferred to as direct persistence). Several works leverage NVM
in the core storage stack, including file systems [34,51,88,89,
96], key-value stores [52, 55, 57, 61, 65, 66, 86], and persistent
transactional memory (PTM) [47, 56, 77, 87]. Although the
first commercial NVM product, Intel Optane DCPMM, was
discontinued recently [13],industry continues to explore vari-
ous forms of direct persistence [42]. In particular, the emerg-
ing Compute Express Link (CXL) [12,31] opens new opportu-
nities for byte-level persistence based on NAND flash [16,21],
NRAM [39], battery-backed DRAM [41,78], and PRAM [22].
Also, many software-based solutions [53, 67, 91], which ex-
ploit direct persistence (DRAM along with in-rack battery),
are being widely deployed in data centers [1, 11, 18, 45, 50].

However, the direct persistence of NVM opens several chal-
lenges in protecting data from software bugs (e.g., “memory
scribbles”) and media errors. NVM data can be permanently
corrupted due to a single memory scribble, which roots from
a spatial safety violation (e.g., buffer overflow) or a temporal
safety violation (e.g., use-after-free) in a program. Previous

studies [26, 32, 35, 36, 59, 69–71, 73, 79, 81, 83, 84, 92, 95]
have shown that such memory safety violations are prevalent
in programs (e.g., 70% of CVEs [5, 17, 25]). Since NVM is
mapped to the same address space as DRAM, memory safety
violations in NVM and DRAM can corrupt NVM data. Be-
sides these software bugs, dense NVMs have a higher random
raw bit error rate (RBER) than DRAMs, with RBER closer to
NAND flash [85,93]. Hence, NVM (e.g., Intel Optane) adopts
stronger ECC for error correction. Unfortunately, certain hard-
ware errors can still escape the error correction, leading to
Uncorrectable Media Errors (UME) in NVM [4, 7].

PTMs [47, 56, 77, 87] are one of the most popular NVM
programming models because of their ability to exploit direct
persistence. A few recent PTM systems, such as SafePM [27]
and Pangolin [94], attempt to provide NVM data protection
by extending libpmemobj [47]. A desirable PTM system that
offers NVM data protection should (1) offer extensive data
protection: protect against both NVM media errors and soft-
ware memory safety violations in both DRAM and NVM, and
(2) incur lower performance overhead and storage costs.

Unfortunately, existing works fail to meet the above criteria.
SafePM [27] provides NVM memory safety by instrument-
ing every NVM access. It does not protect against media
errors and memory safety violations in DRAM. The mem-
ory instrumentation and the associated metadata incur high
performance overhead and storage cost. Pangolin offers data
protection with checksum and parity while libpmemobj pro-
vides fault tolerance by simply replicating the NVM data to
a backup NVM region. However, both systems are still vul-
nerable to memory safety violations, incur high NVM storage
cost, and suffer from high performance overhead. As further
explained in §2.2, in summary, prior approaches compromise
the protection coverage [27, 44, 94] while also incurring high
storage cost and high performance overhead [27, 47, 94].

This paper proposes TENET, a principled PTM-based
approach that offers an enhanced memory safety and fault
tolerance guarantees at a significantly lower performance
overhead and storage costs than prior works. Leveraging
off-the-shelf hardware features and the concurrency prop-
erties of PTM, TENET reduces performance overhead and
storage costs without compromising its protection coverage.
We realize TENET’s memory-safe design principles using
the state-of-the-art and highly scalable PTM framework,
TimeStone [56] that does not provide NVM data protection.
In particular, key techniques of TENET are as follows:
• Hardware-enforced memory domain separation. Instead

of instrumenting every memory access to check for mem-
ory safety violations, TENET exploits an existing hardware

USENIX Association 21st USENIX Conference on File and Storage Technologies 247

feature: Intel Memory Protection Keys (MPK) [49, 74],
to separate the address space into NVM domains and a
DRAM domain. Only the trustworthy TENET library can
write to the NVM domains. Thus, outside the TENET li-
brary, TENET offloads NVM data protection against mem-
ory scribbles to hardware. This enables data protection for
most memory access with almost zero overhead.

• On-first-read and on-commit memory safety enforce-
ment. Enforcing memory safety at every NVM access in
the TENET library incurs high overhead. Instead, leveraging
PTM semantics, TENET enforces the temporal safety vio-
lation only at the first reference of an NVM object and the
spatial safety violation only at the commit of a persistent
transaction. This, in tandem with the memory domain sepa-
ration technique, prevents the corrupted data from reaching
NVM with very low runtime overhead.

• Asynchronous hybrid NVM-SSD replication. Protecting
against NVM media errors fundamentally requires creating
redundancy. TENET asynchronously replicates the NVM
data to SSD off the critical path to tolerate any number of
NVM media errors. It thus offers low storage cost fault
tolerance without hindering performance.

• We design TENET using the above approaches, which to the
best of our knowledge is the first high-performance PTM
with memory safety and fault tolerance guarantees.

• We evaluate two different versions of TENET– (1) memory
safety only (TENET-MS) and (2) memory safety and fault
tolerance (TENET) with key data structures and real-world
workloads. Our results indicate that TENET offers enhanced
protection at a modest performance overhead and storage
cost as compared to state-of-the-art systems.

2 Background and Motivation
This section first introduces NVM media errors (§2.1) and
memory safety violation in NVM programs (§2.2), followed
by discussing the prior PTM works that address the media
errors and memory safety violations (§2.3).
2.1 NVM Media Errors
Figure 1 shows the classification of potential errors in NVM.
These errors can be classified into hardware errors and soft-
ware errors. Hardware errors can be further classified into me-
dia errors (MEs) and silent data corruptions (SDCs). Media
errors are caused by faults in the NVM media such as exceed-
ing the write endurance, power spikes, soft media faults etc
that directly corrupt data in the NVM media [85, 93]. SDCs
are caused by faults that occur outside NVM media, which in-
directly causes data corruption. Examples of SDCs are buggy
NVM firmware, faults in CPUs, memory controllers, or other
hardware components [28, 54]. Handling SDCs is a separate
research area and it is out of scope of this paper.
Hardware media error (ME) correction. Commercially
available NVMs implement error-correction code (ECC) in
hardware to detect and correct media errors. For example,
Intel Optane DCPMM uses hardware parity to detect any-bit

Non-Volatile Memory (NVM) Error
 ├ Hardware Error
 │ ├ Media Error (ME)
 │ │ ├ Correctable Media Error (CME)
 │ │ └ Uncorrectable Media Error (UME)
 │ └ Silent Data Corruption (SDC)
 └ Software Error
 ├ Memory Safety Violation
 │ ├ Spatial Safety Violation
 │ └ Temporal Safety Violation
 ├ Crash Consistency Violation
 └ Logic Bugs

Figure 1: Classification of errors in NVM. TENET handles UME,
Spatial and Temporal Safety Violation bugs (red). TENET relies on
the hardware ECC to fix CME and the underlying PTM to handle
Crash Consistency Violations such as atomicity and persistence or-
dering (blue). Silent Data Corruption in the hardware (e.g., CPU
faults) and logical bugs in the application are out of scope (grey).

errors, and it can correct up to two 2-bit errors [10]. The NVM
hardware transparently fixes such correctable media errors
(CMEs). However, uncorrectable media errors (UMEs) will
be reported for software intervention as detailed below.
Reporting uncorrectable media error (UME) to software.
The OS receives the reports of UMEs; and it can pass it to the
application. Specifically, when a CPU accesses an NVM page
affected by UMEs, the NVM hardware sends a poison bit
along with the relevant data to the CPU. Upon encountering
the poison bit, the CPU raises a memory check exception
(MCEs) for the OS to handle. Currently, Linux handles the
MCE by adding the corrupted page to the bad block list and
sends a SIGBUS signal to the application [4, 9]. Then the OS
leaves the responsibility to the application for fixing UMEs
during the recovery phase [7]. We note that, although the
NVM is byte-addressable, UMEs are reported to the software
at the page granularity due to the blast radius effect [3].
2.2 Memory Safety in NVM Programs
We categorize software “scribbles”, which corrupt NVM data,
as spatial and temporal memory safety violations (Figure 1).
Spatial safety violations happen when memory is accessed
beyond its allocated range. Buffer overflows and array out-
of-bound accesses are classical examples. Temporal safety
violations happen due to dangling pointers; i.e., when access-
ing an already freed (use-after-free) or accessing a reallocated
address range (use-after-realloc). These memory safety bugs
are even more dangerous in NVM than DRAM because the
NVM data will be corrupted forever and a simple system
restart would not fix these issues. Note that memory safety
bugs on either DRAM or NVM region of an application can
cause NVM data corruption since the NVM region is mapped
directly to application’s address space.
2.3 Prior NVM Data Protection Approaches

Memory safety in NVM programs. Prior works – Pan-
golin [94], SafePM [27], and Corundum [44] – include mech-
anisms to protect NVM data from memory safety violations.
Pangolin extends libpmemobj [47] and uses per-object check-
sum to detect spatial safety violations. SafePM adds Address-

248 21st USENIX Conference on File and Storage Technologies USENIX Association

0.0

1.0

2.0

3.0

4.0

5.0

1 8 16 24 32 40 48

M
op

s/
se

c

Threads

Romulus [30]
DudeTM [62]

Trinity [77]

TimeStone [56]
Libpmemobj [47]

OneFile [75]

BST (Binary Search Tree): lookup=80%, insert/delete= 20%

Figure 2: Performance of TimeStone against other PTMs. None of
the PTMs are memory safe or fault tolerant against UME.

Sanitizer [80] to libpmemobj transaction to detect spatial and
temporal safety violations on NVM data. Corundum is a Rust-
based NVM programming library and leverages Rust’s type
system to statically enforce spatial and temporal memory
safety. However, they have some critical limitations. First,
none of these approaches prevent NVM data corruption due
to memory safety violations on “DRAM data”. Suppose that
the buggy code inside a transaction causes a buffer overflow
on DRAM data; such spatial safety violations on DRAM
can scribble arbitrary memory location, including NVM data.
Moreover, none of them guarantee to protect NVM data from
temporal safety violations. Pangolin does not check tempo-
ral safety violations. Meanwhile, SafePM does not detect
use-after-realloc bugs. Even with Corundum, the developers
still have the responsibility to guarantee type and memory
safety for the "unsafe" Rust code, both can result in spatial
and temporal safety violations.

Both Pangolin and SafePM suffer from high performance
overhead and introduce additional performance bottlenecks.
Pangolin calculates and verifies checksums on the critical
path, imposing high performance overhead. Furthermore, it
verifies checksum only for write transactions (i.e., read trans-
actions are unprotected). SafePM instruments every NVM
access to check for memory safety violation, which is costly.
SafePM further introduces extra UNDO logging overhead
over the already existing expensive logging in the libpmemobj
to guarantee crash consistency for its memory safe metadata.
Fault tolerance against UME. To protect against UME,
libpmemobj supports replicating data on NVM. However, it
replicates data on the write critical path, leading to high perfor-
mance overhead. Furthermore, storing the replicated data on
NVM wastes the precious NVM space, doubling (2×) storage
cost. Pangolin uses parity for fault tolerance; however, parity
calculation on the critical path causes high performance over-
head and it unnecessarily serializes the transactions which
affects the write scalability. Further, Pangolin can recover up
to one page within a parity region; a data loss will happen if
UME occurs on more than a page. SafePM and Corundum do
not provide any fault tolerance against UME.
2.4 Prior PTMs for NVM
Libpmemobj [47] has been the de-facto PTM. However, it
suffers from high performance overhead and poor scalabil-

Node A
commit-ts=10

Node A6

commit-ts=60…Node A9

commit-ts=90
Node A8

commit-ts=80… node A9

commit-ts=90

Master Object

update(A,A8)… update(A,A9)

Operational Log (OLog)

❶

❷

❹

NVM DRAM

Checkpoint Log (CLog)Transient Version Log (TLog)
version
chain

log reclamation
writeback

Writer (local-ts=85)
> update(A, A9)

Program

❸

Figure 3: An illustrative example of updating Node A to its 9th
version (A9) in TimeStone.

ity. Thus, several new PTMs focus on addressing its limita-
tions [30,40,62,68,75–77,87]. Figure 2 shows that none of the
existing PTMs, except TimeStone [56], scale beyond 8 cores
even for a read-intensive workload. Further, TimeStone per-
forms up to 8× better than the existing PTMs. Based on this
observation, we chose TimeStone [24, 56] as the transaction
abstraction for TENET. Moreover, designing memory safety
and fault tolerance techniques for such a high performance
PTM is challenging as even a small bottleneck can compro-
mise its original scalability and performance. We introduce
the relevant design aspects of TimeStone below.

Multi-version concurrency control. TimeStone follows
multi-version concurrency control (MVCC). With MVCC,
TimeStone supports non-blocking reads and concurrent dis-
joint writes, achieving high concurrency. For each object cre-
ated by the application (e.g., B-tree node), TimeStone allo-
cates a master object on NVM (see Figure 3). On updating
a master object, TimeStone creates a new version (1) on
DRAM, chaining multiple version objects from new to old
object’s age. TimeStone dereferences the right version object
during the dereference phase with the help of timestamps.
Each version object gets assigned a timestamp when it is
committed (commit-ts). Also, each transaction gets a times-
tamp (local-ts), which denotes the transactions’ start time.
TimeStone traverses the version chain and chooses the most
recent version of an object based on these timestamps (i.e.,
commit-ts<=local-ts). This guarantees a consistent snap-
shot of NVM data for all transactions at any given time.

Operational log based immediate durability. TimeStone
uses a DRAM-NVM hybrid logging technique, named TOC
logging for efficient crash consistency. The TOC logging
consists of Transient Version Log (TLog) on DRAM, Oper-
ational log (OLog) and Checkpoint log (CLog) on NVM, as
illustrated in Figure 3. TimeStone creates a new version on
TLog (1), and logs the performed operation to the OLog (2)
for immediate durability. An operational log entry is typically
much smaller than the conventional undo/redo logging, which
duplicates the data, thus making crash consistency efficient.

Asynchronous log reclamation and replay based recovery.
As more versions are created, TLog eventually becomes full,

USENIX Association 21st USENIX Conference on File and Storage Technologies 249

triggering log reclamation. When TLog is reclaimed, the latest
version of an object on TLog (A9 over A8) is checkpointed to
the CLog (3). Similarly, when CLog becomes full, the latest
checkpoint (A9 over A6) is written back to the master object
(4). To recover from a crash, TimeStone first applies the
checkpoints in CLog to the respective master objects and re-
verts them to a consistent snapshot. Then the OLog is executed
to recreate all the updates that are lost on TLog.

3 Overview of TENET

3.1 Threat Model and Assumptions
TENET aims to protect against spatial and temporal mem-
ory safety violations in buggy application code. Furthermore,
TENET considers the possibility of a memory safety violation
on DRAM data corrupting NVM. TENET also aims to guar-
antee fault tolerance for NVM data against the uncorrectable
media errors (UMEs). PTMs in general and TimeStone in
particular cannot guarantee ACID properties for the applica-
tion code that is outside the transaction or when the PTMs’
APIs are misapplied. This applies to TENET as well, i.e., it
cannot guarantee memory safety and fault-tolerance for the
code outside the transaction. TENET is not designed to handle
SDC that occur outside the NVM media. Protection against
the adversarial attacks (e.g., control-flow attacks) is out-of-
scope. However, the protection techniques and mechanisms
against SDC and control-flow attacks can be orthogonally
deployed to TENET. In TENET, application code is distrusted
while TENET library code and OS kernel are considered as a
trusted computing base (TCB).
3.2 Design Goals
• Protect NVM data from memory safety violations.

TENET should detect all spatial and temporal safety bugs
not only from NVM but also from DRAM. Any memory
safety bugs either in DRAM or NVM code should not cor-
rupt NVM data.

• Protect NVM data against UMEs. TENET should provide
a robust fault tolerance mechanism to recover and restore
NVM data from UMEs transparently.

• Low performance and storage overhead. TENET aims
to be a practical system that offers an enhanced protection
scope and strong fault tolerance at a minimal performance
and storage overhead.

3.3 Design Overview
TENET re-purposes the multi-versioning and transactional
semantics of TimeStone to achieve its design goals. Below we
introduce TENET’s main techniques as illustrated in Figure 4.
(1) Separation of NVM protection domain from DRAM. A
memory safety bug (e.g., out-of-bound write) either in DRAM
or NVM can result in NVM data corruption. Enforcing full
memory safety in every single memory access incurs pro-
hibitive runtime overhead as prior studies show [27, 94].

To prevent unauthorized NVM writes without checking ev-
ery single memory access, TENET grants the write permission

to the NVM region only for the TCB i.e., the TENET library
code. In other words, the application code has read-only per-
mission for the NVM, and consequently, it only writes on
DRAM. When the application commits its transaction, writer
thread gets write permission to execute the TENET library
code which propagates the updates on DRAM to the NVM.

TENET completely segregates DRAM and NVM regions so
that all new version and master objects are created on DRAM
(referred to as DRAM Objects). Therefore, TENET application
code does not require write access to NVM, as it writes only to
the DRAM region. If a buggy application code tries to write
to the NVM region, it will receive an exception (SIGSEGV)
from TENET and will be terminated. TENET exploits Intel
Memory Protection Keys (MPK) [49,74] to efficiently switch
NVM permissions for each thread.
(2) On-commit spatial safety enforcement. As applica-
tions can always write to the TLog (i.e., DRAM), it is vul-
nerable to arbitrary memory scribble. A corrupted DRAM
object can be eventually propagated to CLog (6 in Figure 4)
and the master object (8), consequently corrupting the NVM
data. We propose on-commit spatial safety enforcement to pre-
vent corrupted DRAM objects from reaching NVM. TENET
adds eight byte canary values at the start and at the and of a
DRAM object during its creation (2). Specifically, TENET
assigns a random value to C0, and the hash of C0 and its lo-
cation (xor(C0,&C1)) to C1. When an application commits
the transaction, TENET inspects the integrity of canary values
of all DRAM objects in that transaction (3 and 4). If the
canaries are compromised (i.e., C0 != xor(C0,&C1)), then
TENET aborts the transaction and gracefully terminates with-
out propagating the corrupted objects to NVM.

Our on-commit spatial safety enforcement is efficient
with minimal performance overhead. Unlike the prior ap-
proaches [27, 69, 79, 95], our technique avoids reading addi-
tional metadata, and it checks the integrity only once during
the transaction commit. Note that NVM objects do not have
canary values and thus no NVM space overhead.
(3) On-first-dereference temporal safety enforcement.
Even after an NVM (master) object is freed (and then reallo-
cated), a program still can reference it via dangling pointers
which can corrupt the NVM data in unintended ways.

We propose on-first-dereference temporal safety enforce-
ment to efficiently enforce temporal safety of NVM objects
with a minimal runtime overhead. TENET uses a tag-based
approach, which essentially checks if a pointer points to the
right object by comparing tags associated with the pointer and
the pointed object. When TENET creates an NVM (master)
object, it assigns a 2-byte random integer as a tag of the object
(e.g., 0xCAFE for Node A in Figure 4). We encode this 2-byte
tag in the upper 16-bit of a pointer, which is unused in the x86
architecture. When the object is freed, its associated tag on
the header set to zero for detecting use-after-free. When the
object is dereferenced first time in a TENET transaction (1),
TENET checks whether the encoded tag in the pointer matches

250 21st USENIX Conference on File and Storage Technologies USENIX Association

Node A
commit-ts=10
tag=0xCAFENode A9

commit-ts=90
tag=0xCAFE

…

Master Object

Operational Log (OLog)

NVM

DRAM Checkpoint Log (CLog)

Transient Version Log (TLog)

version chain

log reclamation

Writer (local-ts=85)
> update(A, A9)

Program

ca
n

ar
y

(C
0

)

ca
n

ar
y

(C
1

)

Node A8

commit-ts=80
tag=0xCAFE

ca
n

a
ry

 (
C

0
)

ca
n

a
ry

 (
C

1
)

update(A,A8)… update(A,A9)

Node A6

commit-ts=60
tag=0xCAFE

…
node A9

commit-ts=90
tag=0xCAFE

Primary Log Pool

Primary Object Pool

node A9

commit-ts=90
tag=0xCAFE

update(A,A8)… update(A,A9)

Node A6

commit-ts=60
tag=0xCAFE

…
node A9

commit-ts=90
tag=0xCAFE

Replica Log Pool

Replica Object Pool

SSD

replication

object access

①❷

❺ ⑥

⑧

❾

⑩

④③
❼

Figure 4: Overall architecture of TENET with an example of updating Node A to its 9th version (A9). n denotes the newly added memory safety
checks and replication to the TimeStone transaction. Note that the application has read/write access to DRAM and read-only permission for
NVM. When accessing Node A, TENET validates its temporal safety by comparing the tags, 0xCAFE (1). If the tags do not match, the transaction
is aborted. Otherwise, the writer proceeds to traverse the Node A’s version chain, makes a copy of the latest version (A8) in its TLog and updates
it to A9 (2). Upon commit, Node A9 is validated for spatial safety by checking the canary values (3 and 4). The transaction is aborted if the
validation fails. Otherwise, the writer commits the transaction by updating its OLog (5) for durability and it also synchronously updates the
replica OLog for fault tolerance (6). When reclaiming the TLog, Node A9 is once again validated for spatial safety before checkpointing it to the
CLog (7) followed by synchronously updating the replica CLog (8). Similarly, when the CLog is full, TENET writes back the latest checkpoint
(Node A9) to the original master object Node A (9). The updated Node A is then asynchronously replicated to the disk (10).

with the tag in the pointed object. If the tags do not match,
it means the pointer points to the already-freed/-reallocated
object (i.e., dangling pointer), which violates temporal safety.
In this case, TENET aborts the transaction immediately.

Our approach is efficient and imposes minimal performance
overhead because it checks the temporal safety of each object
only once in a transaction. Also, accessing the inlined tags is
cache-friendly, which, unlike prior approaches [27,71,79,95],
requires no additional metadata lookup.

(4) Off-critical path NVM replication to SSD. TENET
replicates all NVM data; in the case of a UME, corrupted
NVM pages can be restored using the replica. The main chal-
lenge in designing a replication scheme is minimizing the
performance overhead and storage cost. While replication to
another NVM region can be performance efficient, it incurs
2× higher capacity cost. Instead, we propose a hybrid NVM-
SSD replication technique; TENET asynchronously replicates
the master objects to SSD (10) and synchronously replicates
the transaction logs (CLog and OLog) to NVM (6 , 8). Master
objects, are application data structures, which can be large and
also potentially occupy the entire NVM space. Hence, TENET
replicates master objects to the SSD off the critical path to
reduce both storage cost and performance overhead. Although
the replication is asynchronous, TENET guarantees loss-less
NVM data recovery by prudently leveraging the transaction
logs and grace period semantics. Meanwhile, transaction logs
are small and finite, so TENET replicates them to NVM to
reduce performance overhead. Further, TENET is also capable
of recovering from multiple simultaneous UMEs occurring
in one or multiple NVM pages. We explain this design, its

correctness and recovery guarantees in §4.4 and §4.5.

3.4 Putting It All Together For TimeStone

TENET makes the NVM read-only for all except the TENET’s
library code. So the NVM objects in TimeStone do not need
spatial safety checks as they are read-only objects. TENET
enforces temporal safety checks for all NVM objects (us-
ing pointer tags) during the object dereferencing to detect
dangling pointers. On the contrary, DRAM objects are vulner-
able to application scribbles (due to write permission) hence
TENET enforces on-commit spatial safety checks using the
canary bits. DRAM objects do not need separate temporal
safety checks as they are managed internally by TENET; i.e.,
as DRAM objects are accessed via the respective NVM ob-
ject, enforcing temporal safety for NVM objects indirectly
guarantees it for DRAM objects. We discuss the correctness
of these techniques in §4.3. TimeStone can not handle UMEs,
so TENET proposes to replicate master objects and transaction
logs to SSD and NVM respectively; in the event of a UME,
NVM data can be restored using the NVM/SSD backup. In
a nutshell, we optimally apply TENET’s memory safety tech-
niques to the vulnerable parts of TimeStone and organically
redesigned it to guarantee full memory safety. If TENET was
to be used for other PTMs, then its techniques can well be
applied, albeit it may require some engineering effort. We
discuss this further in §6. Refer to Figure 4 for a summary on
lifecycle of a TENET transaction.

4 TENET Design
In this section, we first describe TENET transaction design
(§4.1) followed by the design of memory safety (§4.2-§4.3),

USENIX Association 21st USENIX Conference on File and Storage Technologies 251

fault tolerance replication (§4.4), and recovery (§4.5).
4.1 TENET Transaction
Below we explain how TimeStone transaction is redesigned
using TENET to enforce memory safety and fault tolerance.

4.1.1 NVM Object Dereference

Object dereferencing in TimeStone (§2.4) only traverses the
version chain and returns the correct version, whereas in
TENET, object dereferencing is a two-step process.
(1) Temporal safety validation. TENET validates the master
object pointer for temporal safety (§4.3.2) to detect dangling
pointers; transaction aborts if the validation fails (§4.1.4).
(2) Version chain traversal. If the object passes the valida-
tion, then TENET dereferences the correct DRAM object or
directly the master object if the version chain does not exist.

4.1.2 Updating an Object

In TENET, a writer updates a master object by creating a
new DRAM object as done in the TimeStone. However,
TimeStone allows its users (application) to allocate and write
to the NVM when creating new master objects. Thus, a buggy
application can easily corrupt the NVM region. In TENET,
this is restricted to prevent direct NVM writes; so the appli-
cation allocates and writes to a new master object (shadow
master object) on the DRAM and then during the commit
phase TENET library creates a corresponding NVM copy only
if the writes pass the spatial safety violation checks.

4.1.3 Committing a Transaction

In TimeStone, the commit procedure updates the OLog to guar-
antee durability and then makes all the updates atomically
visible. TENET’s commit procedure happens in three phases:
(1) Spatial safety validation. All the new versions and
shadow master objects created in a transaction are validated
for spatial safety violations (§4.3.1). Upon successful valida-
tion, TENET allocates and updates the persistent master object
from the corresponding shadow master object.
(2) Transaction durability and replication. Updating OLog
guarantees durability, and replicating it ensures fault toler-
ance (§4.4.1). Also, TENET adds all the newly created master
objects in (1) to the replica buffer to trigger async disk writes
using background workers (§4.4.2).
(3) Publishing the updates atomically. TENET makes the
updates atomically visible by adding the new versions to
their respective version chain, and this procedure is exactly
the same as TimeStone. Additionally, TENET frees all the
shadow master objects, if any, and exits the critical section.

4.1.4 Aborting a Transaction

Common abort procedure. TENET rolls back any used log
space, lock status, and reclaims all the shadow master objects
and also its NVM counterpart if one exists. This is common
for all three abort cases described below.

Abort due to lock conflict. During the object update (§4.1.2),
if the writer fails to acquire a lock, it aborts the transaction.
This is a benign abort i.e., no memory safety violations, so
TENET performs the common abort procedure and retries the
transaction after the backoff period.

Abort due to memory safety violation. All ongoing trans-
actions are aborted if a transaction aborts due to spatial safety
or temporal safety violation. TENET executes the common
abort procedure and returns an exception.

Abort due to a UME. The OS notifies a UME by sending
a SIGBUS signal. TENET’s signal handler catches the signal,
returns a UME exception to notify the application, and grace-
fully terminates the process. TENET fixes the affected NVM
region during the recovery process (§4.5).

4.2 Unauthorized NVM Write Prevention
TENET already prevents application code from directly writ-
ing to the NVM by using DRAM objects for the updates. How-
ever, a buffer overflow on DRAM can corrupt the NVM data
as NVM is directly mapped to the applications’ address space.
TENET employs Memory Protection Keys (MPK), a hardware
feature available in the Intel systems [33, 34, 43, 74, 82] to
detect NVM writes out of TENET library code.

Using MPK to enforce read-only NVM access. With MPK,
a page can be assigned to one of the 16 available protec-
tion domains. The assigned protection domain is encoded
in the page table entry. A thread’s access permission to the
protection domains is controlled at the per-thread level via a
user-accessible register, PKRU. A thread can switch its access
permissions to the protection domains by writing to the PKRU
register, which only costs 20 CPU cycles. In TENET, each
NVM pool is assigned a unique protection key during pool
creation. Only the TCB (i.e., TENET library code) is allowed
to write to the NVM pool. Thus, a thread grants itself read-
write permissions to the corresponding NVM pool during
the library code execution and revokes it before exiting the
library. As a result, if the application writes to NVM (e.g.,
due to buffer overflow), MMU prevents the access and OS
sends a SIGSEGV signal. Thus, any spatial safety violations
due to a buggy write is contained within the DRAM region.

4.3 Enforcing Memory Safety
In this section, we explain the spatial (§4.3.1) and temporal
safety design (§4.3.2). In §4.3.3, we explain the array interface
as an example, and how the interface provides memory safety.

4.3.1 On-commit Spatial Safety Design

TENET enforces spatial safety for all DRAM objects to pre-
vent NVM data corruption due to a buggy DRAM write.

Technique. As illustrated in the Figure 4, all DRAM objects
are assigned two 8-byte canaries at the start C0 and at the end
C1. Specifically, C0 is a random value and C1 is the hash of C0
and its location (xor(C0,&C1)). TENET inspects the integrity
of canary bits to detect buffer overflows and underflows.

252 21st USENIX Conference on File and Storage Technologies USENIX Association

On-commit validation. When the application commits its
writes (§4.1.3), TENET inspects canary bits for all the newly
created DRAM objects. A transaction is committed only when
both C0 and C1 are intact in all the DRAM objects. Otherwise,
the transaction aborts and discards all the corrupted objects.
An erroneous transaction can corrupt the DRAM objects out-
side of the current transaction i.e., the ones that are part of
other concurrent transactions or the ones that are not part of
any ongoing transactions at all. To detect such cases, TENET
places an 8-byte canary at the start and the end of the trans-
actions’ write set. Note that all the DRAM objects including
the shadow master objects are part of a transactions’ write
set. TENET validates the write set canaries before and after
each step of the commit process (§4.1.3). This ensures that
a transactions’ write set (i.e., DRAM object) has not been
corrupted by an erroneous concurrent transaction, particularly
between the initial validation ((1) in §4.1.3) and the publica-
tion of the updates ((3) in §4.1.3). However, if the write set
canaries are found to be compromised then TENET aborts all
the transactions as explained in §4.1.4.
Correctness. Deferring spatial safety checks until the com-
mit time does not violate the correctness as the other concur-
rent transactions can not observe any uncommitted DRAM
objects. Although a rare case, to avoid reading a DRAM
object that is corrupted (after it commits), TENET performs
spatial safety check before dereferencing a committed DRAM
object. Subsequently, the DRAM objects (7 in Figure 4) and
the shadow master objects are re-validated before and after
copying to the NVM to prevent Time-of-Check-Time-of-Use
(TOCTOU) bugs [6]. If an DRAM object is found to be cor-
rupted post the copy operation then the corresponding NVM
object will be safely reclaimed as part of the transaction abort
procedure. Finally, TENET cannot detect the corruptions that
occur without overwriting the canaries, aka intra-object over-
flows. We discuss this further in §6.3.

4.3.2 On-first-dereference Temporal Safety Design

TENET enforces temporal safety for all NVM (master) objects
to detect dangling pointer dereference. Accessing an already
free-ed (or reallocated) address can corrupt the NVM data
due to use-after-free (or use-after-realloc) bugs.
Technique. To detect dangling pointers, TENET assigns an
unique 2-byte tag for all the master objects, which is stored
in the object’s header (0xCAFE in Figure 4) at the time of its
creation. A copy of this tag is also encoded in the unused
upper 16-bits of the master objects’ address. On deallocating
the master object, the tag in the objects’ header is set to zero.
On-first-dereference validation. When the application ac-
cesses a master object for the first time in a transaction,
TENET validates the pointer to the master object before
traversing the version chain (§4.1.1). TENET extracts the
tag encoded in the master objects’ pointer and compares it
with the tag stored in the respective master objects’ header.
If they match, then it is a valid pointer. When an application

struct node {
 int key;
 char val[16];
} node;

void foo() {
 tenet_array<node, 2> arr;
 node n1 = arr[5];
 node n2 = arr[0];
 tenet_lock(&arr[0]);
 memcpy(arr[0].val,buff,32);
 auto ptr = arr;
 //...
 arr.~tenet_array(); //arr is freed!
 //...
 node n0 = ptr[0];
}

node[1]
tag=0xBEBE

node[0]
tag=0xCAFE

NVM

DRAM

Free &node[1]&node[0]sizebase
addr

MetadataMetadata
Pointer Array to
Master Objects

node[0]
tag=0xCAFEC0 C1

Array Elements
(Master Objects)

node[1]
tag=0x0000

node[0]
tag=0x0000

&node[1]&node[0]sizebase
addr

❶
❷
❸

❹

❺

❻

DRAM
Object

X

X

X

Figure 5: Memory safety design for arrays. 2 and 4 are spatial
safety violations due to out-of-bound read (detected by bounds check-
ing) and write (detected using canaries), respectively. 6 is temporal
safety violation due to use-after-free (detected using pointer tags).

accesses a master object with a dangling pointer, tag matching
would fail; the tag in the header would either be zero (if the
address is already freed) or different random value (if the
free-ed address is reallocated). In that case, TENET cuts the
version chain access and aborts the transaction.
Correctness. Once a master object is successfully deref-
erenced, it can be safely used without any further temporal
safety checking within the transactions’ lifetime. This is be-
cause TENET (and TimeStone) uses an RCU-style, epoch-
based garbage collection scheme so it never frees an object
(and its versions) with live references from other transactions;
i.e., an object will be free-ed only when all the transaction
that has live references exits. Also, a DRAM object can be
dereferenced only via its NVM object and TENET cuts the
version chain access upon detecting a dangling pointer, which
indirectly guarantees temporal safety for DRAM objects.

4.3.3 Spatial and Temporal Safety for Array Objects

In TimeStone, an array is stored and accessed as a single
pointer. Even if the application just reads/writes to one ar-
ray element, TimeStone dereferences the entire array. Such
a design is highly unsafe. For instance, once the entire array
is dereferenced, a buggy application can read/write out-of-
bounds resulting in an undetected corruption. This is a noto-
riously hard problem even in the DRAM world. To address
this, we redesigned the array interface in TENET. An array
is internally represented as an array of pointers where each
array index stores a pointer to its element. With this design,
TENET dereferences only the array index that the application
intends to read/write. If the application accesses an index that
is out-of-bound, TENET aborts the transaction.
Array interface. 1 in Figure 5 presents the TENET’s array
interface. In TENET, each array element is a master object;
and an array consists of pointers to these master objects along
with the base address and size information. This representa-
tion is internal and the application accesses its array in the
traditional C semantics. We do not present the pseudocode

USENIX Association 21st USENIX Conference on File and Storage Technologies 253

for our interface due to space limitations. Essentially, TENET
retains the C-style semantics by leveraging C++ operator over-
loading. tenet_array class overloads the necessary operators
to hide the internal representation. For instance, the array ac-
cess operator ([]) is overloaded to perform bounds checking,
then access the master object at the index. Similarly, other
operators (=, +, -, etc) are also appropriately overloaded to
retain the programmability and to make the interface transpar-
ent. However, this representation requires additional memory
to maintain pointers to the array elements. An N element array
requires a space of N*sizeof(N), whereas TENET requires an
additional sizeof(void*)*N space to maintain the pointers.

Memory safety validations. Figure 5 illustrates how TENET
enforces memory safety for arrays (arr with two elements).
The canary-based spatial safety and the tag-based temporal
safety apply to every array element. In addition, TENET per-
forms bounds checking for every array dereference using the
base address and size metadata i.e., index > size (2). In
4 , a transaction writes to the val out-of-bounds, TENET de-
tects this violation by inspecting the corrupted canary bits in
the commit phase. In 6 , transaction dereferences a dangling
pointer (freed in 5) and TENET detects it by comparing the
tags (0xCAFE ̸= 0x0000) during the object dereference.

4.4 Enforcing fault tolerance Against UMEs
This section explains the synchronous log replication and the
off-critical path master object replication design to guarantee
fault tolerance against UMEs.

4.4.1 Transaction Log Replication

As illustrated in Figure 4, the primary log pool on the NVM
consists of all the transaction logs (OLog and CLog). TENET
maintains a consistent backup of the primary log pool by
synchronously replicating the logs on the critical path, i.e.,
when an OLog or a CLog in the primary log pool is updated,
the corresponding log in the replica log pool is also updated.
Atomicity for primary and replica log writes is inherently
guaranteed by the transactions’ commit protocol (§4.1.3); i.e.,
TENET commits a transaction only when both the logs are
updated. So, if a crash happens before updating the replica
log, then the transaction is considered to be aborted and the
partially written log entries are discarded during the recovery
phase. Similarly, during log reclamation, the primary log is
reclaimed first and the replica log is reclaimed up to the same
point to maintain consistency. TENET ensures that pages in
the primary and the replica log pool do not overlap by main-
taining two disjoint NVM pools for the primary and replica
log pool. In this way, TENET can recover from multiple UMEs
even if it spans across many pages within a log pool.

Why replicate logs on the critical path? TimeStone buffers
the updates to the master objects in the OLog and CLog to max-
imize the write coalescing. Hence, if the logs in the primary
pool are corrupted, it may cause a significant amount of data
loss during the recovery. As a result, TENET replicates the

primary log pool synchronously to ensure that there is always
a consistent backup. Thus, TENET can simply use the replica
log pool to recover the NVM data without losing any com-
mitted updates. TENET uses NVM to reduce the performance
overhead as the replication is done in the critical path.

4.4.2 Off-critical Path NVM Replication to SSD

TENET makes three critical design choices for a performant
and cost-efficient NVM (master) objects replication: (1) ob-
jects are replicated to SSDs instead of NVM to reduce the
storage cost overhead, (2) replication is performed out of the
critical path to reduce the performance overhead (§4.4.3), and
(3) TENET uses grace period semantics to enforce NVM-SSD
consistency to guarantee loss-less recovery (§4.4.4).

4.4.3 Off-critical Path Writes to SSD

TENET leverages io_uring [8] for accelerating SSD writes.
io_uring is a high-performance asynchronous IO framework.
io_uring maintains two queues, a submission queue (SQ)
where the TENET adds its disk write requests and a comple-
tion queue (CQ) where TENET can poll for the completed
disk writes. Both queues are shared between the kernel and
the user space, which further reduces the context-switching
overhead for request submission and polling.
Technique. TENET maintains a per-writer replica buffer in
the NVM, where writers enqueue the new master objects
that are created in the ongoing transaction and the objects
that are updated with the latest checkpoints from the CLog
(8 in Figure 4). TENET then spawns multiple workers to
visit the per-thread replica buffer and issue the disk writes
using io_uring’s submission queue. The workers then poll for
the request completion in the io_uring’s completion queue
and exit only when all the requests are completed. TENET
creates a separate disk file for each master object pool; during
replication, TENET writes a master object at the disk file offset,
same as the objects’ corresponding NVM file offset. This is
critical to correctly roll back the corrupted page from the disk
to the NVM during the recovery.

4.4.4 Enforcing NVM-SSD Consistency

Although replication is asynchronous, TENET guarantees that
no committed data will be lost upon either a crash or a UME.
TENET accomplishes this by leveraging the OLog, CLog, and
grace period detection.
Grace period detection in TimeStone. A grace period is
the quiescence period, in which all application threads that
entered the critical section (since the start of detection), fin-
ish, and exit their respective critical section. A background
thread (gp-thread) continuously detects the grace period, and
publishes the detected grace period timestamp. TimeStone
uses the timestamp to safely reclaim/free the obsolete en-
tries/objects in the TLog, CLog, and the OLog. TENET extends
this design to enforce NVM-SSD consistency.
Modified grace period detection in TENET. To detect a

254 21st USENIX Conference on File and Storage Technologies USENIX Association

grace period, the gp-thread not only waits for all the threads
to exit the critical section but also waits for all master objects
that are created/updated by these threads to be written to the
SSD. The key invariant is that when a grace period is detected,
it guarantees that all master objects created/updated in that
window are persisted to the SSD. This means that the TLog,
OLog, and the CLog will not be reclaimed until the disk writes
are guaranteed to be persisted. That is because gp-threadwill
not publish the grace period timestamp unless the disk writes
are completed and without it the logs can not be reclaimed.
In a nutshell, all the updates that are not persisted in the SSD
are guaranteed to be either in the OLog (newly created master
objects) or in the CLog (updates to the existing master object).
Guaranteeing consistent loss-less recovery. If a UME oc-
curs before the SSD writes finish, during recovery, TENET
can restore the NVM objects with the stale SSD replica (from
the previous grace period). Then it uses the CLog to update
the existing master objects with the latest checkpoints and
uses OLog to recreate the new master objects that are missing
in the stale replica. Note that TENET maintains a consistent
backup of OLog and CLog at all times (§4.4.1). Also, the OLog
and CLog execution are idempotent i.e., re-executing the same
log entries multiple times does not violate the consistency.
TENET can tolerate multiple UMEs across any number of
pages in a master object pool as it replicates to the SSDs.
Given at least one of the log pools is consistent, TENET can
recover up to the last committed transaction. Note that even
if both the log pools are affected by UMEs, TENET can still
recover the master objects to the state of last grace period.

4.5 Recovery

(1) Recovering from non-UME crashes. This recovery in-
cludes recovering from a system crash or a memory safety
violation. Upon restart, the recovery procedure is of two steps:
(1) CLog replays, where all the entries in the CLog are replayed
to set the master objects to a consistent state. This step is
necessary to bring all the master objects to the latest check-
pointed state. (2) Then all OLog entries are sorted based on
their commit-ts and replayed sequentially in the exact sorted
order. This will bring the master objects to the last committed
state before the crash occurs. Note that, if the crash happens
due to a memory safety violation, a developer should fix the
bug to avoid repetitive non-UME crashes.
(2) Recovering from a UME crash. Upon restart, if TENET
cannot open its NVM pools, it indicates a UME has occurred.
The recovery steps depend on the victim pools’ type.
UME in the master object pool. TENET identifies the cor-
rupted physical offset using the ndctl tool [9] and then ex-
tracts the corresponding logical file offset. TENET brings
the entire page where the corrupted offset belongs from the
replica disk file. Then TENET allocates a new NVM page
using fallocate and updates it using the disk replica. Finally,
it deallocates the corrupted page and removes it from the oper-
ating system’s bad block list. Once NVM is restored, TENET

recovers similar to the non-UME crash as explained in (1),
i.e., CLog replay followed by the OLog replay.

UME in a log pool. TENET does not need to access the
disk to fix the bad page. Instead, it fixes the affected NVM
page by allocating a new empty page. Then TENET uses the
uncorrupted backup log pool to perform CLog and OLog replay.
At the end of the recovery, it frees all the CLogs and OLogs,
and new logs are allocated during the normal execution.

5 Implementation
TENET library is implemented in C and C++ which is ∼11K
LoC. The core TENET library includes the TimeStone PTM
(∼7K LoC), memory safety checks (∼1.5K LoC), and the
NVM-SSD replication (∼2.5K LoC). We rigorously tested
TENET with a carefully curated set of unit tests, functional
tests, and integration tests along with the offline testing tools
such as the Pmemcheck [48], Address sanitizer [80] to ensure
correctness of our implementation.

6 Discussion
In this section, we discuss the key takeaways in TENET (§6.1)
and the applicability of TENET’s ideas on ARM architecture
(§6.2). We also discuss the limitations and potential future
research directions in §6.3.

6.1 Leveraging the Concurrency Guarantees of PTM

Enforcing low overhead spatial safety. Most PTMs per-
form out-of-place updates to enforce the Isolation property
(ACID) [30,40,56,62,68,87], to support concurrent read and
write [30, 40, 56], and to enable write batching [30, 56, 87].
These PTMs have at least two separate domains: one in which
new updates are made and buffered, and another that contains
consistent data (i.e., old updates) to which the new updates are
eventually merged. TENET leverages this property to enforce
a separate protection domain, such a design enables it to use
light-weight techniques such as MPK and canaries to enforce
spatial safety without having to check every access.

PTMs such as the libpmemobj [47] that perform in-place
updates can be modified to perform out-of-place updates as
done in Pangolin [94]. Although Pangolin uses microbuffer-
ing to perform out-of-place updates, it relies on expensive
data checksum to enforce spatial safety i.e., checksum is cal-
culated and verified every time the data is moved to and from
the microbuffers. SafePM [27] relies on compiler instrumen-
tation of loads and stores and hence it needs to perform spatial
and temporal safety checks at every access resulting in a high
performance overhead (§7.3).

Enforcing low overhead temporal safety. Almost all PTMs
support a stronger Consistency (ACID) guarantee such as
linearizability or serializability. Such PTMs usually perform
conflict checks (i.e., read/write set validation) during the com-
mit phase and the transactions are aborted if a read-write
conflict is observed during the validation. In the context of
temporal safety, this means that objects with live references

USENIX Association 21st USENIX Conference on File and Storage Technologies 255

in any on-going transaction will not be freed until those trans-
actions finish. Unlike the prior PTM works, TENET leverages
this property to perform temporal safety checks only at the
first dereference and avoids redundant checks during every
pointer deference in a transaction. This is because, once an
object is dereferenced, it can not be freed by concurrent trans-
actions, a inherent guarantee provided by PTM.
6.2 TENET’s Ideas on ARM Architecture
ARM processors support memory domains [2], which is simi-
lar to Intel MPK except that the permission switch happens
in the OS kernel. Moreover, ARM processors have been sup-
porting virtual address (pointer) tagging (upper 12-16 bits) at
the hardware level and it is shipped with the top byte ignore
(TBI) feature [14,19,23]. Therefore, we believe that TENET’s
ideas can be applied beyond x86 architectures.
6.3 Limitations and Future Work

Protecting against intra-object overflow. Protecting against
intra-object overflow is a hard, open research problem. Even
the state-of-the-art techniques, such as BOGO [95] do not
protect against intra-object overflow. We believe that pro-
tecting against intra-object overflow with reasonable per-
formance overhead would require significant architectural
changes and/or compiler-level instrumentations because of
the fine granularity of protection [46, 90]. However, TENET
protects the transactional metadata which are essential for
correct execution and recovery from the intra-object overflow.
We do this by placing an additional intra-object canary be-
tween the metadata section and the application data section in
a DRAM object (not shown in the figures). This restricts the
corruption to only the application data section of an object.
Protecting against the code outside the transaction.
TENET already protects the NVM data from spatial safety vi-
olations due to the code outside the transaction by using MPK.
However, it is possible to corrupt the DRAM objects outside
the transaction and TENET may not detect such corruption,
particularly the ones that do not overwrite the canaries. One
way to protect the DRAM objects is to protect all the TLogs
using the MPK and allow to switch permission only within
the TENET library. However, as TLog is per-thread and there
are only 16 MPKs available, we may need to employ MPK
virtualization [74] to offer a more fine-grained protection.
Impact of shorter tags. In TENET, we use all the upper 16-
bits to store the pointer tag; expansion of address space in the
future will reduce the number of available bits thus making
the tag range shorter. TENET allows to reuse of duplicate tags
across different pointers, but if the bits are too few (e.g., only
4 bits are available), reusing tags may cause false negatives.
In TENET, tag reuse becomes a problem, only if the reallo-
cated pointer is assigned with the same tag (that it had before
last free), which makes TENET ’s temporal safety detection
probabilistic. Reusing tags across different pointers or the
same pointer with non-consecutive reallocations results in a
deterministic detection. As the CPU vendors are extending

hardware support for pointer tagging, we believe that expand-
ing this idea to overcome bit limitations (e.g., similar to x86
segmentation overcoming 64KB address limitation) will be
an interesting future work.

7 Evaluation
We evaluate TENET by answering the following questions,
(1) what are the performance overhead of TENET’s memory
safety and off-critical path disk replication techniques (§7.1)?
(2) How does TENET perform in comparison with the other
state-of-the-art memory safe PTMs (§7.3)? (3) What is the
tail latency of TENET (§7.4)? (4) How does TENET fare in
the bug detection, correction, and recovery stress tests (§7.5)?
Evaluation platform. We use a system with Intel Optane
DC Persistent Memory (DCPMM). It has two sockets with
Intel Xeon Gold 5218 CPU with 16 Physical cores, 256GB of
NVM (2×128GB), 32 GB of DRAM (2×16GB) per socket,
and 2×1TB M.2 SSDs (Samsung 970 EVO). We used GCC
11.2.1 with -O3 flag to compile benchmarks and ran all our
experiments on Linux kernel 5.16.12 with io_uring support.
Configuration. We preset the size of TLog and OLog to 8
MB and CLog to 32 MB, respectively. We also present the
performance analysis for varying log size in §7.4. We use two
SSDs for NVM replication i.e., one SSD per socket. Through-
out our evaluation, we present two versions of TENET: (1)
TENET-MS – which enforces only memory safety (i.e., no
NVM/SSD replication), and (2) TENET – which enforces both
memory safety and NVM/SSD replication for fault tolerance.
For microbenchmarks, we initially warm up the data struc-
tures with 1 Million (M) keys followed by executing a mix of
lookup, insert, update, and delete operations for 60 seconds
as done in the prior PTM works [30, 40, 56, 75–77, 87]. For
the real-world evaluation, we use the YCSB benchmark [29]
to evaluate TENET’s B+Tree based key-value store engine for
10M keys, we use 8 bytes integer keys and 100 bytes values
with Zipfian distribution. We present the average performance
of 10 runs, with an average error rate of ±1.8%.
7.1 Performance Analysis of TENET

Figure 6 compares the performance of TENET-MS and
TENET against the TimeStone for three different workloads
with varying read/write ratios. Comparing TENET-MS and
TENET with TimeStone will enable us to quantify the over-
heads due to memory safety and fault tolerance techniques.

7.1.1 TENET-MS vs TimeStone

For the read-dominated workloads, TENET-MS performs
mostly on-par (< 5% overhead) or slightly better than the
TimeStone. This is because reads in TENET-MS require only
temporal safety checks and the overhead from spatial safety
checks are negligible due to the lower write ratio. The low
overhead temporal safety checks can be attributed to our in-
place pointer tagging technique wherein it only requires one
shifting operation for extracting the tag from the pointer and
one compare operation for validating the extracted tag.

256 21st USENIX Conference on File and Storage Technologies USENIX Association

0.0

1.0

2.0

3.0

4.0

5.0

HT BST LL
0.0

1.0

2.0

3.0

4.0

HT BST LL
0.0

0.5

1.0

1.5

2.0

2.5

3.0

HT BST LL

M
op

s/
se

c

Read-mostly (F-1)
lk=98%, ins/del/up= 2%

TimeStone

Read-intensive (F-2)
lk=80%, ins/del/up= 20%

TENET-MS
TENET

Write-intensive (F-3)
lk=20%, ins/del/up= 80%

Figure 6: Performance comparison of TENET-MS and TENET

against TimeStone for Hash Table (HT), Binary Search Tree (BST),
and Linked List (LL) for 24 threads.

0.0
0.2
0.5
0.8
1.0
1.2
1.5
1.8
2.0
2.2
2.5
2.8

YCSB-A YCSB-B YCSB-C YCBS-D

M
op

s/
se

c

TimeStone
TENET-MS

TENET

Figure 7: Performance comparison of TENET-MS and TENET

against TimeStone for the B+tree key-value store with 24 threads.

For write-intensive workload, TENET-MS performs on
par with TimeStone; this shows that our canary based spa-
tial safety checks incur only a minimal overhead. For BST,
TimeStone suffers from high transaction aborts due to lock
conflicts on parent nodes. Unlike the BST, hash table is inher-
ently more concurrent and incurs lower aborts due to less lock
conflicts. Memory safety validation steps in TENET-MS re-
duce the aborts; our further analysis revealed that TimeStone
incurs about 3.5× more aborts than TENET-MS for BST. Con-
sequently, TENET-MS performs on par with TimeStone for
hash table and slightly faster in case of a BST.

7.1.2 TENET vs TimeStone

In addition to memory safety, TENET guarantees fault toler-
ance by performing NVM/SSD replication. For read-mostly
workloads, TENET performs on par with that of TimeStone
and TENET-MS. Due to a lower write ratio, the number of
log writes, and master object writes are less; consequently
replication does not add any significant overhead. However,
the replication overhead becomes evident as the write ratio
increases from 20% to 80% and TENET performs up to 12.6%
and 18% slower than the TENET-MS and TimeStone, respec-
tively. As the master objects are inserted/deleted/updated fre-
quently, the replica writes to SSD also increases. Therefore,
grace period detection is relatively longer in TENET as the
gp-thread has to wait for all the SSD writes to complete. A
longer grace period detection increases traffic in the TLog as
the log reclamation becomes slower. Overall, TENET adds a
modest overhead (< 18%) over TimeStone while enforcing
memory safety and fault tolerance.
7.2 Real-world Workload Evaluation
We built a B+tree-based key-value store using TENET; we
chose B+tree (fanout=64) to test and evaluate our array inter-
face but any other data structures can also be used. Figure 7

0.0

0.5

1.0

1.5

2.0

2.5

3.0

1 8 16 24 32 40 48
0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0

1 8 16 24 32 40 48

M
op

s/
se

c

Threads

TimeStone

YCSB-A
lk=50%, ins//up= 50%

Threads

TENET-MS
TENET

YCSB-B
lk=95%, ins/up= 5%

Figure 8: Scalability of TENET-MS and TENET for B+tree

PTM Spatial Safety Temporal Safety UME NVM Cost
Libpmemobj [47] No No Yes High
TimeStone [56] No No No None
SafePM [27] Yes Yes No Moderate
Pangolin [94] Partial No Yes Moderate
TENET-MS Yes Yes No None
TENET Yes Yes Yes Low

Table 1: Comparison of TENET against other PTMs.

compares the performance of TENET-MS and TENET key-
value store against the TimeStone key-value store.
TENET-MS. TENET-MS is 17% slower than the TimeStone
across all YCSB workloads. For data structures (that do not
use an array), such as the hash table, every read to a hash
node requires only one object dereference because each hash
node is a master object. But for a B+tree, reading one leaf
node requires a 2× fanout (2×64) number of dereferences
as each array element (of the key-value array) is a master
object. Although TimeStone incurs the same number of object
dereference, the additional temporal safety checks during the
object dereferencing in TENET-MS causes a 17% slowdown.
TENET. For write-intensive YCSB-A, TENET performs 41%
slower than TimeStone. This is because of lower chances of
write coalescing in the TLog and CLog. As the writes hap-
pen at the array element level, the chances of an array index
being repeatedly written to is less. This is the worst-case
scenario for TimeStone as it relies on maximizing write co-
alescing on DRAM objects to reduce NVM writes. Lower
write-coalescing causes frequent checkpoints (from TLog) on
CLog and frequent checkpoint writebacks (from CLog) to the
NVM object. TimeStone just performs frequent writebacks to
the NVM object; for TENET, increase in the number of write-
backs also increases the SSD writes due to replication. This
trend is corroborated by the performance of TENET for read-
intensive YCSB workloads (B, C, and D), where it exhibits
only a 21% slowdown against TimeStone. This is almost
half of the slowdown experienced for the YCSB-A workload
(41%) as the number of SSD writes are lower in read-intensive
workloads. In a nutshell, TENET guarantees memory safety
for arrays (TENET-MS) with a modest 17% overhead and
providing fault tolerance adds an additional 24% overhead
due to the reduced write coalescing in TimeStone.

7.3 Comparison with Other PTMs
Table 1 compares the protection scopes of PTMs; TENET is
the only PTM to offer full memory safety and cost-efficient

USENIX Association 21st USENIX Conference on File and Storage Technologies 257

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6

1 4 8 16 24 32 40 48
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7

1 4 8 16 24 32 40 48

0.0

2.0

4.0

6.0

8.0

1 8 16 24 32 40 48
0.0
1.0
2.0
3.0
4.0
5.0

1 8 16 24 32 40 48

M
op

s/
se

c

Read-intensive
lk=95%, ins/del/up= 5%

PMDK
SafePM

Write-Intensive
lk=50%, ins/del/up= 50%

M
op

s/
se

c

Threads

TimeStone

Threads

TENET-MS
TENET

Figure 9: TENET-MS vs SafePM: performance overhead study with
hash table for read-intensive and write-intensive workloads.

fault tolerance. We have discussed the limitations in the pro-
tection scope of prior works in §2.3. Moreover, TENET incurs
a relatively minimal performance overhead as compared to
SafePM (Figure 9) and Pangolin which incurs up to 60% and
67% overhead over the libpmemobj.1 To ensure fairness, we
compare SafePM and TENET-MS on basis of performance
overhead incurred over their respective baseline PTM. Note
that SafePM does not guarantee fault tolerance against the
UMEs, so we use only TENET-MS for comparison.

As shown in Figure 9, SafePM performs up to 67% slower
than the libpmemobj across both the workloads. When the
libpmemobj’s performance saturates after 16 threads, SafePM
performs on-par; this is because the high contention overhead
in the libpmemobj amortizes the memory safety overhead
in SafePM. SafePMs’ overheads come from: (1) additional
undo logging to guarantee crash consistency for the memory
safety metadata. Note that this undo logging is in addition
to the ones performed by the libpmemobj transaction, (2) the
memory safety metadata must be accessed for every read and
write which further slows down the performance.

Unlike the SafePM, TENET-MS guarantees memory safety
with a modest 5%-8% performance overhead; because, (1)
it does not require additional crash consistency for memory
safety metadata as the pointer tags are embedded in the ob-
jects, and (2) memory safety checks are performed only once
per transaction (on-commit and on-first-dereference).
7.4 Other Evaluations and Analysis

Scalability analysis. Figure 8 and Figure 9 shows the read
and write scalability of TENET-MS and TENET for hash ta-
ble and B+tree, respectively. Both TENET-MS and TENET
show good read and write scalability for B+tree and hash
table. The performance difference across thread counts are
consistent with what is observed for 24 threads in Figure 6
and Figure 7. For read-intensive workloads, TENET-MS and
TENET show less than 5% performance slowdown for a hash
table and a 17% (TENET-MS) and 24% (TENET) slowdown
for a B+tree. For a write-intensive hash table, TENET-MS
and TENET exhibit a 5% and 18% slowdown respectively,
while for B+tree, TENET-MS and TENET exhibit a 17% and

1Directly referenced from the paper as Pangolin is not open-sourced.

0

200

400

600

800

1000

min 50 90 99 99.9
0

20

40

60

80

100

min 50 90 99 99.9

L
at

en
cy

(u
se

c)

Percentile (%)

TimeStone

YCSB-A
lk=50%, ins//up= 50%

Percentile (%)

TENET-MS
TENET

YCSB-B
lk=95%, ins/up= 5%

Figure 10: Tail latency comparison of TENET-MS and TENET

against TimeStone for B+tree with 24 threads.

44% slowdown. Overall, both TENET-MS and TENET scales
on-par with TimeStone; this shows that the TENET’s memory
safety and fault tolerance techniques does not impede the
original scalability of TimeStone.

Storage cost analysis. With TENET, the DRAM space us-
age is bounded by the size of TLog (8MB). TENET stores the
replica logs in the NVM and this is bounded by the size of
OLog and CLog. TENET replicates the application data struc-
ture to the SSD; given the $/GB of SSD ($0.15) and the
NVM ($10) [15, 20], TENET saves ∼60× on storage cost
when replicating the entire NVM space (512GB) to the SSD
as opposed replicating to the NVM. In addition to the cost
benefits, TENET can recover from multiple UMEs spanning
across multiple pages while Pangolin can recover only from a
single page is corruption.

Tail latency. Figure 10 shows the tail latency of TENET-
MS and TENET compared against the TimeStone. As done in
prior works [55,60], we sample 10% of operations so that the
tail latency calculation does not overshadow the performance.
TENET-MS performs on-par with TimeStone, which shows
the efficacy of our memory safety techniques. However, for
write-intensive YCSB-A, TENET’s tail latency spikes up at the
99th and 99.9th percentile. This is because of the additional
writes incurred while performing replication to the NVM/SSD
for fault tolerance. For read-intensive workload, TENET’s tail
latency is almost on par with TimeStone as lower ratio reduces
the number of SSD writes. TENET-MS shows similar tail
latency to that of the TimeStone across workloads as it does
not perform replication. We believe our fault tolerance design
can be further optimized for tail latency by making log writes
asynchronously, which would be an interesting future work.

Log size sensitivity. To study the impact of log size on the
performance, we present the relative performance of TENET
for varying log sizes using a concurrent hash table with 1 and
24 threads (Figure 11). We show the performance only for
write-intensive workloads as read-intensive workloads are less
sensitive to the log size. The X-axis represents the log size,
and the Y-axis represents the relative performance normalized
to the default log size used in all the previous evaluations.
TENET’s performance increases up to 21% with the increas-
ing log size. As the log size is decreased, the performance
drops to 38%. As the log size increases, the writers spend
less time reclaiming log space and hence better performance.

258 21st USENIX Conference on File and Storage Technologies USENIX Association

0.0
0.2
0.4
0.6
0.8
1.0
1.2

0.25X 0.5X 1X 2X 3X

R
el

at
iv

e
Pe

rf
or

m
an

ce

Log size (default=1X)

1-Thread
24-Threads

Figure 11: Performance sensitivity of TENET for varying log sizes.

Alternatively, for smaller log sizes, the writers spend more
time reclaiming log space. TENET requires all SSD writes in
a grace period window to be persisted before reclaiming the
log space, further increasing the pressure on the writers. So
we observe a larger performance drop (38%) for a smaller log
size and relatively a smaller performance gain (21%) when
the log size is increased. We confirmed that this behavior is
consistent across different thread counts and data structures.
7.5 Error Detection and Correction

Spatial safety test. Our test cases select transactions at ran-
dom to intentionally cause buffer overrun bugs on a B+tree
leaf nodes’ value pointer (p_val) and to access the key array
(in a B+tree node) out-of-bounds. For the buffer overflow bug,
the erroneous transactions execute a memcpy on the p_val for
1KB where the p_val pointer is of size 100 bytes. We also
tested intra-array overflow with a smaller size of 128 bytes.
For out-of-bound access, the erroneous transactions access the
key array at index 96, which is beyond the original fanout (64).
For all test cases, TENET detected spatial safety violations in
the commit phase and aborted the transactions, returning an
exception to the B+tree code. In our 200 random tests, TENET
detected spatial safety violations 100% of the time.
Temporal safety test. We modified the delete function in our
open-chaining hash table benchmark to free the target node
and not update the previous nodes’ next pointer (p_next).
A randomly chosen transaction executes the buggy delete
logic and spawns read transactions to access the dangling
p_next. TENET detected the dangling pointer access during
the object dereferencing phase and returned an exception
to the application. Further, to test the case where a free-ed
address may be reallocated again, we kept allocating a new
hash node until the free-ed NVM address was reallocated. Our
test case then waits for a transaction to access the dangling
p_next (reallocated). We repeated both the temporal safety
tests 200 times, and TENET detected dangling pointer access
and returned an exception to the application.
UME Test. We used the ndctl utility tool (ndctl inject-
error) for injecting a UME at a specified offset [9]. While run-
ning the benchmark, we first injected a UME in the log pool,
particularly on a randomly chosen CLog. TENET’s SIGBUS han-
dler received the OS notification and terminated the program
gracefully. Upon restart, TENET rightly identified the cor-
rupted log pool and successfully recovered using the replica
log pool. We also injected UME in one of the master ob-
ject pools and observed that TENET restored the NVM status
successfully using the SSD replica. Both these tests were

repeated multiple times and TENET successfully recovered
the hash table without losing any data. The recovery time for
TENET and TimeStone are similar, bounded by OLog and CLog
size (not shown due to space constraints). The SSD access is
performed in the background using io_uring and the cost is
relatively small. Our future work will develop techniques to
accelerate recovery.

8 Related Work
DRAM based memory safety techniques. Memory safety
violation in the DRAM has been extensively studied in the
security community [26,32,35,36,59,69–71,73,79,81,83,84,
92, 95]. In fact, our work was inspired by this line of research
which essentially conveys that memory safety violations are
the source of all evils. But the downside of these techniques
is that they suffer from high performance overhead (up to
200%). In TENET, we reduce the performance overhead by
leveraging the concurrency properties of the PTM and also
by limiting our scope of protection (e.g., no support for con-
trol flow attacks). Moreover, applying these DRAM based
techniques to NVM is non-trivial as they are not designed
to be crash consistent and adding crash consistency to these
techniques comes with its own set of challenges and may
potentially increase the performance overhead.

NVM bug finding techniques. There are a plethora of
works on detecting crash consistency bugs in the NVM soft-
ware [37, 38, 58, 63, 64, 72]. These techniques primarily focus
on detecting bugs that violate crash consistency correctness
such as atomicity, linearizability, and persistence ordering
bugs; they neither focus on memory safety nor UMEs.

9 Conclusion
In this paper, we propose TENET. TENET enforces
DRAM/NVM memory domain separation using MPK to pre-
vent NVM writes out of TENET library. Additionally, TENET
uses canary values and in-place pointer tagging to guarantee
on-commit spatial safety and on-first-dereference temporal
safety. Further, TENET proposes off-critical path NVM/SSD
data replication to guarantee a performance and cost-efficient
fault tolerance for the NVM data against the UMEs. Our
evaluations showed the performance efficiency of TENET’s
techniques along with a thorough analysis on scalability, stor-
age cost, and tail latency. Overall, TENET provides enhanced
NVM data protection at a modest performance and storage
cost as compared to the other state-of-the-art PTMs.

Acknowledgments
We thank the anonymous reviewers and Adam Morrison
(our shepherd) for their insightful comments and feedback.
This work was partly supported by the National Science
Foundation under the grants CCF-2153748, CNS-1910593,
and by the National Research Foundation of Korea (NRF)
grant funded by the Korea government (MSIT) (No. NRF-
2022R1F1A1076373).

USENIX Association 21st USENIX Conference on File and Storage Technologies 259

References
[1] Amazon Signs up for Another 450MW

of Solar, Giant Batteries. https://
www.datacenterknowledge.com/energy/
amazon-signs-another-450mw-solar-giant-
batteries.

[2] ARM Developer Suite Developer Guide:
Memory access permissions and domains.
https://developer.arm.com/documentation/
dui0056/d/caches-and-tightly-coupled-
memories/memory-management-units/memory-
access-permissions-and-domains.

[3] Blast Radius. https://pmem.io/glossary/#blast-
radius.

[4] Build Persistent Memory Applications with
Reliability Availability and Serviceability.
https://www.intel.com/content/www/us/en/
developer/articles/technical/build-pmem-
apps-with-ras.html.

[5] Chrome: 70% of all security bugs are mem-
ory safety issues. https://www.zdnet.com/
article/chrome-70-of-all-security-bugs-
are-memory-safety-issues/.

[6] CWE-367: Time-of-check Time-of-use (TOCTOU)
Race Condition. https://cwe.mitre.org/data/
definitions/367.html.

[7] Dealing with Uncorrectable Errors. https://
www.intel.com/content/www/us/en/developer/
articles/technical/pmem-RAS.html.

[8] Efficient IO with io_uring. https://kernel.dk/
io_uring.pdf.

[9] Error Recovery in Persistent Memory Applica-
tions. https://www.intel.com/content/www/us/
en/developer/articles/troubleshooting/
error-recovery-in-persistent-memory-
applications.html.

[10] Frequently Asked Questions for Intel® Optane™
Persistent Memory. https://www.intel.com/
content/www/us/en/support/articles/
000056000/memory-and-storage/intel-
optane-persistent-memory.html.

[11] Google Thinks Data Centers, Armed with Bat-
teries, Should ‘Anchor’ a Carbon-Free Grid.
https://www.datacenterknowledge.com/google-
alphabet/google-thinks-data-centers-
armed-batteries-should-anchor-carbon-
free-grid.

[12] Intel Donates Compute Express Link, a
High-Speed Protocol for PCIe 5.0. https:
//www.tomshardware.com/news/intel-compute-
express-link-pcie-5.0,38786.html.

[13] Intel Kills Optane Memory Business, Pays
$559 Million Inventory Write-Off. https:
//www.tomshardware.com/news/intel-kills-
optane-memory-business-for-good.

[14] Intel Linear Address Masking "LAM" Ready For
Linux 6.2. https://www.phoronix.com/news/
Intel-LAM-Linux-6.2.

[15] Intel Optane DCPMM Cost. https:
//www.anandtech.com/show/14180/pricing-
of-intels-optane-dc-persistent-memory-
modules-leaks.

[16] Last week Intel killed Optane. Today, Kioxia and
Everspin announced comparable tech: Rumors of
storage-class memory’s demise may have been prema-
ture. https://www.theregister.com/2022/08/02/
kioxia_everspin_persistent_memory/.

[17] Microsoft: 70 percent of all security bugs are memory
safety issues. https://www.zdnet.com/article/
microsoft-70-percent-of-all-security-
bugs-are-memory-safety-issues/.

[18] Microsoft slashes backup power costs with lithium-ion
batteries. https://www.computerworld.com/
article/2895064/microsoft-slashes-
backup-power-costs-with-lithiumion-
batteries.html.

[19] Pointer tagging for x86 systems. https://lwn.net/
Articles/888914/.

[20] Samsung EVO NVMe M.2 SSD Cost .
https://www.samsung.com/us/computing/
memory-storage/solid-state-drives/ssd-
970-evo-nvme-m-2-1tb-mz-v7e1t0bw/.

[21] Samsung’s Memory-Semantic CXL SSD
Brings a 20X Performance Uplift. https:
//www.tomshardware.com/news/samsung-memory-
semantic-cxl-ssd-brings-20x-performance-
uplift.

[22] SMART brings Optane memory to AMD and Arm.
https://blocksandfiles.com/2022/04/13/
smart-brings-optane-memory-to-amd-and-
arm/.

[23] The Arm64 memory tagging extension in Linux. https:
//lwn.net/Articles/834289/.

260 21st USENIX Conference on File and Storage Technologies USENIX Association

https://www.datacenterknowledge.com/energy/amazon-signs-another-450mw-solar-giant-batteries
https://www.datacenterknowledge.com/energy/amazon-signs-another-450mw-solar-giant-batteries
https://www.datacenterknowledge.com/energy/amazon-signs-another-450mw-solar-giant-batteries
https://www.datacenterknowledge.com/energy/amazon-signs-another-450mw-solar-giant-batteries
https://developer.arm.com/documentation/dui0056/d/caches-and-tightly-coupled-memories/memory-management-units/memory-access-permissions-and-domains
https://developer.arm.com/documentation/dui0056/d/caches-and-tightly-coupled-memories/memory-management-units/memory-access-permissions-and-domains
https://developer.arm.com/documentation/dui0056/d/caches-and-tightly-coupled-memories/memory-management-units/memory-access-permissions-and-domains
https://developer.arm.com/documentation/dui0056/d/caches-and-tightly-coupled-memories/memory-management-units/memory-access-permissions-and-domains
https://pmem.io/glossary/#blast-radius
https://pmem.io/glossary/#blast-radius
https://www.intel.com/content/www/us/en/developer/articles/technical/build-pmem-apps-with-ras.html
https://www.intel.com/content/www/us/en/developer/articles/technical/build-pmem-apps-with-ras.html
https://www.intel.com/content/www/us/en/developer/articles/technical/build-pmem-apps-with-ras.html
https://www.zdnet.com/article/chrome-70-of-all-security-bugs-are-memory-safety-issues/
https://www.zdnet.com/article/chrome-70-of-all-security-bugs-are-memory-safety-issues/
https://www.zdnet.com/article/chrome-70-of-all-security-bugs-are-memory-safety-issues/
https://cwe.mitre.org/data/definitions/367.html
https://cwe.mitre.org/data/definitions/367.html
https://www.intel.com/content/www/us/en/developer/articles/technical/pmem-RAS.html
https://www.intel.com/content/www/us/en/developer/articles/technical/pmem-RAS.html
https://www.intel.com/content/www/us/en/developer/articles/technical/pmem-RAS.html
https://kernel.dk/io_uring.pdf
https://kernel.dk/io_uring.pdf
https://www.intel.com/content/www/us/en/developer/articles/troubleshooting/error-recovery-in-persistent-memory-applications.html
https://www.intel.com/content/www/us/en/developer/articles/troubleshooting/error-recovery-in-persistent-memory-applications.html
https://www.intel.com/content/www/us/en/developer/articles/troubleshooting/error-recovery-in-persistent-memory-applications.html
https://www.intel.com/content/www/us/en/developer/articles/troubleshooting/error-recovery-in-persistent-memory-applications.html
https://www.intel.com/content/www/us/en/support/articles/000056000/memory-and-storage/intel-optane-persistent-memory.html
https://www.intel.com/content/www/us/en/support/articles/000056000/memory-and-storage/intel-optane-persistent-memory.html
https://www.intel.com/content/www/us/en/support/articles/000056000/memory-and-storage/intel-optane-persistent-memory.html
https://www.intel.com/content/www/us/en/support/articles/000056000/memory-and-storage/intel-optane-persistent-memory.html
https://www.datacenterknowledge.com/google-alphabet/google-thinks-data-centers-armed-batteries-should-anchor-carbon-free-grid
https://www.datacenterknowledge.com/google-alphabet/google-thinks-data-centers-armed-batteries-should-anchor-carbon-free-grid
https://www.datacenterknowledge.com/google-alphabet/google-thinks-data-centers-armed-batteries-should-anchor-carbon-free-grid
https://www.datacenterknowledge.com/google-alphabet/google-thinks-data-centers-armed-batteries-should-anchor-carbon-free-grid
https://www.tomshardware.com/news/intel-compute-express-link-pcie-5.0,38786.html
https://www.tomshardware.com/news/intel-compute-express-link-pcie-5.0,38786.html
https://www.tomshardware.com/news/intel-compute-express-link-pcie-5.0,38786.html
https://www.tomshardware.com/news/intel-kills-optane-memory-business-for-good
https://www.tomshardware.com/news/intel-kills-optane-memory-business-for-good
https://www.tomshardware.com/news/intel-kills-optane-memory-business-for-good
https://www.phoronix.com/news/Intel-LAM-Linux-6.2
https://www.phoronix.com/news/Intel-LAM-Linux-6.2
https://www.anandtech.com/show/14180/pricing-of-intels-optane-dc-persistent-memory-modules-leaks
https://www.anandtech.com/show/14180/pricing-of-intels-optane-dc-persistent-memory-modules-leaks
https://www.anandtech.com/show/14180/pricing-of-intels-optane-dc-persistent-memory-modules-leaks
https://www.anandtech.com/show/14180/pricing-of-intels-optane-dc-persistent-memory-modules-leaks
https://www.theregister.com/2022/08/02/kioxia_everspin_persistent_memory/
https://www.theregister.com/2022/08/02/kioxia_everspin_persistent_memory/
https://www.zdnet.com/article/microsoft-70-percent-of-all-security-bugs-are-memory-safety-issues/
https://www.zdnet.com/article/microsoft-70-percent-of-all-security-bugs-are-memory-safety-issues/
https://www.zdnet.com/article/microsoft-70-percent-of-all-security-bugs-are-memory-safety-issues/
https://www.computerworld.com/article/2895064/microsoft-slashes-backup-power-costs-with-lithiumion-batteries.html
https://www.computerworld.com/article/2895064/microsoft-slashes-backup-power-costs-with-lithiumion-batteries.html
https://www.computerworld.com/article/2895064/microsoft-slashes-backup-power-costs-with-lithiumion-batteries.html
https://www.computerworld.com/article/2895064/microsoft-slashes-backup-power-costs-with-lithiumion-batteries.html
https://lwn.net/Articles/888914/
https://lwn.net/Articles/888914/
https://www.samsung.com/us/computing/memory-storage/solid-state-drives/ssd-970-evo-nvme-m-2-1tb-mz-v7e1t0bw/
https://www.samsung.com/us/computing/memory-storage/solid-state-drives/ssd-970-evo-nvme-m-2-1tb-mz-v7e1t0bw/
https://www.samsung.com/us/computing/memory-storage/solid-state-drives/ssd-970-evo-nvme-m-2-1tb-mz-v7e1t0bw/
https://www.tomshardware.com/news/samsung-memory-semantic-cxl-ssd-brings-20x-performance-uplift
https://www.tomshardware.com/news/samsung-memory-semantic-cxl-ssd-brings-20x-performance-uplift
https://www.tomshardware.com/news/samsung-memory-semantic-cxl-ssd-brings-20x-performance-uplift
https://www.tomshardware.com/news/samsung-memory-semantic-cxl-ssd-brings-20x-performance-uplift
https://blocksandfiles.com/2022/04/13/smart-brings-optane-memory-to-amd-and-arm/
https://blocksandfiles.com/2022/04/13/smart-brings-optane-memory-to-amd-and-arm/
https://blocksandfiles.com/2022/04/13/smart-brings-optane-memory-to-amd-and-arm/
https://lwn.net/Articles/834289/
https://lwn.net/Articles/834289/

[24] Timestone Source Code. https://github.com/
cosmoss-jigu/timestone/tree/master.

[25] Trends, challenge, and shifts in software vul-
nerability mitigation. https://github.com/
Microsoft/MSRC-Security-Research/blob/
master/presentations/2019_02_BlueHatIL/
2019_01%20-%20BlueHatIL%20-%20Trends%
2C%20challenge%2C%20and%20shifts%
20in%20software%20vulnerability%
20mitigation.pdf.

[26] Emery D. Berger and Benjamin G. Zorn. DieHard:
Probabilistic Memory Safety for Unsafe Languages. In
Proceedings of the 2006 ACM SIGPLAN Conference
on Programming Language Design and Implementation
(PLDI), Ottawa, Canada, June 2006.

[27] Kartal Kaan Bozdoğan, Dimitrios Stavrakakis, Shady
Issa, and Pramod Bhatotia. Safepm: A sanitizer for
persistent memory. In Proceedings of the 17th European
Conference on Computer Systems (EuroSys), Rennes,
France, April 2020.

[28] Brian Choi, Randal Burns, and Peng Huang. Understand-
ing and dealing with hard faults in persistent memory
systems. In Proceedings of the 16th European Con-
ference on Computer Systems (EuroSys), online, April
2021.

[29] Brian F. Cooper, Adam Silberstein, Erwin Tam, Raghu
Ramakrishnan, and Russell Sears. Benchmarking cloud
serving systems with ycsb. In Proceedings of the 1st
ACM Symposium on Cloud Computing (SoCC), pages
143–154, Indianapolis, Indiana, USA, June 2010. ACM.

[30] Andreia Correia, Pascal Felber, and Pedro Ramalhete.
Romulus: Efficient Algorithms for Persistent Transac-
tional Memory. In Proceedings of the 30th ACM sym-
posium on Parallelism in algorithms and architectures
(SPAA), Vienna, Austria, July 2018.

[31] CXL Consortium. Compute Express Link™: The
Breakthrough CPU-to-Device Interconnect. https:
//www.computeexpresslink.org/.

[32] Thurston H.Y. Dang, Petros Maniatis, and David Wagner.
Oscar: A Practical Page-Permissions-Based Scheme for
Thwarting Dangling Pointers. In Proceedings of the 26th
USENIX Security Symposium (Security), Vancouver, BC,
Canada, August 2017.

[33] Anthony Demeri, Wook-Hee Kim, R. Madhava Krish-
nan, Jaeho Kim, Mohannad Ismail, and Changwoo Min.
Poseidon: Safe, fast and scalable persistent memory al-
locator. In Proceedings of the 21st ACM/IFIP Interna-
tional Middleware Conference, Virtual, December 2020.

[34] Mingkai Dong, Heng Bu, Jifei Yi, Benchao Dong, and
Haibo Chen. Performance and Protection in the ZoFS

User-Space NVM File System. In Proceedings of the
27th ACM Symposium on Operating Systems Principles
(SOSP), Ontario, Canada, October 2019.

[35] Moritz Eckert, Antonio Bianchi, Ruoyu Wang, Yan
Shoshitaishvili, Christopher Kruegel, and Giovanni Vi-
gna. HeapHopper: Brining Bounded Model Checking
to Heap Implementation Security. In Proceedings of the
27th USENIX Security Symposium (Security), Baltimore,
MD, August 2018.

[36] Chris Evans. The poisoned NUL
byte, 2014 edition, 2014. https://
googleprojectzero.blogspot.com/2014/08/
the-poisoned-nul-byte-2014-edition.html.

[37] Xinwei Fu, Wook-Hee Kim, Ajay Paddayuru Shreepathi,
Mohannad Ismail, Sunny Wadkar, Dongyoon Lee, and
Changwoo Min. Witcher: Systematic crash consistency
testing for non-volatile memory key-value stores. In
Proceedings of the 28th ACM Symposium on Operating
Systems Principles (SOSP), online, October 2021.

[38] Xinwei Fu, Dongyoon Lee, and Changwoo Min.
DURINN: Adversarial memory and thread interleav-
ing for detecting durable linearizability bugs. In Pro-
ceedings of the 16th USENIX Symposium on Operating
Systems Design and Implementation (OSDI), Carlsbad,
CA, November 2022.

[39] Bill Gervasi. A Persistent CXL Memory
Module with DRAM Performance. In Stor-
age Developer Conference (SDC). SNIA, 2022.
https://storagedeveloper.org/conference/
agenda/sessions/persistent-cxl-memory-
module-dram-performance.

[40] Jinyu Gu, Qianqian Yu, Xiayang Wang, Zhaoguo Wang,
Binyu Zang, Haibing Guan, and Haibo Chen. Pisces: A
Scalable and Efficient Persistent Transactional Memory.
In Proceedings of the 2019 USENIX Annual Technical
Conference (ATC), pages 913–928, Renton, WA, July
2019.

[41] Pekon Gupta. CXL Attached Persistent Memory: Im-
plementing NVDIMM-N Like Architecture. In Storage
Developer Conference (SDC). SNIA, 2022. https:
//storagedeveloper.org/conference/agenda/
sessions/cxl-attached-persistent-memory-
implementing-nvdimm-n-architecture.

[42] Jim Handy and Thomas Coughlin. Persistent Memories
Without Optane, Where Would We Be? In Storage
Developer Conference (SDC). SNIA, 2022. https:
//storagedeveloper.org/conference/agenda/
sessions/cxl-attached-persistent-memory-
implementing-nvdimm-n-architecture.

USENIX Association 21st USENIX Conference on File and Storage Technologies 261

https://github.com/cosmoss-jigu/timestone/tree/master
https://github.com/cosmoss-jigu/timestone/tree/master
https://github.com/Microsoft/MSRC-Security-Research/blob/master/presentations/2019_02_BlueHatIL/2019_01%20-%20BlueHatIL%20-%20Trends%2C%20challenge%2C%20and%20shifts%20in%20software%20vulnerability%20mitigation.pdf
https://github.com/Microsoft/MSRC-Security-Research/blob/master/presentations/2019_02_BlueHatIL/2019_01%20-%20BlueHatIL%20-%20Trends%2C%20challenge%2C%20and%20shifts%20in%20software%20vulnerability%20mitigation.pdf
https://github.com/Microsoft/MSRC-Security-Research/blob/master/presentations/2019_02_BlueHatIL/2019_01%20-%20BlueHatIL%20-%20Trends%2C%20challenge%2C%20and%20shifts%20in%20software%20vulnerability%20mitigation.pdf
https://github.com/Microsoft/MSRC-Security-Research/blob/master/presentations/2019_02_BlueHatIL/2019_01%20-%20BlueHatIL%20-%20Trends%2C%20challenge%2C%20and%20shifts%20in%20software%20vulnerability%20mitigation.pdf
https://github.com/Microsoft/MSRC-Security-Research/blob/master/presentations/2019_02_BlueHatIL/2019_01%20-%20BlueHatIL%20-%20Trends%2C%20challenge%2C%20and%20shifts%20in%20software%20vulnerability%20mitigation.pdf
https://github.com/Microsoft/MSRC-Security-Research/blob/master/presentations/2019_02_BlueHatIL/2019_01%20-%20BlueHatIL%20-%20Trends%2C%20challenge%2C%20and%20shifts%20in%20software%20vulnerability%20mitigation.pdf
https://github.com/Microsoft/MSRC-Security-Research/blob/master/presentations/2019_02_BlueHatIL/2019_01%20-%20BlueHatIL%20-%20Trends%2C%20challenge%2C%20and%20shifts%20in%20software%20vulnerability%20mitigation.pdf
https://www.computeexpresslink.org/
https://www.computeexpresslink.org/
https://googleprojectzero.blogspot.com/2014/08/the-poisoned-nul-byte-2014-edition.html
https://googleprojectzero.blogspot.com/2014/08/the-poisoned-nul-byte-2014-edition.html
https://googleprojectzero.blogspot.com/2014/08/the-poisoned-nul-byte-2014-edition.html
https://storagedeveloper.org/conference/agenda/sessions/persistent-cxl-memory-module-dram-performance
https://storagedeveloper.org/conference/agenda/sessions/persistent-cxl-memory-module-dram-performance
https://storagedeveloper.org/conference/agenda/sessions/persistent-cxl-memory-module-dram-performance
https://storagedeveloper.org/conference/agenda/sessions/cxl-attached-persistent-memory-implementing-nvdimm-n-architecture
https://storagedeveloper.org/conference/agenda/sessions/cxl-attached-persistent-memory-implementing-nvdimm-n-architecture
https://storagedeveloper.org/conference/agenda/sessions/cxl-attached-persistent-memory-implementing-nvdimm-n-architecture
https://storagedeveloper.org/conference/agenda/sessions/cxl-attached-persistent-memory-implementing-nvdimm-n-architecture
https://storagedeveloper.org/conference/agenda/sessions/cxl-attached-persistent-memory-implementing-nvdimm-n-architecture
https://storagedeveloper.org/conference/agenda/sessions/cxl-attached-persistent-memory-implementing-nvdimm-n-architecture
https://storagedeveloper.org/conference/agenda/sessions/cxl-attached-persistent-memory-implementing-nvdimm-n-architecture
https://storagedeveloper.org/conference/agenda/sessions/cxl-attached-persistent-memory-implementing-nvdimm-n-architecture

[43] Mohammad Hedayati, Spyridoula Gravani, Ethan John-
son, John Criswell, Michael L Scott, Kai Shen, and
Mike Marty. Hodor: Intra-Process Isolation for High-
Throughput Data Plane Libraries. In Proceedings of
the 2019 USENIX Annual Technical Conference (ATC),
Renton, WA, July 2019.

[44] Morteza Hoseinzadeh and Steven Swanson. Corundum:
Statically-enforced persistent memory safety. In Pro-
ceedings of the 25th ACM International Conference on
Architectural Support for Programming Languages and
Operating Systems (ASPLOS), Lausanne, Switzerland,
March 2020.

[45] IBM. Power Failure Handling - IBM i in a Hosted En-
vironment. https://www.ibm.com/support/pages/
power-failure-handling-ibm-i-hosted-
environment.

[46] Mohamed Tarek Ibn Ziad, Miguel A. Arroyo, Evgeny
Manzhosov, Ryan Piersma, and Simha Sethumadha-
van. No-fat: Architectural support for low overhead
memory safety checks. In Proceedings of the 48th
ACM/IEEE International Symposium on Computer Ar-
chitecture (ISCA), online, June 2021.

[47] Intel. C++ bindings for libpmemobj (part 6) - transac-
tions, 2016.

[48] INTEL. Valgrind: an enhanced version for pmem, 2019.

[49] Intel Corporation. Intel 64 and IA-32 Archi-
tectures Software Developer’s Manual, 2019.
https://software.intel.com/en-us/articles/
intel-sdm.

[50] Raghunathan Modoor Jagannathan, Sulav Malla,
and Parimala Kondety. Power Loss Siren: Mak-
ing Meta resilient to power loss events, 2021.
https://engineering.fb.com/2021/12/16/data-
center-engineering/power-loss-siren/.

[51] Rohan Kadekodi, Se Kwon Lee, Sanidhya Kashyap,
Taesoo Kim, Aasheesh Kolli, and Vijay Chidambaram.
SplitFS: Reducing Software Overhead in File Systems
for Persistent Memory. In Proceedings of the 27th ACM
Symposium on Operating Systems Principles (SOSP),
Ontario, Canada, October 2019.

[52] Sudarsun Kannan, Nitish Bhat, Ada Gavrilovska, An-
drea Arpaci-Dusseau, and Remzi Arpaci-Dusseau. Re-
designing LSMs for Nonvolatile Memory with Nov-
eLSM. In Proceedings of the 2018 USENIX Annual
Technical Conference (ATC), Boston, MA, July 2018.

[53] Rajat Kateja, Anirudh Badam, Sriram Govindan, Bikash
Sharma, and Greg Ganger. Viyojit: Decoupling bat-
tery and dram capacities for battery-backed dram. In

Proceedings of the 44th ACM/IEEE International Sym-
posium on Computer Architecture (ISCA), Toronto,
Canada, June 2018.

[54] Rajat Kateja, Nathan Beckmann, and Gregory R. Ganger.
Tvarak: Software-managed hardware offload for redun-
dancy in direct-access nvm storage. In Proceedings of
the 47th ACM/IEEE International Symposium on Com-
puter Architecture (ISCA), online, June 2020.

[55] Wook-Hee Kim, R. Madhava Krishnan, Xinwei Fu,
Sanidhya Kashyap, and Changwoo Min. Pactree: A
high performance persistent range index. In Proceed-
ings of the 28th ACM Symposium on Operating Systems
Principles (SOSP), online, October 2021.

[56] R. Madhava Krishnan, Jaeho Kim, Ajit Mathew, Xin-
wei Fu, Anthony Demeri, Changwoo Min, and Sudarsun
Kannan. Durable Transactional Memory Can Scale
with Timestone. In Proceedings of the 25th ACM In-
ternational Conference on Architectural Support for
Programming Languages and Operating Systems (ASP-
LOS), Lausanne, Switzerland, March 2020.

[57] R. Madhava Krishnan, Wook-Hee Kim, Xinwei Fu,
Sumit Kumar Monga, Hee Won Lee, Minsung Jang, Ajit
Mathew, and Changwoo Min. TIPS: Making volatile
index structures persistent with DRAM-NVMM tiering.
In Proceedings of the 2021 USENIX Annual Technical
Conference (ATC), online, July 2021.

[58] Philip Lantz, Subramanya Dulloor, Sanjay Kumar, Ra-
jesh Sankaran, and Jeff Jackson. Yat: A validation frame-
work for persistent memory software. In Proceedings of
the 2014 USENIX Annual Technical Conference (ATC),
Philadelphia, PA, June 2014.

[59] Byoungyoung Lee, Chengyu Song, Yeongjin Jang,
Tielei Wang, Taesoo Kim, Long Lu, and Wenke Lee.
Preventing use-after-free with dangling pointers nullifi-
cation. In Proceedings of the 2015 Annual Network and
Distributed System Security Symposium (NDSS), San
Diego, CA, February 2015.

[60] Lucas Lersch, Xiangpeng Hao, Ismail Oukid, Tianzheng
Wang, and Thomas Willhalm. Evaluating Persistent
Memory Range Indexes. In Proceedings of the 45th
International Conference on Very Large Data Bases
(VLDB), Los Angeles, CA, August 2019.

[61] Jihang Liu, Shimin Chen, and Lujun Wang. LB+Trees:
Optimizing Persistent Index Performance on 3DXPoint
Memory. In Proceedings of the 46th International
Conference on Very Large Data Bases (VLDB), Tokyo,
Japan, August 2020.

262 21st USENIX Conference on File and Storage Technologies USENIX Association

https://www.ibm.com/support/pages/power-failure-handling-ibm-i-hosted-environment
https://www.ibm.com/support/pages/power-failure-handling-ibm-i-hosted-environment
https://www.ibm.com/support/pages/power-failure-handling-ibm-i-hosted-environment
https://software.intel.com/en-us/articles/intel-sdm
https://software.intel.com/en-us/articles/intel-sdm
https://engineering.fb.com/2021/12/16/data-center-engineering/power-loss-siren/
https://engineering.fb.com/2021/12/16/data-center-engineering/power-loss-siren/

[62] Mengxing Liu, Mingxing Zhang, Kang Chen, Xuehai
Qian, Yongwei Wu, Weimin Zheng, and Jinglei Ren.
DudeTM: Building Durable Transactions with Decou-
pling for Persistent Memory. In Proceedings of the
22nd ACM International Conference on Architectural
Support for Programming Languages and Operating
Systems (ASPLOS), Xi’an, China, April 2017.

[63] Sihang Liu, Korakit Seemakhupt, Yizhou Wei, Thomas
Wenisch, Aasheesh Kolli, and Samira Khan. Cross-
failure bug detection in persistent memory programs.
In Proceedings of the 25th ACM International Confer-
ence on Architectural Support for Programming Lan-
guages and Operating Systems (ASPLOS), Lausanne,
Switzerland, March 2020.

[64] Sihang Liu, Yizhou Wei, Jishen Zhao, Aasheesh Kolli,
and Samira Khan. Pmtest: A fast and flexible testing
framework for persistent memory programs. In Proceed-
ings of the 24th ACM International Conference on Archi-
tectural Support for Programming Languages and Op-
erating Systems (ASPLOS), Providence, RI, April 2019.

[65] Baotong Lu, Xiangpeng Hao, Tianzheng Wang, and Eric
Lo. Dash: Scalable Hashing on Persistent Memory. In
Proceedings of the 46th International Conference on
Very Large Data Bases (VLDB), Tokyo, Japan, August
2020.

[66] Shaonan Ma, Kang Chen, Shimin Chen, Mengxing
Liu, Jianglang Zhu, Hongbo Kang, and Yongwei Wu.
ROART: Range-query optimized persistent ART. In
Proceedings of the 19th USENIX Conference on File
and Storage Technologies (FAST), pages 1–16, Virtual,
February 2021.

[67] Sulav Malla, Qingyuan Deng, Zoh Ebrahimzadeh, Joe
Gasperetti, Sajal Jain, Parimala Kondety, Thiara Ortiz,
and Debra Vieira. Coordinated priority-aware charging
of distributed batteries in oversubscribed data centers.
In 53rd Annual IEEE/ACM International Symposium on
Microarchitecture, MICRO 2020, Athens, Greece, Octo-
ber 17-21, 2020, pages 839–851. IEEE, 2020.

[68] Amirsaman Memaripour, Anirudh Badam, Amar Phan-
ishayee, Yanqi Zhou, Ramnatthan Alagappan, Karin
Strauss, and Steven Swanson. Atomic In-place Updates
for Non-volatile Main Memories with Kamino-Tx. Eu-
roSys17.

[69] Santosh Nagarakatte, Milo MK Martin, and Steve
Zdancewic. Everything you want to know about pointer-
based checking. In 1st Summit on Advances in Pro-
gramming Languages (SNAPL 2015). Schloss Dagstuhl-
Leibniz-Zentrum fuer Informatik, 2015.

[70] Santosh Nagarakatte, Jianzhou Zhao, Milo MK Martin,
and Steve Zdancewic. SoftBound: Highly Compatible

and Complete Spatial Memory Safety for C. In Pro-
ceedings of the 2009 ACM SIGPLAN Conference on
Programming Language Design and Implementation
(PLDI), Dublin, Ireland, June 2009.

[71] Santosh Nagarakatte, Jianzhou Zhao, Milo MK Mar-
tin, and Steve Zdancewic. CETS: Compiler Enforced
Temporal Safety for C. In Proceedings of the 2010 Inter-
national Symposium on Memory Management (ISMM),
Toronto, Canada, June 2010.

[72] Ian Neal, Ben Reeves, Ben Stoler, Andrew Quinn,
Youngjin Kwon, Simon Peter, and Baris Kasikci. AG-
AMOTTO: How persistent is your persistent memory
application? In Proceedings of the 14th USENIX Sympo-
sium on Operating Systems Design and Implementation
(OSDI), Vancouver, Canada, November 2020.

[73] Gene Novark and Emery D. Berger. DieHarder: Secur-
ing the Heap. In Proceedings of the 17th ACM Confer-
ence on Computer and Communications Security (CCS),
page 573–584, Chicago, IL, November 2010.

[74] Soyeon Park, Sangho Lee, Wen Xu, Hyungon Moon,
and Taesoo Kim. Libmpk: Software Abstraction for
Intel Memory Protection Keys (Intel MPK). In Proceed-
ings of the 2019 USENIX Annual Technical Conference
(ATC), pages 241–254, Renton, WA, July 2019.

[75] Pedro Ramalhete, Andreia Correia, and Pascal Felber.
Onefile: A wait-free persistent transactional memory. In
Proceedings of the 49th International Conference on
Dependable Systems and Networks (DSN), June 2019.

[76] Pedro Ramalhete, Andreia Correia, and Pascal Felber.
Persistent memory and the rise of universal construc-
tions. In Proceedings of the 15th European Conference
on Computer Systems (EuroSys), Heraklion, Greece,
April 2020.

[77] Pedro Ramalhete, Andreia Correia, and Pascal Felber.
Efficient algorithms for persistent transactional memory.
In Proceedings of the 24th ACM Symposium on Prin-
ciples and Practice of Parallel Programming (PPoPP),
online, March 2021.

[78] Arthur Sainio and Pekon Gupta. Scaling NVDIMM-N
Architecture for System Acceleration in DDR5 and
CXL-Enabled Applications. In PM+CS Summit.
SNIA, 2022. https://www.snia.org/educational-
library/scaling-nvdimm-n-architecture-
system-acceleration-ddr5-and-cxl-enabled.

[79] Konstantin Serebryany, Derek Bruening, Alexander
Potapenko, and Dmitriy Vyukov. AddressSanitizer: A
fast address sanity checker. In Proceedings of the 2012
USENIX Annual Technical Conference (ATC), pages
309–318, Boston, MA, June 2012.

USENIX Association 21st USENIX Conference on File and Storage Technologies 263

https://www.snia.org/educational-library/scaling-nvdimm-n-architecture-system-acceleration-ddr5-and-cxl-enabled
https://www.snia.org/educational-library/scaling-nvdimm-n-architecture-system-acceleration-ddr5-and-cxl-enabled
https://www.snia.org/educational-library/scaling-nvdimm-n-architecture-system-acceleration-ddr5-and-cxl-enabled

[80] Konstantin Serebryany, Derek Bruening, Alexander
Potapenko, and Dmitriy Vyukov. AddressSanitizer: A
fast address sanity checker. In Proceedings of the 2012
USENIX Annual Technical Conference (ATC), Boston,
MA, June 2012.

[81] Jangseop Shin, Donghyun Kwon, Jiwon Seo, Yeongpil
Cho, and Yunheung Paek. Crcount: Pointer invalida-
tion with reference counting to mitigate use-after-free
in legacy c/c++. In Proceedings of the 2018 Annual
Network and Distributed System Security Symposium
(NDSS), San Diego, CA, February 2018.

[82] Anjo Vahldiek-Oberwagner, Eslam Elnikety, Nuno O.
Duarte, Michael Sammler, Peter Druschel, and Deepak
Garg. ERIM: Secure, efficient in-process isolation with
protection keys (mpk). In Proceedings of the 28th
USENIX Security Symposium (Security), Santa Clara,
CA, August 2019.

[83] Erik van der Kouwe, Vinod Nigade, and Cristiano Giuf-
frida. Dangsan: Scalable use-after-free detection. In
Proceedings of the 12th European Conference on Com-
puter Systems (EuroSys), Belgrade, Serbia, April 2017.

[84] Victor van der Veen, Dennis Andriesse, Enes Göktaş,
Ben Gras, Lionel Sambuc, Asia Slowinska, Herbert Bos,
and Cristiano Giuffrida. Practical context-sensitive CFI.
In Proceedings of the 22nd ACM Conference on Com-
puter and Communications Security (CCS), Denver, Col-
orado, October 2015.

[85] Haris Volos. The case for replication-aware memory-
error protection in disaggregated memory. IEEE Com-
puter Architecture Letters, 2021.

[86] Li Wang, Zining Zhang, Bingsheng He, and Zhenjie
Zhang. PA-Tree: Polled-Mode Asynchronous B+ Tree
for NVMe. In Proceedings of the 36th IEEE Interna-
tional Conference on Data Engineering (ICDE), Dallas,
TX, April 2020.

[87] Kai Wu, Jie Ren, Ivy Peng, and Dong Li. ArchTM:
Architecture-Aware, high performance transaction for
persistent memory. In Proceedings of the 19th USENIX
Conference on File and Storage Technologies (FAST),
Virtual, February 2021.

[88] Jian Xu and Steven Swanson. NOVA: A log-structured
file system for hybrid Volatile/Non-volatile main mem-
ories. In Proceedings of the 14th USENIX Conference
on File and Storage Technologies (FAST), Santa Clara,
California, USA, February 2016.

[89] Jian Xu, Lu Zhang, Amirsaman Memaripour, Akshatha
Gangadharaiah, Amit Borase, Tamires Brito Da Silva,
Steven Swanson, and Andy Rudoff. Nova-fortis: A
fault-tolerant non-volatile main memory file system. In
Proceedings of the 26th ACM Symposium on Operating
Systems Principles (SOSP), Shanghai, China, October
2017.

[90] Shengjie Xu, Wei Huang, and David Lie. In-fat pointer:
Hardware-assisted tagged-pointer spatial memory safety
defense with subobject granularity protection. In Pro-
ceedings of the 26th ACM International Conference on
Architectural Support for Programming Languages and
Operating Systems (ASPLOS), Virtual, April 2021.

[91] Yuanchao Xu, Wei Xu, Kimberly Keeton, and David E.
Culler. Scaling NVDIMM-N Architecture for Sys-
tem Acceleration in DDR5 and CXL-Enabled Appli-
cations. In Non-Volatile Memory Workshop (NVMW),
2022. http://nvmw.ucsd.edu/nvmw2022-program/
nvmw2022-data/nvmw2022-final5.pdf.

[92] Insu Yun, Dhaval Kapil, and Taesoo Kim. Automatic
Techniques to Systematically Discover New Heap Ex-
ploitation Primitives. In Proceedings of the 29th
USENIX Security Symposium (Security), Virtual, Au-
gust 2020.

[93] Da Zhang, Vilas Sridharan, and Xun Jian. Exploring
and optimizing chipkill-correct for persistent memory
based on high-density nvrams. In Proceedings of the
51st Annual IEEE/ACM International Symposium on
Microarchitecture (MICRO), Fukuoka, Japan, October
2018.

[94] Lu Zhang and Steven Swanson. Pangolin: A Fault-
Tolerant persistent memory programming library. In
Proceedings of the 2019 USENIX Annual Technical Con-
ference (ATC), Renton, WA, July 2019.

[95] Tong Zhang, Dongyoon Lee, and Changhee Jung.
BOGO: Buy Spatial Memory Safety, Get Temporal
Memory Safety (Almost) Free. In Proceedings of the
24th ACM International Conference on Architectural
Support for Programming Languages and Operating
Systems (ASPLOS), page 631–644, Providence, RI, April
2019.

[96] Diyu Zhou, Yuchen Qian, Vishal Gupta, Zhifei Yang,
Changwoo Min, and Sanidhya Kashyap. ODINFS: Scal-
ing PM Performance with Opportunistic Delegation. In
16th USENIX Symposium on Operating Systems Design
and Implementation (OSDI 22), pages 179–193, 2022.

264 21st USENIX Conference on File and Storage Technologies USENIX Association

http://nvmw.ucsd.edu/nvmw2022-program/nvmw2022-data/nvmw2022-final5.pdf
http://nvmw.ucsd.edu/nvmw2022-program/nvmw2022-data/nvmw2022-final5.pdf

MadFS: Per-File Virtualization for Userspace Persistent Memory Filesystems

Shawn Zhong∗ Chenhao Ye∗ Guanzhou Hu Suyan Qu
Andrea Arpaci-Dusseau Remzi Arpaci-Dusseau Michael Swift

University of Wisconsin–Madison

Abstract
Persistent memory (PM) can be accessed directly from
userspace without kernel involvement, but most PM filesys-
tems still perform metadata operations in the kernel for secu-
rity and rely on the kernel for cross-process synchronization.

We present per-file virtualization, where a virtualization
layer implements a complete set of file functionalities, in-
cluding metadata management, crash consistency, and con-
currency control, in userspace. We observe that not all file
metadata need to be maintained by the kernel and propose
embedding insensitive metadata into the file for userspace
management. For crash consistency, copy-on-write (CoW)
benefits from the embedding of the block mapping since the
mapping can be efficiently updated without kernel involve-
ment. For cross-process synchronization, we introduce lock-
free optimistic concurrency control (OCC) at user level, which
tolerates process crashes and provides better scalability.

Based on per-file virtualization, we implement MadFS, a
library PM filesystem that maintains the embedded metadata
as a compact log. Experimental results show that on concur-
rent workloads, MadFS achieves up to 3.6× the throughput of
ext4-DAX. For real-world applications, MadFS provides up
to 48% speedup for YCSB on LevelDB and 85% for TPC-C
on SQLite compared to NOVA.

1 Introduction

Persistent memory (PM) is a promising candidate for next-
generation storage devices. PM DIMMs are connected on the
memory bus and deliver near-DRAM performance while per-
sisting data across power-offs. They create new opportunities
for building storage systems.

With revolutionary hardware available, the software stack
needs to evolve accordingly. Traditional kernel filesystems
require I/O operations to cross the user-kernel boundary and
go through layers of the storage stack, introducing signif-
icant software overhead. In response to this observation,

*Both authors contributed equally to this work.

many PM filesystems have been proposed to perform I/O
in userspace [5, 8, 12, 25, 30, 41, 43]. The challenge is that a
userspace process is untrusted and unreliable: it could cor-
rupt metadata and threaten filesystem integrity; it could crash
in a shared critical section, blocking other processes. These
realities impose challenges for metadata operations and shar-
ing. Existing userspace filesystems bypass the kernel for data
operations, but typically still rely on the kernel for metadata
management [5, 8, 25, 30] with its inefficient storage stack.
In terms of sharing, most userspace filesystems either do not
support cross-process sharing [8] or rely on a kernel-granted
lease [5, 12, 30].

To address these challenges, we introduce per-file virtual-
ization, where a complete set of file functionalities, including
metadata management, crash consistency, and concurrency
control, are implemented in a userspace virtualization layer
and managed on a per-file basis for regular files. For userspace
metadata management, we observe that some metadata are pri-
vate to each file and have a similar trust model to the file data.
Thus, we propose metadata embedding, where insensitive
metadata (e.g., block mapping and file size) are embedded
in the file. This enables efficient metadata management in
userspace without sacrificing permission enforcement. In par-
ticular, embedding block mapping provides additional benefits
when copy-on-write (CoW) is used for data crash consistency.
For a process with memory-mapped files, existing kernel-
level CoW requires updating the page table on file writes,
causing expensive TLB shootdowns. With metadata embed-
ding, the block mapping can be changed entirely in userspace
without kernel involvement. To support cross-process concur-
rency control, we use the file data itself as the communication
medium and implement non-blocking synchronization. This
design simplifies the failure model and provides better con-
currency than locks.

Based on per-file virtualization, we present MadFS1, a li-
brary filesystem for persistent memory that provides strong
data crash consistency and linearizable concurrency control

1MadFS stands for metadata embedded filesystem.

USENIX Association 21st USENIX Conference on File and Storage Technologies 265

in userspace. MadFS requires no modification to the kernel
or application and can run on top of any direct access (DAX)
filesystem with mmap support (e.g., ext4-DAX). To provide
strong data crash consistency, MadFS performs CoW on data
updates. MadFS introduces a level of indirection that maps
virtual blocks seen by applications to logical blocks backed
by the underlying kernel filesystem. This block mapping is
embedded in the file for efficient userspace CoW and main-
tained as a log for crash consistency. We implement lock-free
optimistic concurrency control (OCC) to support concurrent
access to the same file cross processes. Specifically, a writer
tentatively makes changes in a private workspace. Before
committing to the log, the writer detects conflicts by checking
the movement of the log tail, and partially redoes the changes
if necessary. Compared to lock-based approaches, concurrent
readers and writers would not block each other even with
overlapping ranges, thus achieving better scalability.

We evaluate MadFS using a variety of microbenchmarks
and macrobenchmarks. MadFS achieves up to 3.6× through-
put for ext4-DAX on concurrent microbenchmarks. For Lev-
elDB running YCSB workload, MadFS provides up to 48%
improvement over NOVA. TPC-C workloads over SQLite on
MadFS outperform NOVA by 85%.

This paper makes the following contributions:
• We present per-file virtualization, where a virtualization

layer implements a complete set of file functionalities, in-
cluding metadata management, crash consistency, and con-
currency control, entirely in userspace.

• We introduce metadata embedding as a novel metadata man-
agement technique for userspace filesystems. Embedding
insensitive metadata in the file enables efficient modifica-
tion in userspace.

• In particular, when CoW is used for data crash consistency,
we propose embedding the block mapping, which allows it
to be updated without the kernel modifying the page table.

• We introduce lock-free optimistic concurrency control
(OCC) for userspace cross-process synchronization, which
tolerates process crashes and achieves better scalability.

• Based on per-file virtualization, we present MadFS, a library
PM filesystem that maintains the embedded metadata as
a compact log. The source code of MadFS is available at
https://github.com/WiscADSL/MadFS.

• We evaluate MadFS using microbenchmarks and mac-
robenchmarks to show that it provides high throughput for
both single-threaded and multi-threaded workloads.

2 Background and Motivation

Persistent memory (PM) is an emerging hardware technol-
ogy that provides durability with DRAM-like latency. PM is
considered both a new generation of denser memory and a

high-performance storage device. In this paper, we explore
the storage aspect of PM.

The byte-addressability of PM, like DRAM, enables CPUs
to directly read/write data through load/store instructions.
After data is stored in a memory location, it may still reside in
the CPU cache, so one needs to flush the cache line explicitly
(e.g., via clwb or clfushopt) for persistence. Alternatively,
non-temporal stores (e.g., movnti) can be used to persist data
directly, bypassing the CPU cache. For ordering constraints,
a memory fence (e.g., sfence) is needed to serialize memory
instructions.

One of the commercially available PM products is Intel
Optane Persistent Memory [1]. Intel announced the winding
down of the Optane business in Q2 2022 [10]. This work is
not specific to Intel Optane PM. We only require that the PM
is byte-addressable and applications can directly access the
data stored on the PM via memory-mapped I/O.

There has been a rich set of work on building more efficient
filesystems for PM. In this section, we broadly classify them
into userspace and kernel filesystems and then discuss their
challenges in metadata management, crash consistency, and
concurrency control.

2.1 Filesystems for Persistent Memory
Kernel filesystems. Mature Linux filesystems such as ext4
and XFS introduce direct access (DAX) mode [7, 42], which
bypasses the page cache and allows applications to directly
access file data stored on PM via memory-mapped I/O. These
DAX filesystems only ensure metadata consistency in the
presence of failures, while the responsibility of maintaining
data consistency on memory-mapped regions falls on the ap-
plications. There are also research kernel filesystems designed
for PM. BPFS [9] uses a tree layout similar to WAFL [23]
and avoids cascading CoW via short-circuit shadow paging.
PMFS [14] combines atomic in-place updates, journaling, and
CoW to support efficient crash consistency, and also advocates
the use of huge pages to reduce paging costs. NOVA [45] im-
plements log-structured metadata for each file and CoW data
crash consistency.

Userspace filesystems. With ultra-fast hardware, software
overhead becomes non-trivial. Thus, many PM filesystems
have proposed to bypass the kernel [5, 8, 12, 25, 30, 41, 43].
FLEX [43] calls mmap after open and intercepts data opera-
tions to handle them in userspace via memory instructions.
SplitFS [25] similarly handles data operations in userspace
with memory-mapped I/O but relies on a modified ext4-DAX
for metadata operations. It introduces a new system call
relink, which reassigns data blocks from one file to another.
For append operations, SplitFS redirects data to a temporary
staging file and invokes relink on fsync to publish the
newly written data to the target file. Libnvmmio [8] builds on
memory-mapped I/O and equips each block with a journal to
provide scalable crash-consistent I/O.

266 21st USENIX Conference on File and Storage Technologies USENIX Association

https://github.com/WiscADSL/MadFS

2.2 Challenges in Metadata Management

Metadata safety is critical to filesystem integrity. In kernel
filesystems, metadata is managed exclusively by the kernel for
security reasons. A major challenge of userspace filesystems
comes from untrusted libraries. Thus, many of them still rely
on the kernel for metadata management (e.g., SplitFS [25],
Strata [30], and KucoFS [5]). Unfortunately, data operations
can be tightly coupled with metadata operations, defeating the
purpose of kernel bypassing and leading to lower performance.
For example, SplitFS appends data to a staging file, but still
requires the relink system call to swap the data blocks from
the staging file to the target one on each fsync.

A few filesystems also bypass the kernel for metadata op-
erations. Aerie [41] provides applications with direct access
to PM for reading/writing data and reading metadata, while
metadata updates are handled by a trusted filesystem service
via socket-based remote-procedure call (RPC). One draw-
back of this approach is that RPCs are expensive and incur
the overhead of context switches. Aerie uses batching to re-
duce the number of RPCs at the cost of visibility. ZoFS [12]
introduces a new abstraction called coffer. The dentries, in-
odes, and data blocks for a directory subtree are stored in a
coffer if they share the same permission. ZoFS relaxes the
protection domain from file to coffer and relies on the Intel
Memory Protection Key (MPK) hardware for security. Due to
hardware limitations of MPK, the number of simultaneously
memory-mapped coffers cannot exceed 15.

2.3 Challenges in Crash Consistency

Crash consistency is critical to filesystems. PM only guaran-
tees the atomicity of a single 64-bit store, so filesystems need
to build their own constructs for crash consistency.

To ensure metadata crash consistency, PM filesystems com-
monly use journaling [5,14,25,30,41,42]. Kernel filesystems
adapted for PM, such as ext4-DAX, rely on Linux journaling
block device (JBD) [28] for metadata journaling. However,
JBD was designed with block devices in mind and writes in
whole blocks, causing write amplification [4,43]. SplitFS also
uses JBD for the crash consistency of relink and suffers the
same problem. Many filesystems tailored for PM leverage
the byte-addressability to persist journal/log entries with a
finer granularity [14, 45]. NOVA equips each inode with a
private log. Cross-file updates are implemented via journaling
to update multiple log tails. BPFS [9] uses CoW for metadata
updates. SoapFS [13] and ZoFS [12] employ soft update [15]
for metadata crash consistency.

For data crash consistency, CoW is commonly used [5, 9,
14, 25, 45]. However, CoW has two major drawbacks when
used with memory-mapped I/O. First, huge pages have been
shown to have significant performance improvements for PM
filesystems due to fewer page faults, less TLB shootdown,
and shorter page table walk [14, 24, 25]. However, an open

issue brought out by PMFS is that CoW does not work well
with huge pages: the granularity of CoW is coupled with the
page size, which for huge pages is 2 MB or 1 GB on x86-
64. Writing to a sub-page results in copying the entire page,
causing significant write amplification [14]. SplitFS’s relink
changes the block mapping at the granularity of 4 KB blocks.
This breaks the contiguity of the file on the physical PM and
thus prevents the use of huge pages [24].

Second, in addition to huge pages, kernel-level CoW causes
expensive TLB shootdowns [2,3,8,40]. During CoW, the page
table should be updated so that the virtual address region is
backed by the new pages. The kernel needs to flush the TLB
on the local core, send an inter-processor interrupt (IPI) to the
other cores to flush the remote TLB, and wait for all cores
to finish. The whole process can take several microseconds
to complete [40], which is expensive for PM devices with
sub-microsecond latency [47].

Another option for data crash consistency is data journal-
ing. Strata [30] allows applications to write to a private log in
PM and relies on the kernel to digest the data to a slower stor-
age device. Libnvmmio [8] equips each block with a journal
and implements background checkpointing. In general, data
journaling faces the issue of double writes. Both Strata and
Libnvmmio make the digestion/checkpointing asynchronous
to remove it from the critical path at the cost of visibility.

Some PM filesystems do not provide data crash consistency,
including ext4-DAX, FLEX, PMFS, Aerie, and ZoFS. In this
case, applications have to detect and react to inconsistent file
data upon failures. Previous studies [35, 36] have shown that
many applications fail to handle inconsistent data correctly.
Data crash consistency is a desirable property for filesystems
if the overhead is acceptably low.

2.4 Challenges in Concurrency Control

For kernel filesystems, the kernel itself acts as a single cen-
tralized entity for synchronization. The inode lock ensures
that only one thread is operating on the same file at a time.
For userspace filesystems, however, concurrency control is
challenging, especially in cross-process cases. For example,
a process could crash while holding a lock, blocking other
processes. To prevent this situation, the lock must be visible
to the kernel so that the kernel can release it after a crash
(e.g., robust mutex [27]). This introduces additional kernel
involvement and can cause processes to sleep on the critical
path of data operations.

As a result, most userspace PM filesystems either do not
support cross-process synchronization [8] or use lease-based
locking [5, 12, 30, 41]. Aerie implements a lock service in the
filesystem service. Each application process is equipped with
an additional clerk thread to communicate with the lock ser-
vice and synchronize with others. In Strata and ZoFS, leases
are granted by the kernel. KucoFS uses a two-level locking
scheme with kernel-granted leases for inter-process synchro-

USENIX Association 21st USENIX Conference on File and Storage Technologies 267

nization and userspace range locks for intra-process synchro-
nization. In all these cases, there exists a centralized coordi-
nator to manage leases. This adds communication overhead
when multiple processes access the same file concurrently.

The lease timeout is another source of complexity. Timeout
relies on the assumption about the maximum completion time
of an operation, which could be unsafe. For example, a writer
starting with a valid lease can finish with the lease expired. In
this case, other threads will see partial data. A write operation
can take an arbitrarily long time to complete due to kernel
CPU scheduling or large I/O sizes. This will cause correctness
issues with lease-based locking.

3 Per-File Virtualization

To address these challenges, we propose per-file virtualization,
where a userspace virtualization layer implements a complete
set of file functionalities, including metadata management,
crash consistency, and concurrency control, on a per-file basis
for regular files.

Kernel-bypassing with metadata embedding. We observe
that some of the file metadata (e.g., block mapping and file
size) are private to each file, and share the same protection
domain as the file data. This allows us to embed a subset of
the metadata directly into the file to avoid the slow kernel I/O
stack for certain metadata operations, especially those that
are tightly coupled with data operations (e.g., CoW changing
block mapping). Compared to other techniques for userspace
metadata management, this method neither relies on a trusted
entity as in Aerie nor expands the protection domain beyond
a file as in ZoFS. Permission-related metadata (e.g., access
mode, owner, and group) must not be embedded. The kernel
filesystem shall still manage the permission and enforce ac-
cess control when a file is opened. Metadata embedding does
not apply to directories since the hierarchical structure must
be visible to the kernel to enforce access control. We leverage
the mature constructs of the kernel to handle directory opera-
tions, while the virtualization layer manages the embedded
file metadata and ensures its crash consistency.

Decoupling of block- and memory-mapping for CoW.
Embedding block mapping, in particular, enables efficient
userspace block management since the embedded block map-
ping can be modified independently from the memory map-
ping. This provides two major benefits when using CoW for
data crash consistency. First, the granularity for CoW is no
longer associated with huge page sizes. CoW can operate at
block granularity within the file, while the kernel still sees the
file as a contiguous region on the PM. This allows the usage
of huge pages during mmap. Second, block mapping updates
can be done in userspace via store instructions. The kernel no
longer needs to modify the page table. The nanosecond-level
cache coherence protocol [18, 33] ensures cross-core consis-
tency as opposed to microsecond-level TLB shootdown [40].

Non-blocking concurrency control. The embedding of meta-
data brings new opportunities for concurrency control in
userspace. As a file is now a self-contained entity with both
metadata and data stored in it, processes that memory-map
the same file can use the shared PM region for cross-process
synchronization, without relying on external entities. We ar-
gue that locking is not a good candidate for cross-process
synchronization, as the lock owner can crash in the middle of
a critical section. Detecting the lock owner’s crash without
the kernel is difficult if not impossible. Instead, we propose
to use atomic primitives (e.g., compare-and-swap) to imple-
ment non-blocking synchronization, where the suspension or
crash of a single process does not prevent others from making
progress [19–21]. In this way, inter- and intra-process concur-
rency control is handled uniformly, and the failure model is
greatly simplified. Non-blocking synchronization also brings
better concurrency, since operations do not block each other,
even with overlapping ranges.

Summary. With per-file virtualization, we aim to push file
functionalities into userspace as much as possible. Metadata
embedding bypasses the kernel for metadata management.
Embedding block mapping enables efficient userspace CoW
for crash consistency. Non-blocking synchronization allows
cross-process concurrency control to be enforced without
kernel involvement. All the techniques are applied on a per-
file basis and there is no global data structure.

4 MadFS: Design and Implementation

Based on per-file virtualization, we implement MadFS, a
userspace library filesystem overlaid on top of any DAX ker-
nel filesystem supporting mmap (e.g., ext4-DAX). It intercepts
POSIX I/O calls and requires no modifications to the applica-
tion. MadFS memory-maps the file on open, so subsequent
data operations (e.g., read and write) can be handled in
userspace via load and store. MadFS provides data crash
consistency through CoW. It embeds metadata in the file to
avoid kernel crossing for block mapping updates and delivers
instant visibility. MadFS employs lock-free optimistic concur-
rency control to provide high concurrency with cross-process
linearizability.

The architecture of MadFS is shown in Figure 2. A MadFS
file is a self-contained file on the underlying DAX filesys-
tem. Upon file creation, MadFS creates the file on the kernel
filesystem and initializes the basic structure to identify itself
as a MadFS file. The following discussion assumes operations
on the same file.

Embedded block map (§4.1). We introduce a level of indirec-
tion that maps virtual blocks seen by applications to logical
blocks managed by the underlying kernel filesystem. We call
this indirection the block map. The block map is embedded
in the file, which allows MadFS to efficiently handle CoW
operations in userspace.

268 21st USENIX Conference on File and Storage Technologies USENIX Association

Bitmap Data BlocksBlock Map &
Virtual File Size

Logical Blocks 2 - 1023Logical Block 0 Logical Block 1
Figure 1: A naive approach for metadata embedding (§4.1)

Compact log-structured metadata (§4.3). To ensure the
metadata crash consistency, we maintain the block map as a
log persisted in the file. Each block map update is described
by a compact 8-byte log entry. For a write operation, MadFS
writes to pre-allocated blocks and copies unaligned parts from
existing blocks if necessary. MadFS then generates a log entry
describing the block map update and finally commits the write
by appending the entry to the log. The word-sized (8-byte)
log entry ensures the atomicity of the log append and allows
for a lock-free concurrency control algorithm.
Lock-free optimistic concurrency control (§4.4). MadFS
supports concurrent access to the same file across threads
and processes. To achieve high scalability, MadFS employs
lock-free optimistic concurrency control (OCC). Concurrent
writers do not block each other and are linearized during the
log commit. In the case of range overlap, the later writer will
detect the conflict during the commit, partially redo the write
as needed, and retry the commit. The reader similarly detects
overlap and guarantees that it never returns half-written data.
Security. In MadFS, access permission is still enforced by
the underlying kernel filesystem during open. To launch an
attack, a malicious actor must have permission to write to
the file. In this case, the actor could alter the block map,
causing others to read the wrong blocks, but this is no different
from a traditional filesystem where the actor can directly
overwrite file data. For metadata integrity, MadFS treats files
as untrusted input and gracefully returns an error on ill-formed
files. Furthermore, due to per-file virtualization, the effect of
metadata corruption is contained within the file. Similar to
other filesystems [12], MadFS does not prevent denial-of-
service attacks if the attacker keeps writing to the file.

4.1 Metadata Embedding
To illustrate how metadata embedding allows MadFS to by-
pass the kernel I/O stack for metadata management, consider
a naive design shown in Figure 1. We will later build on this
design to add more functionalities.

We denote the blocks backed by the underlying kernel
filesystem as logical blocks. In this example, the file contains
1024 logical blocks. The first two blocks store metadata; the
rest are data blocks, some of which can be unused. We intro-
duce a level of indirection that maps the virtual blocks seen by
applications to logical data blocks: an application reading the
first 4 KB gets the data in the first virtual block, which resides
in some logical block. This indirection is maintained in the
block map as an array of integers. If the virtual block index
i maps to logical block index j, then the i-th element of the
array is j. The virtual file size is the size seen by the applica-
tions, and the logical file size is the size occupied on the kernel

File on a DAX FSFile on a DAX FSA Single File on a Kernel DAX-Filesystem

POSIX Application

open [p]read [p]write

open mmap fstatfallocate

[f]stat

MadFS
Virtual Blocks:

Logical Blocks:

Block Mapping:

A’ B C D

A B C D A’Sb Lg

E

EEx ?
Userspace

Kernel

close

 Superblock Log Extended Log Data UnusedSb ExLg D ?

Shared
Memory

close

Figure 2: The architecture of MadFS. The application sees
virtual blocks, which are mapped to the logical blocks backed
by the kernel filesystem.

filesystem, which is 4 MB in this example. The bitmap indi-
cates whether a data block is in use or not. Security-sensitive
metadata is not embedded and is still managed by the kernel.

The embedding of the block map enables MadFS to per-
form CoW efficiently in userspace. A write operation pro-
ceeds in the following steps: 1 allocate blocks from the
bitmap, 2 write the user buffer to the allocated blocks and
copy unaligned parts of existing blocks if any, 3 update the
block map along with the virtual file size, and 4 return the
old blocks to the bitmap.

In this example, we bypass the kernel I/O stack for write
and avoid changing the memory mapping for CoW. How-
ever, it only considers a file with fixed logical size (§4.2) and
does not ensure metadata crash consistency (§4.3) or enforce
concurrency control (§4.4).

4.2 Block Management

To facilitate the dynamic growth of the logical file size, we
allow the metadata to be stored anywhere in the file. Figure 2
shows the layout of a MadFS file. The metadata is maintained
as a log. We will discuss the log structure in detail in §4.3.
For the block layout, there are 5 types of logical blocks:

Sb Superblock is the first block, which contains a magic
number that identifies MadFS files and a pointer to the
first log block.

Lg Log blocks consist of an array of fixed-size log entries,
each corresponding to a metadata update (§4.3). Each
log block also carries a pointer to the next one, forming
a linked list (Fig. 3).

Ex Extended log blocks store extended log entries, which
contain additional information about a metadata update
that does not fit into the fixed-size log entry (§4.3).

D Data blocks contain the user data. Each virtual block
seen by the application is backed by a logical data block.

? Unused blocks are blocks that are not referenced by the
block map. They appear due to pre-allocation from the
kernel filesystem and garbage collection (§4.5).

USENIX Association 21st USENIX Conference on File and Storage Technologies 269

The rest of this section explains the block allocation mecha-
nism. MadFS stores a per-file bitmap in shared memory for
coarse-grained coordination. Each thread maintains a local
free list as a cache to avoid frequent accesses to the bitmap. To
grow the underlying file from the kernel filesystem, hugepage-
aware pre-allocation is used to reduce kernel involvement and
minimize page faults.

Per-file bitmap in shared memory. Unlike the example in the
previous section (Fig. 1), we no longer persist the bitmap on
PM, since we can derive from the log whether a logical block
is in use or not. Keeping the bitmap as a soft state is common
in log-structured filesystems [37, 45] to simplify crash consis-
tency. We maintain the per-file bitmap information in shared
memory to coordinate block allocation across processes. If a
process opens a file without a bitmap, it constructs the bitmap
according to the log. More details about the shared memory
initialization are explained in Section 4.6. Blocks are allo-
cated from the bitmap using atomic compare-and-swap (CAS)
instructions for lock-free concurrent operations. This implies
that the maximum number of contiguous logical blocks we
can allocate at a time is 64.

Thread-local free list. The bitmap is accessed by multi-
ple threads, possibly from different processes. To avoid con-
tention, each thread reserves a free list of blocks. They are not
referenced by the block map but are still marked as “taken”
in the bitmap. When a thread attempts to allocate new blocks,
it first allocates from the local free list; if unavailable, it falls
back to the bitmap. When a block is freed, instead of immedi-
ately returning it to the bitmap, the block is temporarily kept
in the free list. This way, an overwrite-intensive thread keeps
reusing the blocks in the local free list and rarely allocates
from the shared bitmap. The reserved blocks are returned to
the bitmap when the file is closed. In rare cases, a process may
crash before the reserved blocks are returned. This results in
a temporary leak and the blocks can be reclaimed the next
time the bitmap is constructed (§4.6).

Hugepage-aware pre-allocation. So far, the allocation mech-
anism only guarantees that two threads do not get the same
block, but the blocks may not actually be backed by the ker-
nel filesystem. When a block is allocated, the logical block
index is returned. Later, when the logical index needs to be
converted to a memory address for writing, MadFS checks to
see if the block is backed. If not, MadFS calls the fallocate
syscall to grow the file to a multiple of 2 MB and memory-
maps the newly allocated region2. The same technique is also
used during file creation. Pre-allocation amortizes the cost of
kernel involvement, and the choice of 2 MB takes advantage
of the huge page support in Linux to reduce page faults and
TLB misses. Note that CoW does not break the contiguity
of the huge page since it only changes the virtual mapping,
which is agnostic to the kernel filesystem.

2fallocate and mmap are safe to race. fallocate is idempotent and
commutative. mapp supports multiple mappings of the same physical region.

LE LE LE

8B Log Entry

LE···LELELE

4KB Log Block

LE

Blocks Unaligned SizeVirtual Idx Logical IndicesNext
0 16 48 60 96 variable length

≥16B Extended Log Entry

LE

Log Tail

1 # Blocks Virtual Idx Logical Idx
0 631 7 35

❶ Inline Entry
0 Block Idx Offset Unused

0 631 33 41

❷ Indirect Entry

Figure 3: Layout of the log-structured metadata (§4.3). A
metadata update is described as either an inline log entry or
an indirect log entry pointing to an extended log entry.

4.3 Compact Log-Structured Metadata

In MadFS, a write triggers a block map update, which may
span multiple blocks. A write may also expand the virtual file
size, which must be modified along with the block map. There-
fore, some mechanism is needed to ensure metadata crash
consistency. One common choice is journaling. However,
journaling is not suitable for non-blocking synchronization
because checkpointing requires mutual exclusion. Instead, we
structure the metadata as a sequence of log entries, each cor-
responding to a metadata update. We designed the log entry
to be the size of a CPU word (8 bytes) to ensure atomicity
and to allow lock-free concurrency control (§4.4).
Log entry layout. As shown in Figure 3, there are two types
of 8-byte log entries: 1 An inline log entry is used to rep-
resent updates of less than or equal to 64 blocks, which is
the maximum number of contiguous logical blocks that the
allocator can provide (§4.2). Each inline entry has three fields:
a starting virtual block index, a starting logical block index,
and the number of blocks the write spans. The three fields
together describe a range of virtual blocks mapped to a range
of contiguous logical blocks. 2 An indirect log entry is for
more complex updates. It carries a pointer to a variable-length
extended log entry that contains a virtual block range and an
array of logical block indices. A write operation with more
than 64 blocks will be broken down into multiple allocations,
each with a logical index in the extended entry. The unaligned
size describes the number of bytes in the last block, which is
used to compute the virtual file size. The next field makes it
possible to chain multiple extended entries together.

In-memory block table. Because the metadata is now struc-
tured as a log, we can no longer directly query the block
map and the virtual file size. We use a per-process DRAM
data structure called the block table to maintain this informa-
tion. The block table is constructed when a file is opened by
scanning through all the log entries. During a read or write,
it is queried to obtain the virtual file size and to translate a
virtual block index to a logical one. After a new log entry
is appended to the log, block table is updated to reflect the
metadata update. In the event of a failure, MadFS does not
require an explicit recovery phase: the atomicity of the log

270 21st USENIX Conference on File and Storage Technologies USENIX Association

commit is guaranteed by the CPU’s 8-byte atomic store, and
the log replay during open always puts the block table in a
consistent state. We will discuss the concurrency model of
the block table later in Section 4.4.

Example. A write operation proceeds in MadFS as fol-
lows: 1 Allocate new data blocks from the local free list
or the bitmap. The writer thread also ensures that the allo-
cated blocks are backed by the underlying filesystem and
mapped to memory. 2 Copy the user buffer and unaligned
portions to the newly allocated blocks. 3 Prepare a log entry
describing the block map changes. 4 Append the entry to the
log to publish this write. 5 For overwrites, return the old data
blocks to the local free list for recycling.

4.4 Lock-Free Concurrency Control
MadFS supports cross-process sharing with immediate visi-
bility and guarantees linearizability under concurrent access.
To achieve these goals, MadFS uses optimistic concurrency
control (OCC) [29]. In this section, we explain the concur-
rency model of the block table, introduce our lock-free OCC
protocol, and then discuss the benefits of OCC.

Concurrency model of the block table. The block table is
shared across threads within the same process and operates in
a single-writer multi-reader manner. For cross-process visi-
bility, before any data operations, MadFS first checks if the
log tail has been moved by other processes. If so, it applies
newly committed entries to the block table to keep it up-to-
date. Within a single process, only one thread can apply new
entries at a time, since this procedure would not benefit from
having multiple threads doing the same job. Querying the
block table is non-blocking, but the thread may see an incon-
sistent block table if another thread is concurrently updating it.
This is not a problem, since such inconsistency can be caught
by our OCC protocol described below.

Lock-free OCC. In database literature [29, 48], an OCC pro-
tocol typically takes place in the following four phases:
1. Begin: Record the begin timestamp for later validation.
2. Execute: Read and modify data in a private workspace.
3. Validate: Check if data read have been modified by others.
4. Commit: Publish the modified data to make them visible.
Compared to lock-based concurrency control, OCC avoids
locking the data during the execution phase. However, the
last two phases must be executed in a critical section to avoid
race conditions, and locks are still used to protect the critical
section [29,31,39,48]. In MadFS, the log-structured metadata
makes it a good fit with OCC. The monotonically increasing
log tail naturally serves as a timestamp. The word-sized log
entry can be committed atomically to the tail via compare-
and-swap (CAS), ensuring the atomicity of the validate and
commit phases and making the OCC protocol lock-free.

Concurrent writers. A writer first updates the block table
and records the current log tail for later validation. It then

❺ ··· LE1 LE2LE LE3

 Tail

❸ ··· LE1 LE2LE

 New Tail

❶ ··· LE

 Recorded Tail

A B

A2 B2

Virtual
Logical

❹

buf B2

A B

A1 B1

Virtual
Logical

❷

buf B1 Old Tail❌

Figure 4: Concurrent writers example (§4.4). Each rep-
resents an 8-byte log entry. Extended log entries are omitted.
Each represents a 4 KB data block.

performs CoW and generates an 8-byte log entry. The writer
thread attempts to commit the entry to the recorded tail via
CAS. If the recorded tail still points to an empty entry, then
the CAS can successfully commit the entry. Otherwise, the
tail has been moved, and the current thread needs to check
for conflicts. A log entry conflicts with the current one if it
modifies the unaligned parts copied during CoW. If there is
no conflict, the thread simply recommits the log entry to the
new tail. Otherwise, the writer recopies the unaligned parts
modified by the conflicting log entry and recommits. Note
that the unaligned parts copied do not exceed two blocks.

Concurrent readers. A reader also starts by updating the
block table and recording the log tail. The reader then copies
these blocks to the user buffer. After the copy, if the tail has
moved and the added log entries overlap with the range the
current thread is reading, the current thread needs to copy the
data again. Since the old data blocks are immediately recycled
during write (§4.2), the reader must validate up to the latest
log tail, so that the blocks read holds valid data.

Example. Figure 4 shows an example of concurrent writers.
Suppose a file starts with two virtual blocks A and B with
initial contents A1 and B1. A writer wants to pwrite 6 KB of
data at offset 0 while other threads are concurrently writing
to the same file. 1 We first update the block table and record
the current log tail. 2 The writer does a CoW and generates
a log entry to commit. 3 When the thread tries to commit to
the recorded log tail via CAS, it finds that the tail has been
moved. 4 Suppose LE1 remaps block A to A2 and LE2 remaps
B to B2. Although both log entries overlap with the current
write, the thread only needs to recopy the unaligned part of B2.
There is no need to recopy block A since it will be completely
overwritten. 5 The current thread successfully commits the
log entry to the latest tail at LE3 . 6 Later, the block table will
be updated to reflect the changes in the block map.

Discussion. The non-blocking design ensures that a halted
process will not prevent other processes from making
progress [19, 20]. This simplifies error handling and elim-
inates the need to detect process crashes. In addition, this
design can provide better concurrency than fine-grained lock-
ing because it allows concurrent writers to be non-blocking

USENIX Association 21st USENIX Conference on File and Storage Technologies 271

even if their ranges overlap. Multiple writers can operate on
their private blocks in parallel. The order of the operations
is linearized during CAS, and conflicts are resolved at the
bounded cost of copying 2 blocks. On the other hand, the
most fine-grained byte-range locks would not allow them to
execute concurrently. Note that the OCC protocol also guar-
antees system-wide progress, and is thus lock-free [21].

Offset-dependent operations. For concurrent I/O operations,
offset-independent calls (e.g., pread/pwrite) are preferred
over offset-dependent ones (e.g., read/write). However,
MadFS still guarantees linearization for offset-dependent op-
erations. MadFS uses a per-process ordered queue: a thread
performing an offset-dependent operation adds itself to the
queue before proceeding to read/modify the file offset. The
order in this queue represents a serial order. When the thread
finishes reading or writing the data, it must wait for the pre-
vious thread in the queue to finish before committing itself.
The whole operation is still optimistic, and the CoW is done
in parallel.

4.5 Non-Blocking Garbage Collection

To prevent the log from growing indefinitely, we designed a
garbage collector (GC) program to clean up the log. MadFS
supports non-blocking GC, which does not block concurrent
readers or writers.

Creating a new log. Recall that the log blocks are organized
as a linked list with the superblock pointing to the head. This
design allows us to use the read-copy update (RCU) [32] tech-
nique for non-blocking GC. GC replays the log up to before
the currently active block and constructs another linked list
of log blocks along with the associated extended log entries.
The last block in the new linked list points to the currently
active block. Finally, we publish the new log by a CAS on the
log head stored in the superblock. A later process that opens
the file will use the new log.

Reclaiming the old log. GC cannot recycle the old log im-
mediately because some threads may still be using it. One
possible solution is to wait until the next time the bitmap is
rebuilt and the space for the old blocks is reclaimed. However,
this does not work for long-running processes, which prevents
the shared bitmap from being rebuilt. Reference counting the
log block is not safe because a process can crash without
decrementing the counter.

Our solution is to let each thread report the log block it
is currently reading to the shared memory. GC can safely
recycle a log block if it is not referenced by any reported log
blocks since the block will never be accessed in the future. The
reported log blocks and their (direct and indirect) successors
cannot be immediately recycled. We call them “orphans” as
they no longer have a reference from the log head. To free
them in the future, we chain the orphans into a new linked list
by adding a next_orphan field to each log block in addition

T1

Head

T2

Shared Mem:
T1: Block 5
T2: Block 3

1 3 542

Head

Orphan

❶

❸
1 3

5
42

1’❷

❹

Figure 5: Garbage collection example (§4.5). Each repre-
sents a 4 KB log block. The next pointer is represented by→,
and the next_orphan pointer is represented by⇢. Extended
log blocks are omitted.

to the existing next pointer. The head of the orphan linked
list is persisted in the superblock. The next time the GC runs,
it checks to see if any of the orphan log blocks can be freed
following the same rule above.

Handling thread crashes. The logical index published in the
shared memory is expected to be removed when a thread exits,
but a thread may crash before clearing it. We solve this by
associating each index with a robust mutex [27] to detect the
liveness of the thread. The mutex is locked when the thread is
created and unlocked when the process exits or crashes. The
GC will try to lock the mutex before accessing the index. Note
that the use of the mutex here is only for liveness detection,
not mutual exclusion, and no thread is blocked. If GC sees
that no thread is currently accessing the file, it can also free
the shared memory.

Example. Figure 5 shows an example of garbage collection.
There are two I/O threads before GC: T1 is working on the
log tail at log block 5 , while T2 is behind at 3 . 1 GC
reads the current log and creates a new linked list of log
blocks 1’ → 5 with the last block untouched. 2 The log
head pointer is atomically changed to point to the new one. 3
Blocks 1 and 2 are immediately recycled since all threads
have read beyond them. 4 For the other log blocks up to
the tail block, we organize them into an orphan linked list:
Orphan⇢ 3 ⇢ 4 . GC can free the orphans next time when
thread T1 moves on to later log blocks.

Discussion. Concurrent readers and writers are never blocked
by the garbage collector. An I/O thread only needs to infre-
quently update a value in the shared memory when it moves
to the next log block. Therefore, the impact on the tail latency
is minimal. With the compact log format, we expect the log
growth to be slow as a single 4 KB log block can store 510
log entries. As a result, GC runs infrequently.

4.6 Implementation

MadFS is implemented in 4.2K lines of C++ code. It sup-
ports 24 POSIX functions, including [f]open, [f]close,
[p]read, [p]write, mmap, fsync, lseek, stat, unlink,
and rename. The rest of this section presents implementa-
tion details of MadFS.

272 21st USENIX Conference on File and Storage Technologies USENIX Association

Shared Memory. The per-file shared memory is created with
the same permission as the file. Its name consists of the in-
ode number and the file creation timestamp for uniqueness.
The shared memory stores the bitmap (§4.2) and the current-
reading log block index (§4.5). When a process opens a file,
it tries to memory map the shared memory. If it does not exist,
the process reconstructs the bitmap from the log. The shared
memory is removed when the file is removed, the garbage
collector cleans up, or the operating system cleans up after
the user logs out.

Persistence and ordering. We use the non-temporal memcpy
from PMDK to copy data to persistent memory, bypassing the
CPU cache. We use clwb to write the log back to PM without
flushing the cache, as they may soon be read by other threads.
Memory fences are used to ensure that the data blocks are
made persistent before log entries, and that extended entries
are persisted before indirect entries.

Decoupling of persistence and ordering. Since each log
entry only takes 8 bytes, flushing the entire cache line on each
log commit is costly. Instead, MadFS only flushes a cache
line when a writer attempts to write to the first log entry of
the next line3. With an explicit fsync call, the last cache
line written is flushed to ensure durability, which is similar
to dsync proposed in OptFS [6]. The ordering of writes is
always guaranteed by the memory fence of CAS. Note that at
most 8 writes are not persistent without any fsync.

Handling mmap calls. We support mmap using a sequence of
mremap calls to map the data blocks to a contiguous region
of memory. This implementation is not optimized for perfor-
mance and does not provide a crash consistency guarantee.

Correctness. We use continuous integration for correctness
testing on a per-pull-request basis. MadFS passes all 209 test
cases in the LevelDB test suites, which make extensive use
of checksums and put a heavy load on the filesystem. We
use Intel’s pmemcheck [38], a fork of Valgrind [34] for PM,
to validate the durability of stores made to the PM. We also
compile MadFS with Clang Sanitizers [16] to check for data
races, memory problems, and undefined behavior.

Conversion tool. We implement a tool to convert files be-
tween the MadFS format and the normal file format. Convert-
ing a file to a MadFS format is fast. The tool allocates some
unused blocks, relocates the first data block to make space
for the superblock, and then initializes the superblock. It then
commits two log entries to describe the block map: one for the
relocated data block and one for the rest. To convert a MadFS
file to a normal file, the tool grows the file by the virtual file
size, dumps the data blocks in their virtual order, and then calls
fallocate with the FALLOC_FL_COLLAPSE_RANGE flag to
deallocate all the blocks previously occupied by MadFS.

3The time to the flush cannot be after the last slot of a cache line has been
written, since a writer could crash after CAS but before a flush is called.

5 Evaluation

In this section, we present the experimental results of mi-
crobenchmarks and macrobenchmarks. We demonstrate the
completeness, performance, and scalability of MadFS by an-
swering the following questions:
• What is the single-thread performance of MadFS? (§5.1)
• Does MadFS scale to multiple threads? (§5.2)
• What is the overhead of open in MadFS? (§5.3)
• Does garbage collection affect tail latency? (§5.3)
• How does MadFS perform on real-world applications (§5.4)

Setup. Our experiments are performed on an Intel x86 ma-
chine with a 128 GB Optane DC persistent memory DIMM.
The machine is equipped with two Intel Xeon Silver 8-core
4215R CPUs at 3.20 GHz (with 2 hyper-threads for each phys-
ical core) and 32 GB of DDR4 memory. We use Ubuntu 22.04
with custom-built Linux kernel 5.1 with NOVA [44, 45] and
SplitFS [25] included. For all experiments, we pin threads to
the core, disable CPU frequency scaling, and drop the kernel
cache before each run.

We compare MadFS (on ext4-DAX) to ext4-DAX, SplitFS,
and NOVA. Ext4-DAX does not provide data crash consis-
tency. We run SplitFS in the default POSIX mode, which
provides a similar crash consistency guarantee as ext4-DAX.
In this mode, SplitFS performs overwrites in-place; for ap-
pends, it redirects data to a staging file and invokes relink
system call to update the block mapping on fsync. NOVA
is a kernel filesystem that uses CoW for data and maintains
log-structured metadata. Among the four filesystems, only
NOVA and MadFS provide strong data crash consistency.

5.1 Single-Threaded Microbenchmark
To evaluate the baseline performance of MadFS, we designed
six microbenchmarks to measure single-threaded throughput
under different I/O sizes and access patterns. All operations
are repeated 10,000 times, and all writes are followed by
fsync. Figure 6 shows the results.
Read. For the read experiment, we measure how long it takes
to read data under different I/O sizes. MadFS and SplitFS
achieve the best performance since the data is served directly
from userspace, with most of the time spent on the memory
copy. NOVA and ext4-DAX are slower since they need to
go through the kernel storage stack. For large read sizes, the
difference between NOVA and MadFS becomes small as the
kernel overhead is amortized.
Block-aligned overwrite. In both sequential and random
cases, MadFS sustains a stable throughput of 2 GB/s for all
I/O sizes. ext4-DAX and NOVA do not saturate the device
bandwidth due to software stack overhead. ext4-DAX spends
non-trivial time on locks (dax_read_unlock) and metadata
journaling (called in ext4_iomap_begin/end). NOVA per-
forms block allocation during CoW with metadata journaling.

USENIX Association 21st USENIX Conference on File and Storage Technologies 273

MadFS ext4-DAX NOVA SplitFS

0.5 2 8 32 128
Size (KB)

 0
 1
 2
 3
 4

Th
ro

ug
hp

ut
 (G

B/
s) Sequential Read

0.5 2 8 32 128
Size (KB)

 0
 1
 2
 3
 4

Th
ro

ug
hp

ut
 (G

B/
s) Random Read

4 8 16 32 64 128
Size (KB)

0.0
0.5
1.0
1.5
2.0
2.5

Th
ro

ug
hp

ut
 (G

B/
s) Sequential Overwrite

4 8 16 32 64 128
Size (KB)

0.0
0.5
1.0
1.5
2.0
2.5

Th
ro

ug
hp

ut
 (G

B/
s) Random Overwrite

128 1408 2688 3968
Size (Bytes)

0.0
0.2
0.4
0.6
0.8
1.0

Th
ro

ug
hp

ut
 (M

op
s/

s) Sub-Block Overwrite

4 8 16 32 64 128
Size (KB)

0.0
0.5
1.0
1.5
2.0

Th
ro

ug
hp

ut
 (G

B/
s) Append

Figure 6: Single-threaded performance. Note for sub-block
overwrite, we report throughput in Mops/s instead of GB/s.

SplitFS performs in-place overwrites and does not call the
relink system call in this experiment.

Sub-block overwrite. For this experiment, we issue sub-
block overwrites and report the throughput in Mops/s. MadFS
and NOVA employ CoW for data crash consistency and both
show an increase in throughput as the write size increases.
This is because with a total of 4 KB to be written to the PM,
when the size is larger, more data are copied from the user
buffer and fewer from the slower PM. Compared with NOVA,
MadFS is 30% to 60% faster in terms of throughput with a
1.5µs latency margin. SplitFS and ext4-DAX perform in-place
overwrites and do not provide a strong data crash consistency
guarantee.

Append. For MadFS and SplitFS, the two userspace filesys-
tems running on ext4-DAX, the peak performance does not
exceed 1 GB/s, which is half of the throughput for over-
writes. This is due to the block allocation zero-out in ext4-
DAX. When the userspace filesystem expands the file size
via fallocate, ext4-DAX reserves the blocks to the file.
With memory-mapped I/O, the first access triggers a page
fault, which causes the kernel to zero out the blocks [26].
These blocks will soon be overwritten by the user data, which
halves the effective bandwidth. This is a fundamental issue
for userspace filesystems since un-zeroed blocks cannot be
exposed directly to the user for security reasons.

NOVA as a kernel filesystem designed for PM does not have
this issue and exhibits similar performance to the overwrite

Block Table Copy Page Fault Commit Others

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Time (μs)

Append

Overwrite

Figure 7: Latency breakdown for 4 KB overwrite and append.

experiment. ext4-DAX should not have this issue. However, it
reuses a similar code path with the page fault handler and still
zeroed out the blocks (called in ext4_map_blocks) before
writing to them (in dax_copy_from_iter). For small I/O
sizes, SplitFS exhibits similar low throughput as ext4-DAX,
since each fsync triggers a relink system call to change
the file extent, which involves expensive metadata journaling
and inode locking.

Latency breakdown. Figure 7 shows the time breakdown
for 4 KB overwrite and append. Updating the block table
involves reading the log entry and applying the changes to
the block table. Both overwrite and append take 250 ns on
the block table, which is about the same as the latency of
accessing 8 bytes from PM. It takes about 1 µs to copy the
data from DRAM to PM via non-temporal stores. For append,
58% (2.3 µs) is spent on the kernel zeroing out. Log commit
is as quick as 33 ns, which is about the same latency as a CAS.
Others include block allocation, offset calculation, address
translation, and block deallocation.

5.2 Multi-Threaded Microbenchmark

In this section, we aim to measure how well MadFS scales
when multiple threads access the same file concurrently. We
pre-fill a 1 GB file and launch a varying number of threads to
read/write the file with offset given by a uniform or Zipfian
distribution.

Mixed reads/writes with uniform offset. In this experiment,
each thread reads or writes 4 KB at block-aligned offset sam-
pled uniformly at random. With a file size of 1 GB, the proba-
bility of two threads operating on the same block is relatively
low. Figure 8 shows the result of this experiment. MadFS
surpasses other filesystems in all four read-write mixes. Most
notably for pure writes, MadFS saturates the device band-
width at a single thread and sustains the high throughput with
more threads. Other filesystems use lock-based concurrency
control at inode granularity. SplitFS incurs a performance
drop from 1 thread to 2 threads and gradually decreases with
more threads. For 95% read, MadFS scales well. It reaches
its peak at 11 threads, which matches the device characteris-
tic of the Optane DIMM [47]. SplitFS scales until 6 threads.
With more threads, the contention becomes more severe and
the throughput drops. With pure read, all filesystems perform
well since read operations do not conflict with each other.

274 21st USENIX Conference on File and Storage Technologies USENIX Association

MadFS ext4-DAX NOVA SplitFS

1 4 8 12 16
Threads

0.0
0.5
1.0
1.5
2.0
2.5

Th
ro

ug
hp

ut
 (G

B/
s) 100% Write

1 4 8 12 16
Threads

 0
 1
 2
 3
 4

Th
ro

ug
hp

ut
 (G

B/
s) 50% Read + 50% Write

1 4 8 12 16
Threads

 0
 2
 4
 6
 8

Th
ro

ug
hp

ut
 (G

B/
s) 95% Read + 5% Write

1 4 8 12 16
Threads

 0
 2
 4
 6
 8

Th
ro

ug
hp

ut
 (G

B/
s) 100% Read

Figure 8: Councurrent 4 KB read/write with uniform offset.

MadFS ext4-DAX NOVA SplitFS

1 4 8 12 16
Threads

0.0
0.5
1.0
1.5
2.0
2.5

Th
ro

ug
hp

ut
 (G

B/
s) 4 KB Write w/ Zipf

1 4 8 12 16
Threads

0.0
0.3
0.6
0.9
1.2

Th
ro

ug
hp

ut
 (G

B/
s) 2 KB Write w/ Zipf

Figure 9: Councurrent pure write with Zipfian offset (θ = 0.9).

Writes with Zipfian offset. To investigate how block-level
contention affects scalability, we designed the Zipfian experi-
ments. Each thread writes 4 KB or 2 KB at a block-aligned
offset sampled from a Zipfian distribution of θ = 0.9, which
results in an access pattern skewed to the first few blocks.
Figure 9 shows the result. With 4 KB block-aligned write, the
result is similar to the 100% uniform write (Figure 8). The
OCC algorithm used by MadFS does not block concurrent
threads even if they write to the same block. The order of
concurrent writers is linearized during the commit. Since the
write is block-aligned, when the commit failed, MadFS only
needs to recommit the 8-byte log entry to the new tail and
never recopies data (§4.4). Other filesystems use locks at in-
ode granularity, so they do not show significant performance
differences between uniform access and Zipfian access. For
2 KB writes, MadFS and NOVA uses CoW and the thread
needs to recopy the 2 KB unaligned portion from the new
block if newly committed writes overlap with the current
one. Nevertheless, MadFS still achieves better performance
compared to NOVA. ext4-DAX shows contention with more
threads and performs worse than MadFS after 8 threads. Note
that only NOVA provides the same strong crash consistency
guarantee as MadFS.

Concurrency control. In addition to OCC (§4.4), we ex-
periment with three lock-based concurrency control meth-
ods for MadFS and compare their performance under mixed

OCC Spinlock Mutex Rwlock

1 4 8 12 16
Threads

 0
 1
 2
 3
 4

Th
ro

ug
hp

ut
 (G

B/
s) 50% Read + 50% Write

1 4 8 12 16
Threads

 0
 2
 4
 6
 8

Th
ro

ug
hp

ut
 (G

B/
s) 95% Read + 5% Write

Figure 10: MadFS with different concurrency control methods
under uniform 4 KB read/write.

0 1000 2000 3000 4000 5000 6000
Time (μs)

256
64
16
4

Fil
e

Si
ze

 (M
B)

Mmap Block Table Others

Figure 11: Open latency breakdown. The file size is logical.

read-write 4 KB workload with uniform block-aligned offset.
Spinlock is completely in userspace and cannot handle lock-
owner crashes in the cross-process scenario. Mutex is set to
be robust so the kernel will release it when the owner dies.
Reader-writer lock does not support the robustness feature.
Only mutex provides the same robustness guarantees as OCC.

Figure 10 shows the result of this experiment. In both work-
loads, all four concurrency control methods start at the same
throughput with a single thread, and OCC surpasses the lock-
based concurrency control methods with more threads by a
wide margin. With OCC, multiple writers can write to thread-
private blocks concurrently without blocking other readers or
writers, thus yielding better scalability. The performance of
mutex drops from one thread to two threads since mutex puts
threads in sleep under contention. Spinlock performs better
than mutex as it busy-waits for the lock owner. Reader-writer
lock is at the bottom for the 50% read workload due to its
operation complexity, but it outperforms spinlock and mutex
for the 95% read workload as readers do not block each other.

5.3 Metadata Operations
Open. During file open, in addition to the open system call,
MadFS need to memory-map the file and replay the log to
build the block table. Memory mapping a file takes a fixed
cost of 1616 µs plus 17 µs per 2 MB huge page. The same
overhead applies to other userspace PM filesystems as well.
The log replay is efficient due to the compact log format,
taking only 15 ns for an inline entry and 21 ns for an indirect
one (with a 16-byte extended entry).

Figure 11 shows the time breakdown to open a file cre-
ated by repeated 4 KB appends. The majority of the time is
spent on memory-mapping the file, especially for small and
medium-sized files. Other times include the open system call.
Due to the open overhead, MadFS may not be suitable for
workloads with frequent file opens.

USENIX Association 21st USENIX Conference on File and Storage Technologies 275

A-load A B C D E-load E F
Workload

0

100

200

300

400

Th
ro

ug
hp

ut
 (K

op
s/

s)

MadFS
ext4-DAX
NOVA
SplitFS

Figure 12: Throughput YCSB workloads on LevelDB.

Garbage Collection. In this experiment, we aim to measure
the effect of the GC on tail latency. We have a writer thread
repeatedly doing 4 KB overwrite to a 1 GB file. A GC thread
runs every 30 seconds to collect old log entries. The average
runtime for GC is 9.1 ms, which is 0.03% of the writer’s run-
time. With GC, the 99.9%, 99.99%, and 99.999% tail latencies
for the writer are 5.06 µs, 6.46 µs, and 20.77 µs respectively,
compared to 5.05 µs, 6.12 µs, and 20.18 µs without GC. Over-
all, the GC finishes quickly and imposes negligible overhead
on the I/O thread.

5.4 Real-World Applications

LevelDB with YCSB. To show the completeness of MadFS
implementation, we run LevelDB [17], a key-value store
based on log-structured merge (LSM) trees. We run the YCSB
benchmark [46], a common cloud benchmark for database ap-
plications. The benchmark includes 6 workloads: A (50% read
+ 50% update), B (95% read + 5% update), C (100% read),
D (95% read + 5% insert), E (5% insert + 95% scan), and
F (50% read + 50% read-modify-write). We issue 1 million
operations with a value size of 1 KB.

Figure 12 shows the throughput of all YCSB workloads on
LevelDB across four filesystems. The overall trend is MadFS
> SplitFS > ext4-DAX > NOVA. For read workload C, MadFS
outperforms SplitFS, ext4-DAX, and NOVA by 5%, 12%, and
28% respectively. For write-heavy workloads F, the improve-
ments of MadFS over the other three 4%, 7%, and 22% in the
same order. All four filesystems perform similarly on work-
load E as it has most of the data cached in the memory and is
not I/O intensive.

SQLite with TPC-C. SQLite is a widely-used relational
database management system [22]. It is used as a library
embedded into the end program and stores the entire database
as a single file on the filesystem. We drive SQLite with TPC-
C, an online transaction processing (OLTP) benchmark that
simulates order processing in a multi-warehouse wholesale
system [11]. TPC-C includes a mix of 5 transaction types:
new order, payment, order status, delivery, and stock level.
Each transaction involves a series of SQL statements. We

New
Order

Payment Order
Status

Delivery Stock
Level

Mix

Transaction Type

0

2

4

6

8

10

12

Th
ro

ug
hp

ut
 (K

op
s/

s)

MadFS
ext4-DAX
NOVA
SplitFS

Figure 13: Throughput of TPC-C workloads on SQLite.

run the TPC-C benchmark using the default configuration: 4
warehouses, 1 district, and 200,000 transactions. The size of
the resulting database is 444 MB. The implementation of this
benchmark is adopted from SplitFS.

Figure 13 shows the throughput for each of the individual
transaction types and the mixed workload. MadFS outper-
forms other filesystems for all types of transactions since
writes in SQLite are mostly block-aligned and do not incur
CoW for MadFS. On the mixed workload, MadFS is 26%
faster than SplitFS, 58% faster than ext4-DAX, and 85% faster
than NOVA.

6 Conclusion

In this paper, we present per-file virtualization which aims to
push file functionalities into userspace as much as possible.
Metadata embedding allows kernel-bypassing for metadata
management. In particular, embedding the block mapping
enables efficient userspace CoW for crash consistency. Non-
blocking synchronization enables scalable, crash-safe concur-
rency control without kernel involvement. Based on per-file
virtualization, we implement MadFS, a library PM filesystem
that maintains embedded metadata as a sequence of compact
log entries and employs optimistic concurrency control for
linearizability. Our evaluation shows that MadFS yields better
performance than ext4-DAX, NOVA, and SplitFS.

Acknowledgments

We are grateful to our shepherd Randal Burns and the anony-
mous reviewers for their valuable feedback and comments.
This material was funded by NSF grants CNS-1838733, CNS-
1815656, and CNS-1900758, and supported by gifts from
Google, PingCAP, Seagate, and VMware. Any opinions, find-
ings, conclusions, or recommendations expressed in this ma-
terial are those of the authors and may not reflect the views
of NSF or any other institutions.

276 21st USENIX Conference on File and Storage Technologies USENIX Association

References

[1] Intel® optane™ persistent memory.
https://www.intel.com/content/www/
us/en/architecture-and-technology/
optane-dc-persistent-memory.html.

[2] Nadav Amit. Optimizing the TLB shootdown algorithm
with page access tracking. In 2017 USENIX Annual
Technical Conference (USENIX ATC 17), pages 27–39,
2017.

[3] Nadav Amit, Amy Tai, and Michael Wei. Don’t shoot
down TLB shootdowns! In Proceedings of the Fifteenth
European Conference on Computer Systems, pages 1–
14, 2020.

[4] Cheng Chen, Jun Yang, Qingsong Wei, Chundong Wang,
and Mingdi Xue. Fine-grained metadata journaling on
nvm. In 2016 32nd Symposium on Mass Storage Systems
and Technologies (MSST), pages 1–13. IEEE, 2016.

[5] Youmin Chen, Youyou Lu, Bohong Zhu, Andrea C.
Arpaci-Dusseau, Remzi H. Arpaci-Dusseau, and Jiwu
Shu. Scalable persistent memory file system with kernel-
userspace collaboration. In 19th USENIX Conference on
File and Storage Technologies (FAST 21), pages 81–95.
USENIX Association, February 2021.

[6] Vijay Chidambaram, Thanumalayan Sankaranarayana
Pillai, Andrea C Arpaci-Dusseau, and Remzi H Arpaci-
Dusseau. Optimistic crash consistency. In Proceedings
of the Twenty-Fourth ACM Symposium on Operating
Systems Principles, pages 228–243, 2013.

[7] Dave Chinner. xfs: DAX support. https://lwn.net/
Articles/635514/. Accessed: 2021-01-13.

[8] Jungsik Choi, Jaewan Hong, Youngjin Kwon, and Hwan-
soo Han. Libnvmmio: Reconstructing software IO path
with failure-atomic memory-mapped interface. In 2020
USENIX Annual Technical Conference (USENIX ATC
20), pages 1–16. USENIX Association, July 2020.

[9] Jeremy Condit, Edmund B. Nightingale, Christopher
Frost, Engin Ipek, Benjamin Lee, Doug Burger, and Der-
rick Coetzee. Better i/o through byte-addressable, persis-
tent memory. In Proceedings of the ACM SIGOPS 22nd
Symposium on Operating Systems Principles, SOSP ’09,
page 133–146, New York, NY, USA, 2009. Association
for Computing Machinery.

[10] Intel Corporation. Intel Reports Second-Quarter
2022 Financial Results. https://www.intc.com/
news-events/press-releases/detail/1563/.

[11] Transaction Processing Performance Council. TPC-C:
an On-Line Transaction Processing Benchmark. http:
//www.tpc.org/tpcc/. Accessed: 2021-01-12.

[12] Mingkai Dong, Heng Bu, Jifei Yi, Benchao Dong, and
Haibo Chen. Performance and protection in the zofs
user-space nvm file system. In Proceedings of the
27th ACM Symposium on Operating Systems Princi-
ples, SOSP ’19, page 478–493, New York, NY, USA,
2019. Association for Computing Machinery.

[13] Mingkai Dong and Haibo Chen. Soft updates made sim-
ple and fast on non-volatile memory. In 2017 USENIX
Annual Technical Conference (USENIX ATC 17), pages
719–731, 2017.

[14] Subramanya R. Dulloor, Sanjay Kumar, Anil Keshava-
murthy, Philip Lantz, Dheeraj Reddy, Rajesh Sankaran,
and Jeff Jackson. System software for persistent mem-
ory. In Proceedings of the Ninth European Confer-
ence on Computer Systems, EuroSys ’14, New York,
NY, USA, 2014. Association for Computing Machinery.

[15] Gregory R Ganger and Yale N Patt. Metadata update
performance in file systems. In OSDI, volume 94, pages
148–159, 1994.

[16] Google. Google Sanitizers: AddressSanitizer, Memo-
rySanitizer, ThreadSanitizer, LeakSanitizer, and more.
https://github.com/google/sanitizers. Ac-
cessed: 2021-01-12.

[17] Google. google/leveldb: LevelDB is a fast key-value
storage library written at Google that provides an or-
dered mapping from string keys to string values. https:
//github.com/google/leveldb, 2011.

[18] Daniel Hackenberg, Daniel Molka, and Wolfgang E
Nagel. Comparing Cache Architectures and Coherency
Protocols on x86-64 Multicore SMP Systems. In Pro-
ceedings of the 42Nd Annual IEEE/ACM International
Symposium on microarchitecture, pages 413–422, 2009.

[19] Maurice Herlihy. Wait-free synchronization. ACM
Transactions on Programming Languages and Systems
(TOPLAS), 13(1):124–149, 1991.

[20] Maurice Herlihy. A methodology for implementing
highly concurrent data objects. ACM Transactions
on Programming Languages and Systems (TOPLAS),
15(5):745–770, 1993.

[21] Maurice Herlihy, Victor Luchangco, and Mark Moir.
Obstruction-free synchronization: Double-ended queues
as an example. In 23rd International Conference on Dis-
tributed Computing Systems, 2003. Proceedings., pages
522–529. IEEE, 2003.

[22] D. Richard Hipp. SQLite Home Page. https://www.
sqlite.org/index.html. Accessed: 2021-01-12.

USENIX Association 21st USENIX Conference on File and Storage Technologies 277

https://www.intel.com/content/www/us/en/architecture-and-technology/optane-dc-persistent-memory.html
https://www.intel.com/content/www/us/en/architecture-and-technology/optane-dc-persistent-memory.html
https://www.intel.com/content/www/us/en/architecture-and-technology/optane-dc-persistent-memory.html
https://lwn.net/Articles/635514/
https://lwn.net/Articles/635514/
https://www.intc.com/news-events/press-releases/detail/1563/
https://www.intc.com/news-events/press-releases/detail/1563/
http://www.tpc.org/tpcc/
http://www.tpc.org/tpcc/
https://github.com/google/sanitizers
https://github.com/google/leveldb
https://github.com/google/leveldb
https://www.sqlite.org/index.html
https://www.sqlite.org/index.html

[23] Dave Hitz, James Lau, and Michael A Malcolm. File sys-
tem design for an nfs file server appliance. In USENIX
winter, volume 94, pages 10–5555, 1994.

[24] Rohan Kadekodi, Saurabh Kadekodi, Soujanya Ponna-
palli, Harshad Shirwadkar, Gregory R Ganger, Aasheesh
Kolli, and Vijay Chidambaram. Winefs: a hugepage-
aware file system for persistent memory that ages grace-
fully. In Proceedings of the ACM SIGOPS 28th Sympo-
sium on Operating Systems Principles, pages 804–818,
2021.

[25] Rohan Kadekodi, Se Kwon Lee, Sanidhya Kashyap,
Taesoo Kim, Aasheesh Kolli, and Vijay Chidambaram.
Splitfs: Reducing software overhead in file systems for
persistent memory. In Proceedings of the 27th ACM
Symposium on Operating Systems Principles, SOSP ’19,
page 494–508, New York, NY, USA, 2019. Association
for Computing Machinery.

[26] Linux kernel development community.
ext4_issue_zeroout identifier - Linux source code -
Bootlin. https://elixir.bootlin.com/linux/
v5.18.14/source/fs/ext4/inode.c#L417. Ac-
cessed: 2021-01-13.

[27] Linux kernel development community.
Pthread_mutexattr_setrobust(3) - linux manual
page. https://man7.org/linux/man-pages/
man3/pthread_mutexattr_setrobust.3.html.
Accessed: 2021-01-12.

[28] Linux kernel development community. The Linux Jour-
nalling API. https://www.kernel.org/doc/html/
latest/filesystems/journalling.html.

[29] H. T. Kung and John T. Robinson. On optimistic meth-
ods for concurrency control. ACM Trans. Database
Syst., 6(2):213–226, jun 1981.

[30] Youngjin Kwon, Henrique Fingler, Tyler Hunt, Simon
Peter, Emmett Witchel, and Thomas Anderson. Strata:
A cross media file system. In Proceedings of the 26th
Symposium on Operating Systems Principles, SOSP ’17,
page 460–477, New York, NY, USA, 2017. Association
for Computing Machinery.

[31] Yi Lu, Xiangyao Yu, Lei Cao, and Samuel Madden.
Epoch-based commit and replication in distributed
OLTP databases. 2021.

[32] Paul E McKenney and John D Slingwine. Read-copy
update: Using execution history to solve concurrency
problems. In Parallel and Distributed Computing and
Systems, volume 509518, 1998.

[33] Daniel Molka, Daniel Hackenberg, Robert Schöne, and
Wolfgang E Nagel. Cache Coherence Protocol and
Memory Performance of the Intel Haswell-EP Architec-
ture. In 2015 44th International Conference on Parallel
Processing, pages 739–748. IEEE, 2015.

[34] Nicholas Nethercote and Julian Seward. Valgrind: a
framework for heavyweight dynamic binary instrumen-
tation. ACM Sigplan notices, 42(6):89–100, 2007.

[35] Thanumalayan Sankaranarayana Pillai, Vijay Chi-
dambaram, Ramnatthan Alagappan, Samer Al-Kiswany,
Andrea C. Arpaci-Dusseau, and Remzi H. Arpaci-
Dusseau. All file systems are not created equal: On
the complexity of crafting crash-consistent applications.
In Proceedings of the 11th USENIX Conference on Op-
erating Systems Design and Implementation, OSDI’14,
page 433–448, USA, 2014. USENIX Association.

[36] Anthony Rebello, Yuvraj Patel, Ramnatthan Alagap-
pan, Andrea C. Arpaci-Dusseau, and Remzi H. Arpaci-
Dusseau. Can applications recover from fsync failures?
In The 2020 USENIX Annual Technical Conference
(USENIX ATC ’20). USENIX Association, July 2020.

[37] Mendel Rosenblum and John K. Ousterhout. The design
and implementation of a log-structured file system. ACM
Trans. Comput. Syst., 10(1):26–52, February 1992.

[38] PMDK team at Intel Corporation. Pmemcheck - persis-
tent memory analyzer. https://pmem.io/valgrind/
generated/pmc-manual.html. Accessed: 2021-01-
12.

[39] Stephen Tu, Wenting Zheng, Eddie Kohler, Barbara
Liskov, and Samuel Madden. Speedy transactions in
multicore in-memory databases. In Proceedings of the
Twenty-Fourth ACM Symposium on Operating Systems
Principles, pages 18–32, 2013.

[40] Carlos Villavieja, Vasileios Karakostas, Lluis Vilanova,
Yoav Etsion, Alex Ramirez, Avi Mendelson, Nacho
Navarro, Adrian Cristal, and Osman S Unsal. Didi: Mit-
igating the performance impact of tlb shootdowns using
a shared tlb directory. In 2011 International Conference
on Parallel Architectures and Compilation Techniques,
pages 340–349. IEEE, 2011.

[41] Haris Volos, Sanketh Nalli, Sankarlingam Panneersel-
vam, Venkatanathan Varadarajan, Prashant Saxena, and
Michael Swift. Aerie: Flexible file-system interfaces
to storage-class memory. Proceedings of the 9th Euro-
pean Conference on Computer Systems, EuroSys 2014,
04 2014.

[42] Matthew Wilcox. DAX: Page cache bypass for
filesystems on memory storage. https://lwn.net/
Articles/618064/, 10 2014. Accessed: 2021-10-22.

278 21st USENIX Conference on File and Storage Technologies USENIX Association

https://elixir.bootlin.com/linux/v5.18.14/source/fs/ext4/inode.c#L417
https://elixir.bootlin.com/linux/v5.18.14/source/fs/ext4/inode.c#L417
https://man7.org/linux/man-pages/man3/pthread_mutexattr_setrobust.3.html
https://man7.org/linux/man-pages/man3/pthread_mutexattr_setrobust.3.html
https://www.kernel.org/doc/html/latest/filesystems/journalling.html
https://www.kernel.org/doc/html/latest/filesystems/journalling.html
https://pmem.io/valgrind/generated/pmc-manual.html
https://pmem.io/valgrind/generated/pmc-manual.html
https://lwn.net/Articles/618064/
https://lwn.net/Articles/618064/

[43] Jian Xu, Juno Kim, Amirsaman Memaripour, and Steven
Swanson. Finding and fixing performance pathologies
in persistent memory software stacks. In Proceedings
of the Twenty-Fourth International Conference on Ar-
chitectural Support for Programming Languages and
Operating Systems, pages 427–439, 2019.

[44] Jian Xu and Steven Swanson. NOVA is a log-structured
file system designed for byte-addressable non-volatile
memories, developed at the University of California, San
Diego. https://github.com/NVSL/linux-nova.
Accessed: 2021-01-12.

[45] Jian Xu and Steven Swanson. NOVA: A log-structured
file system for hybrid volatile/non-volatile main memo-
ries. In 14th USENIX Conference on File and Storage
Technologies (FAST 16), pages 323–338, Santa Clara,
CA, February 2016. USENIX Association.

[46] Yahoo. Yahoo! cloud serving benchmark. https://
github.com/brianfrankcooper/YCSB/, 2010.

[47] Jian Yang, Juno Kim, Morteza Hoseinzadeh, Joseph
Izraelevitz, and Steve Swanson. An empirical guide
to the behavior and use of scalable persistent memory.
In 18th {USENIX} Conference on File and Storage Tech-
nologies ({FAST} 20), pages 169–182, 2020.

[48] Xiangyao Yu, Andrew Pavlo, Daniel Sanchez, and Srini-
vas Devadas. Tictoc: Time traveling optimistic concur-
rency control. In Proceedings of the 2016 International
Conference on Management of Data, pages 1629–1642,
2016.

USENIX Association 21st USENIX Conference on File and Storage Technologies 279

https://github.com/NVSL/linux-nova
https://github.com/brianfrankcooper/YCSB/
https://github.com/brianfrankcooper/YCSB/

On Stacking a Persistent Memory File System on Legacy File Systems

Hobin Woo
Samsung Electronics

Daegyu Han
Sungkyunkwan University∗

Seungjoon Ha
Samsung Electronics

Sam H. Noh
UNIST and Virginia Tech†

Beomseok Nam
Sungkyunkwan University

Abstract
In this work, we design and implement a Stackable Per-

sistent memory File System (SPFS), which serves NVMM
as a persistent writeback cache to NVMM-oblivious filesys-
tems. SPFS can be stacked on a disk-optimized file system
to improve I/O performance by absorbing frequent order-
preserving small synchronous writes in NVMM while also
exploiting the VFS cache of the underlying disk-optimized
file system for non-synchronous writes. A stackable file sys-
tem must be lightweight in that it manages only NVMM and
not the disk or VFS cache. Therefore, SPFS manages all file
system metadata including extents using simple but highly
efficient dynamic hash tables. To manage extents using hash
tables, we design a novel Extent Hashing algorithm that ex-
hibits fast insertion as well as fast scan performance. Our
performance study shows that SPFS effectively improves I/O
performance of the lower file system by up to 9.9×.

1 Introduction
Non-volatile main memory (NVMM) has low access latency
and byte-addressability similar to DRAM but ensures non-
volatility of data similar to secondary storage. Intel’s DC
Persistent Memory module (DCPMM) is one of the first com-
mercialized NVMM products, which provides exciting per-
formance as storage class memory (SCM). Despite its short-
comings such as (i) latency higher than DRAM, (ii) band-
width lower than DRAM, (iii) high sensitivity to NUMA ef-
fects, and (iv) a larger media access granularity (i.e., 256-byte
XPLine), extensive research have been conducted to explore
the desirable features of DCPMM, i.e., persistency with much
lower latency than NVMe SSDs [7]. While the future of
DCPMM is uncertain in short term [31] due to the recent
Intel’s unfortunate decision to shut down its Optane business,
nevertheless, DCPMM has left various positive legacy, in-
cluding NVMM-aware file systems [24,37,39] and key-value
stores [11, 20, 21, 23, 34, 36]. Although such systems are still
in their infancy, they have shown the potential to significantly
∗Department of Electrical and Computer Engineering
†This work was done at UNIST.

outperform legacy systems and thus, other types of NVMM
(e.g., MRAM and battery-backed DRAM) are likely to suc-
ceed DCPMM in the near future. However, the biggest weak-
ness of current developments such as MRAM and battery-
backed DRAM devices is their limited capacity. As such, for
the immediate future, small NVMMs are expected to be used
in conjunction with traditional storage devices. In this paper,
we present a file system that can be deployed with only a
relatively small amount of NVMM harnessing the benefits
of NVMM, while, at the same time, continuing to make use
of the underlying conventional file systems for block storage
devices.

Previous studies have attempted to develop monolithic file
systems that manage both NVMM and block device storage
and that determine which device to service the read and write
requests based on the I/O characteristics [24, 39]. However,
managing multiple storage device types with a single, mono-
lithic file system has its limitations. First, monolithic file
systems for tiered storage devices, such as Ziggurat [39] and
Strata [24], are hard to tailor for various combinations of mul-
tiple block device types. Second, developing a file system
from scratch takes considerable time and effort to mature
into a stable file system. Moreover, managing multiple tiered
storage devices adds even more complexity. Third, from a de-
ployment point of view, monolithic file systems cause a bit of
inconvenience as they are oblivious of existing file systems;
To deploy these systems in practice, a backup of the enormous
number of files managed by legacy file systems must first be
made, then the new NVMM and disk setting formatted, and
then the backup copied back.

In this paper, we advocate a modular approach through the
use of stackable file systems (aka overlay or union file sys-
tems) [9,14,29,38]. Specifically, we present SPFS (Stackable
PM File System), a stackable file system that can be deployed
with only a relatively small amount of NVMM, whose goal
is to absorb frequent small synchronous writes required to
maintain storage write order. For example, modern I/O stack
enforces log entries and commit marks to be flushed to durable
storage devices in serialization order such that recovery is pos-

USENIX Association 21st USENIX Conference on File and Storage Technologies 281

sible. For this, conventional file systems interleave small write
requests with expensive fsync() system calls, which leads to
performance degradation. The primary goal of SPFS is to let
NVMM absorb such synchronous small writes and reduce the
overhead of enforcing durability in block device file systems.

In addition, the NVMM-optimized (“upper”) SPFS file sys-
tem can be stacked on top of any other block device-optimized
(“lower”) file system x to provide a file system that is a union
of both. Such a modular approach allows SPFS+x file system
configurations that provide the best aspects of both NVMM
and conventional devices as well as file systems for these
devices. More specifically, aside from the performance bene-
fits aforementioned, higher stability as well as flexibility can
be attained. This is because we can exploit as the lower file
system, any mature file system, e.g., EXT4, XFS, or F2FS,
allowing delegation of large or asynchronous writes to the
lower file system that can benefit from the highly efficient
VFS cache. Furthermore, as SPFS is specifically designed and
implemented to absorb frequent small synchronous writes in
NVMM, its logic is simple and thus, easy to verify. Also,
our modular approach is easier to deploy than monolithic file
systems for tiered storage because SPFS can be stacked on
any production file system on the fly. This makes deploying
and taking advantage of NVMM simple.

In return for these advantages, stackable file systems may
double the file system management overhead as it is layering
two file systems. Therefore, a stackable file system must be
lightweight. To this end, SPFS manages file system metadata
in lightweight and efficient hash tables using a novel hashing
algorithm that supports efficient lookup as well as scans.

The main contributions of this study are as follows.

• We design and implement SPFS, a stackable file system
that allows any kernel file system x to reap the performance
of NVMM while requiring no changes to x.

• SPFS, and its resulting SPFS+x, allows leveraging of the
strengths of each storage device type, i.e., asynchronous
writes of the VFS cache (DRAM), synchronous small writes
of SPFS (NVMM), and various desirable features of disk-
optimized file systems (SSDs).

• SPFS manages all file metadata in hash tables that ensure
fast insertion and lookup. We also propose a novel Extent
Hashing algorithm to hash key ranges and support extents
in hash-based file mappings.

• Our performance study shows that SPFS+EXT4,
SPFS+XFS, and SPFS+F2FS improves the performance of
the lower file system by up to 9.9×.

The rest of this paper is organized as follows. In Section 2,
we present the background and motivation. In Section 3, we
present how SPFS profiles synchronous writes and steers them
to NVMM. In Section 4, we present how SPFS manages file
system metadata using hash tables. In Section 5, we evaluate
the performance of SPFS. In Section 6, we conclude the paper.

(a) Monolithic Tiered File System (b) Stackable File System

Figure 1: Comparison of Ziggurat and SPFS

2 Background and Motivation

2.1 Stackable File System
File systems often make tradeoffs for a specific type of storage
device [24]. For example, F2FS [25] is designed to accom-
modate the characteristics of NAND flash memory-based
storage devices. Leveraging the hardware properties of each
storage device has been studied for a long time. Such de-
velopments are expected to continue as evolution of storage
devices (e.g., ultra low latency NVMes, Zoned Namespace
SSDs, CXL devices, etc.) continues [5, 8, 15]. Therefore, we
question whether it is desirable to have one file system that
rules them all, and also question whether the effort of op-
timizing legacy block device-only file systems needs to be
duplicated for monolithic file systems for tiered storage as
well. For instance, Ziggurat does not use the well optimized
VFS cache. Instead, it implements its own proprietary page
cache as shown in Figure 1(a).

A stackable file system is a lightweight file system that runs
on top of another file system. It is often used to change the
behavior of the lower file system, e.g., encryption, access con-
trol, etc., without its own storage device (e.g., eCryptFS [16]),
or to combine two mount points into one to provide a single
file system image (e.g., UnionFS [14], OverlayFS [9], and
AUFS [29]), such that an immutable Docker container image
can be provided as a base and the upper level stackable and
mutable file system can overlay new files or directories on top
of the base. Wrapfs [38] is a small null-layer (i.e., template)
stackable file system from which one could implement a new
upper level file system. Wrapfs is an implementation of stack-
able vnode interface [30], which allows multiple vnodes to be
chained for a single file. Using the vnode chain, a stackable
filesystem can interact with the lower file system via VFS in-
terfaces (e.g. call_read_iter) or direct operation calls (e.g.
inode_operations.fiemap). With the vnode chain, stack-
able file systems can perform various functionalities, such as
encrypting/decrypting files or making copies of data blocks
in the upper level storage device to hide the data blocks in the
lower level file system.

Consequently, if NVMM is used as an intermediate layer
in the storage hierarchy, it is natural to design a stackable
file system for NVMM that can be layered on a variety of

282 21st USENIX Conference on File and Storage Technologies USENIX Association

existing block device file systems instead of abandoning the
legacy block device file systems that have been improved for
decades. We believe there exists an unexplored opportunity
of layering file systems optimized for each storage device
as this allows one to easily get the most out of each storage
device type. However, a stackable file system needs to be
lightweight as layering two file systems may double the file
system management overhead. As such, we aim to design and
implement a lightweight hash-based stackable file system.

2.2 Steering Synchronous Writes
On spinning disk drives, the seek time may exceed the data
transfer time if writes are small [18,19]. Even on SSDs, it has
been reported that small random writes fail to leverage the
full device bandwidth because small random writes cause a
large number of invalid pages to be scattered and valid pages
are moved to different blocks via garbage collection. To miti-
gate such problems due to small writes, which we refer to as
the microwrite problem, various block device file systems, in-
cluding BetrFS [18,19] and VT-tree [32], have been designed
to absorb the small writes in a log-structured manner. Other
remedies such as preallocation [26], defragmentation [22,26],
and block layer I/O scheduling techniques [35] have also been
proposed. SPFS relies on these features of the conventional,
lower file systems to address the microwrite problem. We
believe handing the microwrite problems over to the DRAM
cache in the lower file system is the most effective solution
as it liberates SPFS to focus on the synchronization overhead
(i.e., order-preserving writes), which cannot be resolved by
the volatile DRAM cache.

Applications require synchronization mainly for two pur-
poses - durability and storage order [35]. However, enforcing
storage order by calling fsync() often results in frequent
small synchronous writes, which leads to significant perfor-
mance degradation because it prevents I/O parallelism [35].
SPFS steers this order-preserving synchronous writes to fast
and durable NVMM while leveraging the VFS cache of the
lower file system for buffered writes. As a stackable file sys-
tem, SPFS does not duplicate the VFS cache to avoid the
double copy problem [12].

Determining whether each write is synchronous or not is a
hard problem. Ziggurat [39] and HiNFS [12] use DRAM as a
write-back cache for buffered IO and determine if each write is
synchronous or not based on the write size and fsync interval
(Ziggurat) or based on the latency of each write (HiNFS),
respectively. Both approaches are eager in detecting write
types in that they determine the write type for each write.

In this work, we design and implement a lazy Sync Point
Profiler to determine which blocks are to be placed in NVMM,
or in DRAM or block device through the lower file system.
By default, SPFS forwards incoming writes to the fast VFS
cache first, then triggers block migration if certain conditions
are met. This lazy approach benefits more from low DRAM
latency, unlike the eager approaches of Zigurat and HiNFS.

2.3 Hash-based Global File Mapping
File mapping structures map logical offsets of a file to physi-
cal locations on the underlying device. In most traditional file
systems, file mapping tables are tree-structured indexes such
as extent trees and radix trees [28]. As the number and size
of files increase, the size of the file mapping structures also
increases. The resizing operation is particularly expensive in
tree-based indexes because any update to internal tree nodes
conflict with other concurrent operations that access different
leaf nodes. To mitigate this problem, traditional file systems
use per-file mapping structures to isolate concurrent accesses
to different files and reduce lock contention.

In contrast to conventional wisdom, Neal et al. [28] recently
show that as tree-based per-file mapping structures suffer from
multiple levels of indirection and more memory references, a
single hash table to manage global file mappings can be bene-
ficial in NVMM. HashFS, the file system that they propose,
requires a much smaller number of memory accesses than
tree-based mappings, and as such, the performance of global
hashing is shown to outperform per-file extent-trees and radix
trees [28]. However, still, there is an unresolved limitation in
hash-based global file mapping. That is, block hashing that
is employed in HashFS is not suitable for sequential I/Os be-
cause block hashing does not manage extents. Extent-based
file systems allow for files to be laid out contiguously on disk
space, making sequential I/O fast. Extents also significantly
reduce the amount of metadata by storing only two numbers,
the first block number and the number of blocks covered by
the extent. However, block hashing requires every block num-
ber in an extent to be canonically stored in its corresponding
bucket, which slows down sequential I/Os. In this work, we
develop a novel Extent Hashing algorithm to overcome these
limitations, which we describe in Section 4.2.

3 Design of SPFS
SPFS consists of four key components that allow SPFS to

be stacked with legacy file systems, as shown in Figure 1(b) -
(i) the Sync Point Profiler that steers order-preserving small
synchronous writes to NVMM, (ii) hash-based extent manage-
ment (extent table), (iii) hash-based free space management
(block bitmap table), and (iv) hash-based name resolution
(name2inode table).

In this section, we concentrate on the Sync Point Profiler
that determines which blocks are to be handled by SPFS and
placed in NVMM or by the lower file system to be placed
in conventional storage. The hash-based discussions are pre-
sented in Section 4.

3.1 File Block Placement Mode
Figure 2 shows the three file block placement modes sup-
ported in SPFS - standalone, bypass, and stacked modes. Note
that SPFS places NVMM next to DRAM and disks, rather
than in the middle of DRAM and block device hierarchy.
SPFS is the upper file system, but only manages NVMM,

USENIX Association 21st USENIX Conference on File and Storage Technologies 283

Figure 2: Three File Operation Modes
(a) Write Point Profiler (Ziggurat) (b) Sync Point Profiler (SPFS)

Figure 3: Write Point Profiler vs. Sync Point Profiler

letting the faster DRAM VFS cache be managed by the lower
file system.
Standalone mode: If a synchronous option (O_DIRECT,
O_SYNC) is specified for the open() system call or if SPFS
is used without a lower file system, all file blocks are placed
in NVMM as shown in Figure 2(a).

System administrators can also force the use of NVMM on
a per-directory basis via extended attribute or ioctl. That is,
for example, if there is a directory that stores transactional log
files or short-lived backup files, the administrator can specify
the directory to be used in standalone mode.
Bypass mode: If the synchronous option is not specified for
open(), NVMM is bypassed by default, placing the file in
the lower file system as shown in Figure 2(b). By bypassing
writes to the lower file system, read intensive workloads and
non-synchronous writes can benefit from the fast VFS cache.
Stacked mode: Figures 2(c), (d), and (e) show the Stacked
mode where both SPFS and the lower file system play roles as
particular blocks of files are placed in either NVMM or con-
ventional storage. If the Sync Point Profiler, to be described
in Section 3.2, decides to place a block in NVMM, SPFS gets
the file extent information using fiemap ioctl and prepares
the file mapping in NVMM. In preparing the file mapping,
SPFS does not yet physically migrate the extent as shown in
Figure 2(c), where the dashed rectangle represents the map-
ping for the file to be migrated. Physical migration is delayed
because the Sync Point Profiler makes the migration decision
when fsync() is called, i.e., the dirty blocks have already
been delegated to the lower file system, and they could have
been persisted to disk via periodic write-back of the lower
file system. Instead, the migration is deferred until the next
write such that read() benefits from the low latency of the
VFS page cache, as shown in Figure 2(d). Since there is no
need to move a migration target block to NVMM unless the
block is subsequently updated, physical migration is triggered
by subsequent write() calls, avoiding the double copy prob-
lem [12]. As shown in Figure 2(e), SPFS checks the file
mapping and writes blocks in NVMM if the file mapping indi-
cates that the file is mapped in NVMM. By nature of stackable
file systems, access to migrated blocks is serviced by the up-
per file system, that is, SPFS. Thus, the blocks in the lower
file system become invisible to the user. When the blocks
are actually migrated, the blocks in the lower file system are

erased via fallocate(). Later, if the entire file is migrated
to SPFS, the file is deleted from the lower file system.

3.2 Profiling Mechanism: Sync Point Profiler
Order-preserving small synchronous writes often lead to or-
ders of magnitude IOPS degradation [35] because it seri-
alizes potentially parallel activities. Such order-preserving
small synchronous writes need to be steered to fast NVMM
rather than slow block devices. Therefore, we devise a Sync
Point Profiler that monitors fsync() calls. Specifically, at
an fsync() call, if the previous fsync() call on the same
file is within a certain threshold and the amount of flushed
data is small, we consider this to be an order-preserving small
synchronous write. The rationale behind this is that if the
interval is short, there is a high probability that the fsync()
calls are made with intention to keep the storage order [35].
In contrast, if the interval is large, then even if the write size
is small, it is unlikely that applications are flushing writes in
continued sequence. Thus, these can be serviced by the slower
lower file system without much performance degradation. To
determine small, we do not take individual write sizes at the
point of writes, but take the total number of bytes written to
the lower file system at fsync(). The rationale behind this
is that large writes can benefit from disk bandwidth, and syn-
chronous writes to maintain storage order are usually small
(e.g., 4 KB WAL frames in DBMS). The default values in our
setting are 1 second for the interval and 4 MB for the size. We
take 4 MB as this is the value used in Ziggurat’s synchronicity
predictor’s policy [39], while 1 second was chosen as we ob-
serve the performance of SPFS is insensitive to the threshold
time unless it is set too small. In Section 5, we quantify the
performance effects of the profiler parameters.

Figure 3 highlights the key differences between the Zig-
gurat’s synchronicity and write size predictor and the SPFS
Sync Point Profiler. The example in Figure 3(a) where an
application issues four 3 MB small writes (A, B, C, and C’)
shows how Ziggurat makes its decision for each individual
write() (thus, Write Pointer Profiler) and eagerly persists
small writes according to its fast-first policy. Its write size
predictor will detect the first two writes, A and B, as small
and store them in NVMM. When fsync() is called, its syn-
chronicity predictor will detect the total number of bytes is
larger than 4 MB and treat the file as an asynchronous file.

284 21st USENIX Conference on File and Storage Technologies USENIX Association

Nevertheless, A and B have already been flushed to NVMM.
The write size predictor also steers C into NVMM since it is
small. The second fsync(), however, considers the file as a
synchronous file as only 3 MB (C) was written. Consequently,
the next write C’ will also be written in NVMM. In conclu-
sion, we see that all writes are stored into NVMM. As we
will show later in Section 5, Ziggurat’s profiling method fails
to leverage faster DRAM and shows similar performance as
the NVMM-only file system NOVA because it aggressively
steers most writes to NVMM.

SPFS, on the other hand, makes block placement decisions
when fsync() is called. Using the same example as above,
Figure 3(b) shows how differently the SPFS profiler services
the writes. For A and B, they are initially written to the VFS
page cache allowing them to make use of the DRAM. Upon
the first fsync(), because the total write size is 6 MB, both
A and B are written to the block device via the lower file
system. Similarly, C is also written to the page cache. When
the second fsync() is called, the lower file system flushes
C from the cache to disk, but at the same time, SPFS detects
small synchronous writes and migrates its block mapping,
(not data blocks), to NVMM. When subsequent writes are
requested to some of the blocks of C (C’), these writes are
steered to NVMM and directly written onto.

3.2.1 Migration to Lower File system
Compared to Ziggurat, SPFS uses NVMM sparingly. How-
ever, when the NVMM space is running low, SPFS selects vic-
tim files and migrates them to the lower file system. Note that
the primary goal of SPFS is not to cache frequently accessed
files but to absorb order-preserving small synchronous writes.
Therefore, even if NVMM has free space, SPFS migrates a
file to the lower file system if its access pattern changes, e.g.,
if the access pattern is read intensive, demoting the file to the
lower file system can benefit from the VFS page cache.

SPFS uses a metric called Sync Factor to determine which
file’s recent I/O pattern is well suited for the criteria of order-
preserving small synchronous writes. The formula that calcu-
lates the Sync Factor (SF) at time t is given by

SFt = α ·weight(IO_type)+(1−α) ·SFt−1

where α is the attenuation factor (0 < α < 1), i.e., the formula
employs exponential moving average to attenuate the effect
of old file accesses. weight(IO_type) is a fixed positive value
if the current I/O at time t satisfies the Sync Point Profiler’s
condition. Otherwise it is zero, i.e., if a file is read-intensive
or updated in large units, its Sync Factor gradually decreases.
Sync Factor is maintained per file and updated only upon an
I/O request. Therefore, its computation overhead is negligible.

When the NVMM space is running low, SPFS migrates the
files with low Sync Factor back to the lower file system in the
background. Administrators can also set a hard limit on the
Sync Factor so that files can be migrated back to the lower
file system if their Sync Factors are lower than the hard limit,
even if NVMM has free space.

Figure 4: NVMM Space Layout for SPFS

4 Hash-based Block Management
While SPFS is a stackable file system, it is also a standalone
hash-based NVMM file system. As a file system, SPFS re-
quires file system metadata to be managed persistently, and
thus, metadata management overhead can be doubled. Since
the target workload of SPFS is synchronous I/Os to a large
number of small files, the conventional per-file mapping struc-
tures may waste storage space [28]. Therefore, similarly to
HashFS [28], SPFS manages file block mapping information
using global hash-based structures. Furthermore, SPFS re-
duces the size of the hash table by indexing extents, not blocks.
However, to the best of our knowledge, no efficient means of
hashing extents, i.e., range data, is known. To overcome this
limitation, we propose a novel Extent Hashing algorithm.

In this section, we describe hash-based free space manage-
ment (block bitmap table), hash-based extent management (ex-
tent table), and hash-based path-name resolution (name2inode
table) in SPFS.

4.1 Free Space Management
Using extents, SPFS effectively reduces the aggregate size of
file mapping metadata. The aggregate size of the file mapping
structures is particularly important for a lightweight stackable
file system because small mapping structures leave more
room for file data blocks. SPFS employs dynamic hashing
(in particular, CCEH [27]) to dynamically adjust the size of
the multiple hash tables and efficiently manage the NVMM
space. Specifically, if a hash collision cannot be avoided by
linear probing or cuckoo hashing, SPFS dynamically allocates
and assigns NVMM blocks to each hash table, namely, extent
table, block bitmap table, and name2inode table.

SPFS manages data blocks at the granularity of 4 KB but
metadata blocks at 256 bytes (also referred to as XPLine, the
unit of physical access to DCPMM) by default. This is to
reduce the waste of NVMM space as well as to avoid write
amplification on hardware, which can be caused by read-
modify-write operations. However, if we use small blocks,
which is 1/16 of the traditional block size, SPFS needs to
keep track of a 16× larger number of blocks, which leads to
high metadata management overhead. To reduce this over-
head, SPFS groups 16 contiguous free blocks into a cluster
of 4 KB and manages the locations of free clusters in the
cluster bitmap as in conventional file systems. For partially
used clusters, we manage the locations of free blocks using
block bitmap hash table and classical volatile segregated lists.

USENIX Association 21st USENIX Conference on File and Storage Technologies 285

(a) Block Hashing: O(B) Write, O(1) Read

(b) Extent Hashing: O(logB) Write, O(logB) Read

Figure 5: Block vs. Extent Hashing

Figure 4 shows the layout of physical NVMM space for
SPFS. The first 4 KBytes is the superblock that contains
various metadata including the file system magic number,
block/cluster/ inode size, the number of clusters, the number
of inodes, metadata for the three hash tables, etc. Then comes
the cluster bitmap, where each bit in the cluster bitmap indi-
cates whether all blocks in the corresponding cluster are free
or not. If any block in a cluster is in use, its corresponding bit
in the cluster bitmap is set to one. Since the cluster bitmap
uses one bit per cluster of 4 KB, the space overhead for the
cluster bitmap is no larger than that of traditional file systems
that manage free space at the granularity of 4 KB blocks.

The cluster bitmap does not indicate which blocks in a
cluster are free or in use. Hence, each partially used cluster
requires another metadata, the block bitmap, which is indexed
in the block bitmap table. When SPFS allocates some, but not
all, blocks in a cluster, it creates and inserts a block bitmap
into the block bitmap table. The block bitmap table is used
only for the clusters that are partially allocated. If a cluster
has no free block, which is a common case for files larger
than 4 KB, or if all blocks are free, which is also a common
case when the file system is initially formatted, no block
bitmap is needed in SPFS. To manage free blocks of partially
used clusters and serve memory allocation requests quickly,
SPFS manages volatile segregated lists constructed from the
persistent block bitmap table. For a block allocation request,
we select a segregated list based on the allocation request size.

4.2 Extent Hashing
SPFS indexes extents in a hash table called extent table. To
the best of our knowledge, SPFS is the first hash-based file
system that indexes extents using a hash table. HashFS [28],
the state-of-the-art hash-based NVMM file system that also
manages the file mapping information in a global hash table,
requires every block number to be canonically stored in its
corresponding bucket. That is, HashFS indexes blocks, not
extents, as illustrated in Figure 5(a). Therefore, HashFS not
only significantly increases the aggregate size of file mapping
structures, but it also slows down writes because writing an
extent of B blocks requires as many as B store instructions
and cacheline flushes.

In contrast to block hashing, our novel Extent Hashing

Figure 6: Searching Extent Hash Table

Algorithm 1 Insert(inode, cluster_num, len, extent)
1: if (len ≤ 0) return
2: current_key = hash(inode,cluster_num)
3: bucket = find_bucket(current_key)
4: /* e.g., bucket_array[current_key%NumBuckets] */
5: bucket.store(inode, extent)
6: if len = 1 then
7: return
8: else if cluster_num is odd then
9: stride_size← 1

10: else
11: if cluster_num != 0 then
12: T NZ← ffs(cluster_num)−1
13: stride_size← previous_pow_of_two(min(len, 1≪ TNZ))
14: else
15: stride_size← previous_pow_of_two(len)
16: end if
17: end if
18: Insert(inode, cluster_num + stride_size, len - stride_size, extent)

selects only a few buckets based on the binary representation
of cluster numbers, as shown in Figures 5(b) and 6. Extent
Hashing bounds the number of pointers for a given extent by
log2B, where B is the number of blocks in an extent.

The insertion and search algorithms of Extent Hashing are
presented in Algorithms 1 and 2. The algorithms are short
but they work with sophisticated bitwise operations such as
ffs and fls (find the first/last bit set in a key) operations.
Extent Hashing can be used with any hashing scheme in-
cluding static and dynamic hashing schemes with various
ad hoc optimizations such as linear probing, chaining, and
cuckoo hashing. However, for ease of explanation, we will
assume we are using static hashing and explain the insert and
search algorithms using a walk-through example shown in
Figure 6. In the example, we assume hash keys are of 4 bits,
and the hash function hash(inode, cluster_num) returns
cluster_num for ease of presentation. Note that Algorithms 1
and 2 can be implemented with any hash function and any
hash table implementation.

Insert: Suppose we insert a range of keys [1,12] ([00012,
11002]) as shown in Figure 6. Initially, we start with the first
key and store a pointer to the extent in its corresponding
bucket. In the example, we store a pointer in bucket 00012.
Then, we check how many consecutive zero bits are in the
postfix of the hash key of the current bucket, which we refer
to as TNZ (trailing number of zeros). I.e., TNZ is the number
of consecutive zeros in the binary representation with no
non-zero digits to the right of it. Since 00012 has no zeroes

286 21st USENIX Conference on File and Storage Technologies USENIX Association

Algorithm 2 Search(inode, cluster_num, hash)
1: pos← cluster_num
2: mask← (1≪ fls(cluster_num)) − 1
3: while true do
4: key = hash(inode,pos)
5: bucket← find_bucket(key)
6: if bucket.contains(inode, cluster_num) then
7: return bucket.getExtent(inode, cluster_num)
8: end if
9: if pos = 0 then

10: break
11: end if
12: pos← pos & ((mask≪ffs(pos)) & mask)
13: end while

on the right side of the rightmost bit 1, its TNZ is 0. The
TNZ determines how many buckets to skip, i.e., the distance
between the current bucket and the next bucket where we
store the same pointer to the extent. We refer to this distance
as stride length, which is set to 2T NZ . In the example, since
TNZ is 0, the stride length is 20 = 1. Hence, we move to the
next bucket (00102) and store another pointer to the extent.

The hash key of the current bucket (00102) has one zero
after the rightmost bit 1. Hence, the TNZ is 1 and the stride
length is 2, i.e., (21). Therefore, we skip the next bucket and
move to the next next bucket (01002). Then, we store another
pointer there and check the next stride. Since the current TNZ
is 2, the stride length is 4. So, we move to bucket 10002
(01002+4). In bucket 10002, we have three consecutive zero
bits in the postfix. So, the stride length is 8 (23). However, the
next bucket offset (10002 +8) cannot exceed the range of the
given extent. Hence, we decrease the TNZ value one by one
(23 → 22) until the next bucket position is within the given
key range. Finally, we store another pointer in bucket 11002
(10002 +22), and the insertion is complete.

Although the extent size is 12, only 5 pointers are stored
in the hash table. If the size of a given extent is B, Extent
Hashing stores a maximum of 2× log2B pointers in the worst
case. In the best case, we store just one pointer in the hash
table. As such, we can significantly reduce the number of
pointers (from B to 2× log2B) compared to block hashing, in
particular, when the extent size is large.

Search: Although the extent hash table does not have a
pointer for each hash key, we can find the extent using any
hash key within the key range. The search algorithm shown in
Algorithm 2 works as follows. If a query searches for an extent
using a hash key k, whose binary number is (b1b2b3b4)2, we
first look up bucket[(b1b2b3b4)2]. If the bucket does not have
a pointer to the extent (i.e., a search miss occurs), it could
be because the current bucket is not the starting point of
a stride, not because the hash table does not contain that
data. Therefore, we need to compute the starting index of a
possible stride by flipping the trailing non-zero bits starting
from the rightmost one and moving left. Thus, assuming b4 is
a non-zero, the next bucket we look up is bucket[(b1b2b30)2].
If this bucket, again, does not have a pointer to the extent,

we continue in the said manner and look up, in sequence,
bucket[(b1b200)2], bucket[(b1000)2], and bucket[(0000)2].

For example, suppose a query searches for hash key 7
(01112) in the example shown in Figure 6. Then, we look
up bucket[01112] (step 1⃝), which will fail as it does not
have a pointer to the extent. Then, we search bucket[(0110)2]
(step 2⃝) and, finally, bucket[(0100)2] (step 3⃝), which has a
pointer to the extent.

The best-case complexity of this search algorithm is O(1),
but its worst-case complexity is not constant, but O(log2B)
where B is the number of buckets. That is, Extent Hashing
trades-off search performance for insertion performance.

Probabilistic Fast Lookup: To strike a balance between
insertion and search performance, we develop a fast lookup
optimization. This optimization keeps track of which stride
length is the most common and has each query first access
the bucket with the most common stride length. For example,
the most common stride length in Figure 5(b) is 4 due to
the pointers in bucket 0, 4, 8, and 12. Note that there is one
pointer with stride 1 in bucket 3, and there is also one pointer
with stride 2 in bucket 10. If a query searches for cluster 7
where the most common stride length is 4, the fast lookup
optimization searches bucket 4 (4 = 7 - (7%4)) before it
accesses bucket 7 and 6 following the search path in order.
The rationale behind this optimization is as follows. The
search algorithm requires each query to access the nearest
buckets in a log scale because the extent size is not known to
queries. However, it may result in unnecessary accesses to a
large number of buckets if the extent size is large. Therefore,
if the bucket corresponding to the most common stride length
is first checked, there is a chance of reducing the number of
bucket visits. Since the stride length increases in power of 2,
i.e., the number of different stride lengths is limited to log
scale, the overhead of keeping track of the common stride
length is not significant.

4.3 Path-name Resolution
SPFS manages directory entries in another hash table called

the name2inode table. The name2inode hash table stores
file/directory name and directory entry block number pairs
using the hash key generated from the VFS dentry, its parent
inode number, and the file name. Since SPFS indexes each
file/directory entry rather than the full file path, renaming a
directory does not affect other files in its sub-directories.

As a stackable file system, the name2inode hash table has
directory entries only if the directory has a regular file in
NVMM. Stacking files/directories in SPFS follows the stan-
dard conventions of stackable file systems [9, 14, 29, 38], i.e.,
i) if a given regular file name appears in both the upper and
lower file systems, then the lower file is hidden; ii) if a given
name is a directory, directory entries are combined; iii) if
a readdir request does not find a directory entry from the
name2inode hash table, SPFS forwards the readdir request
to the lower file system. The directory entry is stored in the

USENIX Association 21st USENIX Conference on File and Storage Technologies 287

name2inode table only when blocks are migrated from a lower
file system to SPFS, if it does not have one already.

One of the drawbacks of using a hash table is that directory
entries in the same directory are normally stored in differ-
ent buckets that causes problems to readdir. To resolve this
problem, SPFS provides two options. One is to add two per-
sistent pointers to each inode in the name2inode hash table
to construct a doubly linked list for the inodes in the same
directory. SPFS performs micro-logging (i.e., I/O operation-
level logging) when file metadata is updated because multiple
indexing structures need to be updated in a failure-atomic
manner. The other option is to construct a volatile readdir
index in DRAM when SPFS is mounted. The readdir index
is different from the dentry cache in that it manages the en-
tire structure of all directories in the file system regardless of
whether a directory is loaded or not. Therefore, the volatile
readdir index must be constructed when SPFS is mounted,
and it must be persisted as a persistent index when SPFS is
unmounted. Upon a system crash, we may lose updates in
the volatile readdir index unlike the persistent readdir chain.
To recover from system failures, the readdir index can be re-
constructed from scratch by scanning the name2inode hash
table. Although the second option increases the memory usage
slightly, the low DRAM latency helps improve performance
by up to 8% if the workloads are metadata-intensive (that
make extensive use of calls such as create, unlink, and
rename). For the performance study presented in Section 5,
we use the latter option.

4.4 Recovery
SPFS performs micro-logging when file metadata is updated
so that fsck can rollback uncommitted I/O operations. If a
system crashes while creating a file, fsck will look up the
name2inode hash table using the file name in the operation
log and delete its corresponding entry. It will also delete
the directory entry using the block number stored in the I/O
operation log. In addition, fsck will walk the directory tree
structure and perform a sanity check as in classic file system
recovery methods.

5 Evaluation
We implement SPFS 1 in Linux kernel 5.1 We validated the
reliability, robustness, and stability of SPFS using the POSIX
file system test suite [3] and the Linux Test Suite [2]. SPFS
passed both test suites successfully. In the following, we focus
only on the performance aspect of SPFS.

5.1 Experimental Setup
We run experiments on two testbed servers, one with DCPMM
and the other with NVDIMM-N. DCPMM server has dual In-
tel Xeon Gold 5215 processors (10 cores, 2.50 GHz), 128 GB
of DDR4 DRAM, 256 GB of Optane DCPMM (2×128 GB),

1The code is available at https://github.com/DICL/spfs.

Table 1: Filebench Workload Characteristics
Workload File Size R/W Size # threads R:W # files
Fileserver 128 KB 1024 KB 50 1:2 100K
Webproxy 16 KB 1024/16 KB 100 5:1 100K
Webserver 16 KB 1024/16 KB 100 10:1 100K

Varmail 16 KB 1024/16 KB 16 1:1 100K
OLTP 10 KB 2/2256 KB 200 20:1 10

Table 2: FIU Workload Characteristics
Workload Dataset Size Read Size Write Size fsync (%)
Moodle 54 GB 55 GB 31 GB 38.922

Usr1 161 GB 171 GB 8 GB 86.025
Usr2 1.5 GB 5 GB 1 GB 75.114

and a 2 TB Samsung 860 EVO mSATA SSD. The NVDIMM-
N server has dual Intel Xeon Gold 5218 processors (16 cores,
2.30 GHz), 192 GB of DDR4 DRAM, 16 GB Dell EMC
NVDIMM-N, and 512 GB Samsung 970 PRO NVMe SSD.
On the NVDIMM-N server, we evaluate SPFS in a virtual
environment (16 cores and 32 GB DRAM) using QEMU. De-
spite the future of DCPMM is uncertain, CXL Type 3 memory
devices that provide durability will work with the existing
PMDK (or OpenMPDK) ecosystem, and their latency will be
higher than that of DRAM (170∼250 nsec) [1]. Therefore, we
present the performance on the DCPMM server to evaluate
how SPFS performs with NVMMs slower than DRAM.

We first quantify the performance effect of Extent Hash-
ing, evaluate the performance of SPFS in standalone mode,
and compare SPFS against EXT4-DAX and NOVA on the
DCPMM server. Then, we quantify the performance effect of
each stackable design of SPFS. Finally, we deploy SPFS on
top of three popular Linux file systems, namely, EXT4, F2FS,
and XFS, and compare the performance of SPFS+x against
x and Ziggurat in both DCPMM and NVDIMM-N servers.
File systems are mounted with the default mount options on
top of the storage targeted by each design: (1) EXT4, F2FS,
and XFS: SSD, (2) NOVA (Copy-on-Write (CoW) mode),
EXT4-DAX, and SPFS in standalone mode: DCPMM (3)
SPFS+x in stacked mode and Ziggurat: DCPMM+SSD or
NVDIMM-N+SSD.

We run experiments using the Flexible I/O tester
(FIO) micro-benchmarks [6] and the Filebench macro-
benchmarks [33] as well as SNIA’s FIU Filesystem SysCall
Traces [10]. Tables 1 and 2 show the characteristics of the
Filebench and FIU Filesystem SysCall Traces workloads, re-
spectively. We also experiment with RocksDB [4] using the
YCSB benchmark [13].

5.2 Analysis of Extent Hashing
In the first set of experiments, we compare the performance of
file mapping structures - i) per-file ExtentTree, which is
implemented using the FAST and FAIR B+tree [17], ii) global
BlockHash (proposed and used in HashFS [28]), and iii)
global ExtentHash. Both global block hashing and Extent
Hashing are implemented on CCEH [27]. We evaluate the
performance of indexing using microbenchmarks.

In the experiments shown in Figure 7, we measure the
performance of indexing the extents that make up 8000 256-
MB files with varying extent sizes, i.e., the larger the extent

288 21st USENIX Conference on File and Storage Technologies USENIX Association

 0

 2

 4

 6

 8

 10

 4 16 64 256 1024 4096

A
V

G
 L

at
en

cy
 (

us
)

Extent Size (KB)

BlockHash
ExtentTree
ExtentHash

(a) Insert

 0

 1

 2

 3

 4

 5

 6

 7

 4 16 64 256 1024 4096

A
V

G
 L

at
en

cy
 (

us
)

Extent Size (KB)

ExtentTree
ExtentHash
BlockHash
FastLookup

(b) Search (Random)

Figure 7: Performance of File Mapping Structures

size, the fewer extents are indexed. Figure 7(a) shows the
average latency of inserting one extent to each index. As
the extent size increases, the insert latency of ExtentTree
and ExtentHash decreases because the index size decreases.
Specifically, when the extent size is 4 KB, the tree height is
4, but when the extent size is greater than 256 KB, the tree
height is reduced to 2.

Block hashing shows the worst insertion performance as
the extent size increases because the number of pointers to
index increases. Specifically, when the extent size is 4 MB,
it has to update and call clwb for as many times as 1024.
As such, its insertion latency is up to 906× higher than that
of ExtentTree. Extent Hashing shows the fastest insertion
latency because hash-based indexes updates fewer number of
cachelines than FAST and FAIR B+tree.

Figure 7(b) shows that when the extent size is smaller
than 128 KB, BlockHash outperforms ExtentTree and
ExtentHash due to its constant lookup cost. Note that,
ExtentHash accesses multiple buckets following the search
path described in Section 4.2. However, as the extent size
increases, ExtentTree benefits from the reduced index size,
making the performance of all indexes similar.
FastLookup denotes the performance of Extent Hashing

with the fast lookup optimization that we described in Sec-
tion 4.2. Fast lookup is an optimization affected by prob-
ability, but it finds an extent in O(1) with very high prob-
ability in the experiments. Therefore, FastLookup outper-
forms BlockHash, which suffers from a much larger number
of pointers in the hash table. We also observe in the experi-
ments with FIU Filesystem SysCall traces that the probability
of finding an extent in O(1) in Usr1 and Usr2 workloads is as
high as 60% and 98%, respectively.

5.3 Standalone Mode with DCPMM
We now compare the performance of SPFS in standalone
mode against NOVA and EXT4-DAX. We run the experi-
ments in DCPMM server because SPFS is not intended for
use in standalone mode for small NVDIMM-N. To evaluate
the performance effect of Extent Hashing, we faithfully im-
plemented the block hashing scheme as proposed in HashFS.
We denote the performance of SPFS with Extent Hashing
and block hashing as SPFS-EH and SPFS-BH, respectively.
Both SPFS-EH and SPFS-BH run in metadata mode, i.e., they
do not guarantee strong data consistency, but only metadata
consistency is guaranteed as in EXT4-DAX. SPFS-J denotes

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0

Rand.WR Rand.RD Seq.WR Seq.RD

T
hr

ou
gh

pu
t (

G
B

/s
ec

)

NOVA
SPFS-J
EXT4-DAX
SPFS-EH
SPFS-BH

(a) FIO Results

 0
 200
 400
 600
 800

 1000
 1200
 1400
 1600

Fileserver
Webserver

Webproxy
Varmail OLTP

T
hr

ou
gh

pu
t (

K
op

s/
se

c)

NOVA
SPFS-J
EXT4-DAX
SPFS-EH
SPFS-BH

(b) Filebench Results

Figure 8: Performance in Standalone Mode (DCPMM)

the performance of SPFS-EH in journal mode, which logs all
data and metadata changes by copying the data into an undo
log region if the write size is smaller than 256 KB. If the write
size is larger than 256 KB, it performs CoW as in NOVA. We
set this threshold size to 256 KB because it conservatively
balances the logging overhead and fragmentation issue. If the
threshold size is smaller, it leads to fragmentation, i.e., extents
are frequently split because CoW allocates a new extent. If it
is larger, the logging overhead becomes non-negligible.

5.3.1 FIO Results
The FIO benchmark is used to evaluate sequential and random
read and write performance. Each workload accesses a 10 GB
file, and read/write sizes are set to 256KB and 4KB for sequen-
tial and random workloads, respectively. Figure 8(a) shows
the results. SPFS-EH shows up to 60% higher sequential write
throughput than SPFS-BH because block hashing requires
much larger metadata accesses. The sequential read through-
put of SPFS-BH is also 20% lower than SPFS-EH because
larger file mapping metadata adversely affects read perfor-
mance as well as write performance. For the same reason, the
random read and write throughput of block hashing is also
16% and 9% lower than that of Extent Hashing, respectively.
In particular, FIO allocates very large extents in advance re-
gardless of the type of workload, i.e., even for random I/Os.
Despite large extents, SPFS-BH indexes a large number of
individual blocks and the lookup performance deteriorates.

NOVA shows similar sequential read and write perfor-
mance with SPFS-EH. However, the random read and write
throughput of NOVA is 19% and 39% lower than that of SFPS-
EH because NOVA provides strong data consistency whereas
SPFS-EH supports only metadata consistency. With data jour-
naling enabled, SPFS-J shows similar write performance with
NOVA as both of them perform CoW. On the other hand,
SPFS-J shows 1.2× higher throughput than NOVA for ran-
dom reads because SPFS manages data blocks in units of
extents in DRAM while NOVA indexes write logs in units of
pages in DRAM.

As a stackable file system, SPFS does not have to enforce
strong data consistency if the lower file system does not re-
quire strong data consistency. Eliminating the logging over-
head, SPFS-EH shows up to 40% performance improvement
for the random write workload compared to NOVA. Since
EXT4-DAX also does not log data blocks, it shows higher
random write throughput than NOVA and SPFS-J. However,

USENIX Association 21st USENIX Conference on File and Storage Technologies 289

 0
 40
 80

 120
 160
 200

10
0

50
0
10

00
20

00
30

00
40

00
50

00R
ep

la
y

T
im

e
(s

ec
)

Profile Interval (msec)

moodle
usr1
usr2

(a) Interval

 0
 40
 80

 120
 160
 200

 4 16 64
 256

 1024
 4096

 16384

 65536R
ep

la
y

T
im

e
(s

ec
)

Profile Size (KB)

(b) Size

Figure 9: Profile Parameters (NVDIMM)

 0
 100
 200
 300
 400
 500
 600
 700
 800

 0 20 40 60 80 100T
hr

ou
gh

pu
t (

K
op

s/
se

c)

Proportion of Direct I/O

SPFS+EXT4
SPFS+XFS

SPFS+F2FS
Ziggurat

NOVA
F2FS

EXT4
XFS

(a) Write (DCPMM)

 0
 100
 200
 300
 400
 500
 600
 700
 800

 0 20 40 60 80 100T
hr

ou
gh

pu
t (

K
op

s/
se

c)

Proportion of Direct I/O

(b) Write (NVDIMM)

 0

 2

 4

 6

 8

 10

 0 5 10 15 20 25 30T
hr

ou
gh

pu
t (

G
B

/s
ec

)

Elapsed Time (sec)

EXT4
SPFS+EXT4(SPACE)
SPFS+EXT4(PTTRN)

(c) Read (DCPMM)

 0

 2

 4

 6

 8

 10

 0 5 10 15 20 25 30T
hr

ou
gh

pu
t (

G
B

/s
ec

)

Elapsed Time (sec)

EXT4
SPFS+EXT4(SPACE)
SPFS+EXT4(PTTRN)

(d) Read (NVDIMM)

Figure 10: Performance Effect of Delegating I/O Requests to Lower File System

EXT4-DAX is consistently outperformed by SPFS-EH for all
FIO workloads. Furthermore, for sequential reads and writes,
EXT4-DAX is even outperformed by NOVA and SPFS-J de-
spite the fact that they guarantee stronger data consistency.
This is because NOVA and SPFS take advantage of CoW for
sequential I/O.

5.3.2 Filebench Results
Figure 8(b) shows the experimental results with the Filebench
workloads. For the Fileserver workload that creates, deletes,
reads, appends, and copy files in large I/O units, i.e., 1 MB for
reads and writes (copy) and 16 KB for appends, SPFS-J shows
5.7% higher throughput than NOVA (167.67 vs. 176.37) be-
cause SPFS-J benefits from the efficient extent-based meta-
data management, whereas NOVA replaces write logs in units
of pages in DRAM. EXT4-DAX shows the worst perfor-
mance because it suffers from the overhead of unconditional
block initialization. Unlike EXT4-DAX, NOVA and SPFS ini-
tialize the unwritten portion of the cluster only when needed.
SPFS-J and SPFS-EH show similar performance with the
Fileserver workload because it does not overwrite existing
blocks and the logging overhead is negligible. SPFS-BH has
16% lower throughput than SPFS-EH because the read and
write granularity of Fileserver workload is 1 MB and Extent
Hashing manages large extents more efficiently.

Webserver is a read intensive workload where each thread
opens, reads, and closes a file, and every 10th read operation
appends a small data to a log file. In this workload, SPFS-J
and NOVA show comparable performance.

The Webproxy and Varmail workloads create and delete
many small files in a single directory. In these two work-
loads, SPFS is outperformed by NOVA because SPFS fre-
quently allocates and deallocates blocks for directory entries,
and thus performs metadata journaling for file system con-
sistency, whereas NOVA appends directory entries in a log-
structured fashion and hides deallocation overhead via back-
ground garbage collection. As a result, NOVA shows up to
9% and 17% higher throughput than SPFS-EH for Webproxy
and Varmail, respectively. Efficient directory management
is of paramount importance in the native file system, but
the primary goal of SPFS is to serves NVMM as a persis-
tent writeback cache to NVMM-oblivious filesystems. There-
fore, directory management performance is not optimized.
We leave the directory management optimization for future

work. EXT4-DAX shows very poor performance for Var-
mail because of two reasons. One is the unconditional block
initialization problem mentioned earlier. The other reason is
because of additional memory copy overhead from metadata
journaling. This overhead is negligible in other workloads be-
cause journaling is done in the background. However, Varmail
calls fsync() frequently, which incurs metadata journaling
overhead thereby affecting the workload throughput.

The OLTP workload emulates database transactions at the
file system level. In this transactional workload, synchronous
writes affect file system throughput the most. Since all file
systems store synchronous writes in NVMM, they do not
show any meaningful difference. SPFS-BH shows only 2%
lower throughput than SPFS-EH because of small (i.e., 2 KB)
random reads/writes that rarely benefit from extents.

5.4 Quantification of Stackable Design
5.4.1 Parameters for Sync Point Profiler
In this section, we quantify how the profile interval and the
write size threshold for the Sync Point Profiler affects perfor-
mance using three FIU Filesystem SysCall Traces workloads.
We present the results on the NVDIMM-N server, but the
results on the DCPMM server are almost the same.

Figure 9(a) shows that the performance of SPFS is insen-
sitive to the profile interval unless it is set small (< 500ms).
Obviously, the interval between transactional writes can vary
across applications. Therefore, for the rest of the experiments,
we choose 1 second as the default. Figure 9(b) shows the
results as the write size parameter is varied (x-axis). It shows
that the replay time of the Moodle workload improves sig-
nificantly when the write size parameter is set to be equal or
larger than 1 MB because this workload has relatively large
1 MB synchronous writes. For Usr1 and Usr2, we see that
performance gradually improves as the write size increases,
but then remains relatively constant beyond 1 MB. Based on
these observations, we conservatively set the default write
size parameter to 4 MB - a sufficiently large value that was
also used as the default value in Ziggurat [39]. All results that
follow use this value.

5.4.2 Delegating I/O Requests to Lower File System
We now perform synthetic microbenchmark experiments to
validate our proposition that migrating files to NVMM does
not always guarantee better performance. That is, we analyze

290 21st USENIX Conference on File and Storage Technologies USENIX Association

which types of I/Os benefit from promotion and when they
benefit from demotion.

Performance Effect of Delegation: As a stackable file
system, SPFS shines when synchronous and asynchronous
I/O workloads are mixed. To test various mixed workloads,
we use diomix, which is a synthetic workload generated from
a mix of two sequences of file operations, one for buffered
I/O (BIO) and the other for direct I/O (DIO), of the Fileserver
workload of Filebench, and whose ratio between BIO and
DIO can be controlled.

Figure 10(a) shows the results for diomix in DCPMM
server, as the DIO rate changes. We disable background demo-
tion to only quantify the effect of promotion. We observe that
the I/O throughput of Ziggurat is insensitive to the DIO rate
and that it fails to leverage the faster page cache in DCPMM
server, which leads to the same performance as NOVA. As a
result, they are consistently outperformed by SPFS+x, which
delegates BIO to EXT4, F2FS and XFS, and benefits from
the low latency of the page cache in DRAM. Note that EXT4,
F2FS, and XFS also benefit from the page cache, and when
there is no DIO, each file system shows 10%, 3%, and 1%
higher throughput, respectively, than its SPFS+x counterpart.
This is because of the overhead that comes from the stack-
able design. Specifically, SPFS+x looks up its name2inode
table just to find out it does not have the requested file. This
exemplifies the importance of indexing performance in SPFS.
We observe sharper and then continued performance decline
as the rate of DIO increases. Unlike EXT4, F2FS and XFS,
the throughput of SPFS+x show much smoother curves as
SPFS+x detects the I/O types and steers the BIOs to the lower
file system while absorbing the DIOs in DCPMM, benefiting
from the device aware stackable design of SPFS+x.

Figure 10(b) shows the results for the same diomix work-
load in NVDIMM server. Because the page cache of the
lower file system has the same access latency with NVDIMM,
SPFS+x does not benefit from delegating write requests to the
lower file system but suffers from its stackable design over-
head. Again, the performance of Ziggurat is similar to NOVA
as it aggressively steers most writes to NVMM. In contrast,
SPFS+x is designed to use NVMM conservatively and grad-
ually demote files in the background. We could not evaluate
Ziggurat for the case when NVMM is full as it crashes.

Performance Effect of Demotion: While promotion im-
proves write performance of the lower file system, it may de-
grade read performance when NVMM is slower than DRAM.
In the experiments shown in Figures 10(c) and 10(d), we
pre-populate file systems with 64 16 MB transactional log
files, i.e., SPFS stores them in NVMM, and run a synthetic
microbenchamrk that reads random blocks from those files.
In DCPMM server, the read throughput of EXT4 file system
is higher than SPFS+EXT4 because it eagerly copies all the
requested blocks to the page cache, whereas SPFS+x demotes
files, i.e., copies them from DCPMM to DRAM/disk in a lazy
manner. Specifically, SPFS+EXT4(PTTRN) demotes a file to

0.0

0.5

1.0

1.5

2.0

EXT4

SPFS+EXT4
SPFS

L
at

en
cy

 (
us

)

(a) Read

Lower Migr. Check PMEM

0

5

10

15

20

EXT4

SPFS(+EXT4)
Migration

L
at

en
cy

 (
us

)

(b) Write

Migr. Etc.
CLWB

0

2

4

6

8

10

EXT4
Promotion

L
at

en
cy

 (
m

s)

(c) Fsync

Profile Fiemap Promotion

Figure 11: Latency breakdown of each mode in DCPMM

the lower file system and copies to the page cache if the file
access pattern changes to be read-intensive. As more read
requests are processed, the Sync Factors of promoted files
decrease, and when they become lower than a hard limit set by
administrators, they are demoted to the lower file system such
that they can benefit from the page cache in DRAM. Thus,
read performance of SPFS+EXT4(PTTRN) improves over time
to a level similar to page cache performance. This result con-
firms the well-known fact that performance is improved by
placing frequently accessed data in the fastest memory, which
Ziggurat has neglected.

If such a hard limit on the Sync Factor is not set by
administrators, a file is not demoted to the lower file sys-
tem unless the NVMM space is running low (denoted as
SPFS+EXT4(SPACE). Therefore, SPFS+EXT4(SPACE) does
not demote files and read requests to those files suffer from
higher access latency of DCPMM. In contrast, demoting files
from NVDIMM to the page cache on the NVDIMM server
does not improve read performance, but counteracts it. As
a result, SPFS+EXT4(SPACE) shows the highest throughput
in NVDIMM server. In the default settings, background de-
motion is triggered when more than 80% of NVMM space
is used. When files are demoted to the lower file system in
the background, the foreground write throughput of SPFS+x
is reduced by up to 40% due to the limited bandwidth of
NVMM and also due to conflicting SPFS metadata updates.
To minimize performance interference, SPFS suspends the
background demotion while foreground processes perform
I/O, unless there are no free blocks in NVMM.

5.4.3 Stacking Overhead
As a stackable file system, SPFS places additional latency
on the lower file system in exchange for improving the per-
formance of small synchronous writes. In the experiments
shown in Figure 11, we breakdown the latency of read, write,
and fsync using a synthetic workload that performs random
reads and writes to 1 MB file that consists of a single extent.
SPFS+EXT4 denotes the read latency when the extent is not

found in SPFS and is read from the lower file system - EXT4.
The stacking overhead (i.e., the overhead to check whether
the corresponding extent has been migrated to NVMM or
not) accounts for 9.89%, and thus SPFS+EXT4 shows similar
latency with EXT4. SPFS denotes the read latency when the

USENIX Association 21st USENIX Conference on File and Storage Technologies 291

 0
 200
 400
 600
 800

 1000
 1200

E
S+E F

S+F X
S+X ZR

ep
la

y
T

im
e

(s
ec

) Open Close

(a) Moodle (DCPMM)

 0
 50

 100
 150
 200
 250
 300

E
S+E F

S+F X
S+X Z

Read Write Fsync

(b) Usr1 (DCPMM)

 0
 20
 40
 60
 80

 100
 120

E
S+E F

S+F X
S+X Z

Fdatasync Fallocate

(c) Usr2 (DCPMM)

 0
 200
 400
 600
 800

 1000

E
S+E F

S+F X
S+X Z

Crash

R
ep

la
y

T
im

e
(s

ec
) Open Close

(d) Moodle (NVDIMM)

 0
 50

 100
 150
 200
 250
 300
 350

E
S+E F

S+F X
S+X Z

Crash

Read Write Fsync

(e) Usr1 (NVDIMM)

 0
 20
 40
 60
 80

 100
 120
 140

E
S+E F

S+F X
S+X Z

Fdatasync Fallocate

(f) Usr2 (NVDIMM)

Figure 12: FIU Trace Replay Time S:SPFS, E:EXT4, X:XFS, F:F2FX, Z:Ziggurat

extent is in SPFS, i.e., NVMM. Due to the high latency of
Optane DCPMM, the read latency of SPFS is about 2.26×
higher than that of EXT4.

In Figure 11(b), the write latency of EXT4 (EXT4) is similar
to the write latency when the write is steered to NVMM
(SPFS(+EXT4)). That is, unless fsync is called, there is not
much difference in latency whether the write is steered to
DCPMM or the VFS cache. Migration denotes the latency of
the first write to an extent that the profiler decided to migrate
from the lower file system to SPFS. Migration has a high
latency, but it is a one time tax. Once migrated, subsequent
fsync calls will be replaced with nop..

Figure 11(c) shows the fsync latencies when SPFS by-
passes fsync to the lower file system and when it decides to
promote a file in the lower file system to SPFS. The promotion
overheads such as Fiemap and Profile account for 2.68%
and 0.01% of total latency.

5.5 Stacked Mode Performance Comparison
Finally, we run real world trace FIU and YCSB workloads and
compare the performance of SPFS in stacked mode (SPFS+x)
against file systems for large block devices, i.e., EXT4, XFS,
F2FS, and Ziggurat.
5.5.1 FIU Traces
Figure 12 shows the performance results using the FIU
Filesystem SysCall Traces [10]. For these experiments, we
measure the replay time on each file system as we submit the
file system operations from the traces in batches. Thus, for all
results for the FIU workloads, lower is better.

Although the FIU workload consists of traces from six
applications - Backup, Gsf-filesrv, Ug-filesrv, Moddle, Usr1,
and Usr2, the performance results of Backup (1.2 TB, 0.001%
fsync()), Gsf-filesrv (190 GB, 0.326% fsync()), and Ug-
filesrv (812 GB, 0.001% fsync()) are not presented because
Ziggurat crashes for those large FIU workloads not only in
NVDIMM but also in DCPMM servers and also because they
are not transactional workloads, i.e., fsync() calls account
for less than 0.3%. Even if we evaluated the performance
of Ziggurat by reducing the size of those workloads small
enough to fit in DCPMM, we observed that Ziggurat is out-
performed by EXT4, F2FS, and XFS, and SPFX+x because
Ziggurat fails to leverage the fast VFS cache. The perfor-
mance of SPFS+x (SPFS+EXT4, SPFS+F2FS, and SPFS+XFS)
is similar or slightly worse than that of x (EXT4, F2FS, and
XFS) for the workloads where fsync() calls are rarely made.

Without fsync() calls being made and steering writes to
NVMM, the added overhead of the stacked file system tends
to make SPFS+x perform worse than x.

With Moodle, Usr1 and Usr2, calls to fsync() are fre-
quently made. Therefore, EXT4, F2FS, and XFS suffer from
high synchronization overhead while SPFS+x and Ziggurat
eliminate this overhead by steering synchronous writes to
NVMM. Thus, for Moodle, SPFS+x reduces the trace reply
time in DCPMM server to only 14%, 15%, and 7% of the x
counterparts EXT4, F2FS, and XFS, respectively. Similarly,
for Usr1, SPFS+x shows 2×, 2.6×, and 2.8×, and for Usr2,
3.8×, 7.1×, and 6.5× faster trace replay times, compared to
the x counterparts EXT4, F2FS, and XFS, respectively.

Ziggurat also outperforms EXT4, F2FS, and XFS for the
Moodle, Usr1, and Usr2 workloads. Compared to Ziggurat,
read(), write(), and fallocate() are consistently faster
with SPFS+x. The write time of Ziggurat is higher than
SPFS+x because it profiles and steers each individual write to
NVMM while SPFS+x migrates them in a lazy manner, that
is, only at fsync() calls with intervals less than one second
and aggregate flush sizes less than 4 MB. For fallocate(),
Ziggurat spends a significant amount of time initializing al-
located blocks. However, SPFS creates files on the lower file
systems first, such that it benefits from the highly efficient
uninit and unwritten states (i.e., allocated and mapped but
uninitialized blocks) of the disk file systems, which prevents
applications from reading garbage blocks even if allocated
blocks have not yet been initialized. However, due to the
stacking overhead, open() is slower in SPFS+x than Ziggu-
rat. Also, fsync() and fdatasync() are faster with Ziggurat
because they are no-ops if previous writes were steered to
NVMM. Overall, due to faster write() and fallocate(),
SPFS+x is up to 1.44× and on average 1.16× faster than
Ziggurat in DCPMM server.

On the NVDIMM server, we could not run the Moodle
and Usr1 workloads with Ziggurat because their sizes are
larger than the NVDIMM size. For the Usr2 workload where
the average I/O size is 1.2 KB, Ziggurat steers most writes to
NVDIMM, and thus shows the performance of the in-memory
file system - NOVA and outperforms SPFS +x. Similar to the
results on the DCPMM server, SPFS+x improves the perfor-
mance of x by up to 9.9×, 2.4×, and 5.8× for the Moodle,
Usr1, and Usr2 workloads, respectively.

292 21st USENIX Conference on File and Storage Technologies USENIX Association

 0
 20
 40
 60
 80

 100
 120

16
256 4K

64K 1M

T
hr

ou
gh

pu
t (

K
op

s/
se

c)

fsync interval

Ziggurat

(a) Load

 0
 20
 40
 60
 80

 100
 120

16
256 4K

64K 1M

fsync interval

SPFS+EXT4

(b) Workload A

 0
 20
 40
 60
 80

 100
 120

16
256 4K

64K 1M

fsync interval

EXT4

(c) Workload B

 0
 20
 40
 60
 80

 100
 120

16
256 4K

64K 1M

fsync interval

(d) Workload C

 0
 20
 40
 60
 80

 100
 120

16
256 4K

64K 1M

fsync interval

(e) Workload D

 0
 20
 40
 60
 80

 100
 120

16
256 4K

64K 1M

fsync interval

(f) Workload F

Figure 13: YCSB Throughput of RocksDB with Varying Frequency of fsync() (DCPMM)

 0

 20

 40

 60

 80

 100

 120

1 2 4 8 16T
h

ro
ug

h
pu

t
(K

o
ps

/s
ec

)

Number of Threads

SPFS+EXT4
SPFS+EXT4(D)
EXT4

Figure 14: Load Throughput
(NVDIMM)

5.5.2 RocksDB
Finally, we evaluate the performance of SPFS+EXT4, Ziggu-
rat, and EXT4 using RocksDB v.6.2.2. For the experiments
shown in Figure 13, we load the database with 4 million
1 KB records in the loading phase (Load) in the DCPMM
server. In the transactions phase, 4 million queries in uni-
form distribution are submitted in batches for each workload.
RocksDB offers various write options including whether to
call fsync() to flush dirty pages. Our experiments measure
YCSB throughput while varying the fsync() interval by en-
abling the setSync option for every 16 writes, 256 writes,
4096 writes, and so on, that is, in multiple of 16 increments.
Figure 13 shows the throughput results, which can be summa-
rized as follows.
EXT4: EXT4 performance improves as we increase the
fsync() interval. If fsync() is called often, EXT4 suffers
because of the slow block device. As fsync() is called less,
EXT4 benefits from the low latency of the page cache and
performance improves.
Ziggurat: Ziggurat performance is insensitive to the fsync()
interval. This is because Ziggurat profiles individual writes,
and as all writes are smaller than 4 MB, they are all steered
to NVMM resulting in the same performance as NOVA.
SPFS+EXT4: In contrast, SPFS+EXT4 considers the total
number of written bytes to be flushed by fsync(). Therefore,
if fsync() is called per every 4096 or fewer writes, SPFS
stores the 4 MB or smaller synchronous writes in NVMM
and significantly reduces the fsync() overhead. Thus, for
the Load workload, SPFS+EXT4 shows 7.7× and 1.6× higher
throughput than EXT4 when the fsync() interval is 16 and
256 writes, respectively. We observe all small WAL log files
are migrated to NVMM as expected, whereas all SSTable files,
which contain key-value records, are stored in the EXT4 file
system because its size (64 MB) is much larger than the pro-
filing threshold of SPFS (4 MB). Nonetheless, SPFS+EXT4
outperforms Ziggurat, which stores both WAL and SSTa-
bles in NVMM. This is because SPFS leverages DRAM,
NVMM, and SSD characteristics altogether, while Ziggurat
relies only on NVMM. If fsync() is called less frequently,
e.g., fsync() is called every 64K or 1M writes, SPFS+EXT4
stores all writes in EXT4 and benefits from the VFS cache
and periodic writebacks. Therefore, SPFS+EXT4 shows similar
performance with EXT4.

In the experiments shown in Figure 14, we measure YCSB

Load throughput on the NVDIMM server, varying the num-
ber of client threads while the fsync() interval is fixed to
256. Due to the frequent fsync(), EXT4 does not scale with
the number of client threads. However, the throughput of
SPFS+EXT4 increases up to 8 threads because it absorbs the
synchronous writes in NVDIMM. When the number of client
threads is 16, the throughput degrades because the number of
total threads (i.e., client and background compaction threads)
exceeds the number of available cores and memory contention
occurs. Note that SPFS+EXT4(D) denotes the performance of
SPFS+EXT4 when NVDIMM is full and the background de-
motion migrates files from NVDIMM to the lower file system.
Due to the performance interference, the demotion decreases
the throughput by up to 7%.

6 Conclusion
Managing two different storage devices with completely dif-
ferent properties in a single file system has practical limi-
tations. In this study, we designed and implemented SPFS,
a stackable file system for NVMM that exploits the perfor-
mance of NVMM for order-preserving small synchronous
writes and yet takes advantage of the faster DRAM cache as
well as the large capacity that legacy block device file systems
provide. In addition, SPFS manages all file system metadata
in dynamic hash tables that are built on Extent Hashing that
exhibits fast insertion as well as fast scan performance.

We perform extensive evaluations and compare SPFS with
state-of-the-art file systems. In standalone mode, SPFS shows
comparable performance to NOVA, while in stacked mode,
SPFS+x improves performance by up to 9.9× compared to
the lower file system x executing alone.

Acknowledgement
We would like to thank the anonymous reviewers for their
valuable comments and feedback. We also thank our shepherd,
Youyou Lu for guiding us during the revision process.
This research was supported in part by Samsung Electronics,
and also by NRF (grant No. NRF2022R1A2C2091680), IITP
(grant No. 2021-0-01817), and ETRI (grant No. 20ZS1310).
Much of this work was done when Hobin Woo was enrolled
in the Master program at Sungkyunkwan University. Daegyu
Han contributed equally as he took over the work after H.
Woo graduated. The corresponding author is Beomseok Nam.

USENIX Association 21st USENIX Conference on File and Storage Technologies 293

References

[1] Compute Express Link CXL Latency How Much is
Added at HC34. https://www.servethehome.com/
compute-express-link-cxl-latency-how-much-
is-added-at-hc34/.

[2] Linux Test Suite. https://linux-test-project.
github.io/.

[3] POSIX File System Test Suite. https://github.com/
pjd/pjdfstest.

[4] RocksDB. https://rocksdb.org/.

[5] Samsung SZ985 Z-NAND SSD. https:
//www.samsung.com/us/labs/pdfs/collateral/
Samsung_Z-NAND_Technology_Brief_v5.pdf.

[6] Jens Axboe et al. FIO (Flexible I/O Tester). https:
//github.com/axboe/fio.

[7] Alexandro Baldassin, João Barreto, Daniel Castro, and
Paolo Romano. Persistent Memory: A Survey of Pro-
gramming Support and Implementations. ACM Comput-
ing Surveys (CSUR), 54(7):1–37, 2021.

[8] Matias Bjørling, Abutalib Aghayev, Hans Holmberg,
Aravind Ramesh, Damien Le Moal, Gregory R Ganger,
and George Amvrosiadis. ZNS: Avoiding the Block
Interface Tax for Flash-based SSDs. In Proceedings of
the 2021 USENIX Annual Technical Conference (ATC),
pages 689–703, 2021.

[9] Neil Brown. Overlay Filesystem. https:
//www.kernel.org/doc/Documentation/
filesystems/overlayfs.txt.

[10] Daniel Campello, Hector Lopez, Ricardo Koller, Raju
Rangaswami, and Luis Useche. Non-blocking Writes to
Files. In Proceedings of the 13th USENIX Conference
on File and Storage Technologies (FAST), pages 151–
165, 2015.

[11] Youmin Chen, Youyou Lu, Fan Yang, Qing Wang, Yang
Wang, and Jiwu Shu. Flatstore: An Efficient Log-
Structured Key-Value Storage Engine for Persistent
Memory. In Proceedings of the 25th International Con-
ference on Architectural Support for Programming Lan-
guages and Operating Systems (ASPLOS), pages 1077–
1091, 2020.

[12] Youmin Chen, Jiwu Shu, Jiaxin Ou, and Youyou Lu.
HiNFS: A Persistent Memory File System with Both
Buffering and Direct-Access. ACM Transactions on
Storage (TOS), 14(1):1–30, 2018.

[13] Brian F Cooper, Adam Silberstein, Erwin Tam, Raghu
Ramakrishnan, and Russell Sears. Benchmarking Cloud
Serving Systems with YCSB. In Proceedings of the 1st
ACM Symposium on Cloud Computing (SoCC), pages
143–154, 2010.

[14] Puja Gupta, Harikesavan Krishnan, Charles P. Wright,
Mohammad Nayyer Zubair, Jay Dave, and Erez Zadok.
Versatility and Unix Semantics in a Fan-Out Unification
File System. Technical report, Stony Brook University,
2004.

[15] Kyuhwa Han, Hyunho Gwak, Dongkun Shin, and Jooy-
oung Hwang. ZNS+: Advanced Zoned Namespace In-
terface for Supporting In-Storage Zone Compaction. In
Proceedings of the 15th USENIX Symposium on Operat-
ing Systems Design and Implementation (OSDI), pages
147–162, 2021.

[16] Tyler Hicks, Dustin Kirkland, and Michael Halcrow.
eCryptFS. http://www.ecryptfs.org/.

[17] Deukyeon Hwang, Wook-Hee Kim, Youjip Won, and
Beomseok Nam. Endurable Transient Inconsistency
in Byte-Addressable Persistent B+-Tree. In Proceed-
ings of the 16th Usenix Conference on File and Storage
Technologies (FAST), pages 187–200, 2018.

[18] William Jannen, Jun Yuan, Yang Zhan, Amogh Akshin-
tala, John Esmet, Yizheng Jiao, Ankur Mittal, Prashant
Pandey, Phaneendra Reddy, Leif Walsh, et al. BetrFS: A
Right-Optimized Write-Optimized File System. In Pro-
ceedings of the 13th USENIX Conference on File and
Storage Technologies (FAST), pages 301–315, 2015.

[19] William Jannen, Jun Yuan, Yang Zhan, Amogh Akshin-
tala, John Esmet, Yizheng Jiao, Ankur Mittal, Prashant
Pandey, Phaneendra Reddy, Leif Walsh, et al. BetrFS:
Write-Optimization in a Kernel File System. ACM
Transactions on Storage (TOS), 11(4):1–29, 2015.

[20] Olzhas Kaiyrakhmet, Songyi Lee, Beomseok Nam,
Sam H Noh, and Young-ri Choi. SLM-DB: Single-Level
Key-Value Store with Persistent Memory. In Proceed-
ings of the 17th Usenix Conference on File and Storage
Technologies (FAST), pages 191–205, 2019.

[21] Sudarsun Kannan, Nitish Bhat, Ada Gavrilovska, An-
drea Arpaci-Dusseau, and Remzi Arpaci-Dusseau. Re-
designing LSMs for Nonvolatile Memory with Nov-
eLSM. In Proceedings of the 2018 USENIX Annual
Technical Conference (ATC), pages 993–1005, 2018.

[22] Ram Kesavan, Matthew Curtis-Maury, Vinay Devadas,
and Kesari Mishra. Storage Gardening: Using a Vir-
tualization Layer for Efficient Defragmentation in the
WAFL File System. In Proceedings of the 17th USENIX

294 21st USENIX Conference on File and Storage Technologies USENIX Association

https://www.servethehome.com/compute-express-link-cxl-latency-how-much-is-added-at-hc34/
https://www.servethehome.com/compute-express-link-cxl-latency-how-much-is-added-at-hc34/
https://www.servethehome.com/compute-express-link-cxl-latency-how-much-is-added-at-hc34/
https://linux-test-project.github.io/
https://linux-test-project.github.io/
https://github.com/pjd/pjdfstest
https://github.com/pjd/pjdfstest
https://rocksdb.org/
https://www.samsung.com/us/labs/pdfs/collateral/Samsung_Z-NAND_Technology_Brief_v5.pdf
https://www.samsung.com/us/labs/pdfs/collateral/Samsung_Z-NAND_Technology_Brief_v5.pdf
https://www.samsung.com/us/labs/pdfs/collateral/Samsung_Z-NAND_Technology_Brief_v5.pdf
https://github.com/axboe/fio
https://github.com/axboe/fio
https://www.kernel.org/doc/Documentation/filesystems/overlayfs.txt
https://www.kernel.org/doc/Documentation/filesystems/overlayfs.txt
https://www.kernel.org/doc/Documentation/filesystems/overlayfs.txt
http://www.ecryptfs.org/

Conference on File and Storage Technologies (FAST),
pages 65–78, 2019.

[23] Wonbae Kim, Chanyeol Park, Dongui Kim, Hyeongjun
Park, Young-ri Choi, Alan Sussman, and Beomseok
Nam. ListDB: Union of Write-Ahead Logs and Per-
sistent SkipLists for Incremental Checkpointing on Per-
sistent Memory. In Proceedings of the 16th USENIX
Symposium on Operating Systems Design and Imple-
mentation (OSDI), pages 161–177, 2022.

[24] Youngjin Kwon, Henrique Fingler, Tyler Hunt, Simon
Peter, Emmett Witchel, and Thomas Anderson. Strata:
A Cross Media File System. In Proceedings of the 26th
Symposium on Operating Systems Principles (SOSP),
pages 460–477, 2017.

[25] Changman Lee, Dongho Sim, Jooyoung Hwang, and
Sangyeun Cho. F2FS: A New File System for Flash
Storage. In Proceedings of the 13th USENIX Conference
on File and Storage Technologies (FAST), pages 273–
286, 2015.

[26] Avantika Mathur, M. Cao, and A. Dilger. Ext4: The
Next Generation of the Ext3 File System. ;login: Usenix
Magazine, 32, 2007.

[27] Moohyeon Nam, Hokeun Cha, Young-ri Choi, Sam H
Noh, and Beomseok Nam. Write-Optimized Dynamic
Hashing for Persistent Memory. In Proceedings of the
17th USENIX Conference on File and Storage (FAST),
pages 31–44, 2019.

[28] Ian Neal, Gefei Zuo, Eric Shiple, Tanvir Ahmed Khan,
Youngjin Kwon, Simon Peter, and Baris Kasikci. Re-
thinking File Mapping for Persistent Memory. In Pro-
ceedings of the 19th USENIX Conference on File and
Storage Technologies (FAST), pages 97–111, 2021.

[29] Junjiro R. Okajima. AUFS - Another Union Filesystem.
http://aufs.sourceforge.net/.

[30] D. Rosenthal. Evolving the Vnode Interface. In USENIX
Summer, 1990.

[31] Simon Sharwood. Last Week Intel Killed Op-
tane. Today, Kioxia and Everspin Announced
Comparable Tech: Rumors of Storage-Class
Memory’s Demise May Have Been Premature.

https://www.theregister.com/2022/08/02/
kioxia_everspin_persistent_memory/.

[32] Pradeep J Shetty, Richard P Spillane, Ravikant R Mal-
pani, Binesh Andrews, Justin Seyster, and Erez Zadok.
Building Workload-Independent Storage with VT-Trees.
In Proceedings of the 11th USENIX Conference on File
and Storage Technologies (FAST), pages 17–30, 2013.

[33] Vasily Tarasov, Erez Zadok, and Spencer Shepler.
Filebench: A Flexible Framework for File System
Benchmarking. ;login: USENIX Magazine, 41(1):6–12,
2016.

[34] Qing Wang, Youyou Lu, Junru Li, and Jiwu Shu. Nap: A
Black-Box Approach to NUMA-Aware Persistent Mem-
ory Indexes. In Proceedings of the 15th USENIX Sympo-
sium on Operating Systems Design and Implementation
(OSDI), pages 93–111, 2021.

[35] Youjip Won, Jaemin Jung, Gyeongyeol Choi, Joontaek
Oh, Seongbae Son, Jooyoung Hwang, and Sangyeun
Cho. Barrier-Enabled IO Stack for Flash Storage. In
Proceedings of the 16th USENIX Conference on File and
Storage Technologies (FAST), pages 211–226, 2018.

[36] Fei Xia, Dejun Jiang, Jin Xiong, and Ninghui Sun.
HiKV: A Hybrid Index Key-Value Store for DRAM-
NVM Memory Systems. In Proceedings of the 2017
USENIX Conference on Usenix Annual Technical Con-
ference (ATC), pages 349–362, 2017.

[37] Jian Xu and Steven Swanson. NOVA: A Log-structured
File System for Hybrid Volatile/Non-volatile Main
Memories. In Proceedings of the 14th USENIX Confer-
ence on File and Storage Technologies (FAST), pages
323–338, 2016.

[38] Erez Zadok, Ion Badulescu, and Alex Shender. Extend-
ing File Systems Using Stackable Templates. In Pro-
ceedings of the Annual Conference on USENIX Annual
Technical Conference (ATC), pages 57–70, 1999.

[39] Shengan Zheng, Morteza Hoseinzadeh, and Steven
Swanson. Ziggurat: A Tiered File System for Non-
Volatile Main Memories and Disks. In Proceedings
of the 17th USENIX Conference on File and Storage
Technologies (FAST), pages 207–219, 2019.

USENIX Association 21st USENIX Conference on File and Storage Technologies 295

http://aufs.sourceforge.net/
https://www.theregister.com/2022/08/02/kioxia_everspin_persistent_memory/
https://www.theregister.com/2022/08/02/kioxia_everspin_persistent_memory/

Citron: Distributed Range Lock Management with One-sided RDMA

Jian Gao Youyou Lu Minhui Xie Qing Wang Jiwu Shu∗

Tsinghua University

Abstract
Range lock enables concurrent accesses to disjoint parts

of a shared storage. However, existing range lock managers
rely on centralized CPU resources to process lock requests,
which results in server-side CPU bottleneck and suboptimal
performance when placed in a distributed scenario.

We propose Citron, an RDMA-enabled distributed range
lock manager that bypasses server-side CPUs by using only
one-sided RDMA in range lock acquisition and release paths.
Citronmanages range locks with a static data structure called
segment tree, which effectively accommodates dynamically
located and sized ranges but only requires limited and nearly
constant synchronization costs from the clients. Citron can
also scale up itself in microseconds to adapt to a shared stor-
age of a growing size at runtime. Evaluation shows that under
various workloads, Citron delivers up to 3.05× throughput
and 76.4% lower tail latency than CPU-based approaches.

1 Introduction

Large-scale distributed applications have high demands to
access shared storage resources concurrently [60, 65]. File
systems designed for high-performance computing (HPC),
for example, are usually required to handle massive parallel
I/O requests to different parts of a single data file [11, 32, 49].
Disaggregated memory pools have the need to allow multiple
clients to access the same memory space simultaneously, pos-
sibly with different access patterns [19,40,50]. These systems
require the capability to correctly and efficiently coordinate
concurrent accesses to a large-scale shared storage.

Lock is a common and essential approach to enabling cor-
rect concurrent accesses to a shared storage. A wealth of
research contributes to designing mutual exclusive locks (i.e.,
mutexes) and their variants [20, 22, 29, 33, 76], which grant
exclusive access (or write) permission of the shared storage
to at most one client at any time. Still, mutexes can be too
coarse-grained and, thus, inefficient. For this reason, range
locks become a preferable alternative since they allow finer-
grained concurrency, i.e., clients simultaneously operating at
disjoint parts of the same shared storage resource [35, 39].

Existing distributed range lock managers (DRLMs) grant

∗Jiwu Shu is the corresponding author (shujw@tsinghua.edu.cn).

and revoke locks with centralized server-side1 CPUs through
a remote procedure call (RPC) interface. However, with preva-
lent high-speed networks, CPU-oriented DRLMs cause perfor-
mance bottlenecks. First, they limit throughput because of the
mismatch between high network packet rate (e.g., 215 Mops/s
for NVIDIA ConnectX-6 [58]) and limited CPU resources
and that they need to perform CPU-consuming traversal and
modification to complex dynamic data structures upon lock
operations (e.g., the interval trees in Lustre [47]). Second,
they also incur high queueing latencies (4-5 network roundtrip
times, §2.2) due to the RPC paradigm. In latency-sensitive
scenarios like memory pools, a CPU-based DRLM can be-
come a major latency contributor in the critical path.

Remote Direct Memory Access (RDMA) offers a chance
to avoid the CPU bottleneck with its one-sided verbs that
can bypass server-side CPUs. However, taking this chance
requires a comprehensive re-design of the range lock protocol.
First, existing DRLMs are built atop dynamic data structures,
but RDMA incapacitates them due to the lack of support for
dynamic remote memory allocation. Second, these DRLMs
are also RDMA-unconscious and perform many memory
accesses to their data structures in lock operations, which
turn into excessive network roundtrips when using one-sided
RDMA, overshadowing RDMA’s high performances.

This paper proposes Citron, an efficient distributed range
lock manager. Citron acquires and releases range locks using
only one-sided RDMA to lift the burden off server-side CPUs
with an RDMA-conscious lock protocol based on static data
structures to exploit the full performance potentials of the
RDMA hardware. Specifically, Citron retrofits segment tree,
an RDMA-friendly static data structure, to manage lock en-
tries. Thus, Citron simplifies lock conflict resolution into the
communication between ancestor and descendant nodes on
the tree. To effectively handle dynamically positioned and
sized lock requests, Citron develops a protocol tightly inter-
woven with the range lock specs, the segment tree’s memory
layout, and the one-sided RDMA semantics. Clients lock at
different levels of the segment tree and pay nearly constant
costs to synchronize with conflicting peers. In the best case,
lock acquisition takes only two RDMA roundtrips.

1For disambiguation, in this paper, we use different terms for different
purposes: servers are counterparts of clients; machines are computers in the
distributed system; nodes are components of tree data structures.

USENIX Association 21st USENIX Conference on File and Storage Technologies 297

mailto:shujw@tsinghua.edu.cn

For a shared storage whose size grows, Citron provides a
mechanism to scale itself up (i.e., expand its capacity), lever-
aging the structural self-similarity of segment trees. Citron
enables scaling up the lock tree to a proper size with one-sided
RDMA and minimum server-side CPU intervention.

Citron offers several benefits. First, it is CPU-efficient. To
our knowledge, Citron is the first DRLM that uses only one-
sided RDMA for lock acquisitions and releases, which obvi-
ates the server-side CPU bottleneck. Second, Citron delivers
high performance. Evaluation shows that Citron outperforms
CPU-based range lock managers by up to 3.05× in throughput
and 76.4% in latency under different workloads.

2 Background

2.1 RDMA
RDMA is a network protocol with low latency, high through-
put, and low CPU overhead. Due to these benefits, numerous
distributed file systems [2,3,26,42,44,46,47,77], transaction
systems [5, 16, 31, 41, 72], and lock managers [13, 54, 79] are
built atop or compatible with RDMA.

Machines must equip RDMA-capable NICs (RNICs) to
communicate with RDMA. Clients first post RDMA verbs
to queue pairs (QPs) and later poll the completion queues
(CQs) associated with the QPs for completion events. RDMA
supports one-sided verbs, including read, write, atomic
compare-swap (CAS), and atomic fetch-add (FAA). Fur-
thermore, a wide range of off-the-shelf RNICs (e.g., from
Mellanox Connect-IB to NVIDIA ConnectX-7 [51,57–59])
also support masked atomic verbs [56], which perform simi-
larly to standard atomic verbs but have more flexibility.

For masked-CAS, users need to provide a compare bitmask
and a swap bitmask. The compare and swap steps are each
performed with regard to the corresponding bitmask. The
masked-out bits will not get compared or swapped.

For masked-FAA, users need to provide a bitmask that splits
the 8 bytes into different fields. Each set bit in the bitmask
indicates the left boundary of a field, and FAA is performed
separately within every field. The field boundaries can occur
at any position; non-byte-aligned fields are allowed.

2.2 Distributed Range Lock Management
CPU-based centralized solutions. Most existing DRLMs
rely heavily on server-side CPUs [3,9,47]. However, this kind
of solutions are notorious for their high CPU overheads and
the ensuing CPU bottleneck, including limited throughput
and high queueing latencies; see Figure 1(a).

First, executing complex range lock operations with limited
CPU resources not only bottlenecks the throughput but also
inevitably harms co-locating CPU-demanding services that
have little chance of being offloaded to the RNIC (e.g., path
traversal in a distributed file system). Second, in the RPC
paradigm, server-side CPUs fetch and process RPC requests

NIC

CPU

RPC requests

CQ

reply

queueing
latency

limited throughput

NIC

CPU

RDMA one-sided verbs

no CQ queueing

throughput / pkt rate

Clients

La
te

nc
y

(μ
s)

p99
Avg

0

5

10

1 16 32

(a) (b) (c)

Figure 1: Flaws of RPC-based DRLMs and our motivation.

from the RNIC-side queues. Under high concurrency, the re-
quests will queue in the RNIC, which results in high queueing
latencies. Also, when processing a range lock request, a CPU
core cannot process other ones in the same queue, even if they
do not conflict with each other logically.

We demonstrate the high latencies by running eRPC [30]
on a testbed consistent with §4.1. Clients synchronously send
RPCs to one server, and the RPC handler runs for 100 ns.
We measure the server-side queueing latency, i.e., the time
between the RPC arrives at the NIC and the CPU processes the
RPC, similarly to 2LClock [27]. Figure 1(c) shows the results.
With 32 clients, the average queueing latency is 5.4 µs, more
than 2× RDMA roundtrip times (RTTs). The p99 latency even
reaches 9.8 µs (4-5 RTTs).
Mutex-based decentralized solutions. Dividing ranges into
segments and associating each with a mutex is a strawman
solution to decentralized range lock management [35], but it is
only efficient when the access granularity is static and priorly
known. In the case of unaligned or dynamically-sized ranges,
this solution can suffer from a significant 92% throughput
decline and 5.65× higher tail latencies; see §4.2.

3 Design
Our design goal is a high-performance DRLM that leverages
one-sided RDMA to eliminate server-side CPU bottlenecks.
As shown in Figure 1(b), a one-sided RDMA-based DRLM
can remove the queueing latencies and offer higher throughput
by offloading all lock operations to the RNIC’s tailored ASIC,
thus exploiting the full performance potentials of the RNIC.

3.1 Challenges and Design Principles
Challenge 1. We need a one-sided RDMA-conscious data
structure that can efficiently manage dynamically positioned
and sized range locks and resolve their conflicts.
➥ Static tree structure for dynamic ranges. Citron maps
each requested range as precisely as possible to a constant
number of nodes on a segment tree, a static data structure, to
effectively manage dynamic range lock entries.

Challenge 2. To achieve low latency and high throughput,
we must tailor the lock protocol to reduce the critical path
lengths despite the complex range lock semantics.
➥ Minimized synchronization overhead. Citron’s protocol
couples tightly with RDMA semantics and the segment tree’s

298 21st USENIX Conference on File and Storage Technologies USENIX Association

6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

2 3 4 5

1

0
. .

N

Level 1

Level 2

Level 3

Figure 2: The structure and node indices of the lock tree.

layout, minimizing synchronization costs to nearly constant.
Acquiring a lock requires a minimum of only two roundtrips.

Challenge 3. Real-world storage resources are not always
fixed-size. Therefore, we must also efficiently handle a possi-
bly dynamically growing storage size.
➥ Runtime capacity expansion. While segment trees are
static, smaller trees can be seen as subtrees of larger ones.
Citron leverages this characteristic to enable scaling up the
tree’s capacity at runtime using a few server-side CPU cycles.

3.2 Basic Assumptions
Address space. Citron maintains range locks within an
abstract address space [0,∞). Multiple real-world scenarios
fit in this model, e.g., LBA ranges in distributed NVMe-oF
namespaces [62] and byte ranges in file systems [3, 47].
Cluster infrastructure. Aside from a lock server that hosts
Citron’s components (§3.3) in its DRAM, Citron requires
that there is a cluster manager (CM) and a metadata server
(MDS). The CM coordinates configuration changes (§3.5.5)
and detects client failures (§3.10). The MDS maintains the ad-
dresses of Citron’s components to enable the use of one-sided
RDMA. The CM and the MDS need not run on independent
machines: they can run on the lock server behind an RPC
interface. There are already mature solutions for CM and
MDS [17, 23, 48], so we need not discuss them here.
Clock well-behavedness. Citron assumes that the clocks of
all clients are well-behaved, i.e., they advance at nearly the
same speeds. Note that Citron does not require the clocks to
be synchronized. Prior studies report that the clock frequency
variation in a productional network is at most ±100 ppm [43]
or even ±20 ppm when static errors are filtered out [53], which
means that the clock drift is only up to ±0.1 ns or ±0.02 ns
per microsecond, more than sufficient for Citron.

3.3 Components of Citron
Citron maintains range locks with a lock tree and a spillover
mutex. The lock tree is responsible for locks within [0,N),
and the spillover mutex is for [N,∞), where N is specified
at initialization time. Citron further includes a maximizer to
enable clients to scale up the lock tree, i.e., to increase N.
Lock tree. The lock tree is a segment tree [4] – a perfectly
balanced tree in which each node represents a continuous
range. The root represents the entire range [0,N); for every

Exp
1b

Occ
1b

TCnt
15b

TMax
15b

DCnt
16b

DMax
16b

Internal node
Manipulated with masked-FAA

0 0 1 1 1 1 0 1 0 1 0 0· · ·

Leaf node
Manipulated with masked-CAS

Figure 3: 64-bit representations of internal and leaf nodes.

non-root node, it and its siblings each receive an equal and
continuous share of the range represented by their parent.
Such a structure determines that the range represented by any
node intersects only with its ancestors and its descendants.

Orthodox segment trees are binary trees [4]. However, we
define the lock tree in Citron as a quaternary segment tree,
which means that the degrees (i.e., numbers of children) of all
internal nodes are all four. Also, leaf nodes represent ranges
of size 64, not the 1 in the orthodox definition. These designs
aim to limit the tree height and, thus, the number of necessary
RDMA verbs to post per lock request.

Since all internal nodes have the same degrees, there is
no need for pointers in the lock tree. Instead, all nodes are
placed in a continuous flat array by level order and indexed
by positive integers (cf. heaps [74]). Tree navigation is simply
node index arithmetics. For example, Figure 2 shows the lock
tree’s first three levels and the node indices, in which the
widths of nodes correspond to their represented ranges. From
this figure, we can easily verify that for a node with index x,

Child(x, i) = 4x−2+ i (i = 0,1,2,3)
Parent(x) = ⌊(x+2)/4⌋

Spillover mutex. The spillover mutex represents [N,∞), i.e.,
it handles out-of-bound parts (w.r.t. the lock tree) of range
lock requests. It can adopt any design that is friendly to one-
sided RDMA. We use DSLR [79] to implement this mutex.
Maximizer. The maximizer is an initially-zero 8-byte vari-
able accessible by one-sided RDMA. A client modifies this
variable when it locks a range that is not contained within
[0,N). We will detail the usage of the maximizer in §3.9.

3.4 Formats of Lock Tree Nodes
All nodes in the lock tree are 8-byte variables accessible by
all kinds of RDMA one-sided verbs. Internal nodes and leaf
nodes have different formats and are manipulated by different
RDMA atomic verbs, as shown in Figure 3.
Leaf nodes. Leaf nodes are 8-byte bitmaps in which each
bit is associated with a unit of the shared storage. A set bit in
the bitmap indicates the corresponding unit of the resource
occupied by some client, and vice versa. Clients use RDMA
masked-CAS to set and clear each of the 64 bits.
Internal nodes. Each internal node divides into six fields.
Exp and Occ are flags, and the remaining four are counters.
Clients use RDMA masked-FAA to modify these fields.
{TCnt,TMax} and {DCnt,DMax} are two counter pairs

that follow the idea of Lamport’s bakery algorithm [38, 79].
Specifically, in each counter pair, Max is the next available

USENIX Association 21st USENIX Conference on File and Storage Technologies 299

Algorithm 1 Acquire range locks from Citron
1: procedure AcquireRangeLock(l, r)
2: A← [l,r)∩ [0,N)
3: if [l,r)∩ [N,∞) , ∅ then ▷ Out-of-bound
4: Acquire the spillover mutex
5: if A , ∅ then ▷ In-bound
6: AcquireLockOnTree(A.left, A.right)

“ticket number,” and Cnt is the ticket number that is currently
holding the lock. A client gets a ticket by performing an FAA
on the Max field, polls the Cnt field until it matches the ticket,
enters the critical section, and finally performs an FAA on the
Cnt field when the client finishes. The two counter pairs are
for different purposes: {TCnt,TMax} counts lock requests at
“this node,” while {DCnt,DMax} counts those at descendants.

As for the flags, Exp (stands for expanded) notifies clients
of a lock tree scale-up event. Occ (stands for occupied) blocks
conflicting lock requests at descendants if it is set. A node
with the Occ flag set will be called an occupied node.

Like prior studies [79], the bit widths of counters impose
a hard limit on the maximum concurrency of the system.
There may not be more than 215 −1 = 32767 clients access-
ing the same Citron instance concurrently; otherwise, the
overflowing counters can put Citron into an erroneous state.
Nevertheless, this restriction is tolerable in most scenarios.

3.5 Lock Acquisition
Algorithm 1 shows how a client acquires a lock on a range
[l,r). Since mutexes are already well-studied, here, we omit
the details about the spillover mutex and focus on the lock
tree. Without loss of generality, we now assume [l,r) is fully
contained within [0,N). Algorithm 2 shows the whole lock
acquisition procedure, which consists of two steps:

1. split the range properly into sub-ranges, such that each
of which corresponds to a single tree node;

2. acquire locks on each sub-range in ascending order.

For each sub-range and the corresponding node on the lock
tree (denoted as node hereinafter), the second step further
decomposites into four phases:

2(a). lock node if it is internal;
2(b). wait until all locks at node’s ancestors are released;
2(c). lock node if it is a leaf, otherwise occupy it;
2(d). notify node’s ancestors and wait for its descendants.

Below, we elaborate on each of the two steps and the four
phases of the second step. For convenience and readability,

• we call our protagonist “Alice”: she is a client trying to
acquire a range lock, and we describe what she will do;

• we use the adjectives low and high to describe tree nodes
that are far from and close to the root;

• we describe masked-FAA with variadic arguments (a pair
per field to FAA) instead of bitmasks (Line 3).

Algorithm 2 Acquire a range lock from the lock tree
1: ▷ Function signatures of RDMA masked atomic verbs ◁
2: def MaskedCAS(addr, cmp, cmpMask, swap, swapMask)→ boolean
3: def MaskedFAA(addr, field1, add1, [field2, add2, [. . .]])→ uint64

4: procedure AcquireLockOnTree(l, r, k = 2, m = 4) ▷ Step 1
5: nodes← SolveKnapsack(l, r, k)
6: for all node ∈ nodes in ascending order do
7: repeat ret← LockNode(node, l, r, m) until ret = Acquired

8: procedure LockNode(node, l, r, m) ▷ Step 2
9: if node is internal then ▷ Phase (a)

10: ticket←MaskedFAA(node, TMax, 1)
11: repeat val← RdmaRead(node) until val.TCnt = ticket.TMax
12: cleared← node ▷ Phase (b)
13: while cleared , root do
14: {anc} ← RdmaRead(all ancestors of cleared)
15: if root.Exp = 1 then return Aborted
16: next← the lowest node in {anc} with Occ , 0
17: if next = nil then break
18: repeat val← RdmaRead(next) until val.Occ = 0
19: cleared← next
20: if node is a leaf then ▷ Phase (c)
21: mask← bitmask of [l,r)∩node.range
22: if not MaskedCAS(node, 0, mask, mask, mask) then
23: if MaskedCAS kept failing for too long then
24: return LockNode(Parent(node), l, r, m)
25: else
26: goto Line 12
27: else
28: MaskedFAA(node, Occ, 1)
29: t0← current time ▷ Phase (d)
30: {ancnotify} ← every m-th ancestor of node
31: MaskedFAA({ancnotify}, DMax, 1), RdmaRead(root)
32: if possible time limit excess then return Aborted
33: if {ancnotify}.highest.Exp = root.Exp = 1 then return Aborted
34: if node is internal then wait until t0 +Twait
35: for desc ∈ {node and its internal descendants within m levels} do
36: repeat val← RdmaRead(desc) until val.DCnt = val.DMax
37: return Acquired

3.5.1 Step 1: Split the range
In this step, Alice decides which node(s) to lock. This step
incurs zero network traffic because Alice knows the structure
of the lock tree in advance and can do all computations locally.

With a segment tree, any continuous range can be expressed
as an aggregate of O(log N) tree nodes [4]. As a result, Alice
has to lock Θ(log N) nodes to precisely lock the range [l,r) in
the worst case. However, this can result in high latencies since
the nodes must be locked sequentially to prevent deadlocks.

A strawman solution is to simply lock the lowest node
whose represented range completely covers [l,r). However,
this can result in severe false conflicts. For example, imag-
ine that Alice wishes to lock [N/2− 1,N/2+ 1): the lowest
node that covers this small range would be the root, which
unfortunately conflicts with all other lock requests.

Citron strikes a balance by allowing Alice to lock up to k
nodes that cover the requested range together. To reduce false
lock conflicts, Citron tries to minimize the covered but unre-
quested range. This optimization goal can be formulated into a
tree knapsack problem [37] and solved by existing algorithms.
Our knapsack algorithm has a time complexity of O(k2 log N),

300 21st USENIX Conference on File and Storage Technologies USENIX Association

Step 1

range

map requested range
into segment tree nodes

in
te

rn
al

leaf

Step 2(a)

Anc node Desc
Prev ✓
Con ✓
Fut ✓

lock node
(bakery algo.)

Step 2(b)

Anc node Desc
Prev ✓ ✓
Con ✓
Fut ✓

check ancestors

Anc node
Prev ✓
Con
Fut

check ancestors

failed

Step 2(c)

Anc node Desc
Prev ✓ ✓
Con ✓
Fut ✓ ✓

occupy node

Anc node
Prev ✓ ✓
Con ✓
Fut ✓

lock node
(masked CAS)

success

Step 2(d)

Anc node Desc
Prev ✓ ✓ ✓
Con ✓ ✓ ✓
Fut ✓ ✓ ✓

notify ancestors

wait for
descendantsm

Anc node
Prev ✓ ✓
Con ✓ ✓
Fut ✓ ✓

notify ancestors

Figure 4: Demonstration of the lock acquisition workflow and the lock conflicts resolved by each phase. Table rows are the time
dimension (Prev = Previous, Con = Concurrent, Fut = Future), and table columns are the space dimension (Anc = Ancestors,
Desc = Descendants). Lock conflicts occurring at any time and any position will all be resolved.

which usually finishes within 0.5 µs when properly optimized
and hardly harms lock acquisition performances. Increasing
k trades latencies for fewer false conflicts and vice versa. In
our implementation, we fix k to 2 for low latency purposes.

Procedure AcquireLockOnTree in Algorithm 2 shows how
this step works. Alice first runs a knapsack algorithm to find
the optimal combination of the nodes to lock (Line 5). Then,
she locks the nodes sequentially (Lines 6-7).

3.5.2 Step 2(a): Lock an internal node
In this phase, Alice acquires the lock at node if it is an internal
node. The workflow follows Lamport’s bakery algorithm [79].
Specifically, Alice first increments the TMax field of node to
get a “ticket.” Then, she polls the TCnt field until it matches
the TMax field of the ticket (Lines 10-11).

Alice does not lock node if it is a leaf. Instead, she defers
locking node to Step 2(c) to facilitate failure recovery (§3.10).
Were she to lock node here, Citronwould be unable to recover
to a normal state if Alice crashed before releasing her lock.

3.5.3 Step 2(b): Wait for node’s ancestors
From this phase, Citron starts to resolve conflicts between
different nodes. The major principle is that among multiple
concurrent lock requests, Citron prioritizes the smallest range
because it is usually also the most latency-sensitive one.

As we have discussed before, all ancestors of node conflict
with it. If there is a held lock at one of node’s ancestors, Alice
must wait until it is released. Furthermore, there can be higher
occupied ancestors of node, which belong to lock requests
that arrive earlier than Alice’s but are still waiting because
Citron prioritizes smaller ranges. To ensure fairness, Alice
should also wait for these lock requests to complete.

This phase consists of multiple iterations. In each iteration,
Alice first reads the ancestors of node from the lowest one
possibly occupied (Line 14) and checks their Occ flags to see
if occupied nodes exist. If there are any, the lowest one is

selected (Line 16). Alice waits until the lock at the selected
node gets released (Line 18), which ends her current iteration.
In the next iteration, Alice only needs to check the ancestors
of the previously selected node (Line 19). She repeats this
process until node’s all occupied ancestors are released.

Note that Alice cannot read the ancestors of node only once
because other clients might issue new range lock requests to
nodes higher than any existing lock. Due to unlucky timing,
these clients can occupy the nodes they are locking without
being aware of the lock requests below. The lock protocol
ensures that these clients will get notified of all lock conflicts
in Step 2(d) (§3.5.5), so there are no correctness concerns.
However, Alice must repeatedly check node’s ancestors to
detect these possible new lock requests.

3.5.4 Step 2(c): Occupy or lock node
Alice can ensure no held locks at node’s ancestors now. The
remaining lock conflicts can only locate at node’s descendants
for an internal node, or node itself for a leaf node.

If node is internal, Alice needs to set its Occ flag with an
RDMA masked-FAA. The reason is that Alice should wait for
lock requests at node’s descendants (because they are more
prioritized than Alice’s), but she must not wait indefinitely.
By setting node’s Occ flag, newly arriving lock requests at
node’s descendants will detect and wait for Alice in their Step
2(b), which ensures finite wait time for Alice.

If node is a leaf, Alice needs to post an RDMA masked-
CAS verb to lock the corresponding bits of node. On success,
Alice finishes this phase. On failure, she must return to the
beginning of Step 2(b) because other clients could have set
the Occ flags of node’s ancestors, as discussed above.

Starvation avoidance. When node is a leaf, a series of failed
masked-CASs might cause lock starvation. Citron offers a
workaround: if Alice keeps getting masked-CAS failures for
a certain period, instead of returning to Step 2(b), she can

USENIX Association 21st USENIX Conference on File and Storage Technologies 301

optionally set node to its parent, restart the lock acquisition
procedure, and switch to the starvation-free Lamport’s bakery
algorithm since node is now internal (Line 24).

3.5.5 Step 2(d): Notify ancestors, wait for descendants
Let desc be an arbitrary descendant of node. Assume Bob is
another client that is trying to acquire a range lock at desc
concurrently with Alice. Although Bob conflicts with Alice,
they are both unaware of each other’s existence. A mechanism
is therefore needed to allow Bob to notify Alice of a lock
conflict and also to allow Alice to detect this conflict.

There are two strawman solutions. In the first solution, Bob
is responsible for notifying all ancestors of desc. However,
this can result in high latencies for small range lock requests:
the lower desc is, the more ancestors it needs to notify. In
the second solution, Alice is responsible for checking all
descendants of node for possible conflicts. However, this can
result in excessive network traffic since the number of node’s
descendants increases exponentially as node becomes higher.

Inspired by meet-in-the-middle (MITM), a common idea in
computer science, we employ a combination of the solutions
above to synchronize Alice and Bob. Specifically, Citron
maintains a globally consistent parameter: m, the MITM dis-
tance. Starting from desc’s parent node, Bob notifies desc’s
every m-th ancestor (Lines 30-31). Alice, on the other hand,
checks all node’s descendants within m layers on the lock tree,
as well as node itself (Lines 35-36). This solution ensures
that no matter where node and desc locate, Alice will check a
node that Bob notifies and thus detect the lock conflict.

For Bob, this solution reduces his notification overheads
by a factor of m, which is efficient enough even with a small
m. For Alice, she needs to read and check (4m −1)/3 nodes.
Recall that the nodes of the lock tree are placed in the memory
by level order and will only form m continuous blocks in the
memory layout. Therefore, Alice only needs to post m RDMA
reads, which is an acceptable cost. In our implementation, we
set m = 4. Also, to avoid contention of RDMA atomic verbs,
Citron does not notify nodes in the top m− 1 levels of the
lock tree except for node’s parent. Instead, Citron replaces
them with nodes in the m-th level.

We still need to ensure that Bob notifies desc’s ancestors
before Alice checks one of them. To this end, Alice waits for
a period of time Twait before she checks node’s descendants
(Lines 29 & 34). Bob ensures that he finishes notifying desc’s
ancestors before Alice stops waiting; otherwise, he aborts his
lock request (Line 32). The foundations of this solution are
(1) the well-behavedness of the clients’ clocks and (2) the
fact that the server-side RNIC executes inbound writes and
atomics as if in a global order (i.e., linearizability).

For convenience, we assume an imagined global wall clock
in the following discussion. Suppose Alice waits in the time
interval [t0, t0+Twait), where t0 is a global time point. There-
fore, the deadline for Bob’s notification is t0+Twait.

Recall that Bob performs RDMA reads to ancestors of desc

in Step 2(b) to check if there are any occupied nodes. From
this phase, Bob can find a time point t1 at which Alice has
not started waiting. Specifically, if any RDMA reads find an
occupied ancestor of node, t1 is the time when Bob posts the
last of those. Otherwise, t1 is the post time of the last RDMA
read in Step 2(b). Since Alice only starts waiting after she
sets node’s Occ flag in Step 2(c), t1 < t0 must hold because
of RDMA’s linearizability. Say Bob finishes notifying desc’s
ancestors at time t2. Bob verifies that

t2− t1 ≤ (1−δ) ·Twait (1)

where δ is the bound of clock drift. Since Bob does not know
where node locates at, he needs to record a t1 and verify the
equation above for every ancestor of desc.

Despite the non-existence of an imagined global wall clock,
Bob can use his local clock to compute t2 − t1 because it is
well-behaved. We use the number from Sundial [43] and
set δ = 10−4. Bob will abort his lock acquisition process if
Inequation (1) does not hold. The process of aborting a lock
request is the same as releasing the lock, and we will detail
the procedure in §3.6.

To decide Twait, we count the maximum number of RDMA
roundtrips from t1 to t2 and reserve a unit of time for each
roundtrip. On our testbed, the RDMA RTT is around 2 µs;
conservatively, we reserve 5 µs for each roundtrip. Therefore,
Twait = 15 µs: Alice waits for up to two RDMA reads in Step
2(b) and a batch of RDMA masked-FAAs in Step 2(c)+(d).
A complete Step 2(d). In the discussions above, we make
Bob notify Alice and make Alice wait for Bob. However, we
can imagine swapping the roles of Alice and Bob to see that
they are actually symmetric clients and need to do what each
other does. In other words, Alice needs to both notify node’s
ancestors and wait for notification from node’s descendants.
Tuning the parameters. Step 2(d) relies on properly selected
m and Twait to perform well. Increasing either parameter will
trade performance of large range lock requests for small ones,
and vice versa. Therefore, clients can profile the performance
of lock requests (e.g., throughput and lock abort rate, §4.7) and
send the profiled data to the cluster manager (CM), enabling
the CM to make tradeoffs and tune the parameters.

The CM can employ a two-phase commit (2PC) protocol to
adjust the parameters. Suppose we wish to change (m,Twait)
from (mold,Told) to (mnew,Tnew). The CM first broadcasts
(mnew,Tnew) to all clients. Upon receiving the parameters, a
client acknowledges the CM and, in lock acquisition, uses

• min {Told,Tnew} to determine whether it should abort,
• max {Told,Tnew} when waiting for node’s descendants,
• min {mold,mnew} when notifying node’s ancestors, and
• max {mold,mnew} when checking node’s descendants.

After confirming that all clients have already received the new
parameters, the CM sends “commit” messages to make clients
switch entirely to m = mnew and Twait = Tnew.

302 21st USENIX Conference on File and Storage Technologies USENIX Association

Algorithm 3 Release a range lock back to the lock tree
1: procedure ReleaseLockOnTree(l, r)
2: for all node ∈ locked nodes do
3: if node is a leaf then
4: mask← corresponding bitmask of [l,r)
5: MaskedCAS(node, mask, mask, 0, mask)
6: else
7: MaskedFAA(node, Occ, −1, TCnt, 1)
8: for all anc ∈ notified ancestors of node do
9: val←MaskedFAA(anc, DCnt, 1)

10: if anc is the highest notified node and val.Exp , 0 then
11: Fetch and update the new tree configuration if needed
12: Continue the for all loop for new ancestors of anc

3.6 Lock Release
Algorithm 3 shows the lock release procedure. If node is a leaf,
Alice unlocks it with masked-CAS (Lines 3-5); otherwise, she
vacates node by adding the TCnt counter and clearing the Occ
flag with masked-FAA (Line 7). Also, for all node’s ancestors
that have been notified during lock acquisition, Alice adds
their DCnt counters (Lines 8-9). All these RDMA verbs can
be batched together to reduce latency.

3.7 Proof Sketch of Correctness
Range locks in Citron consist of nodes on the lock tree and
possibly a spillover mutex, all of which are acquired separately
and sequentially. The correctness of the spillover mutex is
already proven [79]. Therefore, we only need to prove the
correctness of a lock on a single tree node. Alice is still our
protagonist in the proof sketch.
Safety. Safety means that Citron does not simultaneously
grant locks to Bob – a conflicting client – and Alice. As
shown in Figure 4, no matter when Bob arrives and where he
locates on the lock tree, Citron will resolve the lock conflict
between Alice and him. Specifically, Steps 2(a)+(c) ensures
that no conflicting clients exist at node: 2(a) for an internal
node, and 2(c) for a leaf node. Steps 2(b) and 2(c)+(d) ensure
respectively that no held locks exist at node’s ancestors and
descendants. Step 2(d) further ensures that:

1. if Bob is at a descendant of node, Alice will wait until
he releases his lock or aborts;

2. if Bob is at an ancestor of node, he will wait until Alice
releases her lock or aborts.

Therefore, when Alice enters the critical section, no conflict-
ing held locks may exist. □

Liveness. Liveness means that without infinitely long criti-
cal sections, Alice’s lock acquisition procedure will always
take some finite amount of time to return (the result could
be Aborted, though). Specifically, Step 1 is finite. Step 2(a)
employs Lamport’s bakery algorithm, which is starvation-free.
Step 2(c) is obviously finite for an internal node, and is also
finite for a leaf node, thanks to the starvation avoidance mech-
anism. For Steps 2(b) and 2(d), Alice can only wait for a finite
number of clients in each phase. Because these clients will

eventually abort or release their locks, these phases are also
finite. To sum up, lock acquisition takes a finite time. □

3.8 Fast Path Optimization
Several optimizations apply to the lock acquisition path when
Citron is not under severe contention.

First, RDMA ensures that it will not reorder any one-sided
verb before previous writes and atomics in the same QP [66].
Thanks to this ordering guarantee, Alice can batch the RDMA
verbs in the lock acquisition path together. In Step 2(b), all
reads in an iteration can be batched (Line 14). In Step 2(d),
the notification to node’s ancestors and the read to the root
can be batched (Line 31). Further, Steps 2(a) and 2(b) can be
optimistically batched in the hope that Step 2(a) immediately
succeeds. More aggressively, Steps 2(c) and 2(d) can also be
batched, but Alice needs to roll back the notification to node’s
ancestors in Step 2(d) (by adding DCnt) if node is a leaf and
the masked-CAS verb in Step 2(c) fails.

Second, if node’s children are all leaf nodes, Alice can
explicitly lock all node’s descendants to skip the wait time in
Step 2(d). Specifically, she post masked-CAS verbs to all its
children to set all 256 bits from 0 to 1. If all these masked-
CAS verbs succeed, she can skip the wait and directly enter
her critical section. Otherwise, she needs to fall back to the
regular lock acquisition path and also clear the bits of modified
children nodes. The RDMA masked-CASs can be batched
with the atomic verbs in Steps 2(c) and 2(d).

With these optimizations, optimistically, acquiring a lock
takes only two RDMA roundtrips, ensuring low latencies.

3.9 Scaling the Lock Tree
In real-world scenarios, a shared storage resource can be of a
dynamic size (e.g., append-only log). If the storage size grows,
Citron’s lock tree might be unable to cover the lock requests,
which can cause performance degradation. On the other hand,
if the storage size shrinks, maintaining unused nodes in the
lock tree will result in extra memory consumption. Therefore,
it is necessary for Citron to react to storage size changes.

3.9.1 Scale up
The size of a storage resource can grow upon writes. When
this happens, out-of-bound lock requests not contained within
[0,N) will contend for the spillover mutex. Overprovisioning
the lock tree will inflate Citron’s DRAM footprint, of which
a considerable percentage is wasted, while a stop-the-world
synchronized scaling up mechanism will cause significant
synchronization overheads. To solve this problem, leveraging
the structural self-similarity of segment trees, i.e., small trees
can be viewed as subtrees of large ones, Citron provides an
option to scale up the lock tree at runtime.

Citron uses masked-CAS to decide how large the lock tree
should scale up to. Note that masked-CAS offers bitwise-OR
semantics when the compare mask is zero. For this reason,
Citron contains a maximizer: the clients can OR the right

USENIX Association 21st USENIX Conference on File and Storage Technologies 303

Algorithm 4 Scale up the lock tree
1: procedure ScaleUpLockTree
2: Acquire the spillover mutex
3: Send an RPC to server to allocate free and zeroed memory
4: for all node ∈ top m levels of the old lock tree, by index order do
5: v←MaskedFAA(node, Exp, 1)
6: for i = m,2m,3m, . . . do
7: anc← i-th ancestor of node in the new lock tree
8: MaskedFAA(anc, DCnt, v.DCnt, DMax, v.DMax+ v.Occ)
9: Update the metadata service to renew the lock tree configuration

10: RdmaWrite(maximizer, 0)
11: Release the spillover mutex

5 6 7 8 9 10 11 12 13 14 15 16

2 3 4Exp = 1

1

Newly allocated space

MDS

new root

subtree
(old root)

Figure 5: Demonstration of a lock tree scale-up process.

boundaries of out-of-bound lock requests to the maximizer
with one-sided masked-CAS, enabling the detection of such
lock requests. The maximizer’s value is at most 2× of the
actual maximum, which is accurate enough because the mini-
mum scale-up factor of the lock tree is 4×.

If Alice is willing to scale up the lock tree, she can read
the maximizer via RDMA and perform the scale-up if she
finds a non-zero value. Algorithm 4 shows the procedure of
scaling up. Alice first acquires the spillover mutex (Line 2)
to both ensure lock safety and prevent simultaneous scale-up
attempts. Then, Alice sends an RPC to the server to allocate
the expanded part of the segment tree (Line 3). The original
lock tree is not moved and will form a new enlarged tree with
the newly allocated nodes, as shown in Figure 5. Alice then
sets the Exp bits of all nodes in the top m levels of the old lock
tree to notify other clients of the scale-up event (Lines 4-5).
She also needs to propagate these nodes’ DCnt and DMax
counters to their new ancestors (Lines 7-8). Note that an oc-
cupied node accounts for an extra unit of DMax. Finally, Alice
updates the metadata service with a renewed configuration
containing addresses of both original and expanded parts of
the lock tree, clears the maximizer, and releases the spillover
mutex to finish scaling up the lock tree (Lines 9-11).

With off-the-shelf RNICs that do not support one-sided
memory allocation, we must rely on the server-side CPUs to
allocate memory and register it to the RNIC. However, this is a
lightweight task compared with CPU-based lock management
and can hardly cause any server-side CPU bottleneck.
Handling scale-ups in lock acquisition. When acquiring a
lock (Algorithm 2), Bob, another client, must take into con-
sideration that Alice can concurrently scale up the lock tree.
Specifically, in Step 2(b), Bob checks the Exp flag whenever
he reads the root (Line 15): a set Exp indicates a concurrent
scale-up. In Step 2(d), Bob needs to read the root after notify-

ing node’s ancestors. If the Exp flags of the highest notified
ancestor of node and the root are both set (Line 33), there must
be a concurrent scale-up. Bob handles concurrent scale-ups
trivially: he aborts and retries.
Handling scale-ups in lock release. The lock tree can also
be scaled up after Bob acquires a lock and before he releases
it. Alice will notify the new ancestors of node on behalf of
Bob. Therefore, Bob should also add the DCnt counters of the
new ancestors of node (Algorithm 3, Lines 10-12).
Node index arithmetics. For a node x in the enlarged part of
the lock tree, by simply offsetting the number of nodes in the
old lock tree that lie ahead of x in the level order, the node
index arithmetics rules described in §3.3 still hold.
Impact to Step 2(d) of lock acquisition. Scaling up the
lock tree can break the continuous memory layout of the tree
nodes in the memory, which can affect Step 2(d) of the lock
acquisition path. To detect Bob, Alice originally only needs
to post m RDMA reads, but with a scaled-up lock tree she
will possibly need to post more. However, even in the worst
case, the number of RDMA reads is only m(m+1)/2, which
is still acceptable when m is small (e.g., for our m = 4 setting,
the number of RDMA reads is 10) because all these reads can
be parallelized. The extra reads can also be reduced by setting
a larger minimum scale-up factor (e.g., 16×).

3.9.2 Scale down
Different to scaling up, scaling down cannot be triggered by
writes and is in most cases intrinsically a blocking operation.
For example, in file systems, calling ftruncate to shrink a
file will take its inode mutex and block all other I/O attempts.
During a blocking scale-down operation, Citron can safely
shrink its lock tree by removing all nodes except a subtree.

3.10 Handling Client Failures
To enable recovery, all clients must agree with a lease time
Tlease and that a range lock must be released within Tlease.
Detection. Citron relies on the cluster manager (CM) to de-
tect client failures. The CM notifies the lock server to destroy
the RDMA QPs that were connected with the failed clients.
Recovery. Citron recovers lazily. Alice detects a failure if
she spins at a place for longer than Tlease during lock acqui-
sition, including Lines 11, 18, and 36 in Algorithm 2. Also,
Alice suspects a failure if she fails too many times at Line 22.
Line 11. Alice detects a failure when TCnt and Occ are both
unchanged for Tlease. Shen then waits for up to (∆−1) ·Tlease,
where ∆ is the gap between node’s TCnt and her ticket’s TMax.
If TCnt and Occ remain unchanged, Alice sets node’s TCnt
field to her ticket’s TMax and clears node’s Occ flag to recover.
Line 18. Alice detects a failure when TCnt of an ancestor
of node is unchanged for Tlease. She aborts the current lock
request and tries to lock that ancestor instead, reducing the
problem to the situation of Line 11, which we have already
discussed above.

304 21st USENIX Conference on File and Storage Technologies USENIX Association

Codename Type Lock Management Scheme Description

MT I Maple tree [21] A modern data structure dedicated to efficiently managing disjoint ranges,
ported from Oracle Linux UEK.

IT I Interval tree [47] A representative implementation of interval tree ported from Lustre, in which
it is used to manage range locks upon file I/O requests.

LLC I
Lock-free linked list [36]

A range lock manager that chains lock entries in a lock-free linked list.

LLD II Same as above, but all the CPU atomic instructions are replaced with RDMA
one-sided atomic verbs to make the lock manager decentralized.

SS II Static segmentation [35] The whole range is divided into fixed-size segments, each associated with a
DSLR [79] instance, a state-of-the-art RDMA-based decentralized mutex.

Table 1: Baseline systems used in evaluation.

Line 36. Alice detects a failure when DCnt is unchanged for
H · Tlease, where H is node’s height in the lock tree. Since
H ≥ 1, Alice is sure that no clients are holding locks at node’s
descendants and can set node’s DCnt to its DMax to recover.
Line 22. Alice cannot distinguish between lock starvation
and client failures when she repeatedly fails to lock node
with masked-CAS. However, she can acquire a lock at node’s
parent and then check if node is zero. If not, Alice detects a
failure and zeroes node with an RDMA write to recover.

The recovery time is dominated by the user-defined lease
time Tlease. Aside from waiting for lease expiration, Alice
only needs one RDMA operation to perform the recovery.
In practice, Tlease is usually set to several milliseconds (e.g.,
10 ms in [79]); with larger ranges, Tlease can also be longer.

4 Evaluation
In this section, we use a number of benchmarks to evaluate
Citron, seeking to answer the following questions:

• How does Citron compare against existing lock managers?
(§4.2, §4.3)

• What are the performance effects of the fast path? (§4.4)
• How well does Citron scale up itself? (§4.5)
• How does splitting ranges reduce false conflicts? (§4.6)
• What is the lock abort rate of Citron? (§4.7)

4.1 Experiment Setup
Our testbed consists of 4 machines, one acting as the lock
server and the other as clients. Each machine is equipped with
two Intel® Xeon® Gold 5220 CPUs running at 2.20 GHz,
256 GB DDR4-2666 DRAM, and a Mellanox ConnectX-6
RNIC via PCIe 3.0 ×16 interface. All machines run Ubuntu
18.04 with Linux kernel version 4.15.0 and are connected by
a Mellanox QM8790 InfiniBand switch.
Lock tree configuration. Except in §4.5 (in which we need
to scale up the lock tree), the lock tree is always initialized
with N = 228. This is to simulate a large-scale scenario where
1 TB space is divided into 4 KB pages and managed by Citron.
As a result, the lock tree contains 5.6 million nodes and the
Citron instance takes up 42.7 MB of memory, which is only
about 0.004% of the total storage amount.

0

2

4

0

10

20

30

0

40

80

1 96 192

0

1

2

0

15

30

45

0

50

100

1 96 192

0

0.5

1.0

0

30

60

90

0

500

1000

1 96 192
Threads

Th
ro

ug
hp

ut
 (×

10
6 /s

)
50

%
 L

at
en

cy
 (μ

s)
99

%
 L

at
en

cy
 (μ

s)

L = 1 L = 16 L = 256

Citron
MT

IT
LLC

LLD
SS-Exact

SS-Over
SS-Under

Figure 6: Throughputs and latencies of Citron and baseline
systems with different range lock sizes.

Baseline systems. All baseline systems are shown in Table 1,
which can be classified into the following two types.

I. Server-side CPUs are fully responsible for acquiring and
releasing locks, and they accept clients’ requests using
eRPC [30], a state-of-the-art RDMA RPC engine.

II. Clients leverage one-sided RDMA to acquire and release
range locks and server-side CPUs are idle.

The number of threads. The server machine runs 18 RPC
server threads when evaluating baselines of type I. For clients,
we enable hyperthreading and run up to 64 worker threads in
each client machine, each thread on a separate logical core.
As a result, the maximum number of clients is 3×64 = 192.

4.2 Microbenchmarks
In this experiment, we set the range sizes to L = 1, L = 16, and
L = 256 respectively. For static segmentation (SS), we con-
sider three different situations in terms of the segment size: (1)

USENIX Association 21st USENIX Conference on File and Storage Technologies 305

L = 1 L = 16 L = 256

Th
ro

ug
hp

ut
 (×

10
6 /s

) 3 threads 63 threads 129 threads 192 threads
C
itr
on M

T IT
LL

C
LL

D
SS

-1
SS

-1
6

SS
-2

56

C
itr
on M

T IT
LL

C
LL

D
SS

-1
SS

-1
6

SS
-2

56

C
itr
on M

T IT
LL

C
LL

D
SS

-1
SS

-1
6

SS
-2

56

C
itr
on M

T IT
LL

C
LL

D
SS

-1
SS

-1
6

SS
-2

56

0

0.5

1.0

1.5

Figure 7: Throughputs by range size of Citron and baseline
systems under a mixed-size workload.

exactly the range size L (SS-Exact), (2) overestimated to 8L
(SS-Over), and (3) underestimated to L/8 (SS-Under). The
left borders of the requested ranges are subject to a Zipfian-0.9
distribution on [0,N −L]. Figure 6 shows the results.

In terms of median latency, in almost all cases, Citron per-
forms comparably to the best of the baselines, namely MT, LLC,
and SS-Exact. This matches our expectation because Citron
needs a similar number of RDMA roundtrips to these base-
lines to acquire a range lock. We focus on the lock manager’s
tail latencies below.

When L = 1, range locks are equivalent to mutexes. As ex-
pected, Citron underperforms SS-Exact. It delivers 44.6%
lower throughput (i.e., locks granted per second) and 1.83×
higher p99 latency on average. However, this gap is because
the access granularity is static and correctly known in ad-
vance. If this requirement is not met, the performance of SS
will drop dramatically: SS-Over and SS-Under deliver peak
throughputs of only 83.2% and 16.6% compared to that of
Citron, and they suffer from 3.77× and 4.68× higher p99
latencies, respectively on average. The results demonstrate
that the static segmentation mechanism is unfit for dynamic
workloads whose I/O granularities vary.

When L is 16 or 256, because of unaligned ranges, static
segmentation causes severe false lock conflicts and degrades
performance. Citron delivers 28.7% and 38.6% higher peak
throughputs and significantly lower tail latencies than SS.

Type I baseline systems that rely heavily on server-side
CPUs are all bottlenecked by CPUs under high contention.
Citron avoids such bottleneck and has 1.56× and 1.76× peak
throughputs than these baselines for L = 1 and L = 16. When
L = 256, Citron shows similar peak throughput to LLC but
in average 24.6% lower tail latencies. Under low contention,
due to the efficient eRPC engine and low CPU burdens, the
queueing latencies are lowered to a sub-microsecond level
and the baselines can show tail latency advantages to Citron.
Unfortunately, such advantages vanish quickly as the number
of clients increases.
LLC performs significantly better than LLD because their

lock management scheme, i.e., the lock-free linked list, is
CPU-friendly but RDMA-unfriendly. LLC performs pointer
chasing which has very limited overheads on the CPU. How-
ever, with RDMA, each step of pointer chasing takes one

I/O
 B

an
dw

id
th

 (G
B/

s)

0

2

4

4 16 36 64 100 144

99
%

 L
at

en
cy

 (μ
s)

101

102

103

4 16 36 64 100 144

Citron MT IT LLC LLD Mutex SS

Processes # Processes

Figure 8: Throughputs and latencies of Citron and baseline
systems under the BT-IO workload. Latency is log scale.

RDMA roundtrip, leading to high latencies and low perfor-
mance. This demonstrates the unfeasibility of simply porting
existing range lock managers to one-sided RDMA.

We also test a mixed workload where each of the range
sizes described above accounts for one-third of the client
threads. For SS, we test three granularities: 1, 16, and 256.
Figure 7 shows the results. Citron delivers higher through-
puts than baselines under high contention: it outperforms the
best baseline by 27.7%, 51.7%, and 55.9% with 63, 129, and
192 client threads, respectively. Also, Citron grants higher
throughput to small range locks without starving large ones.

In summary, Citron delivers the overall best performance
for different range sizes under high contention. However,
Citron can be suboptimal for mutex-only workloads.

4.3 Application Benchmarks
We build a distributed in-DRAM file system CitronFS to
evaluate Citron and baseline lock managers under realistic
workloads. CitronFS follows Octopus’s design [46] but stores
all data in DRAM. It implements cacheless file I/O that can be
protected by either per-file byte-range locks or inode mutexes.
The server machine serves file metadata, while the three client
machines stores file data.

4.3.1 BT-IO: a non-conflicting I/O workload
This experiment runs the Class D BT-IO [75] workload in
the NAS Parallel Benchmarks [55] with different process
counts. This application performs non-conflicting interleaved
writes and reads to a total of 135.8 GB of data in a single
file; different process counts lead to different I/O granularities
ranging from 2040 B to 16320 B. Figure 8 shows the results.

With Citron, the I/O bandwidth of CitronFS reaches a
maximum of 3.90 GB/s, which is 3.05× and 2.13× to those
with LLC and SS-Exact, the best CPU-based and one-sided
RDMA-based baselines, respectively. Citron outperforms
LLC and SS-Exact by 1.89× and 1.52× on average. Com-
pared with LLC and other CPU-based baselines, Citron deliv-
ers a 73.4% p99 latency reduction on average.

The underlying reason is that the range locks uniformly
span the whole range because BT-IO is a non-conflicting
workload. Therefore, CPU-based range lock managers need
to maintain larger data structures for more concurrent lock

306 21st USENIX Conference on File and Storage Technologies USENIX Association

Lock Scheme Throughput (kops/s) Reader 99% Latency (µs)
Citron 781.4 59.6
MT 220.6 2043.4
IT 503.1 118.7
LLC 847.5 430.9
LLD 144.8 442.0
SS-4KB 575.3 56.1
Mutex 173.8 295.2

Table 2: Throughputs and latencies of Citron and baseline
systems under the Filebench OLTP workload.

entries and perform memory (de)allocations more frequently,
aggravating the CPU bottleneck. Citron, SS-1, and LLD avoid
such bottlenecks by using only one-sided RDMA. Compared
with LLD, Citron requires much fewer network roundtrips
and has significantly lower latencies. Compared with SS-1,
Citron leverages RDMA masked-CAS, which can obviate
false lock conflicts and also minimize the number of locks to
acquire, resulting in higher performances.

4.3.2 Filebench OLTP: a conflicting I/O workload
This experiment runs the Filebench [68] OLTP workload
modified to run distributedly. This application runs reader
and writer threads that operate on a dataset of 10 data files
and a log file, all 10 MB sized. Each client runs 1 log file
writer, 10 data file writers, and 50 readers. In each client,
readers perform random 8 KB reads to data files, while writers
perform 100 random 8 KB random writes evenly to all data
files per 1000 reads and one 256 KB write to the log file per
3200 reads. We use 4 KB (i.e., page size) as the granularity
for static segmentation (SS). Table 2 shows the results.

Overall, CitronFS delivers the second highest I/O through-
put with Citron, 7.8% lower than that with LLC. However,
LLC shows 7.2× p99 latencies compared with Citron, which
demonstrates that Citron can avoid the CPU bottleneck by
eliminating the RDMA CQ queueing latencies.

Another baseline system, SS-4KB, shows similar latencies
to Citron for readers because they share similar numbers of
necessary RDMA roundtrips to acquire and release a lock.
However, Citron delivers 35.8% higher throughput for two
reasons. First, when using SS-4KB, CitronFS is bottlenecked
by the inefficient log writer that needs to acquire 64 mutexes to
perform a write. Second, Citron is more friendly to the CPU
cache because it reduces memory footprint by compressing
lock entries into bitmaps, which brings higher performance
thanks to Intel’s Data Direct I/O technology [24].

4.4 Effects of the Fast Path
We measure the performance of Citron with and without the
fast path optimization (§3.8) to understand its benefits. We
use the same fixed-size microbenchmark as in §4.2 and set the
range sizes to L = 16 and L = 256, respectively, to evaluate the
fast path for both small and large ranges. The left borders of
the requested ranges are subject to a Zipfian-α distribution on

Skewness Factor (α)

Thpt. w/o Fast Path
Thpt. w/ Fast Path

Lat. w/o Fast Path
Lat. w/ Fast Path

L = 16

0

1

2

12

14

16

18

L = 256

0

1

2

10

20

30

Th
ro

ug
hp

ut
 (×

10
6 /s

)

M
ed

ia
n

La
te

nc
y

(μ
s)

0.00 0.10 0.30 0.50 0.70 0.90 0.99

Figure 9: Performance effects of the fast path optimization.

[0,N −L], for which we adjust the skewness factor α from 0
(i.e., uniform) to 0.99 (i.e., highly skewed). We fix the number
of threads to 96. Figure 9 shows the results.

For L = 16, the fast path does not significantly affect
Citron’s throughputs because it simply batches the RDMA
verbs in Steps 2(c) and 2(d) in the lock acquisition workflow.
However, by batching RDMA verbs together, the fast path
saves a network roundtrip from the critical path, reducing the
median latency by 2.4 µs (21.5%) on average.

For L = 256, the fast path contributes to higher throughput
and lower latency. The fast path effectively eliminates the wait
time in Step 2(d), which reduces lock acquisition latency and
increases the throughput. On average, enabling the fast path
improves the throughput by 34.3%. When α ≤ 0.70, the fast
path reduces the median latency by 11.5 µs (39.4%). However,
when most lock requests conflict with each other (α > 0.70),
the fast path lengthens the critical path and wastes RDMA
IOPS, resulting in increased median latency (4.8 µs, 17.4%
higher than that without the fast path when α = 0.99). Note
that non-conflicting lock requests still benefit from the fast
path, which brings higher throughput.

Also, we observe that the fast path shows no significant
impact on the p99 latencies. The reason is straightforward:
the tail latencies stem from lock requests that cannot benefit
from the fast path. We omit the results due to limited space.

4.5 Performance with Scale-ups
We use a trace collected from the hard-write workload of
the IO500 benchmark [25] to evaluate the scale-up process
of Citron. In this workload, 64 I/O threads repeatedly write
47008 B data to a large shared data file in parallel. Offsets of
the writes continue to increase, resulting in a constantly grow-
ing file size. The whole trace consists of 12.8 million writes.
We only acquire and release range locks without performing
writes to avoid shadowing the impacts of scale-up events.

We initialize Citron with N = 210 (i.e., 4 MB size, has
scale-ups) and compare the results with N = 228 (i.e., no need
for scale-ups). When N = 210, each client machine runs a

USENIX Association 21st USENIX Conference on File and Storage Technologies 307

Time (s)

Th
ro

ug
hp

ut
 (×

10
6 /s

)

1

2

0.1 0.2 0.3 0.4

No Scale-ups Has Scale-ups Scale-up Occurs

0

1

2

3

0 1 2 3 4 5

Figure 10: Lock/unlock-only throughput of Citron with and
without scale-ups under the IO500 hard-write workload.

background thread that polls the maximizer once per 10 ms
and scales up the lock tree whenever necessary. The server
runs one eRPC thread to serve lock tree metadata queries and
memory allocation requests. Figure 10 shows the results.

The scale-up process takes only tens of microseconds to
complete and hardly blocks other lock requests. Hence, upon
a scale-up, there will be an immediate increase in the through-
put, as shown in Figure 10. In the first 300 ms of the experi-
ment, the whole lock tree is still small despite being scaled
up. The write offsets quickly grow beyond its size, causing
the clients to contend for the sole spillover mutex and thus a
throughput decline of up to 92.6%. After that, however, the
throughput decline before the 4th scale-up is only 57.5%. The
reason is that the lock tree is already large enough, and client
threads are not perfectly synchronized; therefore, only a part
of the threads contend for the spillover mutex. The throughput
keeps almost stable afterward for similar reasons.

It is worth noting that the stable throughput with scale-ups
is slightly higher than that without. Specifically, before and
after the 6th scale-up, the throughput advantages are 9.7%
and 7.4%, respectively. The reason is that the lock tree only
grows larger when necessary, resulting in a smaller tree height,
reducing the number of RDMA verbs per lock request, thus
bringing higher performance.

4.6 False Conflict Rate
We measure the false conflict rate of Citron to understand the
effects of our range splitting mechanism in Step 1 of the lock
acquisition path (§3.5.1). Two lock requests constitute a false
conflict if they do not overlap but lock conflicting nodes. We
measure the false conflict rate with different L (i.e., requested
range lock size) and different k (i.e., the maximum number of
nodes to lock per request). The left borders of the requested
ranges are independently subject to a uniform distribution on
[0,N −L]. We repeatedly issue two concurrent lock requests
and detect whether they conflict with each other logically and
actually. The false conflict rate is calculated as the number
of false conflicts divided by the number of all lock requests.
Figure 11 shows the results.

For all L ≤ 64, k = 2 is sufficient to split the requested range

into leaf nodes on the lock tree, eliminating false conflicts
because Citron employs RDMA masked-CAS. As a result,
Citron can achieve its highest throughput for prevalent small
range lock requests in real-world workloads.

Increasing k beyond k = 2 brings minor benefits. Compared
with k = 1, setting k = 2 reduces the false conflict rate by two
orders of magnitude (to relatively 3.6% on average), whose
absolute value is around 10−4, virtually negligible. To further
reduce this rate for an order of magnitude, we need k = 5,
which results in 3 more nodes to lock and more than doubled
lock acquisition latencies. Therefore, we trade that marginal
throughput improvement for lower latency and adopt k = 2 in
our implementation of Citron.

4.7 Lock Abort Rate
We measure Citron’s lock abort rate to understand the efficacy
of the synchronization mechanism in Step 2(d) of the lock
acquisition path (§3.5.5). Low abort rates indicate the strong
practicability of Citron. Aside from hardware issues such as
the RNIC capabilities, the abort rate can be affected by the
following three configurable factors:

1. # Threads: the thread count (i.e., contention severity),
2. m: the meet-in-the-middle distance in Step 2(d), and
3. Twait: the time to wait in Step 2(d).

Therefore, we conduct three experiments, in each of which
we fix two of these parameters, adjust the remaining one, and
measure the lock abort rate. We retry for each aborted lock
request until it succeeds, so the abort rate also reflects the
amount of the retry traffic. We set the fixed parameters to
Threads = 96, m = 4, and Twait = 15 µs, respectively, as is
described in §3. We use the same mixed-size microbenchmark
as in §4.2. The abort rate is calculated as the number of lock
aborts divided by the number of all lock requests. Figure 12
shows the results.
Threads. As the number of threads increases from 3 to
192, the RNIC suffers from an increased IOPS pressure and
therefore delivers higher latencies, causing the lock abort
rate to increase from 10−5 level to 10−2 level. However, the
overall throughput (i.e., successful locks) does not drop with
the increase in the abort rate after reaching the maximum. This
shows that Citron’s lock protocol causes acceptable numbers
of lock aborts and retries under both low and high contention.
m. When m is small, clients need to notify many ancestors
of node in Step 2(d) with RDMA masked-FAA, resulting in
low throughput and a high possibility of lock aborting. When
m is large, the burden to notify node’s ancestors is low, but
the networking cost to detect conflicts at node’s descendants
suffers from exponential growth. We adopt m = 4 to balance
throughput, abort rate, and network traffic.
Twait. Increasing the wait time in Step 2(d) reduces the chance
that lower clients exceed the time limit but makes higher
clients wait longer and degrades throughput. We adopt Twait =

308 21st USENIX Conference on File and Storage Technologies USENIX Association

2 3 4 5k = 1

Fa
ls

e
C

on
fli

ct
 R

at
e

10−6

10−4

10−2

Range Lock Size (L)
64 1024 2048 3072 4096

Figure 11: False conflict rate under
different k settings. Log scale.

Th
ro

ug
hp

ut
 (×

10
6 /s

)

Lo
ck

 A
bo

rt
R

at
e

Threads
10−6

10−3

1

1 48 96 144 192
m

1 2 3 4 5 6 7 8
Twait (μs)

0.4

0.8

1.2

5 10 15 20 25 30

Abort Rate Throughput

192 1

Figure 12: Lock abort rate and throughput of Citron under different workloads and
configurations. Lock abort rate is log scale.

15 µs to balance between throughput and abort rate. Further
increasing Twait contributes little to reducing the abort rate
since there are always occasional long-lasting RDMA verbs
due to unpredictable hardware-level issues of the RNIC.

To sum up, with our configuration, the lock abort rate of
Citron is acceptably low and has minimal negative effects on
the overall performance.

5 Related Work

Lock management. Locks have been a major research topic
ever since the outset of concurrent programming. A wealth
of previous studies aim for efficient locking within a single
machine [7, 8, 14, 15, 33, 34, 45, 52].

With the advent of RDMA, studies above have become less
valuable in distributed systems as they fall short in alleviating
the CPU bottleneck. Such a situation led to the birth of decen-
tralized [10, 54, 72, 79] and hardware-offloaded [28, 80] lock
managers. Among them, DrTM [72] uses RDMA CAS to
grant writer locks and reader leases. DSLR [79] uses RDMA
FAA to implement the starvation-free Lamport’s bakery al-
gorithm [38]. NetLock [80] offloads lock management to a
programmable switch, achieving both high performance and
the benefits of centralized lock management.

While most existing studies focus on mutexes, Citron aims
at range locks and supports locking disjoint parts of the same
shared storage for finer-grained concurrency.

Range locks. Range locks are widely adopted in key-value
stores [18,61], file systems [3,9,35,47], and memory manage-
ment systems [21, 36]. These systems usually use carefully
designed dynamic tree data structures to manage range locks,
including the range tree in RocksDB [18], the interval tree in
Lustre [47], the red-black tree in BeeGFS [3], and the maple
tree in Oracle Linux UEK [21]. Kogan et al. also propose
using a lock-free linked list to maintain range locks [36] since
the number of cores is limited and the list cannot be too long.

Citron targets distributed range lock management where
far more clients exist than within a single machine. Citron
avoids the CPU bottleneck by using only one-sided RDMA
on the critical paths of range lock operations.

Lock conflict resolution. Allowing more types of commu-
nication aside from direct one-sided RDMA between the

clients and the server brings different lock conflict resolution
means. For example, Sherman [70] proposes a hierarchical
lock scheme that maintains a local lock table within each
client machine to avoid unnecessary remote retries and enable
lock handing-over, which is also applicable to Citron. Thakur
et al. proposes maintaining a lock table entry in the lock server
for each client, thus enabling a lock holder to read the whole
lock table and wake up conflicting clients when it releases
the lock [69]. Other prior research [12, 63, 67] also discusses
work delegation among clients to eliminate conflicts.
One-sided RDMA systems. In addition to decentralized lock
management, existing studies employ one-sided RDMA for
various purposes, including file I/O [2, 46, 77, 78], transaction
processing [16, 64, 71–73], and memory disaggregation [1, 6,
19,40,50]. A recent study, RedN [66], even proves the Turing-
completeness of one-sided RDMA and shows its efficacy in
RNIC-offloading multiple functionalities.

Citron shares the same goals with most one-sided RDMA
systems: eliminating server-side CPU bottlenecks and im-
proving performance. However, Citron is the first to develop
an efficient distributed range lock manager with one-sided
RDMA and to outperform the state-of-the-art.

6 Conclusion
We present Citron, a distributed range lock manager that
relies only on one-sided RDMA to acquire and release locks.
Citron employs a lock protocol that operates a segment tree
and efficiently coordinates conflicting range lock requests.
Citron together offers a fast path optimization and supports
dynamic scaling as the size of its managed range changes.
Our evaluation shows that Citron significantly outperforms
existing distributed range lock managers.

Acknowledgment
We sincerely thank our shepherd Youjip Won for helping us
improve the paper. We are also grateful to the reviewers of this
paper for their helpful comments and feedback. This work
is supported by the National Key R&D Program of China
(Grant No. 2021YFB0300500), the National Natural Science
Foundation of China (Grant No. 61832011 & 62022051), and
Huawei (Grant No. YBN2019125112).

USENIX Association 21st USENIX Conference on File and Storage Technologies 309

References
[1] Emmanuel Amaro, Christopher Branner-Augmon, Zhi-

hong Luo, Amy Ousterhout, Marcos K. Aguilera, Auro-
jit Panda, Sylvia Ratnasamy, and Scott Shenker. Can far
memory improve job throughput? In Proceedings of the
Fifteenth European Conference on Computer Systems
2020, pages 1–16, Heraklion Greece, April 2020. ACM.

[2] Thomas E Anderson, Simon Peter, Marco Canini,
Jongyul Kim, Dejan Kostic, Youngjin Kwon, Waleed
Reda, Henry N Schuh, and Emmett Witchel. Assise:
Performance and Availability via Client-local NVM in
a Distributed File System. In Proceedings of the 14th
USENIX Symposium on Operating Systems Design and
Implementation (OSDI ’20), page 18. USENIX, Novem-
ber 2020.

[3] BeeGFS - The Leading Parallel Cluster File System.
https://www.beegfs.io/c/.

[4] John Louis Bentley and Derick Wood. An Optimal
Worst Case Algorithm for Reporting Intersections of
Rectangles. IEEE Transactions on Computers, C-
29(7):571–577, July 1980.

[5] Carsten Binnig, Andrew Crotty, Alex Galakatos, Tim
Kraska, and Erfan Zamanian. The end of slow networks:
It’s time for a redesign. Proceedings of the VLDB En-
dowment, 9(7):528–539, March 2016.

[6] Qingchao Cai, Wentian Guo, Hao Zhang, Divyakant
Agrawal, Gang Chen, Beng Chin Ooi, Kian-Lee Tan,
Yong Meng Teo, and Sheng Wang. Efficient distributed
memory management with RDMA and caching. Pro-
ceedings of the VLDB Endowment, 11(11):1604–1617,
July 2018.

[7] Milind Chabbi, Michael Fagan, and John Mellor-
Crummey. High performance locks for multi-level
NUMA systems. In Proceedings of the 20th ACM SIG-
PLAN Symposium on Principles and Practice of Parallel
Programming (PPoPP ’15), pages 215–226, San Fran-
cisco CA USA, January 2015. ACM.

[8] Milind Chabbi and John Mellor-Crummey. Contention-
conscious, locality-preserving locks. In Proceedings of
the 21st ACM SIGPLAN Symposium on Principles and
Practice of Parallel Programming (PPoPP ’16), pages
1–14, Barcelona Spain, February 2016. ACM.

[9] Qi Chen, Shaonan Ma, Kang Chen, Teng Ma, Xin Liu,
Dexun Chen, Yongwei Wu, and Zuoning Chen. Se-
qDLM: A Sequencer-based Distributed Lock Manager
for Efficient Shared File Access In a Parallel File Sys-
tem. In Proceedings of the International Conference for
High Performance Computing, Networking, Storage and

Analysis (SC ’22), page 11, Dallas TX USA, November
2022. IEEE/ACM.

[10] Yeounoh Chung and Erfan Zamanian. Using RDMA for
Lock Management. arXiv:1507.03274 [cs], July 2015.

[11] Giuseppe Congiu, Sai Narasimhamurthy, Tim Süß, and
André Brinkmann. Improving Collective I/O Perfor-
mance Using Non-volatile Memory Devices. In 2016
IEEE International Conference on Cluster Computing
(CLUSTER ’16), pages 120–129, September 2016.

[12] Tudor David, Rachid Guerraoui, and Vasileios Trigo-
nakis. Everything you always wanted to know about
synchronization but were afraid to ask. In Proceedings
of the Twenty-Fourth ACM Symposium on Operating
Systems Principles, pages 33–48, Farminton Pennsylva-
nia, November 2013. ACM.

[13] A. Devulapalli and P. Wyckoff. Distributed Queue-based
Locking using Advanced Network Features. In 2005
International Conference on Parallel Processing (ICPP
’05), pages 408–415, June 2005.

[14] Dave Dice and Alex Kogan. Compact NUMA-aware
Locks. In Proceedings of the Fourteenth EuroSys Con-
ference 2019, pages 1–15, Dresden Germany, March
2019. ACM.

[15] David Dice, Virendra J Marathe, and Nir Shavit. Lock
cohorting: A general technique for designing NUMA
locks. In Proceedings of the 17th ACM SIGPLAN Sym-
posium on Principles and Practice of Parallel Program-
ming (PPoPP ’12), page 10, February 2012.

[16] Aleksandar Dragojević, Dushyanth Narayanan, Orion
Hodson, and Miguel Castro. FaRM: Fast Remote Mem-
ory. In 11th USENIX Symposium on Networked Systems
Design and Implementation (NSDI ’14), Seattle WA
USA, April 2014. USENIX.

[17] etcd Authors. Etcd. https://etcd.io/, 2022.

[18] Facebook Open Source. RocksDB | A persistent key-
value store. http://rocksdb.org/.

[19] Juncheng Gu, Youngmoon Lee, Yiwen Zhang, Mosharaf
Chowdhury, and Kang G Shin. Efficient Memory Disag-
gregation with InfiniSwap. In Proceedings of the 14th
USENIX Symposium on Networked Systems Design and
Implementation (NSDI ’17), page 21, March 2017.

[20] A.B. Hastings. Distributed lock management in a
transaction processing environment. In Proceedings
of the Ninth Symposium on Reliable Distributed Systems
(SRDS ’90), pages 22–31, October 1990.

[21] Liam Howlett. Introducing the Maple Tree. https:
//lwn.net/Articles/884840/, February 2022.

310 21st USENIX Conference on File and Storage Technologies USENIX Association

https://www.beegfs.io/c/
https://etcd.io/
http://rocksdb.org/
https://lwn.net/Articles/884840/
https://lwn.net/Articles/884840/

[22] Jiamin Huang, Barzan Mozafari, Grant Schoenebeck,
and Thomas F. Wenisch. A Top-Down Approach to
Achieving Performance Predictability in Database Sys-
tems. In Proceedings of the 2017 ACM International
Conference on Management of Data, pages 745–758,
Chicago Illinois USA, May 2017. ACM.

[23] Patrick Hunt, Mahadev Konar, Flavio P Junqueira, and
Benjamin Reed. ZooKeeper: Wait-free coordination
for Internet-scale systems. In Proceedings of the 2010
USENIX Annual Technical Conference (USENIX ATC
’10), page 14, Boston MA USA, June 2010. USENIX.

[24] Intel Corportation. Intel® Data Direct I/O Technology.
https://www.intel.com/content/www/us/en/
io/data-direct-i-o-technology.html, 2012.

[25] IO500 Foundation. IO500. https://io500.org/pa
ges/running.

[26] N. S. Islam, M. W. Rahman, J. Jose, R. Rajachan-
drasekar, H. Wang, H. Subramoni, C. Murthy, and D. K.
Panda. High performance RDMA-based design of
HDFS over InfiniBand. In Proceedings of the Inter-
national Conference on High Performance Computing,
Networking, Storage and Analysis (SC ’12), pages 1–12,
November 2012.

[27] Tianyang Jiang, Guangyan Zhang, Zhiyue Li, and
Weimin Zheng. Aurogon: Taming Aborts in All Phases
for Distributed In-Memory Transactions. In Proceed-
ings of the 20th USENIX Conference on File and Storage
Technologies (FAST ’22), pages 217–232, Santa Clara
CA USA, February 2022. USENIX.

[28] Xin Jin, Xiaozhou Li, Haoyu Zhang, Nate Foster,
Jeongkeun Lee, Robert Soule, Changhoon Kim, and Ion
Stoica. NetChain: Scale-Free Sub-RTT Coordination.
In Proceedings of the 15th USENIX Symposium on Net-
worked Systems Design and Implementation (NSDI ’18),
page 16, Renton WA USA, April 2018. USENIX.

[29] Horatiu Jula, Daniel Tralamazza, Cristian Zamfir, and
George Candea. Deadlock Immunity: Enabling Systems
To Defend Against Deadlocks. In Proceedings of the
8th USENIX Symposium on Operating Systems Design
and Implementation (OSDI ’08), page 14, San Diego,
California, USA, December 2008. USENIX.

[30] Anuj Kalia and David Andersen. Datacenter RPCs can
be General and Fast. In Proceedings of the 16th USENIX
Symposium on Networked Systems Design and Imple-
mentation (NSDI ’19), page 17, Boston MA USA, Febru-
ary 2019. USENIX.

[31] Anuj Kalia, Michael Kaminsky, and David G. Andersen.
FaSST: Fast, Scalable and Simple Distributed Transac-
tions with Two-Sided (RDMA) Datagram RPCs. In

Proceedings of the 12th USENIX Symposium on Oper-
ating Systems Design and Implementation (OSDI ’16),
pages 185–201, Savannah GA USA, November 2016.
USENIX.

[32] Qiao Kang, Scot Breitenfeld, Kaiyuan Hou, Wei-keng
Liao, Robert Ross, and Suren Byna. Optimizing Per-
formance of Parallel I/O Accesses to Non-contiguous
Blocks in Multiple Array Variables. In 2021 IEEE
International Conference on Big Data, pages 98–108,
December 2021.

[33] Sanidhya Kashyap, Irina Calciu, Xiaohe Cheng, Chang-
woo Min, and Taesoo Kim. Scalable and practical lock-
ing with shuffling. In Proceedings of the 27th ACM
Symposium on Operating Systems Principles (SOSP
’19), pages 586–599, Huntsville Ontario Canada, Octo-
ber 2019. ACM.

[34] Sanidhya Kashyap, Changwoo Min, and Taesoo Kim.
Scalable NUMA-aware Blocking Synchronization Prim-
itives. In Proceedings of the 2017 USENIX Annual
Technical Conference (USENIX ATC ’17), page 15, July
2017.

[35] June-Hyung Kim, Jangwoong Kim, Hyeongu Kang,
Chang-Gyu Lee, Sungyong Park, and Youngjae Kim.
pNOVA: Optimizing Shared File I/O Operations of
NVM File System on Manycore Servers. In Proceed-
ings of the 10th ACM SIGOPS Asia-Pacific Workshop
on Systems (APSys ’19), pages 1–7, Hangzhou, China,
2019. ACM Press.

[36] Alex Kogan, Dave Dice, and Shady Issa. Scalable range
locks for scalable address spaces and beyond. In Pro-
ceedings of the Fifteenth European Conference on Com-
puter Systems (EuroSys ’20), pages 1–15, Heraklion
Greece, April 2020. ACM.

[37] Stavros G. Kolliopoulos and George Steiner. Partially-
ordered knapsack and applications to scheduling. In
Rolf Möhring and Rajeev Raman, editors, Algorithms
— ESA 2002, pages 612–624, Berlin, Heidelberg, 2002.
Springer Berlin Heidelberg.

[38] Leslie Lamport. A new solution of Dijkstra’s concurrent
programming problem. Communications of the ACM,
17(8):453–455, August 1974.

[39] Chang-Gyu Lee, Hyunki Byun, Sunghyun Noh,
Hyeongu Kang, and Youngjae Kim. Write optimiza-
tion of log-structured flash file system for parallel I/O
on manycore servers. In Proceedings of the 12th ACM
International Conference on Systems and Storage, pages
21–32, Haifa Israel, May 2019. ACM.

USENIX Association 21st USENIX Conference on File and Storage Technologies 311

https://www.intel.com/content/www/us/en/io/data-direct-i-o-technology.html
https://www.intel.com/content/www/us/en/io/data-direct-i-o-technology.html
https://io500.org/pages/running
https://io500.org/pages/running

[40] Youngmoon Lee, Hasan Al Maruf, Mosharaf Chowd-
hury, Asaf Cidon, and Kang G Shin. Hydra: Resilient
and Highly Available Remote Memory. In Proceed-
ings of the 20th USENIX Conference on File and Stor-
age Technologies (FAST ’22), page 19, Santa Clara, CA,
February 2022.

[41] Feng Li, Sudipto Das, Manoj Syamala, and Vivek R.
Narasayya. Accelerating Relational Databases by Lever-
aging Remote Memory and RDMA. In Proceedings of
the 2016 International Conference on Management of
Data, pages 355–370, San Francisco California USA,
June 2016. ACM.

[42] Siyang Li, Youyou Lu, Jiwu Shu, Yang Hu, and Tao
Li. LocoFS: A loosely-coupled metadata service for
distributed file systems. In Proceedings of the Inter-
national Conference for High Performance Computing,
Networking, Storage and Analysis, pages 1–12, Denver
Colorado, November 2017. ACM.

[43] Yuliang Li, Gautam Kumar, Hema Hariharan, Hassan
Wassel, Peter Hochschild, Dave Platt, Simon Sabato,
Minlan Yu, Nandita Dukkipati, Prashant Chandra, and
Amin Vahdat. Sundial: Fault-tolerant Clock Synchro-
nization for Datacenters. In Proceedings of the 14th
USENIX Symposium on Operating Systems Design and
Implementation (OSDI ’20), page 17. USENIX, Novem-
ber 2020.

[44] Zhen Liang, Johann Lombardi, Mohamad Chaarawi, and
Michael Hennecke. DAOS: A Scale-Out High Perfor-
mance Storage Stack for Storage Class Memory. In
Dhabaleswar K. Panda, editor, Supercomputing Fron-
tiers, Lecture Notes in Computer Science, pages 40–54,
Cham, 2020. Springer International Publishing.

[45] Ran Liu, Heng Zhang, and Haibo Chen. Scalable Read-
mostly Synchronization Using Passive Reader-Writer
Locks. In Proceedings of the 2014 USENIX Annual
Technical Conference (USENIX ATC ’14), page 13, June
2014.

[46] Youyou Lu, Jiwu Shu, Tao Li, and Youmin Chen. Octo-
pus: An RDMA-enabled Distributed Persistent Memory
File System. In Proceedings of the 2017 USENIX An-
nual Technical Conference (USENIX ATC ’17), page 15,
Santa Clara, CA, July 2017. USENIX.

[47] Lustre® Filesystem. https://www.lustre.org/.

[48] Wenhao Lv, Youyou Lu, Yiming Zhang, Peile Duan,
and Jiwu Shu. INFINIFS: Efficient metadata service for
Large-Scale distributed filesystems. In Proceedings of
the 20th USENIX Conference on File and Storage Tech-
nologies (FAST ’22), Santa Clara CA USA, February
2022. USENIX.

[49] Xiaosong Ma, M. Winslett, Jonghyun Lee, and Shengke
Yu. Improving MPI-IO output performance with ac-
tive buffering plus threads. In Proceedings of the 17th
International Parallel and Distributed Processing Sym-
posium (IPDPS ’03), April 2003.

[50] Hasan Al Maruf and Mosharaf Chowdhury. Effectively
Prefetching Remote Memory with Leap. In Proceed-
ings of the 2020 USENIX Annual Technical Conference
(USENIX ATC ’20), page 16. USENIX, July 2020.

[51] Mellanox Technologies. Mellanox Connect-IB®
Firmware Release Notes. https://network.nvidia
.com/pdf/firmware/ConnectIB-FW-10_16_120
0-release_notes.pdf, 2017.

[52] John M. Mellor-Crummey and Michael L. Scott. Algo-
rithms for scalable synchronization on shared-memory
multiprocessors. ACM Transactions on Computer Sys-
tems, 9(1):21–65, February 1991.

[53] Ali Najafi and Michael Wei. Graham: Synchroniz-
ing Clocks by Leveraging Local Clock Properties. In
Proceedings of the 19th USENIX Symposium on Net-
worked Systems Design and Implementation (NSDI ’22),
page 15, Renton WA USA, April 2022. USENIX.

[54] S. Narravula, A. Marnidala, A. Vishnu, K. Vaidyanathan,
and D. K. Panda. High Performance Distributed Lock
Management Services using Network-based Remote
Atomic Operations. In Seventh IEEE International Sym-
posium on Cluster Computing and the Grid (CCGrid

’07), pages 583–590, May 2007.

[55] NASA Advanced Supercomputing (NAS) Division.
NAS Parallel Benchmarks. https://www.nas.na
sa.gov/software/npb.html.

[56] NVIDIA Corporation. Advanced Transport. https:
//docs.mellanox.com/display/MLNXOFEDv531
001/Advanced+Transport.

[57] NVIDIA Corporation. NVIDIA ConnectX-5 InfiniBand
Adapter Cards Datasheet. https://nvdam.widen.ne
t/s/pkxbnmbgkh/networking-infiniband-dat
asheet-connectx-5-2069273.

[58] NVIDIA Corporation. NVIDIA ConnectX-6 Datasheet.
https://nvdam.widen.net/s/5j7xtzqfxd/con
nectx-6-infiniband-datasheet-1987500-r2.

[59] NVIDIA Corporation. NVIDIA ConnectX-7 Datasheet.
https://nvdam.widen.net/s/m6pt7j5rlb/net
working-datasheet-infiniband-connectx-7-d
s---1779005.

312 21st USENIX Conference on File and Storage Technologies USENIX Association

https://www.lustre.org/
https://network.nvidia.com/pdf/firmware/ConnectIB-FW-10_16_1200-release_notes.pdf
https://network.nvidia.com/pdf/firmware/ConnectIB-FW-10_16_1200-release_notes.pdf
https://network.nvidia.com/pdf/firmware/ConnectIB-FW-10_16_1200-release_notes.pdf
https://www.nas.nasa.gov/software/npb.html
https://www.nas.nasa.gov/software/npb.html
https://docs.mellanox.com/display/MLNXOFEDv531001/Advanced+Transport
https://docs.mellanox.com/display/MLNXOFEDv531001/Advanced+Transport
https://docs.mellanox.com/display/MLNXOFEDv531001/Advanced+Transport
https://nvdam.widen.net/s/pkxbnmbgkh/networking-infiniband-datasheet-connectx-5-2069273
https://nvdam.widen.net/s/pkxbnmbgkh/networking-infiniband-datasheet-connectx-5-2069273
https://nvdam.widen.net/s/pkxbnmbgkh/networking-infiniband-datasheet-connectx-5-2069273
https://nvdam.widen.net/s/5j7xtzqfxd/connectx-6-infiniband-datasheet-1987500-r2
https://nvdam.widen.net/s/5j7xtzqfxd/connectx-6-infiniband-datasheet-1987500-r2
https://nvdam.widen.net/s/m6pt7j5rlb/networking-datasheet-infiniband-connectx-7-ds---1779005
https://nvdam.widen.net/s/m6pt7j5rlb/networking-datasheet-infiniband-connectx-7-ds---1779005
https://nvdam.widen.net/s/m6pt7j5rlb/networking-datasheet-infiniband-connectx-7-ds---1779005

[60] Satadru Pan, Theano Stavrinos, Yunqiao Zhang, Atul
Sikaria, Pavel Zakharov, and Abhinav Sharma. Face-
book’s Tectonic Filesystem: Efficiency from Exascale.
In Proceedings of the 19th USENIX Conference on
File and Storage Technologies (FAST ’21), page 16.
USENIX, February 2021.

[61] Percona LLC. PerconaFT. https://github.com/p
ercona/PerconaFT, March 2022.

[62] Scott Peterson. Adaptive Distributed NVMe-oF Names-
paces. https://www.snia.org/educational-lib
rary/adaptive-distributed-nvme-namespace
s-2020, September 2020.

[63] Darko Petrović, Thomas Ropars, and André Schiper.
On the Performance of Delegation over Cache-Coherent
Shared Memory. In Proceedings of the 2015 Interna-
tional Conference on Distributed Computing and Net-
working, pages 1–10, Goa India, January 2015. ACM.

[64] Marius Poke and Torsten Hoefler. DARE: High-
Performance State Machine Replication on RDMA Net-
works. In Proceedings of the 24th International Sym-
posium on High-Performance Parallel and Distributed
Computing, pages 107–118, Portland Oregon USA, June
2015. ACM.

[65] Raghu Ramakrishnan, Baskar Sridharan, John R.
Douceur, Pavan Kasturi, Balaji Krishnamachari-
Sampath, Karthick Krishnamoorthy, Peng Li, Mitica
Manu, Spiro Michaylov, Rogério Ramos, Neil Sharman,
Zee Xu, Youssef Barakat, Chris Douglas, Richard
Draves, Shrikant S. Naidu, Shankar Shastry, Atul
Sikaria, Simon Sun, and Ramarathnam Venkatesan.
Azure Data Lake Store: A Hyperscale Distributed File
Service for Big Data Analytics. In Proceedings of the
2017 ACM International Conference on Management of
Data, pages 51–63, Chicago Illinois USA, May 2017.
ACM.

[66] Waleed Reda, Marco Canini, Dejan Kostic, and Simon
Peter. RDMA is Turing complete, we just did not know it
yet! In 19th USENIX Symposium on Networked Systems
Design and Implementation (NSDI ’22), page 15, Renton
WA USA, April 2022. USENIX.

[67] Sepideh Roghanchi, Jakob Eriksson, and Nilanjana Basu.
Ffwd: Delegation is (much) faster than you think. In Pro-
ceedings of the 26th Symposium on Operating Systems
Principles, pages 342–358, Shanghai China, October
2017. ACM.

[68] Vasily Tarasov, Erez Zadok, and Spencer Shepler.
Filebench: A Flexible Framework For File System
Benchmarking. USENIX ;login:, 41(1):6–12, 2016.

[69] Rajeev Thakur, Robert Ross, and Robert Latham. Imple-
menting Byte-Range Locks Using MPI One-Sided Com-
munication. In David Hutchison, Takeo Kanade, Josef
Kittler, Jon M. Kleinberg, Friedemann Mattern, John C.
Mitchell, Moni Naor, Oscar Nierstrasz, C. Pandu Ran-
gan, Bernhard Steffen, Madhu Sudan, Demetri Terzopou-
los, Dough Tygar, Moshe Y. Vardi, Gerhard Weikum,
Beniamino Di Martino, Dieter Kranzlmüller, and Jack
Dongarra, editors, Recent Advances in Parallel Virtual
Machine and Message Passing Interface, volume 3666,
pages 119–128. Springer Berlin Heidelberg, Berlin, Hei-
delberg, 2005.

[70] Qing Wang, Youyou Lu, and Jiwu Shu. Sherman: A
Write-Optimized Distributed B+Tree Index on Disaggre-
gated Memory. In Proceedings of the 2022 International
Conference on Management of Data, pages 1033–1048,
Philadelphia PA USA, June 2022. ACM.

[71] Xingda Wei, Zhiyuan Dong, Rong Chen, and Haibo
Chen. Deconstructing RDMA-enabled Distributed
Transactions: Hybrid is Better! In Proceedings of the
13th USENIX Symposium on Operating Systems Design
and Implementation (OSDI ’18), page 20, Carlsbad CA
USA, October 2018. USENIX.

[72] Xingda Wei, Jiaxin Shi, Yanzhe Chen, Rong Chen, and
Haibo Chen. Fast in-memory transaction processing
using RDMA and HTM. In Proceedings of the 25th
Symposium on Operating Systems Principles (SOSP
’15), pages 87–104, Monterey California, October 2015.
ACM.

[73] Xingda Wei, Xiating Xie, Rong Chen, Haibo Chen, and
Binyu Zang. Characterizing and Optimizing Remote
Persistent Memory with RDMA and NVM. In Proceed-
ings of the 2021 USENIX Annual Technical Conference,
page 16. USENIX, July 2021.

[74] John William Joseph Williams. Algorithm 232 - Heap-
sort. Communications of the ACM, 7(6):347–348, June
1964.

[75] Parkson Wong and Rob F. Van der Wijngaart. NAS
Parallel Benchmarks I/O Version 2.4, 2003.

[76] Cong Yan and Alvin Cheung. Leveraging lock con-
tention to improve OLTP application performance. Pro-
ceedings of the VLDB Endowment, 9(5):444–455, Jan-
uary 2016.

[77] Jian Yang, Joseph Izraelevitz, and Steven Swanson.
Orion: A Distributed File System for Non-Volatile Main
Memories and RDMA-Capable Networks. In Proceed-
ings of the 17th USENIX Conference on File and Stor-
age Technologies (FAST ’19), page 15, Boston MA USA,
February 2019. USENIX.

USENIX Association 21st USENIX Conference on File and Storage Technologies 313

https://github.com/percona/PerconaFT
https://github.com/percona/PerconaFT
https://www.snia.org/educational-library/adaptive-distributed-nvme-namespaces-2020
https://www.snia.org/educational-library/adaptive-distributed-nvme-namespaces-2020
https://www.snia.org/educational-library/adaptive-distributed-nvme-namespaces-2020

[78] Jian Yang, Joseph Izraelevitz, and Steven Swanson.
FileMR: Rethinking RDMA Networking for Scalable
Persistent Memory. In Proceedings of the 17th USENIX
Symposium on Networked System Design and Imple-
mentation (NSDI ’20), page 17, Santa Clara CA USA,
February 2020. USENIX.

[79] Dong Young Yoon, Mosharaf Chowdhury, and Barzan
Mozafari. Distributed Lock Management with RDMA:
Decentralization without Starvation. In Proceedings of
the 2018 International Conference on Management of
Data (SIGMOD ’18), pages 1571–1586, Houston TX
USA, May 2018. ACM.

[80] Zhuolong Yu, Yiwen Zhang, Vladimir Braverman,
Mosharaf Chowdhury, and Xin Jin. NetLock: Fast,
Centralized Lock Management Using Programmable
Switches. In Proceedings of the Annual Conference
of the ACM Special Interest Group on Data Commu-
nication on the Applications, Technologies, Architec-
tures, and Protocols for Computer Communication (SIG-
COMM ’20), pages 126–138, Virtual Event USA, July
2020. ACM.

314 21st USENIX Conference on File and Storage Technologies USENIX Association

Patronus: High-Performance and Protective Remote Memory

Bin Yan, Youyou Lu, Qing Wang, Minhui Xie, and Jiwu Shu*

Department of Computer Science and Technology, Tsinghua University

Abstract
RDMA-enabled remote memory (RM) systems are gaining
popularity with improved memory utilization and elasticity.
However, since it is commonly believed that fine-grained
RDMA permission management is impractical, existing RM
systems forgo memory protection, an indispensable property
in a real-world deployment. In this paper, we propose PA-
TRONUS, an RM system that can simultaneously offer pro-
tection and high performance. PATRONUS introduces a fast
permission management mechanism by exploiting advanced
RDMA hardware features with a set of elaborate software
techniques. Moreover, to retain the high performance under
exception scenarios (e.g., client failures, illegal access), PA-
TRONUS attaches microsecond-scaled leases to permission
and reserves spare RDMA resources for fast recovery. We
evaluate PATRONUS over two one-sided data structures and
two function-as-a-service (FaaS) applications. The experi-
ment shows that the protection only brings 2.4 % to 27.7 %
overhead among all the workloads and our system performs
at most ×5.2 than the best competitor.

1 Introduction
Remote memory (RM) architecture, which decouples CPU
and memory into two independent resource pools (i.e., com-
pute nodes and memory nodes), is changing the landscape of
modern data centers by providing many benefits, such as high
memory utilization and efficient memory sharing [2, 12, 44].
This trend is sparked by the widely-deployed RDMA net-
work, which allows compute nodes to access remote memory
(at memory nodes) in a one-sided and low-latency manner.
There are myriad efforts to make RM systems practical on
multiple fronts, such as proposing easy-to-use programmable
models [1,43,46], designing efficient remote indexes [50,59],
and deploying popular applications [38].

However, there is still an obstacle to cross on the way to
practical RM systems: remote memory protection. Existing
RM systems expose all RM resources or coarse-grained mem-
ory regions to compute nodes without carefully considering
protection [2, 12, 15, 25, 31, 32, 36, 39, 41]. This inevitably
induces several anomalies. First, buggy or malicious code in
clients1 can generate illegal one-sided access to the RM, intro-
ducing data corruption or privacy breaches. Second, even if
the clients are well-behaved, concurrent memory reallocations
can turn the in-flight one-sided access illegal (§3.1).

*Jiwu Shu is the corresponding author (shujw@tsinghua.edu.cn).
1Clients are processes in compute nodes accessing RM.

It is non-trivial to simultaneously achieve protection and
high performance in RM systems. First, considering the
high throughput of RDMA networks (e.g., ~70Mops/s in
100Gbps ConnectX-5 RDMA NIC), clients will frequently
acquire/revoke permission upon memory allocation/dealloca-
tion. But the common RDMA protection mechanism, i.e., (re)-
registering memory region (MR) to targeted memory areas,
suffers high latency due to the overhead from OS kernel and
RNIC (~1 ms for 256 MB; see Figure 1). Even worse, RM sys-
tems typically only have weak computing power at memory
nodes [48, 55, 59], which limits the rate of acquiring/revok-
ing permission, thus bottlenecking the system performance.
Second, on the exception path of RM systems, i.e., clients fail
or access illegal RM addresses, retaining high performance
with a protection guarantee is challenging. Specifically, when
a client fails, it may hold exclusive access permission to some
memory areas. If the failed client’s permission cannot be re-
voked rapidly, the progress of the whole RM system will be
negatively impacted. When a client accesses illegal RM ad-
dresses, RDMA NICs (RNICs) at memory nodes will turn
the associated queue pair (QP) into an error state, disabling
subsequent RM access. Recovering the faulted QP needs a
millisecond-scaled process and thus produces latency spikes
for RM applications.

In this paper, we propose PATRONUS, a protective RM sys-
tem that can provide high performance. In the control path,
memory nodes perform memory (de)-allocation and byte-
wise memory protection for clients using weak computing
power (i.e., ≤ 4 CPU cores). In the data path, clients at com-
pute nodes access RM with permission via one-sided RDMA
verbs. PATRONUS attains efficiency on both normal and excep-
tion paths. This is achieved by combining advanced RDMA
hardware features and careful software design.

To enable fast permission management with weak comput-
ing power on memory side, PATRONUS first exploits memory
window (MW) [42], an advanced RDMA hardware feature
allowing RNICs to regulate the access (thus supporting one-
sided RDMA) while minimizing the overhead of interaction
with RNICs. Different from MR, an MW operation commu-
nicates with RNIC asynchronously and in userspace. With
permission bits modified by hardware, it enjoys low latency
(1.1 µs; see Figure 1). However, simply using MW cannot
meet the performance requirements at peak load. Thus, we
introduce a set of software techniques (e.g., MW handover
and delayed unbinding; §5.4) to reduce the number of MW
operations, saving the computing cycles of memory nodes.

USENIX Association 21st USENIX Conference on File and Storage Technologies 315

To react fast to client failures, we equip MWs with
microsecond-scaled leases, so that the permission will be au-
tomatically reclaimed by memory nodes on timeout. However,
the fine-grained leases introduce the overhead of frequent ex-
tension to memory nodes. We reduce the extension overhead
by delegating the management of lease metadata to the client
with one-sided verbs while retaining the protection guarantee.

To mitigate the negative effect of illegal access (i.e., QP
faults), instead of recovering the faulted QP in the foreground,
we switch to another intact QP as a substitution. To avoid
QP creation in the critical path, PATRONUS prepares a small
number of spare QPs.

We evaluate PATRONUS thoroughly over microbenchmarks
and two sets of realistic applications, i.e., the remote one-sided
data structures (ODS) and the function-as-a-service (FaaS)
platform. Among all the workloads evaluated, the protec-
tion only brings 2.4 % to 27.7 % overhead, and PATRONUS
performs up to ×5.2 better than all the competitors. On the
exception path, we reduce the interruption from faulted QP by
92 %. The lease semantics ensures the progress of the system
under client crashes, evaluated under the case of ODSs.
Contributions. The main contributions are:
• An analysis of the deficiency of existing protection mech-

anisms and the performance goals for a protective RM
system (§3).

• The design and implementation of PATRONUS, a protective
RM system that retains high performance on both normal
and exception path (§5).

• The thorough evaluations over microbenchmarks and re-
alistic workloads to demonstrate the high performance of
PATRONUS (§7).

2 Background

2.1 RDMA and Access Protection
RDMA is a high bandwidth (e.g., 200 Gbps) and low la-
tency (~2 µs) networking technology widely adopted in to-
day’s data centers [12, 13, 20]. RDMA provides two types of
verbs to the application, namely one-sided verbs and two-
sided verbs. The one-sided verbs offer a remote memory
abstraction; it allows direct access to the remote memory
while bypassing remote CPUs. The two-sided verbs offer a
message-passing interface similar to the well-known Linux
socket. The two types of verbs make different trade-offs: the
one-sided verbs are efficient for saving computation resources,
but they risk data corruption for the lack of remote CPU reg-
ulation; the two-sided verbs are vice versa. The one-sided
verbs are more prevalent due to their higher efficiency (i.e.,
×1.7 throughput) [52].
Access protection. RDMA provides basic mechanisms for
regulating RDMA verbs, e.g., queue pair (QP) and memory
region (MR). QP is the communication endpoint on which the
client posts RDMA requests (via ibv_post_send); it offers
channel-wise restrictions on the access type (i.e., readable

Query QP states
Modify QP flags
MR re-register
MW bindingLa

te
nc

y

1us
10µs

100µs

10ms

Memory Size
64B 4K 2M 2G

Figure 1: Median latency of protection-related operations in
RDMA.

or writable). MR represents a memory area registered to the
RNIC for remote access; it restricts both the access type and
the accessible range of memory.

The MR/QP operations, in the RDMA control path, have or-
ders of magnitude higher latency than the microsecond-scaled
RDMA data path (Figure 1, [53]). Specifically, modifying QP
flags includes a transition of QP states in the RNIC, taking
~100 µs per operation. The MR registration is synchronous
and requires kernel involvement (e.g., context switches, page
pre-faulting, and page pinning); it yields a non-scalable per-
formance [3] with ~1 ms latency for a 256 MB area. Due to
the inferior performance, most RM systems only involve QP
constructions and MR registrations on bootstrap [12, 34, 53].

2.2 The Remote Memory Architecture
RDMA is the key enabler to the remote memory (RM) ar-
chitecture for its ultra-low latency in interconnecting. RM
is getting prevalent in the decade because it addresses the
problem of memory usage imbalance in traditional data cen-
ters [6, 14]. With RM, the CPU and memory are assembled
into two separate components, i.e., the compute nodes (CN)
and the memory nodes (MN). The compute nodes gather a
mass of CPU cores (10s - 100s), while the memory nodes
typically have weak and limited computing power [1,59]. The
scarce computation power on MNs catalyzes a range of RM-
native applications that mainly leverage one-sided verbs, such
as KV stores [25, 36, 48], transactional systems [12, 52, 55],
and data structures [4, 35, 50, 51, 58, 59]. These various work-
loads coexist in the cluster and share the remote memory.

3 Motivation
3.1 The Call for Stray Protection in RM
The efficiency of RDMA one-sided access comes at a price:
its direct nature saves the overhead of remote CPU but in turn
escapes the protection against stray access. The stray access
is the illegal one towards an area of memory unowned by the
process. Next, we show two causes for the stray access.
Causes of stray access. (i) Buggy and malicious codes. A
careless bug or a piece of malicious code can generate stray
access to the RM by setting an overflowed address in the
RDMA request. This is a space anomaly that can occur when
RM exposes a larger range of memory space than allowed.
(ii) Race to memory management. The memory deallocation
and reallocation make all the unaware one-sided access to-

316 21st USENIX Conference on File and Storage Technologies USENIX Association

wards the address stray. This is a time anomaly that can occur
when RM exposes a longer duration of permission than the
application logically allowed.

In response to the causes, a protective system needs to
expose only the range of memory that is allowed to access,
and invalidate the permission timely after access is finished.
Cases for protection and requirements. We observe two
trends making in-RM protection more urgent, posing re-
quirements for a protective system. (i) The RM architec-
ture catalyzes a wide range of remote one-sided data struc-
tures (ODS) [4,35,50,51,58,59], which involve frequent mem-
ory (de)-allocations and floods of concurrent access, bringing
a high risk of memory management race at runtime. Moreover,
the access to the ODS is typically shared and fine-grained
(e.g., at a granularity of buckets in the hash table), which
requires fine-grained protection for proper access isolation.
(ii) In the function-as-a-service (FaaS) platform, functions
submitted from different users leverage the shared RM for
performant (intermediate) data storage [26,53], which asks for
access isolation to avoid data tampering or leaks. Functions
have a short lifetime (~µs), scale out quickly (to ~millions),
and access RM on demand [9, 14, 27, 33], which requires a
low-latency and high-throughput protection management to
meet performance needs in the critical path.

To conclude, a protective system needs to offer high-
performance protection management in fine granularity.

3.2 Goals for the Protective RM System
Considering that the RM system is an infrastructure to deter-
mine the overall performance of workloads, it should remain
efficient in a variety of situations. Besides offering fast per-
mission management on the normal path, it should be able to
retain performance even under client failures or illegal access.
Next, we elaborate on the performance goals.
Goal#1: manage protection fast. Existing workloads can
introduce a mass of permission requests to the system in the
peak case, demanding high throughput in permission manage-
ment. For example, the bulk load to a remote hash table [59]
brings a flood of concurrent permission acquisitions. Query-
ing to the hash table involves multiple access to disjoint mem-
ory areas (e.g., the bucket and the KV block), introducing
multiple permission acquisitions from one query. Therefore,
we expect a protective system to offer high-throughput pro-
tection management to avoid introducing bottlenecks.
Goal#2: react fast to client failure. A client can affect the
progress of the whole system if it crashes with exclusive per-
mission held. This is common because clients are deemed
error-prone in the distributed system, and access to the meta-
data should be exclusive in many workloads. Therefore, we
expect that a protective system can react fast to client failures.
Goal#3: retain performance under illegal access. The ille-
gal access turns the QP into an error state, in which the QP
rejects any incoming RDMA requests, causing a serious inter-
ruption in application running. The interruption will further

Name Goal#1 Goal#2 Goal#3 For RM
Two-sided - ✓ ✓ ✗

MR ✗ ✗ ✗ ✓

QP ✗ ✗ ✗ ✓

MW ✓ ✗ ✗ ✓

MW + SW ✓ ✓ ✓ ✓ ✓
(PATRONUS) (§5.4) (§5.3) (§5.5)

Table 1: Deficiency of existing solutions. Goals are elaborated
in §3.2. Only MW with software (SW) co-design meets all the
goals (PATRONUS).

affect other innocent clients on the same QP (sharing QPs is
very common under QP virtualization and is widely adopted
for mitigating the scalability problem [12, 49, 53]). Therefore,
we expect a protective system to retain performance in the
appearance of illegal access.

3.3 Deficiency of Existing Solutions

Existing solutions are all deficient for a protective RM sys-
tem (Table 1). The two-sided verbs do not work well in the
RM architecture where computation power is scarce on the
memory node. Other existing solutions that regulate one-sided
access (i.e., MR and QP, §2.1) can not simultaneously meet
the three goals. In this section, we revisit these mechanisms
and examine their applicability.

For protection management (G#1), the QP-based solution
is coarse-grained and the MR-based solution is slow. The QP-
based solution is channel-wise; it is unable to offer byte-wise
protection as workloads require. Therefore, its use is very lim-
ited [3]. The MR-based solution has a high latency (~20 µs per
2 MB2, Figure 1) and does not scale; due to the performance
issue of MR, existing systems do not utilize its protection at
runtime. For example, Octopus [34] registers MRs on boot-
strap and never manipulates them later; FaRM [12] uses a
large memory region of 2 GB, which essentially leaves the
whole region unprotected.

For detecting client failures (G#2), MR is not aware of
any failures on the remote side. Although QP does reveal
remote failures (by issuing RDMA operations as heartbeats),
it does not detect failures that leave QPs intact (e.g., clients
using virtualized QPs as communication channels and clients
getting hanged).

Finally, in the appearance of illegal access (G#3), whether
violating the permission restricted by QP or MR, the QP
will run into an error state, requiring an expensive bootstrap
procedure to recover the QP (~1 ms, §7.2.5).

We conclude that pure hardware solutions are insufficient
to achieve all the goals.

2We use 2 MB huge pages, a widely-adopted solution to reduce RNIC’s
page translation cache misses [12, 52].

USENIX Association 21st USENIX Conference on File and Storage Technologies 317

4 Approach Overview
4.1 Opportunity: Memory Window (MW)
The memory window (MW) [42] is an advanced RDMA fea-
ture widely supported in commodity RNICs. It acts as a sup-
plementary layer over MR to deliver flexible protection man-
agement at runtime.
Interface. The MW needs to be allocated before use. It sup-
ports two types of operations, i.e., bind and unbind3. Binding
an MW over a memory area exposes the access permission
while unbinding the MW invalidates it. Note that we can bind
an MW multiple times after it is allocated; each time the pre-
vious permission will be invalidated and the new permission
will be granted (also called rebind in this paper).

Binding (rebinding) an MW takes the address and size of
the memory area and the access type (read or write) as parame-
ters. The MW exposes the memory area by generating an rkey
(a 32 bit integer) as the permission token to the client, like
in the case of MR. MW is byte-granularity in that it works
for unaligned memory areas of any size. Binding/unbinding
the MW uses the same ibv_post_send interface as RDMA
verbs, which communicates with the RNIC in userspace asyn-
chronously and allows requests batching.
Latency: MW vs. MR. MW binding contrasts with MR
registration in two ways. First, MW binding has a constant
latency with memory areas of any size, unlike MR registration
taking proportional overhead to the size. Second, MW binding
has much lower latency, i.e., 1.1 µs in median (Figure 1).

The reason for the performance difference is that MW bind-
ing communicates to the RNIC asynchronously in userspace,
while MR registration is synchronous and requires kernel in-
volvement4, introducing the additional overhead of context
switches, page pre-faulting, and page pinning.

4.2 Solutions
Although MW accelerates permission modifications, it does
not introduce new features beyond MR. Therefore, MW also
has limited functionality as MR. We observe that to achieve
the goals, direct adoption of MW is not enough, and software
co-design must be involved. Next, we show how software
techniques are developed to fill the gap.
Can software further contribute to the overall perfor-
mance? (G#1) Although MW already acts as a low-latency
mechanism to manage permission, the overhead of MWs can
still burden the memory nodes where CPUs are limited. We
observe that software co-design can exploit the true potential
of hardware for efficient permission management.
Solution: save MW operations without sacrificing protection
semantics. Instead of improving performance by lowering
the protection guarantee, we reduce overhead in a way the

3To distinguish, we use the verb bind for MW and register for MR.
4Although MR supports on-demand paging (ODP), which can remove

page pinning, it is notorious for causing high latency (>=10 ms) on normal
RDMA access upon remote page faults [22].

protection assurance is not sacrificed. This is possible by
leveraging the characteristics we find in management. For ex-
ample, by noticing that permission requests come in a batch,
we can leverage the pairs of opposite operations to reduce
the number of MW operations effectively by half (called MW
handover). By noticing that some memory areas will not be
re-used immediately after being freed, we delay the unbinding
of the MWs to save operations. Finally, by exploiting the po-
tential of address contiguity, we can combine multiple MWs
into one. They are elaborated in §5.4.
How to react fast to client failure? (G#2) Like MR, MW
itself is not aware of any failures from the CN side. Extra
techniques must be developed to detect and handle the failure.
Solution: borrow the idea of leases. MW only offers space-
wise protection. We introduce the lease semantics (i.e., expire
on timeout, [41]) to MW from the software to enable time-
wise protection. In doing so, the system can resume progress
by expiring any exclusive permission on timeout, no matter
whether the permission is held by a crashed or a slow client.

The lease management metadata seems too crucial to be ex-
posed. Nevertheless, we notice the byte-granularity property
of MW, which allows us to expose only the necessary part of
metadata to the client. With this help, we are able to offload
part of the lease management overhead to the client with-
out risking metadata tampering (CN-collaborated extension,
§5.3). It saves CPU cycles for the memory nodes.
How to retain performance under illegal access? (G#3)
Like MR, MW protects against data corruption but does not
protect the QP from running into an error state, which seri-
ously interrupts application running.
Solution: conceal the interruption rather than prevent it. We
notice that illegal access is unable to prevent because the mem-
ory node invalidates the permission (i.e., unbinds the MW)
without notifying the client. Therefore, we try to conceal the
interruption caused by the faulted QP instead of preventing
it. We prepare spare QPs to stand in for the faulted ones at
runtime so that the recovery overhead can be concealed in the
background. In doing so, we leveraged a special property of
MWs: they can remain valid across all QPs5. Therefore, the
granted permission remains valid even if the underlying QP
has changed. They are elaborated in §5.5.

5 PATRONUS: The Protective RM system
Motivated by how stray access is common and necessary to
be prevented (§3.1), we design a protective RM system in
response, called PATRONUS, to offer complete protection with
sufficient performance for existing workloads (§3.2).

Different from previous systems where the whole remote
memory is exposed to the clients [12, 34], the basic idea of
PATRONUS is leaving clients with no initial permission and
demanding permission acquisition before allowing clients to
issue remote access.

5Precisely, MWs work across all QPs under the same protection domain
(PD).

318 21st USENIX Conference on File and Storage Technologies USENIX Association

Category API Parameters Return Description

Control Path

allocate size, time, ex/shr Perm Allocate memory and acquire permission
acquire addr, size, time, r/w, ex/shr Perm Acquire permission over ⟨addr, size⟩
extend Perm, time Success Extend the permission lease
revoke Perm Success Revoke the permission

Data Path read/write/
Perm, addr, size, buffer Success

Issue remote access
CAS/FAA (support batching)

Table 2: The PATRONUS APIs. In the parameters, r/w specifies read/write permission; ex/shr specifies exclusive/shared access
mode; time specifies the expected lifetime of the permission lease. Perm is an opaque object containing the remote address, the
rkey as the permission token, and the expiration time. Success denotes whether the call succeeded.

Failure model and leases. PATRONUS considers two kinds
of failures for the client, i.e., fail stop and fail slow, both ad-
dressed by leases. First, the lease ensures availability on client
crashes (fail stop). The orphaned exclusive permission held
by a crashed client precludes other clients from accessing
the memory, resulting in unavailability. The lease resumes
system progress by expiring the permission on timeout. Sec-
ond, lease accelerates memory reclamation with slow clients
(fail slow). A slow client (e.g., due to network traffic) hinders
actual memory reclamation, because the active permission
it holds makes the memory area potentially accessible and
thus not reclaimable. The lease forcibly invalidates permis-
sion on timeout to allow reclamation on time. We assume
loosely-synchronized clocks for the lease to work, like similar
work [19]. PATRONUS does not handle the failure of mem-
ory nodes, where orthogonal work (e.g., erase coding) can be
applied [30, 57].

5.1 The Interface
PATRONUS provides control path APIs to acquire new permis-
sion, extend the permission lease, and revoke permission. The
data path APIs accept the permission as a parameter and are
translated into one-sided verbs for remote access (Table 2).
Permission starts in two cases. (i) Client allocates remote
memory via the allocate call. (ii) Client attempts to access
a known remote area for the first time, in which case the client
needs to get the permission via the acquire call. Both calls
will issue an RPC to the memory node, where the memory
node starts new permission by binding MWs to the allocat-
ed/specified memory, and responds with a Perm object to the
client. Perm, needed by all the data path API, contains the per-
mission token (rkeys of the MWs), the expiration time, and
the remote address. Note that re-access to the same memory
can re-use the previous Perm as long as it has not expired.

In the parameters, the client specifies the access mode (read-
/write), ownership (shared/exclusive), and expected lifetime
for the permission lease. For acquisitions that conflict in the
ownership, PATRONUS postpones granting the latter permis-
sion until the conflict resolves.

PATRONUS allows pre-allocation to amortize the overhead;
i.e., clients call allocate at a larger granularity and back
their fine-grained allocators on the blocks. Nevertheless, it

does not speed up the queries or in-place updates from other
clients (which is also common), because those clients still
need to call acquire for their own fine-grained permission.
Permission extends via the extend call. Extending an exist-
ing permission is more efficient than re-acquiring a new one.
We assume that clients only extend the hot permission that is
re-used frequently.
Permission ends when the client explicitly revokes the per-
mission (via revoke) or when the lease expires. The revoke
will issue an RPC. The to-expire leases are detected by period-
ical scans from the memory node. In both cases, the memory
node unbinds the MWs to invalidate the permission.
Data path. PATRONUS purely uses one-sided verbs in the
data path (read, write, CAS, and FAA calls). It supports batch
execution and therefore allows the familiar IO consolidation
optimizations in the application [59].

5.2 Architecture Overview
PATRONUS provides a library for the client in compute
nodes (CN-lib) and a manager daemon for memory nodes,
as illustrated in Figure 2. The manager manages the remote
memory and permission in response to clients’ RPC.
Main components. PATRONUS manager takes over the
whole memory on MN. Most of the memory will be exposed
for the client’s use; we call them buffers in the memory pool.
The other (≤ 0.02 %) is reserved on bootstrap to use as the
header pool.

The header is a central structure that stores all necessary
metadata for a permission. Each individual permission (possi-
bly over the same memory area but owned by different clients)
has an individual header. The header contains two kinds of
information (Figure 3). (i) The resource information, i.e., the
address and size of the RM buffer and the corresponding
MWs. (ii) The lease information, such as when the permis-
sion starts and how long the permission will last. We use the
address of the header as the cluster-wise permission identifier
in the RPC between clients and the manager.
Permission management. The start of permission is triggered
by the client’s allocate or acquire calls. In response, the
manager allocates a header for the new permission and then
binds two MWs to expose both the buffer and the header to
the client (➊ in Figure 2). The header is additionally exposed

USENIX Association 21st USENIX Conference on File and Storage Technologies 319

Promote
Spare QPs

Perm header resourcesaddr

active permissions

Library
on CN

Apps

Manager
on MN

header resourcesaddr

MW

m

Expired

header pool memory pool

MW
QP

rkey

buffer

Figure 2: The architecture of PATRONUS. We assume that
CNs own a mass of CPU cores (10s - 100s), while MNs use
several weak cores to operate the manager.

Header Pool
(<0.02%)

Memory Pool
(others)

Len Addr Start Time

Header
(32B)

RM

MW locs Lifetime
16b 48b 8B 8B 8B

Figure 3: The format of the 32 B header. MW locs denotes
the locations of the MWs. Blue indicates the area exposed
to the client, i.e., the Lifetime variable in the header and the
buffer in the RM.

so that the client can facilitate permission management, a
technique called CN-collaborated extension (§5.3).

The remote memory is managed by slab allocators with
different object sizes, similar to FaRM [12]. Permission has
the same granularity as memory management: clients must
start permission over the whole object, but not a part of it.
The manager uses a per-slab hash table to store all the active
permission, with addresses as the keys; in this way, permission
can be queried efficiently. To detect any to-expire permission,
the manager periodically polls the hash table to collect the
timeout ones (➋ in Figure 2). The polling overhead is minor
because the number of active permissions in the system is
typically small.

To invalidate permission, the memory node unbinds the
MWs, which in turn invalidates the permission token (rkey),
causing RNIC to forcibly reject the RDMA requests with that
rkey (➌ in Figure 2).

5.3 CN-collaborated Extension
Considering that unexpected permission expiration seriously
interrupts application running, PATRONUS allows extending
the permission on runtime. The naive approach is using an
RPC to notify the manager of the extension. However, the
communication brings significant overhead to the memory
node where computation power is scarce. To mitigate this
overhead, we propose to utilize the collaboration from the
CNs for extension while handling careless and malicious
clients correctly.
Collaboration from CN. The metadata in the header seems
too crucial to be exposed. Nevertheless, we notice that MW
is byte-granularity; therefore, it can be used to expose only

the necessary part of metadata to the clients without risking
metadata tampering.

The basic idea is to expose the lifetime variable in the
header (Figure 3) so that the client can update it in a one-sided
way. In turn, the manager will encounter extended permissions
on polling for the timeout ones; the manager skips them.
Regulate the extension. The CN collaboration can introduce
the starvation problem in the system without proper regulation.
Specifically, (i) the client is able to set lifetime to a large
value to own it infinitely. (ii) The client is also able to extend
continuously, starving other clients.

In response, we propose two regulations for the extension.
First, we require that any permission can not live beyond a pre-
defined maximal lifetime (empirically set to several millisec-
onds). Any aged permission will be detected by the manager
and be forcibly invalidated.

Second, to avoid starving other clients, we need an efficient
way to notify the owner that a permission is no longer ex-
tendable. In PATRONUS, the notification is implemented by
setting the lifetime to zero and requiring the CN-lib to update
the lifetime with RDMA_CAS instead of RDMA_WRITE. In this
way, the zeroed lifetime causes RDMA_CAS to fail and thus the
clients are notified. Note that the permission is arbitrated on
the memory node, which means that the manager can always
reclaim the permission by forcibly invalidating the MWs if it
suspects any anomalies, without negotiating with the client.
Trade-off analysis. With collaboration, the overhead of an
RPC (the naive approach) is reduced to one inbound one-sided
access. The collaboration benefits the performance because
(i) one-sided verbs are more efficient than two-sided ones, and
(ii) inbound verbs are more efficient than outbound ones [25].
The benefit will enlarge if extensions occur multiple times.

Exposing the lifetime variable introduces the overhead of
using one more MW. Nevertheless, we deem the overhead
minor compared to the naive approach (taking one RPC), be-
cause the additional MW operations can be batched together
in the ibv_post_send API, communicating with the RNIC
once. Furthermore, as we show in §5.4, this extra MW over-
head can be reduced most time.
Polling: the alternative to lease. An alternative approach to
the lease semantics is QP polling, where MNs track whether
CNs are still alive by periodically issuing RDMA operations
to each QP as heartbeats. Polling has several deficiencies
compared to leases. First, it does not handle fail slow of clients.
Second, polling can not distinguish clients sharing the same
QP (while QP sharing is common [12, 49, 53]). In terms of
overhead, polling and leases both pay one RDMA operation
for keepalive; however, leases allow to save one revoke call
by letting the permission expires itself, potentially yielding
better performance.

5.4 Reduction of Permission Overhead
In this section, we introduce our techniques for reducing the
permission overhead without sacrificing protection assurance.

320 21st USENIX Conference on File and Storage Technologies USENIX Association

Bind 0x10
Bind 0x20
Unbind 0x80
Unbind 0x90

2x
alloc MW

2x
free MW

2 bind + 2 unbind = 4 op

Rebind 0x80->0x10
Rebind 0x90->0x20
Unbind 0x80
Unbind 0x90

2 bind + 2 unbind = 4 op
2 rebind = 2 op

MW

Steal!

(a) Before (b) w/ MW Handovers

Figure 4: The MW handover technique saves half of MW
operations by stealing (reusing) MWs from the unbinding
requests to the binding requests. 0xdd denotes the addr.

We elaborate on the characteristics we find in protection man-
agement and how we leverage them to reduce MW operations.
#1: Leverage pairs of opposite operations. Every active
permission ends eventually. Therefore, among all the MW
operations in the system, about half of them are binding while
the others are unbinding. Following this fact, we can combine
every pair of opposite MW operations into one rebinding op-
eration, a technique we call MW handover (Figure 4). Rebind-
ing an MW, which takes the new ⟨addr, size⟩ as parameters,
generates new rkeys and invalidates the old rkeys (§4.1). To
adopt this technique, the manager collects opposite operations
with the best effort: the to-expire permission will be polled
and clients’ requests will be scanned before performing the
handover.
Trade-off analysis. The benefit of this technique comes with
no price because handover is only performed in a speculative
way. First, the manager never waits for future requests; no
latency is introduced. Second, client requests on the memory
nodes are naturally batched by the RNIC, which is a hardware
approach and does not introduce extra batching overhead.
The memory node, accordingly, always handles requests in a
batch, leaving room for performing handover.
#2: Delay unbinding if memory is not re-used. We observe
that if a memory area is not re-used after deallocation, we can
delay unbinding the MW because stray access to this area does
not introduce data corruption. The header is a good candidate
for doing so: we reserved more-than-enough headers in the
system, so it is easy enough not to re-use the just-deallocated
header in the near future. If the available memory buffers are
adequate in the system, we also delay unbinding the buffer
MW; however, if it is not the case, we unbind the buffer MW
and reclaim (thus re-use) the buffer promptly.
Trade-off analysis. This technique wastes available head-
ers and MWs but in a minor way. The waste of headers is
negligible because we reserve adequate headers in the pool
for the extreme case. We carefully encode the header so that
the pool occupies no more than 0.02 % of a regular memory
node (§5.6 for details). The waste of MWs is trivial because
the RNIC (Mellanox CX-5 in our case) allows ~16 million
MWs, far from possibly being used up.

#3: Exploit the potential of contiguity. We observe that if
two addresses are contiguous and share the same protection
lifetime, we can combine the two MWs into one. At first
glance, the situations of this case are rare because addresses
are generally not contiguous and memory buffers seldom
share the same protection lifetime. We exploit this potential
in handling the allocate RPC: we can allocate an extra 32 B
to place the header right before the buffer; thus, the header
and the buffer are contiguous (this case is not revealed in the
figures for brevity). While doing so, we carefully place the
to-expose variable (i.e., the lifetime variable in Figure 3) at
the tail of the header to make the to-expose areas contiguous.
Trade-off analysis. The benefit comes with no price. At first
glance, allocating an extra header introduces a lot of 32 B
holes. However, these holes are not wasted, because they can
be re-used as headers again when the permission over the
same buffer is re-acquired. This situation is very common; for
example, inserts to the remote hash table involve allocations
of KV blocks. These KV blocks will be re-accessed when
being read or modified. In this case, the following permission
acquisitions can re-use the holes as headers again. On deal-
location, the frontal 32 B will be reclaimed altogether; thus
they are not leaked.

5.5 Isolation from Illegal Access
Although MW can prevent illegal access from corrupting the
memory, it does not handle the consequence of it: the ille-
gal access will turn the underlying QP into an error state.
The faulted QP requires an expensive procedure for recov-
ery (~1 ms), seriously interrupting application running.

We observe that this interruption is not preventable by the
software. This is because process scheduling and network
traffic can introduce a nondeterministic delay to the one-sided
request. During the delay, the permission may have expired.
Therefore, we propose to conceal the interruption rather than
prevent it.
Conceal the interruption. We prepare spare QPs to conceal
the interruption caused by QP failure. Specifically, each client
is assigned a virtual QP number, which maps to a physical
QP initially. On QP failure, we transparently promote one of
the spare QP by altering the virtual-to-physical mapping (➍
in Figure 2). In this way, the client can resume its execution
immediately. A special property from MWs enables continu-
ous execution, i.e., the MWs are able to remain valid across
all QPs. This wide validity allows the previous permission
to remain valid in the new QP. Therefore, the client does not
need to re-acquire permission when QP switches.

A small number of spare QPs are sufficient to hide the
foreground interruption as the manager performs QP recovery
in the background. We assume a low illegal access rate (less
than 1-10s per second) compared with the speed of QP recov-
ery (~1 Kops).
Trade-off analysis. The spare QPs introduce no overhead
for the normal path. The reason is that the spare QPs, while

USENIX Association 21st USENIX Conference on File and Storage Technologies 321

inactive, will not contend for the rare RNIC resources (e.g.,
the limited cache [37]).

The spare QPs consume host memory but in a negligible
way. To adopt this technique, considering that we use the
peer-to-peer RC (reliable connection) type of QP, each mem-
ory node needs to prepare O(C) spare QPs for connection,
where C is the number of compute nodes. It does not cost
much, because even for a large cluster with one thousand
CNs, preparing 3 QPs for each CN only consumes ~1 MB
host memory (each QP takes ~375 B; [40]).

5.6 Implementation Details
MW pool. The allocation of MWs, unlike binding, has a much
higher latency (1 µs vs. 100 µs). We maintain an MW pool to
offload the allocation off the critical path.
Header encoding and overhead. The header only takes up
32 B after our effort on data encoding. We leverage the tagged
pointer [59] to steal the higher 16 bit for the buffer size (Len),
which is able to present 0-64 KB. For the case where larger
buffers are common, we use a scale factor for Len, e.g., 64
or 4096. Since we need to locate two MWs (i.e., header and
buffer) for each permission, we store two 4 B MW indexes
to locate MWs in the MW array. Start time and lifetime are
encoded in microseconds; 8 B is ample to encode any time in
theory. In the extreme case where 1 million permissions are
simultaneously present in the system (clients own very few ac-
tive permissions in general), the headers only occupy 32 MB
in total (< 0.02 % with 128 GB memory). In conclusion, the
memory consumption is negligible.
Handling double invalidation. Without careful management,
double invalidation of permissions may occur in the system,
caused by the famous ABA problem. Specifically, the ABA
problem comes when an obsolete RPC tries to locate the
permission header that has already been re-used. To address
this problem, the start time is additionally attached with the
permission identifier in each RPC. The manager filters out
any RPCs whose start time does not match.

6 The Cases for PATRONUS

In this section, we demonstrate the benefits of PATRONUS
through case studies. We explain the way to adopt PATRONUS
to these cases individually.

6.1 One-sided Data Structure
We mainly focus on two one-sided data structures (ODS),
i.e., the start-of-the-art RACE hashing [59] and a concurrent
queue [17]. Other ODSs, such as the hashing-based ones [51],
the tree-based ones [50, 58], and the skip list [35], are similar.

The RACE hashing is an RDMA-conscious extendible hash
table. It purely uses one-sided verbs and leverages RDMA_CAS
for the lock-free remote concurrency control. The concurrent
queue follows the design in [17]; it is implemented as a lock-
free linked list of segments, with each segment containing
multiple entries.

Necessity for protection. Inserting (removing) elements
to (from) the data structure involves memory allocations.
Since the remote data structure is shared by multiple clients,
the race of memory reallocation, especially invoked from
other clients, turns any concurrent one-sided requests into
stray access. Specifically, RACE hashing uses copy-on-
write (CoW): updating a new value involves freeing the old
KV block ⟨K,Vold⟩. A seriously delayed client, e.g., due to
network traffic or scheduling, may post one-sided access to
Vold , the already unowned memory. Similar situations apply
to any one-sided data structures involving memory manage-
ment. Note that this race is hard to address from the design of
data structures because the delay is nondeterministic.
Necessity for performance. The one-sided data structures are
the essential building block of applications in remote memory;
their efficiency determines the performance of the system.
The data structures typically support millions of operations
per second with microsecond-scaled latency, asking for high-
performance protection at the same level.
Adoption of PATRONUS. For RACE hashing, we take inser-
tion as a concrete example. In the vanilla implementation,
insertion takes four steps in the common path. (i) Allocate a
KV block and write the KV to the block. (ii) Read the bucket
in the subtable. (iii) Link the KV block into the bucket via
CAS. (iv) Re-read the bucket to detect duplicity. To adopt PA-
TRONUS, we use our allocate API for KV block allocation
(and the permission) and use one acquire for the permission
to access the subtable. Among the four RDMA operations
(one write, two reads, one CAS), two PATRONUS operations
are introduced (one allocate and one acquire). Note that
the subtables, as the metadata, are (re)-accessed frequently;
therefore, the active permission to the subtable can be re-used
several times, possibly across insertions.

For concurrent queue, it is implemented as a lock-free
linked list of segments, with each segment containing multi-
ple entries. At insertion, the client tries to fetch an index of
an available entry slot from the segment via FAA, and fill the
entry slot via write. If failed (i.e., the segment is full), the
client allocates a new segment and links it to the back of the
list via CAS. The concurrent queue also contains a metadata
block maintaining the (possibly stale) head and tail of the
linked list. With PATRONUS, each new segment introduces
one allocate for allocation and one acquire for the access
permission to the segment. Each client also maintains a pro-
longed permission to the metadata block.

6.2 Function as a Service
The FaaS is a cloud computing paradigm where the applica-
tions are developed and served at the unit of functions. Each
function runs in a virtualized environment for isolation and
performance fairness. We consider that the FaaS platform
equips RM as an external medium for data storage.
Necessary for protection. In the FaaS system, functions
submitted by different users access shared remote memory

322 21st USENIX Conference on File and Storage Technologies USENIX Association

CPU Xeon Gold 6240M @2.6 GHz,
32 logical cores, with hyperthreading enabled

RAM 186 GB 2666 MHz DDR4
NIC Mellanox MT27800 ConnectX-5 Family
OS 18.04.5 LTS, Linux 4.15.0-153

Table 3: Experimental cluster configuration. The evaluation
was carried out on a 4-node cluster.

Th
ro

ug
hp

ut
 (M

op
s) PatronusRPC MR QP

(a)

QP
MR
RPC
Patronus Latency

(b)

QP

MR

RPC

Patronus

1µ
s

1m
s

10
µs

10
0µ

s

0.1

1

10

of Clients
1 10 100 1000

Figure 5: The throughput (a) and latency (b) of random access
of RM with PATRONUS and other protection techniques. QP
does not scale beyond 32 clients per machine.

simultaneously. It asks for the isolation of remote access in
addition to the existing isolation of local memory and storage.
With PATRONUS, future FaaS systems can offer sandboxed
remote memory to functions with flexible control over which
function is allowed to access which piece of remote memory.
Necessity for performance. First, functions in FaaS have a
low bootstrap latency. The state-of-the-art FaaS systems [9,14,
27,33] enable microsecond-scaled ultra-low bootstrap latency
in the case of hot starts, emphasizing the need for low-latency
permission management. Second, functions scale out quickly
to millions of instances [33]. Even if each function accesses
remote memory once, it introduces a flood of permission
acquisitions, asking for high throughput permission manage-
ment to meet performance needs. Finally, functions access
remote memory on demand. Functions are spawned dynam-
ically in response to user requests, and remote access from
functions can not be known in advance. It involves permission
management in the critical path, precluding the optimization
of pre-acquiring permission.
Adoption of PATRONUS. Functions access remote memory
on bootstrap, do some calculations, and exit. With PATRONUS,
for each data on RM, one acquire call is introduced on func-
tion bootstrap and one revoke is introduced on exit. Re-
access to the same data shares the same permission from
one acquire. Specifically, for the image processing and data
analysis workloads we evaluated in the experiment, functions
call acquire for permission to access the input image and
in-memory database respectively. We assume cascadingly in-
voked functions are executed in the same container so that
they can share permission (communicate) with local mem-
ory (a technique called sequence function chain [8, 16]).

7 Evaluation
Compared mechanisms. We adopt PATRONUS to enable
protection in various workloads and compare it against three

Name (Abbr) # of MW # of RPC
Baseline 2 + 2 2
Delay Unbind (+ Delay) 2 + 1 2
Use Contiguity (+ Cont) 1 + 1 2
MW Handover (+ HO) 1 + 0 † 2
Lease Expire (+ Expr) 1 + 0 † 1

Table 4: A summary of techniques for reducing the permission
management overhead (§5.4). The # of MW column reports
binding + unbinding operations. † means at probability.

mechanisms used in existing RM systems. (i) Re-registration
of memory region (MR), representing the mechanism adopted
by FaRM [12] and Octopus [34]. (ii) Modification of QP
flag (QP), used by uPaxos [3]. (iii) Using RPC in the data
path (no permission acquisitions needed), used by AIFM [43]
and Redy [56]. Finally, Unprot stands for the vanilla imple-
mentation of workloads without any protection.

Experimental setup. We perform the evaluations on a cluster
with 4 nodes. Table 3 summarizes the configuration. One node
acts as the memory node with limited use of 4 CPU cores.
The others are compute nodes with 32 cores. We bind each
client thread to a core; for more than 32 clients, we spawn
coroutines in each thread to simulate a larger deployment. On
reporting latency, we disable coroutines to avoid the schedule
variance. The number of clients reported is per machine.

7.1 Overall Performance

Experimental setting. We performed an experiment to reveal
the overall data path performance of PATRONUS and com-
pared mechanisms. In the experiment, each client randomly
accesses 64 B within a large memory region. The client will
re-access the same address three times while using the same
permission, representing the common use cases with space
locality [12, 52]. The effective access throughput and latency
are reported in Figure 5.

Result. Among these techniques, PATRONUS performs the
best and only RPC can keep pace with it. The performance
gap will be enlarged significantly for a larger IO size because
RPC pays extra overhead of memory copy for each access,
but the MW overhead that PATRONUS pays is irrelevant to
the size. The performances of MR and QP are not comparable
to PATRONUS. The MR registration is expensive, because it
is synchronous and incurs kernel involvement (§2.1). The
latter requires modification to the QP flag, which includes the
complex QP state management overhead in the RNIC. The
QP-based solution also precludes sharing QPs among clients;
therefore, we can not evaluate it with more clients.

7.2 Effect of Software Co-design

In this section, we evaluate the effect of the software co-design
that makes PATRONUS achieve all the goals.

USENIX Association 21st USENIX Conference on File and Storage Technologies 323

Th
ro

ug
hp

ut
 (M

op
s)

(a)

Baseline
+Delay
+Cont
+HO
+Expr

Latency (µs)

(b)Network
+Expr

+HO
+Cont

+Delay
Baseline

10 50 100 150

Network

of Clients

2.0

4.0

1 10 100 1000

Figure 6: Throughput (a) and latency (b) of permission acqui-
sition under different optimizations.

7.2.1 Performance of Permission Management (G#1)
Experimental setting. We evaluate the performance of per-
mission management by breaking down the techniques we
adopt. Table 4 summarizes the technique. Besides the three
techniques described in §5.4, we additionally consider the
lease semantics as the final technique, which effectively elim-
inates the overhead of revoke RPC.

To evaluate the performance, we saturate the system with
enough clients to acquire (and revoke) permission over 64 B
areas with random addresses. We report the throughput and
latency of permission acquisitions in Figure 6.
Result. The combination of all the techniques effectively
leads to a performance close to the network bound (bare RPC
performance). The eventual throughput is more than 1 Mops
per core, which is only achievable with our effort in software
co-design, considering that additional overhead besides MWs
also exists in the system, such as memory management, RPC,
and lease management. In theory, we reduce the overhead of
managing a full permission lifecycle to one MW operation
and one RPC (the last line in Table 4), which doubles the
performance as the baseline and, we believe, exploits the true
potential of the hardware.

7.2.2 CN-collaborated Extension (G#2)
In this section, we demonstrate the necessity of the extension
API and the effectiveness of our CN-collaborated extension
technique (§5.3).
Experimental setting. We evaluate three cases: no extension
API, the naive RPC-based extension, and our CN-collaborated
extension technique. Without extensions, the unexpected per-
mission expiration requires another acquire call to get the
permission again (denoted as Re-acquire). The RPC-based
implementation allows extension but in a naive way, i.e., uses
an RPC to notify the memory nodes (+ Extend). Finally, our
technique (+ CN Extend) offloads the management overhead
to the CN. In the evaluation permission extends eight times.
Result. Figure 7 reports the throughput and latency. With-
out the extension, the Re-acquire brings both extra MW
operations and RPC overhead, which bottlenecks the system
seriously and gives only 202 Kops. The RPC-based extension
implementation, although saves unnecessary MW operations,
still introduces the RPC overhead to bottleneck the system.
The CN-collaborated technique reduces both the MW and
RPC overhead, effectively producing a ×6 performance gain.

Th
ro

ug
hp

ut
 (M

op
s) Re-acquire

+Extend
+CN Extend

Latency (µs)

Re-acquire

+Extend

+CN Extend

(b)

25 50 75

(a)

0

0.5

1.0

1.5

of Clients
1 2 4 8 32 128 512

Figure 7: Comparison of not allowing extension (Re-acquire),
using RPC for extension (Extend), and our CN-collaborated
extension technique (CN Extend). Reporting throughput (a)
and latency (b).

Patronus
Vanilla

crash

timeout
finished resizing

(a)

Lo
ad

 F
ac

to
r

0%
20%
40%
60%
80%

100%

Epoch (0.1 ms)
0 200 400 600 800 Th

ro
ug

hp
ut

 (K
op

s)

lease
polling

(b)

0

5

10

Slow Time (us)
0 500

Figure 8: (a) The load factor of RACE hashing under client
crash for vanilla implementation and PATRONUS. (b) The
comparison of polling and leases with clients of different fail-
slow degrees.

7.2.3 Effect of Lease Semantics (G#2)
We evaluate how the lease semantics enables the system to
resume progress when the client crashes while holding exclu-
sive permission. We use resizing in RACE hashing [59] as a
case.
Experimental setting. In the experiment, clients are concur-
rently accessing the hash table while resizing occurs. RACE
hashing does not allow cascaded resizing, so the resizing
client accesses the metadata (i.e., the resizing subtable) in
an exclusive way. The resizing client crashes at epoch 240,
leaving the orphaned exclusive permission (or an orphaned
lock in the vanilla design) in the system, potentially causing
deadlocks. We compare PATRONUS against the vanilla design.
Result. Figure 8 (a) shows the load factor of the hash table
while clients are concurrently loading data into the table and
the resizing client crashes. In the vanilla design, the orphaned
lock results in deadlock and prevents the following insertions
into the table (red line in the figure). With PATRONUS, the
exclusive permission to the metadata can be re-granted to
the other concurrent clients after the permission expires. The
other clients resume progress and load the table full.
7.2.4 Compare QP polling to leases (G#2)
Experimental setting. QP polling (polling) is an alternative
approach to leases (lease) where memory nodes periodically
issue RDMA operations to each QP as heartbeats. On heart-
beat timeout, which we set to the same value of lease time
(100 µs), the memory node suspects that the compute node has
crashed and reclaims the permission. We report the through-
put of exclusive permission acquisitions under the anomalies
where clients fail slow (get hanged due to network traffic or

324 21st USENIX Conference on File and Storage Technologies USENIX Association

Name w/o w/
Failure Reported 769 µs
Promote QP - 78 µs
Notify QP Failure 8 µs -
Recover QP 1004 µs -
Summary 1012 µs 78 µs

(8 %)

Table 5: Latency breakdown of handling QP faults with (w/)
or without (w/o) the spare QPs technique.

scheduling); a zero slow time denotes the case of normal
clients.
Result. Figure 8 (b) shows the throughput with normal and
slow clients. With normal clients (zero slow time), lease
performs slightly better than polling (6 % better) because it
allows the lease to expire itself, saving one revoke call than
polling. With slow clients, lease is able to retain perfor-
mance by timely expiration while polling does not detect it
and degrades performance seriously.
7.2.5 Spare QPs for Concealing Interruption (G#3)
In this section, we evaluate how the spare QPs can conceal
the interruption caused by QP faults with illegal access. We
prepare spare QPs and trigger illegal access (an out-of-bound
write) deliberately.
Result. We break down the latency with and without the
technique in Table 5. After illegal access triggers QP faults,
the case without spare QPs needs to go through the QP re-
bootstrap procedure, introducing significant overhead (Re-
cover QP, 1004 µs). Since QP recovery needs effort from both
sides, the client needs to notify the manager (Notify QP Fail-
ure, 8 µs). On the other hand, for the case with spare QPs,
only the promotion of spare QPs is required (Promote QPs,
78 µs), which involves a handy resource swap in the software.
Therefore, it reduces the interrupted time to 8 %.

The illegal request takes much longer for the RNIC to com-
plete (Failure Reported, 769 µs), measured between posting
the request and the error being notified. Unfortunately, this
procedure purely happens in the RNIC firmware and is confi-
dential; we are unable to analyze and optimize it. Neverthe-
less, we expect that this period can be significantly shortened
by simple modifications to the firmware for future RNICs.

7.3 Case Study: One-sided Data Structures
Next, we reveal the performance of PATRONUS under realistic
workloads. In this section, we focus on two remote one-sided
data structures, i.e., RACE hashing [59] and the concurrent
queue (adopted from [17, 24]). We omit the QP-based mecha-
nism in the figures because it has much worse performance
and does not allow scaling beyond 32 clients per CN (not
allow clients to share QP).
7.3.1 Hash Table
Experimental setting. We adopt PATRONUS to RACE hash-
ing [59], the state-of-the-art one-sided extendable hash ta-

ble. Since RACE hashing is not open-sourced, we implement
RACE hashing following the original paper, with all the opti-
mizations described in the paper enabled. We verified that the
performance of our version is on par with the one reported
in the paper. In the evaluation, we set the size of KV blocks
to 4 KB. The key follows Zipfian distribution with skewness
parameter 0.99. We also consider memory allocation in the
critical path as the extended version of the paper does [59],
with a pre-allocation factor of four to amortize allocation over-
head. The lease time is set to 100 µs. The detailed adoption
of PATRONUS is described in §6.1.
Result. Figure 9 shows the throughput under read-only, 50%
read-write and write-only workloads (a-c) and the read-only
latency (d) respectively. PATRONUS performs the best and has
a reasonable price for memory protection. The protection only
introduces 4 µs to the median latency (+29 %), which is an ac-
ceptable price for most use cases. The MR-based mechanism
is not scalable under all workloads. It is because insert and
query to RACE hashing involve a lot of memory access, gen-
erating a flood of permission requests in turn. The MR-based
mechanism is unable to meet the performance requirements.
The P99 latency of MR degrades severely because of the syn-
chronous API it exposes. The RPC mechanism gets better,
but it is still inferior due to the memory copy overhead.
7.3.2 Concurrent Queue
Experimental setting. The concurrent queue is implemented
as a lock-free linked list of segments; each segment contains
1024 entries. The lease time is set to 100 µs. The implementa-
tion and adoption of PATRONUS are described in §6.1.
Result. Figure 10 reports the throughput and latency of inserts
with the variety of producers. The performance of PATRONUS
is very close to the theoretical upper bound without protec-
tion. The reason for the high efficiency is that the overhead
of one PATRONUS operation can be amortized into multiple
insert operations. Nevertheless, the MR-based solution is still
insufficient in terms of throughput because its overhead is
too high to amortize (17.5 % throughput as PATRONUS). The
RPC-based solution also gets inferior performance because it
uses two-sided verbs in its data path, introducing overhead to
the limited CPU cores on memory nodes. We also vary seg-
ment size from 64 to 1024 to reveal the effect; PATRONUS is
×5.18 to ×1.78 better than MR (not shown for space limits).

7.4 Case Study: Function as a Service
Description. To evaluate how PATRONUS performs with the
FaaS platform, we adopt ServerlessBench [54], a thorough
benchmark with representative realistic serverless workloads.
We consider two typical applications in TC4 of Serverless-
Bench, i.e., image processing and data analysis. The former
is one of the most popular workloads in the cloud [5], which
comprises five functions in the chain to extract metadata and
generate the thumbnail of the input image. The data analysis
application is a workflow that analyses the salary of employ-
ees, triggered by data alteration in the database.

USENIX Association 21st USENIX Conference on File and Storage Technologies 325

Unprot
Patronus
RPC
MR

of Clients

(a) RO

0

2

4

1 2 4 16 64 512Th
ro

ug
hp

ut
 (M

op
s)

of Clients

(b) RW

0

2

4

1 2 4 16 64 512
of Clients

(c) WO

0

1

2

1 2 4 16 64 512

Unprot
Patronus
RPC
MR

Median P99

µs

Latency

(d) Lat.
 of RO

0

200

400

600

800

0
100

Figure 9: Performance of RACE hashing. (a-c) The throughput under read-only (RO), 50%-mixed read-write (RW), and
write-only (WO) workloads. (d) The latency under RO workload.

Unprot
Patronus
MR
RPC

Th
ro

ug
hp

ut
 (M

op
s) Unprot

Patronus
RPC
MR

µs

Latency
Median P99

(b)

0

200

400

600

0
20

(a)
2.0

4.0

of Clients
1 2 4 8 16 32

Figure 10: Throughput of producers for the one-sided concur-
rent queue.

Th
ro

ug
hp

ut

Unprot
Patronus
RPC
MR

(a) Image
processing

0

2×104

4×104

6×104

8×104

of Clients
1 2 4 8 16 32

(b) Data analysis

0

2×105

4×105

6×105

of Clients
1 2 4 8 16 32

Figure 11: Performance of two serverless applications.

Experimental setting. In the evaluation, we launch enough
functions to saturate the system. We assume hot starts for all
the functions, excluding the overhead of disk IO and container
bootstrap. The lease time is set to multiple times of function
lifetime so that lease extensions are rare. The adoption of
PATRONUS is described in §6.2.
Result. For the image processing application (Figure 11 (a)),
PATRONUS has a performance close to the unprotected case.
The reason is that generating the thumbnail is a CPU-intensive
task, and thus the bottleneck shifts from the protection over-
head to the CPU computation. Besides, MW has a constant
overhead over the memory size; therefore, the protection per-
formance remains constant even with larger images. On the
contrary, the overhead of MR and RPC is so high that they
still bottleneck the system even in this CPU-intensive case.

For the data analysis workload (Figure 11 (b)), it is more
IO-intensive than the previous workload and therefore a wider
performance gap is shown between PATRONUS and the unpro-
tected case. Nevertheless, PATRONUS still performs the best
and the gap is shortened with more concurrent clients (≥ 8)
in the system.

8 Related Work
The development of fast networks, especially the emergence
of RDMA, leads to a wide discussion on resource disaggrega-

tion [18, 21, 23, 44, 45]. Among them, remote memory is one
of the most typical forms of disaggregation, and it has gained
much research interest in the last decade [2,15,31,32]. To our
best knowledge, no prior RM system has provided efficient
protective interfaces with commodity RNICs.

Performance-oriented RM. A wide range of research on RM
focuses on optimizing performance with customized hard-
ware. Kona [11] eliminates the virtual memory overhead with
a new architecture. Other work [4, 7, 10] extends the RDMA
interface for richer semantics. StRoM [47] adopts the idea of
near-data processing by performing task offload to the smart
remote memory. On the contrary, PATRONUS focuses on the
less-discussed access protection issue, which is neglected by
these systems. PATRONUS runs on unmodified commodity
hardware, allowing a lower cost and a wider deployment.

Protective interfaces. Some RM systems provide ac-
cess protections with customized hardware, such as pro-
grammable switches [29], FPGA [22], and architectural
modifications [28]. PATRONUS is designed for commod-
ity hardware, serving as a ready-to-use solution for exist-
ing data centers. On the other hand, transactional RM sys-
tems [12, 52, 55] also provide protection for data consistency
with the transaction interface. However, the transaction se-
mantics is overkilled for most cases (e.g., data structures)
because it introduces the expensive overhead of transaction
logging and distributed commit protocol.

9 Conclusion

In this paper, we designed, implemented, and evaluated PA-
TRONUS, a protective remote memory system. PATRONUS
achieves high performance under all situations by hardware
and software co-design. Deployed to realistic applications, it
performs ×5.2 better than all the competitors and introduces
acceptable overhead (≤ 27.7 %).

Acknowledgments

We sincerely thank our shepherd Hyungon Moon and the
anonymous reviewers for their valuable feedback. This work
is funded by the National Natural Science Foundation of
China (Grant No. 61832011, 62022051) and the National Key
R&D Program of China (Grant No. 2021YFB0300500).

326 21st USENIX Conference on File and Storage Technologies USENIX Association

References
[1] Marcos K. Aguilera, Nadav Amit, Irina Calciu, Xavier

Deguillard, Jayneel Gandhi, Stanko Novaković, Arun
Ramanathan, Pratap Subrahmanyam, Lalith Suresh, Ki-
ran Tati, Rajesh Venkatasubramanian, and Michael Wei.
Remote regions: a simple abstraction for remote mem-
ory. In 2018 USENIX Annual Technical Conference
(USENIX ATC 18), pages 775–787, Boston, MA, July
2018. USENIX Association.

[2] Marcos K. Aguilera, Nadav Amit, Irina Calciu, Xavier
Deguillard, Jayneel Gandhi, Pratap Subrahmanyam,
Lalith Suresh, Kiran Tati, Rajesh Venkatasubramanian,
and Michael Wei. Remote memory in the age of fast
networks. In Proceedings of the 2017 Symposium on
Cloud Computing, SoCC ’17, page 121–127, New York,
NY, USA, 2017. Association for Computing Machinery.

[3] Marcos K. Aguilera, Naama Ben-David, Rachid Guer-
raoui, Virendra J. Marathe, Athanasios Xygkis, and Igor
Zablotchi. Microsecond consensus for microsecond ap-
plications. In 14th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 20), pages
599–616. USENIX Association, November 2020.

[4] Marcos K. Aguilera, Kimberly Keeton, Stanko No-
vakovic, and Sharad Singhal. Designing far memory
data structures: Think outside the box. In Proceedings
of the Workshop on Hot Topics in Operating Systems,
HotOS ’19, page 120–126, New York, NY, USA, 2019.
Association for Computing Machinery.

[5] Istemi Ekin Akkus, Ruichuan Chen, Ivica Rimac,
Manuel Stein, Klaus Satzke, Andre Beck, Paarijaat
Aditya, and Volker Hilt. SAND: Towards High-
Performance serverless computing. In 2018 USENIX
Annual Technical Conference (USENIX ATC 18), pages
923–935, Boston, MA, July 2018. USENIX Association.

[6] Emmanuel Amaro, Christopher Branner-Augmon, Zhi-
hong Luo, Amy Ousterhout, Marcos K. Aguilera, Auro-
jit Panda, Sylvia Ratnasamy, and Scott Shenker. Can far
memory improve job throughput? In Proceedings of the
Fifteenth European Conference on Computer Systems,
EuroSys ’20, New York, NY, USA, 2020. Association
for Computing Machinery.

[7] Emmanuel Amaro, Zhihong Luo, Amy Ousterhout,
Arvind Krishnamurthy, Aurojit Panda, Sylvia Rat-
nasamy, and Scott Shenker. Remote memory calls. In
Proceedings of the 19th ACM Workshop on Hot Topics
in Networks, HotNets ’20, page 38–44, New York, NY,
USA, 2020. Association for Computing Machinery.

[8] Apache OpenWhisk. http://openwhisk.apache.
org/. Accessed: 2022-09-01.

[9] Sol Boucher, Anuj Kalia, David G. Andersen, and
Michael Kaminsky. Putting the "micro" back in mi-
croservice. In 2018 USENIX Annual Technical Confer-
ence (USENIX ATC 18), pages 645–650, Boston, MA,
July 2018. USENIX Association.

[10] Matthew Burke, Sowmya Dharanipragada, Shannon
Joyner, Adriana Szekeres, Jacob Nelson, Irene Zhang,
and Dan R. K. Ports. Prism: Rethinking the rdma in-
terface for distributed systems. In Proceedings of the
ACM SIGOPS 28th Symposium on Operating Systems
Principles, SOSP ’21, page 228–242, New York, NY,
USA, 2021. Association for Computing Machinery.

[11] Irina Calciu, M. Talha Imran, Ivan Puddu, Sanidhya
Kashyap, Hasan Al Maruf, Onur Mutlu, and Aasheesh
Kolli. Rethinking software runtimes for disaggregated
memory. In Proceedings of the 26th ACM International
Conference on Architectural Support for Programming
Languages and Operating Systems, ASPLOS ’21, page
79–92, New York, NY, USA, 2021. Association for Com-
puting Machinery.

[12] Aleksandar Dragojević, Dushyanth Narayanan, Miguel
Castro, and Orion Hodson. FaRM: Fast remote mem-
ory. In 11th USENIX Symposium on Networked Systems
Design and Implementation (NSDI 14), pages 401–414,
Seattle, WA, April 2014. USENIX Association.

[13] Aleksandar Dragojević, Dushyanth Narayanan, Ed-
mund B. Nightingale, Matthew Renzelmann, Alex
Shamis, Anirudh Badam, and Miguel Castro. No com-
promises: Distributed transactions with consistency,
availability, and performance. In Proceedings of the 25th
Symposium on Operating Systems Principles, SOSP ’15,
page 54–70, New York, NY, USA, 2015. Association
for Computing Machinery.

[14] Dong Du, Tianyi Yu, Yubin Xia, Binyu Zang, Guanglu
Yan, Chenggang Qin, Qixuan Wu, and Haibo Chen. Cat-
alyzer: Sub-millisecond startup for serverless computing
with initialization-less booting. In Proceedings of the
Twenty-Fifth International Conference on Architectural
Support for Programming Languages and Operating
Systems, ASPLOS ’20, page 467–481, New York, NY,
USA, 2020. Association for Computing Machinery.

[15] Paolo Faraboschi, Kimberly Keeton, Tim Marsland, and
Dejan Milojicic. Beyond processor-centric operating
systems. In 15th Workshop on Hot Topics in Operating
Systems (HotOS XV), Kartause Ittingen, Switzerland,
May 2015. USENIX Association.

[16] Fn Protect. https://fnproject.io. Accessed: 2022-
09-01.

USENIX Association 21st USENIX Conference on File and Storage Technologies 327

http://openwhisk.apache.org/
http://openwhisk.apache.org/
https://fnproject.io

[17] Folly UnboundedQueue. https://github.com/
facebook/folly/blob/main/folly/concurrency/
UnboundedQueue.h. Accessed: 2022-09-01.

[18] Peter X. Gao, Akshay Narayan, Sagar Karandikar, Joao
Carreira, Sangjin Han, Rachit Agarwal, Sylvia Rat-
nasamy, and Scott Shenker. Network requirements for
resource disaggregation. In 12th USENIX Symposium on
Operating Systems Design and Implementation (OSDI
16), pages 249–264, Savannah, GA, November 2016.
USENIX Association.

[19] Rachid Guerraoui, Antoine Murat, Javier Picorel,
Athanasios Xygkis, Huabing Yan, and Pengfei Zuo.
uKharon: A membership service for microsecond appli-
cations. In 2022 USENIX Annual Technical Conference
(USENIX ATC 22), pages 101–120, Carlsbad, CA, July
2022. USENIX Association.

[20] Chuanxiong Guo, Haitao Wu, Zhong Deng, Gaurav Soni,
Jianxi Ye, Jitu Padhye, and Marina Lipshteyn. Rdma
over commodity ethernet at scale. In Proceedings of
the 2016 ACM SIGCOMM Conference, SIGCOMM ’16,
page 202–215, New York, NY, USA, 2016. Association
for Computing Machinery.

[21] Zhiyuan Guo, Zachary Blanco, Mohammad Shahrad,
Zerui Wei, Bili Dong, Jinmou Li, Ishaan Pota, Harry Xu,
and Yiying Zhang. Resource-centric serverless comput-
ing. arXiv preprint arXiv:2206.13444, 2022.

[22] Zhiyuan Guo, Yizhou Shan, Xuhao Luo, Yutong Huang,
and Yiying Zhang. Clio: A hardware-software co-
designed disaggregated memory system. In Proceedings
of the 27th ACM International Conference on Architec-
tural Support for Programming Languages and Oper-
ating Systems, ASPLOS ’22, page 417–433, New York,
NY, USA, 2022. Association for Computing Machinery.

[23] Sangjin Han, Norbert Egi, Aurojit Panda, Sylvia Rat-
nasamy, Guangyu Shi, and Scott Shenker. Network sup-
port for resource disaggregation in next-generation data-
centers. In Proceedings of the Twelfth ACM Workshop
on Hot Topics in Networks, HotNets-XII, New York, NY,
USA, 2013. Association for Computing Machinery.

[24] Timothy L. Harris. A pragmatic implementation of non-
blocking linked-lists. In Proceedings of the 15th Inter-
national Conference on Distributed Computing, DISC
’01, page 300–314, Berlin, Heidelberg, 2001. Springer-
Verlag.

[25] Anuj Kalia, Michael Kaminsky, and David G. Ander-
sen. Using rdma efficiently for key-value services. SIG-
COMM Comput. Commun. Rev., 44(4):295–306, aug
2014.

[26] Anurag Khandelwal, Yupeng Tang, Rachit Agarwal,
Aditya Akella, and Ion Stoica. Jiffy: Elastic far-memory
for stateful serverless analytics. In Proceedings of the
Seventeenth European Conference on Computer Sys-
tems, EuroSys ’22, page 697–713, New York, NY, USA,
2022. Association for Computing Machinery.

[27] Ana Klimovic, Yawen Wang, Patrick Stuedi, Animesh
Trivedi, Jonas Pfefferle, and Christos Kozyrakis. Pocket:
Elastic ephemeral storage for serverless analytics. In
13th USENIX Symposium on Operating Systems Design
and Implementation (OSDI 18), pages 427–444, Carls-
bad, CA, October 2018. USENIX Association.

[28] Vamsee Reddy Kommareddy, Clayton Hughes, Si-
mon David Hammond, and Amro Awad. Deact:
Architecture-aware virtual memory support for fabric
attached memory systems. In 2021 IEEE International
Symposium on High-Performance Computer Architec-
ture (HPCA), pages 453–466. IEEE, 2021.

[29] Seung-seob Lee, Yanpeng Yu, Yupeng Tang, Anurag
Khandelwal, Lin Zhong, and Abhishek Bhattacharjee.
Mind: In-network memory management for disaggre-
gated data centers. In Proceedings of the ACM SIGOPS
28th Symposium on Operating Systems Principles,
SOSP ’21, page 488–504, New York, NY, USA, 2021.
Association for Computing Machinery.

[30] Youngmoon Lee, Hasan Al Maruf, Mosharaf Chowd-
hury, Asaf Cidon, and Kang G. Shin. Hydra : Resilient
and highly available remote memory. In 20th USENIX
Conference on File and Storage Technologies (FAST
22), pages 181–198, Santa Clara, CA, February 2022.
USENIX Association.

[31] Kevin Lim, Jichuan Chang, Trevor Mudge,
Parthasarathy Ranganathan, Steven K. Reinhardt,
and Thomas F. Wenisch. Disaggregated memory for
expansion and sharing in blade servers. SIGARCH
Comput. Archit. News, 37(3):267–278, jun 2009.

[32] Kevin Lim, Yoshio Turner, Jose Renato Santos, Alvin
AuYoung, Jichuan Chang, Parthasarathy Ranganathan,
and Thomas F. Wenisch. System-level implications of
disaggregated memory. In IEEE International Sympo-
sium on High-Performance Comp Architecture, pages
1–12, 2012.

[33] Ming Liu, Simon Peter, Arvind Krishnamurthy, and
Phitchaya Mangpo Phothilimthana. E3: Energy-
Efficient microservices on SmartNIC-Accelerated
servers. In 2019 USENIX Annual Technical Confer-
ence (USENIX ATC 19), pages 363–378, Renton, WA,
July 2019. USENIX Association.

328 21st USENIX Conference on File and Storage Technologies USENIX Association

https://github.com/facebook/folly/blob/main/folly/concurrency/UnboundedQueue.h
https://github.com/facebook/folly/blob/main/folly/concurrency/UnboundedQueue.h
https://github.com/facebook/folly/blob/main/folly/concurrency/UnboundedQueue.h

[34] Youyou Lu, Jiwu Shu, Youmin Chen, and Tao Li. Octo-
pus: an RDMA-enabled distributed persistent memory
file system. In 2017 USENIX Annual Technical Confer-
ence (USENIX ATC 17), pages 773–785, Santa Clara,
CA, July 2017. USENIX Association.

[35] Teng Ma, Dongbiao He, and Ning Liu. Hybridskiplist:
A case study of designing distributed data structure with
hybrid rdma. In 2021 IEEE 45th Annual Computers,
Software, and Applications Conference (COMPSAC),
pages 68–73, 2021.

[36] Christopher Mitchell, Yifeng Geng, and Jinyang Li.
Using One-Sided RDMA reads to build a fast, CPU-
Efficient Key-Value store. In 2013 USENIX Annual
Technical Conference (USENIX ATC 13), pages 103–
114, San Jose, CA, June 2013. USENIX Association.

[37] Sumit Kumar Monga, Sanidhya Kashyap, and Chang-
woo Min. Birds of a feather flock together: Scaling
rdma rpcs with flock. In Proceedings of the ACM
SIGOPS 28th Symposium on Operating Systems Prin-
ciples, SOSP ’21, page 212–227, New York, NY, USA,
2021. Association for Computing Machinery.

[38] Jacob Nelson, Brandon Holt, Brandon Myers, Pre-
ston Briggs, Luis Ceze, Simon Kahan, and Mark Os-
kin. Latency-Tolerant software distributed shared mem-
ory. In 2015 USENIX Annual Technical Conference
(USENIX ATC 15), pages 291–305, Santa Clara, CA,
July 2015. USENIX Association.

[39] Jacob Nelson, Brandon Holt, Brandon Myers, Pre-
ston Briggs, Luis Ceze, Simon Kahan, and Mark Os-
kin. Latency-Tolerant software distributed shared mem-
ory. In 2015 USENIX Annual Technical Conference
(USENIX ATC 15), pages 291–305, Santa Clara, CA,
July 2015. USENIX Association.

[40] Stanko Novakovic, Yizhou Shan, Aasheesh Kolli,
Michael Cui, Yiying Zhang, Haggai Eran, Boris Pis-
menny, Liran Liss, Michael Wei, Dan Tsafrir, and Mar-
cos Aguilera. Storm: A fast transactional dataplane
for remote data structures. In Proceedings of the 12th
ACM International Conference on Systems and Storage,
SYSTOR ’19, page 97–108, New York, NY, USA, 2019.
Association for Computing Machinery.

[41] John Ousterhout, Parag Agrawal, David Erickson, Chris-
tos Kozyrakis, Jacob Leverich, David Mazières, Subha-
sish Mitra, Aravind Narayanan, Guru Parulkar, Mendel
Rosenblum, Stephen M. Rumble, Eric Stratmann, and
Ryan Stutsman. The case for ramclouds: Scalable high-
performance storage entirely in dram. SIGOPS Oper.
Syst. Rev., 43(4):92–105, jan 2010.

[42] RDMA Memory Window. https://docs.nvidia.
com/networking/pages/viewpage.action?
pageId=25138102. Accessed: 2022-09-01.

[43] Zhenyuan Ruan, Malte Schwarzkopf, Marcos K. Aguil-
era, and Adam Belay. AIFM: High-Performance,
Application-Integrated far memory. In 14th USENIX
Symposium on Operating Systems Design and Imple-
mentation (OSDI 20), pages 315–332. USENIX Associ-
ation, November 2020.

[44] Yizhou Shan, Yutong Huang, Yilun Chen, and Yiying
Zhang. LegoOS: A disseminated, distributed OS for
hardware resource disaggregation. In 13th USENIX
Symposium on Operating Systems Design and Imple-
mentation (OSDI 18), pages 69–87, Carlsbad, CA, Oc-
tober 2018. USENIX Association.

[45] Yizhou Shan, Will Lin, Zhiyuan Guo, and Yiying Zhang.
Towards a fully disaggregated and programmable data
center. In Proceedings of the 13th ACM SIGOPS Asia-
Pacific Workshop on Systems, APSys ’22, page 18–28,
New York, NY, USA, 2022. Association for Computing
Machinery.

[46] Yizhou Shan, Shin-Yeh Tsai, and Yiying Zhang. Dis-
tributed shared persistent memory. In Proceedings of
the 2017 Symposium on Cloud Computing, SoCC ’17,
page 323–337, New York, NY, USA, 2017. Association
for Computing Machinery.

[47] David Sidler, Zeke Wang, Monica Chiosa, Amit Kulka-
rni, and Gustavo Alonso. Strom: Smart remote memory.
In Proceedings of the Fifteenth European Conference on
Computer Systems, EuroSys ’20, New York, NY, USA,
2020. Association for Computing Machinery.

[48] Shin-Yeh Tsai, Yizhou Shan, and Yiying Zhang. Dis-
aggregating persistent memory and controlling them
remotely: An exploration of passive disaggregated Key-
Value stores. In 2020 USENIX Annual Technical Con-
ference (USENIX ATC 20), pages 33–48. USENIX As-
sociation, July 2020.

[49] Shin-Yeh Tsai and Yiying Zhang. Lite kernel rdma
support for datacenter applications. In Proceedings of
the 26th Symposium on Operating Systems Principles,
SOSP ’17, page 306–324, New York, NY, USA, 2017.
Association for Computing Machinery.

[50] Qing Wang, Youyou Lu, and Jiwu Shu. Sherman: A
write-optimized distributed b+tree index on disaggre-
gated memory. In Proceedings of the 2022 Interna-
tional Conference on Management of Data, SIGMOD
’22, page 1033–1048, New York, NY, USA, 2022. Asso-
ciation for Computing Machinery.

USENIX Association 21st USENIX Conference on File and Storage Technologies 329

https://docs.nvidia.com/networking/pages/viewpage.action?pageId=25138102
https://docs.nvidia.com/networking/pages/viewpage.action?pageId=25138102
https://docs.nvidia.com/networking/pages/viewpage.action?pageId=25138102

[51] Tinggang Wang, Shuo Yang, Hideaki Kimura, Garret
Swart, and Spyros Blanas. Efficient usage of one-sided
rdma for linear probing. In Eleventh International Work-
shop on Accelerating Analytics and Data Management
Systems Using Modern Processor and Storage Architec-
tures (AMDS’20), 2020.

[52] Xingda Wei, Zhiyuan Dong, Rong Chen, and Haibo
Chen. Deconstructing RDMA-enabled distributed trans-
actions: Hybrid is better! In 13th USENIX Sympo-
sium on Operating Systems Design and Implementation
(OSDI 18), pages 233–251, Carlsbad, CA, October 2018.
USENIX Association.

[53] Xingda Wei, Fangming Lu, Rong Chen, and Haibo Chen.
KRCORE: A microsecond-scale RDMA control plane
for elastic computing. In 2022 USENIX Annual Tech-
nical Conference (USENIX ATC 22), pages 121–136,
Carlsbad, CA, July 2022. USENIX Association.

[54] Tianyi Yu, Qingyuan Liu, Dong Du, Yubin Xia, Binyu
Zang, Ziqian Lu, Pingchao Yang, Chenggang Qin, and
Haibo Chen. Characterizing serverless platforms with
serverlessbench. In Proceedings of the 11th ACM Sym-
posium on Cloud Computing, SoCC ’20, page 30–44,
New York, NY, USA, 2020. Association for Computing
Machinery.

[55] Ming Zhang, Yu Hua, Pengfei Zuo, and Lurong Liu.
FORD: Fast one-sided RDMA-based distributed trans-
actions for disaggregated persistent memory. In 20th

USENIX Conference on File and Storage Technologies
(FAST 22), pages 51–68, Santa Clara, CA, February
2022. USENIX Association.

[56] Qizhen Zhang, Philip A. Bernstein, Daniel S. Berger,
and Badrish Chandramouli. Redy: Remote dynamic
memory cache. Proc. VLDB Endow., 15(4):766–779,
dec 2021.

[57] Yang Zhou, Hassan M. G. Wassel, Sihang Liu, Jiaqi Gao,
James Mickens, Minlan Yu, Chris Kennelly, Paul Turner,
David E. Culler, Henry M. Levy, and Amin Vahdat.
Carbink: Fault-Tolerant far memory. In 16th USENIX
Symposium on Operating Systems Design and Imple-
mentation (OSDI 22), pages 55–71, Carlsbad, CA, July
2022. USENIX Association.

[58] Tobias Ziegler, Sumukha Tumkur Vani, Carsten Bin-
nig, Rodrigo Fonseca, and Tim Kraska. Designing
distributed tree-based index structures for fast rdma-
capable networks. In Proceedings of the 2019 Interna-
tional Conference on Management of Data, SIGMOD
’19, page 741–758, New York, NY, USA, 2019. Associ-
ation for Computing Machinery.

[59] Pengfei Zuo, Jiazhao Sun, Liu Yang, Shuangwu Zhang,
and Yu Hua. One-sided RDMA-Conscious extendible
hashing for disaggregated memory. In 2021 USENIX
Annual Technical Conference (USENIX ATC 21), pages
15–29. USENIX Association, July 2021.

330 21st USENIX Conference on File and Storage Technologies USENIX Association

More Than Capacity: Performance-Oriented Evolution of Pangu in Alibaba

Qiang Li⋄, Qiao Xiang†, Yuxin Wang†⋄, Haohao Song†⋄, Ridi Wen†⋄,
Wenhui Yao⋄, Yuanyuan Dong⋄, Shuqi Zhao⋄, Shuo Huang⋄, Zhaosheng Zhu⋄,

Huayong Wang⋄, Shanyang Liu⋄, Lulu Chen⋄, Zhiwu Wu⋄, Haonan Qiu⋄, Derui Liu⋄,
Gexiao Tian⋄, Chao Han⋄, Shaozong Liu⋄, Yaohui Wu⋄, Zicheng Luo⋄,

Yuchao Shao⋄, Junping Wu⋄, Zheng Cao⋄, Zhongjie Wu⋄, Jiaji Zhu⋄, Jinbo Wu⋄,
Jiwu Shu†, Jiesheng Wu⋄,

⋄Alibaba Group, †Xiamen University

Abstract
This paper presents how the Pangu storage system continu-
ously evolves with hardware technologies and the business
model to provide high-performance, reliable storage services
with a 100-µs level of I/O latency. Pangu’s evolution includes
two phases. In the first phase, Pangu embraced the emergence
of solid-state drive (SSD) storage and remote direct memory
access (RDMA) network technologies by innovating its file
system and designing a user-space storage operating system.
As a result, Pangu substantially reduced its I/O latency while
providing high throughput and IOPS. In the second phase,
Pangu evolved from a volume-oriented storage provider to a
performance-oriented one. To adapt to this business model
change, Pangu upgraded its infrastructure with storage servers
of much higher SSD volume and RDMA bandwidth from 25
Gbps to 100 Gbps. It introduced a series of key designs, in-
cluding traffic amplification reduction, remote direct cache
access, and CPU computation offloading, to ensure Pangu
fully harvests the performance improvement brought by hard-
ware upgrades. Other than technology innovations, we also
shared our operating experiences during Pangu’s evolution,
and discussed important lessons learned from them.

1 Introduction
Since Alibaba started developing and deploying the Pangu

storage system in 2009, Pangu has been serving as a unified
storage platform for Alibaba Group and Alibaba Cloud. It
provides a scalable, high-performance, and reliable storage
service for Alibaba’s core businesses (e.g., Taobao, Tmall,
AntFin, and Alimama). Many cloud services, such as Elastic
Block Storage (EBS) [1], Object Storage Service (OSS) [2],
Network-Attached Storage (NAS) [3], PolarDB [4], and Max-
Compute [5], are built on top of Pangu. After over a decade,
Pangu has become a global storage system with a volume of
exabytes and manages trillions of files.
Pangu 1.0: volume-oriented storage service provision. The
development and deployment of Pangu go through two genera-
tions. Pangu 1.0 spanned from 2009 to 2015. It was designed
on an infrastructure composed of servers with commodity

CPUs and hard disk drives (HDD), which have a ms-level
I/O latency, and a Gbps-level datacenter network. Pangu
1.0 designed a distributed kernel-space file system based on
Linux Ext4 [6] and kernel-space TCP [7], and gradually added
support to multiple file types (e.g., TempFile, LogFile, and
random access file) as needed by different storage services.
This period overlaps with the early stage of cloud computing.
Although Pangu 1.0’s performance (i.e., throughput and I/O
latency) reached the limit of HDD and Gbps-level networks,
clients’ primary focus was to get large volumes of space to
store their data, rather than high performance.
New hardware technologies require new designs. Since
2015, we started to design and develop Pangu 2.0 to embrace
the emerging SSD and RDMA technologies. The goal of
Pangu 2.0 is to provide high-performance storage services
with a 100µs-level I/O latency. Although SSD and RDMA
can achieve high-performance, low-latency I/O in storage and
network, we observe that (1) multiple file types used in Pangu
1.0, in particular file types that allow random access, perform
poorly on SSD, which can achieve high throughput and IOPS
on sequential operations; (2) the kernel-space software stack
cannot keep up with the high IOPS and low I/O latency of
SSD and RDMA, due to data copy and frequent interrupts;
and (3) the paradigm shift from server-centric datacenter ar-
chitectures to resource-disaggregated datacenter architectures
poses additional challenges to achieving low I/O latency.
Phase one of Pangu 2.0: embracing SSD and RDMA by
file system refactoring and user-space storage operating
system. To achieve high-performance and low-latency I/O,
in this phase, Pangu 2.0 first proposed new designs in key
components of its file system. To simplify the development
and management of the overall system, it designed a uni-
fied, append-only persistence layer. It also introduced a self-
contained chunk layout to reduce the I/O latency of file write
operations. Second, Pangu 2.0 designed a user-space storage
operating system (USSOS). USSOS uses a run-to-completion
thread model to realize efficient collaboration between the
user-space storage stack and the user-space network stack.
It also proposes a user-space scheduling mechanism for ef-

USENIX Association 21st USENIX Conference on File and Storage Technologies 331

ficient CPU and memory resource allocation. Third, Pangu
2.0 deployed mechanisms to provide SLA guarantees under
dynamic environments. With these innovations, Pangu 2.0
achieved a ms-level P999 I/O latency in phase one.
Phase two of Pangu 2.0: adapting to a performance-
oriented business model with infrastructure updates
and breaking through network/memory/CPU bottlenecks.
Since 2018, Pangu gradually changed its business model from
volume-oriented to performance-oriented. It is because en-
terprises are increasingly moving their businesses to Alibaba
Cloud and they have stringent requirements on storage perfor-
mance and latency. This shift became faster after the COVID-
19 pandemic broke out in 2020. To adapt to this business
model change and the fast expansion of clientele, Pangu 2.0
needed to keep upgrading the infrastructure.

Scaling the infrastructure with original servers and switches
along a Clos-based topology (e.g., FatTree [8]) is not econom-
ical, including a higher total cost of ownership (e.g., rack
space, power, cooling, and labor) and a higher environmental
cost (e.g., a higher carbon emission rate). As such, Pangu
developed in-house high-volume storage servers (96 TB SSD
per server) and upgrades network bandwidth from 25 Gbps
to 100 Gbps.

To fully harvest the performance improvement brought by
these upgrades, Pangu 2.0 proposed a series of techniques to
cope with the performance bottleneck at network, memory,
and CPU and fully utilize its massive resources. Specifically,
Pangu 2.0 optimized network bandwidth by reducing the net-
work traffic amplification ratio and dynamically adjusting the
priorities of different traffic. It coped with the memory bot-
tleneck by proposing remote direct cache access (RDCA). It
addressed the CPU bottleneck by eliminating the data tax of
data (de)serialization and introducing CPU wait instruction
to synchronize hyper-threading.
High performance in production. By the end of phase
one, Pangu 2.0 successfully supported the elastic SSD block
storage service with a 100µs-level I/O latency and 1M IOPS.
During Alibaba’s Double 11 Festival in 2018, Pangu 2.0
supported the Alibaba database service with a latency of 280
µs. For the OTS storage service [9], with the same hardware,
its I/O latency in Pangu 2.0 is lower than that in Pangu 1.0
by an order of magnitude. For write-intensive services (e.g.,
EBS cloud drive), the P999 I/O latency is less than 1 ms.
For read-intensive services (e.g., online search), the P999 I/O
latency is less than 11 ms.

In phase two, by upgrading the network from 2×25 Gbps to
2×100 Gbps and breaking through the bottlenecks of network,
memory and CPU, the normalized effective throughput per
Taishan storage server increases by 6.1×.

2 Background
2.1 Overview of Pangu

Pangu is a large-scale distributed storage system. It con-
sists of Pangu Core, Pangu Service, and Pangu Monitoring

……
Chunk ……

Chunkserver
Chunk Chunk ……

Chunkserver
Chunk

Client Masters
(Distributed

Metadata
Services)

Pangu Core
Append-Only Persistent File System

Pangu
Monitoring

System

Service on Pangu
OSS\NAS\EBS\Cloud-Native Service ……

Client……

Figure 1: The architecture of Pangu.

System (Figure 1). Pangu Core consists of clients, masters,
and chunkservers, and provides an append-only persistence
semantic. The clients provide SDK to Pangu cloud storage
services (e.g., EBS and OSS), and are responsible for receiv-
ing file requests from these services and communicating with
the masters and the chunkservers to fulfill these requests. Sim-
ilar to other distributed file systems (e.g., Tectonic [10] and
Colossus [11]), the clients in Pangu are heavyweight and play
a key role in the replica management, SLA guarantee, and
data consistency management of Pangu.

The masters manage all the metadata in Pangu and use a
Raft-based protocol to maintain metadata consistency [12].
For better horizontal scalability and extensibility (e.g., hun-
dreds of billions of files), the Pangu masters decompose the
monolithic metadata service into two separate services: the
namespace service and the stream meta service, where a
stream is an abstraction of a group of chunks. Both services
first partition metadata by directory tree to achieve metadata
locality, then further partition these groups using hashing to
achieve good load balancing [13]. While the namespace
service provides information on files (e.g., directory tree
and the namespace), the stream meta service provides the
mapping from files to chunks (i.e., the locations of chunks).
Chunkservers store data in chunks and are equipped with
a customized user-space storage file system (USSFS). The
USSFS provides high-performance, append-only storage en-
gines for different hardware (e.g., SMRSTORE for HM-SMR
drives [14]). In the early days (i.e., phase one of Pangu 2.0),
each file is stored in chunkservers with three replicas, and later
a garbage collection worker (GCWorker) performs garbage
collection and stores the file using erasure coding (EC). In
phase two of Pangu 2.0, we gradually replace the 3-way repli-
cation with EC in key businesses (e.g., EBS) to reduce the
traffic amplification in Pangu (§4.1.2).

On top of the Pangu Core, the Pangu Service provides tradi-
tional cloud storage services (e.g., EBS, OSS, and NAS) and
cloud-native storage services through a cloud-native-oriented
file system (i.e., Fisc [15]). The Pangu Monitoring System
(e.g., Perseus [16]) provides real-time monitoring and AI-
assisted root cause analysis services to both the Pangu Core
and the Pangu Service. The infrastructure of Pangu Core,
the Pangu Service, and the Pangu Monitoring System are
interconnected using high-speed networks [17, 18].

332 21st USENIX Conference on File and Storage Technologies USENIX Association

2.2 Design Goals of Pangu 2.0
To cope with the emergence of hardware technologies and

the shift of business model, Pangu 2.0 aims to achieve the
following goals:
• Low latency: Pangu 2.0 aims to leverage the low latency

characteristics of SSD and RDMA, to reach an average
100µs-level I/O latency in a computation-storage disaggre-
gated architecture, and provide a ms-level P999 SLA even
under environment dynamics such as network traffic jitters
and server failures.

• High throughput: Pangu 2.0 aims to reach an effective
throughput on storage servers that approaches their capac-
ity.

• Unified high-performance support to all services: Pangu
2.0 aims to provide unified high-performance support to
all services running on top of it, such as online search, data
streaming analytics, EBS, OSS, and database.

2.3 Related Work
Many distributed storage systems have been designed and

deployed [10, 19–21]. Some are open-sourced ones (e.g.,
HDFS [20] and Ceph [22]), and some are proprietary ones
used by different industry organizations (e.g., GFS [19], Tec-
tonic [10], and AWS [23]).

Pangu is a proprietary storage system of Alibaba Group.
It provides storage infrastructure support for Alibaba’s core
businesses and Alibaba Cloud. In the past few years, we
have shared our experiences in different aspects of Pangu,
such as the large-scale deployment of RDMA [17], the key-
value engine for scale-out cloud storage services [24], the
co-design of network and storage software stack for the EBS
storage service [18], and some key designs of the names-
pace metadata service [13]. This paper focuses on intro-
ducing our experience in evolving Pangu to provide unified
low-latency, high-throughput storage services to support all
Alibaba’s businesses and Alibaba Cloud, in response to the
emergence of hardware technologies and the shift of Pangu’s
business model.

3 Phase One: Embracing SSD and RDMA
In this section, we introduce how Pangu embraces the

emergence of SSD and RDMA to provide high-performance,
reliable storage services with low I/O latency. Compared with
HDD and TCP, SSD and RDMA technologies substantially
reduce the I/O latency in storage and network, respectively.
However, integrating these two technologies into Pangu, a
large, distributed storage system with a mature architecture, is
not without challenges. To this end, Pangu introduces a series
of new designs in key components of its file system (§3.1)
and develops a user-space storage operating system (§3.2) to
achieve a high-throughput, high IOPS performance with a
100µs-level I/O latency. It also deploys novel mechanisms to
provide such SLA guarantees under dynamic environments,
e.g., straggler and transient/permanent failures (§3.3).

SATA SSD NVMe SSD OpenChannel SSD Optane HDD

Unified, Append-Only Persistence Layer

Pangu (Distributed Storage System)

Object Store Master File Store Master

……

Table Store Master

OSS Client NAS Client OTS Client

Figure 2: Various businesses are based on the unified persis-
tence layer.

3.1 Append-Only File System
As shown in Figure 1, the core base layer of Pangu con-

sists of the masters, chunkservers, and clients. Pangu first
introduces a unified, append-only persistence layer with an
append-only interface called FlatLogFile to simplify its archi-
tecture (§3.1.1). FlatLogFile is friendly to SSDs with high
throughput and low latency. Then Pangu adopts a variety of
designs to improve its performance. Specifically, the Pangu
client is heavyweight to meet the requirements of different
storage services (§3.1.2). Based on FlatLogFile, Pangu adopts
the append-only chunks and uses a self-contained chunk lay-
out to manage chunks on chunkservers (§3.1.3). Pangu im-
plements distributed metadata management on the master to
realize efficient metadata operation (§3.1.4).

3.1.1 Unified, Append-Only Persistence Layer
The persistence layer of Pangu provides interfaces to all

Pangu’s storage services (e.g., EBS, OSS, and NAS). In the
early development of Pangu, the persistence layer provides
different interfaces to different storage services. For example,
it provides the LogFile interface to low-latency NAS services,
and the TempFile interface to high-throughput Maxcompute
data analytics services. However, this design brings substan-
tial development and management complexities. Specifically,
for every storage service, Pangu developers must design and
implement a new interface. That is a complex, labor-intensive
and error-prone process.

To simplify the development and management of Pangu and
make sure all storage services can achieve high-performance,
low-latency I/O on SSD, motivated by the layered architec-
ture of computer networks, Pangu introduces a unified file
type called FlatLogFile (Figure 2). Specifically, FlatLog-
File has an append-only semantic, and upper-layer services
(e.g., OSS) can equip a key-value-like mapping to update
their data and a garbage collection mechanism to compress
their historical data. FlatLogFile provides a simple, unified
interface for storage services to perform data operations. Fur-
thermore, Pangu developers must ensure that data operations
via FlatLogFile, especially the write operations, can be exe-
cuted efficiently and reliably on storage media. As such, all
upgrades and changes to storage services are transparent to
Pangu developers, substantially simplifying the development
and management of Pangu.

USENIX Association 21st USENIX Conference on File and Storage Technologies 333

……
Sector Unit 1 Sector Unit 2 Sector Unit 3 Sector Unit N

Chunk Data

Padding

Footer

CRCChunk ID ……Length

Figure 3: The self-contained chunk layout.

Under the hood, we observe that SSD can achieve high
throughput and IOPS on sequential operations due to its in-
trinsic characteristics of the storage unit and flash transaction
layer. To make sure data operations via FlatLogFile can be ex-
ecuted on SSD efficiently, we align the sequential operations
on FlatLogFile to achieve high performance.
3.1.2 Heavyweight Client

We design Pangu’s client as a heavyweight one. It is re-
sponsible for the data operations with chunkservers and the
metadata information retrieval and updates with the masters.
After getting the chunk information from the masters, a Pangu
client is in charge of the corresponding replication protocol
and EC protocol. The client is equipped with retry mech-
anisms (e.g., backup read in §3.3) to cope with occasional
jitters in Pangu (e.g., network packet drop) in order to im-
prove the I/O SLA. It also deploys probing mechanisms to
periodically get the latest chunkserver status from the masters
and evaluate the quality of services of chunkservers. Simi-
lar to the client of Facebook’s Tectonic file system [10], the
Pangu client can select appropriate write or read parameters
to meet the specific requirements of different storage services
(e.g., EBS and OSS).
3.1.3 Append-only Chunk Management

Typical file systems (such as Ext4 [6]) store files in blocks.
A file and its metadata are written to the storage media sep-
arately with two SSD write operations. Not only does it
increase the latency of the file write, it also shortens the lifes-
pan of SSDs. As such, adopting this design in Pangu 2.0
would result in high latency for file access, and lead to a high
hardware replacement cost.

To address this issue, Pangu chooses to store files in chunks,
which have the append-only semantic based on FlatLogFile,
on chunkservers, and designs a self-contained chunk layout,
where each chunk stores both data and its own metadata. As
such, a chunk can be written into the storage media in one op-
eration instead of two, substantially reducing the write latency
and improving the lifespan of the storage media. Figure 3
shows the layout of the chunk. A chunk includes multiple
sector units, where each sector unit includes 3 elements: data,
padding, and footer. The footer stores chunk metadata, such
as chunk ID, chunk length, and the CRC checksum.

The self-contained chunk layout also allows the
chunkserver to recover from failures by itself. Specifically,
when a client writes consecutive self-contained chunks to
the storage media, the chunkserver stores a copy of the
metadata of these chunks in the memory, and periodically

takes checkpoints of this information to the storage media.
When a failure happens and leads to some unfinished write
operations, the chunkserver loads the metadata from the
checkpoints and compares it with the metadata in chunks. If
discrepancies happen, the chunkserver checks the CRC of the
chunks to recover to the latest correct state.
3.1.4 Metadata Operation Optimization

The Pangu masters provide two metadata services: the
namespace service is responsible for directory tree and file
management, and the stream service is responsible for chunk
information. Stream is an abstraction of a group of chunks.
Chunks in the same stream belong to the same file. Both
services use a distributed architecture for better scalability.
They partition metadata by considering metadata locality and
load balancing (i.e., partition by directory tree first and then
by hashing). We design multiple mechanisms to optimize the
efficiency of metadata operations.
Parallel metadata processing. Both namespace and stream
services adopt parallelization processing (e.g., InfiniFS [13])
to meet the low-latency requirement of metadata access.
Specifically, Pangu uses a hash algorithm to map highly co-
hesive metadata to different metadata servers. It also uses a
new data structure that supports predictable directory IDs and
allows clients to perform path parsing efficiently in parallel.

We also introduce several techniques to accelerate how
clients retrieve chunk information from the stream service.
Big chunks with variable lengths. Pangu 2.0 chooses to
use big chunks. This decision has three benefits. It reduces
the number of metadata. It avoids unnecessary I/O latency
caused by clients frequently requesting chunks. It also helps
improve the lifespan of SSD. However, simply increasing the
chunk size will increase the risk of fragmentation. As such,
We introduce variable-length chunks (e.g., sizes ranging from
1 MB to 2 GB). For example, the chunk size of the EBS
service has a 95% quantile of 64 MB and a 99% quantile of
286.4 MB. Variable-chunk length reduces the probability of
fragmentation and maintains compatibility with Pangu 1.0.
Caching chunk information at clients. Each client main-
tains a local metadata cache pool to reduce the number of
metadata query requests. The pool is updated using an LRU-
based mechanism. When an application wants to access the
data, the client first queries its metadata cache. It issues a new
request to the masters to get the up-to-date metadata when (1)
its cache is not hit; or (2) the cache is hit, but in response to
the request, the corresponding chunkserver notifies the client
that its cached metadata becomes stale (e.g., due to replica
migration).
Chunk information request batching. We let each client
aggregate multiple chunk information requests over a short
interval and send them in a batch to the masters to improve the
query efficiency. The masters process the batched requests in
parallel, aggregate the results and send them back to the client.
The client disaggregates the results and dispatches them to
corresponding applications.

334 21st USENIX Conference on File and Storage Technologies USENIX Association

Speculative chunk information prefetching. We design a
greedy, probabilistic prefetching mechanism to reduce the
number of chunk information requests. When the masters
receive a read request, they respond to the client with the meta-
data of the related chunk and the metadata of other chunks.
When the masters receive a write request, the masters respond
with more available chunks than the client requested. In this
way, the client can switch chunks without requesting new
chunks if it encounters write exceptions.
Data piggybacking to reduce one RTT. We are motivated
by QUIC [25] and HTTP3 [26] to use data piggybacking to
improve the write latency. Specifically, after a client retrieves
the chunk address from the masters, it merges the chunk
creation request and the data to write into one request and
sends it to the chunkserver. As a result, we are able to reduce
the write latency by one RTT.

3.2 Chunkserver USSOS
In Pangu, the chunkserver is responsible for carrying out all

the data operations. As such, it is essential to carefully design
the run-time operating system to ensure that data operations
can be finished with low latency and high throughput. With
the emerging high-speed network technology and storage me-
dia, sticking to the traditional design that puts data operations
through kernel space is inefficient. In particular, this would in-
cur not only frequent system interrupts, which consume CPU
resources, but also unnecessary data duplication between the
user space and kernel space.

To cope with these issues, we resort to the kernel-bypassing
design to develop a high-performance user-space storage op-
eration system [17] for the chunkserver, which provides a
unified user-space storage software platform. Aside from real-
izing device management and run-to-completion thread model
[17, 18] in USSOS, Pangu also realizes user-level memory
management (§3.2.1), lightweight user-space scheduling strat-
egy (§3.2.2), and a customized high-performance append-only
user-space storage file system (USSFS) for SSDs (§3.2.3).

3.2.1 User-Level Memory Management
Chunkserver USSOS is built based on existing user-space

technologies (e.g., RDMA in the network stack, DPDK [27],
and SPDK [28] in the storage stack). But we go beyond and
unify these two stacks to further reduce the latency and im-
prove the performance of data operations. First, we make
use of the run-to-completion thread model. In the traditional
pipeline thread model, a request is decomposed into individual
stages and each stage runs on a thread. In contrast, in USSOS,
the request is run on one thread from beginning to end in the
run-to-completion model, reducing the overhead caused by
context switch, inter-thread communication, and inter-thread
synchronization. Second, the thread requests a huge-page
memory space to serve as a shared memory between the net-
work and the storage stacks. To be concrete, data received
from the network can be stored in this shared huge-page mem-
ory using RDMA protocol. After sending the metadata of the

huge-page memory (e.g., its address and size), data can be
written directly from the huge-page memory to the storage me-
dia via SPDK frame. This way, we achieve zero copy between
the network and the storage stacks during the data transmis-
sion and storage procedure. Besides, through the user-level
shared huge-page memory for I/O data, data transmission
operations among different roles (e.g., the chunkserver and
the garbage collection worker) can also achieve zero copy.
3.2.2 User-Space Scheduling Mechanism

In a real production environment, we encounter perfor-
mance glitches brought by problems like task scheduling.
Here, we introduce three key designs to optimize CPU
scheduling in USSOS to improve the performance of Pangu.
Preventing a task from blocking the subsequent ones. As
explained in §3.2.1, the run-to-completion thread model helps
achieve zero-copy between the user-space network and stor-
age stacks by using shared huge-page memory. However,
each chunkserver has a fixed number of working threads. A
new request is dispatched to a working thread based on the
hash value of the file in the request. Requests assigned to
the same working thread are executed in a first-in-first-serve
order. As such, given one request, if one of its tasks takes too
much time (e.g., table lookup, table search, traversal, memory
allocation, monitoring, and statistics), it will hog resources
and block subsequent tasks. This issue degrades the perfor-
mance of this request and leaves other requests to starve. To
solve this problem, we take different measures for different
scenarios. For heavy tasks, Pangu introduces the heartbeat
mechanism to monitor the execution time of tasks and set an
alarm. If a task runs out of time slice, it would be put into
a background thread to remove it from the critical path. For
system overhead, Pangu uses TCMalloc’s cache [29] to allow
high-frequency operations to be completed in the cache.
Priority scheduling to guarantee high QoS. Pangu assigns
different QoS objectives for different requests (e.g., user re-
quests are assigned a high-priority objective while GC re-
quests are assigned a low one). However, a request with a
low-priority objective may block a high-priority request that
arrives later and is assigned to the same working thread. As a
result, it is hard to guarantee that requests with higher QoS
objectives can always receive higher priorities. To address
this problem, USSOS creates priority queues. Then tasks can
be put into the corresponding priority queue according to their
QoS objectives.
Polling and event-driven switching (NAPI). USSOS adopts
a switching mechanism between polling and event-driven
modes to reduce the overhead of massive interrupt processing
with a low CPU utilization [30]. Specifically, NIC provides a
fd monitored by applications and notifies the applications of
data arrival through the fd event. Applications are in the event-
driven mode by default. When they receive a notification from
NIC, they enter the polling mode. If they do not receive any
I/O request for some time, they switch back to the event-
driven mode and notify the NIC.

USENIX Association 21st USENIX Conference on File and Storage Technologies 335

Client

1
2
3

chasing
{time t}

② 3

①
① ③ 3 ①

④

data flow control flow

1

 ...

Chunkserver1 Chunkserver2 Chunkserver3

1
2
3

chunk

Figure 4: An illustrating example of chasing with
MaxCopy = 3 and MinCopy = 2.
3.2.3 Append-Only USSFS

Previous file systems (e.g., Ext4) could not make full use
of the append-only FlatLogFile (§3.1.1) and SSDs with high
throughput and low latency. Therefore, Pangu goes beyond
and customizes the USSFS, a compact and high-performance
user-space storage file system.

With the append-only semantic of FlatLogFile, USSFS sup-
ports append-only write and provides a set of chunk-based
semantics, such as open, close, seal, format, read, and append,
instead of standard POSIX semantics like Ext4. On this ba-
sis, it supports the append-only sequential write, which fully
leverage of the sequential write-friendly feature of SSDs, and
random read of successfully written data. Meanwhile, USSFS
adopts different mechanisms to maximize the performance
of SSDs. First, it can fully utilize the self-contained chunk
layout (§3.1.3) to significantly reduce the number of data op-
erations without using mechanisms such as page cache and
journal. Second, it does not establish a hierarchical relation-
ship between inodes and file directories like Ext4. All oper-
ations on files are recorded to log files. The corresponding
metadata can be rebuilt by replaying the logs when mounting
the file system. Third, we use the polling mode instead of
an interrupt notification mechanism like Ext4 to maximize
the performance of SSDs. Moreover, considering that the
capacity of a single SSD node is tens or even hundreds of
terabytes and the size of the chunk is usually 64 MB, we set
the minimum space allocation granularity in USSFS as 1 MB.
This choice considers both the size of memory used by space
management metadata and SSD space utilization.

3.3 High Performance SLA Guarantee
Pangu introduces multiple mechanisms to provide high

performance and a ms-level P999 SLA guarantee [31] in
failure scenarios. Chasing copes with abnormal jitters (e.g.,
network flash and packet retransmission caused by network
incast). In these scenarios, exceptions occur in the cluster
operating environment, but the system can recover to a normal
state automatically in a short time. Non-stop write aims at
unavailable chunks. Backup read reduces latency when the
read request can not return within a limited time. Blacklisting
isolates the chunkservers which provide poor service or fail.
Chasing. We design this mechanism to reduce the im-
pact of system jitters on write latency. It allows the client
to return success to the application when MinCopy out of
MaxCopy replicas are successfully written in chunkservers,

where 2×MinCopy > MaxCopy. Figure 4 illustrates how
chasing works with MaxCopy = 3 and MinCopy = 2. Sup-
pose the application asks the client to write data [1,2,3] to 3
chunk replicas. At time T , chunkserver 1 and 2 return suc-
cess to the client’s write operation but chunkserver 3 has not.
The client returns success to the application. But it keeps
the chunk in its memory and waits for another period t, an
empirical ms-level threshold. If chunkserver 3 returns success
to the client before T + t, the client releases the chunk from
its memory. If chunkserver 3 does not finish the write, but the
unfinished part is smaller than an empirical threshold k, the
client issues a retry on chunkserver 3. If the unfinished part is
larger than k, the client will seal this chunk at chunkserver 3
so that this chunk will not have subsequent append operation.
The client then notifies the masters, who will replicate the
data on a different chunk from chunkserver 1 or 2 to ensure
there are a total of 3 replicas eventually.

Our analysis shows that with a careful choice of t and k,
chasing substantially reduces the write tail latency without
increasing the risk of data loss. Specifically, taking the case of
MaxCopy = 3 as an example, after two replicas are success-
fully written to chunkservers, three replicas are in the system,
whereas the third one is in the memory of the client. During
[T,T + t], data loss can only happen when the SSDs of the
two chunkserver replicas are damaged and the last replica
in the client memory also fails or the cluster powers down.
Because SSDs’ annual failure rate (i.e., ∼ 1.5% [32–37]) and
servers’ annual downtime rate (i.e., < 2% [38, 39]) are close,
the probability of data loss when two replicas are written suc-
cessfully and the third replica is chasing is approximately the
same as that when all three replicas are written successfully.
Pangu has deployed chasing for over a decade and has not
experienced any data loss caused by chasing. Recent studies
also started to investigate this early-write-acknowledgment
mechanism [40–42].
Non-stop write. We design this mechanism to reduce the
write latency when a chunk write fails. When the failure hap-
pens, the client seals the chunk and reports the successfully
written data length to the masters. It then uses a new chunk to
continue writing the unfinished data. If the data written to the
sealed chunk is corrupted, we use other replicas to duplicate
a copy of this data to the new chunk in the background traffic.
If no replica is available, the client writes this data to the new
chunk again.
Backup read. To reduce the read latency under dynamic en-
vironments, the client sends additional read requests to other
chunkservers as backups before receiving the response of the
previously sent read request. This mechanism has two key
parameters, the number and waiting time of sending backup
read requests. To this end, Pangu calculates the latency of
different disk types and I/O sizes and uses this information to
dynamically adjust the time to send backup read requests. It
also limits the number of backup read requests to control the
system’s load.

336 21st USENIX Conference on File and Storage Technologies USENIX Association

0 1 2 3 4 5
Time (minute)

240
250
260
270
280

Av
er

ag
e

La
te

nc
y

(u
s)

Figure 5: The average latency of database access to Pangu
on Double 11 Festival in 2018.

0 2 4 6 8 10 12
Time (hour)

0

2000

4000

6000

8000

Av
er

ag
e

La
te

nc
y

(u
s) Pangu 1.0 Pangu 2.0

Figure 6: The average latency of OTS querying of Pangu 1.0
and Pangu 2.0 under the same stress test.

Blacklisting. To avoid sending I/O requests to chunkservers
with poor service quality, Pangu introduces two blacklists,
deterministic blacklist and non-deterministic blacklist. When
Pangu determines that a chunkserver is unserviceable (e.g.,
SSDs of a chunkserver are damaged), this server will be added
to the deterministic blacklist. If a chunkserver can provide
service, but its latency exceeds a certain threshold, it will be
added to the non-deterministic blacklist with a probability
that increases with its service latency. If the server’s latency
exceeds the median latency of all servers by several times, it is
directly added to the non-deterministic blacklist with a proba-
bility of one. To release servers from these blacklists, clients
send I/O probes to those servers periodically (e.g., every sec-
ond). If a server on the deterministic blacklist successfully
returns the response of this request, it will be removed from
this blacklist. For a server on the non-deterministic blacklist,
Pangu decides whether to remove the server from the black-
list based on the time it takes to receive the response to this
request.

Pangu limits the total number of servers on the blacklists
to ensure system availability. For each server, it introduces
a grace period for adding/removing it to/from the blacklist
to maintain system stability. In addition, because the failed
servers in the TCP and RDMA links may be different, Pangu
maintains separate blacklists for TCP and RDMA links, re-
spectively, and takes I/O probes on both links to update them.

3.4 Evaluations
Figure 5 shows the latency of database (DB) access to

Pangu under the peak of 550,000 transactions per second dur-
ing the Double 11 Festival in 2018. This peak value is at least
one order of magnitude larger than that of non-festival days.
The DB consists of millions of databases (e.g., databases
of Taobao merchants), each of which contains millions of
e-commerce users’ data. During this process, the DB needs
to query orders and record transactions for those users. Under
such a peak transactions rate, the access latency is less than
280 µs, which proves the high performance of Pangu 2.0.

0 10 20 30
Time (day)

200
400
600
800

La
te

nc
y

(u
s)

Average P999

Figure 7: The write latency of EBS business.

0 10 20 30
Time (day)

0
1000
2000
3000
4000

La
te

nc
y

(u
s) Average P999

Figure 8: The read latency of online search business.

Figure 6 shows the latency of the cloud product OTS [9]
querying with the same SSD and 25 Gbps network. Under
the same query pressure, after upgrading from Pangu 1.0 to
Pangu 2.0, the query latency is reduced by nearly an order of
magnitude. This is mainly due to the low latency of read and
write operations and the improved processing capability of a
single thread in Pangu 2.0.

Figures 7 and 8 show the average latency and long tail
latency of two clusters (online EBS and online search busi-
ness) within one month. Online EBS is write-intensive and
its online read/write ratio is nearly 1:10, which expects to
achieve high throughput on write. As shown in Figure 7, its
long tail latency is less than 1 ms. Online search business
mainly services for the query and recommendation of Alibaba
e-commerce (e.g., search for goods on Taobao and Tmall),
which expects to achieve high throughput on read. As shown
in Figure 8, the long tail latency of read is less than 5 ms
within one month. The results exhibit that Pangu 2.0 has a
good guarantee for latency SLA.

4 Phase Two: Adapting to Performance-
Oriented Business Model

Since 2018, Pangu gradually changes its role from a
volume-oriented storage provider to a performance-oriented
provider. This change in business model and the fast expan-
sion of Pangu’s clientele require Pangu to keep upgrading
the infrastructure. However, scaling the infrastructure with
original servers and switches along a Clos-based topology is
not economical in many ways, including a higher financial
and environmental cost (e.g., a higher carbon emission rate).
As such, Pangu develops its in-house storage server Tais-
han. A Taishan server is equipped with 2×24 core Skylake
CPUs, 12×8 TB commodity SSDs, 128 GB DDR memory,
and 2×dual-port 100 Gbps NICs. Although we could con-
tinue to increase its storage volume at the moment, we choose
not to do so to maintain a high-level write IOPS/GB to suit
the need of the performance-oriented business model. With
optimizations made by SSD manufacturers (e.g., caching and
channel), the SSD throughput of a single Taishan server can
reach more than 20 GB/s.

USENIX Association 21st USENIX Conference on File and Storage Technologies 337

With such high-performance storage servers, it is natural
to observe that other resources (e.g., network, memory, and
CPU) become the performance bottleneck of Pangu. As such,
we upgrade the network of Pangu from 25 Gbps RDMA to
100 Gbps. However, contrary to common perception, it is
non-trivial to provide high-performance, low-latency I/O in
such an upgraded infrastructure. That is because new hard-
ware also comes with new technical challenges in large-scale
deployment. To this end, we propose and deploy a series of
novel techniques to optimize the operation of Pangu’s massive
network (§4.1), memory (§4.2), and CPU resources (§4.3).

4.1 Network Bottleneck
Pangu optimizes the network in two aspects: network band-

width expansion (§4.1.1) and traffic optimization (§4.1.2).

4.1.1 Bandwidth Expansion
To match the throughput of all SSDs on a single storage

node, Pangu upgrades the network bandwidth from 25 Gbps
to 100 Gbps to increase its network capability. The success
of network bandwidth expansion depends on the improving
of software and hardware. For hardware, Pangu adopts high-
performance NIC/RNIC, optical modules (QSFP28 DAC,
QSFP28 AOC, QSFP28 [43]), single-mode/multi-mode fiber,
and high-performance switches. For the network software
stack, Pangu first adopts lossless RDMA and proposes various
mechanisms to achieve large-scale RDMA deployment, such
as shutting down NIC ports or temporialy switching from
RDMA to TCP for a short time (e.g., several seconds) when
there are too many pause frames on the RDMA network [17].
However, these mechanisms cannot handle other issues of the
pause frame based flow control (e.g., deadlocks [44] and head-
of-line blocking [45, 46]). As such, Pangu upgrades to lossy
RDMA, in which pause frames are disabled, to avoid these
problems and improve performance. More details about this
bandwidth expansion (e.g., how we address the interoperabil-
ity issue of heterogeneous network hardware and software)
can be found in our early paper [17].

4.1.2 Traffic Optimization
Other than increasing the network capability, we also tackle

the network bottleneck by reducing the traffic amplification
ratio. Specifically, the traffic amplification ratio is computed
as the amount of data transmitted through the network divided
by the actual file size. Take the workflow of the EBS service as
an example (Figure 9). First, the EBS client sends a file (1x) to
the Pangu client (step (a)). Second, the Pangu client transfers
the file to 3 storage nodes to write 3 replicas (3x). Third, the
garbage collection worker (GCWorker) reads the file (1x) and
performs GC on it. For ease of exposition, we ignore the file
size change before and after GC. In the end, the file is written
back to storage nodes in the form of EC(8,3) (1.375x), which
provides at least the same level of fault tolerance as 3-replica
but uses less storage space. As such, the traffic amplification
ratio of a file write can be up to 6.375x (1x+3x+1x+1.375x).
In other words, the maximum data access bandwidth of EBS

……

(c1)
1x

Front-end Traffic Background Traffic
Business Client

SSD SSD……
Chunkserver

SSD SSD……
Chunkserver

(b1) 1.5x (b2) 0.5*1.5xWrite EC (4,2)

(d1) (d2)
0.5*1.375x

Write
EC (8,3)

 (a) Send 1x
Pangu Client

GCWorker

 (c2)
0.5*1x

Compression

Compression

Read

GC

1.375x Write
EC (8,3)

Figure 9: Pangu optimizes network traffic with 3 techniques:
EC, compression, and balance between background and front-
end traffic. The entire life cycle of a file we define is as
follows. First, the business client sends a file (step a) to the
Pangu client. Second, the Pangu client writes the file to the
chunkserver in way b1 (b2 after compression). Third, the
GCWorker reads the file from the chunkserver in way c1 (c2
after client compression) and performs garbage collection.
Finally, the GCWorker writes the file in way d1 (d2 after
GCWorker compression).

in a 100-Gbps network is less than 16 Gbps. To cope with the
issue of the high traffic amplification ratio limiting the service
capability of Pangu, we introduce two optimizations: EC and
data compression.
Use EC to replace 3-replica. Using EC to replace the 3-
replica mechanism can substantially reduce the network traffic
amplification while achieving a good level of fault tolerance.
Take Figure 9 as an example. If we use EC (4,2) (step (b1))
to replace the 3-replica step, the network traffic amplification
ratio can be reduced from 6.375x to 4.875x, the sum of step
(a), (b1), (c1), and (d1).

Two challenges arise during this replacement. First, storing
small files in EC is expensive because of the large number
of zero-paddings needed to perform EC on data with a fixed
length. We introduce multiple mechanisms to cope with this
waste of space, including small write request aggregation and
dynamic switching between EC and 3 replicas. Second, com-
puting EC introduces a non-negligible latency. To this end,
Pangu adopts Intel ISA-L [47], which reduces the latency of
computing EC by 2.5 to 3 times compared with Jerasure [48].
Compressing FlatLogFile. We observe that FlatLogFile
is highly redundant. As such, both the Pangu client and
GCWorker compress the file before writing it to further reduce
the traffic (e.g., step (b2) and (d2) in Figure 9). We choose
the LZ4 algorithm [49] to achieve efficient (de)compression.
Empirical data in Pangu shows that the average compression
rate can reach 50%. As such, in the example above, the
traffic amplification ratios of step (b2), (c2) and (d2) can all
be reduced by half. As a result, the traffic amplification ratio
can be further reduced from 4.875x to 2.9375x, i.e., the sum
of step (a), (b2), (c2), and (d2).
Dynamic bandwidth allocation between front-end and
background traffic. We dynamically adjust the threshold

338 21st USENIX Conference on File and Storage Technologies USENIX Association

of usable network bandwidth for background traffic. For
example, if there is sufficient empty space in the whole storage
cluster, we temporally decrease the threshold to limit the
bandwidth of background traffic (e.g., the GC traffic), and let
the frontend traffic use more bandwidth. For Taobao, Pangu
sets a low threshold from daytime to midnight to cope with
the large number of front-end access requests. After midnight,
Pangu increases it because the front-end traffic decreases.

4.2 Memory Bottleneck
The fundamental memory bottleneck in Pangu lies in the

high contention of memory bandwidth between network pro-
cesses (i.e., NIC performing DMA operations) and applica-
tion processes (e.g., data copy, data replication, and garbage
collection) in the receiver host. Because NIC cannot acquire
enough memory bandwidth, severe PCIe back-pressure is
generated to the NIC. As a result, the NIC buffer is filled with
in-flight packets. Eventually, it drops the overflowed ones,
triggering the congestion control mechanism in the network
and leading to overall performance degradation (i.e., 30%
network throughput drop, 5%-10% latency increase and 10%
IOPS drop per server). This phenomenon is not unique to
Pangu. Google also recently reported this issue [50].

We tackle this memory bandwidth bottleneck in three steps.
First, we add more small-capacity DRAMs to the server to
fully utilize the memory channels. Second, we switch back-
ground traffic from TCP to RDMA to reduce servers’ memory
bandwidth consumption (§4.2.2). Third, we design remote
direct cache access (RDCA) to move memory out of the re-
ceiver host datapath and let senders access the receiver’s cache
directly (§4.2.3).

4.2.1 Adding Small-Capacity DRAMs
Because the bottleneck is memory bandwidth instead of

memory capacity, we add more DRAMs with small capacity
(e.g., 16 GB) to servers to fully utilize the memory channels
and increase the available memory bandwidth per server. We
also enable non-uniform memory access (NUMA) to avoid
across-sockets memory accesses being constrained by the
ultra path interconnect [51].

4.2.2 Shifting Background Traffic From TCP to RDMA
In the 25-Gbps network, Pangu’s background traffic was

transmitted using TCP. It is to guarantee the QoS of front-end
traffic because there is only one hardware queue for RDMA
transmission on 25-Gbps switches.

With the network being updated to 100 Gbps, Pangu starts
to transmit background traffic using RDMA to reduce the
memory bandwidth consumption of network processes. It is
because TCP needs at least four more memory copies than
RDMA. By switching to RDMA, the memory bandwidth
spent by background traffic is reduced by about 75%. To
guarantee the QoS of front-end traffic, we design a host rate
control mechanism similar to Linux tc [52, 53] to control the
rate of the background traffic being injected into the network.

4.2.3 Remote Direct Cache Access
In addition to increasing the available memory bandwidth

and decreasing unnecessary memory bandwidth consumption,
we propose the remote direct cache access (RDCA) architec-
ture to let senders bypass the receiver’s memory and access
its cache directly. It is supported by an important observation
in Pangu’s production workload: the timespan data spent in
memory after leaving NIC is very short (i.e., hundreds of µs
on average). Assuming a 200 µs average post-NIC times-
pan, for a dual-port 100 Gbps NIC, we only need 5 MB to
temporally store the data leaving NIC. Although other cache
accessing technologies (e.g., DCA [54, 55] and DDIO [56])
have been proposed, they suffer from the leaky DMA problem
(i.e., frequent cache eviction triggered by new arrival mes-
sages [57, 58]). In contrast, RDCA goes beyond substantially
to show that we can recycle a small area of LLC to support
NIC operations at line rate with three components:

Cache-resident buffer pool. The pool uses a shared receiver
queue (SRQ) for receiving small messages and a READ buffer
equipped with a window-based rate control mechanism for
receiving large messages, such that the memory buffer needed
for RDMA operations can fit into the cache.

Swift cache recycle. In order to support 100-Gbps NIC op-
erating at line rate with as few LLC as possible, we design
the swift cache recycle mechanism to reduce data’s post-NIC
timespan by (1) processing data in parallel along a pipeline,
and (2) optimizing processing using hardware offloading and
lightweight (de)serialization.

Cache-pressure-aware escape mechanism. To deal with
occasional jitters (e.g., SSD slow write and application excep-
tions), the escape mechanism monitors the usage of reserved
LLC and takes corresponding actions, including (1) replacing
the cache buffer of straggler data by adding a new buffer to
the cache-resident buffer pool, such that the size of the us-
able cache in RDCA to accommodate newly arriving requests
remains unchanged; (2) actively copying the data of slow-
running applications to memory if too many replacements
happened, such that other applications can use the RDCA
buffer pool and the pool does not take up too much cache; and
(3) let the NIC mark explicit congestion notification (ECN)
in congestion notification packets to indicate congestion if
copying to memory fails or is insufficient in releasing the
cache pressure.

We leverage Intel’s DDIO [56] to implement RDCA on
commodity hardware. Results of extensive evaluation in some
clusters of Pangu show that for typical storage workloads,
RDCA consumes a 12MB LLC cache (20% of the total
cache) per server, decreases the average memory bandwidth
consumption by ∼89% and improves network throughput
by 9%. We find that RDCA is also effective in non-storage
workloads, e.g., it reduces the average latency of collective
communications in latency-sensitive HPC applications by up
to 35.1%. RDCA is rolled out in Pangu at the end of 2022.

USENIX Association 21st USENIX Conference on File and Storage Technologies 339

4.3 CPU Bottleneck
Even with optimizations to break the network and mem-

ory bottleneck, the throughput of Pangu in a 100-Gbps net-
work can still reach only 80% of its theoretical value. It is
because operations such as data serialization and deserializa-
tion, data compression and data CRC computation consume
many CPU resources, making CPU another bottleneck of
Pangu. To this end, Pangu introduces a hybrid design to re-
duce (de)serialization operations (§4.3.1), a special hardware
instruction CPU Wait to make full use of the CPU (§4.3.2),
and a hardware/software co-design [59] to offload CRC com-
puting and data compression to hardware (§4.3.3).

4.3.1 Hybrid RPCs
Serializing and deserializing RPC requests using Proto-

buf [60] in Pangu costs about 30% of CPU overhead. We
observe that this overhead mostly happens in the data path
over a small number of RPC types. As such, we take a hybrid
design to handle this issue. We switch our data path oper-
ations to use a raw structure similar to FlatBuffer [61], to
send and receive data directly without serialization. Pangu
continues to use Protobuf for control operations due to its
flexibility and complexity. As a result, network throughput
for each CPU core increased by about 59%.

4.3.2 Supporting Hyper-Threading Using CPU Wait
Pangu initially did not use hyper-threading (HT) [62], but

started to adopt it as the CPU core resources become scarce.
However, HT has two main performance issues. First, two
HTs on one physical core need to switch contexts. Second,
one HT affects the execution of the other HT when they
execute tasks simultaneously, resulting in increased latency on
both tasks. For example, when a network idle-polling thread
is running on one HT, and a compression thread running on
the other HT from the same physical core is compressing
4 KB data with the LZ4 algorithm [49] and lzbeach [63] at
the same time, the latency of data compression increases by
25%, compared with the case that the compression thread
exclusively occupies the physical core.

To solve these two issues, Pangu introduces the CPU wait
instruction. It consists of monitor and mwait. Pangu needs
less than 5 ms to call them. Revisit the example above. After
introducing CPU wait, the network idle-polling thread will
mwait at the monitored memory address and does not wake up
until the memory address is written by other threads. During
the mwait process, the HT it runs on enters an idle sleep state,
one of the C-States except for C0 [64,65], without interfering
with the other HT. In addition, the time of waking up HTs
with system calls is of ms-level. As such, Pangu can fully
utilize the CPU cores with high performance. In this example,
the network throughput increases by 31.6%, compared with
the case where CPU wait is not used.

4.3.3 Hardware and Software Co-design
For high performance, Pangu offloads some tasks from

CPU to programmable hardware. First, data compression is

2x25Gbps PCIe 3.0
100Gbps

Memory BW
Optimization

PCIe 4.0
200Gbps

Traffic
Optimization

CPU Optim-
ization

0
1
2
3
4
5
6
7

N
or

m
al

iz
ed

Th
ro

ug
hp

ut

①
1.00

②
1.70

③
2.00

④
3.30

⑤
5.00

⑥
6.10

Figure 10: The normalized effective throughput per storage
node of Pangu in the evolution process.

offloaded to FPGA-based computational storage drives [66].
At a 3-GB/s throughput, hardware-based FPGA compression
can save about 10 physical cores (Intel(R) Xeon(R) Platinum
2.5 Ghz). Second, CRC computation is offloaded to RDMA-
capable NICs, which calculates the CRC of each data block.
CPU then aggregates these CRC and performs a lightweight
check [18]. This design ensures low CPU overhead and high
application-level data integrity. At the same throughput, com-
pared with using software, using hardware for CRC computa-
tion can save 30% of CPU overhead.

4.4 Evaluations
Figure 10 shows the normalized effective throughput per

storage node (NETPSN) on the evolution roadmap of the
storage node on EBS and high-performance ESSD [67].
Stage 1. To better illustrate the development of the perfor-
mance of Pangu 2.0, we initialize NETPSN as 1 when Pangu
introduces 2 × 25-Gbps network and 4-TB SSDs.
Stage 2. As SSD’s capacity increases to 8 TB with higher
performance, Pangu introduces a 100-Gbps network. The
network bandwidth is 100 Gbps because the server supports
PCIe gen3. Though the network bandwidth doubles, NETPSN
increases from 1 to 1.7 instead of 2. It is because the memory
bandwidth for read and write reaches 90 GB/s, close to the
maximal memory bandwidth of the server (105 GB/s).
Stage 3. Insufficient memory bandwidth leads to packet
drops at NICs, resulting in a large throughput drop. With
the memory bandwidth optimizations in §4.2, we successfully
increase NETPSN to 2.
Stage 4. After introducing PCIe gen4, the network throughput
increases to 2×100 Gbps. The network bandwidth doubles,
but NETPSN does not, i.e., increased to 3.3 rather than 4, due
to the traffic amplification problem (about 6x).
Stage 5. After the Pangu client adopts EC(4, 2), data compres-
sion, and other optimizations, the traffic amplification ratio
reduces by half (∼3x) (§4.1). However, NETPSN increases
to 5 instead of 6.6. The main reason is that data compression
and other operations consume many CPU resources.
Stage 6. In order to solve the CPU bottleneck, Pangu of-
floads tasks (e.g., data compression and CRC) from CPU to
hardware (§4.3), eventually increasing NETPSN to 6.1.

These results show that by breaking the bottlenecks of net-
work, memory, and CPU, Pangu achieves high performance
and adapts to the new performance-oriented business model.

340 21st USENIX Conference on File and Storage Technologies USENIX Association

5 Operation Experiences
After introducing the design innovation in Pangu 2.0, we

next introduce the basic operation cycle of Pangu, focusing
on the Pangu monitoring system, and share our experiences in
addressing several important issues during Pangu’s operation.

5.1 Pangu’s Operation Cycle
Pangu’s basic operation cycle consists of five stages: plan-

ning, development, testing, deployment, and monitoring. Be-
fore entering development, new hardware and software solu-
tions go through a rigorous planning phase (i.e., feasibility
analysis, benefit/cost analysis, and social and regulation stud-
ies). We conduct extensive tests on the solutions under various
scenarios between development and deployment. In particu-
lar, Pangu copes with the interoperability issue among hetero-
geneous hardware from different vendors using an in-house,
template-based admission test. New solutions are rolled out in
Pangu’s production environment cluster by cluster. After they
are online, the Pangu monitoring system watches their behav-
iors closely via fine-grained monitoring, thorough root-cause
analysis, fast response, and post-mortem documentation.
Fine-grained monitoring and intelligent diagnosis. In
Pangu 2.0, we improve the Pangu monitoring system with two
key designs to keep up with the high-performance require-
ment (i.e., 100 µs-level I/O latency). First, we increase the
time granularity of monitoring from 15 seconds to 1 second
and extend the Log Service [68] to design an on-demand trac-
ing system. Compared with the coarse-grained monitoring
in Pangu 1.0, this allows us to perform tracings on a per-file-
operation basis to accurately capture fine-grained abnormal
events (e.g., memory allocation exception and log printing
timeout). Second, we embrace AI to better capture the causal
relationship between abnormal events and their root causes.
The inferred root causes are rated by operating teams and fed
back to the trained model to improve its accuracy. This design
substantially improves diagnostic accuracy and reduces the
required human efforts.

5.2 Case Studies
Extensive data integrity checking. Pangu extensively em-
ploys CRC to ensure data integrity, such as end-to-end CRC
along the data path, monthly CRC on all replicates, CRC
on random sampled replicates and CRC on one extra repli-
cate during EC building. Among all the data integrity issues
we encountered, the CPU silent error is a representative one.
Specifically, we find some end-to-end CRC errors and pin-
point their root causes as the silent errors on certain CPUs.
To prevent such errors, we work with Intel to deploy silent
error testing tools that run in production environments when
the overall workload is low, and achieve some success.
Handling SLA jitters in USSOS. During Pangu’s operation,
we encounter and address several issues that contribute to SLA
jitters in USSOS (§3.2), such as memory allocation, periodic
heavyweight tasks and increased USSOS CPU utilization.
First, we find existing memory allocation mechanisms (e.g.,

TCMalloc [29]) become too time-consuming if they enter a
global memory allocation phase (e.g., when a new thread re-
quires memory) or a memory organization phase (e.g., when
too many RDMA queue pairs try to reserve high-order mem-
ory space). To this end, we introduce a user-space memory
allocation pool and optimize RDMA drivers to use anony-
mous pages. Second, for periodic heavyweight tasks (e.g.,
log printing), we move them to asynchronous threads to avoid
affecting the SLA of data operations. Third, we find that the
CPU utilization of USSOS significantly increases when the
memory occupation is high and USSOS needs to perform
memory recollection. As such, we adjust the threshold of
memory recollection to reduce the chance of USSOS entering
memory recollection. We also recollect memory allocated to
the buffer and cache in the background.
Handling correctable machine check exceptions (MCE) in
the USSOS to improve availability. Initially, USSOS (§3.2)
can monitor such hardware failures, but it cannot perceive
how the kernel migrates the physical memory for exception
isolation. As such, errors would happen when USSOS tries
to access the already migrated physical memory based on its
outdated virtual-physical memory address mapping.

To this end, we add a handler to the MCE monitor daemon
in USSOS. Once the number of found correctable MCEs
exceeds a threshold, the user-space process related to them
will pause and let the handler notify the kernel to migrate
the memory. After the migration, the process resumes and
updates its mapping table before accessing memory pages.
This design improves the availability of Pangu with negligible
performance degradation. For example, we observe <330
correctable MCEs in a 2300-server cluster in 22 days.
Heterogeneous memory bandwidths from different ven-
dors. Pangu deploys memories from different vendors. Our
tests show that under a 1:1 memory read/write ratio, the
achievable bandwidths of 128 GB memory from three dif-
ferent vendors are 94 GB/s, 84 GB/s, and 60 GB/s, respec-
tively (i.e., a 57% difference). Such heterogeneous memory
bandwidths would cause performance degradation in clusters.
This observation taught us to pay more attention to the per-
formance of memory, instead of the capacity. It is also our
earliest evidence of congestions in the receiver host datapath
and a direct motivation for RDCA (§4.2.3).
Coping with tail latency surge during Double 11 Festival.
This festival is Alibaba’s largest annual online shopping event.
Guaranteeing Pangu’s high performance under such high-
pressure traffic requires real-time monitoring, diagnosis, and
response to ensure all technical features work in harmony. On
the Double 11 Festival in 2019, we noticed a surge of read tail
latency in the Relational Database Service (RDS) built on top
of Pangu. By analyzing the system traces, we identify the root
cause as the increased simultaneous occurrence of rebalancing
migration of 2 chunks and the failure of chunkserver storing
the remaining unmigrated chunk. As such, clients have to
try and fail to access all three replicas before requesting the

USENIX Association 21st USENIX Conference on File and Storage Technologies 341

IP addresses of the latest chunkservers, increasing latency.
To fix this issue, we let the clients periodically fetch chunk
information of abnormal chunkservers from the masters and
immediately request the latest chunk metadata if their needed
chunks are on abnormal servers. This action works well in
coping with the surge of tail latency back then.

However, this mechanism has its limitation. On the Double
11 Festival 2020, clients experience the surge of tail latency
again. We find that the root cause is that many chunkservers
are determined as abnormal due to an internal issue. Clients
then receive a large amount of information about abnormal
chunkservers and spend many resources processing them (e.g.,
deserialization and address resolution), resulting in long-time
I/O hang. Facing the upcoming peak traffic, we temporar-
ily disable this mechanism and upgrade it after the festival
with a series of improvements, including independent threads
for abnormal server operations and limiting the number of
abnormal servers requested each time.

6 Lessons
Lessons on user-space systems. We develop Pangu’s
chunkserver USSOS (§3.2) to keep up with the high speed
of new network and storage technologies. During its de-
velopment and operation, we learned three lessons. First,
user-space systems are simpler to develop and operate. For
example, our data shows that bug fixing takes about two
months in a kernel-space file system, but a couple of weeks
in USSFS (§3.2.3). Developing new features (e.g., zoned
namespace [69]) in the user space requires fewer developers
and a shorter time. Furthermore, it is also easier to monitor
and trace behaviors of user-space systems and adjust their
parameters accordingly.

Second, developing user-space systems should learn from
the design of the kernel space. In particular, to build a high-
performance USSOS, not only we need to unify the storage
and network stack, we also need to design user-space mod-
ules for memory management, CPU scheduling and hardware
failure handling. The kernel space is pretty good at these
functionalities. As such, user-space systems can benefit by
learning from it.

Third, the performance gain of user-space systems is not
exclusive to high-speed storage such as SSD. Specifically,
we provide a series of mechanisms in Pangu’s USSFS to
accelerate the performance of HDD. For example, USSFS
takes advantage of the self-contained chunk layout (§3.1.3)
to save the number of metadata operations. It leverages the
differences between internal and external tracks of disks to
improve HDD’s write efficiency.
Lesson on performance-cost tradeoff. To meet new busi-
ness requirements, Pangu usually first chooses to add more
hardware to improve its performance based on total cost of
ownership (TCO) balance (e.g., upgrading the network from
25 Gbps to 100 Gbps, increasing the number of memory chan-
nels by placing more small-volume DRAMs and upgrading

servers with more powerful CPUs). Hardware expansion
effectively improves Pangu’s performance, but is not sustain-
able due to the cost incurred. As such, Pangu also spends
substantial efforts, such as traffic optimization (§4.1.2), im-
proving its resource utilization and efficiency.
Lesson on persistent memory (PMem). PMem has many
advantages, such as fast data persisting, RDMA friendliness,
low read latency (6 µs on PMem vs. 80 µs on SSD), low
tail latency, and cache friendliness. As such, we developed
a 30-µs PMem-based EBS service [1] in Pangu. However,
Intel’s decision to kill off its PMem business [70] forces us
to rethink this service. We need to plan more thoroughly
when developing new services (e.g., considering substitutabil-
ity, sustainability, and cost tradeoffs). But we are optimistic
that new storage class memory [71] will emerge with better
solutions to these issues.
Lesson on hardware offloading. The cost vs. benefits trade-
off is a fundamental issue for hardware offloading (§4.3.3),
and has been an ever-lasting debate topic in Pangu since 2018.
The entire development of hardware offloading compression
takes a 20-person team two years, during which we resolve
many issues such as the FPGA hardware cost, the integrity of
compressed data, and the co-existence with other functions in
hardware. In the end, the outcome benefits outweigh this cost
substantially. Hardware offloading significantly reduces the
compression’s average and tail latency, effectively reducing
the network traffic within a low latency. As a result, we can
improve the service provision capability of our infrastructure
by ∼50%. We rolled out hardware compression in Pangu in
2020 at a slow pace, first in internal services (e.g., log/moni-
toring services) and then gradually expanding to core external
services (e.g., EBS). To prevent potential bugs in hardware
from harming data integrity, we perform data decompression
and CRC checking on hardware and conduct routine spot
software CRC checking. Since 2022, all 200 Gbps clusters in
Pangu enable hardware compression by default, and incidents
happen less and less often.

7 Conclusion
We introduce how we embrace the emerging hardware tech-

nologies and adapt to the shift of business model to evolve the
Pangu to provide high-performance, reliable storage services
with a 100µs-level I/O latency. We also share our experi-
ences operating Pangu 2.0 to shed light on future research in
large-scale, high-performance storage systems.
Acknowledgments. We are extremely grateful for our shep-
herd, Peter Macko, and the anonymous FAST’23 reviewers
for their wonderful feedback. Qiao Xiang, Haohao Song,
Yuxin Wang, and Ridi Wen are supported in part by the Na-
tional Key R&D Program of China 2022YFB2901502, Al-
ibaba Innovative Research Award, NSFC Award 62172345,
Open Research Projects of Zhejiang Lab 2022QA0AB05,
MOE China Award 2021FNA02008, NSF-Fujian-China
2022J01004, and IKKEM Award HRTP-2022-34.

342 21st USENIX Conference on File and Storage Technologies USENIX Association

References
[1] Alibaba Group. Alibaba Cloud Products & EBS.

https://www.aliyun.com/product/disk. Accessed Sept
18, 2022.

[2] Alibaba Group. Alibaba Cloud Products & OSS Ser-
vices. https://www.alibabacloud.com/zh/product/obje
ct-storage-service. Accessed Sept 18, 2022.

[3] Alibaba Group. Alibaba Cloud Products & NAS Ser-
vices. https://www.alibabacloud.com/zh/product/nas.
Accessed Sept 18, 2022.

[4] Alibaba Group. Alibaba Cloud Products & PolarDB.
https://www.alibabacloud.com/zh/product/polardb. Ac-
cessed Sept 18, 2022.

[5] Alibaba Group. Alibaba Cloud Products & MaxCom-
pute. https://www.alibabacloud.com/zh/product/maxc
ompute. Accessed Sept 18, 2022.

[6] Avantika Mathur, Mingming Cao, Suparna Bhat-
tacharya, Andreas Dilger, Alex Tomas, and Laurent
Vivier. The New Ext4 Filesystem: Current Status and
Future Plans. In Proceedings of the Linux symposium,
pages 21–33. Citeseer, 2007.

[7] Wright Stevens. TCP Slow Start, Congestion Avoid-
ance, Fast Retransmit, and Fast Recovery Algorithms.
Technical report, 1997.

[8] Mohammad Al-Fares, Alexander Loukissas, and Amin
Vahdat. A Scalable, Commodity Data Center Network
Architecture. In SIGCOMM’08, pages 63–74. ACM,
2008.

[9] Alibaba Group. Alibaba Cloud Products & OTS.
https://www.alibabacloud.com/zh/product/table-store.

Accessed Sept 18, 2022.

[10] Satadru Pan, Theano Stavrinos, Yunqiao Zhang,
Atul Sikaria, Pavel Zakharov, Abhinav Sharma,
Shiva Shankar P., Mike Shuey, Richard Wareing,
Monika Gangapuram, Guanglei Cao, Christian Preseau,
Pratap Singh, Kestutis Patiejunas, J. R. Tipton, Ethan
Katz-Bassett, and Wyatt Lloyd. Facebook’s Tectonic
Filesystem: Efficiency from Exascale. In FAST’21,
pages 217–231. USENIX Association, 2021.

[11] Colossus under the Hood: A Peek into
Google’s Scalable Storage System.
https://cloud.google.com/blog/products/storage-data-t
ransfer/a-peek-behind-colossus-googles-file-system.
Accessed Sept 18, 2022.

[12] Diego Ongaro and John Ousterhout. In Search of an Un-
derstandable Consensus Algorithm. In ATC’14, pages
305–319. USENIX Association, 2014.

[13] Wenhao Lv, Youyou Lu, Yiming Zhang, Peile Duan,
and Jiwu Shu. InfiniFS: An Efficient Metadata Service
for Large-Scale Distributed Filesystems. In FAST’22,
pages 313–328. USENIX Association, 2022.

[14] Su Zhou, Erci Xu, Hao Wu, Yu Du, Jiacheng Cui,
Wanyu Fu, Chang Liu, Yingni Wang, Wenbo Wang,
Shouqu Sun, Xianfei Wang, Bo Feng, Biyun Zhu, Xin
Tong, Weikang Kong, Linyan Liu, Zhongjie Wu, Jinbo
Wu, Qingchao Luo, and Jiesheng Wu. Deployed Sys-
tem: SMRSTORE: A Storage Engine for Cloud Object
Storage on HM-SMR Drives. In FAST’23. USENIX
Association, 2023.

[15] Qiang Li, Lulu Chen, Xiaoliang Wang, Shuo Huang,
Qiao Xiang, Yuanyuan Dong, Wenhui Yao, Minfei
Huang, Puyuan Yang, Shanyang Liu, et al. Fisc: A
Large-Scale Cloud-Native-Oriented File System. In
FAST’23. USENIX Association, 2023.

[16] Ruiming Lu, Erci Xu, Yiming Zhang, Fengyi Zhu,
Zhaosheng Zhu, Mengtian Wang, Zongpeng Zhu,
Guangtao Xue, Jiwu Shu, Minglu Li, and Jiesheng
Wu. Deployed System: Perseus: A Fail-Slow Detection
Framework for Cloud Storage Systems. In FAST’23.
USENIX Association, 2023.

[17] Yixiao Gao, Qiang Li, Lingbo Tang, Yongqing Xi,
Pengcheng Zhang, Wenwen Peng, Bo Li, Yaohui Wu,
Shaozong Liu, Lei Yan, et al. When Cloud Storage
Meets RDMA. In NSDI’21, pages 519–533. USENIX
Association, 2021.

[18] Rui Miao, Lingjun Zhu, Shu Ma, Kun Qian, Shu-
jun Zhuang, Bo Li, Shuguang Cheng, Jiaqi Gao,
Yan Zhuang, Pengcheng Zhang, Rong Liu, Chao Shi,
Binzhang Fu, Jiaji Zhu, Jiesheng Wu, Dennis Cai, and
Hongqiang Harry Liu. From Luna to Solar: the Evolu-
tions of the Compute-to-Storage Networks in Alibaba
Cloud. In SIGCOMM’22, pages 753–766. ACM, 2022.

[19] Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Le-
ung. The Google File System. In SOSP’03, pages
29–43. ACM, 2003.

[20] Dhruba Borthakur. HDFS Architecture Guide . https:
//hadoop.apache.org/docs/r1.2.1/hdfs_design.htmll. Ac-
cessed Sept 15, 2022.

[21] Microsoft. Azure Storage. https://azure.microsoft.co
m/en-us/products/category/storage/. Accessed Sept 18,
2022.

[22] Sage A. Weil, Scott A. Brandt, Ethan L. Miller, Darrell
D. E. Long, and Carlos Maltzahn. Ceph: A Scalable,
High-Performance Distributed File System. In OSDI’06,
pages 307–320. USENIX Association, 2006.

USENIX Association 21st USENIX Conference on File and Storage Technologies 343

https://www.aliyun.com/product/disk
https://www.aliyun.com/product/disk
https://www.alibabacloud.com/zh/product/object-storage-service
https://www.alibabacloud.com/zh/product/object-storage-service
https://www.alibabacloud.com/zh/product/nas
https://www.alibabacloud.com/zh/product/polardb
https://www.alibabacloud.com/zh/product/polardb
https://www.alibabacloud.com/zh/product/maxcompute
https://www.alibabacloud.com/zh/product/maxcompute
https://www.alibabacloud.com/zh/product/table-store
https://cloud.google.com/blog/products/storage-data-transfer/a-peek-behind-colossus-googles-file-system
https://cloud.google.com/blog/products/storage-data-transfer/a-peek-behind-colossus-googles-file-system
https://cloud.google.com/blog/products/storage-data-transfer/a-peek-behind-colossus-googles-file-system
https://hadoop.apache.org/docs/r1.2.1/hdfs_design.htmll
https://hadoop.apache.org/docs/r1.2.1/hdfs_design.htmll
https://azure.microsoft.com/en-us/products/category/storage/
https://azure.microsoft.com/en-us/products/category/storage/

[23] AWS. Cloud Storage on AWS. https://aws.amazon.c
om/products/storage/. Accessed Sept 18, 2022.

[24] Zhu Pang, Qingda Lu, Shuo Chen, Rui Wang, Yikang
Xu, and Jiesheng Wu. ArkDB: A Key-Value Engine
for Scalable Cloud Storage Services. In SIGMOD’21,
pages 2570–2583. ACM, 2021.

[25] Chromium Contributor. Jim Roskind. QUIC:
Design Document and Specification Rationale.
https://docs.google.com/document/d/1RNHkx_VvK
WyWg6Lr8SZ-saqsQx7rFV-ev2jRFUoVD34/edit.
Accessed Jan 3, 2023.

[26] Adam Langley, Alistair Riddoch, Alyssa Wilk, Antonio
Vicente, Charles Krasic, Dan Zhang, Fan Yang, Fedor
Kouranov, Ian Swett, Janardhan Iyengar, et al. The
QUIC Transport Protocol: Design and Internet-Scale
Deployment. In SIGCOMM’17, pages 183–196. ACM,
2017.

[27] Intel. Data Plane Development Kit. https://dpdk.org/.
Accessed Aug 25, 2022.

[28] SPDK. Storage Performance Development Kit. https:
//www.spdk.io/. Accessed Aug 25, 2022.

[29] Sanjay Ghemawat and Paul Menage. TCMalloc:
Thread-Caching Malloc. http://goog-perftools.sourcef
orge.net/doc/tcmalloc.html. Accessed Aug 25, 2022.

[30] J. Yang, D. B. Minturn, and F. Hady. When Poll Is
Better than Interrupt. In FAST’12, pages 1–7. USENIX
Association, 2012.

[31] Luiz Barroso, Mike Marty, David Patterson, and
Parthasarathy Ranganathan. Attack of the Killer Mi-
croseconds. Communications of the ACM, 60(4):48–54,
2017.

[32] Backblaze. The SSD Edition: 2022 Drive Stats Mid-
year Review. https://www.backblaze.com/blog/ssd-dri
ve-stats-mid-2022-review/. Accessed Sept 18, 2022.

[33] Iyswarya Narayanan, Di Wang, Myeongjae Jeon, Bikash
Sharma, Laura Caulfield, Anand Sivasubramaniam, Ben
Cutler, Jie Liu, Badriddine Khessib, and Kushagra Vaid.
SSD Failures in Datacenters: What? When? and Why?
In SYSTOR’16, pages 1–11. ACM, 2016.

[34] Mingzhe Hao, Gokul Soundararajan, Deepak
Kenchammana-Hosekote, Andrew A Chien, and
Haryadi S Gunawi. The Tail at Store: A Revelation
from Millions of Hours of Disk and SSD Deployments.
In FAST’16, pages 263–276. USENIX Association,
2016.

[35] Bianca Schroeder, Raghav Lagisetty, and Arif Merchant.
Flash Reliability in Production: The Expected and the
Unexpected. In FAST’16, pages 67–80. USENIX Asso-
ciation, 2016.

[36] Erci Xu, Mai Zheng, Feng Qin, Yikang Xu, and Jiesheng
Wu. Lessons and Actions: What We Learned from
10K SSD-Related Storage System Failures. In ATC’19,
pages 961–976. USENIX Association, 2019.

[37] Mai Zheng, Joseph Tucek, Feng Qin, and Mark Lillib-
ridge. Understanding the Robustness of SSDs under
Power Fault. In FAST’13, pages 271–284. USENIX
Association, 2013.

[38] Alibaba Group. Alibaba Cloud Products & ECS.
https://www.aliyun.com/product/ecs. Accessed Sept 18,
2022.

[39] Amazon. Amazon EC2. https://aws.amazon.com/cn/
ec2/?nc2=h_ql_prod_fs_ec2. Accessed Sept 18, 2022.

[40] K. V. Rashmi, M. Chowdhury, J. Kosaian, I. Stoica, and
K. Ramchandran. EC-Cache: Load-Balanced, Low-
Latency Cluster Caching with Online Erasure Coding.
In OSDI’16, pages 401–417. USENIX Association,
2016.

[41] Takayuki Fukatani, Hieu Hanh Le, and Haruo Yokota.
Delayed Parity Update for Bridging the Gap between
Replication and Erasure Coding in Server-Based Stor-
age. In ADMS@ VLDB, pages 1–9, 2021.

[42] Youngmoon Lee, Hasan Al Maruf, Mosharaf Chowd-
hury, Asaf Cidon, and Kang G Shin. Hydra: Resilient
and Highly Available Remote Memory. In FAST’22,
pages 181–198. USENIX Association, 2022.

[43] QSFP. https://community.fs.com/search?key_word=Q
SFP. Accessed Sept 18, 2022.

[44] Chuanxiong Guo, Haitao Wu, Zhong Deng, Gaurav
Soni, Jianxi Ye, Jitu Padhye, and Marina Lipshteyn.
RDMA over Commodity Ethernet at Scale. In SIG-
COMM’16, pages 202–215. ACM, 2016.

[45] Mark J. Karol, S. Jamaloddin Golestani, and David
Lee. Prevention of Deadlocks and Livelocks in Lossless
Backpressured Packet Networks. IEEE/ACM Trans.
Netw., 11(6):923–934, 2003.

[46] Brent E. Stephens, Alan L. Cox, Ankit Singla, John B.
Carter, Colin Dixon, and Wes Felter. Practical DCB
for Improved Data Center Networks. In INFOCOM’14,
pages 1824–1832. IEEE, 2014.

[47] Intel(R) Intelligent Storage Acceleration Library. https:
//github.com/intel/isa-l. Accessed Sept 18, 2022.

344 21st USENIX Conference on File and Storage Technologies USENIX Association

https://aws.amazon.com/products/storage/
https://aws.amazon.com/products/storage/
https://docs.google.com/document/d/1RNHkx_VvKWyWg6Lr8SZ-saqsQx7rFV-ev2jRFUoVD34/edit
https://docs.google.com/document/d/1RNHkx_VvKWyWg6Lr8SZ-saqsQx7rFV-ev2jRFUoVD34/edit
https://docs.google.com/document/d/1RNHkx_VvKWyWg6Lr8SZ-saqsQx7rFV-ev2jRFUoVD34/edit
https://dpdk.org/
https://www.spdk.io/
https://www.spdk.io/
http://goog-perftools. sourceforge. net/doc/tcmalloc. html
http://goog-perftools. sourceforge. net/doc/tcmalloc. html
https://www.backblaze.com/blog/ssd-drive-stats-mid-2022-review/.
https://www.backblaze.com/blog/ssd-drive-stats-mid-2022-review/.
https://www.aliyun.com/product/ecs.
https://www.aliyun.com/product/ecs.
https://aws.amazon.com/cn/ec2/?nc2=h_ql_prod_fs_ec2.
https://aws.amazon.com/cn/ec2/?nc2=h_ql_prod_fs_ec2.
https://community.fs.com/search?key_word=QSFP
https://community.fs.com/search?key_word=QSFP
https://github.com/intel/isa-l
https://github.com/intel/isa-l

[48] Jerasure: A Library in C Facilitating Erasure Coding for
Storage. https://jerasure.org. Accessed Sept 18, 2022.

[49] LZ4 - Extremely fast compression. https://github.com
/lz4/lz4. Accessed Sept 18, 2022.

[50] Saksham Agarwal, Rachit Agarwal, Behnam Montaz-
eri, Masoud Moshref, Khaled Elmeleegy, Luigi Rizzo,
Marc Asher de Kruijf, Gautam Kumar, Sylvia Rat-
nasamy, David Culler, et al. Understanding Host Inter-
connect Congestion. In HotNets’22, pages 198–204.
ACM, 2022.

[51] Intel. Intel Stratix 10 FPGAs & SoC FPGA.
https://www.intel.com/content/www/us/en/products/d
etails/fpga/stratix/10.html. Accessed Sept 18, 2022.

[52] Bert Hubert et al. Linux Advanced Routing & Traffic
Control HOWTO. Netherlabs BV, 1:99–107, 2002.

[53] Alok Kumar, Sushant Jain, Uday Naik, Nikhil Kasinad-
huni, Enrique Cauich Zermeno, C. Stephen Gunn, Jing
Ai, Björn Carlin, Mihai Amarandei-Stavila, Mathieu
Robin, Aspi Siganporia, Stephen Stuart, and Amin Vah-
dat. BwE: Flexible, Hierarchical Bandwidth Allocation
for WAN Distributed Computing. In SIGCOMM’15,
pages 1–14. ACM, 2015.

[54] Ram Huggahalli, Ravi Iyer, and Scott Tetrick. Direct
Cache Access for High Bandwidth Network I/O. In
ISCA’05, pages 50–59. IEEE, 2005.

[55] Amit Kumar, Ram Huggahalli, and Srihari Makineni.
Characterization of Direct Cache Access on Multi-Core
Systems and 10GbE. In HPCA’09, pages 341–352.
IEEE, 2009.

[56] Intel® Data Direct I/O Technology (Intel® DDIO): A
Primer. https://www.intel.com/content/www/us/en/io/d
ata-direct-i-o-technology.html Accessed Aug 28, 2022.

[57] Amin Tootoonchian, Aurojit Panda, Chang Lan, Melvin
Walls, Katerina Argyraki, Sylvia Ratnasamy, and Scott
Shenker. ResQ: Enabling SLOs in Network Function
Virtualization. In NSDI’18, pages 283–297. USENIX
Association, 2018.

[58] Amy Ousterhout, Joshua Fried, Jonathan Behrens,
Adam Belay, and Hari Balakrishnan. Shenango: Achiev-
ing High CPU Efficiency for Latency-Sensitive Datacen-
ter Workloads. In NSDI’19, pages 361–378. USENIX
Association, 2019.

[59] Giovanni De Michell and Rajesh K Gupta. Hard-
ware/Software Co-Design. Proceedings of the IEEE,
85(3):349–365, 1997.

[60] Protocol Buffers are a Language-Neutral, Platform-
Neutral Extensible Mechanism for Serializing Struc-
tured Data. https://developers.google.com/protocol-b
uffers/. Accessed Sept 18, 2022.

[61] FlatBuffers is an Efficient cross Platform Serialization
Library. https://google.github.io/flatbuffers/. Accessed
Sept 18, 2022.

[62] William Magro, Paul Petersen, and Sanjiv Shah. Hyper-
Threading Technology: Impact on Compute-Intensive
Workloads. Intel Technology Journal, 6(1):1–9, 2002.

[63] Lzbench, an in-Memory Benchmark of Various Com-
pressors. https://openbenchmarking.org/test/pts/lzbenc
h. Accessed Sept 18, 2022.

[64] Intel. Intel C-states. https://www.intel.com/content/ww
w/us/en/develop/documentation/vtune-help/top/refe
rence/energy-analysis-metrics-reference/c-state.html.
Accessed Sept 18, 2022.

[65] Intel. C-states. https://www.thomas-krenn.com/en/wi
ki/Processor_P-states_and_C-states. Accessed Sept 18,
2022.

[66] Wei Cao, Yang Liu, Zhushi Cheng, Ning Zheng, Wei Li,
Wenjie Wu, Linqiang Ouyang, Peng Wang, Yijing Wang,
Ray Kuan, et al. POLARDB Meets Computational
Storage: Efficiently Support Analytical Workloads in
Cloud-Native Relational Database. In FAST’20, pages
29–41. USENIX Association, 2020.

[67] Alibaba Group. Alibaba Cloud Products & ESSD. ht
tps://www.aliyun.com/storage/storage/essd/. Accessed
Sept 18, 2022.

[68] Alibaba Group. Alibaba Cloud Products & SLS.
https://www.aliyun.com/product/sls. Accessed Sept 18,
2022.

[69] Matias Bjørling. From Open-Channel SSDs to Zoned
Namespaces. In Proc. Linux Storage Filesyst.
Conf.(Vault), pages 1–18, 2019.

[70] Intel. Intel Reports Second-Quarter 2022 Financial Re-
sults. https://download.intel.com/newsroom/2022/corp
orate/Intel-CEO-CFO-2Q22-earnings-statements.pdf.
Accessed Sept 18, 2022.

[71] Chung H Lam. Storage Class Memory. In ICSICT’10,
pages 1080–1083. IEEE, 2010.

USENIX Association 21st USENIX Conference on File and Storage Technologies 345

https://jerasure.org
https://github.com/lz4/lz4
https://github.com/lz4/lz4
https://www.intel.com/content/www/us/en/products/details/fpga/stratix/10.html
https://www.intel.com/content/www/us/en/products/details/fpga/stratix/10.html
https://www.intel.com/content/www/us/en/io/data-direct-i-o-technology.html
https://www.intel.com/content/www/us/en/io/data-direct-i-o-technology.html
https://developers.google.com/protocol-buffers/
https://developers.google.com/protocol-buffers/
https://google.github.io/flatbuffers/
https://openbenchmarking.org/test/pts/lzbench
https://openbenchmarking.org/test/pts/lzbench
https://www.intel.com/content/www/us/en/develop/documentation/vtune-help/top/reference/energy-analysis-metrics-reference/c-state.html
https://www.intel.com/content/www/us/en/develop/documentation/vtune-help/top/reference/energy-analysis-metrics-reference/c-state.html
https://www.intel.com/content/www/us/en/develop/documentation/vtune-help/top/reference/energy-analysis-metrics-reference/c-state.html
https://www.thomas-krenn.com/en/wiki/Processor_P-states_and_C-states
https://www.thomas-krenn.com/en/wiki/Processor_P-states_and_C-states
https://www.aliyun.com/storage/storage/essd/
https://www.aliyun.com/storage/storage/essd/
https://www.aliyun.com/product/sls.
https://www.aliyun.com/product/sls.
https://download.intel.com/newsroom/2022/corporate/Intel-CEO-CFO-2Q22-earnings-statements.pdf.
https://download.intel.com/newsroom/2022/corporate/Intel-CEO-CFO-2Q22-earnings-statements.pdf.

l-IO: A Unified IO Stack for Computational Storage

Zhe Yang, Youyou Lu, Xiaojian Liao, Youmin Chen, Junru Li, Siyu He, and Jiwu Shu⇤

Tsinghua University

Abstract
The emerging computational storage device offers an oppor-
tunity for in-storage computing. It alleviates the overhead of
data movement between the host and the device, and thus ac-
celerates data-intensive applications. In this paper, we present
l-IO, a unified IO stack managing both computation and stor-
age resources across the host and the device. We propose a
set of designs – interface, runtime, and scheduling – to tackle
three critical issues. We implement l-IO in full-stack soft-
ware and hardware environment, and evaluate it with synthetic
and real applications against Linux IO, showing up to 5.12⇥
performance improvement.

1 Introduction

Data-intensive applications (e.g., data mining) suffer from the
overhead of loading sizable data from the storage device for
processing. Emerging computational storage devices offer the
opportunity to alleviate the bother and thus gain increasing
attention in recent years [1–3]. They encapsulate in-device
computation resources, which enables the applications to of-
fload the computation down into the devices for in-storage
computing (ISC) [4, 5], therefore mitigating the overhead of
data transfer between the host and the device.

As both the host and the device can conduct computation,
we observe from experiments that blindly pushing compu-
tation tasks to the devices is not always optimal; instead,
applications may be faster on either side regarding to various
application features (e.g., computation complexity) and the
ever-changing status of the host and the device (e.g., cache
ratio, bandwidth consumption). Since the operating system
has delivered a sophisticated IO stack with mature function-
alities and interfaces, we explore a fundamental question in
the paper – how to build a unfied IO stack managing both
computation and storage resources across the host and the
device? For answering the question, we first identify three
critical issues to achieve the goal.

⇤Jiwu Shu is the corresponding author (shujw@tsinghua.edu.cn).

1) Interface. IO stack has been evolving the read and write
interfaces [6, 7], which are widely used by existing applica-
tions. We are committed to endowing them with the com-
putation capability of the host and the device at a minimum
change, i.e., unified interfaces for both sides that are generic
and rely on no specific file systems.

2) Runtime. IO stack contains components like the page
cache, file system, and device driver for storage management,
but has no computation runtime. Thus, we need to build a
unified runtime that enables executing the same piece of com-
putation task on either the host or the device. eBPF [8, 9] is
the preference for constructing such runtime: it proposes a
hardware-independent intermediate bytecode format, so that
the program can be compiled once and run on various ISAs.
However, eBPF is still inapplicable to ISC due to its overstrict
static verification (§2.3).

3) Scheduling. IO stack features rich scheduling mecha-
nisms for reads and writes, but computation makes the dis-
patching mechanism more complicated. As application per-
formance varies over features and system status as mentioned
above, we aim at detecting and dispatching requests to the
faster side effectively and efficiently.

In this paper, we propose l-IO, a unified IO stack that
comes with three key designs to tackle the aforementioned
issues. First, l-IO extends IO stack with l extension across
the host and the device to support ISC. Besides normal IOs,
the extended interfaces enable an application to submit l
requests to customize, load and invoke computational logic (l
function) during reading and writing a file. With the extended
interfaces, developers can still use their familiar programming
style to access and process file data, hiding the details of how
computation tasks are executed and scheduled.

Second, l-IO proposes unified l runtime that crosses the
host-and-device boundary with two counterparts. At the core
of l runtime is sBPF (s stands for storage). For managing and
executing l functions atop heterogeneous hardware of both
sides, l-IO extends eBPF to sBPF, which supports pointer ac-
cess and dynamic-length loop (loops are bounded at runtime
to a specified threshold). In contrast to static verification of

USENIX Association 21st USENIX Conference on File and Storage Technologies 347

eBPF, sBPF brings in dynamic verification with extra infor-
mation from l-IO.

Third, l-IO adopts dynamic request dispatching to desig-
nate requests to the faster side effectively and efficiently. For
effectiveness, we model the execution time of a l request
in both sides, so that the l-IO finds the faster side. For effi-
ciency, l-IO profiles partial requests periodically to determine
variables in the execution time model.

We implement l-IO in the full-stack software and hardware
environment (§4). We modify Linux kernel to integrate l ex-
tension and build an NVMe device with l extension support
on a real hardware platform. We compare l-IO and vanilla
Linux IO on synthetic applications, showing 5.12⇥ improve-
ment. We also port a real application, Spark SQL [10], to l-IO
and evaluate its end-to-end performance with TPC-H [11],
showing up to 2.15⇥ improvement. We open source l-IO at
https://github.com/thustorage/lambda-io.

In summary, we make the following contributions.
• We present l-IO, a unified IO stack managing both compu-

tation and storage resources across the host and the device.
• We propose a set of designs, unified interfaces, l runtime,

and dynamic request dispatching, to exploit the benefits of
both sides.

• We implement l-IO in the full-stack software and hard-
ware environment, and evaluate it with synthetic and real
applications against vanilla Linux IO, showing significant
performance improvement.

2 Background and Motivation

2.1 In-Storage Computing and IO Stack
In-storage computing (ISC) originates in the disk era [4, 12],
aiming to ship computation closer to storage. It mitigates
the data movement overhead and exploits the in-device in-
ternal bandwidth. ISC gets revitalized with the advent of
SSDs [5, 13], as an SSD typically has more powerful com-
putation resources and higher internal bandwidth. Besides
the researches for specific domain acceleration [14–22], gen-
eral frameworks [23–27] allow programmers to define and
offload their own computational logic. They mostly focus on
providing manipulation interfaces in the userspace and accel-
erating computation in the device, but do not fully exploit the
host-side computation and storage resources.

IO stack is a fundamental part of the operating system
for managing storage devices, including the device driver,
the block layer, and the file system. Although userspace IO
libraries like SPDK [28] arise for their kernel-bypass low
latency, the IO stack is still indispensable in most scenarios
for three reasons. 1) Compatibility. A sea of applications
rely on POSIX file interfaces to access storage data. Program-
mers are also accustomed to leveraging APIs of the IO stack.
2) Functionality. The IO stack offers abundant modules and
functionalities, including the file system and the page cache.

Host
Device

La
te

nc
y

(m
s)

Execution Progress

8

16

0% 20% 40% 60% 80% 100%

Ex
ec

ut
io

n
Ti

m
e

(s
) Host

Device

Application

0
4
8

12
16
20
24

Stats64 Stats32

(a) (b)

Figure 1: Performance Comparison of Host and Device.
Stats64 and Stats32 are two applications. They view the file
data as 64-bit/32-bit integers and calculates the sum, maxi-
mum, and minimum. Refer to §5.2 for detailed settings.

source
code

eBPF
programcompiler verifier JITer executable

binary

Figure 2: The Progress to Run eBPF/sBPF.

In contrast, a userspace IO library only supports data transfer
with the raw storage device. The application has to build its
own file system and data cache. 3) Sharing. The IO stack
has well-tested resource allocation and security mechanisms,
so that users and applications can share the whole device.
Sharing is also hard to be implemented in the userspace and
absent from userspace IO libraries.

As ISC becomes increasing popular and the IO stack has
unique advantages, we explore how to incorporate ISC to the
IO stack in this paper.

2.2 Host-Device Coordination
We analyze the need for host-device coordination through
application experiments. The key observation is that either
the host or the device may be faster to run an application. 1)
Different applications have different features and thus pre-
fer different sides. We run Stats64 and Stats32 either in the
host or the device (detailed settings in §5.2). As reported in
Figure 1(a), Stats64 runs faster in the device while Stats32
runs faster in the host. 2) Even one application also favors
different sides during the execution progress. We measure the
request latency on both sides when running Stats64 with the
warmed page cache (detailed settings in §5.4.1). As reported
in Figure 1(b), earlier requests are faster in the device as the
host does not cache data. The host outperforms significantly
when it has the data in cache after 20%.

We conclude that blindly pushing down all the computa-
tional logic to the device may deliver suboptimal application
performance. Many factors affect the execution time, such
as computation complexity, data size, and cache. Thus, one
should take factors into consideration and dispatch computa-
tion to their preferred side for better performance.

2.3 eBPF and its Limitations
eBPF (extended Berkeley Packet Filter) [8] is an in-kernel
virtual machine. It enables the user to run a piece of logic

348 21st USENIX Conference on File and Storage Technologies USENIX Association

https://github.com/thustorage/lambda-io

inside the kernel without modifying the kernel source code
or loading a kernel module [9]. Figure 2 shows the entire
progress to run eBPF in three steps. 1) The user compiles
the source code to an eBPF program in eBPF bytecode and
loads the program via a specific syscall. 2) The in-kernel
static verifier checks the program to ensure safety. 3) The
just-in-time compiler (JITer) [8] translates the eBPF program
to executable binary in native hardware for later execution.
eBPF is used in a wide variety of domains such as network
filtering, tracing, and profiling [9].

eBPF receives greater attention from in-storage computing
researches recently [27, 29–34]. It becomes the preference
for constructing the ISC runtime, because eBPF provides
a hardware-independent bytecode format. The source code
can be compiled to an eBPF program only once but runs on
general CPUs (e.g. x86, ARM) and specific hardware (e.g.
FPGA [35], ASIC [36]). It enables inserting user-defined logic
to the devices [31, 35, 37] apart from the kernel.

However, we find that eBPF is inapplicable to general ISC
because of its overstrict static verifier. eBPF lacks two critical
features, pointer access and dynamic-length loop, which are
widely employed in data processing code. We explain lim-
itations with an example. compute function in Listing 1 is
the typical computation code to sum values, but fails to pass
the eBPF static verifier for two reasons. 1) Pointer access.
The eBPF verifier checks that the program does not access
arbitrary kernel addresses. As input and output are memory
pointers, the verifier does not know their boundaries and pro-
hibits pointer arithmetic and dereference. 2) Dynamic-length
loop. eBPF checks each loop by simulating the iteration of
the loop during the static verification. It supports a bounded
loop [38] when the loop boundary is bounded so that the
loop finishes in bounded time in the simulation. However,
length_i is unknown during the static verification and is dy-
namically determined before execution. In the verifier’s view,
the loop is unbounded and the program does not complete in
limited time. Therefore, it rejects the program.

We notice that XDP [37], a programmable network packet
processing framework based on eBPF, proposed an explicit
checking mechanism for pointer access. With the network
packet content in the memory buffer [data, data_end), be-
fore dereferencing a pointer data+offset, the program is
required to explicitly check data+offset < data_end in
the code. However, XDP requires offset to be a known con-
stant. So this explicit checking mechanism does not work for
general ISC, where offset can be a variable.

In a nutshell, eBPF needs extension to embrace ISC without
compromising safety.

3 Design

This section presents the design of l-IO. We begin with an
overview and describe a range of key techniques in detail.

Listing 1: Sample Pseudo-Code of Summing a File
1 // sum.c
2 ssize_t compute(void *output, void *input, size_t

length_i) {

3 int sum = 0;

4 for (int i = 0; i < length_i / sizeof(int); i++)

{

5 sum += ((int *)input)[i];

6 }

7 *output = sum;

8 return sizeof(int); // return the output
size

9 }

10

11 // main.c
12 int vanilla_io_sum(int fd, int file_size) {

13 char buf[BUF_SIZE];

14 int sum = 0, sum_s;

15 for (int i = 0; i < file_size; i += BUF_SIZE) {

16 pread(fd, buf, BUF_SIZE, i);

17 compute(&sum_s, buf, BUF_SIZE);

18 sum += sum_s;

19 }

20 return sum;

21 }

22

23 int lambda_io_sum(int fd, int file_size) {

24 int l_id = load_l("sum.sbpf");
25 char buf[sizeof(int)];
26 int sum = 0;

27 for (int i = 0; i < file_size; i += BUF_SIZE) {

28 pread_l(fd, buf, BUF_SIZE, i, l_id);
29 sum += *(int *)buf;

30 }

31 return sum;

32 }

33

34 int main() {

35 int fd = open("path/to/file");

36 vanilla_io_sum(fd, FILE_SIZE);

37 lambda_io_sum(fd, FILE_SIZE);

38 close(fd);

39 return 0;

40 }

3.1 Overall Architecture
Figure 3 sketches the overall architecture of l-IO. l-IO ex-
tends the vanilla IO stack with l extension to support offload-
ing computation in the host kernel and the device. l extension
consists of three parts, l-IO APIs, l runtime (l-kernel run-
time and l-device runtime), and request dispatcher.
l-IO APIs (§3.2) introduce additional programming inter-
faces for applications. Besides normal IOs to a file, an appli-
cation can submit l requests to customize the computational
logic (l function), load the l function to l-IO, and invoke the
l function during reading and writing a file.
l runtime (§3.3) crosses the host-and-device boundary with
two counterparts, l-kernel runtime and l-device runtime.
They provide identical interfaces of computation and data
to execute a l request. l-IO extends eBPF to sBPF to support
ISC, so that the l function needs to be compiled and loaded
only once, but runs in both sides.
Request dispatcher (§3.4) aims to designate l requests to
the l-kernel runtime or the l-device runtime effectively and
efficiently. l-IO profiles and monitors the status of the host
and the device periodically. It estimates the request execution
time of a l request using our proposed model, and dispatches

USENIX Association 21st USENIX Conference on File and Storage Technologies 349

File System (ext4, F2FS, XFS, …)
Device Driver

Storage Media

IO Firmware

VFS & Page Cache

Application

Storage Device

Kernel Space

User Space

Vanilla IO Stack

𝜆 Extension (Ext.)

Normal IO Requests

𝜆 Requests

𝜆 Ext. Control Path

Req. Dispatcher
(§ 3.4)

𝜆-Device
Runtime (§ 3.3)

𝜆-Kernel
Runtime (§ 3.3)

𝜆-IO APIs(§ 3.2)

Figure 3: Overall Architecture of l-IO.

Op Interface
l ssize_t compute(void *output, void

*input, size_t length_i)

load l_id = load_l(l_path)
open fd = open(file_path)

close close(fd)

read pread(fd, buf, length, offset)

pread_l(fd, buf, length, offset, l_id)

write pwrite(fd, buf, length, offset)

pwrite_l(fd, buf, length, offset, l_id)

* We omit some well-known types of parameters and return values.

Table 1: l-IO APIs.

the request to the faster side.

3.2 l-IO APIs and Workflow
l-IO inherits the vanilla IO fundamental interfaces to open,
close, read, and write a file, as listed in Table 1. Additionally,
l-IO introduces l load, read and write interfaces, for an ap-
plication to submit a l request to offload computation during
data transfer.
lll . The first line of Table 1 shows the interface to program the
computational logic. Parameters of input and output point
to input and output buffers, along with length_i to indicate
the size of the input buffer. Thus, the computational logic
in the function body can access data through pointers as it
does in normal memory computing. It consumes data from
the input buffer and produces data to the output buffer.

It is notable that the l function body need not worry about
the specific value of the two pointers, no matter the computa-
tional logic runs in the l-kernel or the l-device runtime. The
l runtime prepares memory buffers and sets proper values

before executing the l function.

Load. load_l is the interface to load a l function. The user
compiles the l function source code to an sBPF program, and
loads it via load_l. load_l returns l_id as the handle to be
used in later l read and write calls.

The user needs to compile and load a l function only once,
although l-IO has two runtimes in the host kernel and the de-
vice. Receiving a loading call, l-IO parses the sBPF program
file, and transfers the bytecode to both the l-kernel runtime
and the l-device runtime. Afterward, each runtime invokes
the sBPF verifier and JITer to translate the bytecode to an
executable binary in the native ISA for later execution.

Open and close. Two APIs remain intact. All l extension
APIs accept the identical fd as vanilla ones. Thus, the appli-
cation can use normal and l extension APIs simultaneously.

Read. Compared to normal read, l read (pread_l) adds a pa-
rameter l_id to indicate the invoked l funtion. l-IO loads file
data of the specified range as the input, performs computa-
tion of l_id, and finally copies the output to the application-
allocated buffer (buf).

To provide better intuition, we walk through how pread_l
works with an example of summing values in a file (Listing 1).
vanilla_io_sum finishes the job via vanilla IO. The appli-
cation repeatedly reads file data into a buffer (buf). Then
it runs the computational logic (compute) to sum values.
lambda_io_sum shows how to program the same logic us-
ing l read (pread_l). It has almost the same skeleton as
vanilla_io_sum. The application loads the compiled sBPF
program in Line 24, and gets a handle l_id. When the appli-
cation calls pread_l, it additionally passes l_id.

The l runtime performs pread_l in four steps. ∂ It loads
the file data of the specified range into an input memory
buffer, and sets the input and length_i parameters of the
l function. ∑ It allocates an output memory buffer and sets
it as output of the l function. The output memory buffer is
as large as the input by default. ∏ It triggers the l function,
which sums data in the input and stores the result in the
output. π It copies data in output to the user-allocated buf,
along with the output size represented by the return value of
compute. In this way, the application only needs to allocate a
buffer to receive the execution result, instead of the file data.

Write. l write (pwrite_l) works similarly to l read in the
reversed direction. l-IO uses data in buf as the input, runs
the function of l_id, writes the output to the file at the
offset and returns the output size.

The l runtime performs pwrite_l in four steps. ∂ It
copies data of buf to a memory buffer in l extension runtime,
sets it as the input of l. ∑ It allocates an output memory
buffer and sets it as output of l. ∏ It triggers the l func-
tion, and stores the output data to the file from the position of
offset. π It returns the output size to the application.

350 21st USENIX Conference on File and Storage Technologies USENIX Association

3.3 Cross-Platform l Runtime
The l runtime plays a central role in executing l requests
of load_l, pread_l, and pwrite_l. To execute l requests
in both the host kernel and the device, the l runtime crosses
the boundary of the host and the device with two instances,
l-kernel runtime and l-device runtime.

To achieve the cross-platform runtime design, we identify
two critical aspects of challenges, computation and data. For
computation, both l-kernel and l-device runtimes have to
store and run the same l functions, although they are on top
of different computation hardware platforms. For data, l func-
tions should be able to access consistent file data in l-kernel
and l-device runtimes, along with other userspace applica-
tions. We describe how to tackle two challenges separately.

3.3.1 Computation: Extending eBPF to sBPF
At the core of the l runtime is sBPF. As we state in §2.3, eBPF
faces two critical limitations, pointer access and dynamic-
length loop. We aim to tackle limitations efficiently. Our key
idea is to bring in dynamic verifications with extra informa-
tion from l-IO, so as to check the pointer access and loop
during running. sBPF inherits the bytecode format of eBPF,
but extends the verifier and JITer.
For the pointer access, sBPF focuses on two memory buffer
pointers, input and output. The sBPF verifier tracks all
the pointer variables derived from input and output, by
adding or subtracting an offset. For each dereference of such
pointers (e.g. line 5 in Listing 1), the sBPF JITer inserts ad-
ditional native code for checking the pointer during running.
sBPF dynamically checks whether the dereferenced pointer
falls within the given region [input,input+length_i) or
[output,output+length_i), and returns an error when en-
countering an out-of-boundary pointer dereference. After-
ward, the l runtime terminates the execution of the pread_l
or pwrite_l request with an error code to be handled by the
application. In this way, sBPF ensures that pointer accesses
to the input and output buffers are valid.

One may notice that length_i is passed by the application.
For safety, l-IO checks whether length_i is valid through
kernel safety verifications (e.g. by rw_verify_area), before
passing length_i to the l function.

l-IO does not introduce eBPF helper functions such as
bpf_probe_read [39] to check pointer access. The root
cause is that each eBPF helper function call is translated to a
function call in the native binary by the JITer. If a program
accesses input and output buffers via helper functions, the
calls incur heavy overhead.

Note that sBPF only handles two pointers of input and
output specially, as they are allocated and managed by l
runtime. Other pointers are still verified by the static verifier.
For the dynamic-length loop, sBPF applies a dynamic count.
We observe that, the program has at least a jump-back instruc-
tion with a negative offset to implement a loop. Therefore,
sBPF limits the number of executing jump-back instructions.

The sBPF verifier allows loops during the static verification.
The sBPF JITer allocates a counter and inserts extra native
code beside each jump-back instruction. Once a jump-back
instruction is executed, the counter increases. If the counter
reaches the preset loop threshold, the program terminates and
returns an error. As we limit the number of jump-backs, the
program completes in bounded time.

We further describe how to choose the loop threshold value.
For an ISC program, the number of loops is typically propor-
tional to the input buffer size. In practice, the threshold can
be set to the same order of magnitude as the maximum input
buffer size of programs. In this way, l-IO permits normal
programs and aborts buggy or malicious programs.
Safety. sBPF changes the logic of pointer access and dynamic-
length loop, but does not introduce extra safety risks compared
to eBPF. In eBPF, the Linux kernel and the eBPF toolchain
(e.g., verifier, and JITer) are trusted, while the user-written
source code is untrusted. In sBPF, both the kernel and the
eBPF toolchain are extended so that the source code running
with sBPF can behave differently in two aspects:

1) Pointer accesses to the input/output buffer. The l
runtime allocates the input/output buffer and checks that the
user has permission to access the file range (l-IO strictly
follows the ACL checking of the file system when accessing
file data). Once a l request finishes, the input/output buffer is
reclaimed as well. Except for the input/output buffer, pointer
accesses to other memory space are verified by eBPF’s default
static verifier. As a result, sBPF does not introduce extra risks
of memory leak compared to eBPF.

2) Dynamic-length loops. sBPF does not allow infinite
loops during execution; instead, sBPF allows loops to pass
the verifier’s checking, but lets the program abort if a loop
repeats too many times.

3.3.2 Data: Consistent File Access
As we state in §3.2, the l function accesses file data via the
input pointer in pread_l while via the output pointer in
pwrite_l. Given that there are a sea of file systems, such as
ext4, F2FS and XFS, we introduce how l-IO access file data
consistently without relying on any specified file systems for
compatibility. Our key idea is to leverage generic interfaces
and components, e.g. existing syscalls, VFS, and page cache
in the kernel, and to let the host control consistency.
l-kernel runtime. Considering compatibility to a host of
underlying file systems, we place the l-kernel runtime atop
VFS and page cache, as shown in Figure 3. Regardless of the
specific file system, VFS provides the unified file abstraction
and access interfaces. For a l request, the l-kernel runtime
accesses file via kernel_read and kernel_write.

To optimize read performance, we propose kernel-version
mmap, kernel_mmap to avoid the heavy data copy during
kernel_read. l-IO maps the pages located in the requested
range to a kernel virtual address region via vm_map_ram. Af-
terward, l-IO passes the mapped virtual address as the input

USENIX Association 21st USENIX Conference on File and Storage Technologies 351

pointer, so that the l function can access the file directly.
l-device runtime. Unlike the host end, the device is agnostic
to the host-side file semantics. The device first has to know
the exact storage locations of a range in the file. So the host
is responsible for extracting necessary metadata and pushing
it down to the device. Fortunately, Linux offers FIEMAP and
FIBMAP ioctl interfaces [40, 41], to retrieve the file extent
metadata of storage locations by given offset and length.

For l read, l-IO gets extent metadata of the specified range
inside the file, and pushes the extent down to the device. The
l-device runtime loads the data from given storage locations
to a continuous device memory buffer, and passes the buffer
address to the l function running in the device.

l-IO does the similar for l write inside the allocated scope
of a file. In the case that a l write appends the output file, l-
IO preallocates device storage space by fallocate [42] and
then retrieves the file extent metadata of storage locations. Ad-
ditionally, l-IO resets the unwritten flag as previous works
do [1, 25, 43]. In this way, the host can read data written by
the l write on the device, instead of zeros.
Consistency. As data may be modified in the host userspace,
the host kernel, and the device, l-IO has to guarantee data
consistency among three places.

One is the host-side consistency between the userspace
and the kernel. Both the userspace and the kernel rely on
the identical VFS and page cache to access file data. As the
l-kernel runtime reads and writes file through kernel_read

and kernel_write, these calls go through the same path as
userspace calls. In this way, consistency is guaranteed by the
VFS, page cache, and underlying file systems.

The other is the consistency between the host and the de-
vice. l-IO maintains the consistency in the host. During exe-
cuting a l read/write request in the device, l-IO acquires a
read/write lock on the file, to guarantee consistency against
other normal IO and l requests. Additionally, l-IO manipu-
lates the host-side page cache before dispatching l requests
to the l-device runtime. Before dispatching a l read request
to the device, l-IO flushes dirty cache within the overlapped
range, so that the device can view the up-to-date version.
Before dispatching a l write request to the device, l-IO inval-
idates the host-side page cache within the overlapped range,
so that the host can retrieve new data written on the device.

We propose l-kernel not for performance gaining over
vanilla IO, but for two strengths. 1) l-kernel, together with
l-device, offers unified interfaces and runtime across the host
and the device. On basis of this, the computational logic can
be run and dispatched on both sides. 2) With the host-side
components in the kernel, l-IO can better exploit the capabili-
ties of the vanilla Linux IO stack, e.g. compatibility, function-
ality, and sharing, as we mention in §2.1. In this way, l-IO
is friendly to programmers, since a sea of applications use
POSIX file interfaces of the vanilla IO stack.

3.4 Dynamic Request Dispatching
l-IO executes l requests in both sides, but a request can be
faster in either side, as we state in §2.2. The design goal of
the request dispatcher is to designate l requests to the faster
side effectively and efficiently.

For effectiveness, we model the execution time of a l re-
quest in both sides, so that the dispatcher can predict the
execution time and find the faster side. For efficiency, the re-
quester dispatcher should introduce low extra overhead to the
execution. To this end, l-IO periodically profiles partial re-
quests to determine variables in the model, rather than profiles
each l request. We describe them in detail below.
3.4.1 Modeling Execution Time
We first consider l read. We start by defining a few symbols,
the loaded data size from the storage media D, the bandwidth
between the storage media and the device controller buffer Bs
for a request, the bandwidth between the device and the host
Bd for a request, and the host-side computing bandwidth Bh
for a request.

We notice that multiple requests may be submitted and
executed concurrently. Therefore, these bandwidth variables
correspond to a request, instead of all the concurrent requests.
When multiple requests are executed concurrently, the data
transfer and computation bandwidth of each request is af-
fected by other requests and thus less than the aggregated.

The execution time in the host th is composed of transfer-
ring data from the storage media to the device controller, then
to the host, and the host computing, as shown in Equation 1.

If the computation happens in the device, the transferred
data size between the host and the device becomes aD, where
a is the ratio between the output and input. The computing
bandwidth in the device is bBh, where b is the ratio between
the device and the host computing bandwidth. We have the
execution time td in Equation 1.

(
th = D

Bs
+ D

Bd
+ D

Bh
i f in the host

td = D
Bs
+ D

bBh
+ aD

Bd
i f in the device

(1)

Similarly, given the input data size D, we have the following
to calculate the execution time for a l write

(
th = D

Bh
+ aD

Bd
+ aD

Bs
i f in the host

td = D
Bd

+ D
bBh

+ aD
Bs

i f in the device
(2)

We further discuss the impact of the host-side cache on l
read. The cache reduces data transfer from the device and
saves significant data movement overhead. Given the cache
ratio c, Equation 1 becomes

(
th =

(1�c)D
Bs

+ (1�c)D
Bd

+ D
Bh

i f in the host
td = D

Bs
+ aD

Bd
+ D

bBh
i f in the device

(3)

The higher the ratio of the cached file data, the more we tend
to dispatch the l read request to the host.

352 21st USENIX Conference on File and Storage Technologies USENIX Association

3.4.2 Periodical Profiling and Dispatching
To estimate the execution time using the above equations,
l-IO has to determine variable values in the equations. We
divide seven variables into two groups, one’s exact values
obtained directly and one estimated by profiling.

The first group includes the input data size D and the host-
side cache ratio c. D is the length_i in Table 1. To get c,
the request dispatcher walks the page cache tree to count the
number of cached pages nc within the given range. Afterward,
it calculates c by nc ⇥PAGE_SIZE/ length_i.

The second group includes the remaining five variables, Bs,
Bd , Bh, a, and b. We call them profiling variables. l-IO does
not know their exact values for a l request in advance, so it es-
timates their values through periodical profiling. It is notable
that Bs is the bandwidth for a request, but is not necessarily
equal to the physical bandwidth between the storage media
and the device controller buffer. Bs changes over time, like
when multiple requests share the device, and so are the other
variables. Thus we call these variables in the second group
profiling variables and describe how to profile them.

We notice that profiling variables vary on different files
and l functions. Therefore, l-IO profiles their values for
each (file_path, l_id) pair separately. The dispatching sup-
ports collocated applications as (file_path, l_id) pairs may
come from different applications running simultaneously.

To determine these variables efficiently, l-IO profiles par-
tial requests periodically rather than profiles each request. For
a given (file_path, l_id) pair, l-IO sets a profiling period,
like n requests. For the beginning k requests in a period (we
refer to k as profiling length), l-IO submits them to both the
l-kernel and l-device runtimes. Each runtime measures the
values of profiling variables of a request during execution.
After k requests complete, l-IO calculates the average of each
variable and uses it as the estimated value.

For the following requests in the same period, l-IO cal-
culates the estimated execution time in both sides using the
equations and estimated variable values. Then it dispatches
the request to the faster side. When a new period comes, l-IO
repeats the profiling to estimate new values for the variables.

To achieve a balance between effectiveness and efficiency,
l-IO should be careful to set values of two profiling parame-
ters, i.e. profiling period and profiling length. With a smaller
profiling period and a bigger profiling length, the dispatcher
can keep track of the status and find the faster side more effec-
tively, but will induce higher overhead. In contrast, a bigger
profiling period and a smaller profiling length lead to lower
overhead, but the dispatcher may miss real-time changes in
the status and make suboptimal decisions.

4 Implementation

We implement l-IO in the full-stack software and hardware
environment. We modify the Linux kernel to integrate l exten-

sion in the host and build an NVMe device with l extension
support on a real hardware platform. We introduce the imple-
mentation details in this section.
Host. We implement the request dispatcher and the l-kernel
runtime in the host kernel with a kernel module. The kernel
module creates a procfs [44] file to receive l extension calls.
We modify the eBPF verifier and the x86 JITer.
Device. We implement the device-side components on a real
hardware platform, Daisy OpenSSD [45]. It is representative
of computational storage devices, as one of the latest itera-
tions of the OpenSSD project [46, 47]. OpenSSD is widely
recognized and used by ISC researches from both industry
and academia [18–21, 27, 48, 49]. The device connects to the
host via PCIe and operates as an NVMe drive. We migrate
OpenExpress [50, 51], an open-source NVMe controller, to
the platform. We refactor the NVMe firmware thoroughly,
modify the eBPF verifier and the ARM eBPF JITer from the
kernel, and construct the l-device runtime atop them.
Communication. We use standard NVMe over PCIe to com-
municate between the host and the device. l-IO delivers nor-
mal IO requests through existing NVM IO commands, and
customizes three Vendor Specific Commands [52, 53] for l
load, read, and write. l-IO creates one standalone NVMe com-
mand for one l request separately, delivering all necessary
file extent metadata and indicating the l function it triggers.

5 Evaluation

We evaluate l-IO to answer the following questions:
• How does l-IO perform on typical in-storage computing

applications compared to existing approaches? (§5.2)
• How does l-IO perform when collocated applications run

concurrently? (§5.3)
• How do workload characteristics and dispatching configu-

rations affect the performance? (§5.4)
• How is the sBPF overhead compared to eBPF? (§5.5)
• Can the end-to-end performance of a real application benefit

from l-IO? (§5.6)

5.1 Experimental Setup
Testbed. Table 2 shows our detailed testbed configurations.
We implement l-IO on the host and the device as stated in §4.
The host CPU has 4 physical cores and 8 hyperthreads. The
device SoC has 4 ARM cores. The 2GB SoC memory acts as
the device controller memory. We equip the device with two
32GB DRAM DIMMs to act as the backend storage media,
as the hardware board manufacturer provides no NAND flash
modules. The data transfer bandwidth between the storage
media and the device controller memory is 3.52GB/s. The
bandwidth between the device controller memory and the
host is 3.22GB/s. The bandwidth for ARM cores to access
the device controller memory is 5.09GB/s. The performance
is comparable to real SSDs and hardware platforms in recent
works [19, 24, 48, 54].

USENIX Association 21st USENIX Conference on File and Storage Technologies 353

Host

CPU Intel Core i7-7700 @3.6GHz (4C8T)
Memory 16GB
OS Ubuntu 20.04.2 LTS
Kernel Linux 5.10.21

Device
SoC Xilinx Zynq Ultrascale+ ZU17EG
Memory 2GB
Storage 64GB

Table 2: Testbed Configurations.

App. Description ISC LoC
l-IO INSIDER [25]

Stats64 Read the file data as 64-bit in-
tegers and calculate the sum,
maximum, and minimum.

30 240

Stats32 Read the file data as 32-bit in-
tegers and calculate the sum,
maximum, and minimum.

30 240

KNN Read vectors in the file and
calculate distances between a
target vector.

32 99

Grep Read rows in the file and
match a target string.

35 254

Bitmap Decompress a bitmap and
write to the file.

20 188

Table 3: Information of Synthetic Applications.

Workloads. We choose five synthetic applications Stats64,
Stats32, KNN, Grep, and Bitmap with their information listed
in Table 3. The first four applications read data from the
source file and process it. The last application, Bitmap, de-
compresses a bitmap passed by buf and writes the output to
the file. They fit the in-storage computing scenario well and
are widely studied and evaluated in previous works [4, 13,
14, 24, 25, 27, 55]. The program code follows the skeleton of
Listing 1 and costs little extra overhead to implement.

The input dataset file of four read applications is 16GB in
size. The output file of Bitmap is also 16GB in size. As the
output data also requires persistence, we synchronize the file
after writing. We format the storage device to ext4 to store
files. Applications run with 8 host threads and read/write file
data to an 8MB buffer in each iteration. We set loop threshold
(§3.3) to 16 million, profiling period (§3.4) n to 200, and
profiling length k to 5. We keep the above configurations
throughout experiments unless otherwise specified.
Porting overhead. As shown in Table 3, the LoC of imple-
menting the same offloaded computational logic for l-IO is
significantly smaller than INSIDER [25]. We count the ISC
LoC of INSIDER from its code repository [56]. The porting
overhead of INSIDER is large, like other FPGA-based ISC
frameworks. This is because INSIDER leverages HLS [57]
to implement the computational logic on FPGA. Although
HLS reduces the programming overhead, it still requires the
programmer to be an expert in FPGA details [58] and write
much hardware-specific code to optimize the performance.
Comparing targets. We adopt six IO modes in our evaluation,

three vinalla IO modes and three l-IO modes.
• (B) Buffer IO: uses the default IO mode of vanilla IO
pread/pwrite to access file data. It enables the page cache.
The computational logic is directly compiled to the native
ISA, and so are Direct IO and Mmap.

• (I) Direct IO: similar to Buffer IO but opens the dataset file
with O_DIRECT. It bypasses the kernel page cache.

• (M) Mmap: maps the dataset file to the userspace virtual
address of the process. It eliminates data copy between the
kernel and the userspace.

• (K) l-IO Kernel: integrates the computational logic using l-
IO APIs and executes all the requests in the kernel runtime.

• (D) l-IO Device: integrates the computational logic using l-
IO APIs and executes all the requests in the device runtime.

• (lll) l-IO: integrates the computational logic using l-IO
APIs and leaves the l-IO request scheduler to dispatch
between the kernel and the device dynamically.

The first three IO modes (B, I, M) correspond to common ap-
proaches that use vanilla IO. (D) l-IO Device corresponds to
existing device-only ISC frameworks, e.g. Biscuit, INSIDER,
MetalFS, BlockNDP [25–27, 55].
Warmup. We run experiments in two caching settings to
examine the performance of l-IO, 1) without warmup: drop
the page cache before each execution, 2) with warmup: read
the input/output file sequentially via Buffer IO, to warm up
the page cache before each execution.

With warmup, we simulate the host-side cache state in
practice and evaluate the performance of l-IO in this scenario.
After the warmup, partial data resides in the page cache while
the rest is in the device if the input/output file is larger than
the page cache. In real-time data analysis systems such as
OLAP databases, the application continues producing data
and storing it. Thus, the host-side cache always stores the
latest part of the data. Meanwhile, the analytical application
runs periodically to process the data in the recent period,
where partial data resides in the cache while others have been
flushed to the device.

5.2 Single Application
We compare the execution time of applications running singly
in six IO modes. Figure 4 reports the results.

For further analysis, we break down execution time to three
parts, IO, computation, and other. ∂ IO time means the time
of reading/writing the file. In (B) Buffer IO and (I) Direct IO,
it is the time of pread/pwrite. In (M) Mmap, the read time
is included in computation, because the application retrieves
data implicitly via page faults. In (K) l-IO Kernel, it is the
time of reading/writing data via the VFS. In (D) l-IO Device,
it is the time of transferring data between the storage media
and the device controller memory. In (l) l-IO, it is the sum
of IO time of requests, whether they execute in the host or
the device. ∑ Computation time contains the calculation part
of the application, along with memory access time. ∏ Other
time is the remaining part excluding IO and computation.

354 21st USENIX Conference on File and Storage Technologies USENIX Association

E
xe

cu
tio

n
Ti

m
e

(s
)

IO
Computation
Other

Stats64 Stats32 KNN Grep Bitmap

(a) w/o warmup

(b) w/ warmup
B I MKD λ B I MKD λ B I MKD λ B I MKD λ B I MKD λ

0

5

10

15

20

25

0

5

10

15

20

25

B I MKD λ B I MKD λ B I MKD λ B I MKD λ B I MKD λ

Figure 4: Performance of Applications Running Alone. B:
Buffer IO, I: Direct IO, M: Mmap, K: l-IO Kernel, D: l-IO
Device, lll: l-IO.

1) l-IO Device vs. vanilla IO. We choose Buffer IO to com-
pare with l-IO Device first, as it is the default operation mode
of vanilla IO. We analyze the performance without warmup.
In-storage computing improves the overall performance of
Stats64, KNN, Grep, and Bitmap by 23.24%, 10.82%, 87.13%,
and 60.15% against Buffer IO respectively. This is because
applications running in the host are bounded by IO, which
takes up more than 92.04% of execution time. For a normal
read, data is transferred from the storage media to the de-
vice controller memory and then to the host software stack,
as a normal SSD does. In contrast, IO time in l-IO Device
occupies less than 25.29%, because loading data inside the
device avoids transferring to the host and going through the
software stack. After the data is read to the device controller
memory, device processors enjoy higher internal bandwidth
to access data. Moreover, the computational logic outputs
a smaller amount of data than the input file data, reducing
the data transfer overhead to the host. Write (Bitmap) works
similarly, except for the reversed direction.

The performance with warmup is close to that without
warmup. This is because the host memory is 16GB in size, and
the page cache capacity is just smaller than the dataset. After
the warmup, all the input file is cached inside the page cache,
except the beginning part. As the application runs again, it
still accesses data from the very beginning. The beginning
part misses in the page cache and evicts other pages, which
leads to more and more cache misses. Finally, the page cache
fails to buffer any data in fact.

One might note that other time of l-IO Device is relatively
large, as illustrated in Figure 4. This is because the host issues
requests with 8 threads, while the device only has 4 threads
to process. So a request has to pend in the queue and wait

for the completion of previous requests. But request pending
and waiting actually exist in all modes. For example in Buffer
IO, in the progress of pread/pwrite, IO requests also pend
and wait in queues throughout the IO stack. The overhead is
included in the IO time.

l-IO Device does not always outperform vanilla IO, e.g.
on Stats32. l-IO Device consumes 6.65⇥ computation time
against l-IO Kernel on Stats32. We examine the generated
native machine code of Stats32 and find that eBPF does not
support 32-bit integers well. Specifically, eBPF programs
use 64-bit registers even for 32-bit integers in Stats32. It
introduces a pair of left and right shift instructions to clear the
upper 32 bits of registers. This mechanism induces significant
overhead in the device processors. We leave optimization of
supporting 32-bit integers for future work.
2) l-IO Kernel vs. vanilla IO. l-IO Kernel executes the
computational logic in the host kernel and exhibits similar
performance against Buffer IO. We look deeper into the time
breakdown of l-IO Kernel. It takes slightly more time to
compute, since sBPF incurs overhead compared to the native
ISA. Oppositely, l-IO Kernel reduces data copy from the
kernel page cache to the userspace buffer. These two aspects
together result in similar performance to Buffer IO.

We further examine three vanilla IO modes. As shown in
Figure 4, Buffer IO performs the best. Direct IO is slower,
as it bypasses the page cache and therefore misses the op-
portunity of readahead. We note that computation takes up
almost all the execution time in Mmap on read applications.
It is because the computational logic accepts the mmaped
virtual memory address and loads data from the file system
via user-agnostic page faults. Page fault handling in the kernel
induces high overhead [59], so leads Mmap to the slowest
mode. Different from read applications, Bitmap still spends
time on IO, because it writes the mapped data via msync.
3) l-IO modes. The rightmost bars in Figure 4 present the
performance of l-IO modes. Without warmup, the execution
time of l-IO is almost the minimum value of l-IO Kernel
and l-IO Device on all applications, although the dispatcher
introduces less than 4.98% overhead.

With warmup, l-IO improves more significantly. Stats64,
KNN, and Grep are 2.19⇥, 2.71⇥, 5.12⇥ faster than Buffer
IO. l-IO is faster than both l-IO Kernel and l-IO Device.
When the application accesses the beginning part of the file,
the l-IO request dispatcher finds that the device processes
faster. It thus submits these requests to the device and keeps
the page cache untouched. As the beginning part passes, the
rest file data is buffered in the page cache. Then the dis-
patcher detects the kernel is better and submits requests. In
this way, l-IO takes full advantage of both the kernel and the
device, achieving the best performance. The write application,
Bitmap, does not gain extra benefits from warmup, compared
to the performance without warmup. As we need to synchro-
nize the data to the device after writing, it always finishes
faster in the device side.

USENIX Association 21st USENIX Conference on File and Storage Technologies 355

S
ta

ts
64

S
ta

ts
32

K
N

N

G
re

p

B
itm

ap

(a) w/o warmup (b) w/ warmup

1.69 1.13 1.49 1.21

1.21 1.04 1.19 1.07

1.12 1.35 1.45 1.16

1.98 2.19 1.97 1.59

1.58 1.96 1.56 1.72

1.66 1.13 1.51 1.21

1.23 1.05 1.20 1.14

1.13 1.32 1.45 1.17

1.92 2.02 1.91 1.44

1.57 1.96 1.56 1.80

2.07 0.97 0.94 0.95

1.94 1.73 1.61 1.63

0.97 1.63 0.96 0.96

0.96 1.22 0.97 0.94

0.97 1.54 0.99 0.95

1.0 1.5 2.0 2.5

App-A

A
pp

-B

S
ta

ts
64

S
ta

ts
32

K
N

N

G
re

p

B
itm

ap

Bitmap

Grep

KNN

Stats32

Stats64

Bitmap

Grep

KNN

Stats32

Stats64

1.86 1.67 2.14 1.41

1.26 1.22 1.24 1.06

1.64 1.69 2.13 1.36

3.14 2.95 2.77 2.31

1.69 2.04 1.72 1.98

1.78 1.66 2.16 1.42

1.28 1.24 1.25 1.19

1.65 1.66 2.14 1.39

3.07 2.78 2.66 1.99

1.69 1.95 1.71 2.05

2.42 1.41 1.33 1.09

2.00 2.01 1.66 1.61

1.38 2.11 1.39 1.10

1.50 1.69 1.31 1.32

1.02 1.54 1.05 1.08

Bitmap

Grep

KNN

Stats32

Stats64

vs. Buffer IO
vs. λ

-IO
 K

ernel
vs. λ

-IO
 D

evice

Figure 5: Speedup of Running Applications Concurrently in l-
IO Mode. App-A and App-B are two collocated applications.
Digits denote the speedup of App-A running in l-IO against
Buffer IO, l-IO Kernel, and l-IO Device.

The results demonstrate that l-IO dispatches requests ef-
fectively and efficiently. Moreover, l-IO yields better perfor-
mance than kernel-only and device-only ISC approaches for
read applications running with warmup.

5.3 Collocated Applications
We evaluate executing collocated applications concurrently,
to present how l-IO works in this scenario.

With five applications, we have ten combinations of two
different applications. For a combination, we run two appli-
cations concurrently, each with 4 threads and its own 16GB
dataset. We evaluate the combination in Buffer IO, l-IO Ker-
nel, l-IO Device, and l-IO modes. Then we measure execu-
tion time of each application and calculate the speedup of
each application in the l-IO mode against other three modes.
We draw results of all combinations in Figure 5, where digits
mean the speedup of App-A.

For better understanding the figure, we take two digits 1.21
and 1.69 in the top left corner of subfigure (a) as an example.
We run Stats32 and Stats64 concurrently in l-IO mode. Com-

pared to run them concurrently in Buffer IO mode, Stats32
and Stats64 complete 1.21⇥ and 1.69⇥ faster respectively.

As we evaluate in §5.2, Stats64, KNN, Grep, and Bitmap
run faster in the device. We classify results of Figure 5(a)
into two categories according to whether chosen applications
both run faster in the device. 1) When Stats32 is chosen, l-IO
speeds up both applications by up to 2.19⇥ compared to other
three modes. This is because l-IO dispatches Stats32 to the
host and the other (Stats64, KNN, Grep, or Bitmap) to the
device, so as to exploit both sides. 2) Otherwise when Stats32
is not chosen, l-IO outperforms Buffer IO and l-IO Kernel
by up to 1.98⇥, because l-IO executes them in the faster
device side. Compared to l-IO Device, l-IO introduces less
than 5.64% dispatching overhead. As shown in Figure 5.3(b),
the speedup with warmup is higher than that without warmup,
because the dispatcher is aware of the page cache.

Since collocated applications run different computational
functions (l) on different dataset files (file_Path), l-IO es-
timates the execution time of their requests and dispatches
separately (§3.4). Based on the design, l-IO can dispatch
collocated applications effectively and efficiently, as demon-
strated in this experiment.

5.4 Sensitivity Analysis
5.4.1 Dataset Size
We evaluate the impacts of the dataset size on the performance
with warmup. We take Stats64 as an example due to space
limitation. Figure 6 reports the results in six modes with
varying dataset sizes. We categorize them into three types,
less than (8GB), approximately equal to (16GB), and greater
than (24GB, 32GB, and 40GB) the page cache capacity.

IO Computation Other

8GB 16GB 24GB 32GB 40GB

0
1
2
3
4
5

B I M K D λ

E
xe

cu
tio

n
Ti

m
e

(s
) IO

Computation
Other

0

10

20

30

B I M K D λ B I M K D λ B I M K D λ B I M K D λ B I M K D λ

Figure 6: Stats64 Performance with Varying Dataset Sizes.

Dataset size < page cache capacity. Recall that the host
memory is 16GB in our testbed, so the 8GB dataset fully
resides in the page cache after the warmup run. The host does
not have to read the data from the device, getting rid of the
peripheral IO bottleneck. Direct IO still bypasses the page
cache and loads data from the device, so it is significantly
slower. The device has wimpier processors than the host, so
l-IO Device exhibits lower performance. l-IO performance
is close to l-IO Kernel, which again proves the effectiveness
of dynamic dispatching.
Dataset size ⇡ page cache capacity. The page cache capacity
is just narrower than the host memory 16GB size, as running

356 21st USENIX Conference on File and Storage Technologies USENIX Association

E
xe

cu
tio

n
Ti

m
e

(s
) IO

Computation
Other

Stats64 Stats32 KNN Grep Bitmap

0

5

10

15

20

B I MKD λ B I MKD λ B I MKD λ B I MKD λ B I MKD λ

Figure 7: Performance with Random Warmup.

(b)

5

10

15

20

25

5 10 20 50 100 200

Ex
ec

ut
io

n
Ti

m
e

(s
)

Stats64-w/o warmup
Bitmap-w/o warmup

Stats64-w/ warmup
Bitmap-w/ warmup

(a)

0
2
4
6
8

10

50 100 200 500 1000
Profiling LengthProfiling Period

Figure 8: Performance with Varying Profiling Periods and
Profiling Lengths.

programs occupy a fraction of space. This setting is the same
as §5.2. The host-side page cache takes little effect and l-IO
exploits both the host kernel and the device simultaneously.
Dataset size > page cache capacity. When the dataset size
exceeds page cache capacity, a fixed size of data is cached
after the warmup. l-IO performs better than the other five
modes by 1.28⇥ to 1.60⇥ because it dispatches requests to
both sides efficiently.

5.4.2 Warmup
We evaluate the impacts of the warmup approach on perfor-
mance. As we state in §5.1, we warm up the page cache by
sequentially reading the input/output file via Buffer IO. In
this experiment, we change sequential read to random read
and show the results in Figure 7.

Compared to results in Figure 4, Buffer IO performs better.
After warmup by random read, random parts of the dataset file
are in the page cache. During the execution, the application
accesses the dataset file sequentially, so it can access partial
data quickly when that part of the data is in the page cache.
Nevertheless, l-IO can still outperform Buffer IO by 4.05⇥.
Dynamic request dispatching of l-IO works effectively and
efficiently, no matter how the warmup is taken.

5.4.3 Profiling Period and Profiling Length
Figure 8 depicts the performance with varying profiling peri-
ods and lengths. We choose Stats64 and Bitmap as the repre-
sentative of read and write applications. When the profiling
period becomes larger, the execution time decreases as l-IO
profiles fewer requests. The execution time remains stable
when the profiling period is over 200, as the profiling and dis-

Thread Count

10

20

30

1 2 4 8

Ex
ec

ut
io

n
Ti

m
e

(s
)

Buffer IO
Direct IO

Mmap
λ-IO Kernel

λ-IO Device
λ-IO

Buffer Size

8

10

12

1MB 2MB 4MB 8MB16MB

(a) (b)

Figure 9: Stats64 Performance with Varying (a) Buffer Sizes
and (b) Thread Counts.

patching overhead is small enough. So we choose 200 as the
default value of the profiling period because a small period
leads to a quick response to the status.

When the profiling length goes up, the execution time in-
creases significantly. With a profiling length of 200, l-IO pro-
files all the requests and submits them to both the kernel and
the device. We choose 5 as the default value of the profiling
length. We calculate the average by removing the maximum
and minimum values, to avoid accidental measurement errors.

5.4.4 Buffer Size
Figure 9(a) illustrates the performance of the Stats64 applica-
tion with different data buffer sizes in each iteration. Most IO
modes stay stable when the buffer size varies. Direct IO runs
faster as the buffer size surpasses 4MB. Buffer IO and l-IO
Kernel perform almost the same, as in previous experiments.

5.4.5 Thread Count
Figure 9(b) plots the execution time of the Stats64 application
with different number of host threads. Most IO modes execute
faster when the number of threads grows up. Mmap rarely
improves as using 1 thread reaches the top performance. The
performance of l-IO Device mode scales linearly from 1
thread to 4 threads. For all IO modes, 4 threads are enough to
exploit the performance potential although the host CPU has
8 hyperthreads.

5.5 Overhead of sBPF
In this experiment, we evaluate the overhead of sBPF against
eBPF. We choose two representative applications Stats64 and
Stats32, because they run faster in the host and the device
separately. We compare computation and total execution time
in 8 settings, as shown in Table 4.
Settings. Eight settings are divided into two groups, kernel
and device. We compile the computational logic to eBPF/s-
BPF programs. Two eBPF settings in the table mean running
the bytecode by the eBPF verifier and JITer. We disable loop
and pointer verifications to test the bare performance. DL
checks dynamic-length loops on the basis of eBPF. DL+HF
checks pointer access by helper functions on top of DL. We
add two bpf helper functions for pointer read and write to
the input and output buffers. All the input and output buffer

USENIX Association 21st USENIX Conference on File and Storage Technologies 357

Setting Stats64 Stats32
Compute (s) Total (s) Compute (s) Total (s)

Kernel

eBPF 0.84 9.06 1.38 9.08
DL 0.86 9.06 1.41 9.16
DL+HF 3.99 9.47 9.19 14.15
sBPF 0.99 9.06 1.60 9.12

Device

eBPF 2.39 6.38 8.64 18.75
DL 2.64 6.84 9.04 19.54
DL+HF 11.82 25.11 31.99 65.45
sBPF 2.94 7.34 10.27 22.02

Table 4: Performance on eBPF and sBPF. DL: eBPF with
checking Dynamic-length Loops. DL+HF: eBPF with check-
ing Dynamic-length Loop and checking memory access by
Helper Functions.

Q6 Q12 Q14 Q15 Q19

E
xe

cu
tio

n
Ti

m
e

(s
)

IO Computation Other Spark

(a) IO Intensive

0

10

20

30

40

50

BKDλ BKDλ BKDλ BKDλ BKDλ

Q1 Q3 Q4 Q7 Q20

(b) CPU Intensive

0

5

10

15
50

100
150

BKDλ BKDλ BKDλ BKDλ BKDλ

(b) CPU Intensive

Figure 10: TPC-H Performance w/o Warmup. B: Buffer IO,
K: l-IO Kernel, D: l-IO Device, lll: l-IO. Qi: query i.

pointer accesses in the computational logic are modified to
use helper functions. sBPF is the default setting used in all
the other experiments. It combines dynamic loop and pointer
access as we describe in §3.3.
Results. Table 4 depicts the results in 8 settings. Comparing
the results of eBPF and sBPF settings, we find that the loop
check induces at most 2.44% and 10.09% overhead in the host
kernel and the device. Together with the pointer check, sBPF
adds no more than 16.96% and 22.68% computation time
in two sides respectively. The total execution time is almost
unchanged in the host, and increases by 15.14% - 17.44%
in the device. The results of UL+HF settings are notable.
It expands computation time by up to 6.67⇥ and 4.93⇥ in
two sides and slows down the total execution time seriously.
The results demonstrate that loop and pointer checks of sBPF
come at an acceptable cost.

5.6 Case Study: Spark SQL
In this experiment, we port a real application, Spark SQL [10],
to l-IO and evaluate its end-to-end performance with TPC-
H [11]. Spark SQL is a prevalent SQL application for re-
lational processing on structured data [60], as a module of
Apache Spark. Spark SQL follows the schema of reading and
processing data, so that it offers the opportunity of offload-
ing computational logic to read via l-IO. For an SQL query,
Spark SQL first parses the query, constructs JAVA source code
for processing data, and generates JAVA bytecode for later
execution. Afterward, Spark SQL executes in two steps, 1)

Q6 Q12 Q14 Q15 Q19

E
xe

cu
tio

n
Ti

m
e

(s
)

IO Computation Other Spark

(a) IO Intensive

0

10

20

30

40

50

BKDλ BKDλ BKDλ BKDλ BKDλ

Q1 Q3 Q4 Q7 Q20

(b) CPU Intensive

0

5

10

15
50

100
150

BKDλ BKDλ BKDλ BKDλ BKDλ

(b) CPU Intensive

Figure 11: TPC-H Performance w/ Warmup.

reads data from files, and 2) executes the JAVA bytecode to
process input data and returns results. Thus, we can extract
part of processing logic in the JAVA source code and integrate
it into the first-step read via l-IO.
Workloads. TPC-H is a widely-used OLAP benchmark [11]
that defines a dataset of 8 tables and 22 SQL queries.
We generate a 41.6GB dataset with a scale factor of 40.
Three largest tables, LINEITEM, ORDERS, and PARTSUPP are
28.61GB (68.77%), 6.58GB (15.84%), and 4.53 GB (10.88%)
in size respectively, together taking up 95.49% space of the
whole dataset. We equip the host with 32GB of physical mem-
ory, which is still smaller than the dataset size. As for queries,
we classify them into two categories, IO intensive and CPU
intensive. We show 5 queries of each category due to the
paper space limitation. They cover various SQL operations of
projection, selection, aggregation, join, subquery, etc.

We focus on the largest table LINEITEM in this experiment,
as all the 10 queries retrieve data from it. We add a prepro-
cessing module between Spark SQL and l-IO. For a SQL
query, we extract filter logic (projection and selection) of
LINEITEM from generated JAVA source code, convert it to C
code, and integrate it to read in the preprocessing module. In
this way, the execution progress finishes in two steps. 1) The
preprocessing module reads file data and filters. 2) Spark SQL
retrieves filtered data from the preprocessing module, further
processes (e.g. aggregation, join), and returns results in the
Spark environment. The filter logic of every query has less
than 50 LoC and thus the porting overhead is low.
Comparing targets. We implement and run the preprocessing
module in four modes, Buffer IO (B), l-IO Kernel (K), l-
IO Device (D), and l-IO (l). In the Buffer IO mode, the
preprocessing module reads file data via pread and runs the
filter logic of projection and selection totally in the userspace.
In the other three modes, the processing module integrates
filter logic into read via pread_l of l-IO. We do not present
the performance of the unmodified Spark SQL in the paper,
as it is always slower than our modified Spark SQL with
the preprocessing module, and instead, we use the Buffer IO
mode as the baseline for fairness.
Results. Figure 10 and Figure 11 report experimental results
without and with warmup. We warm up by reading the dataset
sequentially before each execution, as we state in §5.1. As
we mention in the settings above, the modified Spark SQL

358 21st USENIX Conference on File and Storage Technologies USENIX Association

executes a SQL query in two steps, first in the preprocessing
module and then in the Spark environment. We divide time in
the preprocessing module into three parts of IO, computation,
and other, as in Figure 4. Plus time in Spark, we break down
end-to-end execution time into four parts in the figures.

Figure 10(a) shows the performance of IO intensive queries
without warmup. In these queries, IO occupies 27.02% –
60.41% of end-to-end execution time in the Buffer IO mode.
The execution time of l-IO Kernel is similar to Buffer IO,
like in previous experiments. l-IO dispatches requests to
the device efficiently and reduces preprocessing time (IO +
computation + other) by up to 81.85% against Buffer IO. Ac-
cording to our statistics, the preprocessing module reduces the
input data size to only 0.59% – 6.75%. Taking Spark time and
scheduling overhead into account, l-IO outperforms Buffer
IO by 8.56% – 31.58%. l-IO accelerates the end-to-end exe-
cution time of Spark SQL on IO intensive queries.

Figure 11(a) reports the performance with warmup. The
dataset is larger than the page cache. We focus on the exe-
cution time of l-IO. It performs faster than Buffer IO, l-IO
Kernel, and l-IO Device by up to 2.15⇥, 2.16⇥, and 1.51⇥
respectively. We also evaluate on a 20.8GB dataset (Scale
Factor=20). With all data cached in the host, l-IO Kernel is
faster than l-IO Device by 9.16% – 35.56%. l-IO dispatches
requests to the kernel with less than 2.98% overhead. These
demonstrate the effectiveness of l-IO dispatching.

Figure 10(b) and Figure 11(b) show performance of CPU
intensive queries. l-IO Kernel performs similarly to Buffer
IO. Preprocessing time of Q20 in l-IO Device is 16.28%
less than l-IO Kernel, where the row selectivity 15.1% is
as low as IO-intensive queries. But for Q1, Q3, Q4 and Q7,
preprocessing in the l-IO Kernel is faster than l-IO Device by
up to 18.45%. This is because they select 30.3% – 98.5% rows,
much higher than IO intensive queries. The device copies
and returns more data and becomes less effecient than the
host. Even though preprocessing is faster either in the host or
the device, l-IO chooses the faster side for all the 5 queries.
The key difference from IO intensive queries is that Spark
occupies dominant part, more than 87.48% of execution time.
Therefore, the end-to-end execution time of all modes does
not differ significantly.

In summary, taking Spark SQL as an example, real appli-
cations can benefit from l-IO.

6 Related Work

In-storage computing (ISC) in the storage device originates in
the disk era [4,12] and revives with the advent of SSDs [5,13].
We classify recent works into two categories, case study and
general framework. Case study works accelerate a specific
application or system by ISC, such as SQL [15, 61, 62], big
data [14], graph [16, 17, 49], file system [22, 29, 63], and data
training [18,19,64]. General ISC frameworks target offloading
user-defined computational logic [23–27,55] and are closer to

ours. As we state before, existing ISC frameworks mostly fo-
cus on providing manipulation interfaces in the userspace and
accelerating computation in the device, but l-IO redesigns
the IO stack to support offloading computation. We discuss
two works in more detail. Summarizer [24] proposes an au-
tomatic dispatching approach to saturate the device first, but
does not consider many factors affecting the execution time
in both sides. l-IO takes many factors into consideration, and
proposes profiling-based dynamic dispatching to designate
requests. MetalFS [26] integrates into Linux as a file system
driver, it only offloads computation to the FPGA device, with-
out utilizing the host computation resources. l-IO employs
dynamic dispatching to exploit both sides.

As the network system continues delving into eBPF [35,
37], it also gains increasing attention in the storage sys-
tem [29], especially ISC researches [31–34]. ExtFuse [29]
accelerates file systems by embedding specialized request
handlers into the kernel. Kourtis et al. [31] propose pushing
computation to the disaggregated storage device, in order to
avoid multiple network roundtrips. As the first one targets
a specific acceleration, other ISC works make preliminary
exploration and envision of bringing eBPF to in-storage com-
puting. Zhong et al. [30,65] focus on pointer-chasing storage
functions, e.g. a chain of IO requests, and aim to resubmit
them in a lower layer of the host kernel to alleviate software
stack overhead. But they do not pay enough attention to data
computation inside one IO or offloading computation to com-
putational storage devices. l-IO analyzes and identifies two
critical limitations that render eBPF inapplicable to general
ISC. Responding to this issue, l-IO proposes sBPF to break
the limitations. Moreover, we build l-IO on the full-stack
software and hardware environment, not only the host side.

7 Conclusion

In this paper, we present l-IO, which extends Linux IO to
enable offloading computation to both the host kernel and the
device. It carries and executes a user-defined computational
logic during data transfer. We implement l-IO in the full-stack
and real software and hardware environment, and evaluate it
with synthetic and real applications against vanilla Linux IO,
showing significant performance improvement.

Acknowledgments

We sincerely thank our shepherd Alex Conway for helping us
improve the paper. We also thank the anonymous reviewers
for their feedback. This work is supported by the National
Key R&D Program of China (Grant No. 2021YFB0300500),
the National Natural Science Foundation of China (Grant No.
61832011, 62022051, & 62202255), and Huawei.

USENIX Association 21st USENIX Conference on File and Storage Technologies 359

References

[1] Sang-Woo Jun, Ming Liu, Sungjin Lee, Jamey Hicks,
John Ankcorn, Myron King, Shuotao Xu, and Arvind.
Bluedbm: An appliance for big data analytics.
SIGARCH Comput. Archit. News, 43(3S):1–13, jun
2015.

[2] SmartSSD - Samsung Semiconductor. https://

samsungsemiconductor-us.com/smartssd/.

[3] Computaional Storage | SNIA. https://www.snia.

org/computational.

[4] Anurag Acharya, Mustafa Uysal, and Joel Saltz. Active
disks: Programming model, algorithms and evaluation.
SIGPLAN Not., 33(11):81–91, October 1998.

[5] Devesh Tiwari, Simona Boboila, Sudharshan Vazhku-
dai, Youngjae Kim, Xiaosong Ma, Peter Desnoyers, and
Yan Solihin. Active flash: Towards energy-efficient, in-
situ data analytics on extreme-scale machines. In 11th
USENIX Conference on File and Storage Technologies
(FAST 13), pages 119–132, 2013.

[6] pread(2) — Linux manual page. https://man7.org/
linux/man-pages/man2/pread.2.html.

[7] readv(2) — Linux manual page. https://man7.org/
linux/man-pages/man2/readv.2.html.

[8] A thorough introduction to eBPF. https://lwn.net/
Articles/740157/.

[9] eBPF - Introdcution, Tutorials & Community Resources.
https://ebpf.io/.

[10] Michael Armbrust, Reynold S. Xin, Cheng Lian, Yin
Huai, Davies Liu, Joseph K. Bradley, Xiangrui Meng,
Tomer Kaftan, Michael J. Franklin, Ali Ghodsi, and
Matei Zaharia. Spark sql: Relational data processing
in spark. In Proceedings of the 2015 ACM SIGMOD
International Conference on Management of Data, SIG-
MOD ’15, page 1383–1394, New York, NY, USA, 2015.
Association for Computing Machinery.

[11] TPC-H Homepage. https://www.tpc.org/tpch/.

[12] Erik Riedel, Garth Gibson, and Christos Faloutsos. Ac-
tive storage for large-scale data mining and multimedia
applications. In Proceedings of 24th Conference on Very
Large Databases, pages 62–73. Citeseer, 1998.

[13] Sangyeun Cho, Chanik Park, Hyunok Oh, Sungchan
Kim, Youngmin Yi, and Gregory R Ganger. Active disk
meets flash: A case for intelligent ssds. In Proceedings
of the 27th international ACM conference on Interna-
tional conference on supercomputing, pages 91–102,
2013.

[14] Yangwook Kang, Yang-suk Kee, Ethan L Miller, and
Chanik Park. Enabling cost-effective data processing
with smart ssd. In 2013 IEEE 29th symposium on mass
storage systems and technologies (MSST), pages 1–12.
IEEE, 2013.

[15] Insoon Jo, Duck-Ho Bae, Andre S Yoon, Jeong-Uk
Kang, Sangyeun Cho, Daniel DG Lee, and Jaeheon
Jeong. Yoursql: a high-performance database system
leveraging in-storage computing. Proceedings of the
VLDB Endowment, 9(12):924–935, 2016.

[16] Jinho Lee, Heesu Kim, Sungjoo Yoo, Kiyoung Choi,
H Peter Hofstee, Gi-Joon Nam, Mark R Nutter, and
Damir Jamsek. Extrav: boosting graph processing near
storage with a coherent accelerator. Proceedings of the
VLDB Endowment, 10(12):1706–1717, 2017.

[17] Sang-Woo Jun, Andy Wright, Sizhuo Zhang, Shuotao
Xu, and Arvind. Grafboost: Using accelerated flash stor-
age for external graph analytics. In Proceedings of the
45th Annual International Symposium on Computer Ar-
chitecture, ISCA ’18, page 411–424. IEEE Press, 2018.

[18] Shengwen Liang, Ying Wang, Youyou Lu, Zhe Yang,
Huawei Li, and Xiaowei Li. Cognitive SSD: A deep
learning engine for in-storage data retrieval. In 2019
USENIX Annual Technical Conference (USENIXATC
19), pages 395–410, 2019.

[19] Mark Wilkening, Udit Gupta, Samuel Hsia, Caroline
Trippel, Carole-Jean Wu, David Brooks, and Gu-Yeon
Wei. Recssd: Near data processing for solid state drive
based recommendation inference. In Proceedings of the
26th ACM International Conference on Architectural
Support for Programming Languages and Operating
Systems, ASPLOS 2021, page 717–729, New York, NY,
USA, 2021. Association for Computing Machinery.

[20] Xiaohao Wang, Yifan Yuan, You Zhou, Chance C. Coats,
and Jian Huang. Project almanac: A time-traveling solid-
state drive. In Proceedings of the Fourteenth EuroSys
Conference 2019, EuroSys ’19, New York, NY, USA,
2019. Association for Computing Machinery.

[21] Xuan Sun, Hu Wan, Qiao Li, Chia-Lin Yang, Tei-
Wei Kuo, and Chun Jason Xue. Rm-ssd: In-storage
computing for large-scale recommendation inference.
In 2022 IEEE International Symposium on High-
Performance Computer Architecture (HPCA), pages
1056–1070, 2022.

[22] Zhe Yang, Youyou Lu, Erci Xu, and Jiwu Shu. Coin-
purse: A device-assisted file system with dual interfaces.
In 2020 57th ACM/IEEE Design Automation Conference
(DAC), pages 1–6, 2020.

360 21st USENIX Conference on File and Storage Technologies USENIX Association

https://samsungsemiconductor-us.com/smartssd/
https://samsungsemiconductor-us.com/smartssd/
https://www.snia.org/computational
https://www.snia.org/computational
https://man7.org/linux/man-pages/man2/pread.2.html
https://man7.org/linux/man-pages/man2/pread.2.html
https://man7.org/linux/man-pages/man2/readv.2.html
https://man7.org/linux/man-pages/man2/readv.2.html
https://lwn.net/Articles/740157/
https://lwn.net/Articles/740157/
https://ebpf.io/
https://www.tpc.org/tpch/

[23] Sudharsan Seshadri, Mark Gahagan, Sundaram
Bhaskaran, Trevor Bunker, Arup De, Yanqin Jin,
Yang Liu, and Steven Swanson. Willow: A user-
programmable ssd. In Proceedings of the 11th
USENIX Conference on Operating Systems Design and
Implementation, OSDI’14, page 67–80, USA, 2014.
USENIX Association.

[24] Gunjae Koo, Kiran Kumar Matam, Te I, H. V. Kr-
ishna Giri Narra, Jing Li, Hung-Wei Tseng, Steven
Swanson, and Murali Annavaram. Summarizer: Trading
communication with computing near storage. In Pro-
ceedings of the 50th Annual IEEE/ACM International
Symposium on Microarchitecture, MICRO-50 ’17, page
219–231, New York, NY, USA, 2017. Association for
Computing Machinery.

[25] Zhenyuan Ruan, Tong He, and Jason Cong. INSIDER:
Designing in-storage computing system for emerging
high-performance drive. In 2019 USENIX Annual Tech-
nical Conference (USENIXATC 19), pages 379–394,
2019.

[26] Robert Schmid, Max Plauth, Lukas Wenzel, Felix Eber-
hardt, and Andreas Polze. Accessible near-storage com-
puting with fpgas. In Proceedings of the Fifteenth Eu-
ropean Conference on Computer Systems, EuroSys ’20,
New York, NY, USA, 2020. Association for Computing
Machinery.

[27] Antonio Barbalace, Martin Decky, Javier Picorel, and
Pramod Bhatotia. Blockndp: Block-storage near data
processing. In Proceedings of the 21st International
Middleware Conference Industrial Track, Middleware
’20, page 8–15, New York, NY, USA, 2020. Association
for Computing Machinery.

[28] Ziye Yang, James R Harris, Benjamin Walker, Daniel
Verkamp, Changpeng Liu, Cunyin Chang, Gang Cao,
Jonathan Stern, Vishal Verma, and Luse E Paul. Spdk:
A development kit to build high performance storage
applications. In 2017 IEEE International Conference on
Cloud Computing Technology and Science (CloudCom),
pages 154–161. IEEE, 2017.

[29] Ashish Bijlani and Umakishore Ramachandran. Exten-
sion framework for file systems in user space. In 2019
USENIX Annual Technical Conference (USENIXATC
19), pages 121–134, 2019.

[30] Yuhong Zhong, Hongyi Wang, Yu Jian Wu, Asaf Cidon,
Ryan Stutsman, Amy Tai, and Junfeng Yang. Bpf for
storage: an exokernel-inspired approach. In Proceedings
of the Workshop on Hot Topics in Operating Systems,
pages 128–135, 2021.

[31] Kornilios Kourtis, Animesh Trivedi, and Nikolas Ioan-
nou. Safe and efficient remote application code exe-
cution on disaggregated nvm storage with ebpf. arXiv
preprint arXiv:2002.11528, 2020.

[32] Wenjun Huang and Marcus Paradies. An evalua-
tion of webassembly and ebpf as offloading mecha-
nisms in the context of computational storage. CoRR,
abs/2111.01947, 2021.

[33] Giulia Frascaria, Animesh Trivedi, and Lin Wang. A
case for a programmable edge storage middleware.
CoRR, abs/2111.14720, 2021.

[34] Corne Lukken, Giulia Frascaria, and Animesh Trivedi.
ZCSD: a computational storage device over zoned
namespaces (ZNS) ssds. CoRR, abs/2112.00142, 2021.

[35] Marco Spaziani Brunella, Giacomo Belocchi, Marco
Bonola, Salvatore Pontarelli, Giuseppe Siracusano,
Giuseppe Bianchi, Aniello Cammarano, Alessandro
Palumbo, Luca Petrucci, and Roberto Bifulco. hxdp:
Efficient software packet processing on FPGA nics. In
14th USENIX Symposium on Operating Systems Design
and Implementation (OSDI 20), pages 973–990, 2020.

[36] eBPF Introduction - Netronome. https://www.

netronome.com/technology/ebpf/.

[37] Toke Høiland-Jørgensen, Jesper Dangaard Brouer,
Daniel Borkmann, John Fastabend, Tom Herbert, David
Ahern, and David Miller. The express data path: Fast
programmable packet processing in the operating sys-
tem kernel. In Proceedings of the 14th international
conference on emerging networking experiments and
technologies, pages 54–66, 2018.

[38] Bounded loops in BPF for the 5.3 kernel. https://

lwn.net/Articles/794934/.

[39] bpf-helpers Linux manual page. https://man7.org/
linux/man-pages/man7/bpf-helpers.7.html.

[40] filefrag(8) - linux manual page. https://man7.org/

linux/man-pages/man8/filefrag.8.html.

[41] Fiemap ioctl. https://www.kernel.org/doc/

Documentation/filesystems/fiemap.txt.

[42] fallocate(2) - linux manual page. https://man7.org/
linux/man-pages/man2/fallocate.2.html.

[43] Ian F. Adams, John Keys, and Michael P. Mesnier. Re-
specting the block interface - computational storage us-
ing virtual objects. In Proceedings of the 11th USENIX
Conference on Hot Topics in Storage and File Systems,
HotStorage’19, page 10, USA, 2019. USENIX Associa-
tion.

USENIX Association 21st USENIX Conference on File and Storage Technologies 361

https://www.netronome.com/technology/ebpf/
https://www.netronome.com/technology/ebpf/
https://lwn.net/Articles/794934/
https://lwn.net/Articles/794934/
https://man7.org/linux/man-pages/man7/bpf-helpers.7.html
https://man7.org/linux/man-pages/man7/bpf-helpers.7.html
https://man7.org/linux/man-pages/man8/filefrag.8.html
https://man7.org/linux/man-pages/man8/filefrag.8.html
https://www.kernel.org/doc/Documentation/filesystems/fiemap.txt
https://www.kernel.org/doc/Documentation/filesystems/fiemap.txt
https://man7.org/linux/man-pages/man2/fallocate.2.html
https://man7.org/linux/man-pages/man2/fallocate.2.html

[44] proc(5) - Linux manual page. https://man7.org/

linux/man-pages/man5/proc.5.html.

[45] Daisy OpenSSD Platform. https://www.crz-tech.

com/crz/article/daisy/.

[46] Jaewook Kwak, Sangjin Lee, Kibin Park, Jinwoo Jeong,
and Yong Ho Song. Cosmos+ openssd: Rapid prototype
for flash storage systems. ACM Trans. Storage, 16(3),
jul 2020.

[47] CRZ-Technology OpenSSD. https://github.com/

CRZ-Technology/OpenSSD-OpenChannelSSD.

[48] Kyuhwa Han, Hyunho Gwak, Dongkun Shin, and Jooy-
oung Hwang. Zns+: Advanced zoned namespace inter-
face for supporting in-storage zone compaction. In 15th
USENIX Symposium on Operating Systems Design and
Implementation (OSDI 21), pages 147–162, 2021.

[49] Kiran Kumar Matam, Gunjae Koo, Haipeng Zha, Hung-
Wei Tseng, and Murali Annavaram. Graphssd: graph
semantics aware ssd. In Proceedings of the 46th inter-
national symposium on computer architecture, pages
116–128, 2019.

[50] Myoungsoo Jung. Openexpress: Fully hardware auto-
mated open research framework for future fast nvme
devices. In 2020 USENIX Annual Technical Conference
(USENIXATC 20), pages 649–656, 2020.

[51] OpenExpresss Download Page. https:

//openexpress.camelab.org.

[52] NVM Express Base Specification 2.0. https:

//nvmexpress.org/wp-content/uploads/

NVM-Express-Base-Specification-2_0-2021.

06.02-Ratified-5.pdf.

[53] NVM Express NVM Command Set Specification.
https://nvmexpress.org/wp-content/uploads/

NVM-Express-NVM-Command-Set-Specification-2021.

06.02-Ratified-1.pdf.

[54] Intel Optane SSD 9 Series. https://www.

intel.com/content/www/us/en/products/

details/memory-storage/consumer-ssds/

optane-ssd-9-series.html.

[55] Boncheol Gu, Andre S. Yoon, Duck-Ho Bae, Insoon Jo,
Jinyoung Lee, Jonghyun Yoon, Jeong-Uk Kang, Moon-
sang Kwon, Chanho Yoon, Sangyeun Cho, Jaeheon
Jeong, and Duckhyun Chang. Biscuit: A framework
for near-data processing of big data workloads. In 2016
ACM/IEEE 43rd Annual International Symposium on
Computer Architecture (ISCA), pages 153–165, 2016.

[56] zainryan/INSIDER-System: An FPGA-based full-stack
in-storage computing system. https://github.com/
zainryan/INSIDER-System.

[57] HLS Pragmas. https://www.xilinx.com/

html_docs/xilinx2019_1/sdaccel_doc/

hls-pragmas-okr1504034364623.html.

[58] Vivado 2021.2 - High-Level Synthesis (C
based). https://www.xilinx.com/support/

documentation-navigation/design-hubs/

dh0012-vivado-high-level-synthesis-hub.

html.

[59] Anastasios Papagiannis, Giorgos Xanthakis, Giorgos
Saloustros, Manolis Marazakis, and Angelos Bilas. Op-
timizing memory-mapped i/o for fast storage devices. In
2020 USENIX Annual Technical Conference (USENIX-
ATC 20), pages 813–827, 2020.

[60] Spark SQL and DataFrames | Apache Spark. https:

//spark.apache.org/sql/.

[61] Jaeyoung Do, Yang-Suk Kee, Jignesh M Patel, Chanik
Park, Kwanghyun Park, and David J DeWitt. Query
processing on smart ssds: Opportunities and challenges.
In Proceedings of the 2013 ACM SIGMOD International
Conference on Management of Data, pages 1221–1230,
2013.

[62] Louis Woods, Zsolt István, and Gustavo Alonso. Ibex:
An intelligent storage engine with support for advanced
sql offloading. Proceedings of the VLDB Endowment,
7(11):963–974, 2014.

[63] Youyou Lu, Jiwu Shu, and Weimin Zheng. Extend-
ing the lifetime of flash-based storage through reduc-
ing write amplification from file systems. In Proceed-
ings of the 11th USENIX Conference on File and Stor-
age Technologies, FAST’13, page 257–270, USA, 2013.
USENIX Association.

[64] Shine Kim, Yunho Jin, Gina Sohn, Jonghyun Bae,
Tae Jun Ham, and Jae W Lee. Behemoth: A flash-centric
training accelerator for extreme-scale dnns. In 19th
USENIX Conference on File and Storage Technologies
(FAST 21), pages 371–385, 2021.

[65] Yuhong Zhong, Haoyu Li, Yu Jian Wu, Ioannis Zarkadas,
Jeffrey Tao, Evan Mesterhazy, Michael Makris, Junfeng
Yang, Amy Tai, Ryan Stutsman, and Asaf Cidon. XRP:
In-Kernel storage functions with eBPF. In 16th USENIX
Symposium on Operating Systems Design and Imple-
mentation (OSDI 22), pages 375–393, Carlsbad, CA,
July 2022. USENIX Association.

362 21st USENIX Conference on File and Storage Technologies USENIX Association

https://man7.org/linux/man-pages/man5/proc.5.html
https://man7.org/linux/man-pages/man5/proc.5.html
https://www.crz-tech.com/crz/article/daisy/
https://www.crz-tech.com/crz/article/daisy/
https://github.com/CRZ-Technology/OpenSSD-OpenChannelSSD
https://github.com/CRZ-Technology/OpenSSD-OpenChannelSSD
https://openexpress.camelab.org
https://openexpress.camelab.org
https://nvmexpress.org/wp-content/uploads/NVM-Express-Base-Specification-2_0-2021.06.02-Ratified-5.pdf
https://nvmexpress.org/wp-content/uploads/NVM-Express-Base-Specification-2_0-2021.06.02-Ratified-5.pdf
https://nvmexpress.org/wp-content/uploads/NVM-Express-Base-Specification-2_0-2021.06.02-Ratified-5.pdf
https://nvmexpress.org/wp-content/uploads/NVM-Express-Base-Specification-2_0-2021.06.02-Ratified-5.pdf
https://nvmexpress.org/wp-content/uploads/NVM-Express-NVM-Command-Set-Specification-2021.06.02-Ratified-1.pdf%20
https://nvmexpress.org/wp-content/uploads/NVM-Express-NVM-Command-Set-Specification-2021.06.02-Ratified-1.pdf%20
https://nvmexpress.org/wp-content/uploads/NVM-Express-NVM-Command-Set-Specification-2021.06.02-Ratified-1.pdf%20
https://www.intel.com/content/www/us/en/products/details/memory-storage/consumer-ssds/optane-ssd-9-series.html
https://www.intel.com/content/www/us/en/products/details/memory-storage/consumer-ssds/optane-ssd-9-series.html
https://www.intel.com/content/www/us/en/products/details/memory-storage/consumer-ssds/optane-ssd-9-series.html
https://www.intel.com/content/www/us/en/products/details/memory-storage/consumer-ssds/optane-ssd-9-series.html
https://github.com/zainryan/INSIDER-System
https://github.com/zainryan/INSIDER-System
https://www.xilinx.com/html_docs/xilinx2019_1/sdaccel_doc/hls-pragmas-okr1504034364623.html
https://www.xilinx.com/html_docs/xilinx2019_1/sdaccel_doc/hls-pragmas-okr1504034364623.html
https://www.xilinx.com/html_docs/xilinx2019_1/sdaccel_doc/hls-pragmas-okr1504034364623.html
https://www.xilinx.com/support/documentation-navigation/design-hubs/dh0012-vivado-high-level-synthesis-hub.html
https://www.xilinx.com/support/documentation-navigation/design-hubs/dh0012-vivado-high-level-synthesis-hub.html
https://www.xilinx.com/support/documentation-navigation/design-hubs/dh0012-vivado-high-level-synthesis-hub.html
https://www.xilinx.com/support/documentation-navigation/design-hubs/dh0012-vivado-high-level-synthesis-hub.html
https://spark.apache.org/sql/
https://spark.apache.org/sql/

Revitalizing the Forgotten On-Chip DMA to
Expedite Data Movement in NVM-based Storage Systems

Jingbo Su† Jiahao Li† Luofan Chen† Cheng Li†ζ Kai Zhang§ Liang Yang§

Sam H. Noh‡¶∗ Yinlong Xu†ζ

†University of Science and Technology of China ‡UNIST ¶ Virginia Tech
§SmartX† ζAnhui Province Key Laboratory of High Performance Computing

Abstract
Data-intensive applications executing on NVM-based stor-
age systems experience serious bottlenecks when moving
data between DRAM and NVM. We advocate for the use
of the long-existing but recently neglected on-chip DMA to
expedite data movement with three contributions. First, we ex-
plore new latency-oriented optimization directions, driven by
a comprehensive DMA study, to design a high-performance
DMA module, which significantly lowers the I/O size thresh-
old to observe benefits. Second, we propose a new data
movement engine, Fastmove, that coordinates the use of the
DMA along with the CPU with judicious scheduling and load
splitting such that the DMA’s limitations are compensated,
and the overall gains are maximized. Finally, with a gen-
eral kernel-based design, simple APIs, and DAX file system
integration, Fastmove allows applications to transparently ex-
ploit the DMA and its new features without code change.
We run three data-intensive applications MySQL, Graph-
Walker, and Filebench atop NOVA, ext4-DAX, and XFS-DAX,
with standard benchmarks like TPC-C, and popular graph
algorithms like PageRank. Across single- and multi-socket
settings, compared to the conventional CPU-only NVM ac-
cesses, Fastmove introduces to TPC-C with MySQL 1.13-
2.16× speedups of peak throughput, reduces the average la-
tency by 17.7-60.8%, and saves 37.1-68.9% CPU usage spent
in data movement. It also shortens the execution time of graph
algorithms with GraphWalker by 39.7-53.4%, and introduces
1.12-1.27× throughput speedups for Filebench.

1 Introduction
Emerging non-volatile memory (NVM) technologies such
as STT-MRAM [45], PCM [40], ReRAM [6], and 3D-
XPoint [15] offer byte-addressibility and comparable latency
as DRAM but with substantially larger capacity. In addition, it
provides data durability with orders of magnitude higher per-
formance than prior durable devices like SSDs [55]. Recently,
numerous studies have been proposed to combine faster,

∗This work was done at UNIST.
†“SmartX” is also known as Beijing Zhiling Haina Technology Co., LTd.

volatile DRAM, for caching, with slightly slower, denser
NVM, for persisting data, in storage systems to revolutionize
I/O performance of data-intensive applications with persis-
tence demands [12].

In NVM-based storage systems, data are often moved be-
tween the two types of memories, due to DRAM cache fill-up,
logging, or flushing. However, recent studies [28, 55] high-
light that the DRAM-NVM data movement is not efficient,
mainly because of their performance gaps in latency and
bandwidth [13]. Additionally, we further notice that such
data movement leads to heavy CPU consumption since NVM
chips are attached to the memory bus, and their accesses must
make use of the load and store instructions. Such nega-
tive performance effects worsen with multiple sockets, which
modern high-end servers often provide, because of the neg-
ative NUMA impact [28]. This data movement bottleneck
severely impairs the overall performance of I/O intensive ap-
plications and consequently, undermines the benefits brought
by incorporating NVM.

To address this bottleneck, the slowness of NVM motivates
us to re-think the usage of the on-chip DMAs that still come
with the CPU but have deteriorated in use with the advent of
fast storage devices. In this paper, we seek to transparently
expedite data movement in NVM-based storage systems by
(partially) offloading data movement to DMA to improve
overall performance. However, while exploiting the on-chip
DMA is a natural optimization, there are a few obstacles to
incorporating it into NVM-based storage systems.

First, we need to handle more complex I/O patterns and
have significantly different optimization goals than exist-
ing work [41, 54], which have already applied DMA as a
minor technique to free CPU cycles of page migration in
tiered DRAM-NVM systems. They handle I/Os that are al-
ways large, i.e., 2MB, and run in the background. However,
NVM-based storage systems face I/Os with much smaller and
variable sizes that are often on the critical path of the fore-
ground user requests. Thus, our primary optimization goal
is to shorten the execution time of DMA requests. Second,
latency-critical optimization requires an in-depth understand-

USENIX Association 21st USENIX Conference on File and Storage Technologies 363

ing of the strengths and limits of DMA, in conjunction with
NVM and storage-facing I/Os, which is largely beyond exist-
ing studies [21].

To address the above challenges, first, we conduct a com-
prehensive study to understand the latency behaviors of using
DMA for DRAM-NVM data movement on the Intel I/OAT
and Optane PM combination, the only such pair in existence.
This study suggests that the potential of DMA is heavily con-
strained by various factors, e.g., uneven advantages between
reads and writes over the CPU, the non-negligible costs that
grow with I/O size, bandwidth and concurrency limits, etc.

Second, we derive principles from the study to design
Fastmove, a general data movement system that sits at the
lower level of the software hierarchy. At the core, it includes
a high-performance DMA module, which encapsulates the
upper-level I/O requests into low-level hardware commands
that comply with the workflows of data movement in NVM-
based storage systems. We also maximize the benefits of
DMA by introducing various optimizations such as batch-
ing the page pinning and descriptor submission activities for
grouped DMA tasks and balancing and coordinating concur-
rent accesses to DMA channels. Furthermore, to compensate
for the limitations of the stand-alone DMA solution such as
the extra overhead and the concurrency and bandwidth con-
straints, we devise a lightweight Scheduler to prioritize bulk
I/Os to go through DMA, while smaller I/Os are routed to the
original CPU path. Scheduler additionally splits bulk read
I/Os and balance loads between the DMA and CPU paths,
adapting to real-time changes in DMA resource availability.

Finally, we incorporate Fastmove into the Linux kernel as
an OS library with a limited number of simple APIs, which
can be used to easily replace system functions that trigger data
movements. To demonstrate its practicality, we adapt three
NVM-based storage systems, NOVA, ext4-DAX, and XFS-DAX,
to make use of Fastmove with minimal (2 to 4 lines of code)
change. Consequently, applications running atop these sys-
tems can transparently enjoy the data movement acceleration
brought by Fastmove. Additionally, we enable such acceler-
ation for the cross-socket setting by deploying file systems
atop the Linux device mapper with 2 lines of code change.
This design enables the POSIX read() and write() APIs
to freely employ Fastmove. To prove this, we successfully
run three I/O-intensive applications, one industry-adopted
database, MySQL [3], one graph engine, GraphWalker [49],
and one file system and storage benchmark, Filebench [1]
atop the modified file systems without any modifications to
the applications.

We conduct extensive evaluations with three standard
benchmarks FIO [8], fileserver [1], and TPC-C [5], and three
popular random walk algorithms GraphLet, PageRank and
SimRank. The results highlight that, for workloads contain-
ing substantial I/Os with moderately large sizes and beyond,
considerable performance improvements are attained, regard-
less of local or remote NVM access. For TPC-C in MySQL,

Fastmove increases its peak throughput by 13-116% com-
pared to the original ones that use only the CPU, reduces the
average latency by 17.7-60.8%, and saves CPU cycles used
for data movement by 37.1-68.9%. Also, Fastmove brings
1.65-2.14× speedups of execution time for the GraphWalker
algorithms, and 1.12-1.27× speedups of throughput for the
Filebench fileserver workload.

In summary, Fastmove makes the following contributions:
• We present a comprehensive and general study to under-

stand the characteristics of on-chip DMA in conjunction
with NVM far beyond earlier studies [21], which showed
DMA use just as a minor optimization in limited experi-
mental settings [7, 25, 41].

• We propose and implement a fast memory copy engine
Fastmove that accelerates DRAM-NVM data movement in
NVM-based storage systems. Driven by the study findings,
it incorporates new latency-oriented optimizations to reduce
associated DMA costs and coordinates the CPU-only and
DMA paths to maximize overall performance. Fastmove’s
design principles significantly differ from earlier studies
that concentrated on movement of data in a tiered memory
setting [41, 54], where optimizations are simple due to the
large size of memory copy requests.

• We present transparent in-kernel system support with in-
tegration of Fastmove into three NVM-aware DAX file
systems, while extending the device mapper to enable cross-
socket NVM access. This allows unmodified applications
to run atop Fastmove.

2 Background and Motivation
2.1 NVM-based Storage Systems
NVM chips sit close to the CPU either by being placed on the
memory bus and connected to CPU sockets via the processors’
integrated memory controller (iMC) or by being exposed via
cache coherence interconnects like Compute Express Link
(CXL) [11, 18, 39]. In 2019, Intel released Optane PM, the
first commercial NVM chip based on the 3D XPoint tech-
nology [15]. Beyond Optane PM, multiple companies are
developing new products based on technologies other than
3D XPoint [15] such as STT-MRAM [45], FRAM [23], Nano-
RAM [42], and ReRAM [6].

Despite the different implementations, they are expected to
offer memory interfaces with byte-addressability, data persis-
tence, and large capacity. Therefore, there have been extensive
research focusing on incorporating NVM to build scalable
storage systems [9, 22, 24, 27, 34, 53] that accelerate the data
access of latency-critical, data-intensive applications. These
applications persist all their data on NVM, while caching
the working set and metadata like indexes in DRAM. When
accessing non-cached data, applications need to load them
from storage, while upon modification, the dirty pages and log
entries need to be flushed back to storage for data durability.

Typically, they make use of NVM-aware DAX file systems
such as NOVA that retain the standard file system interfaces

364 21st USENIX Conference on File and Storage Technologies USENIX Association

Table 1: I/O size (KB) distribution of various workloads
size TPC-C fileserver Graphlet/PPR/SR

read
[0,16) - 80.2% -
[16,32) 100% 11.5%
[32,∞) - 8.3% 100%

write
[0,16) 6.5% 82.2% -
[16,32) 82.9% 10.2% -
[32,∞) 10.6% 7.6% -

and provide strong consistency guarantees along with various
NVM-oriented performance optimizations [7, 20, 53]. There-
fore, the aforementioned data copies often involve memory
allocated in user space, while requiring kernel memory copy
module support.

2.2 The Data Movement Bottleneck
DRAM-NVM data movement can be a critical bottleneck in
terms of performance in data-intensive applications. To under-
stand this, we perform a study on the I/O size distributions of
various applications, from domains ranging from traditional
SQL databases to graph analytic frameworks, and their impact
on performance and resource usage.

As shown in Table 1, driven by the standard database TPC-
C workloads with 5000 warehouses and 16KB innodb page
size in MySQL, more than 93% of write I/Os in MySQL are
beyond 16KB, where a significant number of these bulk writes
are sitting on the critical path of writing logs for foreground
update transactions. In the fileserver workload of Filebench,
8.3% and 7.6% of the reads and writes are beyond 32KB, re-
spectively. Though the number of bulk I/Os is relatively small
in fileserver, they already account for 44.1% of the overall data
movement volume. Finally, GraphWalker, a single-threaded
graph processing system, periodically reads from NVM into
DRAM, all in 128KB chunks, which it later consumes with
its in-memory processing [49].

To assess the negative impacts of data movement, we run
the msppr workload [49] in GraphWalker atop NOVA, an NVM-
based file system, with Optane PM. Note that NOVA uses
Linux memcpy to access data on Optane and does not make use
of SIMD as SIMD cannot be used within the kernel [43]. We
find that over 92% of the execution time is spent on reading
data from NVM under a single socket setting, while, when
cross-socket data movement is involved, this number increases
to over 97%. While these numbers will vary depending on the
application, our observation is that for many applications, the
time consumed for data movement is a clear bottleneck.

The inefficiencies of CPU-directed data movement are
mainly caused by the performance gap between DRAM and
NVM. In particular, with 6 interleaved Optane DIMMs within
a single socket, reading a 4K page from Optane takes 952ns,
2.9× longer than that of DRAM. Similar to latency, PM shows
74.4%/35.3% lower read/write throughput than DRAM. Even
worse, it takes 18 CPU cores for Optane to reach its peak
load throughput while it only takes 5 for DRAM to reach
a similar load throughput [55]. Finally, when accessing re-

mote memory across sockets, both DRAM and NVM suffer
negative NUMA effects due to the extra writes introduced
by the default directory-based cache coherence protocol [28].
However, the performance loss of remote NVM accesses is
larger because of its lower write bandwidth. Our findings are
consistent with recent studies [14, 28, 55].

2.3 On-Chip DMA and its Challenges
Modern processors have included on-chip DMA engines since
as far as one can remember. For instance, Intel’s I/O Acceler-
ation Technology (I/OAT) DMA engine [16] lies in the inte-
grated I/O module of the CPU, which also connects to cores
and iMCs through a mesh interconnect. Similarly, AMD’s
second-generation EPYC processors are also equipped with
on-chip DMA engines [37]. With the advent of high perfor-
mance storage devices, however, they have deteriorated to
a mostly unused component. The observations behind the
data movement overhead problem motivate us to re-think the
role of the on-chip DMA in NVM-based storage systems. We
advocate that it will be beneficial to use on-chip DMAs to of-
fload data copy jobs in NVM-based storage systems, thereby
improving the copy performance itself as well as saving CPU
cycles that could be used for other useful work.

To explore the latency improvement potential of DMA, we
evaluate the speed of moving data between DRAM and NVM
achieved by Intel I/OAT, in comparison with the CPU-only
counterparts. Here, we refer to the I/OAT setting as Simple-
DMA as we use it as-is without optimizations, which are
explored later.

We use the FIO benchmark [8] to generate single-threaded
read and write requests with I/O sizes ranging from 16KB to
512KB, where the former load data from NVM to DRAM
while the latter store data in the opposite direction. These
requests trigger kernel memory copy functions through NOVA
to operate the underlying NVM—Optane PM [55], and we
measure the time consumed for those functions.

Figure 1a and Figure 1c show that Simple-DMA performs
consistently worse than CPU-only, and delivers 29.9-134.4%
higher read latency, regardless of local and remote accesses.
Contrary to reads, for local writes as shown in Figure 1b,
Simple-DMA delivers comparable latency as CPU-only at
64KB, with meaningful differences expanding with I/O sizes
from 128KB and beyond. For instance, when writing 256KB,
the latency of Simple-DMA is only 64.7% of the CPU-only
latency. Compared to the single-socket results, in Figure 1d,
when considering two sockets, we observe that the perfor-
mance of remote writes achieved by CPU-only and Simple-
DMA both worsen. However, the request size threshold where
Simple-DMA catches up with CPU-only becomes smaller at
16KB, which is only 25% of that observed for local writes.

The above latency comparison suggests that there is hardly
any opportunity to allow reads within NVM-based storage
systems to benefit from Simple-DMA; while for large writes,
opportunities seem to exist. However, whether such large

USENIX Association 21st USENIX Conference on File and Storage Technologies 365

16 32 64 128 256 5120

100

200

300

La
ten

cy
[us

]

IO Size [KB]

 Simple-DMA
 CPU-only

(a) Local read

16 32 64 128 256 5120

100

200

300

La
ten

cy
[us

]

IO Size [KB]
(b) Local write

16 32 64 128 256 5120

100

200

300

La
ten

cy
[us

]

IO Size [KB]
(c) Remote read

16 32 64 128 256 5120
200
400
600
800

La
ten

cy
[us

]

IO Size [KB]
(d) Remote write

Figure 1: Simple-DMA versus CPU-only read/write latency
as request size is varied with FIO workloads.

writes (not smaller than 128KB for local writes) are amply
available in typical applications is questionable. For example,
as shown in Table 1 in our evaluation, around 80% of the
bulk writes for MySQL-TPC-C concentrate on the range of
[16KB, 32KB), which is certainly below the benefit threshold
of Simple-DMA. Our conclusion is that we need to explore
whether there are optimization opportunities.

Moreover, we have witnessed initial adoptions [7,21,41,54]
of on-chip DMA to accelerate DRAM-NVM data movement.
However, these early attempts mostly focus on tiered memory
systems, and cannot be directly applied to NVM-based storage
systems, which is our focus, due to the following reasons.

First, our optimization goal differs from using DMA in
tiered memory systems, where data movements triggered by
page migration run in the background, not on the critical
path of user requests. Related works primarily focus their
optimization goal on deriving advanced migration policies,
and use DMA as a minor optimization to free CPU cycles [41].
In contrast, for NVM-based storage systems, data copy jobs
such as user reads and log flushing are part of an end-to-end
execution of foreground requests, which directly affect user
experience. Thus, the key performance measure is latency.

Second, the I/O patterns and workflows differ significantly
between NVM-based storage systems and tiered memory
systems. The page migration workloads in tiered memory
systems are quite simple and always happen at 2MB huge
page granularity [41, 54]. In contrast, the sizes of bulk I/Os
in NVM-based storage systems are much smaller and vary
considerably. It is equally important that the workflow of
handling memory copies via DMA in NVM-storage systems
contains considerably more steps than that of tiered memory.
These differences imply that the associated overhead of DMA
is not negligible in NVM-based storage systems.

In summary, the Simple-DMA performance, the demand

D
R

A
M

N
V

M

Virtual Address
(possibly not contiguous)

Virtual Address
(contiguous)

DMA Engine

①
②

③

⑤

pin page

finalize

prep DMA
descriptor

submit
descriptor

DMA wait④b

memcpy(dst, src, 16KB)

src

dst

④a

Figure 2: Workflow of memory copy using Simple-DMA.

for reducing latency and the storage-specific I/O patterns
present us with unique challenges in making use of the DMA
in NVM-based storage systems. In this paper, through an
in-depth study of the behavior of on-chip DMA, we explore
avenues of optimization opportunities. In addition, through
Fastmove, we develop the necessary abstractions and trans-
parent latency-sensitive optimizations so that applications
may reap the benefits of the DMA without any code change.

3 DMA Optimization Opportunities
Here we provide a comprehensive study on DMA in con-
junction with NVM to derive the optimization directions for
lowering the latency of DMA-enabled memory copies and
for unleashing its potentials to (partially) alleviate the above
DRAM-NVM data stall problem.

3.1 DMA-enabled Data Moving Workflow
To begin our study, we first illustrate in Figure 2 the workflow
of handling memory copy requests issued by applications
via DMA, which implements exactly the same logic as the
Linux memcpy. Take a 16KB I/O as an example. The virtual
addresses of data residing in DRAM for NVM-based storage
systems are possibly not contiguous, which leads to this single
memory copy operation at the application side being divided
up into four DMA subtasks. Each subtask corresponds to a
4KB page and will go through the following steps. ① pins the
target DRAM pages as we need to prevent those pages from
being swapped out or modified during DMA execution. An
alternative way to do so is to allocate a DMA buffer, but at the
cost of imposing extra memory copies or giving up transparent
support to applications. ② prepares the DMA descriptor, the
required metadata for I/OAT, which is then submitted to the
hardware at step ③. Meanwhile, the submitter waits (④b) until
the completion of ④a and reaches the final step ⑤ to finalize
the corresponding DMA subtask execution, e.g., unpinning
the page and notifying the application. Note that all steps
except ④a are managed by a CPU thread, often the I/O thread
of the application.

366 21st USENIX Conference on File and Storage Technologies USENIX Association

Table 2: Breakdown time costs of local read and write requests
that use Simple-DMA

size
(KB)

cost (%)
#subtasks

pin submit I/OAT other

read
16 4.7 12.7 80.4 2.2 8
32 4.9 14.1 78.7 2.3 16
64 5.1 14.8 77.9 2.3 32

write
16 6.2 15.7 75.3 2.9 8
32 7.1 19.8 69.8 3.3 16
64 7.9 23.3 65.3 3.5 32

3.2 I/OAT and Optane PM Demonstration
To make the study concrete, in this section, we focus on the
combination of Optane PM and Intel’s I/OAT DMA.

3.2.1 Associated Time Costs
First, we investigate the latency breakdown results of Simple-
DMA, which are summarized in Table 2, with the same setup
as Figure 1a and Figure 1b. “pin”, “submit”, and “I/OAT”
correspond to steps ①, ②-③, and ④a of Figure 2, respectively,
while “others” denotes the remaining overhead.

The execution on the I/OAT hardware is the longest step
of DMA-enabled memory copy requests across reads and
writes. However, its ratio decreases from 80.4% to 77.9%,
and 75.3% to 65.3% for reads and writes, respectively, when
I/Os expand from 16KB to 64KB. In contrast, the associated
overhead, excluding I/OAT, is also non-negligible and grows
proportionally with request size, reaching to 34.7% for local
64KB writes. This is mainly because bulk I/Os within NVM-
based storage systems trigger a series of I/OAT subtasks at
4KB granularity, as introduced in Section 3.1.

This growing overhead can be further doubled when the
source and destination addresses of the corresponding I/O
request are not aligned. Figure 3 illustrates such an example.
The src of page#1 is not aligned with dst of page#a. As the
DMA does not support cross-page copy when it cannot tell
if the physical address is contiguous between pages, we have
to split page#1 into two separate portions, namely ① and ②,
where the former fits in the empty space of page#a, while the
latter will have to fit on the lower part of page#b. Each of these
portions will trigger a separate I/OAT subtask. Moreover, the
remaining two pages #2 and #3 will go through the same effort.
As the FIO workloads exhibit unaligned memory addresses,
as shown in Table 2, bulk I/Os consist of 8-32 DMA subtasks
and pay the associated time cost one more time. As this shows,
in the case of transferring unaligned memory addresses, the
overhead involved can turn out to be even more significant.

Trimming down the associated costs seems promising for
improving the latency of writes. For instance, one can imagine
that reducing them by 30.7% for 16KB writes will allow
the DMA latency turning point to be reduced from 64KB
to 16KB, enabling more applications, like MySQL, to gain
performance benefits. However, this is not so with reads, since
even completely eliminating these overheads still results in the
DMA performing 11.1%-39.3% slower than CPU-only. Thus,

#0 #1 #2 #3

#a #b #c #d

Source

Virtual Address

Destination

Virtual Address

⑥

② ③ ④ ⑤① ⑥

② ③ ④ ⑤①

page

boundary

DMA

subtask

boundary

Figure 3: Composition of DMA subtasks for a single applica-
tion data movement job with unaligned source and destination
addresses. Three source pages (#1-#3) are involved but six
subtasks are generated (①-⑥).

other means to overcome this challenge must be conceived.
In addition, using Transparent Huge Page (THP) in the ker-

nel makes the addresses, with high probability, to be contigu-
ous. For contiguous copies, the cost of I/OAT still dominates,
but with the submission and unalignment cost significantly
diminished, compared to the above non-contiguous ones. This
is because under such setting, memory copy requests will no
longer be divided into multiple DMA subtasks.

3.2.2 Intra-Request Parallel Copy
Each DMA device consists of M multiple channels that can
process DMA subtasks in parallel. Therefore, we explore
parallelizing hardware copy of a single request, where we
split the request into N chunks (N ≤ M) and thus, N DMA
subtasks, each chunk making use of one channel. Here, we
derive two different parallel execution modes, namely, para-A
and para-B, where para-A uses a single submitter for channel
submission, while para-B spawns N submitters, each of which
manages its own channel independently.

For 64KB reads and writes, compared to Simple-DMA,
para-A indeed reduces the I/OAT copy time, but the reduction
is not proportional to the number of parallel chunks. In addi-
tion, we observe a significant increase in the submission over-
head, which eventually offsets the benefits of intra-request,
multi-channel parallel copy. In the end, para-A does not im-
prove much on the end-to-end latency of Simple-DMA for
reads, while even leading to performance loss for writes.

Para-B fares worse than para-A, worsening latency for both
reads and writes. Our analysis shows that para-B sharply
increases the hardware copy time by up to 68.7%. This is
because of the heavy contention on DMA bandwidth driven
by the parallel subtasks. This case differs from para-A, as the
single submitter setting in para-A enables pipeline parallelism,
which does not heavily stress the DMA. In addition, para-B
introduces heavy CPU usage due to the multiple submitters.

Finally, as we cannot parallelize intra-request copies within
DMA, we also explore the possibilities of balancing these
copy subtasks between the CPU and DMA. Unfortunately,
this is not applicable for writes, as using the DMA can eas-
ily saturate NVM’s bandwidth. We find that the bandwidth
competition can lead to amplified interference between the
two tasks, resulting in 14.6% higher latency compared to the
sole execution of using the DMA. In contrast, we find this

USENIX Association 21st USENIX Conference on File and Storage Technologies 367

16 64 256
0

100

200

300

400

L
a
te

n
c
y

[u
s]

IO Size [KB]

 1 channel
 2 channels
 4 channels
 6 channels
 8 channels

(a) Local read

16 64 256
0

100

200

300

400

L
a
te

n
c
y

[u
s]

IO Size [KB]

(b) Local write

16 64 256
0

100

200

300

400

L
a
te

n
c
y

[u
s]

IO Size [KB]

(c) Remote read

16 64 256
0

100

200

300

400
L
a
te

n
c
y

[u
s]

IO Size [KB]

(d) Remote write
Figure 4: I/OAT latency when 4 FIO threads doing read/write
workloads as number of channels and as request size is varied.

solution works well for reads as the DMA cannot consume
all of the NVM bandwidth, and thus, the joint use of the CPU
and DMA leads to better bandwidth consumption. We take
this last approach as part of our optimization.

3.2.3 Impacts of Inter-Request Parallelism
Finally, we evaluate the impact of inter-request parallelism
as in reality, application threads may concurrently execute
data movement requests and make use of the DMA. First,
we investigate whether using more DMA channels influences
the performance of DMA operators. To this end, we use four
concurrent threads to submit DMA requests to its multiple
DMA channels on our two-socket NUMA machine. Here, we
exercise up to 8 channels per DMA device/NUMA node. Fig-
ure 4 shows the latencies of DMA operators with varied I/O
sizes. With the increasing number of channels, irrespective of
local/remote reads/writes, the DMA operators become faster.
For instance, compared to the 1 channel setting, adding one
more channel leads to 38.1%-53.3% latency reduction for the
256KB memory copy operators. Trends are similar with more
concurrent threads and cross-socket NVM accesses.

Second, we explore the changes in read/write effective
bandwidth with the increase in the number of concurrent
threads submitting DMA requests with bulk I/Os. We find
that Simple-DMA observes an increase in read/write effective
bandwidth for up to four threads, but beyond this, it starts to
decline sharply. (Results not shown due to space limit.) The
key limiting factor here is not drive scalability but, instead,
the I/OAT DMA bandwidth. This suggests that a limit on
concurrent DMA access should be set to prevent the DMA
resource from being over-used.

3.3 Study Generalization
While the performance study above takes into consideration

the performance characteristics of the underlying hardware,
it also lays out the general study flow and key factors to be
considered independent of particular NVM and DMA devices.
With the advent of new hardware, the general study always
needs to answer the following two questions:

First, how can the DMA be best configured so that using it
can be faster than CPU-only even for small I/O requests? This
part requires understanding the DMA subtask associated cost,
the DMA parallel execution, and the effects of concurrency
that drive the latency-oriented optimizations. Furthermore, it
also requires exploring the effects of balancing loads among
DMA channels and even between DMA and CPU.

Second, how do we choose among the different copy paths?
We decide the best-effort path with the minimal time cost
among three choices, namely, CPU, DMA, and DMA-CPU
cooperation. Furthermore, we have to check if there are avail-
able DMA resources, i.e., the current DMA bandwidth usage,
monitored during DMA execution, is below the profiled max-
imum bandwidths of DMA and NVM, respectively.

In summary, our general study framework will offer useful
guidelines for accelerating data movement in storage systems
that combine future DMA implementations and near-DRAM
storage devices such as the upcoming CXL devices.

4 Overview of Fastmove
Driven by the study in Section 3, we aim to let data-intensive
applications transparently make the best use of DMA to al-
leviate the NVM data stall problem presented in Section 2.2.
Done properly, this should lead to better performance and alle-
viate CPU involvement required for memory copies between
DRAM and NVM. First, we need to improve the latency of
DMA-enabled data movement by taking into consideration
the access constraints of DMA such as extra overhead, re-
source allocation, and interference within DMA or with CPU.
Second, to complement DMA’s limitations, we need to judi-
ciously determine when and how much to resort to the normal
CPU data path. Finally, while DMA is supported by Linux
kernel functions, applications should not be burdened by high
development and optimization overhead to exploit the DMA.
Thus, a clean abstraction that requires minimal changes to
applications is imperative.

4.1 Fastmove’s Architecture
Figure 5 shows the overall design of Fastmove, our efficient
data movement engine. It sits below DAX file systems such
as NOVA, ext4-DAX, and XFS-DAX, which are compatible with
POSIX APIs and designed to use recent PM, as well as the
Linux device mapper module, which allows file systems to
use PMs across sockets. With this design, applications that run
atop a POSIX file system should seamlessly be able to use our
engine. Fastmove consists of three major system components,
namely, Scheduler, DMA module, and CPU module. We
retain the original design of the CPU module, where we let
the corresponding I/O request execute the load and store

368 21st USENIX Conference on File and Storage Technologies USENIX Association

DB NoSQL Graph……

read/read_iter/write/write_iter

User

Kernel

Virtual File System (VFS)

Device-Mapper
DAX File System

(NOVA, ext4-DAX, XFS-DAX)

fm_copy_from_user fm_copy_to_user fm_iomap_rw

Fastmove
Scheduler

DMA Module CPU Module

…
…

N
O

D
E

#0

DRAMNVM NVMDRAM

ch0

DMA
…
…
chN

CPU

thd0

…
…
thdM

N
O

D
E

##

DRAMNVM NVMDRAM

ch0

DMA
…
…
chN

CPU

thd0

…
…
thdM

Figure 5: The overall architecture of Fastmove, which man-
ages both DMA and CPU resources. Each NUMA node has a
DMA device (dashed line box), which has multiple channels.

instructions as usual. However, we introduce a new DMA
module that manages DMA resource allocation and memory
copy offloading, with various optimizations to alleviate DMA
costs and improve DMA resource usage. (Details will be
discussed in Section 5.1.)

As the core logic, Scheduler is responsible for making
decisions on selecting either DMA or CPU to execute requests.
Its detailed design will be discussed in Section 5.3. This
decision-making procedure should be fast so as not to incur
overhead on the end-to-end request latency. It should also
be smart so as to prioritize the use of DMA to fully make
use of its strengths, while resorting to the CPU-only path as
needed to compensate for the limitations of DMA for overall
enhanced performance (Section 5.2).

4.2 API Abstraction
To exploit DMA transparently at the application level, we
introduce three APIs that are simple extensions to existing
APIs used by DAX file systems. The key observation here is
that DAX file systems universally make use of a limited num-
ber of APIs for data movement, namely, copy_from_user,
copy_to_user, and dax_iomap_rw. The first two are called
by the read and write file system functions, while the last
API is used by the read_iter and write_iter file system
functions to perform memory copies in batches. These APIs
are replaced by the APIs that we describe below.

As shown in Table 3, the three APIs that we in-
troduce are fm_copy_from_user, fm_copy_to_user, and
fm_iomap_rw. The first two new APIs have four arguments,
dst, src, len, and bdev. dst and src specifies the destina-
tion and source of the copy (from PM to DRAM or vice versa),
while len refers to the number of bytes to copy. The last ar-
gument bdev is the PM block device descriptor that includes
rich information of the PM device such as the NUMA node
id of the target PM. The last API fm_iomap_rw has three
parameters, where iocb specifies the operational semantics
such as read or write, iov_iter encodes parameters such as

Table 3: Fastmove APIs
fm_copy_from_user(dst, src, len, bdev);
fm_copy_to_user(dst, src, len, bdev);
fm_iomap_rw(iocb, iov_iter, iomap_ops);

source and destination address vectors, and iomap_ops that
is passed by file systems for I/O address mapping.

Finally, we only need to replace the old APIs with the new
ones at the file system level. Thus, upper layer applications
can take advantage of Fastmove without any code change.
(Details are discussed in Section 5.4.)

5 Design and Implementation
5.1 High-Performance DMA Module
Under Fastmove, we offer a dedicated wrapper module to
easily use the low-level primitives that DMA offers. This
wrapper executes the I/O requests admitted by Scheduler.
Here, we encapsulate the DMA requests by inheriting the
values of parameters from the Fastmove APIs and the DMA
channel assignment from Scheduler. Then, the wrapper exe-
cutes DMA requests by going through all the steps in Figure 2
with the following major techniques and optimizations.
Batched DRAM page pinning. Memory addresses passed
from user space are all virtual and need to be translated into
physical ones that the DMA can consume. Furthermore, to
satisfy DMA requirements, the virtual-to-physical address
mapping must remain valid and unchanged during the exe-
cution of the corresponding DMA copy. This can be done
by calling the pin_user_page and the dma_map_page ker-
nel functions. However, pinning user pages one by one incurs
high overhead for bulk I/Os, which span across multiple pages.
To lighten this overhead, we leverage the pin_user_pages
function available in the recent Linux kernel (version 5.9) that
pins all the pages belonging to a single I/O. Similarly, we
apply the same optimization for unpin_user_page via the
new unpin_user_pages function.
src/dst page pairing. A bulk I/O will be mapped to a list
of DMA subtasks at 4KB page granularity, each of which
requires to pair the addresses of the source and destination
pages for preparing the DMA descriptor. If the two addresses
are not aligned, to ensure the correctness of DMA execution,
which assumes that copies take place within page boundary,
we have to carefully match the capacity of dst pages and the
content size of src pages so that cross-page copies can be
avoided. However, this leads to doubling the number of DMA
subtasks, as described in Section 3.2.1.

Here, we make a key observation that NVM is managed
contiguously in the kernel, and thus the cross-page copies can
be tolerated. We exploit this finding as when preparing the
DMA descriptor, we specify the length of the corresponding
subtask in a page aligned manner on the DRAM side. For
instance, take the situation in Figure 6 assuming that the
source and destination are DRAM and NVM, respectively.
We take the first portion of the source (① of page#1), which

USENIX Association 21st USENIX Conference on File and Storage Technologies 369

#0 #1 #2 #3

#a #b #c #d

Source

Virtual Address

Destination

Virtual Address

② ③①

② ③①

page

boundary

DMA

subtask

boundary

Figure 6: Composition of DMA subtasks with halved numbers
for a data movement job, enabled by the contigious NVM
address management, in comparison to Figure 3.

will always be smaller or equal to a page but aligned on the
right end, as the size of the first DMA subtask. Thereafter,
the size of the subsequent DMA subtasks will always be a
page and aligned (② of page#2) except possibly for the last
portion (③ of page#3), which will be page aligned on the left
end. This enables us to reduce the number of DMA subtasks
by half, in comparison to Figure 3.
Metadata buffer pre-allocation. DRAM space must be allo-
cated with varying sizes to store the DMA request metadata,
i.e., descriptors. The scatterlist structure is used to store
the list of descriptors of DMA subtasks belonging to a single
bulk I/O, where each item is typically 32 bytes. To accelerate
memory allocation, we pre-allocate a fixed-size buffer to store
this information prior to the execution of DMA copy. We set
the buffer size to 4KB, which can accommodate DMA request
metadata for 128 user pages (in total 512KB) at once.
Batch submission. Finally, to amortize the DMA subtask
submission, considering that leveraging multiple channels
performs no better than using a single channel (Section 3.2.2),
we submit scatterlist in a batch to a single DMA channel
assigned by Scheduler. This batched submission reduces the
locking overhead for coordinating the concurrent accesses of
the task queue associated with the DMA channel [17].

5.2 DMA-CPU Cooperated Bulk Reads
With Simple-DMA, the application thread (CPU) submits re-
quests to the DMA, which solely moves the data (see top part
of Figure 7). However, as shown in Section 3.2.3, bulk reads
could be made faster through DMA and CPU cooperation.
Motivated by this, we design an optimized bulk read within
Fastmove that is depicted by the lower part in Figure 7. Here,
the application thread first splits the bulk read into two chunks,
and then submits one chunk (#1) via the normal DMA path
with optimizations mentioned in Section 5.1, followed by the
other chunk (#2) being copied by the CPU. Upon completion
of chunk#2, the corresponding CPU thread polls the status of
the DMA. Finally, the execution of the target read completes
when both the DMA and CPU finish their assigned chunks.
This design not only improves the NVM read bandwidth but
also hides the copy latency due to the CPU.

While the optimized bulk read is a natural sharing of load,
the challenge we face here is how to decide the loads that
will go through the CPU and DMA. Chosen inappropriately,

CPU

DMA Transfer Whole Request

Waiting

Time

prepare

CPU

DMA Transfer Chunk#1

Transfer Chunk#2

notify

pollCooperated

Simple-DMA

Figure 7: The workflow of DMA-CPU cooperated reads.

the gap between the execution time of CPU and DMA could
lead to either waste of CPU cycles for polling the DMA status
or lower DMA utilization. To balance their execution time,
we set the chunk #1 and #2 size ratio to the ratio of the aver-
age single-threaded bandwidth on the CPU and DMA paths.
which are monitored by our Scheduler.

5.3 Controlling and Scheduling
We design a light-weight Scheduler that outputs the proper
memory copy path assignment plan for each I/O request going
through the above Fastmove’s APIs, distributes loads of bulk
reads between CPU and DMA, and properly allocates DMA
resources for offloaded tasks.
Initial configuration. Decision-making by Scheduler is
driven by the four pre-chosen I/O size thresholds for lo-
cal/remote NVM reads/writes, beyond which DMA path
should be involved for better performance, and the concur-
rency sweet spot M per DMA device, which corresponds to
the maximal number of concurrent threads leading DMA to
reach the peak bandwidth. In addition, Scheduler also moni-
tors the following four variables: (1) Ci, which is used to keep
track of the number of on-the-fly requests submitted to device
i and that works as an indicator of the workload intensity level
of that device; (2) Si, which points to the next available DMA
channel on the DMA device i; and (3) BC and BD, that record
the bandwidth dynamically consumed by the CPU and DMA,
respectively.
Scheduling. Scheduler first inspects every I/O request to
figure out the following parameters: the NUMA node id of
the target NVM (NP), the request type RW , the NUMA infor-
mation LR, and I/O length L. RW and LR are both boolean
values indicating read/write and local/remote, respectively.
Then, the path scheduling logic is straightforward as follows.
Scheduler compares the request length L to the DMA thresh-
old, pointed by the pair of RW and LR, to identify bulk I/Os.
For bulk I/Os, Scheduler chooses the DMA as long as the
DMA device on node NP is under its concurrent limit, i.e.,
CNP < M. If so, Scheduler chooses the next DMA channel
associated with NP’s DMA in a round-robin fashion (based
on SNP) and updates the required resource variables, i.e.,
CNP = CNP + 1 and SNP = (SNP + 1) mod G. Otherwise, we
fall back to the CPU-only data path. Additionally, we use BC
and BD to derive the split ratio of bulk reads between the CPU
and DMA by following the logic presented in Section 5.2.
Performance consideration. To minimize the overhead that

370 21st USENIX Conference on File and Storage Technologies USENIX Association

may incur due to request processing, we make the follow-
ing two design choices. First, instead of implementing the
Fastmove logic as a centralized component for coordination,
we provide the logic as a function, which runs at the memcpy
caller side. This precludes inter-thread communication be-
tween I/O threads and Scheduler helping enhance perfor-
mance. Second, coordination of concurrent access to globally
shared variables like SN and CN adopt lightweight mecha-
nisms such as atomic counters to further reduce overhead.

5.4 Implementation Details
We implement Fastmove1 under the DMA framework [32] in
Linux kernel 5.9 with 2417 lines of C code for its core logic.
Integration with NVM-based storage systems. We inte-
grate Fastmove into three widely-adopted, DAX file sys-
tems, namely, NOVA [53], ext4-DAX [30], and XFS-DAX [33],
where NOVA is tailored for hybrid DRAM-NVM settings,
while the other two systems are more general and compati-
ble with NVM. Fastmove’s transparent design leads to min-
imal changes to the above systems. Specifically, we intro-
duce only 2 lines of code changes to both ext4-DAX and
XFS-DAX, which simply replace the memory copy functions
in read_iter() and write_iter() system calls with the
APIs in Table 3. NOVA requires 2 additional changes to its
read() and write() functions.

Though Fastmove enables NUMA NVM access by de-
sign, DAX file systems cannot naturally use NVM devices
sitting across NUMA sockets. We address this problem by
leveraging the Linux native device mapper [31], as shown
in Figure 5. For the device mapper, similarly, only 2 lines in
dm_copy_from_iter and dm_copy_to_iter functions need
to be replaced. Note, however, that the current version of NOVA
does not support the use of the device mapper. Therefore, we
extend NOVA to work with the device mapper and its new
code base can be found in Fastmove 1. With these minimal
changes, Fastmove is able to transparently benefit many ap-
plications that run atop these three file systems.
Correctness guarantee. The use of DMA in Fastmove will
not introduce any data inconsistencies compared to CPU-only
data accesses. First, while not mentioned in any public docu-
mentation from the hardware vendor, Kalia et al. [21] experi-
mentally show that I/OAT preserves ordering during execu-
tion. Second, Fastmove always monitors the execution status
of parallel DMA subtasks and knows which set of pages failed
to be copied even though these pages may not be consecutive.
This slightly relaxed memcpy semantic is enough since (1)
most applications including filesystems and databases have
their own well-designed fault handling mechanism, which can
leverage Fastmove ’s fault reports to recover state correctly,
and (2) in kernel, there are many strict checks to avoid copy
failures, such as permission validation prior to copy execution.
Thus, failures will be rare.

1Publicly available at https://github.com/fastmove-open/fastm
ove

6 Evaluation
6.1 Experimental Setup
We deploy our experiments on a physical server with two
20-core Xeon Gold 6248 processors and 192GB DRAM. This
machine has two NUMA nodes, each connected with six Intel
Optane PM chips (128GB each and 1.5TB in total). We evalu-
ate Fastmove with both the Optane PM device and emulated
NVM to demonstrate the generality of Fastmove. With Op-
tane PM, we configure it to be interleaved within each NUMA
node and under the App Direct mode, and use the Linux device
mapper under its striped mode to enable cross-socket NVM
accesses. For the NVM emulated experiments, we use 64GB
DRAM to emulate an advanced NVM device with DRAM-
like latency and bandwidth, which is significantly better than
Optane PM, using a Linux built-in emulator [35]. Note that
our evaluation primarily focuses on Optane PM, while the
emulated NVM performance results are only presented in
Section 6.4.1.
Baseline and configurations. We exercise NOVA, ext4-DAX,
and XFS-DAX enhanced by Fastmove. Our natural baselines
are these file systems with their memory copy operations
going through the conventional CPU path, denoted by “CPU-
only”. We use default configurations for both baselines.
Case study applications and workloads. We take three data-
intensive applications MySQL, GraphWalker and Filebench,
with no code changes, to transparently use Fastmove by sim-
ply running them atop the three slightly modified DAX file
systems. To evaluate Fastmove’s benefits, we run experi-
ments with the FIO microbenchmark [8] and a synthetic work-
load generated based on FIO, application workloads like the
widely-adopted standard database workload TPC-C [5] and
the file access workload fileserver [1], and three popular graph
processing tasks, namely, Graphlet Concentration, Personal-
ized PageRank and SimRank. The detailed configurations are
presented in Section 6.3.

6.2 Microbenchmark Results
6.2.1 Latency Threshold Choices
To help figure out the read/write thresholds with different
concurrency levels required to drive the memory copy path
selection in Fastmove, we run the FIO workloads to evaluate
both the original and modified NOVA file systems. Here, we
generate read and write workloads with different I/O sizes
ranging from 16KB to 64KB, which are issued by 1 to 4 con-
current threads. We test both local and remote (cross-socket)
NVM accesses. In Figure 8, we show the normalized aver-
age latency of Fastmove against the CPU-only baseline. (We
omit the results for remote NVM access as they show similar
trends with the local accesses.) In addition, we also include
the results of “Simple-DMA”, the baseline with DMA enabled
but not highly optimized, to demonstrate the validity and ef-
fectiveness of Fastmove’s optimizations and our Fastmove.
Note that, these results look exactly the same across three

USENIX Association 21st USENIX Conference on File and Storage Technologies 371

https://github.com/fastmove-open/fastmove
https://github.com/fastmove-open/fastmove

16KB 32KB 64KB 128KB 256KB 16KB 32KB 64KB 128KB 256KB 16KB 32KB 64KB 128KB 256KB
1 thread 2 threads 4 threads

0

1

2

3

No
rm

aliz
ed

 La
ten

cy

(a) Local read

16KB 32KB 64KB 128KB 256KB 16KB 32KB 64KB 128KB 256KB 16KB 32KB 64KB 128KB 256KB
1 thread 2 threads 4 threads

0

1

2 Fastmove Simple-DMA

(b) Local write
Figure 8: The latency comparison between Fastmove and Simple-DMA, with 1,2,4-threaded FIO workloads, normalized to the
latencies of CPU-only memory copying. (Remote read/write results omitted due to similar trends and space limit.)

file systems, thus we omit the evaluation of ext4-DAX and
XFS-DAX for this part.

As shown in Figures 8a, across all exercised I/O sizes, CPU-
only delivers constantly lower local read latency than Simple-
DMA. In contrast, Fastmove visibly improves the perfor-
mance of Simple-DMA and introduce 1.20-3.07× speedups
for various I/O sizes, leading read requests with relatively
small sizes to benefit from DMA. Compared to CPU-only, the
turning points of Fastmove are 32KB across the 1, 2 and 4
threaded workloads, respectively. Including and beyond these
turning points, Fastmove starts to observe a visible reduction
in average request latency. For instance, Fastmove reduces
the local read latency of CPU-only accesses by 13.0-25.6%
for 64KB. While not shown, for remote read latency requests
with I/O size starting with 32KB can benefit from Fastmove
while 64KB for Simple-DMA.

For writes, we observe larger improvements than reads. Fig-
ure 8b shows that for local writes, Simple-DMA runs faster
than CPU-only at 64KB, 128KB, and 128KB for the three
concurrency settings, respectively. Fastmove dramatically im-
proves Simple-DMA’s latency, and drops the turning points to
16KB, 16KB, and 32KB. With 2 threads, Fastmove achieves
36.9%-49.0% and 26.3%-48.6% reduction on average latency
for I/Os at 32KB and beyond, compared to Simple-DMA
and CPU-only, respectively. The benefits of the two DMA
variants further expand for remote writes (again, not shown).
First, they perform better than CPU-only for even 16KB.
Second, the latency gap between the DMA usage and CPU-
only becomes visibly larger, e.g., for 256KB cross-socket
I/O requests, Simple-DMA and Fastmove reduce latency by
75.3% and 86.1%, respectively, compared to CPU-only. Third,
Fastmove significantly outperforms Simple-DMA by 40.7-
48.1%, 65.9-73.7%, and 86.7-96.2% for 16KB, 32KB, and
64KB, respectively.

Finally, Table 4 illustrates the impact of the batched submis-
sion optimization on tail latency. We find that batching within
Fastmove does not prolong, but rather, improves tail latency.
For instance, with the same setting of 2-thread experiments
in Figure 8, the P99 latency numbers in Table 4, indicating
a 8.0-38.5% reduction, compared to the non-batching base-
line. This is because Fastmove is not batching DMA subtasks
across I/O requests from upper applications but is batching

Table 4: P99 latency (us) comparison of local read/write with
batching enabled or disabled in Fastmove, corresponding to
the same setting of 2-thread experiments in Figure 8.

size
(KB)

read write
batching non-batching batching non-batching

16 8 13 10 11
32 9 11 14 19
64 16 21 23 30
128 27 37 46 55
256 49 72 80 87

submissions of DMA subtasks that belong to a single request.

6.2.2 Breakdown Analysis
We use two synthetic FIO workloads to investigate the per-
formance improvements introduced by each individual opti-
mization within Fastmove. The bulk dominating workload
contains I/Os with an average size of 256KB, while the mixed
one has a mixture of bulk and small I/Os, ranging between
8KB and 256KB. For the two workloads, we use 6 concurrent
threads to issue local read or write requests to the underlying
NOVA file system.

Figure 9 reports the normalized throughput numbers, which
indicate that different workloads see different optimization
sweet points. The direct usage of DMA with loads evenly dis-
tributed among channels leads to a 46.6% and 25.7% through-
put drop for the bulk and mixed workloads, respectively, com-
pared to CPU-only. This is because small I/Os do not benefit,
yet still go through the DMA, and the associated DMA over-
heads have not yet been ameliorated. As we start to avoid
overloading the DMA resources by adding the concurrent
limit optimization (here, set to 4), Fastmove’s performance
improves by 23.0% and 16.5% for the two workloads. The
batching optimization makes Fastmove begin to outperform
CPU-only, with a throughput increase of 55.8% and 17.9%.
The latency threshold filtering further improves Fastmove’s
performance by 0.3% and 9.5%, where the mixed workload
observes larger improvements as this optimization avoids its
small I/Os from paying the latency penalty of going through
the DMA. Finally, the bulk read split design choice brings
another 12.3% and 3.1% improvement. In the end, adding all
these optimizations together brings a 1.15× improvement in
throughput for the two workloads, compared to CPU-only.

372 21st USENIX Conference on File and Storage Technologies USENIX Association

+load balance +concurrency
control

+batching +threshold +bulk read split0.4

0.6

0.8

1.0

1.2

No
rm

aliz
ed

 IO
PS Bulk Dominant Mixed

Figure 9: Breakdown analysis of Fastmove with synthetic
FIO workloads when gradually enabling optimizations.
Throughput is normalized to the CPU-only baseline.

6.3 Overall Performance
Next, we evaluate the positive impact of using Fastmove
on the performance of real-world applications that introduce
more complex characteristics than microbenchmarks such as
non-uniformed I/O size distribution, computation-related cost,
foreground and background processing division, etc.

6.3.1 Application Configurations
MySQL. We install MySQL version 5.7.33 with the default
16KB innodb_page_size. innodb_buffer_pool_size is
set to half of the DRAM space, the recommended setting.
We run the TPC-C workload with a read and write ratio of
1.78:1. For each run, we populate a 466GB database with
5000 Warehouses during the initialization phase and use 14
connections during the evaluation phase.
GraphWalker. GraphWalker [49] supports fast random
walks on large graphs with a single machine. We exercise
three common random walk algorithms, namely, Graphlet
Concentration (Graphlet), Personalized PageRank (PPR) and
SimRank (SR). We also follow GraphWalker to generate a
Kron30 dataset using the Graph500 Kronecker [2], which con-
sists of 1 billion vertices and 32 billion edges that take 638GB
and 136GB of persistent media space to store its original text
data and the compressed CSR data, respectively. We use the
GraphWalker default configurations.
Fileserver. We exercise the predefined workload, fileserver,
within the Filebench framework [1]. It uses 8 concurrent
threads to issue I/Os with variable sizes presented in Table 1.
Enabling/disabling THP. We test MySQL and Fileserver
without using transparent huge pages (THP), resulting in non-
contiguous memory copies. This is recommended by the
MySQL official site as THP introduces negative performance
impacts on random memory accesses with small I/O sizes.
Contrary, we enable THP for GraphWalker with contiguous
copies, as its workloads are read-dominating and bulk-sized.

6.3.2 MySQL Enhancement
Single-socket results. First, we consider the performance
within a single socket, where application threads and PM
are located under socket 0. Figure 10a shows the throughput
comparison (officially measured as tpmC by TPC-C) between
CPU-only and Fastmove execution of MySQL. Across all set-
tings, Fastmove consistently delivers better performance than

NOVA ext4 XFS NOVA ext4 XFS
Single-socket Muti-socket

0

50k

100k

tpm
C

(a) Peak throughput

NOVA ext4 XFS NOVA ext4 XFS
Single-socket Muti-socket

0

100

200

300

Qu
ery

 Ti
me

 [u
s] Fastmove CPU-only

(b) Query time
Figure 10: Throughput (measured as tpmC) and query time
achieved by running TPC-C against MySQL.

CPU-only, and the improvements associated with different un-
derlying file systems look similar. For instance, Fastmove in-
troduces 1.23×, 1.15×, and 1.13× speedups of peak through-
put over the CPU-only baseline across NOVA, ext4-DAX, and
XFS-DAX, respectively. Figure 10b reports the corresponding
average query time results. Consistent with the throughput
results, Fastmove reduces the average latency of CPU-only
by 17.7-25.0%.

To understand the source of improvements, we profile the
I/O distribution of the TPC-C workload. As shown in Table 1,
almost all of its read requests are smaller than 32KB. As this is
below the 32KB threshold, the vast majority of read requests
go through the ordinary CPU-only path in Fastmove. As a
consequence, the performance improvements here are driven
by the 90.9% of bulk writes beyond 16KB, which correspond
to the logging activities handled by the 4 background flush
threads. To conclude, Fastmove indeed choose proper mem-
ory copy paths for I/O with varied sizes, and I/OAT DMA
does alleviate the NVM accessing data stalls.
Multi-socket results. Next, we explore the performance
implications under two sockets, where we replicate the above
experiments by evenly distributing application threads to two
CPUs and spreading the data on all 12 PMs via Linux device
mapper under its stripped mode.

Figure 10a shows the absolute throughput numbers
achieved by CPU-only with two sockets decrease by 38.1-
48.1%, compared to the single-socket counterparts. This is
because performance degrades for cross-socket memory copy
operations as depicted in Figure 8. In contrast, Fastmove
observes lighter negative impact of cross-socket NVM ac-
cess with only 0.8-15.5% drop in peak throughput. Fastmove
significantly outperforms the CPU-only baseline, introduc-
ing 1.68-2.16× tmpC improvements. Additionally, in Fig-
ure 10b, Fastmove brings a significant latency reduction of
47.1-60.8%. Contrary to the single-socket results, we see that
Fastmove’s improvements over CPU-only expand. This is
because the threshold for remote reads drops to 16KB, which
allows for cross-socket NVM reads to take advantage of the
DMA if DMA usage is not full, and also the DMA benefits for
remote reads and writes are larger than those for local ones.

USENIX Association 21st USENIX Conference on File and Storage Technologies 373

G PPR SR G PPR SR G PPR SR
NOVA ext4-DAX XFS-DAX

0

100

200

Tim
e [

s]

(a) Single-socket execution time

G PPR SR G PPR SR G PPR SR
NOVA ext4-DAX XFS-DAX

0

100

200 Fastmove CPU-only

(b) Multi-socket execution time
Figure 11: Execution times running Graphlet (G), PPR and
SR over GraphWalker with NOVA/ext4-DAX/XFS-DAX.

6.3.3 GraphWalker Enhancement
Single-socket results. Figure 11a shows the execution times
of three graph analytic tasks over GraphWalker. The perfor-
mance of the CPU-only baseline looks similar across different
file systems, and so does our Fastmove. However, we observe
that Fastmove significantly reduces the execution time over
CPU-only, despite the fact that the graph analytic jobs are
read-only workloads towards the underlying data systems.
More specifically, Fastmove introduces 1.78-2.13×, 1.79-
2.14×, and 1.65-1.97× speedups for Graphlet, PPR, and SR,
respectively. The significant improvements come from the
dominating bulk read I/Os as shown in Table 1.
Multi-socket results. Consistent with the above TPC-C
results, the improvements of Fastmove for the graph ana-
lytic workloads become larger compared to the single-socket
counterparts. Figure 11b depicts that Fastmove brings 1.91-
2.01×, 1.97-2.05×, and 1.71-2.06× execution time speedups
for Graphlet, PPR and SR running in GraphWalker, respec-
tively, across three different NVM-based file systems.

6.3.4 Fileserver Enhancement
The performance trends of the fileserver workload within
Filebench atop NOVA look similar to those of TPC-C and
graph algorithms above. Due to the space limit, we omit
the figures. To summarize, Fastmove introduces 1.12× and
1.27× speedups in peak throughput, measured by IOPS, for
the single-socket and multi-socket settings, respectively.

6.3.5 CPU Consumption Improvement
Finally, we explore another possible benefit of using
Fastmove, which is the CPU consumption improvement.
Here, we measure the CPU cycles spent in moving data be-
tween DRAM-NVM and processing the application logic. For
MySQL TPC-C workload, Fastmove reduces its data move-
ment CPU usage from 62% to 39% and from 90% to 28% for
single-socket and multi-socket settings, respectively. We also
observe a significant increase in its utime. This is because
the saved CPU cycles from data movement are used to per-
form useful work, leading to improved throughput numbers
(presented in Section 6.3.2). Unlike this, for GraphWalker,
Fastmove’s CPU usage improvement seems little. For in-
stance, Fastmove reduces its CPU usage for data movement
by up to 5%. This is because workloads with GraphWalker

benefits largely by the DMA-CPU cooperated bulk read opti-
mization, which requires CPU involvement.

6.4 Other Factors
6.4.1 Emulated NVM Performance
We deploy NOVA on emulated NVM, replicate the experiments
for Figure 8, and report the latency comparison results be-
tween CPU-only, Simple-DMA, and Fastmove in Figure 12.
Fastmove outperforms CPU-only for local reads and writes
with I/O sizes of 16KB and beyond. The benefits observed are
larger than those corresponding to experiments with Optane
PM (Figure 8). This is because emulated NVM is of DRAM-
like read and write performance. Considering the association
cost in Section 3.2.1, the dominating DMA copy execution
step becomes faster, leading to visible end-to-end read/write
latency improvements. Also, this implies that the time cost of
NVM device access plays a key role in assigning DMA re-
sources, i.e., the performance turning point based on I/O size
decreases when NVM device performance improves, and vice
versa. Furthermore, we find that the DMA bandwidth within
Fastmove saturates when concurrency reaches 4 threads, ex-
actly the same as the Optane PM experiments. This is because
both the emulated NVM and Optane based experiments make
use of I/OAT DMA, and under both cases, DMA bandwidth
capacity is lower than Optane PM and emulated NVM.

6.4.2 DDIO Impacts
Enabling DDIO introduces no impact on the CPU-only base-
line. However, DDIO affects DMA reads and writes differ-
ently. To unify our settings, we chose to turn DDIO off for our
evaluation. With DDIO enabled, MySQL-TPCC-Fastmove
outperforms the CPU-only baseline by 5.4%, but performs
15% worse than the DDIO-disabled counterpart. Unlike this,
we observe no differences for GraphWalker’s three algorithms,
when switching on/off DDIO. This is because DDIO makes
DMA writes slower and thus, does not affect GraphWalker
whose workload is read-only.

7 Related Work
I/OAT usage. Previous studies have used I/OAT to of-
fload memcpy operations that move data from DRAM to
DRAM [46,47] as well as to improve network bandwidth with
lower CPU utilization in data center environments [25, 48].
Unlike these, our study stands to speed up data movement
between DRAM and NVM, where the interaction between
I/OAT and hybrid memory architectures is more complex
and its acceleration demands careful system design. Most
recent work have included I/OAT as a minor optimization for
data movement in NVM-based systems with special purposes
ranging from log replication [7] to memory migration [41].

Unlike them, Fastmove is a general system to make use
of on-chip DMA to address the inefficiencies (e.g., lower
bandwidth or extra CPU overhead) introduced by CPU-only
accesses to NVM for bulk, storage-facing I/Os, which has

374 21st USENIX Conference on File and Storage Technologies USENIX Association

16KB 32KB 64KB 128KB 256KB 16KB 32KB 64KB 128KB 256KB 16KB 32KB 64KB 128KB 256KB
1 thread 2 threads 4 threads

0

2

4

6

8

No
rm

aliz
ed

 La
ten

cy

(a) Local read

16KB 32KB 64KB 128KB 256KB 16KB 32KB 64KB 128KB 256KB 16KB 32KB 64KB 128KB 256KB
1 thread 2 threads 4 threads

0

1

2

3 Fastmove Simple-DMA

(b) Local write
Figure 12: The latency comparison between Fastmove and Simple-DMA, with 1,2,4-threaded FIO workloads , normalized to
the latencies of CPU-only memory copying when deploying NOVA on in-kernel NVM-emulator.

been observed to be a critical performance limitation in com-
bined use of Optane PM and Intel processors. These systems
can take advantage of Fastmove with little effort. Kalia et
al. [21] present a number of optimizations for efficient remote
NVM accesses via network, which includes an initial attempt
to use I/OAT to improve single-core RPC performance for
bulk remote NVM writes. This work is orthogonal to ours.
NVM-related studies and systems. There is a large body
of work focusing on the analysis of the basic performance
characteristics of using NVM [12, 14, 51, 55, 56]. The rich
findings from these studies have spawned numerous studies
for re-designing scalable and high performance data struc-
tures [24, 28, 50], file systems [19, 29, 53, 57] and key-value
stores [9, 27]. Our work extends the existing study by in-
corporating the interaction between NVM and DMA, and
complements the prior NVM-based systems as they can bene-
fit from either the general design or the real implementation
of Fastmove to alleviate data stalls. OdinFS [57] decouples
application threads from the background NVM access threads
and additionally parallelizes NVM accesses across sockets. Its
NVM threads can benefit from Fastmove and its integration
will be explored in the future.
Tiered memory systems. Fastmove handles more com-
plex I/O patterns than those in tiered memory. In addition,
Fastmove is implemented in the kernel with simple APIs.
Therefore, Fastmove could be directly used in tiered memory
systems. In fact, we have successfully adapted Nimble [54]
to transparently use Fastmove through simple API replace-
ment. However, through preliminary evaluations, we find that
the DMA, in particular I/OAT, may not be a good option for
improving page migration in tiered memory. This is because
the DMA bandwidth is easily overwhelmed by the work-
load. Therefore, Fastmove does not deliver any significant
improvement over Nimble-DMA [54], a Linux patch that
adapts Nimble to use I/OAT.
Zero-copy technologies. Another line of work on PM at-
tempts to move data management from kernel space to user
space to eliminate data copies along the I/O path. For instance,
the memory mapped file I/O (e.g., the mmap system call) is
enabled such that users may access files in the same way as
memory data [52]. However, mmap-based solutions may incur
high overhead due to page faults [10, 26] and may have to

have applications handle data persistence and reliability on
their own [36, 38]. Yet another line of work leverages kernel
by-pass I/O interfaces such as SPDK and PMDK [4] to avoid
the use of the complicated OS I/O stack [44]. However, the
performance gains come at the price of substantial effort for
re-writing the I/O handling part of the target applications.

In contrast, our work demonstrates better applicability since
there is no code change required to run existing applications
atop Fastmove, as long as they use kernel file systems. More-
over, it is possible to extend our design to handle memory
copy operations in user space, where these operations may
have an even bigger impact on the overall performance com-
pared to their counterparts in kernel space. This is because
by bypassing the kernel, memory copying will contribute to a
larger portion of the end-to-end access performance.

8 Conclusion
In this paper, we first study the DRAM-NVM data move-
ment problem and then propose and implement Fastmove,
a general engine that exploits the on-chip DMA technology.
With a clean abstraction and transparent design, applications
can use Fastmove via slightly-modified file systems with no
further changes. Experimental results with industry-standard
workloads on MySQL and popular random walk algorithms
on GraphWalker highlight that Fastmove brings significant
benefits such as peak throughput increase, execution time
reduction, and CPU consumption savings.

9 Acknowledgment
We sincerely thank all anonymous reviewers for their insight-
ful feedback and especially thank our shepherd Sanidhya
Kashyap for his guidance in our camera-ready preparation.
This work is supported in part by the National Natural Science
Foundation of China under Grant No.: 62141216, 62172382
and 61832011, the USTC Research Funds of the Double First-
Class Initiative under Grant No.: YD2150002006, and the
Institute of Information & communications Technology Plan-
ning & Evaluation (IITP) grant funded by the Korea govern-
ment (MSIT) (No.2018-0-00503, Researches on next genera-
tion memory-centric computing system architecture). Cheng
Li is the corresponding author.

USENIX Association 21st USENIX Conference on File and Storage Technologies 375

References
[1] Filebench. https://github.com/filebench/fileb

ench. [Online; accessed Jan-2023].

[2] Graph500. https://graph500.org/. [Online; ac-
cessed Jan-2023].

[3] MySQL. https://github.com/mysql. [Online; ac-
cessed Jan-2023].

[4] PMDK. https://github.com/pmem/pmdk. [Online;
accessed Jan-2023].

[5] TPC Benchamrk C. http://tpc.org/tpcc/. [Online;
accessed Jan-2023].

[6] Hiroyuki Akinaga and Hisashi Shima. Resistive random
access memory (reram) based on metal oxides. Proceed-
ings of the IEEE, 98(12):2237–2251, 2010.

[7] Thomas E Anderson, Marco Canini, Jongyul Kim, De-
jan Kostić, Youngjin Kwon, Simon Peter, Waleed Reda,
Henry N Schuh, and Emmett Witchel. Assise: Perfor-
mance and availability via client-local nvm in a dis-
tributed file system. In 14th USENIX Symposium on
Operating Systems Design and Implementation (OSDI
20), pages 1011–1027, 2020.

[8] Jens Axboe. FIO. https://github.com/axboe/fio.
[Online; accessed Jan-2023].

[9] Lawrence Benson, Hendrik Makait, and Tilmann Rabl.
Viper: An efficient hybrid pmem-dram key-value store.
Proc. VLDB Endow., 14(9):1544–1556, may 2021.

[10] Jungsik Choi, Jiwon Kim, and Hwansoo Han. Efficient
memory mapped file i/o for in-memory file systems. In
9th USENIX Workshop on Hot Topics in Storage and
File Systems (HotStorage 17), Santa Clara, CA, July
2017.

[11] CXL Consortium. Compute Express Link: The Break-
through CPU-to-Device Interconnect. https://www.
computeexpresslink.org/, 2022. [Online; accessed
Jan-2023].

[12] Björn Daase, Lars Jonas Bollmeier, Lawrence Benson,
and Tilmann Rabl. Maximizing persistent memory band-
width utilization for olap workloads. In Proceedings of
the 2021 International Conference on Management of
Data, SIGMOD/PODS ’21, page 339–351, New York,
NY, USA, 2021.

[13] Subramanya R. Dulloor, Amitabha Roy, Zheguang
Zhao, Narayanan Sundaram, Nadathur Satish, Rajesh
Sankaran, Jeff Jackson, and Karsten Schwan. Data tier-
ing in heterogeneous memory systems. In Proceedings

of the Eleventh European Conference on Computer Sys-
tems, EuroSys ’16, New York, NY, USA, 2016. Associ-
ation for Computing Machinery.

[14] Shashank Gugnani, Arjun Kashyap, and Xiaoyi Lu. Un-
derstanding the idiosyncrasies of real persistent memory.
Proc. VLDB Endow., 14(4):626–639, December 2020.

[15] Frank T Hady, Annie Foong, Bryan Veal, and Dan
Williams. Platform storage performance with 3d xpoint
technology. Proceedings of the IEEE, 105(9):1822–
1833, 2017.

[16] Intel. Intel I/O Acceleration Technology. https://www.
intel.com/content/www/us/en/wireless-netwo
rk/accel-technology.html. [Online; accessed Jan-
2023].

[17] Dave Jiang. libnvdimm: add DMA supported blk-mq
pmem driver. https://lore.kernel.org/linux-nv
dimm/150412628764.69288.120741154359183228
58.stgit@djiang5-desk3.ch.intel.com/#r. [On-
line; accessed Jan-2023].

[18] Myoungsoo Jung. Hello bytes, bye blocks: Pcie storage
meets compute express link for memory expansion (cxl-
ssd). In Proceedings of the 14th ACM Workshop on
Hot Topics in Storage and File Systems, HotStorage ’22,
page 45–51, New York, NY, USA, 2022. Association
for Computing Machinery.

[19] Rohan Kadekodi, Saurabh Kadekodi, Soujanya Pon-
napalli, Harshad Shirwadkar, Gregory R. Ganger,
Aasheesh Kolli, and Vijay Chidambaram. Winefs:
A hugepage-aware file system for persistent memory
that ages gracefully. In Proceedings of the ACM
SIGOPS 28th Symposium on Operating Systems Prin-
ciples, SOSP ’21, page 804–818, New York, NY, USA,
2021. Association for Computing Machinery.

[20] Rohan Kadekodi, Se Kwon Lee, Sanidhya Kashyap,
Taesoo Kim, Aasheesh Kolli, and Vijay Chidambaram.
Splitfs: Reducing software overhead in file systems for
persistent memory. In Proceedings of the 27th ACM
Symposium on Operating Systems Principles, SOSP ’19,
page 494–508, New York, NY, USA, 2019.

[21] Anuj Kalia, David Andersen, and Michael Kaminsky.
Challenges and solutions for fast remote persistent mem-
ory access. In Proceedings of the 11th ACM Symposium
on Cloud Computing, SoCC ’20, page 105–119, New
York, NY, USA, 2020.

[22] Sudarsun Kannan, Nitish Bhat, Ada Gavrilovska, An-
drea Arpaci-Dusseau, and Remzi Arpaci-Dusseau. Re-
designing LSMs for nonvolatile memory with Nov-
eLSM. In 2018 USENIX Annual Technical Conference
(USENIX ATC 18), pages 993–1005, 2018.

376 21st USENIX Conference on File and Storage Technologies USENIX Association

https://github.com/filebench/filebench
https://github.com/filebench/filebench
https://graph500.org/
https://github.com/mysql
https://github.com/pmem/pmdk
http://tpc.org/tpcc/
https://github.com/axboe/fio
https://www.computeexpresslink.org/
https://www.computeexpresslink.org/
https://www.intel.com/content/www/us/en/wireless-network/accel-technology.html
https://www.intel.com/content/www/us/en/wireless-network/accel-technology.html
https://www.intel.com/content/www/us/en/wireless-network/accel-technology.html
https://lore.kernel.org/linux-nvdimm/150412628764.69288.12074115435918322858.stgit@djiang5-desk3.ch.intel.com/#r
https://lore.kernel.org/linux-nvdimm/150412628764.69288.12074115435918322858.stgit@djiang5-desk3.ch.intel.com/#r
https://lore.kernel.org/linux-nvdimm/150412628764.69288.12074115435918322858.stgit@djiang5-desk3.ch.intel.com/#r

[23] Yoshihisa Kato, Yukihiro Kaneko, Hiroyuki Tanaka,
Kazuhiro Kaibara, Shinzo Koyama, Kazunori Isogai,
Takayoshi Yamada, and Yasuhiro Shimada. Overview
and future challenge of ferroelectric random access
memory technologies. Japanese Journal of Applied
Physics, 46(4S):2157, 2007.

[24] Ana Khorguani, Thomas Ropars, and Noel De Palma.
Respct: Fast checkpointing in non-volatile memory for
multi-threaded applications. In Proceedings of the Sev-
enteenth European Conference on Computer Systems,
EuroSys ’22, page 525–540, New York, NY, USA, 2022.
Association for Computing Machinery.

[25] Jongyul Kim, Insu Jang, Waleed Reda, Jaeseong Im,
Marco Canini, Dejan Kostić, Youngjin Kwon, Simon
Peter, and Emmett Witchel. Linefs: Efficient smartnic
offload of a distributed file system with pipeline par-
allelism. In Proceedings of the ACM SIGOPS 28th
Symposium on Operating Systems Principles, SOSP ’21,
page 756–771, New York, NY, USA, 2021.

[26] Juno Kim, Yun Joon Soh, Joseph Izraelevitz, Jishen
Zhao, and Steven Swanson. Subzero: Zero-copy io
for persistent main memory file systems. In Proceed-
ings of the 11th ACM SIGOPS Asia-Pacific Workshop
on Systems, APSys ’20, page 1–8, New York, NY, USA,
2020.

[27] Wonbae Kim, Chanyeol Park, Dongui Kim, Hyeongjun
Park, Young ri Choi, Alan Sussman, and Beomseok
Nam. ListDB: Union of Write-Ahead logs and persistent
SkipLists for incremental checkpointing on persistent
memory. In 16th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 22), pages
161–177, Carlsbad, CA, July 2022. USENIX Associa-
tion.

[28] Wook-Hee Kim, R. Madhava Krishnan, Xinwei Fu,
Sanidhya Kashyap, and Changwoo Min. Pactree: A high
performance persistent range index using pac guidelines.
In Proceedings of the ACM SIGOPS 28th Symposium on
Operating Systems Principles, SOSP ’21, page 424–439,
New York, NY, USA, 2021.

[29] Ruibin Li, Xiang Ren, Xu Zhao, Siwei He, Michael
Stumm, and Ding Yuan. ctFS: Replacing file indexing
with hardware memory translation through contiguous
file allocation for persistent memory. In 20th USENIX
Conference on File and Storage Technologies (FAST 22),
pages 35–50, Santa Clara, CA, February 2022. USENIX
Association.

[30] Linux. Add support for NV-DIMMs to ext4. http
s://lwn.net/Articles/613384/. [Online; accessed
Jan-2023].

[31] Linux. Device Mapper. https://www.kernel.org
/doc/Documentation/device-mapper/. [Online; ac-
cessed Jan-2023].

[32] Linux. DMAEngine framework. https://www.ke
rnel.org/doc/Documentation/driver-api/dmae
ngine/. [Online; accessed Jan-2023].

[33] Linux. xfs: DAX support. https://lwn.net/Articl
es/635514/. [Online; accessed Jan-2023].

[34] Youyou Lu, Jiwu Shu, Youmin Chen, and Tao Li. Octo-
pus: an RDMA-enabled distributed persistent memory
file system. In 2017 USENIX Annual Technical Confer-
ence (USENIX ATC 17), pages 773–785, Santa Clara,
CA, July 2017. USENIX Association.

[35] Maciej Maciejewski. How to emulate Persistent Mem-
ory. https://pmem.io/blog/2016/02/how-to-em
ulate-persistent-memory/, 2016. [Online; ac-
cessed Jan-2023].

[36] Ian Neal, Gefei Zuo, Eric Shiple, Tanvir Ahmed Khan,
Youngjin Kwon, Simon Peter, and Baris Kasikci. Re-
thinking file mapping for persistent memory. In 19th
USENIX Conference on File and Storage Technologies
(FAST 21), pages 97–111, February 2021.

[37] Philip Ng. Accelerating intra-host pvrdma storage traffic
in a future dell amd server. talk at vmworld 2019, 2019.
[Online; accessed Jan-2023].

[38] Anastasios Papagiannis, Manolis Marazakis, and Ange-
los Bilas. Memory-mapped i/o on steroids. In Proceed-
ings of the Sixteenth European Conference on Computer
Systems, page 277–293, New York, NY, USA, 2021.

[39] Jonathan Prout. Expanding Beyond Limits With CXL-
based Memory, 2022. [Online; accessed Jan-2023].

[40] Simone Raoux, Geoffrey W Burr, Matthew J Breitwisch,
Charles T Rettner, Y-C Chen, Robert M Shelby, Mar-
tin Salinga, Daniel Krebs, S-H Chen, H-L Lung, et al.
Phase-change random access memory: A scalable tech-
nology. IBM Journal of Research and Development,
52(4.5):465–479, 2008.

[41] Amanda Raybuck, Tim Stamler, Wei Zhang, Mattan
Erez, and Simon Peter. Hemem: Scalable tiered memory
management for big data applications and real nvm. In
Proceedings of the ACM SIGOPS 28th Symposium on
Operating Systems Principles, SOSP ’21, page 392–407,
New York, NY, USA, 2021.

[42] Thomas Rueckes. High density, high reliability carbon
nanotube nram. In Flash Memory Summit, 2011.

USENIX Association 21st USENIX Conference on File and Storage Technologies 377

https://lwn.net/Articles/613384/
https://lwn.net/Articles/613384/
https://www.kernel.org/doc/Documentation/device-mapper/
https://www.kernel.org/doc/Documentation/device-mapper/
https://www.kernel.org/doc/Documentation/driver-api/dmaengine/
https://www.kernel.org/doc/Documentation/driver-api/dmaengine/
https://www.kernel.org/doc/Documentation/driver-api/dmaengine/
https://lwn.net/Articles/635514/
https://lwn.net/Articles/635514/
https://pmem.io/blog/2016/02/how-to-emulate-persistent-memory/
https://pmem.io/blog/2016/02/how-to-emulate-persistent-memory/

[43] Stackoverflow. Why are SIMD instructions not used
in kernel? https://stackoverflow.com/question
s/46677676/why-are-simd-instructions-not-u
sed-in-kernel, 2022. [Online; accessed Jan-2023].

[44] Timothy Stamler, Deukyeon Hwang, Amanda Raybuck,
Wei Zhang, and Simon Peter. zIO: Accelerating IO-
Intensive applications with transparent Zero-Copy IO.
In 16th USENIX Symposium on Operating Systems De-
sign and Implementation (OSDI 22), pages 431–445,
Carlsbad, CA, July 2022. USENIX Association.

[45] AA Tulapurkar, Y Suzuki, A Fukushima, H Kubota,
H Maehara, K Tsunekawa, DD Djayaprawira, N Watan-
abe, and S Yuasa. Spin-torque diode effect in magnetic
tunnel junctions. Nature, 438(7066):339–342, 2005.

[46] K. Vaidyanathan, L. Chai, W. Huang, and D. K. Panda.
Efficient asynchronous memory copy operations on
multi-core systems and i/oat. In 2007 IEEE Interna-
tional Conference on Cluster Computing, pages 159–
168, 2007.

[47] K. Vaidyanathan, W. Huang, L. Chai, and D. K. Panda.
Designing efficient asynchronous memory operations
using hardware copy engine: A case study with i/oat.
In 2007 IEEE International Parallel and Distributed
Processing Symposium, pages 1–8, 2007.

[48] Karthikeyan Vaidyanathan and Dhabaleswar K Panda.
Benefits of i/o acceleration technology (i/oat) in clusters.
In 2007 IEEE International Symposium on Performance
Analysis of Systems & Software, pages 220–229. IEEE,
2007.

[49] Rui Wang, Yongkun Li, Hong Xie, Yinlong Xu, and
John CS Lui. Graphwalker: An i/o-efficient and
resource-friendly graph analytic system for fast and scal-
able random walks. In 2020 USENIX Annual Technical
Conference (USENIX ATC 20), pages 559–571, 2020.

[50] Kan Wu, Kaiwei Tu, Yuvraj Patel, Rathijit Sen,
Kwanghyun Park, Andrea Arpaci-Dusseau, and Remzi
Arpaci-Dusseau. NyxCache: Flexible and efficient
multi-tenant persistent memory caching. In 20th
USENIX Conference on File and Storage Technologies
(FAST 22), pages 1–16, Santa Clara, CA, February 2022.
USENIX Association.

[51] Lingfeng Xiang, Xingsheng Zhao, Jia Rao, Song Jiang,
and Hong Jiang. Characterizing the performance of intel
optane persistent memory: A close look at its on-dimm
buffering. In Proceedings of the Seventeenth European
Conference on Computer Systems, EuroSys ’22, page
488–505, New York, NY, USA, 2022. Association for
Computing Machinery.

[52] Jian Xu, Juno Kim, Amirsaman Memaripour, and Steven
Swanson. Finding and fixing performance pathologies
in persistent memory software stacks. In Proceedings
of the Twenty-Fourth International Conference on Ar-
chitectural Support for Programming Languages and
Operating Systems, ASPLOS ’19, page 427–439, New
York, NY, USA, 2019.

[53] Jian Xu and Steven Swanson. NOVA: A log-structured
file system for hybrid volatile/non-volatile main memo-
ries. In 14th USENIX Conference on File and Storage
Technologies (FAST 16), pages 323–338, Santa Clara,
CA, February 2016.

[54] Zi Yan. Accelerate page migration and use memcg for
PMEM management. https://lwn.net/Articles/7
84925/. [Online; accessed Jan-2023].

[55] Jian Yang, Juno Kim, Morteza Hoseinzadeh, Joseph
Izraelevitz, and Steve Swanson. An empirical guide
to the behavior and use of scalable persistent memory.
In 18th USENIX Conference on File and Storage Tech-
nologies (FAST 20), pages 169–182, Santa Clara, CA,
February 2020.

[56] Jifei Yi, Benchao Dong, Mingkai Dong, Ruizhe Tong,
and Haibo Chen. MT2: Memory bandwidth regulation
on hybrid NVM/DRAM platforms. In 20th USENIX
Conference on File and Storage Technologies (FAST
22), pages 199–216, Santa Clara, CA, February 2022.
USENIX Association.

[57] Diyu Zhou, Yuchen Qian, Vishal Gupta, Zhifei Yang,
Changwoo Min, and Sanidhya Kashyap. ODINFS: Scal-
ing PM performance with opportunistic delegation. In
16th USENIX Symposium on Operating Systems Design
and Implementation (OSDI 22), pages 179–193, Carls-
bad, CA, July 2022. USENIX Association.

378 21st USENIX Conference on File and Storage Technologies USENIX Association

https://stackoverflow.com/questions/46677676/why-are-simd-instructions-not-used-in-kernel
https://stackoverflow.com/questions/46677676/why-are-simd-instructions-not-used-in-kernel
https://stackoverflow.com/questions/46677676/why-are-simd-instructions-not-used-in-kernel
https://lwn.net/Articles/784925/
https://lwn.net/Articles/784925/

NVMeVirt: A Versatile Software-defined Virtual NVMe Device

Sang-Hoon Kim
Ajou University

Seongyeop Jeong
Seoul National University

Jaehoon Shim
Seoul National University

Ilkueon Kang
Seoul National University

Euidong Lee
Seoul National University

Jin-Soo Kim
Seoul National University

Abstract
There have been drastic changes in the storage device land-
scape recently. At the center of the diverse storage landscape
lies the NVMe interface, which allows high-performance
and flexible communication models required by these next-
generation device types. However, its hardware-oriented def-
inition and specification are bottlenecking the development
and evaluation cycle for new revolutionary storage devices.

In this paper, we present NVMeVirt, a novel approach to
facilitate software-defined NVMe devices. A user can define
any NVMe device type with custom features, and NVMeVirt
allows it to bridge the gap between the host I/O stack and
the virtual NVMe device in software. We demonstrate the
advantages and features of NVMeVirt by realizing various
storage types and configurations, such as conventional SSDs,
low-latency high-bandwidth NVM SSDs, zoned namespace
SSDs, and key-value SSDs with the support of PCI peer-to-
peer DMA and NVMe-oF target offloading. We also make
cases for storage research with NVMeVirt, such as studying
the performance characteristics of database engines and ex-
tending the NVMe specification for the improved key-value
SSD performance.

1 Introduction

NAND flash memory gains significant popularity for con-
sumer devices and enterprise servers, and the fast advance-
ment of semiconductor technologies fosters the non-volatile
memory (NVM) to build storage devices, enlightening high-
density low-latency storage devices. Nowadays, we can pur-
chase off-the-shelf storage devices, which feature tens of mi-
crosecond latency and several GiB/s of bandwidth [16, 47].

Along with the performance and data density improvement,
there has been an active trend toward making storage de-
vices smarter and more capable. For efficient and effective
data processing and management, many innovative device
concepts have been proposed, including but not limited to
Open-Channel SSD (OCSSD) [5, 34, 41], zoned namespace

SSD (ZNS SSD) [4,12], key-value SSD (KVSSD) [14,19,23,
45], and computational storage [8,11,20,29,31,33,52]. These
new types of devices are significantly diversifying the storage
device landscape. In this trend, software-based storage emu-
lators are becoming more important than ever. For instance,
when academia and/or industry propose an innovative storage
device concept, fully developing an actual product from the
conceptual idea takes a while. Meanwhile, we can implement
a new concept in an emulator and see its benefits and pitfalls
while running real workloads. This can provide us invaluable
insights, facilitating rapid design space exploration. Moreover,
by collecting various performance metrics from the emulator,
we can understand the I/O characteristics of operating sys-
tems and the applications. This information can be used to
optimize both the software and hardware of the target system.
Finally, each emulator has a sophisticated performance model
along with many knobs that can control a certain performance
characteristic of the emulated device. This can help us predict
the application performance on future storage devices that
exhibit different performance characteristics.

However, to the authors’ best knowledge, none of the pre-
viously proposed emulators fully satisfy the requirements to
be used in the modern storage environment. Many emerging
device types are often optimized to their primary targeting
workloads and require a customized communication model be-
tween the host and device. This requirement makes the NVMe
interface the most preferred interface for the emerging device
types due to its flexibility and extendibility. This implies that
a proper storage emulator should provide a comprehensive
method to customize at the NVMe interface level. However,
emulating the full NVMe interface in software is challeng-
ing as the NVMe interface inherently involves the protocol
defined at the hardware level. Previous work proposes to cir-
cumvent the difficulty of emulating the NVMe interface by in-
terposing hooks in the host NVMe device driver or leveraging
virtualization technologies [12,32,35,55]. However, these ap-
proaches fail to present a suitable NVMe device instance that
is fully functional in the diverse modern storage environments
such as when the kernel is being bypassed [24, 54] or when a

USENIX Association 21st USENIX Conference on File and Storage Technologies 379

Simulators Emulators
Trace-driven

[30, 36]
Full-system
[10, 22, 49]

VM-based
[12, 32, 55]

Block-driver
level [56]

NVMe-driver
level [35]

HW platforms
[21, 28] NVMeVirt

Deployable in real environments No Yes Yes Yes Yes Yes Yes
Execution speed Fast Very slow Slow Fast Fast Real-time Real-time

NVMe Multi-queue support No Yes Yes No Yes Yes Yes
NVMe interface modification Impossible Easy Easy Impossible Easy Difficult Easy
Low-latency device support Possible Possible Difficult Possible Possible Difficult Possible

Kernel bypassing with SPDK No No No No No Yes Yes
PCI peer-to-peer DMA support No No No No No Yes Yes

NVMe-oF target offloading No No No No No Yes Yes

Table 1: Comparisons of various virtual storage device approaches.

device directly accesses storage devices through NVMe-over-
fabrics or PCI peer-to-peer communication [3, 9, 42]. Table 1
compares the previous approaches and their limitations.

This paper presents NVMeVirt, a storage emulator facili-
tating software-defined NVMe devices. NVMeVirt is a Linux
kernel module providing the system with a virtual NVMe
device of various kinds. Currently, NVMeVirt supports con-
ventional SSDs, NVM SSDs, ZNS SSDs, and key-value SSDs.
The device is emulated at the PCI layer, presenting a native
NVMe device to the entire system. Thus, NVMeVirt has the
capability not only to function as a standard storage device,
but also to be utilized in advanced storage configurations,
such as the NVMe-oF target offloading, kernel bypassing,
and PCI peer-to-peer communication. In addition, this level
of emulation allows developers to modify the NVMe inter-
face layer easily, making it possible to explore various design
spaces over NVMe and to support new device types. Un-
like other emulators with similar goals, NVMeVirt does not
rely on the virtualization technology, allowing comprehensive
communication models at a consistently low overhead. The
performance of these devices can be controlled with several
performance knobs, making the virtual device perform close
to real devices. Hence, NVMeVirt opens up a new opportu-
nity for co-designing highly intelligent storage devices over
the NVMe interface and stimulates the invention of a novel
storage device architecture.

In the evaluation, we demonstrate the supported features
of various device types with a working prototype. We explain
two case studies to demonstrate that NVMeVirt can be helpful
for storage domain research and engineering. The source code
of NVMeVirt is publicly available at https://github.com/
snu-csl/nvmevirt. The followings are the contributions of
this paper:

• Provide a software framework to facilitate NVMe device
research with various and stable I/O characteristics.

• Envision the fast prototyping and development of NVMe
devices and interface through a software-defined NVMe
device.

• Analyze the correlation and impact between the applica-
tion and storage performance using representative database
benchmarks.

• Make a case for extending the NVMe interface to improve
key-value SSDs.

The rest of the paper is organized as follows. Section 2 ex-
plains the background and related work. Section 3 discusses
the motivation of our work and explains the internal struc-
ture of NVMeVirt. Section 4 shows the evaluation result of
NVMeVirt by representing its flexibility and feasibility. Fi-
nally, Section 5 concludes the paper.

2 Background and Related Work

2.1 NVM Express Standard
In modern computer architectures, peripheral devices are of-
ten connected to the processor through Peripheral Compo-
nent Interconnect Express (PCIe) links [18, 42]. PCIe defines
the entire communication stack, from the layout of connec-
tor pins to the message protocol between the host and de-
vices. NVM Express, or NVMe, was first aimed to extend
the PCIe communication protocol for emerging non-volatile
memory devices, such as solid-state drives (SSDs). As de-
signed from the ground up for modern storage devices, NVMe
provides a more efficient low-latency interface than legacy
interfaces, such as Small Computer System Interface (SCSI)
and Serial ATA (SATA). Later, the NVMe specifications
are extended further to support various storage device types,
such as zoned namespace (ZNS) SSDs [4, 12] and key-value
SSDs [14, 19, 23, 45].

The latest NVMe 2.0 specifications were announced in
June, 2021. They comprise multiple documents: NVMe Base
Specification, Command Set Specifications (NVM Command
Set specification, ZNS Command Set specification, KV Com-
mand Set specification), Transport Specifications (PCIe Trans-
port specification, Fibre Channel Transport Specification,
RDMA Transport Specification, and TCP Transport Spec-
ification) and the NVMe Management Interface Specifica-
tion. The Base Specification defines the host control interface.
The Command Set Specifications contain the host-to-device
protocol for SSD commands used by operating systems for
read/write/flush/trim operations, firmware management, error
handling, etc. As observed from the Transport Specifications,

380 21st USENIX Conference on File and Storage Technologies USENIX Association

https://github.com/snu-csl/nvmevirt
https://github.com/snu-csl/nvmevirt

NVMe operations can be performed over various transport lay-
ers, such as PCIe, TCP/IP, and remote DMA (RDMA). Specif-
ically, combined with RDMA-capable transport, NVMe-oF
allows NVMe commands to be delivered to remote nodes and
directly routed to target devices [9]. If the network adapter
supports the target offloading feature, the NVMe commands
can be processed completely at the hardware level without
any involvement of software layers on the remote node. Thus,
NVMe-oF can minimize the latency for disaggregated stor-
age and is considered a key technology for high-performance
scalable storage systems in future data centers.

2.2 NVMe Operation

The NVMe specifications standardize two communication
interfaces for NVMe devices: NVMe control block and NVMe
message queues. The NVMe control block is the primary path
for setting up the NVMe device. It contains several config-
uration fields with which the host device driver sets up the
device. Specifically, the host can specify the location of the
administration queue pair, set and clear the interrupt mask,
point to the address of the controller memory buffer (CMB),
and shutdown and restart the device.

Meanwhile, the NVMe message queue is the interface pri-
marily for scalable I/O. The NVMe architecture supports up to
65,535 I/O queues each with 65,535 commands (called queue
depth). The queue can be created, modified, or destroyed by
submitting requests to the special queue called administra-
tion queue. To perform I/O, the host driver builds an NVMe
command according to the specification and submits it to the
submission queue of the NVMe device. Each queue has the
associated doorbell, which indicates the index of the latest
request in the queue. When the host driver alters the doorbell,
the NVMe device senses the change and starts processing the
enqueued requests. The completion of the request processing
is handled in a similar manner. Each submission queue has a
paired completion queue, whereas the submission queue and
the completion queues are collectively called a queue pair.
When the I/O request processing is completed, the device
places an NVMe completion message in the paired comple-
tion queue of the submitted request. The device driver on the
host can sense the moment of completion by either polling the
completion queue or waiting for an interrupt from the device.
After processing the completion message, the device driver
notifies the device of the completion by setting the doorbell
of the completion queue. Accordingly, the device releases the
resources associated with completed requests.

The administration queue pair is initialized during device
initialization by specifying a physical address in the NVMe
control block. The host can ask the device to create regu-
lar queue pairs by posting queue creation messages into the
administration queue. The host can also make device man-
agement requests, such as identifying the device ID, querying
supported features, and setting up an interrupt for completion

notification, through the administration queue pair. The ad-
ministration requests are processed in the same manner as
regular I/O requests.

2.3 Related Work

A myriad of studies has attempted to imitate real storage de-
vices in software [10, 12, 21, 22, 28, 30, 32, 35, 36, 49, 55, 56].
As summarized in Table 1, we can classify these works into
two categories: simulators and emulators. Simulators imitate
the internal operations of real devices with a data process-
ing model [10, 22, 30, 36, 49]. They often build the model
for a target device, parameterize the performance of internal
operations, and calculate desired performance metrics from
the model. They enable a detailed analysis with sophisticated
models. However, they are often limited as they rely on a
trace collected from real systems or are extremely slow when
the full system is simulated to run the real workload.

Emulators provide device instances to the host; hence, they
can be used like a real device [12, 21, 28, 32, 35, 55, 56]. Flex-
Drive [35] proposes a software-defined NVMe device, similar
to our work. By modifying the NVMe device driver, it controls
the flow rate of I/O requests in the host I/O stack, allowing
the exploration of the space of various device performances.
Combined with a RAM disk, FlexDrive can be used for pro-
jecting the performance of future devices. However, it can
only emulate the conventional SSD type and not the emerging
devices, such as KVSSDs and ZNS SSDs. Also, because of
its implementation as a modified device driver, it can only
handle the simplest data communication where requests are
coming down through the kernel I/O stack, thereby unable
to support complicated I/O models, such as the NVMe-oF
offloading, kernel bypassing, P2P device communication, etc.
Finally, the NVMe driver is on the critical path of the host
I/O subsystem, so it might be too intrusive to be applied to a
working system.

FEMU [32] proposes an accurate and scalable virtual
NVMe device using host virtualization technology. Specifi-
cally, FEMU provides guest operating systems with a virtual
NVMe device by leveraging the device virtualization fea-
ture of the QEMU [44]. According to the split driver model,
the frontend in the VM receives the NVMe commands, and
forwards them to the FEMU backend running in the host op-
erating system. Due to this organization, it requires to keep
switching between the host and guest operating systems, in-
curring non-negligible and highly variable latency (see Sec-
tion 4.2). In addition, the virtualized environment inherently
limits the control of the virtualized device implementation.
For example, to perform DMA (and RDMA), the PCI device
should be able to access the memory in the DMA/physical
address space of the host. This becomes complicated in the vir-
tual machine environment where the guest physical memory
is scattered in the host physical memory through the virtual
memory schemes on the host. This prohibits the study and

USENIX Association 21st USENIX Conference on File and Storage Technologies 381

exploration of device-oriented approaches in particular, such
as NVMe-oF-based technologies and P2P device communi-
cation.

3 NVMeVirt Internals

3.1 Motivation

The increasing demand for high-performance and efficient
storage devices has been pushing the academia and industry
to develop various new storage device types, such as NVM
SSD, KVSSD, ZNS SSD, and computational storage. They
usually require a custom host-device interface tailored to their
primary target workloads to make them work most effectively.
For example, KVSSDs are for handling a huge number of
small key-value pairs. They are most effective only when the
host-device communication layer can handle small key-value
payloads efficiently. Computational storage devices require
a mechanism to deliver the code to run on the device. In this
sense, we can claim that the most innovative storage research
can be fostered by making it easy to modify or extend the
host-device interface.

Currently, the NVMe interface is the most preferred host-
device interface due to its flexibility and extendibility. The
NVMe protocol itself is flexible and easy to extend; how-
ever, applying any changes to an actual system is an entirely
different matter. Specifically, the NVMe interface inherently
involves a protocol defined at the hardware level. To extend
the interface for a new device feature, the developer should
incorporate the changes not only to the device driver on the
host but also to the firmware or controller logic on the real
devices. This level of work usually demands a huge amount
of engineering efforts and research resources, restricting the
research for novel storage devices.

This motivated us to build a storage emulator that provides
a comprehensive way to customize the NVMe interface and
support various storage device types on top. To this end, we
attempt to virtualize devices from the PCI level so that they
can behave like real physical devices from the entire host’s
point of view. We argue this is crucial for a storage emulator
that should support various device types and advanced stor-
age configurations, such as KVSSDs with custom operations,
NVM-based ultra-low-latency SSDs, the target for NVMe-oF
offloading, direct access from user-space bypassing the ker-
nel, peer-to-peer data transfer between PCIe devices, and so
on. We emphasize that this is the point of difference between
NVMeVirt and previous work.

3.2 Virtualizing a PCIe/NVMe Device

To help understand the challenges in virtualizing NVMe de-
vices, we first detail how PCIe/NVMe devices interact with
the host [42]. As shown in Figure 1, the CPU and memory

subsystem are connected to peripheral devices through a hard-
ware component called PCIe root complex. The root complex
generates PCI transactions to the devices on behalf of the
CPU when the CPU accesses the device memory-mapped
regions. The root complex has multiple PCIe ports, each of
which can be connected to a PCIe device (i.e., PCIe endpoint)
or a PCIe switch. The PCIe switch allows the hierarchical
organization of PCIe devices by implementing a PCIe bus,
through which multiple devices can be multiplexed.

PCIe devices, including NVMe devices, essentially commu-
nicate with the host operating system (and the host firmware)
through a memory-mapped region for their initialization. A
PCIe device is supposed to present its PCI configuration
header in the PCI configuration address space. The configu-
ration header contains essential information to initialize the
device. This information includes the device ID, vendor ID,
type code of the device, status of the device, and list of re-
sources that the device provides. The host, specifically the
root complex device driver, scans the PCI configuration ad-
dress space to find the configuration headers presented by
installed devices. For each detected configuration header, its
corresponding device driver is invoked according to its de-
vice type and IDs. This process is called a PCI bus scan. To
facilitate device-specific requirements during the PCI scan,
the PCI subsystem in the Linux kernel allows customizing
the operations for accessing the configuration header.

With this PCI initialization protocol, the most obvious way
of creating a virtual PCIe device might be injecting a forged
PCI configuration header into the root complex driver. How-
ever, in this case, when the root complex recognizes the PCIe
device, it will attempt to directly communicate with the device
at the hardware level. This inevitably leads to a system design
that requires a hardware modification, which is impractical
and even too intrusive for commodity servers.

To circumvent this pitfall, we virtualize PCIe devices in-
directly through the PCI bus. First, NVMeVirt allocates a
part of the reserved memory region for the PCI configuration
header of the virtual device. The configuration header is set
to indicate an NVMe device with required PCI capabilities
(the “PCIe Device Emulator” part in Figure 1). With the con-
figuration header, NVMeVirt creates a virtual PCIe bus with
a non-existing PCI bus ID of the system (the ID is provided
as a configuration parameter) and asks the PCI subsystem
to scan the bus with custom configuration header operations.
When the PCI subsystem performs the PCI bus scan, it ef-
fectively detects an NVMe-type device. When the subsystem
attempts to initialize it by accessing the configuration header,
NVMeVirt hooks in through the custom configuration header
operations and emulates requested operations. This effectively
presents an NVMe-type PCIe device to the PCI subsystem,
making it ask the NVMe layer to initialize the device.

The NVMe device emulation is implemented on top of
the PCIe device emulation. According to the NVMe specifi-
cations, NVMe devices should present their NVMe control

382 21st USENIX Conference on File and Storage Technologies USENIX Association

PCIe Root Complex

PCIe Switch

PCI/PCI-X
Bridge

MSI-X emulation with
Inter Process Interrupts

CPU

RAM

NVMe SSD

PCIe ports

NVMe Controller Emulator

Virtual NVMe Device

Storage Backend

Administration
queue pair

Performance
Model

PCIe Device Emulator

PCI Configuration
Header

Capabilities MSI-X TableVirtual
PCIe

Switch
I/O queue pairs

NVMe
Control
Block

BARs

Conventional
SSD

Zoned
Namespace

SSD

Key-Value
SSD

NVM
SSD

FTL IndexZone info

DMA
Engine

Figure 1: The overall architecture of NVMeVirt. NVMeVirt virtualizes a virtual NVMe device through the PCI bus and switch,
so the device is seen as a native PCIe device from the host.

block through the base address register (BAR) fields in the
PCI configuration header. Accordingly, NVMeVirt sets up the
PCI configuration header so that the BARs point to a reserved
memory region used for the control block. The NVMe layer
on the host identifies the control block and operates on it
according to NVMe standards.

In real devices, accesses to the NVMe control block are
delivered to the device in the form of PCI transactions, initiat-
ing an action from the device. However, as the control block
of NVMeVirt devices is only a memory region, accesses to
it are processed silently without causing any event. To re-
spond to the updates of the control block, we used the similar
idea of vIOMMU [1]. Specifically, NVMeVirt runs a kernel
thread called dispatcher. The dispatcher keeps checking the
values of the control block to determine whether any changes
have occurred. When the current value of the control block
is changed since the last check, it implies that the host made
some requests to the NVMe device. The dispatcher identifies
the intention from the update and thus initiates the processing
of the request.

We opt for the busy-waiting approach (i.e., keep scanning
targets) over an event-driven approach (i.e., signal the dis-
patcher in response to incoming requests) to provide the low
latency of NVM-based storage devices. The event-driven ap-
proach might save CPU cycles much; however, waking up
the sleeping thread incurs non-negligible time overhead, mak-
ing it unable to meet the demand for high I/O processing
performance of modern storage devices.

Due to the emulation from the PCI layer level, NVMeVirt
provides unique capabilities and opportunities that other em-
ulators cannot provide. First, the emulated device operates
like a real device from the perspective of the rest of the OS
and even other devices. Any entity can instruct the NVMeVirt
instance to perform any NVMe operations provided that it
can set the control block and/or place operations in the NVMe
queues under PCI and NVMe specifications. This makes it

possible for a user-level application to directly access the
device bypassing the kernel with SPDK [54]. In addition,
even other PCI devices can place NVMe messages to the
NVMeVirt instance according to the PCI peer-to-peer DMA
protocol. This permits NVMeVirt to foster the studies using
the NVMe-oF target offloading [9] and the direct commu-
nication between GPU and storage for AI applications [3].
Note that none of the previously presented simulators and
emulators relying on device drivers or virtual machines can
support these advanced storage use cases.

Another unique capability of NVMeVirt is that it allows
the inspection of the NVMe message queues in detail. With
real devices, it is infeasible to track the exact number of I/O
requests queued in submission and completion queues from
the host side since the device does not expose the process-
ing progress to the host (i.e., the device is not supposed to
report individual processing progress but only notify comple-
tions in bulk). As the dispatcher directly accesses the NVMe
queue pairs and doorbells, we can track the exact state (i.e.,
queue depth of queue pairs, queuing delay, etc) of the de-
vice in software, allowing an in-depth understanding of the
communication characteristics and behaviors. In addition, we
can easily configure the maximum number of queue pairs
by changing the tunable parameter, which enables the oppor-
tunity to study the implication of multi-queues on various
configurations.

3.3 Supporting Various NVMe Device Types

While the dispatcher focuses on processing the control re-
quests to the device, time-consuming I/O requests are handled
by a set of kernel threads called I/O workers. As illustrated
in Figure 2, each I/O worker maintains an I/O process queue,
which lists the pending NVMe requests. When the dispatcher
detects a doorbell ringing, it fetches the I/O requests from the
corresponding submission queue. The dispatcher estimates

USENIX Association 21st USENIX Conference on File and Storage Technologies 383

Dispatcher

Reserved memory

….

(1) Dispatcher dispatches I/O requests
From submission queues

(2) Dispatcher sets the target completion time
by modeling I/O latency

Submission
queue

Completion
queue

I/O queue pair

(3) I/O requests are handed
over to I/O threads I/O thread #0

I/O thread #1
….

(4) I/O thread processes the I/O operation
according to the backend type(5) Fill in the completion message

and send IPI to notify completion Backend

Figure 2: Processing I/O requests in NVMeVirt. The host inserts an I/O request into the NVMe submission queue and rings
the associated doorbell. The dispatcher in NVMeVirt dispatches the I/O request (1), and computes the target completion time
according to the latency model of the deployed backend (2). Then the request is handed over to an I/O worker, which processes
the operation of the configured backend type (3)(4). When the desired target completion time is passed, NVMeVirt inserts a
completion message into the NVMe completion queue and signals an Inter-Processor Interrupt (IPI) to the core that made the I/O
request (5). Finally, the host I/O stack eventually wakes up the context that waits for the completion of the I/O request.

the target completion time of each I/O request (Section 3.4
discusses the timing model) and hands over the request to
an I/O worker by placing it in the corresponding I/O process
queue. The target I/O worker can be selected in a round-robin
manner or as desired, and requests are placed in the queue
sorted by their completion time.

The I/O worker processes the requests depending on the de-
vice type that it emulates. Currently, NVMeVirt supports the
conventional SSD, NVM SSD, ZNS SSD, and KVSSD, and
the device type can be specified at compile time. NVMeVirt
initializes the NVMe control block to advertise itself as the
selected device type, making the corresponding host device
driver interact with the NVMeVirt instance. To process an I/O
operation for a device type, the I/O worker invokes the I/O
processing routine of the corresponding backend of the device
type. For example, the conventional SSD backend copies the
data payload to the backend memory for write requests or
copies data from the memory to a specified I/O buffer. The
ZNS backend checks whether the request is valid according
to the ZNS specification and processes it similarly to the SSD
backend if the request is valid. The KVSSD backend looks up
the requested key from the index and stores or retrieves the
value of the requested key. The details of the data handling in
the backend memory will be discussed in Section 3.5.

The data is copied from/to the backend memory using
the Intel I/OAT DMA engine [15] instead of the traditional
memcpy for improving the I/O processing performance and
reducing the CPU overhead. When an application initiates
an I/O request, the requested data is on some pages in the
host (i.e., in the I/O buffer or in the backend memory for
write and read requests, respectively). Thus, the CPU can
copy data within the memory of the host at a low overhead.
However, the overhead might be non-negligible when data

is on the device memory for P2P I/O requests. To support
the inter-device communication, the PCI root complex and
MMU collaborate to present an illusion of device memory
in the physical address space of the host. When a PCI de-
vice moves the data in the device memory through DMA, the
PCI root complex routes the accesses to the target device at
the PCI level, providing low latency for data moving. How-
ever, when the CPU accesses the device memory-mapped
address range for memcpy, the accesses are translated into
PCI transactions and processed by the PCI device at a small
I/O unit. This inevitably and significantly impairs the data
copy performance, making NVMeVirt unable to guarantee
the high performance of real devices. As the DMA engine
allows low-overhead data transfer from/to device memory-
mapped memory regions, NVMeVirt can achieve compelling
I/O processing rates regardless of the I/O configurations.

After performing the actual I/O operation, the I/O worker
compares the current and target completion times of the re-
quest. If the current time passes the target completion time,
the I/O worker places a completion message into the corre-
sponding completion queue. To notify the host OS of the
processing completion, NVMeVirt sends an Inter-Process In-
terrupt (IPI) to the waiting processor bound to the queue pair.
NVMeVirt supports Message Signaled Interface-X (MSI-X)
for a scalable high-performance completion path. Each queue
pair has its own dedicated IRQ vector; hence, NVMeVirt can
efficiently signal to the target core with the specified IRQ vec-
tor. The I/O stack on the signaled core will eventually wake
up the user context that initiated the request.

3.4 Performance Model
For a device emulator, the capability to imitate the perfor-
mance of real devices is important. To that end, there has

384 21st USENIX Conference on File and Storage Technologies USENIX Association

been no shortage of studies attempting to replicate the latency
and bandwidth characteristics of real storage devices with em-
ulators and simulators [10,30,32,35,36,49,55]. We employed
a similar approach as implemented in those works. Basically,
an I/O request is divided into smaller chunks, which are inde-
pendently processed in parallel by multiple data processing
units. The data processing unit drives underlying storage me-
dia to read from or write to it. The chunk and data processing
operation are, for example, considered the flash page and its
read operation and programming in SSDs, respectively. The
I/O completion time for an I/O request is determined by the
completion time of the last operation for the request. The
time for processing each chunk can be controlled with tunable
parameters, which can be set based on the I/O bandwidth and
latency of the target device. Further, the size of the chunk and
the number of data processing units are configurable. With
a set of parameter values we can expect a latency for small
requests and the maximum bandwidth with large requests for
the device. The latency is mainly determined by the operation
time of the data processing operations, whereas the maximum
bandwidth is bounded by the aggregated performance of the
data processing units. For the remainder of the paper, we refer
to these as the target latency and target bandwidth. For exam-
ple, the OptaneDC SSD could be successfully modeled as the
SSD that has a target latency of 12 us and a target bandwidth
of 2,400 MiB for read requests. We refer to this model as the
simple model.

We can produce the performance characteristics of real
NVM SSD and KVSSD using the simple model as presented
in Section 4.3. In general, the most complicated performance
characteristics of flash-based storage devices are originated
from garbage collection. However, as many studies have ana-
lyzed earlier [17, 51, 53], NVM SSDs are expected to allow
in-place updates, enabling them to operate without garbage
collection. For KVSSD, the size of key-value pairs is small;
hence its performance tends to be bound by the host-device
interfacing performance and the key indexing time, rather
than the performance of the storage media. Thus, the simple
model was sufficient for those device types.

Meanwhile, the model for conventional SSD is much more
complex. FTL (Flash Translation Layer) controls data place-
ment and performs garbage collection if necessary. In ad-
dition, modern SSDs aggressively use parallel processing
techniques to maximize their performance. Accordingly, we
had to redesign the performance model from the ground up
to mimic the performance characteristics of real SSDs.

First, we implemented a page-mapped FTL based on that
of FEMU [32]. The FTL determines data placement on the
fly, and performs garbage collection when the number of free
blocks gets below a threshold. Currently, the FTL selects
victim blocks according to the greedy policy. To consider the
on-device buffer, it is complemented with a small amount of
memory as the write buffer. A write request is signaled to
be completed as soon as the time to copy the payload into

the write buffer is modeled. The buffer is processed in the
background later with flash page writes.

In addition to the FTL, we revamped the data processing
model to incorporate the parallel architectures widely used
in modern SSDs. The storage space of modern SSDs is often
divided into several partitions, and each partition is handled
by one FTL instance [25]. Therefore, in the advanced model
called the parallel model, multiple FTL instances exist in one
SSD, and the instances share one PCIe link connected to the
host. Data transfer from/to the host are serialized through
the PCIe link. However, the rest of the FTL operations can
be processed in parallel. Each partition comprises multiple
NAND channels, which are connected to multiple dies in turn.
Again, data transfer through the NAND channel are serialized,
but the dies can operate independently.

In this architecture, FTL orchestrates the dies and channels
to process I/O requests. For example, FTL instructs multiple
dies to perform a read operation. When the dies are ready to
transfer data, FTL schedules data transfer from the dies to the
PCIe link through the shared NAND channels. The perfor-
mance of the device is calculated based on the parameters of
the FTL and model. We can speculate the parameters from
the device specification and/or by observing the performance
behavior of the device, similar to those approaches proposed
in the literature [25, 45, 53]. With the parallel model, we can
tune the parameters to provide a certain target latency and
bandwidth independently similar to the simple model.

The ZNS SSD backend uses the same data processing
model as the conventional SSD. However, it does not need
the FTL since the host explicitly controls data placement
according to the ZNS SSD specifications.

Note that NVMeVirt actually does not limit the perfor-
mance model. Indeed, any performance models can be imple-
mented and integrated into NVMeVirt as required.

3.5 Data Storage and Handling
NVMeVirt should store requested data somewhere in the sys-
tem, and retrieve them later for read requests. Similar to many
other storage simulators and emulators, NVMeVirt stores the
data in the main memory. As running as a kernel module,
NVMeVirt cannot luxuriate in comfortable functions from
user space, such as virtual memory. However, the memory
management overhead should be low and consistent to emu-
late future-generation devices such as PRAM- and MRAM-
based SSDs. Different device types require different mem-
ory management policies and mechanisms. We explain the
approaches for each device type that NVMeVirt currently
supports.

Common. Regardless of the device type, NVMeVirt requires
an extensive amount of memory for data storage. NVMeVirt
obtains the required memory by reserving a part of the physi-
cal address space with the booting parameter during the sys-
tem initialization. We configured the NUMA setting not to

USENIX Association 21st USENIX Conference on File and Storage Technologies 385

interleave memory, and the memory is reserved from a dedi-
cated NUMA node where the NVMeVirt threads are pinned
down. Therefore, the reserved memory is physically contigu-
ous. At the beginning of the reserved memory area are the
NVMe control block and PCI resources, such as the MSI-X ta-
ble and PCI capabilities, followed by the bulk memory region
used for storing data.

SSD and ZNS SSD. Basically the backends for SSD and
ZNS SSD use a simple linear mapping for data placement.
For a physical block/page number in the flash address space,
its in-memory location is calculated by adding the starting
address of the reserved memory region. The FTL for conven-
tional SSDs maintains the logical-to-physical flash address
space mapping on top of the linear mapping as in FEMU [32].
Once the target address is calculated from the block num-
ber, NVMeVirt moves data from/to the in-memory location.
One might suggest reusing the RAM disk facility or using
alloc_pages() or vmalloc() for allocating the data stor-
ing pages. In this case, however, we cannot control the lo-
cation of pages from NUMA domains. Even if we can use
alloc_pages_node() to specify the NUMA domain to allo-
cate pages from, the time to process page allocation may vary
significantly according to the status of the memory subsystem.
When the system has free pages for a core in its per-process
free page list, the page allocation can occur fast. However,
if the list is empty, the page should be allocated by dividing
a large memory chunk through the buddy system allocator,
which is time-consuming. For these reasons, we opt to use
the linear mapping scheme, rather than the RAM disk or the
dynamic mapping scheme. Further, the ZNS SSD backend
maintains the metadata to track the status of zones (i.e., open
zone list and the write pointers within the open zones).

KVSSD. The page-level address mapping is sufficient for
SSDs since the allocation unit is a fixed size, larger than (or
equal to) the page size. However, generally most the keys and
values in KVSSDs are much smaller than a single page (often
tens to hundreds of bytes long), and their sizes are highly vari-
able. This necessitates a proper memory management scheme
to prevent/control the external fragmentation of the address
space yet to provide a stable performance. Accordingly, we
divide the first half of the reserved memory into 1 KiB chunks
and the second half to 4 KiB ones. NVMeVirt maintains a
bitmap to track the availability of each chunk.
KVSSD also requires an index for key-value pairs. For sim-
plicity, we implemented it with a hash table. During the device
initialization, we allocate a slice of memory and initialize it
as a table. Each entry in the table contains the actual key and
location of data as the chunk index. To process a key-value
operation, the key is hashed with the Fowler-Noll-Vo hash
function [38] to produce an integer index. This integer index
is used as the index of the table, and the hash collision is
handled with the linear probing scheme. Currently, the maxi-

mum size is set to 16-byte and 4 KiB for the key and value,
respectively.

4 Evaluation

In this section, we provide the evaluation results to demon-
strate the features and versatility of NVMeVirt. We aimed to
discover the following with the evaluations;

1. What device types and their features does NVMeVirt
provide?

2. How precisely can NVMeVirt emulate the performance
of various storage devices, including off-the-shelf SSDs,
NVM SSDs, ZNS SSDs, and key-value SSDs?

3. What type of advanced storage configurations can
NVMeVirt support?

4. How can NVMeVirt contribute to storage-domain re-
search?

4.1 Evaluation Setup
Evaluation Environment. To evaluate NVMeVirt, we
used two identical servers with the same hardware and soft-
ware configurations. Each server is equipped with two Intel
Xeon Gold 6240 processors running at 2.60 GHz in a NUMA
configuration. Each processor has 36 cores and 196 GiB of
memory, which provides 72 cores and a total of 392 GiB
of memory. The system is also equipped with commercial
storage devices for performance comparison and analysis:
Samsung 970 Pro SSD and Intel P4800X SSD based on the
OptaneDC persistent memory technology. The devices are
512 GB and 350 GB in size, and represent an off-the-shelf
high-end SSD and NVM SSD, respectively. We refer to them
as “SSD” and “Optane” in the rest of the paper. To evaluate
KVSSD, we used the Samsung KVSSD [23]. We also used a
ZNS SSD provided by a company as an evaluation prototype.
This ZNS SSD comprises 96 MiB zones that can be written
only at 192 KiB units. The servers are also equipped with
one Mellanox ConnectX-5 VPI HCA and connected through
Mellanox SX6012 switch supporting 56 Gbps FDR band-
width. We implemented NVMeVirt based on the Linux kernel
5.10.37, and the implementation takes approximately 9,000
lines of the kernel module code.

Configuration. To minimize the cross-interference be-
tween the applications and operations of NVMeVirt, we set
them to run on different processors. Specifically, one pro-
cessor (processor 1) is completely dedicated to NVMeVirt,
whereas applications and benchmarks run on the other proces-
sor (processor 0). During the system initialization, the entire
memory for the processor 1 is reserved with kernel booting
parameters and used for storing data. The dispatcher and I/O
workers are pinned down to different cores on the dedicated
processor. The virtual PCIe bus is registered to the system as
if it is attached to the processor 1. The memory for the NUMA

386 21st USENIX Conference on File and Storage Technologies USENIX Association

0 20 40 60 80 100
Percentile

0

10

20

30

40

50

La
te

nc
y

(m
icr

os
ec

on
ds

)

FEMU 99.99th =559.3
Optane 99.99th =50.9NVMeVirt

FEMU
SSD
Optane

Figure 3: Performance variance of real and emulated devices
for 4 KB random write operations

node 0, which is dedicated to applications, is configured to
32 GiB considering the size ratio between the memory and
storage devices. In the evaluation, NVMeVirt is configured
to use one I/O worker and a maximum of 72 queue pairs so
that each core has its own queue pair. Note that we can easily
change the maximum number of queue pairs of the virtual
device.

4.2 Emulation Quality

NVMeVirt is primarily focusing on facilitating various NVMe
device types, and FEMU [32] is the most relevant work shar-
ing a similar goal. We compare the emulation quality by
measuring the latency distribution of random write operations
by repeating the same test 10 times. In each test, FIO writes
128 GiB of data with 4 KiB requests at random locations. We
set FEMU and NVMeVirt to operate at the maximum speed
without adding any latency to the incoming request. Figure 3
summarizes the percentile distributions of the 10 runs. The
error bars indicate the standard deviation of the runs; thus,
the longer the bars are, the more performance fluctuation the
system exhibits.

Compared to the performance of real devices, NVMeVirt
exhibits much lower latency with a very stable performance
over the entire percentile range. These performance character-
istics are very promising for emulating future storage devices.
The FEMU-emulated device, however, barely meets the re-
quired performance to emulate modern storage devices. The
maximum performance of FEMU is slightly faster than Op-
tane. Hence, we are unable to utilize FEMU to project the
performance implication of future low-latency storage devices.
In addition, we observe high run-to-run performance variance
from FEMU. Its standard deviations range from 28.7% to
39.7% of its average performance. The 99.99th percentile of
FEMU goes off-the-chart, showing an average of 559.3 us
and a standard deviation of 462 us. Considering the influences
of the performance variance on the applications’ tail latencies,
FEMU will operate with a very high non-realistic tail latency.

Table 2: Presumed model parameters to emulate a real device
performance.

Simple model
Optane KVSSD

Page size 4 KiB 4 KiB
of I/O units 1 10
Read latency 12 us 154 us

Read bandwidth 2.4 GiB 2.6 GiB
Write latency 14 us 56 us

Write bandwidth 2.0 GiB 1.3 GiB

Parallel model
SSD ZNS

PCIe link bandwidth 3.6 GiB 3.3 GiB
of NAND channels 8 8

NAND channel bandwidth 800 MiB 800 MiB
Dies per channel 2 16

Read unit size 32 KiB 64 KiB
NAND read time 36 us 40 us

Write unit size 32 KiB 192 KiB
NAND write time 185 us 1,913 us

4.3 Emulating a Real Device Performance

One of the primary goals of NVMeVirt is to emulate the
performance of real devices. To verify this, we measured
various performance metrics from real devices and config-
ured NVMeVirt devices, as we discussed in 3.4. Table 2
summarizes the key parameters that we used for emulating
the target devices. The values are obtained empirically from
in-house microbenchmarks and device specification docu-
ments [16, 47, 50]. We used various benchmark tools and
configurations for evaluating various device types. For Op-
tane and the SSD, we used FIO [2] to measure the read and
write latency while varying the request size from 4 KiB to
256 KiB. We also used FIO for measuring the performance of
the ZNS SSD. We evaluated the read performance in the same
manner. However, the ZNS SSD only allows 192 KiB writes
to opened zones. Thus, we evaluated write performance with
various numbers of threads that generate 192 KiB requests
in accordance with the ZNS zone restriction. To evaluate
KVSSD, we used OpenMPDK KVBench [46] which is an
open-source benchmark based on the ForestDB benchmark
suite [6]. We report the aggregated bandwidth from various
payload sizes. In addition, we report the aggregated band-
width measured with KVCeph [27] that generates realistic
key-value operation workloads.

Figure 4 compares the performance of virtual devices to
the real devices on various configurations. In each category,
the values are normalized to the left-most entry value of the
category (i.e., 4 KiB performance of the real device) Through-
out the evaluation, we can confirm that the virtual devices
provided by NVMeVirt faithfully reflect the configured target
performance. We observe that the performance difference
between the real and the virtualized devices is small. The

USENIX Association 21st USENIX Conference on File and Storage Technologies 387

4
K

8
K

16
 K

32
 K

64
 K

12
8

K
25

6
K

4
K

8
K

16
 K

32
 K

64
 K

12
8

K
25

6
K

4
K

8
K

16
 K

32
 K

64
 K

12
8

K
25

6
K

4
K

8
K

16
 K

32
 K

64
 K

12
8

K
25

6
K

4
K

8
K

16
 K

32
 K

64
 K

12
8

K
25

6
K

1
th

r
2

th
r

4
th

r
8

th
r

16
 th

r

4
K

8
K

12
 K

16
 K 4
K

8
K

12
 K

16
 K R

RW

0
2
4
6
8

10
12

No
rm

al
ize

d
pe

rfo
rm

an
ce

Optane
READ WRITE

SSD
READ WRITE

ZNS
READ WRITE

KVSSD
READ WRITE KVCeph

(16.9, 16.5) (25.0, 24.3) (15.5, 14.9) Real device
NVMeVirt

Figure 4: Performance comparison of the real devices and virtual devices. The performance is normalized to the left-most entry
value of the category.

0 20 40 60 80 100
Percentile

0

20

40

60

80

100

La
te

nc
y

(u
s)

Read

Write

970 Pro
NVMeVirt

(a) Latencies

0 100 200 300
Time (second)

0.0

0.5

1.0

1.5

2.0

Pe
rfo

rm
an

ce
 (G

iB
/s

) 970 Pro
NVMeVirt

(b) The effect of GC

0 100 200 300
Time (second)

0
5

10
15
20
25
30
35
40

Th
ro

ug
hp

ut
 (x

1
K

op
s) ZNS

NVMeVirt

(c) RocksDB YCSB-A

Figure 5: The comparison of various performance character-
istics

performance difference is by up to 12.2%, 11.8%, 3.3%, and
3.8% for Optane, SSD, ZNS SSD, and KVSSD, respectively.

Next, we analyzed various I/O characteristics. Firstly, Fig-
ure 5a summarizes the latency distribution for processing
16 KiB requests in Samsung 970 Pro and its NVMeVirt coun-
terpart. We can see the similar latency distributions between
the setups. Secondly, we evaluated the performance change
when the garbage collection is performing. We built a mi-
crobenchmark that fills in the storage space with sequential
write and keeps performing random writes. These writes will
eventually trigger GC, which will cause performance drops.
Figure 5b shows the performance change, and we can see that
NVMeVirt exhibits the realistic performance change when
GC is involved. Lastly, Figure 5c shows the performance of
RocksDB running on ZNS SSD. We measured the throughput
over a period of time while running the YCSB-A benchmark.
We can observe repeated performance changes from ZNS
SSD, and NVMeVirt can model the performance changes very
closely. From these evaluations, we conclude that NVMeVirt
can model various performance aspects of the target devices.

4.4 Supporting Various Storage Environments

In this evaluation, we elaborate on the versatility of NVMeVirt
in various storage configurations. First, we demonstrate the

4K 8K 16
K

32
K

64
K

12
8K

25
6K

51
2K 1M

Payload Size (Byte)

0
100
200
300
400
500
600
700
800
900

La
te

nc
y

(u
s) Local

NVMe-oF
Offloading

(a) Optane

4K 8K 16
K

32
K

64
K

12
8K

25
6K

51
2K 1M

Payload Size (Byte)

0
100
200
300
400
500
600
700
800
900

La
te

nc
y

(u
s)

(b) NVMeVirt

Figure 6: The write performance as the NVMe-oF target

feasibility of the NVMe-oF target offloading. We configured
an NVMeVirt instance as the NVMe-oF target and measured
their performance with the FIO benchmark. The NVMeVirt
instance is configured to emulate Optane with the target per-
formance listed in Table 2. Figure 6 compares their perfor-
mance under various payload sizes and different NVMe-oF
configurations. Note that ‘NVMe-oF’ indicates the perfor-
mance of the default NVMe-oF configuration without the
target offloading, and ‘Offloading’ is with the target offload-
ing enabled. We present the results from write operations only
since read operations showed the same trend.

We can observe that NVMeVirt emulates the performance
of Optane over NVMe-oF closely. Specifically, the baseline
configuration without the target offloading outperforms that
with the target offloading when the payload is smaller than
128 KiB. We attribute the performance trend to the NVMe
command processing overhead in the adapter that outweighs
the performance gain from the optimized data path. However,
when the payload is larger than 128 KiB, the performance gain
outweighs the overhead, making the target offloading-enabled
configuration show much lower latency.

We also demonstrate the PCI peer-to-peer DMA support
for AI workloads. Specifically, GPUDirect Storage (GDS) is
one of the promising techniques to accelerate GPU-intensive
workloads [39, 40]. GPU directly accesses NVMe devices
through PCI peer-to-peer DMA protocol, enabling decreased
latency and CPU utilization on the host. We analyze the im-

388 21st USENIX Conference on File and Storage Technologies USENIX Association

0.0 0.5 1.0 1.5 2.0 2.5
Bandwidth (GiB/s)

Real
Virt

1.5 GiB
2.0 GiB
2.5 GiB
3.0 GiB

10 us
15 us
20 us
25 us

Ba
nd

wi
dt

h
La

te
nc

y

Conv
GDS

Figure 7: Checkpointing performance of Megatron Deep-
Speed.

plication of storage performance on the GDS environment
with NVMeVirt.

We measure the performance of checkpointing while run-
ning Megatron DeepSpeed [37] with NVIDIA A100 GPU.
As shown in Figure 7, with Samsung 970 Pro SSD, the check-
pointing occurs at the rate of 0.37 GiB/s with the conventional
storage configuration, where checkpointing data is stored
through the host’s filesystem (the data is labeled with ‘Real’).
With GDS enabled, the checkpointing data goes to the NVMe
device directly, showing a substantial performance gain of
5.2x. The NVMeVirt instance configured for the SSD exhibits
the same performance trend, as labeled with ‘Virt’.

We set up an NVMeVirt SSD instance in the same envi-
ronment and evaluate the implication of storage device per-
formance. We measured the checkpointing performance on
various target bandwidths, but with a fixed latency of 10 us
(grouped in ‘Bandwidth’). We also evaluated the performance
from various latencies while the target bandwidth is fixed to
2.0 GiB (grouped in ‘Latency’).

As shown in Figure 7, the storage performance does not
much influence the AI application when the checkpointing
occurs through the conventional storage configuration. The
checkpointing performance remains consistent at a rate of
0.43 GiB/s regardless of changes in bandwidth and latency.
However, the performance is affected by bandwidth in the
GDS configuration. This confirms that the direct storage ac-
cess is promising in that it can circumvent the inherent per-
formance bottleneck in the conventional I/O path. Also, it
implies that to fully exploit the reduced overhead through
GDS, the storage performance should be improved further.
From the consistent performance over a wide range of laten-
cies, we can infer that the workload is likely to process I/O
with a high queue depth.

4.5 Case for the Database Engine Analysis

To promote the tunable performance of NVMeVirt, we an-
alyze the implication of storage performance on database
engine performance. We selected MariaDB and PostgreSQL,
two database engines that are very popular in the industry [7].

0 100 200 300
Time (second)

0

500

1000

1500

2000

2500

3000

I/O
 b

an
dw

id
th

 (M
B/

s) 250
500
1000

2000
Max

(a) MariaDB

0 100 200 300
Time (second)

0

500

1000

1500

2000

2500

3000

I/O
 b

an
dw

id
th

 (M
B/

s)

(b) PostgreSQL

250 500 1000 2000 Max
Target bandwidth (MiB/s)

0

2000

4000

6000

8000

Tr
an

sa
ct

io
ns

 p
er

 se
co

nd
 (T

PS
)

MariaDB
PostgreSQL

(c) TPS vs. target bandwidth

Min 16 32 64 128
Target latency (us)

0

1000

2000

3000

4000

5000

Tr
an

sa
ct

io
ns

 p
er

 se
co

nd
 (T

PS
)

(d) TPS vs. target latency

0 100 200 300 400 500 600
Time (second)

0

200

400

600

800

re
qu

es
ts

 in
 q

ue
ue

s

(e) Queue depth (MariaDB)

0 100 200 300 400 500 600
Time (second)

0

200

400

600

800

re

qu
es

ts
 in

 q
ue

ue
s

(f) Queue depth (PostgreSQL)

Figure 8: Performance characteristics of the MariaDB and
PostgreSQL database engines on various storage configura-
tions

We created an NVMeVirt instance configured as an NVM
SSD, and configured the database instance on it with recom-
mended configurations from optimization tools [13, 43]. The
database instance is then populated with sysbench [48] to have
10 tables of 50,000,000 bytes in size, taking approximately
120 GiB of space in total. Then we run the OLTP workload
with sysbench with 72 threads for 60 minutes. We measured
various performance metrics while running the benchmark,
and Figure 8 summarizes the results. We only report the trends
of the first 5 minutes since the performance became stable
afterwards.

Overall, we verified that MariaDB and PostgreSQL react
very differently to the storage performance. Figure 8a and
8b compare the I/O bandwidth utilization of MariaDB and
PostgreSQL over time when the target bandwidth is set to
the given value (i.e., 250 implies the storage bandwidth is
limited to 250 MiB/s). In this evaluation, the I/O latency was
set to a minimum (i.e., does not impose any delay while pro-
cessing I/O operations). For MariaDB, it fully utilizes the I/O

USENIX Association 21st USENIX Conference on File and Storage Technologies 389

bandwidth up to 500 MiB/s, but does not utilize it further.
Even though the storage device provides a higher bandwidth,
the I/O bandwidth utilization remains low, approximately at
600 MiB/s. On the other hand, PostgreSQL fully utilizes the
I/O bandwidth up to 1,000 MiB/s and exhibits a saturated
performance at around 1,800 MiB/s. This hints that Post-
greSQL is designed to utilize the storage device more eagerly
than MariaDB. However, this does not necessarily mean that
PostgreSQL outperforms MariaDB. Figure 8c compares the
processing performance measured in transactions per second
(TPS) on various bandwidth limits. The I/O bandwidth limit
influences both database engines, but PostgreSQL is much
more sensitive than MariaDB. Specifically, MariaDB exhibits
a higher TPS than PostgreSQL when the bandwidth is low,
but the TPS is not improved much when the device has more
bandwidth. Meanwhile, PostgreSQL shows a lower perfor-
mance when the bandwidth is low. However, the performance
improves as the device supports more bandwidth. When the
bandwidth limit is low, MariaDB outperforms PostgreSQL by
2.45x at 250 MiB/s bandwidth limit. However, PostgreSQL
outperforms MariaDB by 1.82x at the unlimited bandwidth.

The engines exhibit a similar trend with respect to the la-
tency. Figure 8d compares the performance when the band-
width is fixed to 1,000 MiB/s, and both read and write la-
tencies are set to the values on the y-axis. When the device
exhibits a high latency, MariaDB outperforms PostgreSQL
by up to 2.67x when the latency is 128 us. However, as the
latency decreases, the TPS of PostgreSQL keeps increasing,
becoming comparable to that of MariaDB when the latency
is minimum. Figure 8e and 8f shows the number of queued
requests in the submission queues of the device over time.
The device is configured to have the minimum latency and a
target bandwidth of 2.0 GiB. MariaDB operates with a low
queue depth, whereas PostgreSQL utilizes a higher queue
depth with a noticeable unique pattern near qd=200.

From the evaluation, we can conclude that PostgreSQL is
more promising on modern storage devices, whereas Mari-
aDB is more efficient when the storage is slow. We can verify
that NVMeVirt allows us to estimate the performance of ap-
plications on future storage devices.

4.6 Case for NVMe Interface Study

As NVMeVirt handles inbound NVMe operations in software,
it opens up the opportunity to extend the host-device interface
easily. To demonstrate this, we made a case with one of the
recent studies whose evaluation is limited by the host-device
interface modification. Specifically, Kim et al. [26] proposed
to extend the NVMe command set so that one NVMe com-
mand can batch multiple key-value operations, thereby amor-
tizing the interface overhead for small key-value operations.
To realize this so-called ‘compound command’ concept, the
KVSSD firmware should be modified to understand and pro-
cess the extended NVMe command. However, the authors

were unable to modify the firmware and ended up estimating
the performance gain from the single operation performance.

We attempted to verify the benefit of the compound com-
mand by using the KVSSD instance with NVMeVirt. Specif-
ically, we modified the KVSSD backend to understand the
compound command and process packed operations in a batch.
Each I/O operation in a compound command is processed as
an individual key-value operation in the backend. This mod-
ification took less than a week for one of the authors, and
we argue that this manifests the advantage of the software-
level NVMe abstraction that NVMeVirt provides. To evaluate
the performance, we built a user-level microbenchmark tool
that builds the compound command with multiple requests,
and submits the command to the device through the NVMe
pass-through interface. Note that the extended KVSSD back-
end uses the same performance model and configuration as
explained in Section 4.3.

From the evaluation, we can verify the significant perfor-
mance improvement with the compound command. Without
the compound command, processing eight 4 KiB key-value
put operations takes approximately 469 us, which is reduced
to 86 us with the compound command, giving a 5.4x per-
formance gain. This improvement is higher than the value
reported in the original work (92.0 us to 41.5 us), and we
attribute the extra improvement to the conservative estimation
in the original work.

5 Conclusion

We presented NVMeVirt, a virtual, software-only NVMe
device. It opens a new opportunity for developers to co-
design highly intelligent storage devices over the NVMe in-
terface. With NVMeVirt, we demonstrated the usefulness of
NVMeVirt for storage research.

Currently, NVMeVirt only supports a single instance of one
device type. We are planning to support multiple NVMe de-
vice instances with various storage device types. Furthermore,
we are working on a separate study to present the in-depth
methodology and analysis to model the performance charac-
teristics of various NVMe-based SSDs using NVMeVirt.

Acknowledgments

We would like to thank our shepherd, Robert Ross, and anony-
mous reviewers for their invaluable feedback. We also thank
Hyeong-Jun Kim who developed the initial prototype of
NVMeVirt. This work was supported by Electronics and
Telecommunications Research Institute (ETRI) grant funded
by the Korean government (23ZS1310), the National Research
Foundation of Korea (NRF) grant (No. 2019R1A2C2089773),
and Institute of Information & communications Technology
Planning & Evaluation (IITP) grant (No. IITP-2021-0-01363)
funded by the Korea government (MSIT).

390 21st USENIX Conference on File and Storage Technologies USENIX Association

References

[1] Nadav Amit, Muli Ben-Yehuda, Dan Tsafrir, and As-
saf Schuster. vIOMMU: Efficient IOMMU emulation.
In Proceedings of the 2011 USENIX Annual Technical
Conference (ATC), Portland, OR, June 2011.

[2] Jens Axboe. fio: flexible I/O tester. https://github.
com/axboe/fio.

[3] Jonghyun Bae, Jongsung Lee, Yunho Jin, Sam Son,
Shine Kim, Hakbeom Jang, Tae Jun Ham, and Jae W.
Lee. FlashNeuron: SSD-enabled large-batch training of
very deep neural networks. In Proceedings of the 19th
USENIX Conference on File and Storage Technologies
(FAST), Virtual, February 2021.

[4] Matias Bjørling, Abutalib Aghayev, Hans Holmberg,
Aravind Ramesh, Damien Le Moal, Gregory R. Ganger,
and George Amvrosiadis. ZNS: avoiding the block
interface tax for flash-based SSDs. In Proceedings of
the 2021 USENIX Annual Technical Conference (ATC),
Virtual, July 2021.

[5] Matias Bjørling, Javier Gonzalez, and Philippe Bonnet.
LightNVM: The Linux open-channel SSD subsystem.
In Proceedings of the 15th USENIX Conference on File
and Storage Technologies (FAST), pages 359–375, Santa
Clara, California, USA, February–March 2017.

[6] Couchbase Labs. ForestDB benchmark.
https://github.com/couchbaselabs/
ForestDB-Benchmark.

[7] DB-Engines ranking. https://db-engines.com/en/
ranking.

[8] Jaeyoung Do, Victor C. Ferreira, Hossein Bobarshad,
Mahdi Torabzadehkashi, Siavash Rezaei, Ali Heydarig-
orji, Diego Souza, Brunno F. Goldstien, Leandro Santi-
ago, Min Soo Kim, Priscila M. V. Lima, M. G. França,
and Vladimir Alves. Cost-effective, energy-efficient,
and scalable storage computing for large-scale AI ap-
plications. ACM Transactions on Storage, 16(4):1–37,
2020.

[9] NVM Express. NVMe-oF specification.
https://nvmexpress.org/developers/
nvme-of-specification/.

[10] Donghyun Gouk, Miryeong Kwon, Jie Zhang, Sungjoon
Koh, Wonil Choi, Nam Sung Kim, Mahmut Kandemir,
and Myoungsoo Jung. Amber: Enabling precise full-
system simulation with detailed modeling of all SSD
resources. In Proceedings of the 51st Annual IEEE/ACM
International Symposium on Microarchitecture (MI-
CRO), pages 469–481, Fukuoka, Japan, October 2018.

[11] Boncheol Gu, Andre S. Yoon, Duck-Ho Bae, Insoon Jo,
Jinyoung Lee, Jonghyun Yoon, Jeong-Uk Kang, Moon-
sang Kwon, Chanho Yoon, Sangyeun Cho, Jaeheon
Jeong, and Duckhyun Chang. Biscuit: A framework for
near-data processing of big data workloads. In Proceed-
ings of the 43rd ACM/IEEE International Symposium on
Computer Architecture (ISCA), pages 153–165, Seoul,
South Korea, June 2016.

[12] Kyuhwa Han, Hyunho Gwak, Dongkun Shin, and Jooy-
oung Hwang. ZNS+: advanced zoned namespace in-
terface for supporting in-storage zone compaction. In
Proceedings of the 15nd USENIX Symposium on Op-
erating Systems Design and Implementation (OSDI),
Virtual, July 2021.

[13] Major Hayden. MySQLTuner. https://github.com/
major/MySQLTuner-perl.

[14] Junsu Im, Jinwook Bae, Chanwoo Chung, Arvind, and
Sungjin Lee. PinK: High-speed in-storage key-value
store with bounded tails. In Proceedings of the 2020
USENIX Annual Technical Conference (ATC), pages
173–187, Virtual, July 2020.

[15] Intel. Intel I/O acceleration technology.
https://www.intel.co.kr/content/www/kr/
ko/wireless-network/accel-technology.html.

[16] Intel. Intel Optane SSD 9 series. https:
//www.intel.com/content/www/us/en/products/
details/memory-storage/consumer-ssds/
optane-ssd-9-series.html.

[17] Joseph Izraelevitz, Jian Yang, Lu Zhang, Juno Kim, Xiao
Liu, Amirsaman Memaripour, Yun Joon Soh, Zixuan
Wang, Yi Xu, Subramanya R. Dulloor, Jishen Zhao, and
Steven Swanson. Basic performance measurements of
the intel optane DC persistent memory module.

[18] Mike Jackson and Ravi Budruk. PCI Express Technol-
ogy. MindShare Technology, 2012.

[19] Yanqin Jin, Hung-Wei Tseng, Yannis Papakonstanti-
nou, and Steven Swanson. KAML: A flexible, high-
performance key-value SSD. In Proceedings of the 23rd
IEEE Symposium on High Performance Computer Ar-
chitecture (HPCA), pages 373–384, Austin, TX, USA,
February 2017. IEEE.

[20] Sang-Woo Jun, Andy Wright, Sizhuo Zhang, Shuotao
Xu, and Arvind. GraFBoost: Using accelerated flash
storage for external graph analytics. In Proceedings of
the 45rd ACM/IEEE International Symposium on Com-
puter Architecture (ISCA), Los Angeles, CA, June 2018.

USENIX Association 21st USENIX Conference on File and Storage Technologies 391

https://github.com/axboe/fio
https://github.com/axboe/fio
https://github.com/couchbaselabs/ForestDB-Benchmark
https://github.com/couchbaselabs/ForestDB-Benchmark
https://db-engines.com/en/ranking
https://db-engines.com/en/ranking
https://nvmexpress.org/developers/nvme-of-specification/
https://nvmexpress.org/developers/nvme-of-specification/
https://github.com/major/MySQLTuner-perl
https://github.com/major/MySQLTuner-perl
https://www.intel.co.kr/content/www/kr/ko/wireless-network/accel-technology.html
https://www.intel.co.kr/content/www/kr/ko/wireless-network/accel-technology.html
https://www.intel.com/content/www/us/en/products/details/memory-storage/consumer-ssds/optane-ssd-9-series.html
https://www.intel.com/content/www/us/en/products/details/memory-storage/consumer-ssds/optane-ssd-9-series.html
https://www.intel.com/content/www/us/en/products/details/memory-storage/consumer-ssds/optane-ssd-9-series.html
https://www.intel.com/content/www/us/en/products/details/memory-storage/consumer-ssds/optane-ssd-9-series.html

[21] Myoungsoo Jung. OpenExpress: Fully hardware auto-
mated open research framework for future fast nvme
devices. In Proceedings of the 2020 USENIX Annual
Technical Conference (ATC), Virtual, July 2020.

[22] Myoungsoo Jung, Jie Zhang, Ahmed Abulila, Miryeong
Kwon, Narges Shahidi, John Shalf, Nam Sung Kim, and
Mahmut Kandemir. SimpleSSD: Modeling solid state
drives for holistic system simulation. IEEE Computer
Architecture Letters, 17:37–41, September 2017.

[23] Yangwook Kang, Rekha Pitchumani, Pratik Mishra,
Yang-suk Kee, Francisco Londono, Sangyoon Oh,
Jongyeol Lee, and Daniel D. G. Lee. Towards building
a high-performance, scale-in key-value storage system.
In Proceedings of the 12th ACM International Confer-
ence on Systems and Storage (SYSTOR), page 144–154,
Haifa, Israel, 2019.

[24] Hyeong-Jun Kim, Young-Sik Lee, and Jin-Soo Kim.
NVMeDirect: A user-space I/O framework for
application-specific optimization on NVMe SSDs. In
Proceedings of the 8th USENIX Workshop on Hot Topics
in Storage and File Systems (HotStorage), Denver, CO,
June 2016.

[25] Joonsung Kim, Kanghyun Choi, Wonsik Lee, and Jang-
woo Kim. Performance modeling and practical use
cases for black-box SSDs. ACM Transactions on Stor-
age, 17(2), jun 2021.

[26] Sang-Hoon Kim, Jinhong Kim, Kisik Jeong, and Jin-Soo
Kim. Transaction support using compound commands
in key-value SSDs. In Proceedings of the 11th USENIX
Workshop on Hot Topics in Storage and File Systems
(HotStorage), Renton, WA, July 2019.

[27] Open memory platform development kit. http://
github.com/OpenMPDK.

[28] Jaewook Kwak, Sangjin Lee, Kibin Park, Jinwoo Jeong,
and Yong Ho Song. Cosmos+ OpenSSD: Rapid proto-
type for flash storage systems. ACM Transactions on
Storage, 16(3), aug 2020.

[29] Miryeong Kwon, Donghyun Gouk, Sangwon Lee, and
Myoungsoo Jung. Hardware/software co-programmable
framework for computational SSDs to accelerate deep
learning service on large-scale graphs. In Proceedings
of the 20th USENIX Conference on File and Storage
Technologies (FAST), Santa Clara, CA, February 2022.

[30] Parallel Data Lab. The DiskSim simulation environment
v4.0. https://www.pdl.cmu.edu/DiskSim/index.
shtml.

[31] Young-Sik Lee, Luis Cavazos Quero, Sang-Hoon Kim,
Jin-Soo Kim, and Seungryoul Maeng. ActiveSort: Effi-
cient external sorting using active SSDs in the MapRe-
duce framework. Future Generation Computer Systems,
65:76–89, December 2016.

[32] Huaicheng Li, Mingzhe Hao, Michael Hao Tong, Swami-
nathan Sundararaman, Matias Bjørling, and Haryadi S.
Gunawi. The case of FEMU: Cheap, accurate, scalable
and extensible flash emulator. In Proceedings of the 16th
USENIX Conference on File and Storage Technologies
(FAST), Oakland, California, USA, February 2018.

[33] Shengwen Liang, Ying Wang, Youyou Lu, Zhe Yang,
Huawei Li, and Xiaowei Li. Cognitive SSD: A deep
learning engine for in-storage data retrieval. In Proceed-
ings of the 2019 USENIX Annual Technical Conference
(ATC), Renton, WA, July 2019.

[34] Youyou Lu, Jiwu Shu, and Weimin Zheng. Extend-
ing the lifetime of flash-based storage through reducing
write amplification from file systems. In Proceedings
of the 11th USENIX Conference on File and Storage
Technologies (FAST), pages 257–270, Santa Clara, Cali-
fornia, USA, February 2013.

[35] Krishna T. Malladi, Manu Awasthi, and Hongzhong
Zheng. FlexDrive: A framework to explore NVMe
storage solutions. In Proceedings of the 2016 IEEE
18th International Conference on High Performance
Computing and Communications, page 1115–1122, Dec
2016.

[36] Krishna T. Malladi, Mu-Tien Chang, Dimin Niu, and
Hongzhong Zheng. FlashStorageSim: Performance
modeling for SSD architectures. In Proceedings of the
2017 International Conference on Networking, Archi-
tecture, and Storage (NAS), page 1–2, August 2017.

[37] Microsoft. Megatron-DeepSpeed. https://github.
com/microsoft/Megatron-DeepSpeed.

[38] Landon Curt Noll. FNV hash. http://isthe.com/
chongo/tech/comp/fnv/.

[39] NVIDIA. GPUDirect Storage: A direct path be-
tween storage and GPU memory. https://developer.
nvidia.com/blog/gpudirect-storage/.

[40] NVIDIA. The NVIDIA Magnum IO GPUDIrect
Storage overview guide. https://docs.nvidia.
com/gpudirect-storage/overview-guide/index.
html.

[41] Jian Ouyang, Shiding Lin, Song Jiang, Zhenyu Hou,
Yong Wang, and Yuanzheng Wang. SDF: Software-
defined flash for web-scale internet storage systems. In
Proceedings of the 19th ACM International Conference

392 21st USENIX Conference on File and Storage Technologies USENIX Association

http://github.com/OpenMPDK
http://github.com/OpenMPDK
https://www.pdl.cmu.edu/DiskSim/index.shtml
https://www.pdl.cmu.edu/DiskSim/index.shtml
https://github.com/microsoft/Megatron-DeepSpeed
https://github.com/microsoft/Megatron-DeepSpeed
http://isthe.com/chongo/tech/comp/fnv/
http://isthe.com/chongo/tech/comp/fnv/
https://developer.nvidia.com/blog/gpudirect-storage/
https://developer.nvidia.com/blog/gpudirect-storage/
https://docs.nvidia.com/gpudirect-storage/overview-guide/index.html
https://docs.nvidia.com/gpudirect-storage/overview-guide/index.html
https://docs.nvidia.com/gpudirect-storage/overview-guide/index.html

on Architectural Support for Programming Languages
and Operating Systems (ASPLOS), Salt Lake City, Utah,
USA, March 2014.

[42] PCI SIG. PCI SIG. https://pcisig.com.

[43] PGTune: configuration for PostgreSQL based on the
maximum performance for a given hardware configura-
tion. https://pgtune.leopard.in.ua/.

[44] QMEU. QEMU: A generic and open source machine
emulator and virtualizer. https://qemu.org.

[45] Manoj P. Saha, Adnan Maruf, Bryan S. Kim, and Janki
Bhimani. KV-SSD: What is it good for? In Proceed-
ings of the 58th ACM/IEEE Annual Design Automation
Conference (DAC), pages 1105–1110, 2021.

[46] Samsung Electronics. OpenMPDK KVSSD. https:
//github.com/OpenMPDK/KVSSD/.

[47] Samsung Electronics. Samsung Enterprise SSD.
https://www.samsung.com/semiconductor/ssd/
enterprise-ssd/.

[48] Scriptable database and system performance benchmark.
https://github.com/akopytov/sysbench.

[49] Arash Tavakkol, Juan Gómez-Luna, Mohammad
Sadrosadati, Saugata Ghose, and Onur Mutlu. MQSim:
a framework for enabling realistic studies of modern
multi-queue SSD devices. In Proceedings of the 16th
USENIX Conference on File and Storage Technologies
(FAST), Oakland, California, USA, February 2018.

[50] Tech Power Up. Samsung 970 Pro 512 GB.
https://www.techpowerup.com/ssd-specs/
samsung-970-pro-512-gb.d54.

[51] Michèle Weiland, Holger Brunst, Tiago Quintino, Nick
Johnson, Olivier Iffrig, Simon Smart, Christian Herold,
Antonino Bonanni, Adrian Jackson, and Mark Parsons.
An early evaluation of intel’s optane DC persistent mem-
ory module and its impact on high-performance scien-
tific applications. In Proceedings of the 2019 Inter-
national Conference for High Performance Computing,
Networking, Storage and Analysis (SC), SC ’19, Novem-
ber 2019.

[52] Mark Wilkening, Udit Gupta, Samuel Hsia, Caroline
Trippel, Carolejean Wu, David Michael Brooks, and
Guyeon Wei. RecSSD: Near data processing for solid
state drive based recommendation inference. In Pro-
ceedings of the 26th ACM International Conference on
Architectural Support for Programming Languages and
Operating Systems (ASPLOS), Virtual, April 2021.

[53] Kan Wu, Andrea Arpaci-Dusseau, and Remzi Arpaci-
Dusseau. Towards an unwritten contract of intel optane
SSD. In Proceedings of the 11th USENIX Workshop on
Hot Topics in Storage and File Systems (HotStorage),
June 2019.

[54] Ziye Yang, James R. Harris, Benjamin Walker, Daniel
Verkamp, Changpeng Liu, Cunyin Chang, Gang Cao,
Jonathan Stern, Vishal Verma, and Luse E. Paul. SPDK:
a development kit to build high performance storage
applications. In Proceedings of the 2017 IEEE Interna-
tional Conference on Cloud Computing Technology and
Science (CloudCom), pages 154–161, 2017.

[55] Jinsoo Yoo, Youjip Won, Joongwoo Hwang, Sooyong
Kang, Jongmoo Choi, Sungroh Yoon, and Jaehyuk Cha.
VSSIM: Virtual machine based SSD simulator. In Pro-
ceedings of the 29th IEEE Conference on Massive Data
Storage (MSST), May 2013.

[56] Yiying Zhang, Leo Prasath Arulraj, Andrea C. Arpaci-
Dusseau, and Remzi H. Arpaci-Dusseau. De-indirection
for flash-based SSDs with nameless writes. In Pro-
ceedings of the 10th USENIX Conference on File and
Storage Technologies (FAST), San Jose, California, USA,
February 2012.

USENIX Association 21st USENIX Conference on File and Storage Technologies 393

https://pcisig.com
https://qemu.org
https: //github.com/OpenMPDK/KVSSD/
https: //github.com/OpenMPDK/KVSSD/
https://www.samsung.com/semiconductor/ssd/enterprise-ssd/
https://www.samsung.com/semiconductor/ssd/enterprise-ssd/
https://github.com/akopytov/sysbench
https://www.techpowerup.com/ssd-specs/samsung-970-pro-512-gb.d54
https://www.techpowerup.com/ssd-specs/samsung-970-pro-512-gb.d54

SMRSTORE: A Storage Engine for Cloud Object Storage on HM-SMR Drives
Su Zhou, Erci Xu*, Hao Wu, Yu Du, Jiacheng Cui, Wanyu Fu, Chang Liu, Yingni Wang, Wenbo Wang,
Shouqu Sun, Xianfei Wang, Bo Feng, Biyun Zhu, Xin Tong, Weikang Kong, Linyan Liu, Zhongjie Wu,

Jinbo Wu, Qingchao Luo, Jiesheng Wu

Alibaba Group

Abstract
Cloud object storage vendors are always in pursuit of bet-

ter cost efficiency. Emerging Shingled Magnetic Record-
ing (SMR) drives are becoming economically favorable in
archival storage systems due to significantly improved areal
density. However, for standard-class object storage, previous
studies and our preliminary exploration revealed that the ex-
isting SMR drive solutions can experience severe throughput
variations due to garbage collection (GC).

In this paper, we introduce SMRSTORE, an SMR-based
storage engine for standard-class object storage without com-
promising performance or durability. The key features of
SMRSTORE include directly implementing chunk store in-
terfaces over SMR drives, using a complete log-structured
design, and applying guided data placement to reduce GC
for consistent performance. The evaluation shows that SMR-
STORE delivers comparable performance as Ext4 on the Con-
ventional Magnetic Recording (CMR) drives, and can be up
to 2.16x faster than F2FS on SMR drives. By switching
to SMR drives, we have decreased the total cost by up to
15% and provided performance on par with the prior system
for customers. Currently, we have deployed SMRSTORE in
standard-class Alibaba Cloud Object Storage Service (OSS)
to store hundreds of PBs of data. We plan to use SMR drives
for all classes of OSS in the near future.

1 Introduction
Object storage is a “killer app” in the cloud era. Users can
use the service to persist and retrieve objects with high scal-
ability, elasticity and reliability. Typical usage scenarios of
object storage include Binary Large OBjects (BLOBs) stor-
age [10,23], datalake [2] and cloud archive [1]. Object storage
systems usually employ a large fleet of HDDs. Therefore, a
key challenge of building a competitive cloud object storage
is the cost efficiency.

Emerging Shingled Magnetic Recording (SMR) drives [5]
are economically attractive [29] but they may not serve as a
simple drop-in replacement for traditional CMR drives [12].
SMR drives, via overlapping tracks, have a higher areal
density [14] (i.e., 25% more than CMR drives) and hence
the better cost efficiency. However, shingling tracks has a

*Corresponding author. erc.xec@alibaba-inc.com

byproduct—not allowing random writes [8, 15]. This charac-
teristic in return may require the upper-level software stack,
such as storage engines, to make the corresponding adaptions.

A possible direction is to use Host Managed SMR (HM-
SMR) drives where the host OS manages the I/Os and com-
municates with HM-SMR drives via the Zoned Block Device
(ZBD) subsystem [6, 7]. There are mainly three types of ap-
proaches in designing HM-SMR-based storage systems. First,
Linux kernel can expose HM-SMR drives as standard block
devices by employing a shingled translation layer (STL),
such as dm-zoned [21]. Second, file systems with a log-
structured [28] or copy-on-write design, can directly support
HM-SMR drives(e.g., F2FS [17] and Btrfs [27]). Further,
developers can modify their applications to accommodate
HM-SMR drives (e.g., GearDB [32], SMORE [19], and SM-
RDB [26]) or directly employ them in archival-class object
storage systems such as Alibaba Archive Storage Service [1]
and Huawei Object Store [18].

Unfortunately, these existing HM-SMR solutions can not
be applied to standard-class Alibaba Cloud Object Storage
Service (OSS) . First, setting the HM-SMR drive as a block
device (i.e., via dm-zoned [21]) could suffer a significant
throughput drop due to frequent buffer zones reclaiming after
random updates (e.g., a 56.1% drop under a sustained write
workload [22]). Second, employing log-structured file sys-
tems to manage HM-SMR drives can experience throughput
variations due to GC in file systems. For example, our eval-
uation shows that the throughput of F2FS on a HM-SMR
drive can drop 61.5% due to frequent F2FS GCs triggered by
random deletions. Third, though archival-class and standard-
class OSS share the same data abstraction (i.e., object), they
have drastically different Service Level Objectives (SLOs).
Therefore, a design that works well in the archival class may
not deliver satisfying performances in the standard class.

Our benchmarks show that existing SMR translation lay-
ers or file systems could result in severe overhead possibly
due to garbage collection. Moreover, log-structured design
offers direct support to SMR drives and could achieves a high
throughput when not affected by GC. Besides, GC, which is
inevitable due to the append-only nature of SMR zones, could
be alleviated via workload-aware data placement.

In this paper, we describe SMRSTORE, a high-performance
HM-SMR storage engine co-designed with Alibaba Cloud

USENIX Association 21st USENIX Conference on File and Storage Technologies 395

Persistence Layer
(Pangu)

OSS Service Layer kvserver

OSS FrontEnd Layer

Restful Object Request/Response

chunk
server

kvserver …

chunkserver
HDD
Engine

SSD
Engine

HDD

… HDD
Engine

SSD
Engine

HDD HDD SSD SSD
Disk1

…
Disk60 Disk61 Disk62

master master …

…

Figure 1: Architecture overview of OSS (§2.1). The red shaded
HHD engines refer to traditional ext4-based storage engines. The
green shaded SSD engines refer to user-space storage engines.

standard-class OSS. There are three key features in SMR-
STORE. First, SMRSTORE is a user-space storage engine that
does not require local file system support and directly imple-
ments chunk interfaces of PANGU distributed file system.

Second, SMRSTORE strictly follows a log-structured de-
sign to organize HM-SMR on-disk layout. In SMRSTORE,
the basic building block is a variable-length customized log
format called Record. We use records to persist data, and form
various metadata structures (e.g., checkpoint and journal).

Third, we design a series of workload-aware zone alloca-
tion strategies to reduce the interleaving of different types
of OSS data & metadata in zones. These effort help us to
effectively lower the overhead of GC in HM-SMR drives.

We extensively evaluate SMRSTORE under various scenar-
ios. The results show that PANGU chunkserver with SMR-
STORE achieves more than 110MB/s throughput in high con-
current write workloads, 30% higher than the previous gen-
eration design (i.e., chunkserver with Ext4 on CMR drives).
Moreover, on a storage server (60 HDDs and 2 cache SSDs),
chunkserver with SMRSTORE provides steady 4GB/s write
throughput in macro benchmarks, 2.16x higher than F2FS.
Third, in OSS deployment, the performances of the HM-SMR
cluster are comparable to the CMR cluster in all aspects.

The rest of the paper is organized as follows. We describe
standard-class OSS in Alibaba and the HM-SMR drives in §2.
Then, we analyze the pros and cons of existing solutions (§3).
Further, we demonstrate the design choices (§4), the detail im-
plementation of SMRSTORE (§5) and the evaluation (§6). We
conclude with discussions on the limitation of SMRSTORE
(§7), the related work (§8) and a short conclusion (§9).

2 Background
2.1 Alibaba Cloud OSS
Alibaba Cloud OSS offers four classes of services, including
standard, infrequent access, archive, and cold archive (prices
in descending order and retrieval time in ascending order).

Pangu File

AppendOnly

Chunk 2
(sealed)

Chunk 4
(unsealed)

Chunk 1
(sealed)

Chunk 3
(sealed)

offset 0

replica 1 replica 2 replica 3

chunkserver chunkserver chunkserver

replica 1 replica 2 replica 3

chunkserver chunkserver chunkserver

Figure 2: Semantics of PANGU file and chunk. This figure shows
a PANGU file consists of four chunks. Only chunk 4 (the last chunk)
is not sealed (writable). PANGU keeps multiple replicas for each
chunk across chunkservers to protect data against any failures.

Standard-class OSS, usually for hosting hot data, offers the
fastest SLOs with the highest economical cost.

Architecture. Figure 1 illustrates the three layers in Alibaba
Cloud standard-class OSS stack, including an OSS frontend
layer, an OSS service layer, and a persistence layer. The fron-
tend layer pre-processes users’ http requests and dispatches
them to the service layer. The service layer, consisting of mul-
tiple KV servers, has two functionalities. First, the service
layer writes the objects to PANGU files. Second, the service
layer maintains the objects’ metadata (the mapping from ob-
jects’ names to locations within the corresponding PANGU
files) using an LSM-tree based KV store [25], and writes
these metadata to additional PANGU files. The persistence
layer is our distributed file system PANGU.

PANGU overview. PANGU is a HDFS-like distributed file
system and each PANGU cluster comprises a set of masters
(handling PANGU files’ metadata, not objects’ metadata) and
up to thousands of chunkservers (storing data of PANGU
files). Each chunkserver exclusively owns a physical storage
server to operate, consisting of 60 HDDs for persistence
and two high performance SSDs for caching 1. We leverage
Linux kernel storage stack (Ext4 file system and libaio with
O DIRECT) for the HDD storage engines and build a user-
space storage file system for the SSD engines.

PANGU data abstractions. Figure 2 illustrates two levels of
abstractions in PANGU, file and chunk. Each file is append-
only and can be further split into multiple chunks. Each chunk
has a Chunk ID (a 24-byte UUID) and is replicated via copies
or erasure coding. PANGU can create, write(append), read,
delete, and seal a chunk. Similar to the “extent seal” in Win-
dows Azure Storage [13], PANGU seals a chunk when: i) the
size of chunk—including data and corresponding checksum—
reaches the limit; ii) the application closes the PANGU file
when writing is finished; iii) in the face of failures (e.g., net-
work timeout). Due to case ii) and iii), the chunks can be of
variable sizes. Note that only the last chunk of a PANGU file
can be appended (not sealed) and only sealed chunks can be

1PANGU also supports other services (e.g., block storage and big data)
and can have various modifications. In this paper, our discussion on PANGU
and corresponding software/hardware setups only apply to OSS scenario.

396 21st USENIX Conference on File and Storage Technologies USENIX Association

Pangu
Master

Pangu
Chunk
Server

KV
Server Pangu File A Offset LengthObject Foo

Pangu File A
Chunk 0 Chunk 1

Data (4048B)

Chunk1 File
Sector (4096B) …

Footer (48B)

Ext4-based Storage EngineRelated to Object Data

Chunk1 Metadata
Status SizeChunk1 ID

In Memory

In Memory

In Memory

On Disk (Ext4)

Figure 3: Dataflow with traditional storage engine (OSS (§2.1).
This figure illustrates the write path of an object in traditional CS-
Ext4 stack (red shaded). The yellow shaded area means it is related
to the object “Foo”. The data is split as a series of 4048B segments
where each is attached with a 48B footer for checksum.

flushed from cache SSDs to HDDs for persistence. Storage
engine does not provide any redundancy for failures. Instead,
we rely on PANGU providing fault tolerance for each chunk
across chunkservers by replication or erasure coding.

I/O Path. Figure 3 presents high-level write flows in OSS
with the traditional Ext4-based storage engine. We use an
example object called "Foo" to highlight the write flow. The
KV server chooses the PANGU file A for storing “Foo”. Then
the KV server uses the PANGU SDK or contacts the PANGU
master to locate the tail chunk (i.e.,chunk-1) and its respective
chunkservers. Further, the chunkserver appends the object’s
data (with checksums) to the corresponding Ext4 file. To
verify data integrity, we break the object’s data into a series
of 4048-Byte segments. We attach to each segment a 48 Byte
footer which includes the checksum and segment locations
in chunk. Note that each chunk in the chunkserver is an Ext4
file with the chunk ID as its filename.

Workloads. A KV server can open multiple PANGU files
to store or retrieve the data and metadata of objects, and
perform GC on deleted objects in PANGU files. From the
perspective of chunkservers, we define an active PANGU file
as a stream. The stream starts as the PANGU is opened by a
KV server for read or write, and ends when the KV closes the
PANGU file. Based on the operations (read or write) and types
(metadata, data or GC), we can categorize the workloads
issued by KV servers as five types of streams. Table 1 lists
the characteristic of each type of streams. The “Concurrency”
refers to the PANGU file concurrency, namely the number of
PANGU opened files on a chunkserver to append data. The
“Lifespan” refers to the expected lifespan of the data on disk
(from being persisted to deleted), NOT the duration of the
streams.

• OSS Data Write Stream. Persisting object data requires low
latency to achieve quick response. Therefore, object data

Type Latency Concur- iosize Lifespan
(ms) rency (Byte) (Day)

OSS Data W <1 ~1500 512K-1M <7
OSS Data R <20 - 512K-1M -
OSS Meta W <1 ~2000 4K-128K <60
OSS Meta R <20 - 4K-128K -
OSS GC <20 ~100 512K-1M <90
Table 1: Characteristics of streams on a chunkserver(§2.1).

are first written to SSD caches and later moved to HDDs.
Normally, hundreds of PANGU chunks are opened for writ-
ing on a chunkserver, thereby yielding high concurrency.

• OSS Data Read Stream. OSS directly reads object data
from HDDs to achieve high throughput. Due to space limits,
object data for read are not cached in the SSDs.

• OSS Metadata Write Stream. OSS metadata stream in-
cludes objects’ metadata formatted as Write-Ahead Logs
and Sorted String Table Files from KV store. The metadata
are first flushed to SSD cache and then migrated to HDDs.
The metadata accounts for around 2% of the total capacity
used (around 24TB per chunkserver).

• OSS Metadata Read Stream. The KV server maintains a
cache for object index. In most cases, the metadata read
directly hits the KV index cache and returns. If cache
misses, OSS routes to SSTFiles in PANGU.

• OSS GC Stream. The garbage collection in OSS service
layer (referred to as OSS GC) is to reclaim garbage space
in PANGU files. A PANGU file can hold multiple objects.
When a certain amount of objects are deleted in a PANGU
file, OSS would re-allocate the rest to another PANGU file,
and delete the old file. The chunks written by OSS GC
streams account for more than 80% of the total capacity
used in one chunkserver. OSS GC streams run in back-
ground and directly routed to HDDs for persistence.

2.2 Host-Managed HM-SMR
HM-SMR drives overlap the tracks to achieve higher areal
density but consequently sacrifices random write support.
Specifically, HM-SMR drives organize the address space as
multiple fixed-size zones including sequential zones (referred
to as zones) and a few (around 1%) conventional zones (re-
ferred to as czones). For example, the Seagate SMR drive
we use in this paper has a capacity of 20TB and 74508 zones
(including 800 czones). The size of each zone is 256MB, and
it takes around 20ms, 24ms and 22ms for opening, closing
and erasing a zone, respectively. Note that, for certain SMR
HDD models (e.g., West Digital DC HC650), there is a limit
on the number of zones to be opened concurrently.

Device mapper translation. A straightforward solution
is to insert a shim layer, called shingled translation layer
(STL), such as dm-zoned [21], to provide dynamic mapping
from logical block address to physical sectors and hence
achieve random-to-sequential translation. Apparently, the
major advantage of this approach is allowing the users (e.g.,

USENIX Association 21st USENIX Conference on File and Storage Technologies 397

chunkserver process) to adopt the HM-SMR drives as cost-
efficient drop-in replacement for CMR drives.

SMR-aware file systems. The log-structured design file sys-
tems (e.g., F2FS) make them an ideal match for the append-
only zone design of HM-SMR disks. For example, F2FS
started to support zoned block devices since kernel 4.10.
Users can mount a F2FS on an HM-SMR drive and utilize
the F2FS GC mechanism to support random writes. Simi-
larly, Btrfs, a file system based on copy-on-write principle,
currently provided an experimental support for zoned block
device in kernel 5.12.

End-to-End Co-design. Instead of relying on dm-zoned or
general file systems, applications that perform mostly sequen-
tial writes can be modified to adopt HM-SMR. The benefits
of end-to-end integration has been proved by several recent
works, such as GearDB [32], ZenFs [11], SMORE [19], etc.
Applications could eliminate the block/fs-level overhead and
achieve predictable performance by managing on-disk data
placement and garbage collection at application level [24, 30].

3 Evaluating Existing Solutions
We evaluate running F2FS atop HM-SMR drives with mi-
crobenchmark and macrobenchmark (i.e., simulated OSS
workloads). We compare the performances of chunkservers
with Ext4 on CMR drives (referred to as CS-Ext4) and F2FS
on HM-SMR drives (referred to as CS-F2FS).

3.1 Evaluation Configurations

CMR Server SMR Server
OS Linux 4.19.91

CPU 2*Intel(R) Xeon(R) Platinum 8331C CPU@2.50GHz
48 Physical Cores 96 Threads

SSD 2*INTEL SSDPF21Q800GB
Mem 512G

HDD

60*ST16000NM001G-
2KK103
Rand. 4KB(IOPS): 113
Seq. 512KB(MB/s):
254.8(W) 254.5(R)

60*ST20000NM001J-
2U6101
Rand. 4KB(IOPS): 121
Seq. 512KB(MB/s):
255.7(W) 255.6(R)

Table 2: Configurations of storage servers in evaluation. A SMR
server has the exact same setups with a CMR server, except the
HDDs are 20TB SMR HDDs instead. The raw performance compar-
ison with queue depth 1 random read and queue depth 32 sequential
read/write is listed in the last row.

Environment Setup. Table 2 lists the configurations of the
storage servers in the evaluation. Note that F2FS does not
support devices with a capacity larger than 16TB. Therefore,
we format the disk with 6TB capacity. Moreover, in all cases
we disable the disk write cache by hdparm [4] tool to prevent
data loss upon crashes, a mandatory setting in OSS.

Workloads. For both micro- and macro-benchmarks, we use
the Fio [3] (modified to use the PANGU SDK) as the workload

Figure 4: High Concurrency Write Throughput (§3.2). The fig-
ure shows the write throughput of CS-Ext4 and CS-F2FS in mi-
crobenchmarks.

Figure 5: F2FS Access Pattern (§3.2). The figure shows the ac-
cessed zoneIds by F2FS in a few seconds. F2FS writes all data into
one zone in a period of time and switches to the next only when the
zone is full.

generator. For microbenchmark, we start a chunkserver with
one disk, and focus on testing write throughput with different
I/O sizes in the clean state (no F2FS GC). We start a Fio with
4 numjobs, 4 iodepth, and 128 nrfiles to simulate a high write
pressure.

For macrobenchmark, we evaluate chunkserver with all
disks loaded (60 HDDs and 2 cache SSDs) and run four Fio
processes to simulate different types of write streams. Table 3
lists the detailed configurations. Note that we use two Fio
processes to simulate two kinds OSS GC streams (i.e., OSS
GC Wr 1 and 2). For OSS GC Wr 2, we use a smaller chunk
size and rate (64MB and 20MB/s) to simulate the situations
where the chunks are sealed before reaching the size limit
(due to reaching the end of PANGU file or encountering I/O
failures).

The macrobenchmark generates a stable 4GB/s throughput
to simulate a typical high pressure workload. There are two
phases in this test. In the first phase, we simply let the four
streams to fill the HDDs and there is no file deletions. In the
second phase, the utilization of capacity reaches around 80%
(around 12 hours after the first phase started) and triggers the
random deletions to maintain the utilization rate at around
80%. The average chunk deletion rate on a chunkserver
ranges from 4 operations per second (ops/s) to 15 ops/s.

398 21st USENIX Conference on File and Storage Technologies USENIX Association

Stream Type #Fio Target numjobs iodepth iosize nrfiles chunk size rate
OSS GC Wr 1 1 HDDs 8 32 1MB 25 256MB 400MB/s
OSS GC Wr 2 1 HDDs 8 32 1MB 25 64MB 20MB/s
OSS Data Wr 1 SSDs 3 32 1MB 300 256MB 200MB/s
OSS Meta Wr 1 SSDs 1 8 4KB-128KB 500 4MB 80MB/s

Table 3: Macro benchmark setups (§3.1). OSS GC Wr 1 refers to OSS GC streams with large chunks. OSS GC Wr 2 refers to OSS GC
streams with small chunks. OSS Data Wr refers to OSS object data write streams. OSS Meta Wr refers to OSS metadata write streams.

Figure 6: CS-Ext4 vs CS-F2FS in macrobenchmark (§3.2). The
test starts on empty disks and with steady 4GB/s throughput. At
hour 12, the capacity utilization reaches 80% and random deletions
occur.

3.2 Performance Comparison

Microbenchmark Performance. Figure 4 shows that CS-
F2FS on HM-SMR drives achieves 1.3x - 12.9x higher
throughput compared to CS-Ext4 on CMR drives. This is
because F2FS writes from different streams to one zone at
a time and thus always performs sequential writes. Figure 5
shows the accessing distribution of SMR ZoneIDs from the
CS-F2FS. We can see F2FS fills up one SMR zone at a time
(e.g., Zone 233 from second 0). This allocation strategy avoid
overhead from jumping between zones.

Macrobenchmark performance. Figure 6 shows the
throughput performances of CS-F2FS and CS-Ext4 along
time. Initially, we can observe that both maintain stable
throughput from hour 0 to 12. Then, after 12 hours, the CS-
F2FS quickly drops and remains a low throughput for the rest
of the time. This is because the random deletion starts and GC
in F2FS kicks in to handle the increasing amount of obsolete
data (see Figure 7). Note that F2FS puts chunks from differ-
ent types of streams into one zone. Due to random deletions,
severe F2FS GC can be frequently triggered and influence the
OSS metadata/data streams, resulting in a performance drop.

We are aware that F2FS provides multi-head logging to
separate streams on disk, but this technique cannot separate
chunks from the same type of streams. In practice, PANGU
file concurrency in each type of OSS stream can range from
tens to hundreds, and F2FS would write all the chunks from
the same type of stream into one zone. Therefore, random
deletions on those chunks (a common scenario in standard-
class OSS) still trigger severe F2FS GCs.

Figure 7: F2FS GC related metrics (§3.2.) This figure illustrates
the status of F2FS. The dirty segment count on the left axis reflects
the generation of garbage space. The increasing accumulated GC
count (right Y axis) indicates the continuing GC activities which are
the immediate causes of the performance drop.

4 SMRSTORE Design Choices
No local file system. We build SMRSTORE to support
chunk semantics (including chunk_create, chunk_append,
chunk_read, chunk_seal, and chunk_delete) on SMR
zoned namespace. There are three functionalities in SMR-
STORE to support this feature. First, SMRSTORE directly
manages the disk address space for persisting metadata (i.e.,
checkpoints and journalings) and data (i.e., the chunks). Sec-
ond, SMRSTORE manages a mapping table between chunks
and SMR zones to translate logical range in chunks (via
chunkId, offset, and length) to the physical locations on disk
(i.e., zoneId, offset, and length). Third, SMRSTORE orches-
trates the lifecycle of zones and data placement strategies in
the zones.

Everything is log. SMRSTORE stores both metadata and
data as logs in SMR sequential zones. Specifically, SMR-
STORE uses a basic structural unit, called record, to form
different types of metadata and data. To avoid wasting space,
record is of variable-length and enforces 4KB alignment with
disk physical sector.

Guided data placement. Since SMR zones are append-only
(except a few czones), and chunks from different PANGU files
can be interleaved in SMR zones, deleting PANGU chunks can
leave zones with obsolete data. This requires SMRSTORE
to migrate valid data from old zones to new ones, termed as
SMR GC in this paper. SMRSTORE reduces SMR GC by: i)
only allowing chunks to be mixed in a zone if they are from
the same type of streams (i.e., similar lifespans); ii) trying to
allocate an exclusive zone for each large chunk if possible.

Note that SMR GC is different from the OSS GC. In OSS
GC, after objects deleted by users, the corresponding PANGU

USENIX Association 21st USENIX Conference on File and Storage Technologies 399

Pangu Clients

SSD CMR
HDD

Chunkserver

Pangu Clients

Chunkserver

Ext4

Block
Layer

SPDK

SSD SMR
HDD

…

Zoned
Block
Layer

CS-Ext4
Stack

CS-SMRSTORE
Stack

Data
Index

On-disk
Layout

Garbage Collection

Zone Management

Recovery

SMRSTORE

SMRSTORE
Functionality

SSD
Engine

HDD
Engine …

SMR
STORE
Engine

SSD
Engine

SPDK

Figure 8: Overview of CS-EXT4 and CS-SMRSTORE (§5.1).
SMRSTORE is integrated in chunkserver, runs in the user space
and communicates with HM-SMR drives directly by ZBD interface.

files can be partially filled with obsolete objects. KV servers
would create new PANGU files to store the valid objects
collected from old PANGU files (i.e., generating OSS GC
streams).

5 SMRSTORE Design & Implementation
5.1 Architecture Overview
Figure 8 shows a side-by-side comparison between running
chunkserver with Ext4 on CMR disks (CS-Ext4), and with
SMRSTORE on SMR disks (CS-SMRSTORE). The main
difference is the addition of SMRSTORE to the chunkserver,
sitting in the user space, and communicating with the SMR
disks via Zoned Block Device (ZBD) subsystem. Next, we
discuss the key functionalities of SMRSTORE:

• On-disk data layout. SMRSTORE divides an HM-SMR
drive into three fixed-size areas, namely the superzone,
the metazones, and the datazones. The SMRSTORE uses
“record” as the basic unit for metazone and datazone.

• Data index. SMRSTORE employs three levels of in-
memory data structures, including chunk metadata, index
group, and record index, to map a chunk to a series of
records on the disk.

• Zone Management. SMRSTORE uses a state machine to
manage the lifecycle of zones, and keeps metadata (e.g.,
status) of each zone in the memory. Further, SMRSTORE
adopts three workload-aware zone allocation strategies to
achieve low SMR GC overhead.

• Garbage Collection. SMRSTORE periodically performs
SMR GC to reclaim area with stale data at the granularity of
zones. There are three steps in SMR GC procedure: victim
zone selection, data migration, and metadata update.

• Recovery. Upon crashes, SMRSTORE restore through four
steps: recovering meta zone table, loading the latest check-
point, replaying journals, and completing the chunk meta-
data table by scanning opened data zones.

CS-SMRSTORE I/O Path. When replacing the storage en-

Pangu
Chunk
Server

In MemoryChunk1 Metadata

Index Group 3

Record 1 Index

Datazone Record 1···

Header Payload Padding

Slice 0 Data
(4096B)

Slice 0 FT
(32B)

Slice 1 Data
(4096B)

Slice 1FT
(32B) ··

·

Index Group …

Status Size Index Group List PtrChunk1 ID

Record 0 Index Record 2 Index

Record 2
On Disk (SMR)

In Memory

Figure 9: Dataflow in SMRSTORE engine. (§5.1). Compared to
Figure 3, the storage engine is SMRSTORE (green shaded) and the
disk is an HM-SMR drive. FT: slice footer.

Superzone Metazone ··· ···

Journal
Record

Checkpoint
Record

ZoneHead
Record

PaddingPayloadHeader

ZoneHead
Record

PaddingPayloadHeader

··· ···

On-disk Layout

Datazone Layout

Data Record Layout

Data Payload Layout

Metazone Layout

Meta Record Layout

DatazoneDatazone

Data
Record

Metazone

Slice FooterSlice Data ···

Figure 10: On-disk Data Layout of SMRSTORE (§5.2). SMR-
STORE divides a disk into three partitions. Both metadata and data
are implemented based on the unified data structure called record.
The record can be of variable in length and have different type. The
payload of a data record is divided into several slices to support
partial read.

gine with a SMRSTORE engine, the KV server and PANGU
master follow the same procedures shown in Figure 3. As
illustrated in Figure 9, SMRSTORE no longer relies on local
system support and uses an in-memory chunk metadata table
for mapping. SMRSTORE first locates the table entry and
its index group linked list by using the chunk ID as index.
SMRSTORE further identifies the targeted index group or
creates a new one. Then, SMRSTORE appends data to the
datazone (indicated by the targeted index group) as record(s),
and updates the record index(es) in the corresponding index
group.

5.2 On-Disk Data Layout

Overview. Figure 10 shows the three partitions of an HM-
SMR drive under the SMRSTORE, including one superzone,
multiple metazones, and multiple datazones. All partitions
are fixed-sized and statically allocated. In other words, we
place the superzone on the first SMR zone, the metazones oc-
cupy the next 400 SMR zones, and the rest of SMR zones are
assigned as datazones. We do not allow metazones and data-
zones to be interleaved along disk address space to facilitate

400 21st USENIX Conference on File and Storage Technologies USENIX Association

··· ······

··· ···
2 MB Chunk X-Ptr

Index Group

···
Size Ptr_AddrChunk ID

Chunk Table
In Memory

Chunk X

Zone ID

Chunk ID
Location in Chunk

Index
Group

Record
Index

Record
Index

Zone ID
Record Index

Location in Zone

Figure 11: Data Index of SMRStore (§5.3). In the chunk metadata
table, each chunk has a pointer to an index group list. Each index
group can have multile record indexes in a zone. The index groups
and records are all sorted by the offset to the chunk.

the metazones scanning during recovery.

Superzone. The superzone stores the information for initial-
ization, including the format version, the format timestamp,
and other system configurations.

Metazone. Inside the metazone, there are three types of
metadata: the zonehead, checkpoint , and journal. Note that
the metazones only store metadata of SMRSTORE not the
metadata of OSS (i.e., data from OSS metadata stream). The
metadata are composed by different types of records. The
zonehead record stores the zone-related information, such as
the zone type and the timestamp of zone allocation (used for
recovery). The checkpoint is a full snapshot of in-memory
data structures while the journals contain key operations of
chunk and zone which we further introduce in §5.6.

Inside each record, there are also three fields: the header,
the payload, and the padding. The header specifies the type
of records (i.e., zonehead, checkpoint, or journal record), the
length of the record and the CRC checksum of the payload.
The payload contains the serialized metadata. An optional
padding is appended at the end of the record as the SMR drive
is 4KB-aligned.

Datazone. The datazones occupy the rest of the disk. In each
zone, there are two types of records, the zonehead record and
data record. The zonehead record is similar to the metazone
zonehead record except the zone type.

Data record & slice. The payload of data record hosts user’s
data (i.e., a proportion of the chunk). The padding at the tail
of a data record is used to bring it a multiple of 4096 bytes
(i.e., 4KB-aligned). However, the payload field of data record
is different from other types of records (see bottom right of
Figure 10). To avoid read amplification, the payload is further
divided into 4096-Byte slices, with a 32-Byte slice footer
appended to each slice. The slice footer contains the chunk
ID (24 bytes), the logical offset to chunk (4 bytes) and the
checksum of slice data (4 bytes). Without payload slicing,
reading a 4KB from a 512KB record would require SMR-
STORE to fetch the whole record for verifying the payload
with the record’s checksum. Now, with slices, reading a 4KB
only needs to read at most two slices, and SMRSTORE can
use the footer in the slice for checksum verification.

5.3 Data Index
SMRSTORE uses an in-memory data structure, called record
index, to manage the metadata of each record. The record
index includes Chunk ID, the logical location of user’s data
in the chunk (i.e., chunk offset and size of user’s data) and
record’s physical location in the datazone (i.e., offset in the
datazone and size of the record).

A chunk usually can have multiple records that are dis-
tributed among several datazones. Note that SMRSTORE
appends the data of a chunk to only one datazone at a time
until that datazone is full. This guarantees two properties: i)
the records in each datazone together must cover a consecu-
tive range of the chunk; ii) the covered chunk ranges in each
datazone are not overlapped with each other.

Therefore, we group the record indexes of a chunk in each
datazone as an index group. Based on i), inside each index
group, we can sort record indexes based on their chunk offsets.
The index group also includes the corresponding datazone ID.
Moreover, due to property ii), we can further sort the index
groups of a chunk, based on the chunk offset of first record
index in each group, as a list.

Then, SMRSTORE organizes the metadata of chunks as
a table (see the left of Figure 11). Each entry of the table,
indexed by the Chunk ID (a 24 byte UUID), contains the
chunk size (the total length of the chunk on this disk), the
chunk status (sealed or not, not illustrated in the figure), and
the corresponding sorted list of index groups.

When receiving a read request (specified by the chunk
ID, the chunk offset, and the data length), SMRSTORE can
locate the chunk metadata with the ChunkID, find the target
index group in the sorted list with chunk offset, and locate
corresponding record index(es) with the chunk offset and data
length.

For a write request, SMRSTORE always locates the last
index group of the target chunk. If there are enough space
left on the corresponding datazone, SMRSTORE appends the
data to the datazone as a new record and adds the new record
index to the index group. If not, SMRSTORE allocates a new
datazone, appends the data, and adds the record index to the
new index group.

5.4 Zone Management

Zone state machine. SMRSTORE employs a state machine
to manage the status of datazones as shown in Figure 12.
SMRSTORE maintains a pool of opened zones (55 zones
by default) for fast allocation. SMRSTORE only resets the
GARBAGE zones to FREE zones when the amount of FREE
zones are not enough. Metazone follows the similar state
machine except there is no pool of opened metazones.

Zone table. SMRSTORE maintains a zone table in the mem-
ory. Each entry of the zone table includes the zone ID, the
zone status (OPENED, CLOSED, etc.), a list of live index
groups, and a write pointer. We further introduce the usage

USENIX Association 21st USENIX Conference on File and Storage Technologies 401

FREE ACTIVATED

GARBAGE

OPENED

CLOSED

Opened in BG Allocated for writes

Filled

All data become stale

Reset

Figure 12: Zone State Transition of SMRStore (§5.4). SMR-
STORE maintains a pool of opened zones for fast allocation. When a
zone is assigned to a new chunk, it transitions to ACTIVATED status.
If a zone is closed, it will not be reopened for write before reset.

zone 1
(closed)
zone 2
(closed)

zone 3
(opened)

(a) No optimization

Chunk A
(OSS GC)

Chunk B
(OSS GC)

Chunk C
(OSS Data)

Chunk D
(OSS Meta)

zone 1
(closed)

zone 2
(closed)
zone 3
(opened)
zone 4
(opened)

(b) With SMRstore strategies

Figure 13: The effectiveness of SMRSTORE zone allocation
strategies. (§5.4). Chunk A-D come from four different OSS
streams and shaded with corresponding colors, respectively. Sub-
figure(a) represents a possible scenario under the random allocation
(no optimization) and (b) illustrates a possible layout with SMR-
STORE strategies enabled. Each data block may be composed of one
or more records.

of per-zone live index groups list when discussing SMR GC
(§5.5) and recovery (§5.6)

Zone allocation. Earlier in F2FS (see §3), we showed that
allocating chunks from different types of OSS streams to the
same datazone can result in high overhead led by frequent
F2FS GC. One can allocate a single datazone for each chunk
to reduce such GC. However, this can in return waste con-
siderable space. For example, chunks from OSS metadata
stream are usually just several megabytes large, much smaller
than the size of a datazone (256MB).

Hence, a more practical solution is to only pursue the “one
chunk per zone” for large chunks and let the small chunks
with similar lifespans to be mixed together. A challenge here
is that the size of a chunk is only determined after it is sealed.
In other words, when allocating datazones for incoming OSS
streams, SMRSTORE does not know the sizes of the chunks.
Therefore, we design the following zone allocation strategies.

• 1© Separating streams by types. Note that different OSS
types of streams can have disparate characteristics (see
Table 1). Therefore, we modify the OSS KV store to embed
the types of the OSS streams (i.e., OSS Metadata, OSS
Data or OSS GC) along with the data. SMRSTORE only
allows chunks from the same type of streams to share a
datazone.

• 2© Adapting chunk size limit for datazone. Recall that a
chunk is sealed when it reaches the size limit, the end of
PANGU file or I/O failures. Hence, we configure the size
limit of a chunk (including its checksum) to match the size
of one datazone (256MB). A chunk may still be sealed
well under 256MB (e.g., due to I/O errors). In that case,
the left space would be shared with other chunks from the
same type of streams if necessary. Note that we still use the
default size limit (64MB) for chunks from OSS metadata
stream as the corresponding PANGU files are usually small
(several to tens of MBs each).

• 3© Zone pool & round-robin allocation. SMRSTORE pre-
opens and preserves zones for different types of OSS
streams. Specifically, we prepare 40, 10 and 5 opened
zones for OSS GC, Data and Metadata stream, respectively.
The rationale is that OSS GC stream is the main contributor
of the I/O traffic. The OSS Metadata and Data streams have
high PANGU file concurrency but can be throttled by the
cache SSDs. Moreover, SMRSTORE allocates zones for
new chunks in a round-robin fashion to reduce the chances
of chunks to be mixed together.

In Figure 13, we use an example to showcase the effective-
ness of our strategies. Consider there are four OSS streams—
two OSS GC streams (green and red), one OSS Data stream
(yellow) and one OSS Metadata stream (blue). If we do not
enable any strategies, SMRSTORE would allocate datazones
one by one for the incoming chunks. As a result, we can
expect datazones to be interleaved as shown in Figure 13 (a),
similar to the F2FS scenario in §3. In this case, for example if
chunk A is deleted, all three datazones would have chunk A’s
stale data and require further SMR GC to reclaim the space.

Now, in Figure 13(b), due to Strategy 1©, chunks from
different types of streams are no longer mixed together. More-
over, since we reconfigure the size limit of chunks (Strategy
2©) and use round-robin allocation (Strategy 3©), we can see
that chunk A and B can both own a zone exclusively and
fill the entire zone. The three strategies achieve our goal by
allocating large-sized chunks with exclusive zones. Now, if
chunk A is deleted, SMRSTORE can directly reset zone 1 (i.e.,
no SMR GC needed).

5.5 Garbage Collection
SMRSTORE performs garbage collection in three steps:

Victim zone selection. The SMRSTORE first choose a victim
zone among the CLOSED ones to perform SMR GC. We use
greedy algorithm to select a zone with most garbages.

Data migration. For the selected victim zone, by scan-
ning live index group list from the zone table, SMRSTORE
can identify valid data in this zone and migrate them to an
available zone which is activated only for garbage collec-
tion. Moreover, SMRSTORE enables a throttle module that
dynamically limits the throughput of SMR GC to alleviate
interference to the foreground I/O.

402 21st USENIX Conference on File and Storage Technologies USENIX Association

Metadata update. During migration, SMRSTORE creates
index groups with new record indexes for migrated data. Af-
ter SMR GC finished, SMRSTORE replaces the old index
groups in the linked list with the new ones. Finally, SMR-
STORE updates the zone table by marking the victim zone as
GARBAGE.

5.6 Recovery
SMRSTORE relies on journals and checkpoints to restore the
in-memory data structures. In this section, we first introduce
the detailed design of journal and checkpoint. Then, we
discuss the four steps of recovery.

Checkpoint design. The checkpoint of SMRSTORE is a
full snapshot of the in-memory data structures including the
chunk metadata table (§5.3) and zone table (§5.4). SMR-
STORE periodically creates a checkpoint and persists it into
the metazones as a series of records. The zone table is usually
small and can be stored in one record. The chunk metadata
table is much larger (including all the index groups and record
indexes, see Figure 11) and requires multiple records to store.
Therefore, we also use two records to mark the start and end
of a checkpoint, called checkpoint start/end record.

Journal design. In SMRSTORE, only the create, seal, delete
operations of chunk, and the resetting of the zone need to be
recorded by journals. Note that SMRSTORE does not jour-
nal write operation (i.e., chunk append) as this can severely
impact the latency. Instead, we can restore the latest data loca-
tions by scanning the previously opened zones. SMRSTORE
journals the zone reset operation to handle the case where
the same zone may be opened, closed and reused multiple
times between two checkpoints. Note that the checkpoint of
SMRSTORE is non-blocking, hence the journal records and
checkpoint records can be interleaved in the metazones.

Recovery process. The four steps of recovery are as follows:

• Identifying the latest valid checkpoint. The first step is
to scan zonehead record of each metazone. Recall that,
when opened, each metazone is assigned with a timestamp
and stored in the zonehead record. Now, by sorting the
timestamps, we can scan the metazones from the latest
to the earliest to locate the most recent checkpoint end
record and further obtain the corresponding checkpoint
start record.

• Loading latest checkpoint. By scanning records between
the checkpoint start and end record, SMRSTORE can re-
cover zone table and chunk metadata table (including index
groups and record indexes) from the most recent check-
point.

• Replaying journals. Next, after the checkpoint start record,
SMRSTORE replays each journal record till the checkpoint
end record to update the zone table, and chunk metadata
table.

• Scanning datazones. Recall that the journals do not log
the write (i.e., chunk_append()) operations in order to

reduce impacts on the write latency. Therefore, the last step
of recovery is to check the datazones that have not been cov-
ered by the checkpoint and journals for yet-to-be-recovered
writes. SMRSTORE checks the validity (i.e., allocated for
writes before crash) of datazones by reading their zonehead
records. For each valid datazone, SMRSTORE verifies the
data record one by one with the per-record checksums. Fi-
nally, SMRSTORE updates the in-memory chunk metadata
table (including index groups and record indexes).

6 Evaluation

Software/Hardware setup. We evaluate the end-to-end
performance of three types of candidates, including the
chunkserver with CMR drives (i.e., CS-Ext4), the chunkserver
with F2FS on SMR drives (i.e., CS-F2FS), and SMRSTORE
as the storage engine for chunkserver on SMR drives (i.e.,
CS-SMRSTORE). Additionally, we setup two alternative ver-
sions of CS-SMRSTORE. The CS-SMRSTORE-20T shows
the performance with full-disk 20TB capacity and the CS-
SMRSTORE-OneZone imitates the data placement strategy of
F2FS (i.e., mixing data from different streams into one zone).
Our node configurations are listed in Table 2.

Workloads setup. We use Fio (modified to use the PANGU
SDK) to generate workloads. Our experiments evaluate the
following aspects of SMRSTORE.

• High concurrency micro benchmark. We extend the mi-
crobenchmark in §3 to further evaluate the candidates under
highly concurrent random read workloads.

• OSS simulation macro benchmark. We also repeat the
multi-stream OSS simulation in §3 to evaluate the candi-
dates with multiple write streams, random file deletion and
high disk utilization rate.

• Garbage collection performance. We evaluate the SMR
GC overhead in SMRSTORE and further examine the ef-
fectiveness of data placement strategies by comparing cor-
responding SMR GC overheads under different strategy
setups.

• Recovery. To evaluate the recovery performance, we restart
chunkserver on 20TB SMR drives with 60% capacity uti-
lization, then analyze time consumption in recovery.

• Resource consumption. We compare the resources, such
as CPU and memory usage, between CS-Ext4 and CS-
SMRSTORE (i.e., the two generations of storage stack for
standard-class OSS), under a similar setup.

• Field deployment. Both CS-Ext4 and CS-SMRSTORE are
currently deployed in standard-class OSS. We summarize,
demonstrate, and compare key performance statistics of a
CS-Ext4 cluster and a CS-SMRSTORE cluster in the field.

6.1 High Concurrency Microbenchmark
In this microbenchmark, we evaluate the candidates on one
disk (SMR or CMR) with two types of workloads: High
Concurrency Write (HC-W) and High Concurrency Rand

USENIX Association 21st USENIX Conference on File and Storage Technologies 403

Figure 14: High Concurrency Write Throughput (§6.1). This
figure presents the comparison of write throughput between different
storage engines. CS-F2FS (green) and CS-SMRSTORE-OneZone
(black) achieve rather high throughputs as they place all incoming
chunks onto the same zones, which can incur high F2FS/SMR GC
overhead later.

Figure 15: SMRSTORE Access Pattern (§6.1). The figure
presents the distribution of accessed zones under SMRSTORE dur-
ing a few seconds. Each red dot represents the corresponding zone
is accessed (zone ID on the Y axis). This shows the effectiveness of
the round-robin allocation, rendering a clear contrast to the zone
accessing in CS-F2FS (Figure 5).

Read (HC-RR). Note that in this experiment, the disk is in
the clean state and thus would not trigger F2FS or SMR GC.

Figure 14 shows the HC-W throughput of each candidate
under different I/O sizes (from 4KB to 1MB). We can see that
CS-SMRSTORE-OneZone and CS-F2FS always have much
higher throughput. As discussed in §3.2, flushing data from
different streams to enforce the “one zone at a time” policy
can significantly benefit the throughput during the clean state
(no deletion and F2FS/SMR GC).

For the rest three, their performance gradually increase
with I/O size. We notice that, for small I/O size (i.e., <32KB),
SMRSTORE shows low throughput. This is caused by the
round-robin zone allocation strategy which tends to allocate
a new zone for each new chunk to avoid mixed placement,
thereby generating random writes for the disk (see Figure 15).
As I/O size increases, the throughput of SMRSTORE grad-
ually catches up at 128KB, finally reaches 110MB/s and
exceeds CS-Ext4 by 30% at 1MB I/O size. This is acceptable
as most writes in standard-class OSS are larger than 128KB
(see Table 1).

Figure 16 shows the performance comparison of candidates

Figure 16: High Concurrency RandRead Throughput (§6.1).

Figure 17: Throughput Comparison of Multi-Stream Bench-
mark (§6.2).

with HC-RR. We can see CS-SMRSTORE manages to deliver
comparable performance to the CS-Ext4. Moreover, in both
HC-W and HC-RR experiments, we can observe that the
full-disk version (i.e., CS-SMRSTORE-20T) does not suffer
severe performance drops.

6.2 Multi-Stream Benchmark

Next, same as the multi-stream experiment in §3.2, we evalu-
ate the candidates under a more realistic setup with multiple
data streams, random deletion, and subsequent F2FS/SMR
GC. We reuse the set of parameters as Table 3. In Figure 17,
all candidates begin with a stable throughput of around 4GB/s.
After reaching 80% capacity, random deletion starts, and then
the GC kicks in. Recall our discussion in §3.2, CS-F2FS expe-
riences a considerable performance drop due to frequent F2FS
GC led by mixed data allocation. CS-Ext4 is hardly affected
by the random deletion as Ext4 does not incur GC. Finally,
CS-SMRSTORE continues to offer high throughput under
random deletion. The main reason is that CS-SMRSTORE
adopts several strategies to reduce the frequency and overhead
of SMR GC.

Now, we take a closer look to understand the reason behind
CS-SMRSTORE performance. In Figure 18, we plot the CDF
of zone utilization under SMRSTORE. We can see that most
zones are 100% used (i.e., the 100 on the X axis) and only a
few zones are occupied with small chunks, thereby indicating
less frequent SMR GC.

404 21st USENIX Conference on File and Storage Technologies USENIX Association

Figure 18: Zone utilizations (CDF) of CS-SMRSTORE (§6.2).

Figure 19: Throughput with different data placement strategies
(§6.3). No optimization: no separating, 64MB chunk size, random
allocation on 55 opened zones. Strategy 1: separating streams by
types. Strategy 2: adapting chunk size limit for datazone. Strategy 3:
zone pool & round-robin allocation.

6.3 Effectiveness of Placement Strategy
The concentrated distribution of high utilization zones is a
joint effort of different data placement strategies. Figure 19
shows the various combinations of individual strategies and
corresponding effectiveness on write throughput. Here, we
run the same multi-stream experiment with four different
combinations.

From Figure 19, when only ‘separating streams by types’
is enabled, the SMR GC overhead is quite obvious and the
performance is close to that of no optimization on alloca-
tion. Moreover, ‘adapting chunk size limit’ or ‘zone pool &
round-robin allocation’ each contributes around half of the
speedup and such phenomenons are also reflected by the zone
utilizations CDFs in Figure 20.

6.4 Recovery Performance
In this experiment, we measure the time consumption in the
recovery of a 20TB SMR drive with 60% capacity occupied.
Figure 21 shows that CS-Ext4 with a 16TB CMR drive costs
less than 20 seconds. CS-Ext4 only has two steps in recov-
ery, loading checkpoint (which takes 3.27 seconds) and data
scanning (which takes 16.3 seconds). CS-SMRSTORE com-
pletes the recovery with 94.4 seconds which takes around 19
seconds to load the checkpoint, less than 1 second to replay a
few journals, and the remaining 75 seconds are for scanning

Figure 20: Zone Space Utilizations (CDF) Comparison (§6.3).
The results show that SMRSTORE can maintain a high space effi-
ciency by enabling three end-to-end data placement strategies.

Figure 21: Recovery Performance (§6.4). The figure shows the
breakdown of recovery time. CS-SMRSTORE-INIT refers to the
initial version of SMRSTORE without fixed metazone partition.
Recovering zone table refers to the step “Identifying the latest valid
checkpoint (§5.6)”. Replaying journals is negligible and not shown.

the previously opened zones.
Note we also include a previous implementation, the CS-

SMRSTORE-INIT which takes more than 4 minutes to re-
cover. The major reason is that in this version, the on-disk
layout is dynamic, meaning the metazones and datazones
can be interleaved. As a result, SMRSTORE needs to scan
all zone headers (both metazone and datazone) for recovery.
Therefore, we switch to static zone allocation.

6.5 Resource Consumption

Memory. In a single server (60 HDDs and 2 SSD caches),
the CS-SMRSTORE occupies 49.3GB of memory, around
two times more than CS-Ext4. Memory growth is mainly
contributed by the in-memory data structures of SMRSTORE.
Specifically, the metadata of each chunk occupies around 200
bytes, and each record index in memory needs 8 bytes. The
record indexes can be further compressed and we decide not
to discuss in this paper due to space limit.

CPU. The CS-SMRSTORE uses around 19 cores which are
26.7% more than CS-EXT4. We use 8 cores for 8 partitions
of the two cache SSDs (polling with spdk). We use another
4 cores for user-space network threads. SMRSTORE uses
another 7 cores for processing requests, memory copy, check-
sum calculation, and background GC tasks of 60 SMR drives.
With increasing areal density and comparable performance,

USENIX Association 21st USENIX Conference on File and Storage Technologies 405

Figure 22: Performance comparison in OSS benchmark (§6.6).
Figure(a) compares key metrics of KV servers, including throughput
of object write, object read and OSS GC. Figure(b) compares the
corresponding read and write throughput of chunkservers.

the extra overhead on CPU and memory usage is acceptable.

Space efficiency. Apart from persisting data, SMRSTORE
further requires extra space for record headers, record
paddings, and slice footers. For large IOs (512KB-1MB)—a
common scenario in SMRSTORE (i.e., OSS GC/data stream,
see Table 1)—SMRSTORE requires another 1-2% space of
the IO size. The percentage increases for smaller writes but
they are rather uncommon for HDDs due to IO merging in
cache SSDs.

6.6 Field Deployment
In the OSS full stack benchmark, all of the key metrics
in the SMR cluster are on par with the CMR cluster. The
two clusters are both deployed with 13 KV store servers, 13
chunkservers, and 780 HDDs in total. Figure 22 shows that,
at OSS service layer, each KV server in the SMR cluster
achieves 374.2MB/s object write throughput, 227.7MB/s ob-
ject read throughput, and 394.8MB/s OSS GC throughput.
Each chunkserver in the SMR cluster provides 1898.6MB/s
write throughput and 752.8MB/s read throughput. Similarly,
in the CMR cluster, each chunkserver provides 1888.3MB/s
write throughput and 723MB/s read throughput. This sug-
gests, from an end-to-end perspective, we are able to replace
CMR drives in standard-class OSS with SMR drives with no
performance penalty thanks to SMRSTORE.

7 Limitation & Future Work

CZone. SMRSTORE follows a strictly log-structured design
and thus does not require random writes support from czones.
The use of the czones is under discussion. We could use
czones as szones by maintaining a writer pointer in memory
and a sequence number for each czone. The sequence number
is used to identify valid records when the czone is reused.

Ad hoc to Alibaba standard OSS. At the moment, SMR-
STORE is dedicated to serve standard-class OSS in Alibaba
Cloud. However, SMRSTORE can easily adopt other zoned
block devices , such as ZNS SSD. In fact, adapting SMR-
STORE to ZNS SSD devices is in progress and will serve other
services (e.g., Alibaba EBS).

Garbage collection. The expected on-disk lifespans of OSS
data, OSS metadata and OSS GC are different from one OSS

cluster to another. Certain clusters can have regular patterns
on object creations and deletions while others perform more
randomly. Currently, we are exploring more efficient SMR
GC algorithms to better serve a variety of OSS workloads
based on the accumulated statistics.

8 Related Work
Enabling HM-SMR drives. There are mainly three fashions
of solutions in enabling HM-SMR, including adding a shim
layer between the host and the ZBD subsystem [20,21], adopt-
ing local file systems to provide support [16, 17], and modify-
ing applications to efficiently utilize SMR devices [19,26,32].
SMRSTORE differs from above from two aspects. First,
SMRSTORE completely discards random write by building
everything as logs and hence avoid the potential constraints
led by using the limited conventional zones or the tax imposed
by random-to-sequential translation. Second, SMRSTORE
significantly minimizes SMR GC overhead by end-to-end
data placement strategies with the guidance of workloads.
Storage engine designs. To avoid the indirect overheads
of general-purpose file systems [17, 27], storage engines of
cloud storage systems [18] and distributed file systems [31])
tend to evolve towards to user space, special purposed [9],
and end-to-end integration [11, 32]. SMRSTORE follows and
further explores this path by building in the user space and im-
plementing the semantics of PANGU chunks, which is much
simpler than general file semantics (e.g., directory operations,
file hardlink). Further, the range of the end-to-end integra-
tion in SMRSTORE is much wider than host-device, which
includes OSS service layer, PANGU distributed file system
layer, the storage engine persistence layer, and a novel but
backward-incompatible device (i.e., HM-SMR drive). The re-
sults of SMRSTORE showcase the benefits can inspire future
storage system designs under similar circumstances.

9 Conclusion
This paper describes our efforts in understanding, designing,
evaluating, and deploying HM-SMR disks for standard-class
OSS in Alibaba. By directly bridging the semantics between
PANGU and HM-SMR zoned namespace, enforcing an all-
logs layout and adopting guided placement strategies, SMR-
STORE achieves our goal by deploying HM-SMR drives in
standard-class OSS and providing comparable performance
against CMR disks yet with much better cost efficiency.

Acknowledgments
The authors thank our shepherd Prof. Peter Desnoyers and
anonymous reviewers for their meticulous reviews and insight-
ful suggestions. We also thank the OSS and the PANGU team
for their tremendous support on the SMRSTORE project and
this paper. We sincerely thank Yikang Xu who pioneered the
SMRSTORE prototype development. This research was partly
supported by Alibaba AIR program and NSFC(62102424).

406 21st USENIX Conference on File and Storage Technologies USENIX Association

References
[1] Archival-class OSS on Alibaba Cloud. https://www.

alibabacloud.com/solutions/backup_archive.

[2] Data Lake on Alibaba Cloud. https://www.
alibabacloud.com/solutions/data-lake.

[3] Fio. https://github.com/axboe/fio.

[4] hdparm. https://www.man7.org/linux/man-
pages/man8/hdparm.8.html.

[5] Shingled Magnetic Recording. https:
//zonedstorage.io/docs/introduction/smr.

[6] INCITS T13 Technical Committee. Information technol-
ogy - Zoned Device ATA Command Set (ZAC). Draft
Standard T13/BSR INCITS 537, 2015.

[7] INCITS T10 Technical Committee. Information
technology-Zoned Block Commands (ZBC). Draft Stan-
dard T10/BSR INCITS 536, 2017.

[8] A. Aghayev and P. Desnoyers. Skylight—A window on
shingled disk operation. In Proceedings of 13th USENIX
Conference on File and Storage Technologies (FAST),
2015.

[9] A. Aghayev, S. Weil, M. Kuchnik, M. Nelson, G. R.
Ganger, and G. Amvrosiadis. File systems unfit as
distributed storage backends: lessons from 10 years
of Ceph evolution. In Proceedings of the 27th ACM
Symposium on Operating Systems Principles (SOSP),
2019.

[10] D. Beaver, S. Kumar, H. C. Li, J. Sobel, and P. Vajgel.
Finding a needle in Haystack: Facebook’s photo storage.
In Proceedings of 9th USENIX Symposium on Operating
Systems Design and Implementation (OSDI), 2010.

[11] M. Bjørling, A. Aghayev, H. Holmberg, A. Ramesh,
D. L. Moal, G. R. Ganger, and G. Amvrosiadis. ZNS:
Avoiding the Block Interface Tax for Flash-based SSDs.
In Proceedings of USENIX Annual Technical Confer-
ence (USENIX ATC), 2021.

[12] E. Brewer, L. Ying, L. Greenfield, R. Cypher, and
T. T’so. Disks for Data Centers. https://research.
google/pubs/pub44830.pdf, 2016.

[13] B. Calder, J. Wang, A. Ogus, N. Nilakantan,
A. Skjolsvold, S. McKelvie, Y. Xu, S. Srivastav, J. Wu,
H. Simitci, J. Haridas, C. Uddaraju, H. Khatri, A. Ed-
wards, V. Bedekar, S. Mainali, R. Abbasi, A. Agarwal,
M. F. u. Haq, M. I. u. Haq, D. Bhardwaj, S. Dayanand,
A. Adusumilli, M. McNett, S. Sankaran, K. Manivannan,
and L. Rigas. Windows azure storage: A highly avail-
able cloud storage service with strong consistency. In
Proceedings of the 21th ACM Symposium on Operating
Systems Principles (SOSP), 2011.

[14] T. R. Feldman and G. A. Gibson. Shingled Magnetic
Recording: Areal Density Increase Requires New Data
Management. Usenix Magazine, 2013.

[15] G. Gibson and G. Ganger. Principles of operation for
shingled disk devices. Canregie Mellon Parallel Data
Laboratory, CMU-PDL-11-107, 2011.

[16] C. Jin, W.-Y. Xi, Z.-Y. Ching, F. Huo, and C.-T. Lim.
HiSMRfs: A high performance file system for shingled
storage array. In Proceedings of 30th Symposium on
Mass Storage Systems and Technologies (MSST), 2014.

[17] C. Lee, D. Sim, J. Hwang, and S. Cho. F2FS: A new
file system for flash storage. In Proceedings of 13th
USENIX Conference on File and Storage Technologies
(FAST), 2015.

[18] Q. Luo. Implement object storage with smr based key-
value store. In Proceedings of Storage Developer Con-
ference (SDC), 2015.

[19] P. Macko, X. Ge, J. Haskins, J. Kelley, D. Slik, K. A.
Smith, and M. G. Smith. SMORE: A Cold Data Object
Store for SMR Drives (Extended Version). https://
arxiv.org/abs/1705.09701, 2017.

[20] A. Manzanares, N. Watkins, C. Guyot, D. LeMoal,
C. Maltzahn, and Z. Bandic. ZEA, a data manage-
ment approach for SMR. In Proceedings of 8th USENIX
Workshop on Hot Topics in Storage and File Systems
(HotStorage), 2016.

[21] D. L. Moal. dm-zoned: Zoned Block Device device map-
per. https://lwn.net/Articles/714387/, 2017.

[22] D. L. Moal. Linux SMR Support Status.
https://events.static.linuxfound.org/
sites/events/files/slides/lemoal-Linux-
SMR-vault-2017.pdf, 2017.

[23] S. Muralidhar, W. Lloyd, S. Roy, C. Hill, E. Lin, W. Liu,
S. Pan, S. Shankar, V. Sivakumar, L. Tang, and S. Ku-
mar. f4: Facebook’s warm BLOB storage system. In
Proceedings of 11th USENIX Symposium on Operating
Systems Design and Implementation (OSDI), 2014.

[24] G. Oh, J. Yang, and S. Ahn. Efficient Key-Value Data
Placement for ZNS SSD. Applied Sciences, 2021.

[25] Z. Pang, Q. Lu, S. Chen, R. Wang, Y. Xu, and J. Wu.
ArkDB: A Key-Value Engine for Scalable Cloud Stor-
age Services. In Proceedings of the 2021 International
Conference on Management of Data (SIGMOD), 2021.

[26] R. Pitchumani, J. Hughes, and E. L. Miller. SMRDB:
Key-Value Data Store for Shingled Magnetic Recording
Disks. In Proceedings of the 8th ACM International
Systems and Storage Conference (SYSTOR), 2015.

[27] O. Rodeh, J. Bacik, and C. Mason. Btrfs: The linux
b-tree filesystem. ACM Transactions on Storage (TOS),
2013.

USENIX Association 21st USENIX Conference on File and Storage Technologies 407

https://www.alibabacloud.com/solutions/backup_archive
https://www.alibabacloud.com/solutions/backup_archive
https://www.alibabacloud.com/solutions/data-lake
https://www.alibabacloud.com/solutions/data-lake
https://github.com/axboe/fio
https://www.man7.org/linux/man-pages/man8/hdparm.8.html
https://www.man7.org/linux/man-pages/man8/hdparm.8.html
https://zonedstorage.io/docs/introduction/smr
https://zonedstorage.io/docs/introduction/smr
https://research.google/pubs/pub44830.pdf
https://research.google/pubs/pub44830.pdf
https://arxiv.org/abs/1705.09701
https://arxiv.org/abs/1705.09701
https://lwn.net/Articles/714387/
https://events.static.linuxfound.org/sites/events/files/slides/lemoal-Linux-SMR-vault-2017.pdf
https://events.static.linuxfound.org/sites/events/files/slides/lemoal-Linux-SMR-vault-2017.pdf
https://events.static.linuxfound.org/sites/events/files/slides/lemoal-Linux-SMR-vault-2017.pdf

[28] M. Rosenblum and J. K. Ousterhout. The design and
implementation of a log-structured file system. ACM
Transactions on Computer Systems (TOCS), 1992.

[29] A. Suresh, G. A. Gibson, and G. R. Ganger. Shingled
Magnetic Recording for Big Data Applications. Techni-
cal Report CMU-PDL-11-107, 2012.

[30] Q. Wang, J. Li, P. P. C. Lee, T. Ouyang, C. Shi,
and L. Huang. Separating data via block invalidation
time inference for write amplification reduction in Log-
Structured storage. In Proceedings of 20th USENIX
Conference on File and Storage Technologies (FAST),
2022.

[31] S. A. Weil, S. A. Brandt, E. L. Miller, D. D. E. Long,
and C. Maltzahn. Ceph: A scalable, High-Performance
distributed file system. In Proceedings of 7th USENIX
Symposium on Operating Systems Design and Imple-
mentation (OSDI), 2006.

[32] T. Yao, J. Wan, P. Huang, Y. Zhang, Z. Liu, C. Xie,
and X. He. GearDB: A GC-free Key-Value Store on
HM-SMR Drives with Gear Compaction. In Proceed-
ings of 17th USENIX Conference on File and Storage
Technologies (FAST), 2019.

408 21st USENIX Conference on File and Storage Technologies USENIX Association

Multi-view Feature-based SSD Failure Prediction: What, When, and Why

Yuqi Zhang†, Wenwen Hao†, Ben Niu‡, Kangkang Liu‡, Shuyang Wang†, Na Liu†, Xing He†,
Yongwong Gwon∗, Chankyu Koh∗

†Samsung R&D Institute China Xi’an, Samsung Electronics
‡Tencent ∗Samsung Electronics

Abstract
Solid state drives (SSDs) play an important role in large-scale
data centers. SSD failures affect the stability of storage sys-
tems and cause additional maintenance overhead. To predict
and handle SSD failures in advance, this paper proposes a
multi-view and multi-task random forest (MVTRF) scheme.
MVTRF predicts SSD failures based on multi-view features
extracted from both long-term and short-term monitoring data
of SSDs. Particularly, multi-task learning is adopted to si-
multaneously predict what type of failure it is and when it
will occur through the same model. We also extract the key
decisions of MVTRF to analyze why the failure will occur.
These details of failure would be useful for verifying and
handling SSD failures. The proposed MVTRF is evaluated on
the large-scale real data from data centers. The experimental
results show that MVTRF has higher failure prediction accu-
racy and improves precision by 46.1% and recall by 57.4% on
average compared with the existing schemes. The results also
demonstrate the effectiveness of MVTRF on failure type and
time prediction and failure cause identification, which helps
to improve the efficiency of failure handling.

1 Introduction

Compared with hard disk drives (HDDs), NAND flash-based
solid state drives (SSDs) have higher performance and lower
power consumption [8, 19] and thus have become popular in
enterprise storage systems and large data centers. However, to
reduce costs, the storage density of SSDs is increasing, which
reduces the endurance and reliability of SSDs [6, 25, 48].
Large-scale data centers usually have hundreds of thousands
or even millions of SSDs. Such a large-scale deployment of
SSDs poses a challenge to data center reliability. Although
redundancy mechanisms (such as replication [38] and RAID
[32]) have been used to protect data from loss, SSD failure
still causes two major problems. First, even if the data center
adopts a redundant protection scheme, SSD failure also af-
fects the performance of the storage system and the stability

of online services. Second, SSD failure leads to additional
maintenance costs due to failure location, failure recovery,
etc. Therefore, SSD failure prediction, as a proactive fault
tolerance mechanism, has received increasing attention re-
cently. Compared with the passive redundancy mechanisms,
it can identify and proactively handle potential SSD failures
in advance, thereby improving the reliability of the storage
system and reducing the costs of failure location and recovery.
In the large-scale storage system, it is significant to monitor
the symptoms of SSD failures and predict failures in advance.

A common monitoring solution for modern storage devices
(HDDs and SSDs) is S.M.A.R.T (Self-Monitoring, Analysis,
and Reporting Technology), which can monitor and record
the internal reliability-related attributes of drives. SMART
logs are usually captured regularly, for example, there are
one or several SMART logs captured per day for each device
(in this paper, a log refers to a snapshot of SSD monitoring
attributes). Since SMART logs originate from HDDs, many
previous works [4, 9, 14, 21, 23, 24, 29, 42, 46, 49, 51] have
studied HDD failure prediction based on SMART logs, and
only some works [27, 30, 45, 50] focus on SSDs. In recent
years, to better monitor SSDs, some SSD manufacturers have
customized more attributes about SSD reliability and failure.
Based on these custom attributes, some works [3,7,16] predict
SSD failures more effectively.

For SSD failure prediction algorithms, most current
schemes are based on supervised learning. They regard fail-
ure prediction as a binary classification problem (healthy
SSD and failed SSD), and build classification models (such
as random forest and neural network) to identify failed
SSDs [3, 16, 27, 30, 45]. Some other works [7, 50] adopt
anomaly detection approaches (such as isolated forest and
autoencoder) to predict SSD failures, based on unsupervised
learning. These schemes are primarily designed to learn the
pattern of healthy SSDs. When the monitoring log of an SSD
is very different from that of most healthy SSDs, it is consid-
ered that a failure may occur.

The previous works still face the following challenges.
First, most of them [3,7,27,30,45] predict SSD failures based

USENIX Association 21st USENIX Conference on File and Storage Technologies 409

on one or several short-term monitoring logs, and pay less
attention to the long-term logs of SSDs. However, through
our analysis, some SSD failures may not be reflected in short-
term local information, but hidden in long-term information.
A few works [16,50] use sequence models such as long short-
term memory (LSTM) [17] to directly learn from long-term
data, but the sequence lengths of SSD monitoring data are
too long and the lengths vary greatly, which affect the perfor-
mance of sequence models. For long-term data, their trends
and distributions are actually important for judging SSD fail-
ures (see Section 2.2). Second, although the failure prediction
has screened the possible failed SSDs, it lacks instructive
suggestions for verifying and handling failures. The operator
only knows that a failure may occur, but not know what it
is, when and why it will occur. Predicting or analyzing more
information such as failure type, lifespan (remaining working
time before failure) and failure cause is helpful for operators
to verify whether it is an internal SSD failure, and judge what
measures to take and whether it is urgent. For example, opera-
tors would deal with different types of failures with different
urgency and measures (see Section 2.1).

In order to solve these challenges, we propose a multi-
view and multi-task random forest (MVTRF) scheme. First,
in addition to the short-term raw data, we generate histogram
statistics and sequence-related features to reflect the long-term
pattern of monitoring data. MVTRF adopts multiple input
and groups decision trees to learn these multi-view features
in parallel. It can predict SSD failures with both short-term
and long-term information. Second, MVTRF employs multi-
task learning to jointly learn the failure pattern through the
associated failure type classification and remaining lifespan
prediction. With these two tasks, the operator knows what type
of failure it is and when it will occur, and can take correspond-
ing actions. Finally, according to the decision process, we
extract key decisions from MVTRF to reveal why the failure
occurs and help operators verify and deal with SSD failures
quickly. Experiments on real data from data centers show that
MVTRF is effective and outperforms existing schemes. Our
contributions are summarized as follows:

• We design histogram features and sequence-related fea-
tures to characterize the distribution and trend of long-
term monitoring data. MVTRF is proposed to jointly
learn failure patterns from these features and short-term
raw data, thereby improving the prediction accuracy.

• We propose SSD failure type prediction and combine
remaining lifespan prediction to suggest proactive mea-
sures, in addition to failure prediction. Multi-task learn-
ing is adopted for these three tasks, since joint learning
of related tasks can improve the model performance for
each task.

• We propose a similar decision extraction (SDE) approach
to extract the key decisions of MVTRF, so as to identify

the symptoms and causes of SSD failures, and provide
more information for verifying and handling failures.

2 Data Analysis and Motivation

2.1 Dataset
The large-scale SSD monitoring datasets of Samsung PM1733
and PM9A3 SSDs were collected from the data center of
Tencent cloud. The datasets include more than 70 million
monitoring logs within nine months from more than 300,000
SSDs with different lifespans in Tencent’s data center. The
log information consists of SSD serial number, server serial
number, timestamp and SSD internal attribute values. Besides
SMART attributes, Samsung has customized more internal
attributes to enhance SSDs’ self-monitoring capability, which
makes it possible to predict and analyze more failure infor-
mation. There are a total of 40 internal attributes for PM1733
and 85 for PM9A3. All these attributes, including standard
SMART attributes and custom attributes, are called Telemetry
attributes in this paper, and some of them are shown below.

• media_errors: the number of unrecovered data integrity
errors detected by the controller

• controller_busy_time: the amount of time the controller
spends on I/O commands

• temperature: the current temperature of internal compos-
ite

• read_recovery_attempts: total count of uncorrectable
NAND reads that require retrying

• wear_leveling_max: maximum erase cycle of internal
blocks

• nand_bytes_written: the number of NAND sectors writ-
ten (1 count = 32MB)

The failure lists of both PM1733 and PM9A3 were also
provided by Tencent. The lists contain the information of
SSD failures collected by Tencent operators, including the
serial number of failed SSDs, failure’s report date, failure
description, and handling time and measures. There are totally
409 failure records in the lists. After checking by operators,
most of them were SSD failures, and a few of them were
failures of other devices such as the server backplane. Since
manually checking and verifying each failure is a burden,
operators need additional failure information (such as failure
causes) to verify failures more efficiently.

By analyzing the failure description and handling measures
in Tencent’s failure lists, we found that failures can be divided
into eight types, and different measures were taken at different
times to deal with different types of failures. These failure
types are called Check Failed, Cancelling I/O, Media Error,
SSD Drop, Fail Mode, PLP, Read Only, and Reliability Degra-
dation, and the relevant descriptions are shown in Table 1.
Based on the measures and time to handle different failures,
we also give a corresponding reference in terms of urgency.

410 21st USENIX Conference on File and Storage Technologies USENIX Association

Table 1: Eight SSD failure types.

Failure type Description Urgency
Check Failed Health or performance check failed High

Cancelling I/O NVMe cancelling I/O Medium

PLP Power loss protection test failed Medium

SSD Drop SSD cannot be detected by host Medium

Fail Mode Device fail mode Medium

Media Error Some data cannot be read correctly Medium

Read Only Unable to write data to SSD Medium

Reliability Degradation NVMe reliability degradation Low

For example, the SSDs with Check Failed were processed in
an average of four days, and almost all of them were directly
replaced, so its urgency is high. In contrast, the SSDs with
Reliability Degradation were processed in an average of 19
days, and a small number of them were replaced. Reliability
Degradation only means that there may be a problem with
the SSD, but no real failure has occurred, while Check Failed
generally means that the SSD has an unspecified serious fail-
ure with the impact on the performance of storage system.
Some definite failure types, such as Media Error and Read
Only, have definite effect and may be mitigated by redundancy
mechanisms, and the processing urgency is medium.

Finding 1: The failure needs to be checked manually
to confirm whether it is an internal SSD failure, and the
urgency and measures to deal with the failure may vary
depending on the confirmed SSD failure phenomenon
and type. Detailed failure information is significant for
failure handling.

2.2 Failure Analysis
To gain insight into SSD failures for failure prediction, we
analyzed the failed SSDs in Tencent datasets based on Teleme-
try attributes. First, the distribution of Telemetry attributes of
failed SSDs and healthy SSDs were analyzed to mine their dif-
ferences. We evenly divided the value range of each attribute
from minimum to maximum into multiple buckets, and used
histograms to compare the data distribution of failed SSDs
and healthy SSDs in each bucket.

Figure 1 and Figure 2 compare the data distribution of
failed SSDs and healthy SSDs with nand_bytes_written and
temperature attributes, respectively. The horizontal coordi-
nate is the bucket index, and the vertical coordinate is the
proportion of data that falls in the bucket. Figure 1 shows
that most nand_bytes_written values of the failed SSDs and
healthy SSDs fall in the buckets 1–7. However, the values of
failed SSDs have a larger proportion than healthy SSDs in
the later buckets. Figure 2 shows that the data distribution of
failed SSDs and healthy SSDs differs greatly in the buckets
20–23 of temperature attribute, but the distribution before
bucket 17 is more similar. Overall, the Telemetry values of

Figure 1: Distribution of nand_bytes_written of failed SSDs
and healthy SSDs.

Figure 2: Distribution of temperature of failed SSDs and
healthy SSDs.

Figure 3: Bucket proportion of long-term data on buckets 1–7
of nand_bytes_written for failed SSDs and healthy SSDs.

Figure 4: Bucket proportion of long-term data on buckets 1–
16 of temperature for failed SSDs and healthy SSDs.

failed SSDs and healthy SSDs are somewhat different, but the
distributions in some ranges are similar.

To further distinguish the similar distributions of attributes
for failed SSDs and healthy SSDs, we explored the distri-
bution differences of statistics of long-term Telemetry data
(each SSD has multiple Telemetry logs over time). Multiple
values of each attribute of each SSD over a long time fall
into different buckets, and we calculated the proportion of
the number of these values in each bucket to the number of
values in all buckets, which is called the bucket proportion.
Then, we used boxplots (the line in the middle of the box is
the median, the lower edge of the box is first quartile, and the
upper edge is third quartile) to compare the distribution of
bucket proportions for failed SSDs and healthy SSDs.

For the nand_bytes_written attribute, Figure 3 shows the
bucket proportion of long-term data for buckets 1–7 whose

USENIX Association 21st USENIX Conference on File and Storage Technologies 411

distributions are similar in Figure 1. The horizontal coordi-
nate is still the bucket index, and the vertical coordinate is
the bucket proportion of long-term data. It shows that on
these buckets with similar distributions of values, the dis-
tribution of bucket proportions for long-term data of failed
SSDs and healthy SSDs was different. On buckets 3–7 with
small nand_bytes_written, the bucket proportions for long-
term data of healthy SSDs were significantly larger than those
of failed SSDs. It shows that healthy SSDs suffered from
fewer writes over the long term, and thus they were less prone
to failure. For the temperature attribute, Figure 4 shows the
bucket proportion of long-term data before bucket 17 whose
distributions were relatively similar in Figure 2. On buck-
ets 1–13 with low temperature, the bucket proportions for
long-term data of healthy SSDs were obviously larger and
this indicates that low temperature is good for SSD health. In
conclusion, based on the statistics of long-term SSD data, the
difference between failed SSDs and healthy SSDs tended to
be amplified.

Finding 2: There were some differences in the distri-
bution of Telemetry attributes between failed SSDs and
healthy SSDs, and the difference was more significant
based on the statistics of long-term Telemetry data of
each SSD (i.e., bucket proportion).

The Telemetry attributes of each SSD varied over the long
term. Next, we analyzed the long-term changing trends of
Telemetry attributes to explore the differences between failed
SSDs and healthy SSDs. Since the workload was usually simi-
lar for most SSDs on the same server, we compared the chang-
ing trends of attributes of the failed SSD with other healthy
SSDs on the same server before the failure occurred. Figure 5
shows the changing trend of main abnormal attributes of failed
SSDs with different failure types. The horizontal coordinate
represents the collection time, and the vertical coordinate rep-
resents the attribute value. Figure 5 shows that the attribute
trends of healthy SSDs on the same server were similar, while
the trend of failed SSD was different over the long term. More-
over, the curve of a failed SSD could involve multiple stages
such as slow change, rapid change, and stability.

For the Media Error failure type, Figure 5(a) shows the
changing trend of the media_errors attribute of two failed
SSDs and the healthy SSDs on the same server. Although
there are differences in the value range of two failed SSDs,
they both showed a rapid growth trend in about 20 days before
the failure occurred. Rapid growth of media_errors usually
indicates an unrecoverable component problem inside the
SSD and is one of the symptoms of SSD failure. Figure 5(b)
shows the changing trend of the controller_busy_time at-
tribute for the Read Only failure type. Compared with the
healthy SSDs, both failed SSDs show smaller growth rate of
the controller_busy_time attribute, and this trend occurred one
to two months before the failure. This trend indicates that the

(a) Media Error failures.

(b) Read Only failures.

(c) Check Failed failures.

Figure 5: Attribute trends before the failures. For each failure
type, the attribute trends of two failed SSDs and their respec-
tive server’s healthy SSDs are shown. The gray and orange
vertical dashed lines represent the date of symptom onset and
the date of failure report respectively.

SSD successfully processed fewer I/Os and experienced per-
formance anomalies, and finally the SSD went into read-only
mode. Figure 5(c) shows that the SSDs with Check Failed
went through a rapid rise for the read_recovery_attempts at-
tribute in about two months before the failure occurred. Too
many read retries generally indicate there exists a problem
inside the SSD. In general, the same failure type may have
similar changing trends of the same Telemetry attribute, but
different failure types usually showed different symptoms
which may have appeared at different times.

Finding 3: Due to similar workload and environment,
SSDs on the same server usually have similar attribute
trends, but failed SSDs may have different trends. The
attribute value may change over a long time before SSD
fails, and the change may go through multiple stages.

Finding 4: The same types of failures may have similar
symptoms in the long-term trends of attributes, and the
symptoms may appear at similar times before failures.
Different failure types usually exhibit different failure
symptoms in attribute trends. This makes it possible to
predict the failure type and remaining lifespan of SSDs.

412 21st USENIX Conference on File and Storage Technologies USENIX Association

3 Design and Implementation

3.1 Overview

The overall architecture of our multi-view and multi-task ran-
dom forest (MVTRF) scheme is shown in Figure 6. Based
on the analysis in Section 2, our MVTRF design mainly fol-
lows three ideas: 1) the distribution and trend related features
of long-term data are designed to capture long-term failure
patterns; 2) features from different views are combined with
group learning and joint decision to predict SSD failures ac-
curately; and 3) detailed failure information is predicted and
extracted to improve the efficiency of failure handling.

Specifically, Figure 6 shows that the MVTRF scheme is
divided into two parts: offline training and online prediction.
Offline training mainly involves two steps. The first is feature
extraction. We perform preprocessing and data cleaning on
the collected large-scale Telemetry data, and extract raw fea-
tures, histogram features and sequence-related features. Raw
features focus on the values of short-term SSD data, while
histogram features and sequence-related features focus on the
distribution and trend of long-term SSD data, and they are in-
troduced in detail in Section 3.2. The second step is MVTRF
training. The extracted features are trained in groups with
MVTRF to obtain information from different views. To pre-
dict detailed failure information, we also introduce multi-task
learning to simultaneously perform multiple prediction tasks
through a single model, including the prediction of health or
failure, failure type, and remaining lifespan.

Online prediction involves the following four steps. The
first is feature extraction. The three features are extracted
from the online data in the same way as offline training. The
second is MVTRF prediction. Based on the extracted fea-
tures, the trained MVTRF model combines decisions from
different views to predict whether the SSD will fail, as well as
the specific failure type and remaining lifespan. The third is
failure cause identification. When an SSD failure is predicted,
the key decisions in the judgment process of MVTRF model
are extracted to analyze the possible causes of the failure.
Through multi-task prediction and failure-cause identification,
MVTRF not only identifies the failed SSD, but also answers
what the failure is, when and why it will occur. Based on
the information above, the fourth step is to verify the failure
and take corresponding measures. Furthermore, we regularly
train the model offline (e.g., training a new model monthly
or quarterly) and update it online to ensure that the model
can adapt to data changes. Next, we will introduce multi-view
feature extraction, MVTRF, failure-cause identification and
failure handling in detail.

3.2 Multi-view Feature Extraction

According to our observations of the symptoms of SSD fail-
ures in Section 2.2, we found that SSD failures were not only

Figure 6: Overall architecture.

reflected in the abnormal value of short-term data, but also
hidden in the distribution and trend of long-term data. It is an
option to directly feed long-term data into sequence models
such as LSTM. However, due to different usage periods and
irregular collection, the number of Telemetry logs of differ-
ent SSDs varies greatly (from a few to several thousands in
our datasets). It is difficult for sequence models to process se-
quence data with such different lengths [20]. Moreover, overly
lengthy sequences also affect the performance of sequence
models (for example, LSTM has the vanishing gradient prob-
lem in the case of long sequences [47]), and lead to excessive
computational complexity and overhead.

To avoid using long-term data directly, we extract features
from long-term data to represent its distribution and trend. The
analysis in Section 2.2 shows that the bucket statistics of long-
term data help to distinguish between failed SSDs and healthy
SSDs, therefore we first introduce histogram features based
on bucket statistics. Then, from Section 2.2, we observed that
the fluctuation and trend of long-term data also implies the
failure symptoms, and thus we introduce sequence-related
features that can characterize the degree of sequence fluctu-
ation and change. Histogram features and sequence-related
features extract key information from long-term data and dis-
card redundant information. These features and short-term
raw data constitute multi-view information for SSD failure
prediction. Specifically, when the T -th Telemetry data of an
SSD is collected, we extract raw features, histogram features
and sequence-related features as follows.

3.2.1 Raw Features

After preprocessing and data cleaning, the data of a Telemetry
log are the raw features. We discard attributes with exactly
the same value in offline training, and do the same in online
prediction. Assuming that there are N attributes remaining
after data cleaning, the raw features of the T -th Telemetry
data of SSD are defined as DT = {a1T ,a2T , ...,anT , ...,aNT},
where a1T ,a2T , ...,anT , ...,aNT are the values of N attributes.
We mainly use raw features to capture short-term abnormal
value of attributes, so they come from a single Telemetry log
by default.

USENIX Association 21st USENIX Conference on File and Storage Technologies 413

Figure 7: Overall process of generating histogram features.

3.2.2 Histogram Features

Histogram features are proposed to represent the distribu-
tion of Telemetry attributes over the long term. They are
obtained by bucket statistics on the long-term raw features
DT−L–DT of the SSD. L defaults to 256 and the time span
of 256 logs is generally more than three months, which can
cover the time span of failure symptoms analyzed in Sec-
tion 2.2. The overall process of generating histogram fea-
tures is shown in Figure 7. First, the minimum and maxi-
mum values of each attribute of all data are calculated dur-
ing offline training, and the min and max of the n-th at-
tribute are defined as minn, maxn. Then, the min to max
range of each attribute is divided into M buckets (100 by
default), and the M ranges of the n-th attribute are defined
as {(−∞,minn], (minn,minn + Sn],...,(minn + (M − 3)×Sn,
minn + (M − 2)×Sn), [maxn,+∞)}, where Sn = (maxn −
minn)/(M − 2). Since the min and max of many attributes
have special meaning, the min and max buckets are in-
dependent. Afterwards, we divide the features of each at-
tribute of DT−L–DT into each bucket and count them. The
statistics of the n-th attribute on M buckets is defined as
{Cn1,Cn2, ...,Cnm, ...,CnM}, where Cnm is the count of this at-
tribute falling in the range of bucket m and ∑

M
m=1 Cnm = L. In

particular, when the number of SSD logs is less than L, all
raw features (D1–DT) of the SSD are counted in buckets. In
order to avoid the influence of this special case, we divide the
bucket counts by the number of logs to get the proportions,
and the formula for normalizing Cnm to the proportion Pnm is
as follows.

Pnm =

{
Cnm

T , T < L
Cnm

L , T ≥ L
(1)

Then the normalized M-dimensional feature
{Pn1,Pn2, ...,Pnm, ...,PnM} of the n-th attribute is ob-
tained, and ∑

M
m=1 Pnm = 1. Through normalization, we solve

the problem of large differences in the number of SSD logs.
Next, we concatenate the M-dimensional features of all N

attributes to get the histogram features whose dimension is
N ×M. Since some buckets are less meaningful for failure
prediction (e.g., the bucket for wear_leveling_max = 0), we
adopt recursive feature elimination with cross-validation
(RFECV) [28] to remove some buckets. During offline
training, the RFECV algorithm forms multiple bucket
subsets by recursively eliminating the least important
buckets, and then selects the bucket subset with highest
discrimination between failed SSDs and healthy SSDs
through cross-validation. During online prediction, we only
need to calculate the values of these selected buckets as the
final histogram features. This not only reduces the noise
from buckets with low discrimination, but also decreases the
feature dimension and computational complexity.

3.2.3 Sequence-related Features

Sequence-related features are proposed to represent the fluc-
tuation and trend of long-term raw features DT−L–DT of SSD.
As stated in Finding 3 (see Section 2.2), the attribute trends
of failed SSDs may change over a long time, and there may
be multiple change stages. We introduce the coefficient of
variation [2] to characterize the fluctuation of the attribute,
and introduce kurtosis [10] and slope to characterize the trend
of the attribute. To capture the multiple changing stages that
may exist in long-term data, we also divide DT−L–DT into G
segments equally in the time dimension (G is 4 by default),
and calculate the coefficient of variation, kurtosis and slope
separately for each segment. Assuming that the g-th segment
starts at ts and ends at te (T −L ≤ ts < te ≤ T) and the raw fea-
tures are Dts –Dte , the sequence-related features are calculated
as follows.

Coefficient of variation. The coefficient of variation can
measure the dispersion degree of the attribute over a long
period of time. Relative to variance or standard deviation, the
coefficient of variation can eliminate the effect of different
scales for different attributes and different SSDs. We calculate
the coefficient of variation for each segment window of each

414 21st USENIX Conference on File and Storage Technologies USENIX Association

Figure 8: The structure of MVTRF.

attribute of the long-term raw features DT−L–DT respectively,
and the calculation formula of the coefficient of variation
CVARng for the g-th segment of the n-th attribute is as follows:

CVARng =

√
G
L ∑

te
t=ts(ant −µng)2

µng
(2)

where µng =
G
L ∑

te
t=ts ant .

Kurtosis. Kurtosis reflects the steepness of an attribute’s
distribution over the long term. The calculation formula of
the kurtosis KURTng for the g-th segment of the n-th attribute
is shown below:

KURTng =
G
L ∑

te
t=ts(ant −µng)

4

(G
L ∑

te
t=ts(ant −µng)2)2

−3 (3)

Slope. Slope can reflect the changing trend of an attribute
over time. The slope SLOPEng for the g-th segment of the
n-th attribute is calculated as follows:

SLOPEng =
ante −ants

te − ts
(4)

In addition, when the number of raw features of an SSD is
less than L, the above features are calculated based on all the
raw features of the SSD (i.e., D1–DT , and L = T in the above
formula), thereby avoiding the impact of various sequence
lengths.

As stated in Finding 3, the trends of some attributes of failed
SSDs may be quite different from those of other healthy SSDs
on the same server. Therefore, for the above CVAR, KURT ,
and SLOPE, we calculate the difference between their values
of an SSD and the average values of the same feature of other
SSDs on the same server, defined as CVAR_diff , KURT_diff ,
SLOPE_diff . SSDs in the same server usually have similar
workloads, so differences of attribute fluctuations and trends
between these SSDs can provide more information for failure
prediction. Next, we concatenate the CVAR, KURT , SLOPE

and CVAR_diff , KURT_diff , SLOPE_diff of G windows of
all N attributes to obtain sequence-related features of the SSD,
with a dimension of N×G×6. Finally, RFECV is also used to
select more effective features from these features, similar to
the approach in Section 3.2.2.

3.3 MVTRF
To learn the pattern of the extracted features, we chose ran-
dom forests [5] as our base model for three reasons. First,
existing studies have demonstrated good performance of ran-
dom forests on SSD failure prediction [3, 27, 30, 45]. Second,
a random forest is composed of multiple decision trees, and
each decision tree divides the samples into different classes
through a series of judgments on features. Its interpretability
is good, which is helpful in further identifying failure causes
through the judgment process (see Section 3.4). Third, the
computational complexity of random forests is lower com-
pared with neural network-related models, which is beneficial
in reducing overhead during offline training and online pre-
diction.

Section 3.2 introduced raw features, histogram features and
sequence-related features. Each of them actually characterizes
the state of SSDs from a different view, and we concatenate
these three features together to form combined features with
a global view. It is an option to adopt combined features as
the input of all decision trees of random forest. However, it
would be more reliable to predict SSD failures from these
different views independently and then make decisions to-
gether. Therefore, we designed MVTRF with different sets of
decision trees to learn different types of features in parallel.
As shown in Figure 8, all decision trees of a random forest
are equally divided into four sets, which learn raw features,
histogram features, sequence-related features and combined
features respectively. Then, all decision trees of the four sets
vote to get the final prediction result. The class with the most
votes is the predicted class, and the vote share is the con-

USENIX Association 21st USENIX Conference on File and Storage Technologies 415

fidence probability. In this way, we combine features from
different views to obtain the final judgment.

As stated in Finding 1 (see Section 2.1), more failure infor-
mation can help operators take actions, and thus we recom-
mend predicting the failure type and remaining lifespan when
predicting the SSD failure. We adopt multi-task learning [1]
to allow the single model to learn these three prediction tasks
simultaneously. Multi-task learning and prediction with a sin-
gle model has the following two advantages over using three
independent models to learn and predict three tasks. First, our
three tasks are related to each other. For example, Finding
4 in Section 2.2 shows the correlation between failure type
and the time window of failure symptom. Joint learning of
related tasks tends to improve the prediction accuracy of the
model for each task. Second, learning and predicting three
tasks simultaneously via a single model can reduce the time
and overhead of training and prediction.

The specific definitions of the three tasks are as follows.
1) Failure prediction. We define it as a binary classification
task. The data of healthy SSDs and failed SSDs are labeled
0 and 1 respectively. 2) Failure type prediction. We define
it as a multi-classification task. The data of healthy SSDs
and failed SSDs are labeled 0 and 1–O respectively. Our
datasets have eight failure types, so O = 8. 3) Remaining
lifespan prediction. Regression is more suitable for this task,
but in order to maintain unity with the above two tasks, we
also define it as a multi-classification task. The data more
than one week from the failure are labeled 0, the data from
one day to one week from the failure are labeled 1, the data
within one day from the failure are labeled 2, and the data
around the time of failure are labeled 3. Through multi-task
learning, the prediction accuracy of each task is improved and
more information is available for recommending proactive
measures.

3.4 Cause Identification and Failure Handling

In a production environment, some SSD anomalies may actu-
ally be caused by failures of other devices, such as the server
backplane. When a failure is predicted, operators need to
understand the symptoms and causes of the failure to con-
firm exactly what device is failing. In fact, one of the reasons
to use the random forest algorithm lies in its interpretabil-
ity. Random forests are based on decision trees which are
essentially a series of threshold decisions. It is in line with
human thinking, that is, the final result is obtained through
the combination of multiple judgments. By analyzing the de-
cision process, we can reveal why there is a failure, thereby
identifying the symptoms and causes of failure. However, a
random forest is an ensemble of multiple decision trees, and it
is difficult to analyze so many decision processes. Therefore,
we propose similar decision extraction (SDE) to obtain key
decisions from multiple decision trees in MVTRF to reflect
the overall decision process and find the failure causes.

Figure 9 shows an example of how SDE works and there
are three steps involved. First, each decision is chosen by the
decision tree due to its distinguishing ability, and we extract
similar decisions that appear more frequently in multiple de-
cision trees as key decisions. Two decisions are considered
to be similar when they meet the following conditions: 1) the
features and decision logic (i.e., ≤ or >) for the two decisions
are the same; and 2) the decision thresholds of both decisions
are similar, and the difference between the two thresholds
is within ∝ (10% by default). We look for similar decisions
in other decision trees for each decision, and the number of
similar decisions is used as the weight of this decision.

After calculating the weights of all decisions, the second
step is to remove redundant similar decisions. Drawing on
the idea of Non-Maximum Suppression [31], SDE retains
decisions with higher weights as key decisions and discards
similar decisions with lower weights. The main process is
as follows. 1) Sort the weights of all decisions; 2) Select
the decision with the highest weight from the unprocessed
decisions; 3) Remove other decisions similar to this decision;
and 4) Repeat operations 2 and 3 above until the weight of the
selected decision is less than half of the global highest weight.
In this way, redundant similar decisions are represented by
the key decisions with higher weights. Finally, the weights of
key decisions with the same features and decision logic can
be integrated, and the most strict threshold (i.e., the maximum
value for > and the minimum value for ≤) is retained to show
the outlier.

Figure 9: SDE. ①: Statistics of similar decisions within 10%
threshold difference; ②: Non-maximum suppression on sim-
ilar decisions; ③: Integrating key decisions with the same
features and decision logic.

The key decisions extracted by SDE can reveal the failure
cause and thus help to confirm whether it is an internal failure
of the SSD. The key decisions of many failures involve SSD
internal errors (e.g., excessive media errors, bad blocks or
program failures), indicating that SSDs are failing. When
key decisions involve the communication or environment,
such as PCI errors or temperature, operators also need to
check external devices (such as backplane) or the environment
in addition to the SSD. The failure causes revealed by key
decisions can significantly improve the efficiency of operators
in verifying failures.

416 21st USENIX Conference on File and Storage Technologies USENIX Association

When an SSD failure is confirmed, the measures taken are
based on the predicted failure type and remaining lifespan.
As described in Section 2.1, different failure types may have
different processing urgency. For SSDs with a high-urgency
failure type, operators can replace them directly. The failures
with low or medium urgency and long remaining lifespan
can be further analyzed by operators, for example, by regular
full-disk scans using scrub technology [27]. Depending on
the urgency and remaining lifespan, the scan interval can also
be adjusted accordingly. In this way, the impact on healthy
SSDs can be significantly reduced while real failures are dealt
with in time.

4 Evaluation

We evaluated our MVTRF scheme on real datasets from data
centers. The following gives dataset setup and the evaluation
metrics.

Dataset setup: For failure prediction, MVTRF was com-
pared with existing schemes on three datasets. Besides the
PM1733 and PM9A3 Tencent Telemetry datasets introduced
in Section 2.1, the Alibaba public SMART dataset [45] was
also used to evaluate the generalizability of MVTRF. This
public dataset has multiple SSD models, but the number of
failed SSDs for some models is inconsistent with the descrip-
tion of their paper, such as the MA1 and MC1 models. Except
these models, we selected the MB1 model with the most failed
SSDs for the experiment, as more samples can reduce the test
error. There were 42,594 healthy SSDs and 1,807 failed SSDs
with two-year SMART data of 16 standard attributes for the
MB1 model.

We evaluated the performance of schemes in real scenar-
ios, i.e., the history data were used to train models and new
data online were used to predict SSD failures. Similar to the
previous work [45], each dataset was divided into a training
set, a validation set and a test set in chronological order. The
training set was used to train the model, the validation set
was used to tune model’s hyper-parameters by evaluating the
model during training, and the test set was used for the final
evaluation of the model. For each dataset, we conducted two
or three independent experiments on different data partitions,
as detailed in Table 2. The average results of the independent
experiments were deemed as the final results.

To further evaluate the generalizability of MVTRF for fail-
ure prediction on a new batch of SSDs, we performed a five-
fold cross-validation on SSDs of PM1733 Tencent dataset.
The further discussion and analysis in Section 4.2 to Sec-
tion 4.4 were also performed on the PM1733 dataset.

Metrics: We used precision, recall, F0.5-Score and
ROC_AUC to evaluate the prediction accuracy.

Precision: The proportion of correctly predicted failed
SSDs (true alarms) to all predicted failed SSDs (both true
alarms and false alarms).

Table 2: Data partitions for three datasets.

Dataset Experiment
round

Train set
(month)

Val set
(month)

Test set
(month)

Samsung PM1733 (Tencent)
1 1–7th 8th 9th

2 1–6th 7th 8th

Samsung PM9A3 (Tencent)
1 1–7th 8th 9th

2 1–6th 7th 8th

MB1 (Alibaba) [45]
(detailed model unkown)

1 1–22th 23th 24th

2 1–21th 22th 23th

3 1–20th 21th 22th

Recall: The proportion of correctly predicted failed SSDs
to all actual failed SSDs, also called the true positive rate
(TPR).

F0.5-Score: (1+0.52)×Precision×Recall
0.52×Precision+Recall . It is the harmonic av-

erage of precision and recall, where precision is weighted
higher. To avoid more false alarms for SSD failure prediction
in practice, operators pay more attention to precision [45], and
thus we use F0.5-Score to more comprehensively evaluate the
effectiveness of schemes in a production environment.

ROC_AUC: For the above three indicators, the discrimina-
tion threshold of binary classification was fixed. In practice,
different discrimination thresholds may be used. For exam-
ple, to predict more failed SSDs, the discrimination threshold
can be set lower, although there may be more false alarms
at the same time. Therefore, we introduce the area under the
curve of receiver operating characteristic (ROC) [12] to re-
flect the diagnostic ability of the binary classification model
at different discrimination thresholds. The ROC curve is cre-
ated by plotting the TPR versus the false positive rate (FPR,
the proportion of false alarms to all healthy SSDs) at vari-
ous thresholds. The area under the ROC curve (ROC_AUC)
is a single score that can reflect the ability of the model to
distinguish between failed SSDs and healthy SSDs across
discrimination thresholds [7].

4.1 Comparison with Existing Schemes

In this section, we compare the proposed MVTRF with Ran-
dom Forest, Neural Network, Autoencoder, and Ensemble
LSTM on failure prediction. The descriptions of these ex-
isting methods are as follows. 1) Random Forest (RF): The
raw features of a single monitoring log are used as the input
of the random forest to predict SSD failures [3], which is
the same as the single-task RF with raw features discussed
in Section 4.3. 2) Neural Network (NN): SSD failures are
predicted based on raw features using a neural network [3]. 3)
Autoencoder (AE): The raw features of healthy SSDs are used
as the input and they are reconstructed through an encoder
and decoder. The reconstruction loss (i.e., the Euclidean dis-
tance between the input and reconstructed output) is used to
predict SSD failures [7]. 4) Ensemble LSTM (LSTM): LSTM
is used to capture failure symptoms from sequence data (the

USENIX Association 21st USENIX Conference on File and Storage Technologies 417

Table 3: Comparison of MVTRF with existing methods for failure prediction on three datasets.

Methods
PM1733 Tencent PM9A3 Tencent MB1 Alibaba Average

P R F AUC P R F AUC P R F AUC P R F AUC

RF [3] 0.58 0.31 0.48 0.69 0.75 0.33 0.60 0.75 0.56 0.37 0.51 0.87 0.63 0.34 0.53 0.77

NN [3] 0.63 0.14 0.36 0.58 0.85 0.31 0.58 0.61 0.72 0.46 0.64 0.89 0.73 0.30 0.53 0.69

AE [7] 0.54 0.14 0.34 0.77 0.54 0.33 0.40 0.78 0.36 0.46 0.31 0.88 0.48 0.31 0.35 0.81

LSTM [16] 0.36 0.40 0.36 0.69 0.52 0.25 0.28 0.62 0.63 0.61 0.62 0.87 0.50 0.42 0.42 0.73

MVTRF(Ours) 0.90 0.40 0.72 0.81 0.70 0.42 0.61 0.83 0.89 0.76 0.86 0.86 0.83 0.53 0.73 0.83

(P: precision; R: recall; F: F0.5-Score; AUC: ROC_AUC)

sequence length is also set to 256 for comparison), and multi-
ple LSTMs are integrated to jointly predict SSD failures [16].
We re-implemented these algorithms, since the source code
was not available.

Table 3 shows the results of these methods on the three
datasets and the average results. RF, NN and AE are based
on the raw features of a single monitoring log and cannot
find failure patterns in long-term data, so they produce lower
recall. AE predicts SSD failures only by learning the pattern
of healthy SSDs and its average precision (0.48) is the lowest.
However, its average ROC_AUC reaches 0.81, indicating that
AE can better distinguish between failed SSDs and healthy
SSDs at lower discrimination thresholds. LSTM achieves the
average recall of 0.42 and outperforms the previous methods.
This is because LSTM directly takes long-term sequence data
as input and can capture more long-term failure symptoms.
However, its precision and ROC_AUC is low, since the ex-
cessively long sequence length and the difference in lengths
bring noise to the LSTM model.

For the average results of three datasets, our MVTRF im-
proves precision by 46.1%, recall by 57.4%, F0.5-Score by
64.5%, and ROC_AUC by 11.1% on average compared with
the four existing methods. We extract histogram features and
sequence-related features from long-term sequence data to
reflect the distribution and trend, thereby reducing noise and
redundant information. MVTRF learns these features and raw
features separately and predicts SSD failures by combining
different views, which is more accurate and comprehensive.
In addition, MVTRF performs better on the MB1 Alibaba
dataset with a longer time span and more failed SSDs, which
is conducive to the learning of long-term failure patterns. Al-
though the three datasets have different SSD models (PM1733,
PM9A3, and MB1), monitoring attributes (40 Telemetry at-
tributes, 85 Telemetry attributes, and 16 SMART attributes),
and time spans (9 months or two years), our MVTRF shows
better performance on all three datasets, which demonstrates
its robustness and generalizability.

Furthermore, a five-fold cross-validation on the PM1733
Tencent dataset was performed to further evaluate the ef-
fectiveness and generalizability of MVTRF in terms of fail-
ure prediction on a new batch of SSDs. Similar to previous
work [3], the dataset was divided into five parts according
to the serial numbers of the SSDs, and there were five inde-

pendent experiments accordingly. In each experiment, four
parts were selected for training and validation and one for
testing. Therefore, SSDs in the test set do not appear in the
training set for each experiment, and the test sets of the five
experiments contain all SSDs. Fig. 10 shows that the cross-
validation results were roughly consistent with the results
in Table 3, with some reduction in prediction accuracy. The
data patterns of unseen SSDs may be slightly different, which
has some impact on the prediction. Compared with the ex-
isting methods, our MVTRF showed great improvements in
four metrics. It implies that MVTRF is also more effective in
failure prediction of unseen SSDs.

Figure 10: Cross-validation on PM1733 dataset. (P: precision;
R: recall; F: F0.5-Score; AUC: ROC_AUC)

4.2 Discussion on Multi-view Features
Besides the raw features, this paper proposes histogram fea-
tures and sequence-related features based on long-term data.
These features reflect the state of SSDs from different views.
By concatenating these three features, the combined features
have a more comprehensive view. We first trained RF with
each feature separately and compared their prediction accu-
racy to analyze the impact of different features on SSD failure
prediction. Then, RF, NN, and AE with combined features
and our MVTRF were also compared together to evaluate the
effectiveness of MVTRF.

Table 4 shows the results on the PM1733 Tencent dataset.
Raw features focus on abnormal attribute values, which are
easy to judge, and thus their recall is relatively high. However,
the short-term raw features cannot capture some failure symp-
toms in the long-term information, therefore the ROC_AUC
was the lowest (0.69), implying that it is difficult to find more

418 21st USENIX Conference on File and Storage Technologies USENIX Association

failed SSDs at lower discrimination thresholds. The histogram
features and sequence-related features reflect the distribution
and trend of long-term data, and more failure symptoms can
be found, so their ROC_AUC is higher. The combined feature
contains the above three features. Since it contains multi-view
information, RF with combined features performed well in
each indicator. However, NN and AE with the same features
did not perform so well. The combined features are compre-
hensive but also contain too much information, and this leads
to the overfitting problem of these two models in training,
while RF reduces overfitting through the joint decision of var-
ious decision trees [41]. Finally, MVTRF reached 0.90, 0.40
and 0.72 in precision, recall and F0.5-Score respectively. It
enables different sets of decision trees to capture failure symp-
toms from different views, thereby further reducing overfitting
caused by mixed excess information during training.

Table 4: Comparison of MVTRF and existing methods with
different features.

Method Precision Recall F0.5-Score ROC_AUC
RF + Raw 0.61 0.34 0.52 0.69

RF + Histogram 1.00 0.17 0.48 0.72

RF + Sequence 0.50 0.25 0.38 0.81
RF + Combined 0.83 0.37 0.66 0.78

NN + Combined 0.79 0.17 0.39 0.74

AE + Combined 0.88 0.14 0.40 0.77

MVTRF 0.90 0.40 0.72 0.81

4.3 Multi-task Learning and Prediction
In addition to failure prediction, this paper introduces the
tasks of failure type prediction and remaining lifespan predic-
tion (see Section 3.3). Since joint learning of related tasks is
often beneficial for each task, we perform multi-task learning
and prediction through a single model. On the baseline RF
with raw features and our MVTRF, the impact of multi-task
learning on each task was evaluated. Table 5 compares the
performance of two models under single-task learning and
multi-task learning for three tasks. For failure prediction, the
performance was better and the F0.5-Score of two models
improved by 0.05 on average with multi-task learning and
prediction. For failure type prediction and remaining lifespan
prediction, we used the accuracy rate to evaluate the perfor-
mance, since both tasks are multi-classification tasks and they
only make sense when SSD failures are correctly predicted.
The accuracy rate is defined as the proportion of SSDs with
correctly predicted failure type (or remaining lifespan) to
all correctly predicted failed SSDs. After using multi-task
learning, Table 5 shows that the accuracy rate of two models
for failure type prediction and remaining lifespan prediction
increased by 0.04 and 0.09 on average, respectively. In conclu-
sion, multi-task learning and prediction boosted the model’s
performance on three tasks.

Table 5 shows that our MVTRF with multi-task learning
achieved an accuracy rate of 0.95 in failure type prediction
and 0.55 in remaining lifespan prediction. It demonstrates
that both predictions are effective. According to the urgency
of different failure types and the remaining lifespan, operators
can decide whether to directly replace the SSD or further
analyze it, so that the failures can be handled in a timely and
accurate manner.

Table 5: Comparison of single-task learning and multi-task
learning.

Method P R F AUC Type
Acc

Lifespan
Acc

RF + Raw
Single-task 0.58 0.31 0.48 0.69 0.88 0.44

Multi-task 0.61 0.34 0.52 0.69 0.93 0.53

MVTRF
Single-task 0.83 0.37 0.66 0.79 0.93 0.47

Multi-task 0.90 0.40 0.72 0.81 0.95 0.55

(P: precision; R: recall; F: F0.5-Score; AUC: ROC_AUC; Acc: accuracy rate)

Another benefit of using a single model for multi-task learn-
ing is that it can reduce model training and prediction time
compared with using three models to predict three tasks. Ta-
ble 6 shows the dimensions of different features, and com-
pares the total time required for separate training/prediction
and joint training/prediction on the three tasks based on these
features. Table 6 reveals that adopting multi-task learning can
reduce training/prediction time in most cases. It also shows
that the training/prediction time of MVTRF mainly depends
on the training/prediction time of the combined features with
the highest dimension. In addition, MVTRF with multi-task
learning completes the prediction of one million Telemetry
data within three minutes and thus can fully support the online
real-time prediction of large-scale SSDs.

Table 6: Total training/prediction time of single-task model
and multi-task model.

Method Feature NO.
Training time(s) Prediction time(s)
Single Multi Single Multi

RF + Raw 26 1230.9 599.8 36.5 62.8

RF + Histogram 102 1852.1 978.5 171.6 111.2

RF + Sequence 104 2867.9 1378.1 65.2 69.7

RF + Combined 232 3171.9 1707.2 232.2 130.9

MVTRF 464 3262.7 1775.2 245.2 143.0

(Train and predict on one million data.)

4.4 Similar Decision Extraction
According to the decision process of MVTRF model, we
propose SDE to obtain key decisions and find the failure
causes (see Section 3.4). Table 7 shows the key decisions
extracted from the decision process of a failed SSD. SDE
extracts five key decisions from a total of original 3,825 deci-
sions and gives them weights (as described in Section 3.4, the
weight is the number of similar decisions). The extracted

USENIX Association 21st USENIX Conference on File and Storage Technologies 419

key decisions can certainly identify this failed SSD, but
may lead to false alarms due to the large reduction in joint
decisions. We reapplied these key decisions to all data to
evaluate their effectiveness based on the false alarms in-
troduced by them. Table 7 shows that the decision with
the highest weight only had three false alarms, which indi-
cates that the extracted key decisions have a strong distin-
guishing ability. Then, all false alarms were eliminated by
combining subsequent key decisions. It can be concluded
that the decisions extracted by the SDE approach are criti-
cal and they can represent the major decision process. Ac-
cording to the key decisions, we figured out that the direct
cause of this failure was the rapid increase of media errors
(media_errors_slop > 126.44 and media_errors > 6015.5),
and thus it was verified to be an internal failure of the SSD.
In addition, the changes of temperature and wear leveling
may be potential factors (temperature_kurt <= −1.11 and
wear_leveling_max_kurt >−0.047).

Table 7: Key decisions of an SSD failure. False alarms were
reduced with the combination of key decisions.

Key decision Feature type Weight False alarms
① media_errors_slope > 126.44 Sequence 122 3 (①)

② media_errors_bkt0 <= 0.99 Histogram 120 3 (① - ②)

③ temperature_kurt <=−1.11 Sequence 117 1 (① - ③)

④ media_errors > 6015.5 Raw 113 1 (① - ④)

⑤ wear_leveling_max_kurt >−0.047 Sequence 96 0 (① - ⑤)

We also extracted several sets of key decisions from the
judgment process of all failed SSDs to evaluate the overall
discriminative ability of key decisions, as shown in Table 8.
It shows there were 53,663 decisions in total for failed SSDs,
and our SDE approach extracts 49 key decisions. Reapplying
these key decisions to all data achieved the same precision
and recall as all original decisions. The 49 key decisions per-
formed almost the same as the original 53,663 decisions in
distinguishing failed SSDs and healthy SSDs, which illus-
trates the effectiveness of the proposed SDE approach. Then,
the failure causes can be identified and analyzed based on
these decisions, which lays the foundation for verifying and
handling SSD failures.

Table 8: Comparison of key decisions with all decisions.

Decision NO. Precision Recall
All decisions 53663 0.90 0.40

Key decisions 49 0.90 0.40

5 Related Work

Many previous studies have investigated and analyzed the
impact of drive errors and failures on large data centers [13,
15, 34, 35, 37, 43, 44]. In order to take proactive measures

(such as replacing drives) before failures occur, drive failure
prediction has received extensive attention and research. Since
HDDs have been widely used for a long time, there are many
works on HDD failure prediction [9, 11, 18, 21, 26, 36, 39, 42,
46,49,51,52]. Most of these works [9,18,21,26,39,42,51,52]
are based on short-term monitoring data, as the symptoms
of HDD failure generally appear days or hours leading up
to the failure [24]. Unlike SSDs that are based on electrical
signals, HDDs are mechanically based, and their problems
would quickly develop into serious failures.

In recent years, with the popularization of SSDs, more and
more research studies have been done on SSD failure predic-
tion [3, 7, 16, 22, 27, 30, 33, 40, 45, 50]. Alter [3] et al. adopted
classification algorithms to predict SSD failures based on ma-
chine learning algorithms, including logistic regression, sup-
port vector machine, random forest, and neural network. They
also analyzed the failure characteristics of SSDs in different
periods. Chandranil et al. [7] introduced the unsupervised
anomaly detection algorithms, isolation forest and autoen-
coder, to predict SSD failures. These algorithms only learn
the patterns of healthy SSDs and consider the ones with large
pattern differences to be failed SSDs. Hao et al. [16] intro-
duced LSTM, a recurrent neural network, to capture failure
symptoms from the sequences of monitoring data. In addition,
they proposed Ensemble LSTM to enhance the prediction ac-
curacy through ensemble learning. Xu [45] et al. studied the
impact of feature selection algorithms on SSD failure predic-
tion. They proposed a feature selection approach, Wear-out-
updating Ensemble Feature Ranking (WEFR), to improve the
performance of random forest algorithm by selecting SMART
attributes with strong representational ability.

6 Conclusions

In this paper, we propose multi-view and multi-task random
forest (MVTRF) to predict SSD failures and other failure in-
formation based on short-term and long-term monitoring data.
We observed that some failure symptoms are hidden in the dis-
tribution and trend of long-term data, and thus histogram fea-
tures and sequence-related features were introduced. MVTRF
learns these features and short-term data in parallel through
multiple sets of decision trees, thereby integrating multi-view
information to find more failures and reduce false alarms. In
addition, we adopted multi-task learning to allow a single
model to learn and predict detailed failure information, in-
cluding failure type and remaining lifespan. We also propose
similar decision extraction (SDE) to obtain the key decisions
from MVTRF to identify and analyze the failure causes. These
details help operators to quickly verify the failure and recom-
mend appropriate actions to handle it more efficiently. Our
evaluation on real data from data centers showed that MVTRF
significantly improves the accuracy of failure prediction and
can predict the failure type and remaining lifespan of SSDs
simultaneously and effectively.

420 21st USENIX Conference on File and Storage Technologies USENIX Association

References

[1] Multiclass and multioutput algorithms.
https://scikit-learn.org/stable/modules/
multiclass.html.

[2] Hervé Abdi. Coefficient of variation. Encyclopedia
of research design, 1:169–171, 2010. https://www.
utdallas.edu/~herve/abdi-cv2010-pretty.pdf.

[3] Jacob Alter, Ji Xue, Alma Dimnaku, and Evgenia Smirni.
SSD Failures in the Field: Symptoms, Causes, and
Prediction Models. In Proceedings of the Interna-
tional Conference for High Performance Computing,
Networking, Storage and Analysis, SC ’19, New York,
NY, USA, 2019. Association for Computing Machinery.
https://doi.org/10.1145/3295500.3356172.

[4] Mirela Madalina Botezatu, Ioana Giurgiu, Jasmina Bo-
gojeska, and Dorothea Wiesmann. Predicting Disk Re-
placement towards Reliable Data Centers. In Proceed-
ings of the 22nd ACM SIGKDD International Confer-
ence on Knowledge Discovery and Data Mining, KDD
’16, page 39–48, New York, NY, USA, 2016. Associa-
tion for Computing Machinery. https://doi.org/10.
1145/2939672.2939699.

[5] Leo Breiman. Random forests. Machine learn-
ing, 45(1):5–32, 2001. https://doi.org/10.1023/A:
1010933404324.

[6] Yu Cai, Yixin Luo, Saugata Ghose, and Onur Mutlu.
Read Disturb Errors in MLC NAND Flash Memory:
Characterization, Mitigation, and Recovery. In 2015
45th Annual IEEE/IFIP International Conference on De-
pendable Systems and Networks, pages 438–449, June
2015. https://doi.org/10.1109/DSN.2015.49.

[7] Chandranil Chakraborttii and Heiner Litz. Improving
the Accuracy, Adaptability, and Interpretability of SSD
Failure Prediction Models. In Proceedings of the 11th
ACM Symposium on Cloud Computing, SoCC ’20, page
120–133, New York, NY, USA, 2020. Association for
Computing Machinery. https://doi.org/10.1145/
3419111.3421300.

[8] Saeideh Alinezhad Chamazcoti, Bardia Safaei, and
Seyed Ghassem Miremadi. Can Erasure Codes Damage
Reliability in SSD-Based Storage Systems? IEEE Trans-
actions on Emerging Topics in Computing, 7(3):435–
446, July 2019. https://doi.org/10.1109/TETC.
2017.2693424.

[9] Iago C. Chaves, Manoel Rui P. de Paula, Lucas G.M.
Leite, Lucas P. Queiroz, Joao Paulo P. Gomes, and
Javam C. Machado. BaNHFaP: A Bayesian Net-
work Based Failure Prediction Approach for Hard Disk

Drives. In 2016 5th Brazilian Conference on Intelli-
gent Systems (BRACIS), pages 427–432, October 2016.
https://doi.org/10.1109/BRACIS.2016.083.

[10] L. T DECARLO. On the meaning and use of kurtosis.
Psychological methods, 2(3):292–307, 1997. https:
//doi.org/10.1037/1082-989X.2.3.292.

[11] Yan Ding, Yunan Zhai, Yujuan Zhai, and Jia Zhao. Ex-
plore deep auto-coder and big data learning to hard
drive failure prediction: a two-level semi-supervised
model. Connect. Sci., 34(1):449–471, 2022. https:
//doi.org/10.1080/09540091.2021.2008320.

[12] Tom Fawcett. An introduction to ROC analysis. Pattern
Recognition Letters, 27(8):861–874, 2006. https://
doi.org/10.1016/j.patrec.2005.10.010.

[13] Chuanxiong Guo, Lihua Yuan, Dong Xiang, Yingnong
Dang, Ray Huang, Dave Maltz, Zhaoyi Liu, Vin Wang,
Bin Pang, Hua Chen, Zhi-Wei Lin, and Varugis Kurien.
Pingmesh: A Large-Scale System for Data Center Net-
work Latency Measurement and Analysis. In Proceed-
ings of the 2015 ACM Conference on Special Interest
Group on Data Communication, SIGCOMM ’15, page
139–152, New York, NY, USA, 2015. Association for
Computing Machinery. https://doi.org/10.1145/
2785956.2787496.

[14] Shujie Han, Patrick P. C. Lee, Zhirong Shen, Cheng He,
Yi Liu, and Tao Huang. Toward Adaptive Disk Fail-
ure Prediction via Stream Mining. In 2020 IEEE 40th
International Conference on Distributed Computing Sys-
tems (ICDCS), pages 628–638, November 2020. https:
//doi.org/10.1109/ICDCS47774.2020.00044.

[15] Shujie Han, Patrick P. C. Lee, Fan Xu, Yi Liu, Cheng He,
and Jiongzhou Liu. An In-Depth Study of Correlated
Failures in Production SSD-Based Data Centers. In 19th
USENIX Conference on File and Storage Technologies
(FAST 21), pages 417–429. USENIX Association, Febru-
ary 2021. https://www.usenix.org/conference/
fast21/presentation/han.

[16] Wenwen Hao, Ben Niu, Yin Luo, Kangkang Liu, and
Na Liu. Improving accuracy and adaptability of SSD
failure prediction in hyper-scale data centers. SIGMET-
RICS Perform. Eval. Rev., 49(4):99–104, June 2022.
https://doi.org/10.1145/3543146.3543169.

[17] Sepp Hochreiter and Jürgen Schmidhuber. Long Short-
Term Memory. Neural Computation, 9(8):1735–1780,
1997. https://doi.org/10.1162/neco.1997.9.8.
1735.

[18] G.F. Hughes, J.F. Murray, K. Kreutz-Delgado, and
C. Elkan. Improved disk-drive failure warnings. IEEE

USENIX Association 21st USENIX Conference on File and Storage Technologies 421

https://scikit-learn.org/stable/modules/multiclass.html
https://scikit-learn.org/stable/modules/multiclass.html
https://www.utdallas.edu/~herve/abdi-cv2010-pretty.pdf
https://www.utdallas.edu/~herve/abdi-cv2010-pretty.pdf
https://doi.org/10.1145/3295500.3356172
https://doi.org/10.1145/2939672.2939699
https://doi.org/10.1145/2939672.2939699
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1109/DSN.2015.49
https://doi.org/10.1145/3419111.3421300
https://doi.org/10.1145/3419111.3421300
https://doi.org/10.1109/TETC.2017.2693424
https://doi.org/10.1109/TETC.2017.2693424
https://doi.org/10.1109/BRACIS.2016.083
https://doi.org/10.1037/1082-989X.2.3.292
https://doi.org/10.1037/1082-989X.2.3.292
https://doi.org/10.1080/09540091.2021.2008320
https://doi.org/10.1080/09540091.2021.2008320
https://doi.org/10.1016/j.patrec.2005.10.010
https://doi.org/10.1016/j.patrec.2005.10.010
https://doi.org/10.1145/2785956.2787496
https://doi.org/10.1145/2785956.2787496
https://doi.org/10.1109/ICDCS47774.2020.00044
https://doi.org/10.1109/ICDCS47774.2020.00044
https://www.usenix.org/conference/fast21/presentation/han
https://www.usenix.org/conference/fast21/presentation/han
https://doi.org/10.1145/3543146.3543169
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1162/neco.1997.9.8.1735

Transactions on Reliability, 51(3):350–357, Septem-
ber 2002. https://doi.org/10.1109/TR.2002.
802886.

[19] Massimo Iaculo, Francesco Falanga, and Ornella Vi-
tale. Introduction to SSD. Memory Mass Storage,
pages 213–236, 2011. https://doi.org/10.1007/
978-3-642-14752-4_5.

[20] Pedro Lara-Benítez, Manuel Carranza-García, and José
C.Riquelme. An Experimental Review on Deep Learn-
ing Architectures for Time Series Forecasting. CoRR,
abs/2103.12057, 2021. https://arxiv.org/abs/
2103.12057.

[21] Jing Li, Xinpu Ji, Yuhan Jia, Bingpeng Zhu, Gang Wang,
Zhongwei Li, and Xiaoguang Liu. Hard Drive Failure
Prediction Using Classification and Regression Trees. In
2014 44th Annual IEEE/IFIP International Conference
on Dependable Systems and Networks, pages 383–394,
June 2014. https://doi.org/10.1109/DSN.2014.
44.

[22] Peng Li, Wei Dang, Congmin Lyu, Min Xie, Quanyang
Bao, Xiaofeng Ji, and Jianhua Zhou. Reliability Char-
acterization and Failure Prediction of 3D TLC SSDs
in Large-Scale Storage Systems. IEEE Transactions
on Device and Materials Reliability, 21(2):224–235,
June 2021. https://doi.org/10.1109/TDMR.2021.
3063164.

[23] Fernando Dione dos Santos Lima, Gabriel Maia Rocha
Amaral, Lucas Gonçalves de Moura Leite, João
Paulo Pordeus Gomes, and Javam de Castro Machado.
Predicting Failures in Hard Drives with LSTM Net-
works. In 2017 Brazilian Conference on Intelligent Sys-
tems (BRACIS), pages 222–227, October 2017. https:
//doi.org/10.1109/BRACIS.2017.72.

[24] Sidi Lu, Bing Luo, Tirthak Patel, Yongtao Yao, Devesh
Tiwari, and Weisong Shi. Making Disk Failure Pre-
dictions SMARTer! In 18th USENIX Conference on
File and Storage Technologies (FAST 20), pages 151–
167, Santa Clara, CA, February 2020. USENIX As-
sociation. https://www.usenix.org/conference/
fast20/presentation/lu.

[25] Yixin Luo, Saugata Ghose, Yu Cai, Erich F. Haratsch,
and Onur Mutlu. Improving 3D NAND Flash Memory
Lifetime by Tolerating Early Retention Loss and Pro-
cess Variation. Proc. ACM Meas. Anal. Comput. Syst.,
2(3), December 2018. https://doi.org/10.1145/
3224432.

[26] Ao Ma, Rachel Traylor, Fred Douglis, Mark Cham-
ness, Guanlin Lu, Darren Sawyer, Surendar Chandra,

and Windsor Hsu. RAIDShield: Characterizing, Moni-
toring, and Proactively Protecting Against Disk Fail-
ures. ACM Trans. Storage, 11(4), November 2015.
https://doi.org/10.1145/2820615.

[27] Farzaneh Mahdisoltani, Ioan Stefanovici, and Bianca
Schroeder. Proactive error prediction to improve
storage system reliability. In 2017 USENIX Annual
Technical Conference (USENIX ATC 17), pages
391–402, Santa Clara, CA, July 2017. USENIX As-
sociation. https://www.usenix.org/conference/
atc17/technical-sessions/presentation/
mahdisoltani.

[28] Puneet Misra and Arun Singh Yadav. Improv-
ing the Classification Accuracy using Recur-
sive Feature Elimination with Cross-Validation.
Int. J. Emerg. Technol, 11(3):659–665, 2020.
http://www.puneetmisra.com/admin/uploads/
journals/5f136d202b8ba1.18644117.pdf.

[29] Joseph F. Murray, Gordon F. Hughes, and Kenneth
Kreutz-Delgado. Machine Learning Methods for Pre-
dicting Failures in Hard Drives: A Multiple-Instance
Application. Journal of Machine Learning Research,
6(27):783–816, 2005. http://jmlr.org/papers/v6/
murray05a.html.

[30] Iyswarya Narayanan, Di Wang, Myeongjae Jeon, Bikash
Sharma, Laura Caulfield, Anand Sivasubramaniam, Ben
Cutler, Jie Liu, Badriddine Khessib, and Kushagra Vaid.
SSD Failures in Datacenters: What? When? And Why?
In Proceedings of the 9th ACM International on Sys-
tems and Storage Conference, SYSTOR ’16, New York,
NY, USA, 2016. Association for Computing Machinery.
https://doi.org/10.1145/2928275.2928278.

[31] A. Neubeck and L. Van Gool. Efficient Non-Maximum
Suppression. In 18th International Conference on
Pattern Recognition (ICPR’06), volume 3, pages 850–
855, August 2006. https://doi.org/10.1109/ICPR.
2006.479.

[32] David A. Patterson, Garth Gibson, and Randy H. Katz.
A Case for Redundant Arrays of Inexpensive Disks
(RAID). In Proceedings of the 1988 ACM SIGMOD
International Conference on Management of Data, SIG-
MOD ’88, page 109–116, New York, NY, USA, 1988.
Association for Computing Machinery. https://doi.
org/10.1145/50202.50214.

[33] Jay Sarkar, Cory Peterson, and Amir Sanayei. Machine-
learned assessment and prediction of robust solid state
storage system reliability physics. In 2018 IEEE Inter-
national Reliability Physics Symposium (IRPS), pages
3C.6–1–3C.6–8, March 2018. https://doi.org/10.
1109/IRPS.2018.8353565.

422 21st USENIX Conference on File and Storage Technologies USENIX Association

https://doi.org/10.1109/TR.2002.802886
https://doi.org/10.1109/TR.2002.802886
https://doi.org/10.1007/978-3-642-14752-4_5
https://doi.org/10.1007/978-3-642-14752-4_5
https://arxiv.org/abs/2103.12057
https://arxiv.org/abs/2103.12057
https://doi.org/10.1109/DSN.2014.44
https://doi.org/10.1109/DSN.2014.44
https://doi.org/10.1109/TDMR.2021.3063164
https://doi.org/10.1109/TDMR.2021.3063164
https://doi.org/10.1109/BRACIS.2017.72
https://doi.org/10.1109/BRACIS.2017.72
https://www.usenix.org/conference/fast20/presentation/lu
https://www.usenix.org/conference/fast20/presentation/lu
https://doi.org/10.1145/3224432
https://doi.org/10.1145/3224432
https://doi.org/10.1145/2820615
https://www.usenix.org/conference/atc17/technical-sessions/presentation/mahdisoltani
https://www.usenix.org/conference/atc17/technical-sessions/presentation/mahdisoltani
https://www.usenix.org/conference/atc17/technical-sessions/presentation/mahdisoltani
http://www.puneetmisra.com/admin/uploads/journals/5f136d202b8ba1.18644117.pdf
http://www.puneetmisra.com/admin/uploads/journals/5f136d202b8ba1.18644117.pdf
http://jmlr.org/papers/v6/murray05a.html
http://jmlr.org/papers/v6/murray05a.html
https://doi.org/10.1145/2928275.2928278
https://doi.org/10.1109/ICPR.2006.479
https://doi.org/10.1109/ICPR.2006.479
https://doi.org/10.1145/50202.50214
https://doi.org/10.1145/50202.50214
https://doi.org/10.1109/IRPS.2018.8353565
https://doi.org/10.1109/IRPS.2018.8353565

[34] Bianca Schroeder, Raghav Lagisetty, and Arif Merchant.
Flash Reliability in Production: The Expected and
the Unexpected. In 14th USENIX Conference on File
and Storage Technologies (FAST 16), pages 67–80,
Santa Clara, CA, February 2016. USENIX Association.
https://www.usenix.org/conference/fast16/
technical-sessions/presentation/schroeder.

[35] Bianca Schroeder, Arif Merchant, and Raghav Lagisetty.
Reliability of nand-Based SSDs: What Field Studies
Tell Us. Proceedings of the IEEE, 105(9):1751–1769,
September 2017. https://doi.org/10.1109/JPROC.
2017.2735969.

[36] Jing Shen, Yongjian Ren, Jian Wan, and Yunlong Lan.
Hard Disk Drive Failure Prediction for Mobile Edge
Computing Based on an LSTM Recurrent Neural Net-
work. Mobile Information Systems, 2021:1–12, February
2021. https://doi.org/10.1155/2021/8878364.

[37] Guosai Wang, Lifei Zhang, and Wei Xu. What Can
We Learn from Four Years of Data Center Hardware
Failures? In 2017 47th Annual IEEE/IFIP Interna-
tional Conference on Dependable Systems and Networks
(DSN), pages 25–36, June 2017. https://doi.org/
10.1109/DSN.2017.26.

[38] Yang Wang, Lorenzo Alvisi, and Mike Dahlin. Gnothi:
Separating Data and Metadata for Efficient and Avail-
able Storage Replication. In 2012 USENIX An-
nual Technical Conference (USENIX ATC 12), pages
413–424, Boston, MA, June 2012. USENIX Asso-
ciation. https://www.usenix.org/conference/
atc12/technical-sessions/presentation/wang.

[39] Yu Wang, Eden W. M. Ma, Tommy W. S. Chow, and
Kwok-Leung Tsui. A Two-Step Parametric Method for
Failure Prediction in Hard Disk Drives. IEEE Transac-
tions on Industrial Informatics, 10(1):419–430, Febru-
ary 2014. https://doi.org/10.1109/TII.2013.
2264060.

[40] Debao Wei, Liyan Qiao, Mengqi Hao, Hua Feng,
and Xiyuan Peng. Reliability prediction model of
NAND flash memory based on random forest algo-
rithm. Microelectronics Reliability, 100-101:113371,
2019. https://www.sciencedirect.com/science/
article/pii/S002627141930472X.

[41] Graham Williams. Random forests. In Data Mining with
Rattle and R, pages 245–268. Springer, 2011. https:
//doi.org/10.1007/978-1-4419-9890-3_12.

[42] Jiang Xiao, Zhuang Xiong, Song Wu, Yusheng Yi, Hai
Jin, and Kan Hu. Disk Failure Prediction in Data
Centers via Online Learning. In Proceedings of the
47th International Conference on Parallel Processing,

ICPP 2018, New York, NY, USA, 2018. Association for
Computing Machinery. https://doi.org/10.1145/
3225058.3225106.

[43] Erci Xu, Mai Zheng, Feng Qin, Jiesheng Wu, and Yikang
Xu. Understanding SSD Reliability in Large-Scale
Cloud Systems. In 2018 IEEE/ACM 3rd International
Workshop on Parallel Data Storage & Data Intensive
Scalable Computing Systems (PDSW-DISCS), pages
45–53, November 2018. https://doi.org/10.1109/
PDSW-DISCS.2018.00010.

[44] Erci Xu, Mai Zheng, Feng Qin, Yikang Xu, and Jiesh-
eng Wu. Lessons and Actions: What We Learned
from 10K SSD-Related Storage System Failures. In
2019 USENIX Annual Technical Conference (USENIX
ATC 19), pages 961–976, Renton, WA, July 2019.
USENIX Association. https://www.usenix.org/
conference/atc19/presentation/xu.

[45] Fan Xu, Shujie Han, Patrick P. C. Lee, Yi Liu, Cheng He,
and Jiongzhou Liu. General Feature Selection for Fail-
ure Prediction in Large-scale SSD Deployment. In 2021
51st Annual IEEE/IFIP International Conference on De-
pendable Systems and Networks (DSN), pages 263–270,
June 2021. https://doi.org/10.1109/DSN48987.
2021.00039.

[46] Yong Xu, Kaixin Sui, Randolph Yao, Hongyu Zhang,
Qingwei Lin, Yingnong Dang, Peng Li, Keceng Jiang,
Wenchi Zhang, Jian-Guang Lou, Murali Chintalapati,
and Dongmei Zhang. Improving Service Availabil-
ity of Cloud Systems by Predicting Disk Error. In
2018 USENIX Annual Technical Conference (USENIX
ATC 18), pages 481–494, Boston, MA, July 2018.
USENIX Association. https://www.usenix.org/
conference/atc18/presentation/xu-yong.

[47] Jinpei Yan, Yong Qi, Qifan Rao, and Tom Chen. LSTM-
Based Hierarchical Denoising Network for Android Mal-
ware Detection. Sec. and Commun. Netw., 2018, January
2018. https://doi.org/10.1155/2018/5249190.

[48] Ji Hyuck Yun, Jin Hyuk Yoon, Eyee Hyun Nam, and
Sang Lyul Min. An Abstract Fault Model for NAND
Flash Memory. IEEE Embedded Systems Letters,
4(4):86–89, December 2012. https://doi.org/10.
1109/LES.2012.2213235.

[49] Ying Zhao, Xiang Liu, Siqing Gan, and Weimin Zheng.
Predicting Disk Failures with HMM- and HSMM-Based
Approaches. In Proceedings of the 10th Industrial
Conference on Advances in Data Mining: Applica-
tions and Theoretical Aspects, ICDM’10, page 390–404,
Berlin, Heidelberg, 2010. Springer-Verlag. https:
//doi.org/10.1007/978-3-642-14400-4_30.

USENIX Association 21st USENIX Conference on File and Storage Technologies 423

https://www.usenix.org/conference/fast16/technical-sessions/presentation/schroeder
https://www.usenix.org/conference/fast16/technical-sessions/presentation/schroeder
https://doi.org/10.1109/JPROC.2017.2735969
https://doi.org/10.1109/JPROC.2017.2735969
https://doi.org/10.1155/2021/8878364
https://doi.org/10.1109/DSN.2017.26
https://doi.org/10.1109/DSN.2017.26
https://www.usenix.org/conference/atc12/technical-sessions/presentation/wang
https://www.usenix.org/conference/atc12/technical-sessions/presentation/wang
https://doi.org/10.1109/TII.2013.2264060
https://doi.org/10.1109/TII.2013.2264060
https://www.sciencedirect.com/science/article/pii/S002627141930472X
https://www.sciencedirect.com/science/article/pii/S002627141930472X
https://doi.org/10.1007/978-1-4419-9890-3_12
https://doi.org/10.1007/978-1-4419-9890-3_12
https://doi.org/10.1145/3225058.3225106
https://doi.org/10.1145/3225058.3225106
https://doi.org/10.1109/PDSW-DISCS.2018.00010
https://doi.org/10.1109/PDSW-DISCS.2018.00010
https://www.usenix.org/conference/atc19/presentation/xu
https://www.usenix.org/conference/atc19/presentation/xu
https://doi.org/10.1109/DSN48987.2021.00039
https://doi.org/10.1109/DSN48987.2021.00039
https://www.usenix.org/conference/atc18/presentation/xu-yong
https://www.usenix.org/conference/atc18/presentation/xu-yong
https://doi.org/10.1155/2018/5249190
https://doi.org/10.1109/LES.2012.2213235
https://doi.org/10.1109/LES.2012.2213235
https://doi.org/10.1007/978-3-642-14400-4_30
https://doi.org/10.1007/978-3-642-14400-4_30

[50] Hao Zhou, Zhiheng Niu, Gang Wang, XiaoGuang Liu,
Dongshi Liu, Bingnan Kang, Hu Zheng, and Yong
Zhang. A Proactive Failure Tolerant Mechanism for
SSDs Storage Systems based on Unsupervised Learn-
ing. In 2021 IEEE/ACM 29th International Sym-
posium on Quality of Service (IWQOS), pages 1–10,
June 2021. https://doi.org/10.1109/IWQOS52092.
2021.9521302.

[51] Bingpeng Zhu, Gang Wang, Xiaoguang Liu, Dianming
Hu, Sheng Lin, and Jingwei Ma. Proactive drive fail-
ure prediction for large scale storage systems. In 2013

IEEE 29th Symposium on Mass Storage Systems and
Technologies (MSST), pages 1–5, May 2013. https:
//doi.org/10.1109/MSST.2013.6558427.

[52] Marwin Züfle, Florian Erhard, and Samuel Kounev.
Machine Learning Model Update Strategies for Hard
Disk Drive Failure Prediction. In 2021 20th
IEEE International Conference on Machine Learning
and Applications (ICMLA), pages 1379–1386, Decem-
ber 2021. https://doi.org/10.1109/ICMLA52953.
2021.00223.

424 21st USENIX Conference on File and Storage Technologies USENIX Association

https://doi.org/10.1109/IWQOS52092.2021.9521302
https://doi.org/10.1109/IWQOS52092.2021.9521302
https://doi.org/10.1109/MSST.2013.6558427
https://doi.org/10.1109/MSST.2013.6558427
https://doi.org/10.1109/ICMLA52953.2021.00223
https://doi.org/10.1109/ICMLA52953.2021.00223

Fast Application Launch on Personal Computing/Communication Devices

Junhee Ryu1, Dongeun Lee2, Kang G. Shin3, and Kyungtae Kang4

1SK hynix, 2Texas A&M University - Commerce, 3University of Michigan, 4Hanyang University

Abstract
We present Paralfetch, a novel prefetcher to speed up app

launches on personal computing/communication devices by:

1) accurate collection of launch-related disk read requests, 2)

pre-scheduling of these requests to improve I/O throughput

during prefetching, and 3) overlapping app execution with

disk prefetching for hiding disk access time from the app

execution. We have implemented Paralfetch under Linux

kernels on a desktop/laptop PC, a Raspberry Pi 3 board,

and an Android smartphone. Tests with popular apps show

that Paralfetch significantly reduces app launch times on

flash-based drives, and outperforms GSoC Prefetch and FAST,

which are representative app prefetchers available for Linux-

based systems.

1 Introduction
Quick app launches are of great importance to user experi-

ence on personal computing/communication devices such

as laptop/tablet PCs, single-board computers, and smart-

phones [17,18,22,24,26,34]. The latency of launching an app

mainly depends on the performance of the underlying CPU

and flash-based disks. Despite continuing improvements in

the performance of these components, the launch latencies,

especially of large apps and games, still remain an important

problem for three reasons.

First, the performance of flash storage does not always

meet users’ expectations/desire. For example, it has been pre-

dicted [53] that in 2025 around 50% of the data on flash will be

stored in QLC (quad-level cell) flash, which has 2.1× slower

read and 5.7× slower write times than TLC (triple-level cell)

flash [4]. The use of affordable QLC SSDs was found to ex-

tend the launch latency of the popular Blade and Soul game

from 91s to 114s [46], and that of Horizon Zero Dawn from

15.7s to 21.4s [47], compared to high-end SSDs. Many Win-

dows apps take a similar amount of time [48] to launch from

the Samsung QLC SSD as they do from the Intel X25-M G2

SSD, which was released in 2009. Furthermore, recent entry-

class SSDs widely adopt DRAM-less architecture [35], which

leads to additional flash accesses for translating logical-to-

physical addresses. A Raspberry Pi is also widely used to run

desktop applications [57], but it only supports the sluggish

MicroSD.

Second, the complexity of apps is continuously growing

due to the addition of new features and functionality to soft-

ware [50]. Unfortunately, complex software also requires

higher-level programming languages and libraries, generating

slower code, thus extending their launch latencies [54].

Third, although parallelism is effectively utilized in mod-

ern multicore CPUs and solid-state disks [8], app launches

can seldom exploit existing sources of parallelism. It has also

been shown [25] that CPUs and disks are seldom utilized si-

multaneously during a launch because synchronous disk reads

are dominant. Making better use of parallelism is, therefore,

a major consideration in the design of app prefetchers [24].

Launch latencies depend on the previous state of the sys-

tem, especially the disk cache. A cold start occurs when the

disk cache does not hold any data required by the app, ei-

ther because it is the first time the app has been launched,

or because all of the app’s data has been evicted since its

last run. A system cold start is a special case of cold start,

which occurs when no user-launched app is already running.

A warm start occurs when the app being launched has been

running recently, so the disk cache still holds all, or most, of

the data that it needs. A warm start is much faster than a cold

start, because no, or very little, data has to be fetched from

the disk. This avoids the concomitant file system operations,

thus saving CPU time as well as disk time.

An app prefetcher [6, 7, 9, 11, 28, 36, 40] can reduce the

time needed for a cold start: during learning phase, which

corresponds to the first launch of an app, the prefetcher col-

lects launch-related blocks and/or their access sequences (the

term launch sequence is used interchangeably). This is usu-

ally achieved by monitoring disk reads and/or page faults.

A prefetching phase occurs during subsequent launches of

the app, in which case this launch sequence is used for disk

prefetching to accelerate loading.

Different prefetching strategies are required for the differ-

ent seek characteristics of mechanical and flash disks. These

storage devices have different performance bottlenecks which

have been addressed in well-known ways. Threaded prefetch-
ing is designed for SSDs. A dedicated thread is used to

prefetch blocks in the order of their collection during moni-

toring. The prefetching thread runs concurrently with the app,

reducing the launch time. On the other hand, Sorted prefetch-
ing is designed for HDDs. Data is read from the disk in logical

block address (LBA) order to reduce seek times [5, 19, 20],

USENIX Association 21st USENIX Conference on File and Storage Technologies 425

which account for most of the launch time. Sorted prefetching

is not done concurrently with the app because the app’s disk

I/O would disrupt prefetching in the LBA sequence.

In this paper, we define three fundamental challenges in

reaping the potential speed-up with an app prefetcher, and

then explain how Paralfetch addresses these issues that

previous approaches fail to achieve. Overall, this paper makes

the following main contributions:

• Accurate tracking of launch-related blocks (§3.1): Most

monitoring methods fail to locate a significant number of

blocks during the learning phase [23]. In threaded prefetching

on SSDs, an access tracer should collect not only accessed

blocks but their access order. To do this, a viable solution is to

monitor at the disk I/O level after performing the invalidation

of unused entries in the disk cache. Unfortunately, metadata

and data blocks would not be detected by imperfect OS-level

disk cache invalidation. To address this problem, Paralfetch
introduces a file-system-level block dependency check and

low-overhead page-fault monitoring.

• Pre-scheduling of these blocks to increase prefetch
throughput (§3.2): Although the I/O involved in prefetch-

ing frequently becomes a bottleneck in threaded prefetching

on commodity SSDs, prior work does not address this issue.

We observe I/O dependencies between prefetch blocks to sig-

nificantly hinder the asynchrony of I/O requests, reducing

prefetch throughput. We address this problem with a new

I/O reordering method called metadata shift that places more

I/O requests between dependent I/O requests, issuing more

I/O requests asynchronously. A range merge is also intro-

duced to combine nearby I/O requests into one large request,

improving I/O throughput.

• Tailored overlapping of application execution with
prefetching (§3.3): We find that aggressive prefetching with

excessive pre-scheduling can actually increase launch laten-

cies because of I/O contention between the app and prefetch-

ing threads. Modern SSDs’ reordering of outstanding I/O

operations can aggravate this contention [41]. We vary the

amount of I/O optimization in response to a prefetching bottle-

neck. This avoids the I/O contention caused by an excessive

optimization, and thus helps Paralfetch find a better opti-

mization level.

• Implementation (§4) and evaluation (§5) of Paralfetch:

We evaluate Paralfetch in the launch of common apps on a

laptop PC, a Raspberry Pi 3, and an Android smartphone. With

the aforementioned features, Paralfetch achieves launch

performance close to the warm start: On a PC, Paralfetch
reduced the average system cold start time (favoring com-

petitors) of 16 benchmark apps by 48.0%, this number cor-

responds to 11% and 22% further reductions from FAST and

GSoC Prefetch, respectively. Paralfetch also reduced the

average app launch time on a Raspberry Pi 3 by 31%, and on

an Android phone by 11%. Paralfetch is publicly available1

1https://github.com/optios/paralfetch

ext4_readpages()

filemap_map_pages()

submit_bh_wbc()

Figure 1: I/O Stack in Linux. Linux includes three disk caches:

page cache for regular files, slab (or slub) cache for metadata

objects, and buffer cache for metadata blocks. The slab is used

as an object-granular metadata cache for buffer cache. read
system call explicitly fills page cache based on its arguments,

while page cache for mmaped files is populated through page

fault mechanism. Readahead framework is responsible for

filling the contents of page cache, and it determines how many

blocks to be prefetched based on the access sequentiality. Note

that metadata blocks can be prefetched by EXT4 file system.

2 Background and Motivation

2.1 Targets of Paralfetch

Linux-based systems using EXT4 file system. We imple-

mented and tested a Paralfetch prototype on EXT4 file

system on a laptop with SSD, a Raspberry Pi 3 with microSD

card, and a Pixel smartphone with universal flash storage

(UFS).

Large apps with highly deterministic I/O. Other applica-

tions do not benefit much from Paralfetch: I/O requests

from text-based apps such as cp, gcc and find largely depend

on input parameters that can change with every launch; and

apps such as pwd and ssh are too small to amortize prefetch

overhead, and are usually warm started.

2.2 Disk Caching in Linux

Figure 1 provides a summary of the Linux I/O stack from disk

caching perspectives.

Page cache and buffer cache. The Linux kernel provides two

cache mechanisms for disk blocks in terms of API and unit

size [15]: The page cache holds file pages, whereas the buffer
cache contains data blocks corresponding to block devices.

The contents and lookup spaces of these caches are managed

using a radix tree for each regular file or block device file.

426 21st USENIX Conference on File and Storage Technologies USENIX Association

In EXT4 file system, blocks of data from regular files are

cached in the page cache, while the buffer cache is used for

caching metadata blocks (e.g., inode table blocks, directory

blocks, and extent blocks). The contents of regular files can

be prefetched using a combination of device number, inode
number, offset, and size. On the other hand, metadata blocks

can be prefetched using a combination of device number and

block number. It should be noted that there are no prefetching-

level dependencies among buffer-cached (metadata) blocks,

whereas I/O requests for page-cached (data) blocks are de-

layed until relevant metadata blocks are cached.

Slab for caching file system metadata at object granularity.
Metadata objects in EXT4 file system, namely, the inode,

directory entry, and extent, are smaller than a file system

block but must nevertheless be managed individually so that

important objects are kept in memory, even when the memory

is under pressure. Therefore, the Linux slab object allocator

caches these objects without reference to the contexts of the

buffer cache. Thus an inode can be simultaneously stored in

both the slab and buffer caches.

Page cache accessing methods. A process can copy the

contents of the page cache into a user buffer using a read or a

file-related syscall. Alternatively, a process can map the extent

of a file to its virtual address space using the mmap syscall.

In the latter case, attempting to access an unmapped address

in the page table causes a page fault. To reduce the number

of page faults, Linux employs an interesting feature, called

faultaround [49], which pre-faults a 64KB-aligned chunk of

the address space around the fault address.

Disk cache invalidation. The Linux kernel provides functions

to invalidate disk caches. A user or process with root permis-

sion can invalidate these caches by writing a predefined value

(“1” for the page and buffer caches, “2” for the slab cache,

and “3” for all these) into the /proc/sys/vm/drop_caches
proc file. This method can only invalidate unused entries with

zero reference counts.

2.3 Representative App Prefetchers
Windows prefetcher [37]. Since XP, Windows has included

a prefetcher for launch and system boot. The Windows
prefetcher is customized for HDDs, but it can also be used

with SSDs, although user configuration is required to make

best use of more capable SSDs. In its learning phase, the

copies of file-backed memory pages which are required by

an application are identified by the Windows working-set

manager. The generated information, which is file-level data,

determines the disk blocks to be prefetched during subsequent

application launches. By defragmenting these blocks to make

their file-level prefetch blocks correspond to their LBA order,

the Windows prefetcher optimizes the disk head movements

of HDD. This time-consuming process is scheduled to happen

every three days.

GSoC Prefetch [29], which was selected for the Google Sum-

mer of Code 2007, is a Linux-based prefetcher for HDDs. It

t

t

Figure 2: SSD cold start scenarios with and without Paralfetch.

Si is the ith block requested from the SSD, and Ci is the

corresponding CPU computation. Paralfetch expedites an

application launch by exploiting parallelism of each resource

(i.e., multicore activation and internal parallelism on SSDs)

and utilizing these resources concurrently.

obtains launch-related block information in its learning phase

by first clearing the bit in every OS-managed page descriptor

(not page table) which indicates that the page has been ref-

erenced. After a predefined monitoring time (10 seconds by

default), GSoC Prefetch traces those referenced pages with

‘referenced’ bits on. It then extracts a file identifier (device

number, inode number, and offset) from each of the traced

pages. Next, GSoC Prefetch sorts the pages based on these

identifiers and stores the sorted pages in a file. On subsequent

launches, launch-related blocks are prefetched in the order

recorded in that file. This reduces both seek and rotational

latencies in HDDs. GSoC Prefetch has a defragmentation tool

similar to that in the Windows prefetcher.

FAST [24] is a recent Linux-based prefetcher for SSDs. It

starts by clearing the slab, buffer, and page caches. Then,

FAST begins its learning phase, during which it creates a

prefetch program by monitoring the LBAs of blocks using the

blktrace tool and converting them to prefetchable system

calls with arguments. On subsequent launches, FAST executes

this prefetch program at the same time as the application. Disk

blocks are prefetched in order without any I/O optimization.

2.4 Cold Start with Paralfetch
Figure 2a shows a cold start scenario without Paralfetch,

and Figure 2b shows the same scenario in which Paralfetch
runs the application concurrently with a prefetch thread. The

computations run on multiple CPU cores, in parallel with the

SSD accesses, which are issued in a way that exploits the inter-

nal parallelism of the SSD. This is effected by issuing concur-

rent asynchronous I/O requests using the command queuing

(CQ) feature. If an SSD does not support CQ, Paralfetch
merges I/O requests, which have consecutive LBAs and are

close in the block access sequence, so as to promote internal

parallelism.

USENIX Association 21st USENIX Conference on File and Storage Technologies 427

Table 1: Metadata and data block requests required to launch applications with missing metadata blocks. Note that ‘regular’ files

include mmaped files, and that files mmaped by running applications are not subject to disk cache invalidation. The last column

shows the number of I/O operations that were not captured by Paralfetch, which varies from run to run.

Read requests traced by Paralfetch Number of missing Number of accessed files

Application Metadata accesses File data accesses metadata blocks regular mmaped Number of

(total size in KB) (total size in KB) detected files files missing I/Os

U
b
u
n
tu

L
in

u
x

(L
ap

to
p

P
C

)

Android Studio 1,330 (6,844) 3,845 (197,932) 58 954 10 38

Chromium Browser 612 (3,048) 1,135 (130,728) 37 629 108 34

Eclipse 565 (3,348) 1,669 (67,256) 28 744 328 49

GIMP 489 (2,620) 1,026 (38,512) 20 975 474 28

LibreOffice Impress 590 (2,900) 706 (83,004) 37 438 232 32

LibreOffice Writer 552 (2,800) 729 (83,824) 25 476 227 33

Okular 1,093 (5,720) 426 (23,640) 41 349 238 36

Scribus 840 (5,984) 1,560 (141,056) 35 1,230 682 21

VLC Player 682 (5,420) 444 (20,192) 41 375 104 32

Xilinx ISE 573 (3,024) 1,028 (176,504) 42 657 273 33

R
as

p
b
ia

n
O

S
(R

as
p
b
er

ry
P

i
3
) Chromium Browser 496 (1,984) 2,017 (138,600) 40 473 68 41

Frozen Bubble 605 (2,420) 3,769 (32,992) 25 3,425 26 12

GIMP 618 (2,472) 1,863 (46,664) 38 991 296 47

LibreOffice Writer 596 (2,384) 911 (35,164) 33 395 154 36

Scratch 2 332 (1,328) 839 (48,580) 40 294 73 19

Xpdf 127 (508) 169 (7,236) 15 75 21 11

0 A.D. 206 (509) 669 (86,272) 19 162 139 21

A
n

d
ro

id
8

.0
(G

o
o

g
le

P
ix

el
X

L
)

Asphalt 8 131 (988) 838 (217,240) 49 179 N/A 11

Dragon Quest 8 95 (852) 4,339 (333,812) 46 335 N/A 12

FIFA 16 UT 76 (772) 805 (166,120) 39 265 N/A 47

GTA SA 104 (560) 377 (82,928) 41 95 N/A 36

Truck Pro 96 (792) 1,792 (115,732) 41 175 N/A 19

Devil May Cry 237 (1,728) 1,904 (316,004) 45 407 N/A 19

The War of Mine 127 (696) 517 (128,300) 43 101 N/A 11

3 Paralfetch Design and Preliminary Results

3.1 Accurate Tracing
The benefit from an application prefetching is limited by

the tracing accuracy with which launch-related blocks are

traced. In particular, accurate tracing is essential to prevent

a launching application’s wait for missing blocks from disk

when several concurrent threads are causing lots of I/O con-

tention. Note that the threaded prefetching can marginally

benefit from Windows prefetcher and GSoC Prefetch which

cannot trace the block access sequence because they rely on a

snapshot of the working set or of the referenced pages after a

launch.

There are also issues with the tracing method used by GSoC

Prefetch: it only traces pages for regular files, and missing

metadata limits the benefit of prefetching; a significant num-

ber of pages are also accessed more than once during a launch.

This latter issue is particularly problematic because, when a

page with the ‘referenced’ bit set on is accessed for the second

time, Linux OS turns off the ‘referenced’ bit and promotes

the page from the inactive list to the active list. As a result,

some pages are never traced. In the case of Eclipse, we found

2,782 file-backed pages not traced.

Potentially, the highest accuracy would be achieved by

monitoring page faults and data accesses at all disk caching

layers (e.g., slab, buffer, and page caches). But such exhaustive

tracing would produce significantly more data than I/O-level

monitoring (37× during an Eclipse launch), incurring unac-

ceptable memory and computation overheads. Furthermore, a

log of I/O operations obtained by monitoring disk cache ac-

cesses is likely to include many useless cached entries created

by I/O operations of background tasks.

This issue is successfully mitigated by monitoring I/O re-

quests: In the learning phase, Paralfetch invalidates unused

entries in the disk cache, so that Paralfetch collects a proper

set of blocks for subsequent launches of the application. It

then records I/O requests for blocks not found in these caches

by instrumenting file system functions with I/O logging codes,

and these requests are used to prefetch those additional blocks

during launches. In this paper, we use the term log entry to

refer to a log of I/O request collected during a launch, while

the term prefetch entry refers to an entry used for prefetching

disk blocks. The latter includes arguments for prefetching

function calls.

Unfortunately, as mentioned earlier, the invalidation of disk

caches (slab, buffer, and page caches) is not perfect because

only unused entries can be invalidated; a working set of blocks

for running applications is always retained. This issue has

been overlooked in previous schemes (including FAST), i.e.,

their evaluation was restricted to system cold start scenarios.

Table 1 classifies traced blocks with Paralfetch. Note that

metadata blocks and mmaped file blocks are potential missing

blocks when using FAST. Since usually many user and system

processes run in the background, this issue can significantly

degrade tracing accuracy. For example, 225 files of this kind

were accessed by both LibreOffice Impress and LibreOffice

Writer (on a laptop) during a launch of either. Thus, an at-

tempt to trace launch blocks for LibreOffice Writer just after

LibreOffice Impress launched (and started running in the back-

ground) returns only 700 log entries (27,688 KB) compared

428 21st USENIX Conference on File and Storage Technologies USENIX Association

to 1,281 log entries (83,824 KB) during a system cold start.

We conducted further experiments by substituting Android

Studio, Chromium Browser, Eclipse, and GIMP for LibreOf-

fice Impress. Surprisingly, imperfect cache invalidation still

resulted in many missing data and associated metadata blocks:

5.0%, 12.0%, 14.4%, and 6.6% of the total in each case. The

launch time impact of missing blocks is significant as shown

in §5.2.

We have therefore developed two methods to detect missing

metadata and data blocks.

1) Finding missing metadata blocks. We first introduce

a file system-level dependency check, called missing meta-
data block detection, which identifies launch-related metadata

blocks (i.e., inode and extent blocks) that have not been traced

due to the imperfect invalidation of the slab and buffer cache,

but nevertheless share a dependency with traced data blocks.

To address this issue, Paralfetch implements a function

(§4.2) that tracks associated metadata blocks for each log

entry for a regular file. Table 1 shows that 15 – 58 missing

metadata blocks were found during launches, and these num-

bers vary with the number of irreclaimable entries in the disk

caches under use by running applications. When these miss-

ing blocks are found, Paralfetch inserts new log entries for

them just before other log entries of associated data blocks.

2) Page fault monitoring. Page cache invalidation is also

imperfect because file-backed pages which are dirty, under

writeback, or accessed through mmap, are not invalidated. To

trace pages which are dirty or under writeback, Paralfetch
flushes them out via a sync operation before the disk cache

is cleared. However, pages accessed through mmap, such as

shared library files, are more challenging. When these are

shared with running applications, tracing accuracy is compro-

mised. To address this issue, we arranged for Paralfetch
to trace previously untraced blocks accessed through mmap
calls by instrumenting the faultaround [49] handler with page

fault tracing code. The handler proactively maps 16 boundary-

aligned (page-cached) pages around the page-faulted address.

3.2 Prefetch Scheduling
Upon completion of collection of disk I/O requests during an

application launch, Paralfetch pre-schedules these requests

to speed up the prefetching phase, merging and reordering
requests so as to exploit the internal parallelism of an SSD.

Range merging. Merging small I/O requests into a single

large request enhances the throughput of an SSD [12, 27, 32,

43]. Figure 3b shows a range merge in which two requests for

blocks with consecutive LBAs that are within a predefined

I/O distance threshold are combined where the I/O distance is

defined as difference in the locations of blocks in the launch

sequence. This threshold prevents the merging of far-apart

log entries in the launch sequence, as they can hinder timely

prefetching of subsequent blocks. Overly-aggressive merg-

ing can be bad especially for applications with CPU-bound

launches, in which I/O optimization is less influential in meet-

(a) Original prefetch sequence

[2] 1, 5, 8 [5] 1, 13, 2[3] 0, 16, 1 [4] 0, 20, 1 [7] 0, 17, 1[6] 2, 22, 3

[2] 1, 5, 10 [3] 0, 16, 1 [4] 0, 20, 1 [6] 2, 22, 3

(b) Prefetch sequence after range merge with an I/O distance threshold of 3

Metadata I/O

File data I/O

[1] 0, 3, 1

[1] 0, 3, 1

Starting block number (LBA)

 size
(blocks)

Sequence
number

LBA-contiguous (I/O distance = 5 - 2)

LBA-contiguous (I/O distance: sequence number difference between merge candidates = 7 - 3)

Merge: I/O distance between contiguous blocks (3) I/O distance threshold (3)

[7] 0, 17, 1

Inode
number

Figure 3: Range merge. Merging nearby I/O operations into

a single large operation improves throughput while keeping

changes to the I/O order within a predefined limit so that the

target application and prefetch thread can run concurrently.

Range merge combines LBA-contiguous I/O requests of the

same type (e.g., metadata or data block) into the preceding

one.

ing prefetching deadlines. Figure 4 shows plots of prefetch

time against the I/O distance threshold on SSD, UFS flash,

and MicroSD. The performance gain from range merging tails

off as the threshold increases mainly because EXT4 tries to

locate metadata and data blocks for related files close together

in terms of LBA.

Metadata shifting. Every file system has its own particular

I/O dependencies for prefetching between metadata and data

blocks (and between metadata blocks). In EXT4, a request for

a data block can only be issued after the associated metadata

block, which contains the LBA of that data block, has been

read. The metadata for a data block is often requested just

before the corresponding data block.

Thus this dependency tends to limit the number of com-

mands that can be queued, and this in turn limits the effective-

ness of command queuing, which yields maximum benefit

when there are many commands in the queue which can po-

tentially be executed in parallel [39].

(a) SSD-based Laptop (b) UFS-based Pixel XL

(c) MicroSD-based Raspberry Pi 3

Figure 4: Normalized prefetching times with varying I/O

distance thresholds.

USENIX Association 21st USENIX Conference on File and Storage Technologies 429

4K 32K 64K16K 8K 4K

File 1:
inode
block

File 1:
data block

Command queue is empty
due to prefetch dependency

File 2:
inode block

File 2:
extent block File 2: data block

4K 4K

(a) Original prefetch sequence

File 1:
data block

4K 32K 64K16K8K 4K4K 4K 4K

(b) Prefetch sequence after shifting metadata with a shift size of 8KB

File 1:
inode
block

File 2:
inode block

File 1:
data block

File 1:
data block

File 2:
extent block

File 2:
data block

Prefetch dependency

4K

I/O size

Metadata I/O

File data I/O

Metadata I/Os are left-shifted to increase I/O distance between dependent requests

Prefetch
dependency

Figure 5: Metadata shifting to boost the outstanding I/O size

in the command queue of an SSD controller. An I/O request

for data blocks should wait for the associated metadata blocks

to be read. By left-shifting I/O requests for metadata, more I/O

requests can be issued asynchronously. The shift size controls

the extent to which metadata blocks can be left-shifted.

This issue can be addressed by bringing forward requests

for metadata blocks. This is facilitated in EXT4, where there

are no read dependencies among buffer-cached (metadata)

blocks, while I/O requests for page-cached data blocks can

only be issued after associated metadata blocks are buffer-

cached. Figure 5a shows the processing of an example

prefetch thread, in which dependencies on metadata blocks

cause the command queue to become empty on two occasions.

Figure 5b shows how Paralfetch brings forward metadata

block requests in the prefetch thread to increase the interval

between requests for dependent blocks. Figure 6a shows that

the average prefetching time on a CQ-enabled SSD was re-

duced by 21.6% through shifting metadata requests forward

by 128 KB, when combined with the tracing of missing meta-

data blocks.

An SSD without CQ support can also benefit from shifted

metadata (Figure 6c): requests to the I/O scheduler can be

issued in advance, so that the storage driver receives a request

earlier from the I/O scheduler queue, rather than later by the

application; and an MMC/SD driver (for eMMC flash and SD

cards) overlaps flash access for the current I/O request with

DMA preparation for the next I/O request. A metadata shift

of 4 KB reduced prefetch times by 19.3% on the Raspberry

Pi 3 using a MicroSD.

Correctness. The read requests from the prefetch thread go

through disk caches, and hence reordering and merging of a

launch sequence have no implications on correctness. Even if

a prefetch entry is outdated, it only affects the launch perfor-

mance.

3.3 Parallelized Execution: Overlapping Ap-
plication Execution with Disk Prefetching

Timely prefetching can better overlap application execu-

tion with prefetching. Reordering or merging blocks far

apart could improve prefetch throughtput but could also hin-

der timely prefetching. Experimental results in Figures 7

and 8 substantiate the claim by showing prefetching through-

put does not always correspond to launch performance.

Paralfetch avoids this pitfall by tailoring metadata shift

and range merge dynamically. A challenge is how to find

near-optimal threshold values in an automatic manner. To ad-

dress this, Paralfetch employs dynamic scheduling which

reschedules prefetch entries with an increased I/O distance

threshold and/or metadata shift size when a prefetching bot-

tleneck is detected.

The ability of shifting metadata and merging nearby re-

quests to reduce prefetching time on SSD-based systems is

limited by contentions between I/O requests from the prefetch

thread and I/O requests which must be issued by the appli-

cation because they were omitted from the prefetch thread.

As shown in Table 1, we found that an average of 2.8% of

requested blocks were not traced despite the improved tracing

features of Paralfetch. These missing blocks are inevitably

requested by the application, which waits until the blocks are

loaded from the disk. Contention between the application and

the prefetch thread becomes critical when there are too many

I/O requests in the I/O scheduler or command queue [13] in

an SSD. This can occur when metadata blocks are shifted

too far, or when an oversize I/O request is created by range

merging with a large threshold. From an experiment with

Eclipse, we found that the effect of missing blocks on latency

was increased by 3.2× and 8.7× when the largest allowable

shifts were 128KB and 256KB, respectively.

To avoid the need to optimize the thresholds for meta-

data shifting and range merge over a number of trial runs,

Paralfetch gradually increases the threshold if prefetching

(a) SSD-based Laptop (b) UFS-based Pixel XL (c) MicroSD-based Raspberry Pi 3

Figure 6: Normalized prefetching times for different metadata shift sizes.

430 21st USENIX Conference on File and Storage Technologies USENIX Association

(a) SSD-based Laptop (b) UFS-based Pixel XL (c) MicroSD-based Raspberry Pi 3

Figure 7: Normalized launch times with varying I/O distance thresholds.

(a) SSD-based Laptop (b) UFS-based Pixel XL (c) MicroSD-based Raspberry Pi 3

Figure 8: Normalized launch times for different metadata shift sizes.

Table 2: Default configuration for prefetch optimization.

SSD without CQ feature SSD with CQ feature

I/O distance threshold Starts at 8 and

for range merging can be increased
8

Metadata shift size Starts at 64 and

(KB) for metadta shifting
4

can be increased

is not effective. Next, we describe how to control the extent

of dynamic scheduling and how to measure the effectiveness

of prefetching.

Optimizing prefetch entries with dynamic scheduling. Ini-

tially, Paralfetch uses default thresholds for metadata shift-

ing and range merge shown in Table 2. It subsequently in-

creases the threshold for only one of these methods, depend-

ing on the availability of CQ support. The metadata shifting

threshold is increased in increments of 16KB and the I/O

distance threshold in increments of 4.

The best combination of scheduling methods depends on

the type of disk. For example, on a CQ-supported SSD, range

merge gains little beyond a threshold of 8, which can, there-

fore, be used as a default during the learning phase. Similarly,

metadata shifting yields little benefit on MicroSD-based de-

vices without CQ support beyond a threshold of 4KB.

Detecting prefetch bottleneck. An application experiences

more context switches when it has to wait for the blocks re-

quested by the prefetch thread, implying that the prefetch

thread is not prefetching in time. Specifically, the prefetch

thread collects the number of context switches made by

the launching application during the prefetching period.

Paralfetch ends dynamic scheduling if the quantity of con-

text switches is below a user-defined threshold (by default,

5% of the number of prefetch entries). The overall disk read

size is checked by Paralfetch in order to remove the results

from the warm cache.

4 Implementation of Paralfetch

This section details the workflow of Paralfetch and the

interaction among its main components described in Figure 9.

4.1 Launch Phase Management

Native Linux: The next launch type for each application

is determined by reading the 9-th byte of the header of

its executable and linkable format (ELF) binary file. This

byte (referred to as the phase byte) is normally used for

memory alignment (padding), and has a default value of 0.

It is set to PHASE_LEARNING (3) for a learning phase and

PHASE_THREADED_PREFETCHING (1) for a prefetching phase.

A user can also set this value to PHASE_DISABLE (9) to disable

prefetching altogether, for small applications or utilities that

frequently experience warm starts. The phase byte is passed

to the ELF binary loader (load_elf_binary).

Paralfetch supports two modes for launch phase manage-

ment. In manual mode, a user explicitly selects applications

that will use Paralfetch, by calling pfsetmode, which takes

a value for the phase byte and an ELF binary path as argu-

ments. pfsetmode can be also invoked from a desktop icon

(i.e., mouse right-click menu). In contrast, Paralfetch is

applied to all installed applications in automatic mode, which

is similar to the management method used in FAST.

Android: zygote is a process that creates a native Android

application in Java by forking and loading the main class

of a program [30]. zygote invokes the handleChildProc
method to create and run a new Android application. To re-

USENIX Association 21st USENIX Conference on File and Storage Technologies 431

trace timeout

Page fault and SSD read events

app_name>.pf

Dynamic scheduling

Binary loader (native Linux) or Zygote process (Android)

Learning phase
(first launch)

Prefetch phase
(subsequent launches)

Pre-scheduling

Parallelized execution
Accurate
tracing

Learning phase workflow Prefetching phase workflow

(Extended) Log entries
(+ seq#, LBA, two Red-black tree nodes)

Log entries
(dev#, inode#, offset, size)

Figure 9: Paralfetch workflow. Boxes with dotted edges de-

note threads, and boxes with solid edges identify the three

major components of Paralfetch. During a learning phase,

Paralfetch records an I/O log as a form of log entry. Upon

the completion of the launch, collected log entries are passed

to missing metadata detector, generating additional log en-

tries for missing metadata. Then, the log entries are passed

to pre-scheduling functions as a form of red-black tree. The

details of pre-scheduling are described in Algorithm 1 and 2.

duce launch times, zygote preloads classes and resource files

used by many applications, quickly creating a process which

shares these preloaded classes. Unlike native Linux processes,

a native Android process remains in the background even after

a user quits the application, and can be resumed by moving

the process to the foreground (the resuming procedure). How-

ever, when free memory is in short supply, Android wakes up

the low memory killer (LMK) to reclaim memory space by

removing less important processes completely.

To interface Paralfetch with the Android platform, we

created a file named fetch_app using sysfs, which pro-

vides a communication interface between the Linux ker-

nel and a user process. On Android, Paralfetch uses au-

tomatic launch management mode, in which Paralfetch
tailors each launch to the type of application. When the main

class name of an application is written to the fetch_app file,

Paralfetch determines how to perform the launch phase

based on the following rules: if there is no corresponding

<class_name>.pf file2 in the /persist/paralfetch direc-

2<class_name>.pf file is equivalent to <app_name>.pf in native Linux.

tory, then Paralfetch starts a learning phase for that applica-

tion; but if the file exists, then Paralfetch performs prefetch-

ing. To implement this, we augmented the handleChildProc
method to write the main class name of the application being

launched to the fetch_app file. Paralfetch does not begin

a prefetching for the resuming procedure that does not invoke

handleChildProc.

4.2 Learning Phase
I/O logging. To collect blocks required for a launch,

Paralfetch first invalidates unused entries in the slab (for

file system objects), buffer and page caches, and temporar-

ily disables the inode read-ahead functionality of EXT4 so

as to prevent I/O contention resulting from unnecessary in-

ode blocks being read during the prefetching phase. Next,

Paralfetch sets a trace timeout, with the default value of

30 seconds, and also sets the trace_flag to true to acti-

vate logging. Then, Paralfetch resumes loading and ex-

ecution of the application. During the execution, the I/O

requests for buffer-cached blocks caused by disk cache

misses are logged by code introduced into the metadata ac-

cess function (submit_bh_wbc). Similarly, code introduced

into the functions ext4_readpage, ext4_readpages, and

filemap_map_pages logs read requests associated with page-

cached blocks.

Page fault monitoring. The filemap_map_pages function

is called by the OS when a page fault occurs. It pre-faults

the 16 boundary-aligned pages which contain the faulting

page, provided that these pages are in the page cache [49].

Performing this reduces the overhead of tracing page faults.

Tracing missing metadata blocks. Block tracing ends when

the trace times out, and the launch is deemed to be com-

plete when fewer than 10 block read requests occur in a sec-

ond [25]. We refer to the corresponding block of an appli-

cation as the completion block. To detect missing metadata

blocks, we implemented the ext4_fiedep function, a variant

of the ext4_fiemap function that must in any case access

the metadata blocks associated with file blocks during the

mapping of logical-to-physical extents. Unlike the original

version that returns file extents for arguments (i.e., a file and

query range of the file), the ext4_fiedep function returns a

list of associated metadata blocks along with file extents.

As shown in Figure 9, Paralfetch builds two red-black

binary search trees for log entries that are used for prefetch

scheduling: Paralfetch reads log entries in their access

order and inserts each of them to the trees. It invokes the

ext4_fiedep function for each log entry for a regular file. If

the corresponding metadata blocks are missing from the tree,

Paralfetch allocates and inserts new log entries for them

right before the entry for the corresponding data blocks.

This operation consumes little CPU time (17 ms for An-

droid Studio) and incurs no disk I/Os because the procedure

runs in the warm cache condition (i.e., after the completion

of a launch process).

432 21st USENIX Conference on File and Storage Technologies USENIX Association

Algorithm 1: Metadata Shift Procedure

Input: Log entries sorted by their access order (rbtree_seq),

Metadata shift size (ms_size)

Result: Metadata-shifted log entries (accessed via rbtree_seq)

1 log ← first_log_entry(rbtree_seq)

2 out_meta_size ← 0

3 while log �= NULL do
4 if is_metadata_log_entry(log) then
5 move_to_MS_queue(log)

6 out_meta_size ← out_meta_size + log.size
/* expired entries (log.expire <= out_meta_size)

in wait queue are moved to MS queue */
7 move_expired_wait_queue_entries_to_MS_queue()

8 else
9 log.expire = out_meta_size + ms_size

10 move_to_wait_queue(log)

11 log ← next_log_entry_seq(log)

12 drain_wait_queue_entries_to_ms_queue()

13 rebuild_rbtree_seq_to_correspond_to_ms_queue_order()

Algorithm 2: Range Merge Procedure

Input: Log entries sorted by their LBA (rbtree_lba) and access

order (rbtree_seq), IO distance threshold (dist_thr)

Result: Range-merged log entries (accessed via rbtree_seq)

1 curr ← first_log_entry(rbtree_lba)

2 next ← next_log_entry_lba(curr)

3 while next �= NULL do
4 if curr.inode_num = next.inode_num &

5 curr.start_lba + curr.size = next.start_lba &

6 next.seq_num − curr.seq_num <= dist_thr then
7 curr.size ← curr.size + next.size
8 unlink_log_entry_from_rbtrees_lba_and_seq(next)
9 remove_log_entry(next)

10 next ← next_log_entry_lba(curr)

11 continue

12 curr ← next
13 next ← next_log_entry_lba(curr)

Pre-scheduling. Paralfetch schedules the collected log en-

tries. Algorithm 1 describes the procedure of metadata shift:

Paralfetch accesses log entries in their access order (lines

1, 3, 11). A log entry for metadata blocks moves right away to

the MS queue3 (lines 4–5), while a log entry for data blocks

remains in the wait queue until enough subsequent metadata

blocks (at least the metadata shift size) are moved to the MS

queue (lines 9–10) in order to left-shift metadata I/O requests

When enough metadata blocks are left-shifted, the accompa-

nying wait queue log entries are transferred to the MS queue

(line 7). Finally, the red-black tree rbtree_seq is rebuilt with

the metadata-shifted order (line 13) once the remaining log

items in the wait queue are transferred to the MS queue (line

12).

To perform range merge (as described in Algorithm 2),

Paralfetch accesses log entries in their LBA-sorted order.

This makes it easy to detect log entries that have consecu-

tive LBAs (line 5) of the same inode (line 4). Range merge

then combines consecutive I/O operations (lines 7–9) that are

3The MS queue stores the metadata-shifted order of log entries.

within a predefined threshold for I/O distance in the launch

sequence (line 6).

Different thresholds of metadata shift and range merge

are used for SSDs with and without command queuing

(CQ). To discover whether an SSD supports CQ, the

Paralfetch initialization process, executed by the systemd
daemon or a startup script (e.g., rc.local), examines

sysfs files. For example, the CQ support for an SATA

SSD is determined by the value of /sys/block/<root
device>/device/queue_depth.

Storing scheduled log entries. Scheduled log entries (i.e.,
prefetch entries) are stored in the file <app_name>.pf (e.g.,
eclipse.pf for Eclipse). This file consists of a 24-byte

Paralfetch header, followed by prefetch entries. The header

contains the version number, the inode number of the exe-

cutable file, the metadata for dynamic scheduling, the number

of obsolete entries, and the number of prefetch entries. Each

prefetch entry contains the device number, the inode number,

its offset and size. The inode number for a metadata block is

set to 0. The size of each prefetch entry is 20(24) bytes on a

32(64)-bit system.

4.3 Prefetching Phase
During the prefetching phase, Paralfetch creates the

prefetch thread, following the sequence stored in the

<app_name>.pf file.

For EXT4 file system, Paralfetch uses the

__breadahead function to prefetch metadata blocks,

and the force_page_cache_readahead function to

prefetch data blocks for regular files. While these functions

try to perform block caching asynchronously (or in a

non-blocking manner), data blocks can be prefetched

asynchronously only when the associated metadata blocks are

ready. Paralfetch uses explicit I/O plugging [3] to merge

contiguous metadata (bio) requests into a single request,

which is then delivered to the dispatch queue of device

drivers. This reduces the amount of computation required for

dispatching and completing I/O requests.

Changing from prefetching back to the learning phase.
The set of blocks required for the first launch of some appli-

cations is significantly different from that required for sub-

sequent launches. For example, Eclipse and GIMP only con-

figure their environments on their first launch: Paralfetch
detects this behavior by counting I/O requests issued by an ap-

plication during its launch, which is easily done by counting

synchronous readahead requests [38] in the Linux readahead

framework [33]. If the count is greater than 10% of the to-

tal number of prefetch entries, Paralfetch returns to the

learning phase.

5 Evaluation
5.1 Methodology
Launch time measurement. Like [24], we measure the

launch time of an application between two events: in the

USENIX Association 21st USENIX Conference on File and Storage Technologies 433

Figure 10: Launch times on a laptop equipped with a QLC SSD, normalized to cold start times. Optimizations for Paralfetch
are incrementally applied.

case of Linux, the launch is deemed to start when the

load_elf_binary function is called, and to finish when the

completion block request has itself completed. To identify the

latter event, we remove the completion block request from

the prefetch file, allowing it to be issued by the application.

After a warm start, we call posix_fadvise with the argu-

ment POSIX_FADV_DONTNEED to evict the completion block

request from the page cache.

Comparisons with other prefetchers. We ported the GSoC

Prefetcher to the Linux kernel 5.4.51 and set its trace timeout

to the value used by Paralfetch. We temporarily modified

Paralfetch to bring its operation in line with three key fea-

tures of the GSoC Prefetcher: 1) the way in which it traces ref-

erenced file pages during an application launch, 2) its method

of pre-scheduling disk I/O using inode numbers and in-file

offsets as sort key, and 3) the way in which it holds an appli-

cation until prefetching is completed, rather than allowing the

application and the perfetcher thread to compete.

FAST only supports EXT3 file system, so we temporarily

modified Paralfetch’s function for detecting missing meta-

data to support EXT3. We could only compare FAST with

Paralfetch on a PC because the Android and Raspbian OS

do not support EXT3 file system.

5.2 On a PC

We conducted experiments on a laptop PC equipped with

an Intel Core i5-8265 CPU and 16 GB of RAM, running

Linux kernel 5.4.51. This PC has a 1 TB Samsung 860 QVO

QLC SSD, which uses native command queuing. We tested

Paralfetch, GSoC Prefetch and FAST on 16 applications, 6

of which were games. The 10 non-game applications were An-

droid Studio, Chromium Browser, Eclipse, GIMP, LibreOffice

Impress, LibreOffice Writer, Okular, Scribus, VLC player, and

Xilinx ISE; and the 6 games were Ancestors Legacy, Atom

RPG, Battle Tech, Pillars of Eternity 2, Tyranny, Witcher 3.

QLC SSDs typically employ a small pseudo-SLC (single-

level cell) cache. To reduce the effects of this cache, we con-

ducted evaluation after installing all benchmark apps.

Comparison with the GSoC prefetcher. Figure 10 shows

Paralfetch to reduce the average launch time of these 16

applications by 44.2% with pre-scheduling alone. After four

launches of each application, a 1.8% more reduction was

achieved on average by using dynamic scheduling to increase

prefetch throughput.

It should be noted that the naïve use of excessive metadata

shift (of 256KB) led to a 3.8% increase in average launch

time: as previously shown in Table 1, Paralfetch fails to

trace a few launch blocks. A launching application should

wait for these missing blocks to be read while a large number

of outstanding I/O requests due to excessive metadata shift

increase the waiting time.

Figure 11: Comparison of Paralfetch and FAST launch times

on a laptop PC, normalized to cold start times. Tracing of each

application is performed when LibreOffice Writer is running

in the background. The results show that running applications

can significantly degrade tracing accuracy of FAST and its

performance benefit.

Comparison with FAST. FAST is the closest to ours in that

its target media is SSDs. In §3.1 we described how disk cache

clearing affects tracing accuracy. The most serious drawback

of FAST seems to be that the accuracy of its tracing depends

greatly on the other applications that are running, because

files accessed by these applications through mmap are not

traced. Also, metadata used by the applications are not traced.

We believe that this issue is frequently occurred in common

scenarios. Figure 11 shows the significance of this issue. Con-

versely, the page fault monitoring and detecting missing meta-

data used by Paralfetch leads to launch times similar to that

of a warm start.

Figure 12: Average launch

time for 16 apps on a laptop

equipped with a QLC SSD,

normalized to cold start times.

Although tracing under

a system-cold state favors

FAST, the launch times av-

eraged across all 16 appli-

cations were 11% less with

Paralfetch than with FAST
as shown in Figure 12. The

relatively poor performance

of FAST can be attributed to

its reliance on system calls,

which limits both the accu-

racy of tracing and its scheduling options, in particular its use

434 21st USENIX Conference on File and Storage Technologies USENIX Association

Figure 13: Launch times on a Raspberry Pi 3, normalized to cold start times. Optimizations for Paralfetch are incrementally

applied.

of synchronous I/O for prefetching metadata blocks makes it

difficult to exploit parallelism.

5.3 Raspberry Pi 3

Our second evaluation of Paralfetch was conducted on a

Raspberry Pi 3 running the Raspbian OS (Linux kernel 4.9.56)

with a Samsung 16 GB MicroSD (class 10). This flash storage

does not support CQ (although more recent A2-class MicroSD

has both CQ and an SLC cache).

We used 13 applications, 8 of which were games: Frozen

Bubble, GIMP, LibreOffice Writer, Chromium browser,

Scratch 2, Xpdf, 0 A.D., Extreme Tux Racer, LinCity, Mind-

craft, Open Arena, Quake 3 Arena, and Xmoto. The launch

times in Figure 13 show that frequent flash accesses con-

tribute about 45% of the delay in application launches. This

provides a considerable opportunity for I/O scheduling. After

four launches with dynamic scheduling, launch times are fur-

ther reduced by an average of 4.8% compared to Paralfetch
with pre-scheduling only. We attribute this reduction to: 1)

an application launch on a Raspberry Pi 3 board is a disk-

bound process, and 2) the throughput of a MicroSD is usually

improved by merging I/O operations: for example, the band-

width of random reads of 128KB on the MicroSD we used

is 28.6 MB/sec, which is 6.7× higher than that of 4KB (only

4.3 MB/sec). Chromium Browser and Xpdf application launch

times are more heavily influenced by disk performance than

by CPU performance. Due to the significant limitations of

timely prefetching with prefetch scheduling, it is difficult to

achieve warm start launch performance, especially for SSDs

without command queuing.

Figure 14: Launch times on an Android smartphone (Google

Pixel XL), normalized to cold start times.

5.4 Google Pixel (Android)

Paralfetch can be easily ported to Linux variants, such as

Android. Android has its own launch mechanism, and hence

we needed to modify 180 lines of the Android source code to

accommodate Paralfetch.

To test Paralfetch on Android, we used a new set of

seven games: Asphalt 8, Devil May Cry, Dragon Quest 8,

FIFA 16 UT, GTA SA, The War of Mine, and Truck Pro. We

measured the launch times for these games on a Google Pixel

XL smartphone with UFS flash (which supports CQ) running

Android 8.0 (Oreo) with the Linux kernel 3.18.52. As shown

in Figure 14, the pre-scheduling performed by Paralfetch
reduced launch times by 11% on average, which equates to

as much as 3.5 seconds for Dragon Quest 8. However, dy-

namic scheduling offers little benefit because 1) application

launches are CPU-bound (86% on average in our benchmarks)

rather than disk-bound, and 2) launches encounter little depen-

dencies between metadata and data blocks. Another distinct

characteristic of an Android app launch is that a number of

write and fdatasync syscalls are issued by SQLite during

the launch, making a gap between the times for a warm start

and a cold start with Paralfetch.

5.5 Overhead

We measure Paralfetch’s overheads on a laptop PC from 4

aspects: tracing, pre-scheduling, prefetching and storage.

Tracing overhead. The I/O-based tracing used by

Paralfetch has a low instrumentation overhead, and in

most cases log entries are relatively short (e.g., less than 3000

entries). Android Studio is an exception, as it creates lots of

log entries. Nevertheless, the difference in cold start launch

time with and without Paralfetch was only 136ms. Disk

cache invalidation can produce some latency, but this does

not affect the working set of pages. Thus, it should not affect

the users. In any case, the cache is only invalidated during

the learning phase.

Pre-scheduling overhead. In our experiments, the time re-

quired by the background jobs which perform pre-scheduling,

including missing metadata detection, metadata shift, and

range merge, varied between 42ms for VLC Player and 153ms

for Android Studio, whereas FAST took 21 seconds to gener-

ate the prefetch program for Android Studio. When there is

an idle CPU core, pre-scheduling delays can be hidden from

users because Paralfetch creates a dedicated thread for that.

USENIX Association 21st USENIX Conference on File and Storage Technologies 435

Prefetching overhead. Paralfetch employs threaded

prefetching, imposing extra overhead from management per-

spective. However, we observed that threaded prefetching

can reduce CPU usage for an application launch in the cold

start. As shown in Figure 2, a synchronous I/O incurs two

context switches. On the other hand, the asynchronous I/O

requests issued by the prefetch thread significantly reduce the

overall number of context switches. In our sampling-based

CPU utilization measurement [22], we found that the number

of context switches during a launch of Android Studio with

Paralfetch was reduced from 9,902 to 1,035, resulting in a

3.2% reduction in CPU usage.

In the warm start where prefetching is unnecessary,

Paralfetch still runs the prefetch thread, but this only in-

curs a delay of hundreds of microseconds if an available CPU

core exists. Even if there was no available CPU core, where

prefetching overhead could not be hidden, Paralfetch ex-

tended Android Studio launch by only 2.8ms for (Eclipse by

3.1ms, which was the worst case).

Storage overhead. Paralfetch used 672 KB of SSD to store

the <app_name>.pf files for the 16 applications, whereas

FAST required 8.2 MB.

6 Future research direction

Non-intrusive tracing. Paralfetch instruments some ker-

nel functions to trace disk accesses. The (low) instrumentation

overhead can be effectively removed by employing dynamic

instrumentation tools, such as SystemTap [55] and eBPF [56].

Sophisticated prefetch scheduling. Paralfetch applies

metadata shifting and range merging to the entire launch

sequence, leaving room for further improvement: by apply-

ing prefetch scheduling only to prefetch-bottlenecked regions

of the launch sequence, Paralfetch can avoid unnecessary

I/O contention between the prefetch thread and the launching

application, achieving a better launch performance.

Prefetch scheduling considering internal behaviors of
disks. If Paralfetch schedules prefetch entries consider-

ing internal behaviors and performance of storage devices,

it can schedule them better at the pre-scheduling stage, thus

reducing the need for rescheduling with dynamic scheduling.

7 Additional Related Work

Previous application prefetchers are discussed in §2. We

now summarize various other approaches to reducing applica-

tion launch times, which are orthogonal or complementary to

Paralfetch.

Predictive disk prefetchers, such as Preload [14] and Win-

dows Superfetch [37], analyze the pattern and frequency of

application usage, predict the applications that are likely to be

loaded soon, and then preload them. Falcon [42] is a predictive

prefetcher that considers mobile context such as location and

battery state. Falcon launches an application in advance rather

than merely prefetching launch-related blocks. Obviously, the

merit of this strategy depends heavily on the accuracy of the

prefetcher’s predictions [34].

General-purpose disk prefetcher. It has been demonstrated

that general-purpose prefetching [11, 28] can also be bene-

ficial in reducing application launch times. However, it can

limit the accuracy of tracing launch-related blocks because

block-level I/O patterns depend greatly on the contents of

disk caches.

A block I/O cache provides another way of reducing latency.

Intel Turbo Memory [31], Intel Smart Response Technol-

ogy [51], and AMD StoreMI [52] store delay-sensitive data in

a relatively fast SSD and other data in a larger region of slower

storage. A similar behavior is provided by software caching

methods, which operate in the device mapping layer [1] and

the block layer [2].

I/O scheduling can reduce I/O contention between a launch

process and background processes. Several schemes have

been proposed: FastTrack [16] prioritizes I/O requests gener-

ated by the foreground application, and the BFQ I/O sched-

uler [10] gives new processes extra I/O bandwidth. Boosting

the priority of an I/O request, which is issued asynchronously

but results in blocking the issuing process, can also expedite

a launch [21].

Memory management can also reduce latency. Re-assigning

pages from background apps to foreground apps can improve

user experience of mobile operating systems [44]. Similarly,

pre-swapping of unused memory can reduce delays by avoid-

ing page reclamation latencies [45]. These schemes can re-

duce app launch times by timely provision of memory when

it is under pressure.

8 Conclusion

We have presented Paralfetch, which achieves launch per-

formance close to the warm start through more accurate trac-

ing, pre-scheduling for fast I/O reads, and prefetch thread over-

lapping. Paralfetch incurs negligible overhead in terms of

CPU, memory, and storage. We have also shown Paralfetch
to significantly outperform existing prefetchers on various

personal computing/communication devices running Linux.

Acknowledgments

We would like to thank our shepherd Nitin Agrawal and the

anonymous reviewers for their valuable feedback and sug-

gestions. This work was partly supported by the IITP grant

(No. RS-2022-00155885, Artificial Intelligence Convergence

Innovation Human Resources Development (Hanyang Univer-

sity ERICA)) and the National Research Foundation (NRF)

of Korea grant funded by the Korean government (MSIT)

(No. NRF-2022R1F1A1074505). K. Kang and D. Lee are the

corresponding authors.

436 21st USENIX Conference on File and Storage Technologies USENIX Association

References
[1] D. Arteaga, J. Cabrera, J. Xu, S. Sundararaman, and

M. Zhao. Cloudcache: On-demand flash cache manage-

ment for cloud computing. In Proceedings of the 14th
USENIX Conference on File and Storage Technologies
(FAST), pages 355–369, 2016.

[2] L. Arulraj, A. C. Arpaci-Dusseau, and R. H. Arpaci-

Dusseau. Improving virtualized storage performance

with Sky. In Proceedings of the 13th ACM SIG-
PLAN/SIGOPS International Conference on Virtual Ex-
ecution Environments (VEE), pages 112–128, 2017.

[3] J. Axboe. Explicit block device plugging. https://
lwn.net/Articles/438256/, 2011.

[4] Y. Takai, M. Fukuchi, R. Kinoshita, C. Matsui, and K.

Takeuchi. Analysis on heterogeneous SSD configuration

with quadruple-level cell (QLC) NAND flash memory.

In Proceedings of the 11th IEEE International Memory
Workshop (IMW), pages 169–172, 2019.

[5] M. Bhadkamkar, J. Guerra, L. Useche, S. Burnett, J. Lip-

Tak, R. Rangaswami, and V. Hristidis. BORG: Block-

reORGanization for self-optimizing storage systems. In

Proceedings of the 7th USENIX Conference on File and
Storage Technologies (FAST), pages 183–196, 2009.

[6] P. Cao, E. W. Felten, A. R. Karlin, and K. Li. A study

of integrated prefetching and caching strategies. In Pro-
ceedings of the 1995 ACM SIGMETRICS International
Conference on Measurement and Modeling of Computer
Systems (SIGMETRICS), pages 188–197, 1995.

[7] F. Chang, and G. A. Gibson. Automatic I/O hint gener-

ation through speculative execution. In Proceedings of
the 3rd Symposium on Operating Systems Design and
Implementation (OSDI), pages 1–14, 1999.

[8] F. Chen, R. Lee, and X. Zhang. Essential roles of exploit-

ing internal parallelism of flash memory based solid state

drives in high-speed data processing. In Proceedings of
the 17th IEEE International Symposium on High Perfor-
mance Computer Architecture (HPCA), pages 266–277,

2011.

[9] L. Colitti. Analyzing and improving GNOME startup

time. In Proceedings of the 5th System Administration
and Network Engineering Conference (SANE), pages

1–11, 2006.

[10] J. Corbet. The BFQ I/O scheduler. https://lwn.net/
Articles/601799/, 2014.

[11] X. Ding, S. Jiang, F. Chen, K. Davis, and X. Zhang.

Diskseen: Exploiting disk layout and access history

to enhance I/O prefetch. In Proceedings of the 2007

USENIX Annual Technical Conference (ATC), pages

261–274, 2007.

[12] C. Dirik, and B. Jacob. The performance of PC solid-

state disks (SSDs) as a function of bandwidth, concur-

rency, device architecture, and system organization. In

Proceedings of the 36th Annual International Sympo-
sium on Computer Architecture (ISCA), pages 279–289,

2009.

[13] A. Eisenman, I. Abdelrahman, J. Axboe, S. Dong, K.

Hazelwood, C. Petersen, A. Cidon, and S. Katti. Re-

ducing DRAM footprint with NVM in Facebook. In

Proceedings of the 13th European Conference on Com-
puter Systems (EuroSys),pages 42:1–13, 2018.

[14] B. Esfahbod. Preload–An adaptive prefetching daemon.

Master’s thesis, Graduate Department of Computer Sci-

ence, University of Toronto, Canada, 2006.

[15] W. Fengguang, X. Hongsheng, and X. Chenfeng. On

the design of a new Linux readahead framework. ACM
SIGOPS Operating Systems Review, 42(5):75–84, 2008.

[16] S. S. Hahn, S. Lee, I. Yee, D. Ryu, and J. Kim. FastTrack:

Foreground app-aware I/O management for improving

user experience of Android smartphones. In Proceed-
ings of the 2018 USENIX Annual Technical Conference
(ATC), pages 15–28, 2018.

[17] T. Harter, C. Dragga, M. Vaughn, A. C. Arpaci-Dusseau,

and R. H. Arpaci-Dusseau. A file is not a file: Under-

standing the I/O behavior of Apple desktop applications.

In Proceedings of the 23rd ACM Symposium on Operat-
ing Systems Principles (SOSP), pages 71–83, 2011.

[18] B. D. Higgins, J. Flinn, T. J. Giuli, B. Noble, C. Peplin,

and D. Watson. Informed mobile prefetching. In Pro-
ceedings of the 10th International Conference on Mobile
Systems, Applications, and Services (MOBISYS), pages

155–168, 2012.

[19] W. W. Hsu, A. J. Smith, and H. C. Young. The automatic

improvement of locality in storage systems. ACM Trans-
actions on Computer Systems, 23(4):424–473, 2005.

[20] B. Hubert. On faster application startup times: Cache

stuffing, seek profiling, adaptive preloading. In Proceed-
ings of the Ottawa Linux Symposium (OLS), pages 245–

248, 2005.

[21] D. Jeong, Y. Lee, and J.-S. Kim. Boosting quasi-

asynchronous I/O for better responsiveness in mobile

devices. In Proceedings of The 13th USENIX Confer-
ence on File and Storage Technologies (FAST) pages

191–202, 2015.

USENIX Association 21st USENIX Conference on File and Storage Technologies 437

[22] Y. Joo, Y. Cho, K. Lee, and N. Chang. Improving ap-

plication launch times with hybrid disks. In Proceed-
ings of the 7th IEEE/ACM International Conference
on Hardware/Software Codesign and System Synthesis
(CODES+ISSS) pages 373–382, 2009.

[23] Y. Joo, J. Ryu, S. Park, H. Shin, and K. G. Shin. Rapid

prototyping and evaluation of intelligence functions of

active storage devices. IEEE Transactions on Comput-
ers, 63(9):2356–2368, 2014.

[24] Y. Joo, J. Ryu, S. Park, and K. G. Shin. FAST: Quick

application launch on solid-state drives. In Proceedings
of the 9th USENIX Conference on File and Storage Tech-
nologies (FAST), pages 259–272, 2011.

[25] Y. Joo, J. Ryu, S. Park, and K. G. Shin. Improving ap-

plication launch performance on SSDs. Journal of Com-
puter Science and Technology, 27(4):727–743, 2012.

[26] H. Kim, N. Agrawal, and C. Ungureanu. Revisiting

storage for smartphones. In Proceedings of the 10th
USENIX Conference on File and Storage Technologies
(FAST), pages 209–222, 2012.

[27] J. Kim, Y. Oh, E. Kim, J. Choi, D. Lee, and S. H. Noh.

Disk schedulers for solid state drivers. In Proceedings
of the 9th ACM/IEEE International Conference on Em-
bedded software (EMSOFT), pages 295–304, 2009.

[28] Z. Li, Z. Chen, S. Srinivasan, and Y. Zhou. C-miner:

Mining block correlations in storage systems. In Pro-
ceedings of the 3rd USENIX Conference on File and
Storage Technologies (FAST) pages 173–186, 2004.

[29] K. Lichota. Prefetch: Linux solution for prefetching

necessary data during application and system startup.

http://code.google.com/p/prefetch/, 2007.

[30] D. Lion, A. Chiu, H. Sun, X. Zhuang, N. Grcevski, and

D. Yuan. Don’t get caught in the cold, warm-up your

JVM: Understand and eliminate JVM warm-up over-

head in data-parallel systems. In Proceedings of the
12th USENIX Symposium on Operating Systems Design
and Implementation (OSDI), pages 383–400, 2016.

[31] J. Matthews, S. Trika, D. Hensgen, R. Coulson, and

K. Grimsrud. Intel®Turbo Memory: Nonvolatile disk

caches in the storage hierarchy of mainstream com-

puter systems. ACM Transactions on Storage, 4(2):1–24,

2008.

[32] D. T. Nguyen, Improving smartphone responsiveness

through I/O optimizations. In Proceedings of the 2014
ACM International Joint Conference on Pervasive
and Ubiquitous Computing: Adjunct Publication (UBI-
COMP Adjunct), pages 337–342, 2014.

[33] R. Pai, B. Pulavarty, and M. Cao, Linux 2.6 performance

improvement through readahead optimization. In Pro-
ceedings of the Ottawa Linux Symposium (OLS), pages

105–116, 2004.

[34] A. Parate, M. Böhmer, D. Chu, D. Ganesan, and B. M.

Marlin. Practical prediction and prefetch for faster ac-

cess to applications on mobile phones. In Proceedings
of the 2013 ACM International Joint Conference on Per-
vasive and Ubiquitous Computing (UBICOMP), pages

275–284, 2013.

[35] K. Kim, E. Lee, and T. Kim, HMB-SSD: Framework

for efficient exploiting of the host memory buffer in the

NVMe SSD. IEEE Access, vol. 7, pp. 150403-150411,

2019.

[36] R. H. Patterson, G. A. Gibson, E. Ginting, D. Stodolsky,

and J. Zelenka. Informed prefetching and caching. In

Proceedings of the 15th ACM Symposium on Operating
Systems Principles (SOSP), pages 79–95, 1995.

[37] M. Russinovich, D. Solomon, and A. Lonescu. Windows

Internals, Part 2, 6th ed. Microsoft Press, pages 324-350,

2012.

[38] W. Mauerer. Professional Linux Kernel Architecture.

Wrox Press, pages 970–974, 2008.

[39] J. Ryu, Y. Joo, S. Park, H. Shin, and K. G. Shin. Exploit-

ing SSD parallelism to accelerate application launch on

SSDs. IET Electronics Letters, 47(5):313–315, 2011.

[40] S. Vandebogart, C. Frost, and E. Kohler. Reducing seek

overhead with application-directed prefetching. In Pro-
ceedings of the 2009 USENIX Annual Technical Confer-
ence (ATC), pages 299–312, 2009.

[41] Y. Won, J. Jung, G. Choi, J. Oh, S. Son, J. Hwang, and

S. Cho. Barrier-enabled IO stack for flash storage. In

Proceedings of the 16th USENIX Conference on File and
Storage Technologies (FAST), pages 211–226, 2018.

[42] T. Yan, D. Chu, D. Ganesan, A. Kansal, and J. Liu.

Fastapp launching for mobile devices using predictive

user context. In Proceedings of the 10th International
Conference on Mobile Systems, Applications, and Ser-
vices (MOBISYS), pages 113–126, 2012.

[43] S. S. Hahn, S. Lee, C. Ji, L.-P. Chang, I. Yee, L. Shi, C. J.

Xue, and J. Kim. Improving file system performance of

mobile storage systems using a decoupled defragmenter.

In Proceedings of the 2017 USENIX Annual Technical
Conference (ATC), pages 759–771, 2017.

[44] N. Lebeck, A. Krishnamurthy, H. M. Levy, and I. Zhang.

End the senseless killing: Improving memory manage-

ment for mobile operating systems. In Proceedings of

438 21st USENIX Conference on File and Storage Technologies USENIX Association

the 2020 USENIX Annual Technical Conference (ATC),
pages 873–887, 2020.

[45] Y. Liang, J. Li, R. Ausavarungnirun, R. Pan, L. Shi,

T.-W. Kuo, and C. J. Xue. Acclaim: Adaptive memory

reclaim to improve user experience in Android systems.

In Proceedings of the 2020 USENIX Annual Technical
Conference (ATC), pages 897–910, 2020.

[46] BodNara. ADATA Ultimate SU630 960GB. https:
//www.bodnara.co.kr/bbs/article.html?num=
154114, 2019.

[47] T. Schiesser. Storage Game Loading Test: PCIe

4.0 SSD vs. PCIe 3.0 vs. SATA vs. HDD.

https://www.techspot.com/review/2116-
storage-speed-game-loading, 2019.

[48] T. Thomas. Samsung’s 860 QVO 1-TB SSD re-

viewed. https://techreport.com/review/34281/
samsungs-860-qvo-1-tb-ssd-reviewed, 2018.

[49] K. A. Shutemov. mm: map few pages around fault ad-

dress if they are in page cache. https://lwn.net/
Articles/588802, 2014.

[50] R. Nelson. The size of Iphone’s top apps has increased

by 1,000% in four years. https://sensortower.com/
blog/ios-app-size-growth, 2017.

[51] Intel® Smart Response Technology: Technology Brief.

https://www.intel.com/content/www/us/en/
architecture-and-technology/smart-response-
technology-brief.html, 2014.

[52] AMD StoreMI Technology. https://www.amd.com/
en/technologies/store-mi, 2021.

[53] S. Sivaram, and C. Bergey, Zoned storage for the

zettabyte age, https://www.flashmemorysummit.
com/Proceedings2019/08-06-Tuesday/
20190806_Keynote2_WesternDigital_Sivaram_
Bergey.pdf, 2019.

[54] James Larus. Spending Moore’s dividend. Communica-
tions of the ACM, 2009.

[55] SystemTap. https://sourceware.org/systemtap,

2022.

[56] eBPF. https://ebpf.io, 2022.

[57] Install Ubuntu on a Raspberry Pi. https://ubuntu.
com/download/raspberry-pi, 2022.

USENIX Association 21st USENIX Conference on File and Storage Technologies 439

Integrated Host-SSD Mapping Table Management
for Improving User Experience of Smartphones

Yoona Kim
Seoul National University

Inhyuk Choi
Seoul National University

Juhyung Park
DGIST

Jaeheon Lee
DGIST

Sungjin Lee
DGIST

Jihong Kim
Seoul National University

Abstract
Host Performance Booster (HPB) was proposed to improve
the performance of high-capacity mobile flash storage sys-
tems by utilizing unused host DRAM memory. In this pa-
per, we investigate how HPB should be managed so that the
user experience of smartphones can be enhanced from HPB-
enabled high-performance mobile storage systems. From our
empirical study on Android environments, we identified two
requirements for an efficient HPB management scheme in
smartphones. First, HPB should be managed in a foreground
app-centric manner so that the user-perceived latency can be
greatly reduced. Second, the capacity of the HPB memory
should be dynamically adjusted so as not to degrade the user
experience of the foreground app. As an efficient HPB man-
agement solution that meets the identified requirements, we
propose an integrated host-SSD mapping table management
scheme, HPBvalve, for smartphones. HPBvalve prioritizes the
foreground app in managing mapping table entries in the HPB
memory. HPBvalve dynamically resizes the overall capacity
of the HPB memory depending on the memory pressure status
of the smartphone. Our experimental results using the pro-
totype implementation demonstrate that HPBvalve improves
UX-critical app launching time by up to 43% (250 ms) over
the existing HPB management scheme, without negatively
affecting memory pressure. Meanwhile, the L2P mapping
misses are alleviated by up to 78%.

1 Introduction
User experience (UX) design is one of the topmost tasks in de-
signing modern smartphones. In order to create a high-quality
UX from a smartphone, it is essential for the smartphone to
react promptly to user inputs without a noticeable delay. For
example, when an application (app) is launched, if there exists
a considerable user-perceived delay, the quality of UX would
be significantly degraded. Since user-perceived delays play a
key role in realizing high-quality UX, many researchers have
investigated various system resource management schemes
so that user-perceived delays can be minimized for the user-
facing foreground (FG) apps [1–4].

Although existing techniques have explored the most plau-
sible sources that influence user-perceived delays, a storage
system has not been actively investigated from the perspective
of user-perceived delays. As the capacity of a mobile storage
system quickly increases (e.g., a 1-TB Universal Flash Stor-
age (UFS) device [5]), the read latency of the mobile storage
system is emerging as a key factor that can negatively affect
user-perceived delays [1, 4, 6, 7]. Since the overall quality of
UX is determined by how promptly a smartphone responds to
a user’s input, storage responsiveness has a significant corre-
lation with improved user responsiveness. There are two main
reasons why the read latency of the mobile storage system has
a high impact on the UX quality. First, the read latency of a
mobile storage system accounts for the largest portion of the
total latency of a host request in modern smartphones [1]. For
example, when an app is launched on an Android smartphone,
approximately more than half of the total app launching time
is taken by the storage read time [1, 6].

Second, the read latency of a mobile storage system varies
significantly because of the limited SRAM capacity in the
mobile storage system. Since SRAM in the mobile storage
system is used for implementing a logical-to-physical (L2P)
mapping table, which is an essential component of a flash-
based storage system, the performance of the mobile stor-
age system is highly dependent on the capacity of SRAM.
Unfortunately, the capacity of SRAM is quite limited for
large-capacity mobile storage systems. Under this design con-
straint, an L2P mapping table is commonly managed by an
on-demand scheme (e.g., DFTL [8]) that only loads a small
portion of the entire L2P mapping entries in (fast) SRAM
while the complete L2P mapping table is stored in (slow)
flash memory. When most host read requests cannot find their
L2P mapping entries from SRAM, their read latency can be
significantly longer, thus causing a large increase in user-
perceived delays. For example, in our exploratory evaluation,
we observed that the app launching time increases by up to
50% when the SRAM only contains a portion of the L2P
mapping entries as opposed to when it contains all entries.

To overcome the performance problem from the limited

USENIX Association 21st USENIX Conference on File and Storage Technologies 441

SRAM capacity within a mobile storage system, Host Per-
formance Booster (HPB) [9, 10] was introduced to store L2P
mapping entries in the host memory. It was first shipped in
production by Google’s Pixel 3 in 2018 with Linux kernel
v4.9.96 [11] shortly after its introduction. By exploiting the
host memory as a (fast) L2P mapping cache in addition to
the SRAM of a mobile storage system, HPB can improve I/O
performance by reducing costly SRAM L2P cache misses that
require slow flash read accesses. Although several researchers
have successfully shown that exploiting the host memory is an
effective approach for improving I/O performance [9, 12–14],
few work has treated the problem of utilizing the host mem-
ory for high-performance I/O from the UX perspective in a
holistic fashion. The main goal of our work is to compre-
hensively investigate how HPB should be managed so that
the UX of smartphones can be enhanced from HPB-enabled
high-performance mobile storage systems.

In order to understand how HPB should be managed in
a UX-aware fashion, we evaluate how various UX-related
performance metrics are affected by different HPB settings
on Android environments. To this end, we measure perfor-
mance metrics that are relevant to UX quality, such as the
app launching, switching, and loading times. We measure this
systematically using repeatable and reproducible benchmarks
to enable accurate and reliable UX-quality evaluation, elim-
inating the possibility of human errors. From our empirical
study, we identify two key requirements for an efficient HPB
management scheme in smartphones. First, the existing HPB
management scheme [15] is FG app-oblivious in that the app
status is not actively considered in managing the HPB mem-
ory. For example, HPB only focuses on caching L2P entries
with high reference counts without considering its impact
on UX. In order to improve UX from a smartphone, HPB
memory should be managed in an FG app-centric manner so
that the user-perceived delay of a user-facing FG app can be
effectively minimized. Second, the capacity of the HPB mem-
ory reserved from the host memory should be dynamically
adjusted during run time so that no apps suffer extra memory
pressure from the HPB-allocated DRAM. For example, when
a large amount of memory is statically reserved for HPB, the
low memory killer daemon (LMKD) [16] is triggered more
frequently to relieve increased memory pressure, significantly
degrading the UX. Allocating small-size memory to avoid
such cases is not ideal either as it negates the potential perfor-
mance improvement from deploying HPB.

As an efficient HPB management solution that meets two
key requirements, we propose HPBvalve (Hvalve in short), an
integrated host-SSD mapping management scheme for HPB-
enabled smartphones. Unlike the existing HPB management
scheme [15], Hvalve prioritizes FG app in caching entries to
HPB by integrating app status (FG or BG) for every submitted
I/O. For further UX improvement, Hvalve detects every app
launch event which is one of the most important activities of
smartphones that highly impacts UX. Then, Hvalve utilizes

the profiled launch-time-referenced L2P list ahead of time to
reduce user-perceived delays of an app launch. Additionally,
Hvalve adjusts the maximum capacity of the reserved HPB
memory according to the current memory pressure status of
a smartphone. When memory pressure is monitored, Hvalve
selectively returns HPB memory to apps. Through dynamic
HPB memory size adjustment, Hvalve can utilize the unused
host memory efficiently while preventing inadvertent UX
regression from using HPB.

In order to validate the effectiveness of the proposed Hvalve,
we develop a prototype Hvalve that supports the internal oper-
ational logic of Hvalve on a hardware development kit (HDK)
based on the Snapdragon 888 SoC [17] (see Section 6.1 for
details). Our experimental results show that Hvalve can effec-
tively manage the HPB memory, reducing the user-perceived
delays of an FG app by up to 43% over the existing scheme
without increasing the overall memory pressure.

The remainder of this paper is organized as follows. We
first review how HPB-enabled smartphones work in Section 2
and review related work in Section 3. In Section 4, we present
the key design requirements of a UX-aware HPB management
scheme based on our empirical observations. In Section 5,
we describe the design and implementation of Hvalve. The
experimental results are reported in Section 6. Finally, we
conclude with a summary in Section 7.

2 Background
In this section, we briefly explain the basics of L2P map-
ping structures and policies of the conventional and the HPB-
enabled storage systems.

2.1 Controller-side L2P Mapping Structure
The latency of I/O requests submitted to a UFS device varies
greatly depending on how the underlying L2P mapping
scheme works. As the capacity of UFS devices increases,
its L2P mapping table size also increases accordingly. Keep-
ing such a large mapping table in a small SRAM inside the
UFS device is technically impossible. Therefore, the UFS
device employs an on-demand cache scheme that stores the
entire L2P mapping table in flash, caching popular mapping
entries in SRAM. On a cache hit, the UFS device provides
excellent performance. On a cache miss, however, it suffers
from long I/O latency because the missing L2P entry must be
fetched from the flash first before serving an I/O request.

Fig. 1 illustrates how the UFS deals with I/O requests
from the host in detail. When a read request is received (1),
the flash translation layer (FTL), which is responsible for
translating a logical page address (LPA - file-system managed
address) to a physical page address (PPA - storage device
managed address), looks up cached L2P entries in SRAM
(2). If the desired L2P entry is found in cache, the FTL reads
the requested data from the flash by consulting the translation
information and returns it to the host. To keep track of hot
entries, the FTL internally maintains a pseudo-LRU list for

442 21st USENIX Conference on File and Storage Technologies USENIX Association

UFS SRAM

Cached L2P

0x00
0x01
…

LPA PPA
0x1A
0x09
…

Host

HPB Memory

NAND Flash Memory

UFS Driver

HPB Manager

LRU List

0 1
Head TailFTL

Host Memory

①

④

②

③

❶

❷

❸❹

❺

Figure 1: A read operation path.

L2P entries. The hit L2P entry moves to the head of the list.
If the FTL fails to find the matched entry, it has to choose and
evict a victim entry to make room in the SRAM. The entry at
the tail of the list is evicted and the FTL reads in the wanted
L2P entry from the flash to the SRAM (3). Finally, the FTL
reads the data from the flash (4), and delivers the read data
to the host (5).

The on-demand cache scheme performs well when the
size of the SRAM cache is large enough to accommodate
most of the hot L2P entries. However, the capacity of a UFS
device scales much faster than that of SRAM, which makes
it difficult to cache sufficient hot entries in the SRAM. For
example, the latest UFS device offers up to 1 TB [5] capacity,
but its internal SRAM capacity is known to be only several
hundred kilobytes [18]. Considering that the mapping table
size is estimated as 0.1% of the UFS capacity, only the top
0.0005% of the table entries can be cached in the SRAM when
its size is 512 KB, which is too small to keep hot entries.

2.2 Host-side L2P Mapping Structure
The constrained capacity of SRAM results in inconsistent
I/O latency, which degrades UX. To overcome this problem,
Jeong et al. [9] have introduced a Host Performance Booster
(HPB) which extends a storage mapping space by exploiting
the host memory. The HPB borrows a specific portion of the
host memory and then keeps popular L2P entries to improve
a mapping cache hit ratio.

Fig. 1 illustrates how the UFS device handles a read request
when the HPB is enabled. The HPB manager is implemented
in the UFS device driver of the Android kernel and manages
the host memory space dedicated to caching L2P entries. Be-
fore sending a read request to the UFS, the HPB manager first
searches for its L2P mapping entry in the host memory using
the logical block address (LBA) of the request. If the desired
L2P entry is found, the corresponding PPA is piggybacked on
the read request (1), which is then submitted to the UFS (2).
Upon the receipt of the request, the FTL in the UFS first veri-
fies the integrity of the given PPA [9] and then directly issues
a page read request to fetch the data of the designated PPA
(3). It is unnecessary to look up the device-side mapping
table. Finally, the FTL delivers the data to the host (4).

The HPB manager is responsible for selecting which L2P

entries to fetch from UFS and keep in the HPB-designated
host memory, based on its predefined conditions. A single
HPB entry is 4 KB in size and stores 512 L2P entries. The
HPB manager retrieves 512 L2P entries from UFS through
one fetch command. The fetch command involves a normal 4-
KB block read request to UFS, so the latency of a single fetch
command is comparable to regular read latency. Whenever
PPAs of L2P entries are changed due to internal operations
such as a garbage collection on the UFS device side, the HPB
manager is informed of the invalidated PPAs.

Using HPB, the overall I/O performance can be greatly
improved by minimizing L2P misses. However, this benefit
comes at the cost of reduced working memory space for apps.
When integrating the HPB to the system, the following two
technical issues should be carefully considered. The first is to
properly decide the size of the HPB-designated memory. If
the HPB size is too small, I/O performance gains by the HPB
would be marginal. Conversely, if it is overly provisioned,
the performance of apps would drop significantly as the HPB
steals too much system memory which was to be used for apps.
The second is to appropriately choose L2P entries to cache
within the limited HPB memory, in a UX-centric manner.
While HPB parameters are set vendor-specifically [10], to the
best of our knowledge, there are currently no HPB systems
in production that actively consider the state of apps [11, 19–
28]. The current upstream HPB device driver (included in
the Android Common Kernel since v5.10 [15]) employs the
counter-based caching policy and the timer-based eviction
policy for efficient HPB memory management. However, we
argue that both of these policies fail to improve user-perceived
delays which we discuss in Section 4.

3 Related Work
Classifications of FG and BG apps are pivotal in maintain-
ing good UX on both mobile [29–31] and desktop environ-
ments [32]. Academia also follows this trend and makes use
of FG/BG separation to further improve UX. Marvin [33] and
Acclaim [34] modify the memory management subsystem
and improve the FG app’s performance by de-prioritizing BG
apps’ memory pages. ASAP [7] categorizes memory pages
and prefetches FG app-related pages to improve app switching
time. FastTrack [1] accelerates FG I/O requests by resolving
I/O priority inversion caused by BG apps.

Despite the great impact of storage performance on UX,
little attention has been paid to optimizing L2P caching under
mobile device environments. To the best of our knowledge,
FOAM [6] is the only work that sophisticates an L2P cache
to enhance user-perceived performance. FOAM assigns dif-
ferent priorities to L2P entries, depending on the type of apps
(FG or BG) and the type of I/O requests (read or write) that
access them. They argue that the FG apps and the read re-
quests precede other counterparts in terms of user-perceived
performance. As such, FOAM divides the L2P cache into four
partitions, FG-read (FR), FG-write (FW), BG-read (BR), and

USENIX Association 21st USENIX Conference on File and Storage Technologies 443

BG-write (BW), and it accordingly moves the L2P entries
across partitions whenever they are referenced. When choos-
ing a victim, FOAM evicts the partitions from the lowest to
the highest priority (i.e., BR, BW, FR, and FW).

While FOAM enhances UX by prioritizing the eviction of
L2P entries associated with BG apps, it has two limitations.
First, FOAM only assumes an in-device cache, having no con-
sideration of an HPB-enabled system. Thus, its effectiveness
is limited to the latest mobile environments where HPB is
used due to the increased mapping table size. Second, FOAM
does not perform well when the FG and BG apps are switched
quickly. This situation happens when the user runs multiple
apps simultaneously. In this case, because the effective dis-
tinction between the FG and BG apps is not clear, the eviction
policy of FOAM might lead to an unintended result.

4 Empirical Study of HPB on Smartphones
In this section, we empirically investigate how much the per-
formance of FG apps is affected by the storage L2P cache.
We first examine how the storage mapping cache affects the
quality of UX on smartphones. Then, we assess the effective-
ness of the existing HPB cache management policy and how
it should be managed to boost UX.

4.1 Evaluation Study Setup
We conduct a set of experiments with a mobile hardware de-
velopment kit based on the Snapdragon 888 SoC [17]. As for
the benchmarks, we use nine popular smartphone apps 1 that
are categorized into three types: games, social media, and util-
ities. We run the nine apps according to a predefined scenario
that mimics real-world app-usage patterns of smartphones. In
evaluating the UX, there exist various metrics such as app
launching [35–41], app switching [7] and app loading [1].
These metrics are directly affected by the I/O performance as
numerous libraries and files have to be loaded. In this section,
we target app launching and loading times for the key metrics
to assess the impact of L2P cache misses on UX, as they are
the biggest contributors to the user-perceived latency.

We modify HPB in the Android kernel to implement vari-
ous HPB cache management policies and to collect various
performance-related statistics (e.g., user-perceived latency
and mapping cache hit ratios). Unfortunately, it is impossible
to modify the firmware of UFS products. As an alternative,
we develop a custom-emulated UFS device that mimics the
behavior of production UFS devices using an Ultra-Low La-
tency SSD (ULL-SSD) [42]. The ULL-SSD has very low I/O
latency (<20 µs) with extremely low variations, which makes
it the perfect vehicle to emulate a slower UFS device.

We attach a 1-TB ULL-SSD as the main storage device
for our custom-emulated UFS device. In between the HPB

1Asphalt9 (AP), Clash Royale (CR), Genshin Impact (GI), Facebook
(FB), Instagram (IG), Twitter (TW), Airbnb (AB), Facebook Messenger
(FBM), and Uber (UB) (see Section 6.1 for app usage scenarios).

FB IG TW AB FBM UB AVG
0.0

0.4

0.8

1.2

1.6

U
s
e
r
-P

e
r
c
e
iv

e
d

 L
a
te

n
c
y
 (

s
)

AP CR GI AVG
0

4

8

12

16

UFS UFS+HPB OPTIMAL

(a) Launching time. (b) Loading time.
Figure 2: Impact of L2P cache misses on user-perceived la-
tency.

and the ULL-SSD, we run a UFS layer that implements UFS
firmware algorithms, including L2P address translation, map-
ping cache management policies, and garbage collection. To
emulate the I/O latency of UFS devices over the ULL-SSD,
we also include a UFS I/O latency model 2 on the UFS layer.
The UFS layer borrows a part of the host memory space and
uses it as an L2P cache. For the UFS layer, we assign 512 KB
of memory as an L2P cache space [18]. The HPB-allocated
host memory size is set to 256 MB out of the 12 GB of host
DRAM. Note that 1 GB of memory is required to cache the
entire L2P mapping table. Since we use the same system
and benchmark setups used in Section 6, more details of the
experimental settings are explained in Section 6.1.

4.2 Impact of L2P Cache Misses on UX
In order to understand how much L2P cache misses affect the
quality of UX, we quantitatively measure the user-perceived
latency when an app is being launched and loaded. We mea-
sure the app launching time of apps from social media and
utilities, and the app loading time of games while executing
the app-usage scenario as described in Section 6.1.

Fig. 2 shows our experimental results. We compare the app
launching time of three system setups: UFS, UFS+HPB, and
OPTIMAL. UFS only uses a small cache (i.e., 512 KB) to keep
L2P entries. In addition to the UFS-level cache, UFS+HPB
expands the capacity of the L2P cache by borrowing the
host memory, 256 MB in our setup. OPTIMAL represents the
optimal case that assumes the underlying UFS has sufficient
memory space to keep the entire L2P entries. The OPTIMAL
setup neither suffers from extra I/Os caused by L2P cache
misses nor needs to steal host memory to expand its L2P cache
size. Note that the difference in the latency between apps is
due to different amounts of data needed for the execution of
each app. By monitoring the memory consumption of each
app, we observe that the maximum memory consumption gap
is approximately 1 GB (between FBM and GI).

As expected, OPTIMAL exhibits the best performance across
all apps, outperforming UFS and UFS+HPB by up to 50% for
UB and 43% for IG, respectively. These results confirm that

2We acquired the numbers for the latency model through a discussion
with a storage vendor since the official datasheet is not publicly available.

444 21st USENIX Conference on File and Storage Technologies USENIX Association

AP FB UB CR IG AB
0

20

40

60

80

100

N
u

m
b

e
r
 o

f
R

e
a
d

 I
/O

s
 (
x
1
0
3
)

0

20

40

60

80

100

H
it

 R
a
t
io

 (
%

)

FG IO

FG L2P Hit

BG IO

BG L2P Hit

Hit Ratio

Figure 3: The number of read I/Os and the HPB hit ratios of
FG and BG apps.

L2P cache misses greatly impact user-perceived delays. Even
worse, absolute launch-time gaps are much wider than our
expectations: 220 ms between OPTIMAL and UFS; 183 ms be-
tween OPTIMAL and UFS+HPB, on average. In order to deliver
high-quality UX, reducing every millisecond matters [43, 44].
This is further emphasized by the recent mobile hardware
trend of shipping displays with higher refresh rates [45–48].
For example, just 3.5 ms of delay can result in a noticeable
stutter with a 144-Hz display [49]. It is important to opti-
mize the user-perceived latency since it is well-known in
the industry that a delay of just 100 ms can have significant
consequences in online marketplaces [43].

We make two prominent observations from the above re-
sults. First, even though UFS+HPB borrows relatively a large
amount of memory – 256 MB that can cache 25% of the entire
L2P entries in its cache – from the host, it shows a marginal
improvement in the app launching time. According to our
observations (see Section 4.3), the L2P cache management
policy fails to cache useful L2P entries that have a high im-
pact on user-perceived latency. Instead, it often caches less
important entries associated with BG apps, wasting valuable
memory. Second, UFS+HPB shows worse performance than
UFS for some apps – CR, IG, and UB. Our analysis reveals
that stealing too much memory from the host incurs severe
memory pressure. This leads to the frequent killing of apps,
which results in many additional I/Os when the killed apps
are launched again (see Section 4.4).

4.3 Impact of HPB Management Policy on UX
To figure out the root causes of why HPB performs poorly
with a large mapping cache memory, we compare the hit ratios
of FG and BG apps. We observe that FG apps suffer from
higher miss ratios than BG apps, regardless of the cache size.
Fig. 3 counts the number of I/Os issued by FG and BG apps
and also displays how many of them are hit by the HPB cache.
Except for UB, FG apps experience more L2P cache misses
than BG apps.

We analyze detailed behaviors of state-of-the-art HPB man-
agement techniques. We find that the low hit ratios of FG
apps are mainly due to wrong decisions made by a reference
count-based L2P fetch policy and a timer-based eviction pol-
icy employed by the HPB manager in the Android kernel [15].
The HPB manager measures reference counts of LBAs and

Figure 4: Read I/O access patterns of FG apps.

fetches L2P entries from the storage that have a large number
of reads. However, as shown in Fig. 3, the number of read
I/Os issued by BG apps is relatively larger than those by FG
apps. L2P entries associated with BG apps are likely to have
larger reference counts than those of FG apps. This results in
unintended consequences that the HPB fetches L2P entries for
BG apps. Simply fetching LBAs with large reference counts
cannot guarantee improved UX.

The timer-based eviction policy is another root cause that
makes the HPB inefficient. Even when the HPB cache space
is not full, HPB evicts a cached L2P entry that is not refer-
enced for a predefined time (e.g., 100 seconds in the Android
Common Kernel v5.10 [15]). This timer-based eviction pol-
icy also does not consider the app usage patterns of the user,
and thus often evicts L2P entries associated with FG apps.
In general, after using an FG app for a while, a user moves
to another app and then returns to the former FG app again.
If the former FG app has not been used for a relatively long
time, the timer-based policy would have evicted its L2P en-
tries. When the user re-launches the former FG app, its L2P
entries will no longer exist in the HPB memory, which results
in mapping misses and may increase user-perceived delays.

Random I/O patterns that typically occur when an app is
launched make it challenging for the HPB to provide high
L2P hit ratios. Fig. 4 illustrates partial LBA access patterns
of FG apps when they are launched and run for a while. As
shown in Fig. 4, we observe that many small random reads,
which span a wide range of LBAs, are heavily issued at the
beginning of app launches. This randomness results in high
L2P cache misses. Fig. 5 illustrates trends of the number
of L2P cache misses over time for some selected apps in

0 20 40 60 80 100
Normalized Time Progress (%)

0

50

100

150

200

250

N
u

m
b

e
r
 o

f
L
2
P

 M
is

s
e
s AP CR UB IG

Figure 5: Distributions of the total number of L2P cache
misses of FG apps over execution time.

USENIX Association 21st USENIX Conference on File and Storage Technologies 445

HPB Size (MB)

5

10

15

20

25

30

I/
O

 C
o
u

n
ts

 (
x
1
0
3
)

AP

1

2

3

4

5

6
CR

0

4

8

12

16

20
UB

2

3

4

5

6

7
IG

0
1
6

3
2

6
4

1
2
8

2
5
6

5
1
2

1
0
2
4

0.0

0.5

1.0

1.5

N
o
r
m

a
li
z
e
d

F
la

s
h

 R
e
a
d

s

Min

0
1
6

3
2

6
4

1
2
8

2
5
6

5
1
2

1
0
2
4

Min

0
1
6

3
2

6
4

1
2
8

2
5
6

5
1
2

1
0
2
4

Min

0
1
6

3
2

6
4

1
2
8

2
5
6

5
1
2

1
0
2
4

Min

App Read L2P Read App Read + L2P Read

Figure 6: Number of read I/Os issued by FG apps and the corresponding HPB L2P misses with different HPB sizes.

Fig. 4. As expected from I/O patterns in Fig. 4, many L2P
cache misses are concentrated in the early stages of an app’s
execution. For example, UB experiences 74% and 90%, and
AP experiences 20% and 51% of its cache miss in the first
tenth and the first fifth of its total execution time respectively.
It is worth noting that even if a smartphone user does not
manually close the used apps, it is practically infeasible to
keep all apps open in BG due to memory constraints [16, 33,
50], even on devices with large amounts of DRAM [51]. Thus,
random I/Os are inevitable in the mobile environment, and
improving them is a key factor in providing a better UX.

4.4 Impact of HPB Size on UX
HPB shares the same host memory with the Android platform.
To provide optimal performance to users, the size of HPB
memory should be carefully tuned. Allocating large amounts
of host memory to HPB is beneficial in improving L2P hit
ratios. On the other hand, as mentioned in Section 4.2, assign-
ing too much memory to HPB might result in UX degradation
due to an increase in memory pressure. To prevent HPB from
over-consuming memory, the HPB manager employs a timer-
based eviction policy. However, as shown in Section 4.3, its
FG app-oblivious decisions often cause side effects resulting
in evictions of the FG app’s cached L2P entries.

To understand how much the HPB memory size affects
the user-perceived latency, we observe how the number of
read I/Os changes while varying the HPB size usage from 0
to 1 GB. In our evaluation setup, 1 GB of memory is large
enough to keep all of the L2P entries in HPB. With recent mo-
bile devices with more and more DRAM (e.g., 18 GB) [52],
this amount may sound trivial. However, memory pressure is
still often observed in Android systems [51, 53]. Contrary to
server or desktop systems, Android tries to maximize mem-
ory utilization to maximize its caching capabilities by de-
fault [54]. Also, due to the general trend of apps using more
resources [55], Android is often susceptible to high memory
pressure even with a large capacity of memory. Consequently,
relieving memory pressure on the Android system depends
on low memory killer by terminating the least important apps.
Thus, statically reserving a large amount of memory for im-
proving storage performance is a short-sighted decision with

no consideration of its impact on the overall UX.
From the experimental results shown in the Fig. 6, we

make two key observations on the impact of the different
HPB sizes. First, the optimal HPB size, which results in the
minimal number of flash reads (i.e., app reads + L2P reads), is
different for each individual app. For example, IG shows the
minimum number of flash reads with 512 MB whereas UB
only needs 16 MB. Second, the number of FG apps issued I/Os
(app reads) gradually increases as more and more memory
is allocated to the HPB. Fig. 6 counts the number of I/Os
issued from FG apps and the HPB. As the HPB size increases,
thanks to the improved L2P hit ratios, L2P reads from the
HPB tend to decrease. While at the same time, since HPB
increases the memory pressure of the system, FG apps tend to
issue an increased number of read I/Os (e.g., UB issues 142%
more read I/Os with 1-GB HPB memory when compared to
none of the host memory is allocated to the HPB).

Under memory pressure, Android starts killing apps to re-
lieve memory pressure. LMKD uses pressure stall information
(PSI) [50] provided by the Linux kernel to detect memory
pressure situations, and decides when and how to kill apps.
Using PSI, LMKD monitors memory pressure levels and kills
the least important app repeatedly until the memory pressure
is relieved. If the system consumes more memory, it naturally
leads to LMKD killing more apps. As shown in Table 1, killed
apps (cold state) not only take much longer to launch, up to
6.2×, but it also incurs much more I/Os, up to 12×, further
degrading the UX [7, 34]. Hence, the HPB size is a trade-off
regarding the overall UX which should be carefully tuned.

To understand how HPB affects the behavior of LMKD
(e.g., how often it kills and how important the victim app
is), we analyze the LMKD kill counts for each priority cate-

Warm state Cold state
Launching time (ms) I/O counts Launching time (ms) I/O counts

AP 352.6 250 2188.6 2164
CR 239 217 668.4 2879
UB 366.4 28 563 60
IG 482.3 349 1245.1 4224

Table 1: App launching time and the corresponding I/O counts
of two different launching states.

446 21st USENIX Conference on File and Storage Technologies USENIX Association

1000 1500 2000 2500
Number of Killed Apps

0

16

32

64

128

256

512

1024

H
P

B
 S

iz
e
 (

M
B

)

Low High

Priority of LMKD Victim Apps

Figure 7: Number of LMKD killed apps and the proportion
of the killed apps’ priority with different HPB sizes.

gory. Fig. 7 shows the histogram of LMKD kill counts with
different HPB sizes. The higher the priority is, the more user-
perceptible the app is (e.g., the second-highest apps are the
user recently used ones but in the BG) [56]. As expected, an
increase in the HPB size results in a greater number of apps
and a higher proportion of high-priority apps being killed by
LMKD. Even though the existing HPB scheme might provide
better L2P hit ratios, UX degradation is inevitable.

Based on our observations, we conclude that the state-of-
the-art timer-based HPB size adjustment policy is suboptimal
in two aspects. First, while the timer-based HPB size adjust-
ment could lower the HPB’s memory usage, it cannot dynam-
ically relieve memory pressure as HPB is unaware of the
current memory pressure status. Second, when users run mul-
tiple apps simultaneously the system will suffer from severe
memory pressure due to the increased memory utilization by
both user apps and the HPB. In such a case, the timer-based
eviction policy is unable to proactively and selectively evict
cached entries as most HPB cached entries are recently ref-
erenced. Managing HPB memory with unawareness of the
memory pressure status poses a significant risk of degrading
the UX. To achieve the best HPB performance, the size of
HPB memory should be dynamically adjusted by consider-
ing the memory pressure status while not sacrificing the L2P
cache performance.

5 Design and Implementation of HPBvalve

Our empirical study presented in Section 4 reveals that the
naïve integration of HPB to Android does not guarantee im-
proved UX. Moreover, the existing techniques neither effi-
ciently cache or evict L2P entries in the HPB memory, nor
decide a proper size of the HPB memory from the perspective
of maximizing the user-perceived performance.

To improve the user-perceived latency of smartphones, we
should minimize the L2P cache misses of I/O requests from
FG apps. If UX-sensitive I/O requests are always hit by the
HPB memory, smartphone users experience the equivalent
performance as if the entire L2P entries are cached. At the
same time, to prevent user-noticeable and important apps from
being killed by LMKD, we should wisely adjust the HPB size
according to the status of the system memory pressure.

To accomplish the above goals, the existing HPB layer

Android Kernel
HPB Device Driver

Android Platform

UFS

Mem-Detector

L2P-Manager

Request
L2P PrefetchingFG-Profiler

HPB-Regulator
Request
HPB Size Adjustment

Request L2Ps

Host DRAM

N
o

Si
ze

 L
im

it

HPB Memory

Head

Tail

LRU Lists

FG

FG

FG

FG

FG

FG

FG

FG

FG

BG

BG

BG

BG

AFG IFG BG

AFG: Active FG
IFG: Inactive FGs

App-Detector

Mem. PressureFG Info.

Ca
ch

e/
Ev

ic
t

Figure 8: An overall architecture of HPBvalve.

needs to be improved in two aspects. First, HPB should iden-
tify which I/Os are user-latency sensitive or not. Once identi-
fied, HPB should appropriately manage associated L2P entries
in the L2P cache, particularly in an FG app-centric manner.
Second, HPB should be aware of the memory pressure sta-
tus of the Android system. Then, it should decide whether to
increase or decrease the HPB memory size for higher L2P
cache hit ratios or for relieving memory pressure.

Keeping the above observations in mind, we propose an
integrated host-SSD mapping management scheme, called
HPBvalve (Hvalve in short), which addresses the limitations
of existing techniques. We aim to design Hvalve to be sim-
ple yet effective for its wide adoption in real-world devices.
To this end, Hvalve leverages information that is already col-
lected by other existing modules in the Android platform,
which enables Hvalve to exploit a variety of information in a
vertically-integrated manner at a low cost.

5.1 Overall Architecture of HPBvalve
Fig. 8 illustrates an overall architecture of Hvalve that is com-
posed of five key modules – App-Detector, Mem-Detector, FG-
Profiler, L2P-Manager, and HPB-Regulator. Hvalve has a cross-
layered design that spans across a wide range of system lay-
ers from the Android platform to the kernel. Two modules,
App-Detector and Mem-Detector, implemented in the Android
platform monitor the system status and collect a set of infor-
mation, including (i) the type of apps (i.e., FG or BG) that
issue I/Os, (ii) app state changes, and (iii) the memory pres-
sure status. This information is then delivered to the HPB
device driver in the Android kernel. Based on the delivered
information, three modules implemented in the kernel, FG-
Profiler, L2P-Manager, and HPB-Regulator, manage HPB in a
UX-centric manner by (i) separately managing and profiling
L2P entries of FG apps, (ii) prefetching the profiled L2P en-
tries on every app launch, and (iii) adjusting the HPB size
dynamically depending on the memory pressure status.

5.2 FG App-centric HPB Management
In this section, we explain how Hvalve manages L2P entries
using the FG app-centric caching policy.

FG/BG classification: In order to identify user-latency-
sensitive I/O requests, every submitted I/O has to be distin-
guished whether it is submitted by an FG or a BG app. To this

USENIX Association 21st USENIX Conference on File and Storage Technologies 447

end, we extend the kernel and Android framework so that the
kernel I/O stack becomes aware of the app-level information.
With our extension, every I/O request holds its caller UID (a
unique number that the Android system assigns to every app).
When a regular I/O system call is invoked, a new struct
bio is allocated under the same process context. Since the
same process context is maintained, the caller’s process con-
trol block (struct task_struct) is accessible from the bio
allocation step. We add a new member field in the bio to copy
the caller’s UID from the PCB. The new UID field can be
used in deciding whether a bio belongs to an FG or BG app.

In order to distinguish whether the submitted I/O is from
an FG app, the UID embedded in the request header has to
be compared to the UID of a current FG app. App-Detector is
designed to detect an FG app in the system. The App-Detector
keeps track of every app state change (e.g., a new FG launch-
start and launch-end) by referring to Android’s activity task
manager [57]. Upon every app state change detected, App-
Detector delivers a state change message to Hvalve. For exam-
ple, when a new FG launch is detected, App-Detector delivers
a launch-start signal (e.g., a new FG app is launched) to the
HPB in the kernel along with its UID. Hvalve makes use of
the delivered information for distinguishing every FG app-
submitted I/O. If an I/O request passed to the block layer has
a different UID from the App-Detector-passed current FG app’s
UID, it is considered as a BG I/O. This makes it possible for
Hvalve to manage HPB memory to assign higher priority to
L2P entries of an FG app (i.e., UX-sensitive L2P entries).

L2P management: In order to prioritize L2P entries of
FG apps, the L2P-Manager manages cached L2P entries in
three separate LRU lists depending on their importance –AFG
(an active FG app), IFG (inactive FG apps), and BG (BG
apps) lists, as illustrated in the Fig. 8. The reason for Hvalve
managing cached entries with three different LRU lists is
to differentiate the priority upon eviction. With these three
separate LRU lists, Hvalve is able to give different priorities
to the cached entries that are referenced by a user currently
interacting FG app, previously user-interacted FG apps, and
BG apps. Whenever an L2P of the current FG app gets cached
to the HPB memory, it is first inserted into the AFG list. If a
user launches a new FG app, the L2P entries in the AFG list
get demoted to the IFG list as they now belong to the previous
FG app. On the other hand, if an L2P entry from a BG app
gets cached to the HPB memory, it directly goes into the BG
list. Moving between lists, inserting or removing entries from
each list is trivial as all lists are implemented with hash lists.
With these three different LRU lists, Hvalve is able to manage
the HPB memory in an FG app-centric manner.

Caching policy of Hvalve: Hvalve respects the HPB’s
counter-based caching policy, thus it also caches frequently
referenced L2P entries to the HPB memory. In addition to
this, Hvalve cache L2P entries that satisfy the following condi-
tions. First, for every HPB cache miss that originated from the
current FG app, the L2P-Manager immediately caches the cor-

HPB Device Driver

FG-Profiler

startLBA; length

M
ov

e
to

 H
ea

d

Per-app Profiling Lists

Launching List Apps Running List

A
B
C

C
Compacted

FG app ‘C’ Issued I/Os

Launching
1

Running
Accessed

LBAs
8 3 7 59 6

Launch-start Launch-end
2

1 8 9 3

1 8 9 2 7 5

7 5 62 5; 3

Figure 9: An example of per-app profiling lists being updated.

responding L2P entry to the HPB memory to prevent further
cache misses of the said L2P. Second, a set of L2P entries of
the launched FG app are directly cached to the HPB memory
with the help of the FG-Profiler upon every app launch signal.
FG-Profiler is designed to collect information on the current
FG app to help HPB prioritize FG L2P entries to improve the
launching time as well as the total user-perceived latency.

FG app profiling and prefetching: As discussed in Sec-
tion 4.3, every app has its unique I/O patterns. To better man-
age the L2P cache based on apps’ unique I/O characteristics,
FG-Profiler maintains an LRU list of recently used FG apps,
each containing two separate L2P profiling lists: app launch
list and app running list. The app launch list contains a list of
LBAs that are referenced during an app launch (i.e., from a
launch-start signal to a launch-end signal, delivered by App-
Detector). The app running list holds a list of LBAs that are
accessed during the execution of the app (i.e., after a launch-
end signal).

Fig. 9 illustrates an example of how the FG-Profiler main-
tains the L2P profiling lists of FG apps. Once it receives a
launch-start message, it adds or moves the new FG app to the
head of the app-LRU list. Until a launch-end signal arrives, it
profiles every L2P entry needed by the launched app.

Fig. 10 shows an overview of how the L2P-Manager
prefetches L2P entries for every app launch. When the App-
Detector is notified of a launch-start of a new FG app it sends
a launch-start signal to HPB (1). Upon every launch-start
signal, the Hvalve tracked UID of the current FG app gets
updated to the UID of the new FG app. Then, the FG-Profiler
searches for the previously created profiling list of the new FG
app (2). If the profiled list is found, the FG-Profiler requests
the L2P-Manager, (3), to prefetch the L2P entries from the list.
This hides mapping miss penalties of the new FG app during
an app launching, as well as running.

Since every L2P prefetch request results in a new flash page
read operation, the FG-Profiler first prioritizes prefetching L2P
entries from the launch list. Only after prefetching the L2P
entries profiled in the launch list, the entries in the running list
are requested to be prefetched. The L2P-Manager preferentially
fetches the FG-Profiler-requested L2P entries from the UFS
(4). Those prefetched FG L2P entries are then inserted to
the tail of the FG LRU list, AFG, rather than the head of the

448 21st USENIX Conference on File and Storage Technologies USENIX Association

Android Kernel
HPB Device Driver

Android Platform

UFS

App-Detector

FG-Profiler

ActivityStack

New FG: A

L2P Lists Apps

A

Host DRAM
HPB Memory

Head

Tail
LRU Lists

FG

FG

FG

FG

FG

FG

FG

FG

FG

BG

BG

BG

BG

AFG IFG BG
Per-app Profiling Lists

App	A?

L2P-Manager

❶

❷

❸

❹

❺

Figure 10: L2P prefetching mechanism of a new FG app.

list (5). This is to differentiate priority upon victim selection
between the actually referenced entries by the FG app and the
Hvalve-prefetched entries. Even if the prefetched entries are
inserted into the tail of the AFG list, Hvalve does not attempt
to evict them until they are demoted to the IFG or BG lists.

Managing L2P lists per app is not only efficient for better
L2P hit ratios of FG apps, but also space-efficient in utilizing
the host memory. The profiling list is maintained as a pair
of the start chunk of the accessed LBA and the length of the
neighboring referenced chunks. Each of the profiling lists
only requires a few tens of kilobytes for most apps, 7 KB on
average. Moreover, to prevent the per-app L2P profiling lists
from excessively consuming the host memory, we statically
limit the maximum size of the total profiling lists to 1 MB.
Hvalve does not provide special handling for deduplicating
entries between app lists. Since the size of an entry of the
profiled per-app list is only 4 bytes, it is unlikely that signif-
icant memory gain can be achieved by removing duplicate
entries between lists. If the number of profiled apps exceeds
the predefined limit, the FG-Profiler frees the least recently
used app from the list to allow the newly launched FG app to
be profiled. Our current implementation sets this number to
20, which corresponds to the average smartphone usage [34].
This keeps the entire per-app L2P lists in less than 1 MB of
memory – a negligible space overhead. It can also be easily
extended to dynamically adjust if needed (see Section 6.3 for
more details).

5.3 Dynamic HPB Size Adjustment
To the best of our knowledge, there exist no techniques that op-
timally decide the HPB size to provide the best performance
by considering its impact on the overall UX quality. Hvalve
neither insists on statically allocating small HPB size to min-
imize its impact on memory pressure nor large HPB size to
boost L2P hit ratios. Instead, Hvalve proposes a dynamic HPB
size adjustment scheme that adjusts the HPB size based on the
monitored memory pressure status. Hvalve adaptively controls
the HPB memory size for higher I/O performance while no
user-interacting apps are mistakenly killed by LMKD. Hvalve
is unique in that I/O performance improvements are achieved

without negatively affecting UX-critical factors.
With Hvalve, if a non-memory-intensive app runs and the

system has enough free memory, the HPB size can increase to
cover the entire L2P mapping table. This enables us to maxi-
mally exploit the full benefits of HPB. However, whenever the
system starts to experience memory pressure, Hvalve immedi-
ately adjusts the HPB size accordingly, returning memory for
apps to use. As a result, the degradation of UX by excessively
assigning host memory to HPB does not occur.

Fig. 11 illustrates how Hvalve dynamically adjusts the al-
located HPB memory. As discussed in Section 4.4, Android
employs LMKD which selectively kills running apps to re-
lieve memory pressure. Once LMKD decides on a victim app
to kill, the Mem-Detector notifies the HPB-Regulator with the
target’s UID before LMKD starts killing the victim app (1).
The HPB-Regulator decides how important the victim app is
by checking the per-app L2P profiling list (2). If the victim
app is not found in the per-app L2P profiling list (i.e., not
a user recently used app), the signal is ignored and leaves
LMKD to continue killing the victim app. On the other hand,
if the victim app exists in the per-app L2P profiling list, it is
treated as an important app (i.e., a user recently interacted
app). Then to prevent the important app from being killed by
LMKD, Hvalve preferentially reclaims the HPB memory by
aggressively evicting low-priority cached L2P entries.

To decide how much memory to free from HPB, the proper-
ties of the LMKD victim app are taken into consideration. As
LMKD calculates the expected amount of memory to be freed
upon its victim selection, Hvalve attempts to free as much as
the LMKD desired amount. When the HPB-Regulator tells L2P-
Manager how much HPB memory to free (3), it delivers how
many cached entries in the HPB memory should be evicted
to prevent the LMKD killing its victim app.

The L2P-Manager considers the priority of cached L2P en-
tries when choosing which entries to evict. Hvalve marks
every cached L2P entry with its last-referenced UID, and
stores to an LRU list (e.g., AFG, IFG or BG) depending on
the type of the app it belongs to. With the three separate LRU
lists, Hvalve can make a fine-grained decision on which entry
to evict first as Hvalve is aware of which entries belong to the

Android Kernel
HPB Device Driver

Android Platform

Mem-Detector

L2P-Manager

LMKD

LMKD Target: H
Current FG: A

Apps

of Profiled L2Ps

Tail
H

3

Host DRAM
HPB Memory

Head

Tail

LRU Lists

FG

FG

FG

FG

FG

FG

FG

FG

FG

BG

BG

BG

BG

AFG IFG BG

App	H?

6

A
Head

Per-app Profiling Lists

C

5

B

8

G

2

N

1

HPB-Regulator

①

②

③ ④

Figure 11: HPB size adjustment mechanism of Hvalve.

USENIX Association 21st USENIX Conference on File and Storage Technologies 449

BG apps (BG list), a user recently used FG apps (inactive FG
list), and a currently user-facing FG app (active FG list). The
L2P-Manager starts to evict entries from the tail of the BG list,
(4). If there are no more entries from the BG list to evict,
the ones from the inactive FG list are tried next. L2P-Manager
never evicts entries from the active FG list to avoid UX degra-
dation. The entries in the inactive FG list will naturally get
evicted by the L2P-Manager if it is left unused for a long time.
On the other hand, the entries in the BG list can be promoted
to the FG list if an FG app references entries in the BG list.

The proposed dynamic HPB size adjustment policy of
Hvalve may result in an increase in the execution time of the
LMKD’s app-killing process. This occurs when there is an
insufficient number of HPB cached entries that can be evicted
to alleviate the memory pressure. In such a case, LMKD has
to resume the paused app-killing process to reserve free mem-
ory space. The increased amount of execution time, however,
is marginal compared to the relatively longer procedure of
LMKD. In addition, from a long-term perspective, the dy-
namic HPB size adjustment is much more beneficial to the
overall UX quality as it prevents user apps from being killed.
A more detailed analysis is described in Section 6.3.

6 Experimental Results
In this section, we evaluate the overall quality of UX when
Hvalve is applied to an HPB-enabled system.

6.1 Experimental Setup
To evaluate the effectiveness of the proposed techniques,
we implement the App-Detector, Mem-Detector, FG-Profiler, L2P-
Manager, and HPB-Regulator of HPBvalve on a Snapdragon
888 Mobile HDK [17], which is illustrated in Fig. 12. Our
evaluation platform uses the same board support package
that is used on other production smartphones using the same
SoC. This HDK has 12 GB of DRAM (effectively 8 GB)
and PCIe 3.0 x2 connectivity, which we use to connect PCIe
peripherals. We use Android 12 and Linux kernel v5.4.161 to
implement Hvalve. As it is practically infeasible to modify the
UFS firmware, we use an ultra-low latency NVMe SSD [42]
described in Section 4.1 and implement a lightweight FTL in
the kernel to mimic UFS storage, which consumes approxi-
mately 4 GB of memory to run our test scenarios. We have
written about 1,000 LOC to implement Hvalve, which we
open-sourced on GitHub3, including the changes made to the
Android platform and the kernel.

We use am start command [35] to measure app launching
and switching times. For apps with multiple loading stages,
the am start command is unable to measure the total time
taken until the device is ready to take user inputs. For exam-
ple, GI goes through three separate loading stages until the
gameplay button appears while the am start command only

3The source code is available at https://github.com/cares-davinci/Hvalve.

Apps App Usage Scenario

AP Play a stage.

CR Play a stage.

GI Explore the map.

FB Browse Feed, Watch, Stories, Notifications,
and other pages.

IG Browse Feed, Reels and write comments.

TW Browse Timeline, Trending, Notifications ,
and reply to a tweet.

AB Browse the globe map and opens multiple listings.

FBM Browse Chats, Calls, People, Stories,
and send messages.

UB Browse Activity, Account settings,
and search the map.

CPU: Snapdragon 888
OS: Android 12
Kernel: v5.4.161
DRAM: 12GB
Storage: 1TB

D
is
pl
ay

SSD

Camera

Figure 12: Prototype HPBvalve setup and app usage scenarios.

measures the time taken until the first stage. To precisely mea-
sure the app loading time, we employ an external high-speed
camera, which captures 120 frames per second that match the
refresh rate of our evaluation platform’s display.

As for the benchmarks, we evaluate nine popular mobile
apps listed in Section 4.1. To automatically run multiple mo-
bile apps under realistic app usage scenarios, we use the An-
droid debug bridge (adb) [58]. The predefined app usage
scenarios are described in Fig. 12. To avoid cherry-picking
sequences that would favor Hvalve, the sequence of the nine
apps is randomized and run multiple times to reduce variables.
The chosen random sequence is executed for each technique
for a fair comparison.

Even though the same randomized sequence was run for
each technique, there still exists run-to-run variations due
to noises such as network conditions, random advertisement
occurrences, and others. In order to minimize run-to-run vari-
ations, we fully automated the evaluation process to repeat the
same scenario twenty times for each case. We also disabled
the checkpoint on the underlying file system, f2fs [59], so
that the entire userdata partition could be rolled back to the
previous state to further minimize variances. After running
twenty times, we averaged the results of fifteen runs, exclud-
ing the five outliers. We compared Hvalve with the typical
HPB system that employs FOAM [6] as its L2P eviction pol-
icy, UFS+HPB, and an ideal system where all L2P entries are
cached in memory, OPTIMAL, and a conventional UFS sys-
tem without HPB, UFS. We also compared Hvalve-Only with
HPB-Only where the underlying UFS SRAM is not consid-
ered to evaluate the effectiveness of caching policy of Hvalve.

6.2 Performance Evaluation
In order to validate the effectiveness of Hvalve, we assess
the impact of FG app-centric HPB management and dynamic
HPB size adjustment techniques on the overall UX quality
compared against UFS+HPB.

6.2.1 FG app-centric HPB management
User-perceived latency: As for the most important perfor-
mance evaluation metrics in deciding the quality of UX, we
assess the app launching, switching, and loading times of
various HPB configurations.

450 21st USENIX Conference on File and Storage Technologies USENIX Association

https://github.com/cares-davinci/Hvalve

FB IG TW AB FBM UB AVG
0.0

0.4

0.8

1.2

1.6

U
s
e
r
-P

e
r
c
e
iv

e
d

 L
a
te

n
c
y
 (

s
)

FB IG TW AB FBM UB AVG
0.0

0.1

0.2

0.3

0.4

0.5

AP CR GI AVG
0

4

8

12

16

UFS UFS+HPB Hvalve OPTIMAL

(a) App launching time of social media and utilities. (b) App switching time of social media and utilities. (c) App loading time of
games.

Figure 13: Evaluation results of the user-perceived latency.

Fig. 13(a) shows the experimental results of the app launch-
ing time. The average app launching time of Hvalve is im-
proved by 28% and 23% when compared to UFS and UFS+HPB,
respectively. The maximum and minimum app launching
time improvements between Hvalve and UFS+HPB are 43%
for UB and 7% for FB where the corresponding absolute app
launching time improvements are 237 ms and 23 ms, respec-
tively. We also compare the app launching time of Hvalve to
OPTIMAL. The minimum and the maximum absolute launch-
time differences between OPTIMAL and Hvalve are only by
4 ms (+0.85%) for AB and 55 ms (+4.7%) for IG. On the
other hand, UFS+HPB takes 40 ms (+8.5%) for AB and 514 ms
(+43.1%) for IG more when compared to OPTIMAL.

We also measure the app switching time – the latency of
when a user switches back to an app that is recently launched.
As shown in Fig. 13(b), Hvalve outperforms UFS+HPB for
all cases. The maximum app switching time difference be-
tween Hvalve and OPTIMAL is only 4.6 ms (+3.15%) with
FB while it is 13.4 ms (+8.65%) on UFS+HPB in the same
scenario. The minimum increase in app switching time of
Hvalve compared to OPTIMAL is 0.5 ms (+0.12%) with TW,
while the gap between UFS+HPB and OPTIMAL of the same
case is 4 ms (+0.95%). Since a comparatively small number
of I/Os are issued while an app is being switched compared
to the app launch process, as described in Table 1, the per-
formance increase with Hvalve for the app switching time is
quite marginal compared to the other two metrics.

We also evaluate the app loading time of games by using
an external high-speed camera to measure the time from a
user launch of an app until the device is ready to take user
inputs. As shown in Fig. 13(c), the app loading time of all
three games is improved which provides almost the same
user-perceived latency as OPTIMAL. The minimum increase in
app loading time of Hvalve compared to OPTIMAL is 111.4 ms
(+2%) with CR while the gap between UFS+HPB and OPTIMAL
of the same case is 308.45 ms (+5.5%). The maximum app
loading time difference between Hvalve and OPTIMAL is only
205 ms (+1.6%) with AP while it is 1589 ms (+12.5%) on
UFS+HPB with the same scenario. When comparing Hvalve
to OPTIMAL, the increase in user-perceived latency, mainly
caused by mapping misses, is very marginal.

As discussed in Section 4.2, every millisecond of respon-
siveness greatly impacts the UX. According to our evalua-
tion results, the storage mapping miss penalties, resulting in
user-perceived delays, are significantly alleviated with Hvalve.
These benefits come from the FG app-centric HPB manage-
ment policy employed in Hvalve, which gives higher priority
to L2P entries of FG apps to be managed in the HPB memory.
To summarize, Hvalve alleviates the storage mapping miss
penalties of the baseline UFS+HPB by 80% for app launching
time and by 86% for app loading time on average.

L2P miss patterns: To analyze the impact of our proposed
FG app-centric HPB management of Hvalve on FG apps, we
first observe how much L2P miss distributions differ from
UFS+HPB over an app execution. Due to the page limit, we
include four representative apps, AP, CR, UB, and IG, two
from games and one each from social media and utilities.

As examined in Section 4.2, most of the L2P cache misses
occur during the early stages of the total app execution time.
Fig. 14 shows the distributions of L2P misses over the execu-
tion time of each FG app. Such mapping misses that occur
in the early stage are one of the root causes that increase
user-perceivable delays. Hvalve significantly reduces the peak
number of L2P misses during the early stage as well as the
total number of the L2P cache misses compared to UFS+HPB.
The maximum L2P miss reduction in the first tenth of the to-
tal normalized execution time is 88% with CR over UFS+HPB,
while the minimum is 45% with AP. During the first fifth of
the app execution time, 71% and 75% of the mapping misses
are alleviated for UB and IG, respectively.

The peak L2P misses are greatly reduced not only in the
early stages, but also throughout the entire execution time.
This advantage comes from both the caching and the eviction
policy of Hvalve. Hvalve prepares L2P lists by prefetching
when an app is being launched, and those of the prefetched
or cached entries of the current FG L2P entries never get
evicted from HPB memory as long as it remains as an FG.
The mapping miss penalties included in the user-perceived
latency, which could severely degrade the overall quality of
UX, are greatly reduced.

Hit ratios: In addition to the reduced user-perceived la-
tency and L2P misses, we also quantitatively evaluate the

USENIX Association 21st USENIX Conference on File and Storage Technologies 451

Normalized Time Progress (%)
0 20 40 60 80 100

0
60

120
180
240
300

N
u

m
b

e
r
 o

f
L
2

P
 M

is
s
e
s

AP

0 20 40 60 80 100
0

30
60
90

120
150

CR

0 20 40 60 80 100
0

20
40
60
80

100
UB

0 20 40 60 80 100
0

20
40
60
80

100
IG

UFS+HPB Hvalve

Figure 14: Distributions of L2P misses of FG apps over execution time.

Number of Cold Launches of Apps

1 2 3 4 5 6 7
0

25

50

75

100

H
P

B
 H

it
 R

a
ti

o
 (

%
)

AP

1 2 3 4 5 6 7

CR

1 2 3 4 5 6 7

UB

1 2 3 4 5 6 7

IG

HPB-Only Hvalve-Only

Figure 15: HPB hit ratios of each launch when consecutively launched for seven times.

effectiveness of the FG app-centric L2P management policy
of Hvalve, by comparing HPB-Only to Hvalve-Only where the
underlying UFS SRAM is not considered. Fig. 15 illustrates
the HPB hit ratios of each FG app. The hit ratios of Hvalve-
Only outperform HPB-Only for all cases. In order to evaluate
the effectiveness of the L2P prefetching scheme of Hvalve,
we observe how the hit ratios of each FG app change over a
few numbers of consecutive app launches.

As the number of app launch counts increases, the hit ratios
of Hvalve keep increasing while the hit ratios of HPB-Only re-
main consistently low. The largest hit ratio difference between
HPB-Only and Hvalve-Only is 84.79% with UB. This result
proves that the L2P prefetching mechanism successfully im-
proves the performance of FG apps by hiding miss penalties.
The above results also confirm that Hvalve is effective in pro-
viding a better quality of UX as it actively reflects the app
usage patterns of individual smartphone users in managing
the HPB memory.

6.2.2 Dynamic HPB size adjustment
We compare Hvalve with UFS+HPB to evaluate the impact of
our proposed dynamic HPB size adjustment scheme on UX.
While Hvalve dynamically adjusts the HPB size depending
on the monitored memory pressure status, UFS+HPB statically
allocates the HPB size and adjusts it with a simple timer-based
eviction policy. In this evaluation, we set UFS as a baseline,
which does not require extra host memory to load storage
mapping entries (i.e., no impact on the memory pressure).

Fig. 16(a) shows a log-scaled histogram of the number of
LMKD killed apps with seven different priority categories.
As no extra host memory is used for allocating HPB memory
(i.e., no extra memory pressure), UFS results in the lowest
number of kills on every priority category. On the other hand,
the result of UFS+HPB shows much more apps were killed on
every priority category when compared to UFS. The number of
killed apps in the top three priority categories was increased
by 5× with UFS+HPB when compared to the UFS. While pro-

viding much higher L2P cache hit ratios, Hvalve reduces the
number of apps killed by LMKD in the top three priority cat-
egories by 70% compared to UFS+HPB. Therefore, we again
prove that simply integrating HPB into the system inevitably
increases the memory pressure resulting in high-priority user
apps being killed.

To further investigate the consequences of high-priority
apps being killed by LMKD, Fig. 16(b) shows the change in
the number of read I/Os issued by FG apps, normalized to the
number of read I/Os of UFS. The number of read I/Os with
UFS+HPB is increased by 13% on average when compared to
UFS, while Hvalve is only increased by 5% as it reduces the
impact on the FG apps as well.

To demonstrate how each UFS+HPB and Hvalve adjust the
allocated HPB memory, Fig. 17 illustrates changes in HPB
memory size along with the reported memory pressure signals.
Unsurprisingly, UFS+HPB allocates and frees HPB memory in
a non-harmonized manner with the overall memory pressure
status. Even when the memory pressure is present, UFS+HPB
still allocates host memory to HPB (i.e., adding more memory
pressure to the system) which increases the possibility of
important apps getting killed by LMKD.

On the other hand, Hvalve allocates host memory to the
HPB memory and also effectively returns the HPB memory to

Low High
Priority of LMKD Victim Apps

100

101

102

103

N
u

m
b

e
r
 o

f
K

il
le

d
 A

p
p

s

AP UB CR IG AVG
0.8

1.0

1.2

1.4

N
o
r
m

a
li
z
e
d

 R
e
a
d

 I
/O

s

UFS Hvalve UFS+HPB

(a) Histogram of LMKD killed apps. (b) Number of app-
issued read I/Os.

Figure 16: Impact of HPB on FG apps.

452 21st USENIX Conference on File and Storage Technologies USENIX Association

Running Time (s)

H
P

B
 C

a
c
h

e
d

 L
2
P

s
 (

M
B

)

0

40

80

120
Max.

UFS+HPB

0 500 1000 1500 2000
0

40

80

120
Max.

Hvalve

Avg.

Avg.

HPB Cached L2Ps Memory Pressure Signal

Figure 17: Changes in HPB memory size with the memory
pressure signals.

user apps in a harmonized manner with the memory pressure
signals. As a consequence, shown in Fig. 16(a), the number of
important apps killed by LMKD with Hvalve is much lower
than that of UFS+HPB. This is because Hvalve proactively
prevents LMKD from killing high-priority apps by promptly
returning the HPB-allocated memory to the user apps under
the monitored memory pressure signals.

6.3 Overhead Analysis
Space overhead: Unlike the existing HPB technique, Hvalve
consumes extra memory space for maintaining the per-app
profiling lists to prefetch L2P entries upon every FG app
launch. To avoid excessive memory consumption in manag-
ing the per-app profiling lists, Hvalve profiles only a moderate
number (e.g., 20) of recently used apps (which has a high im-
pact on UX). The total profiling app list size is also regulated
to 1 MB. The number of profiled L2P entries of each app
differs based on the app access patterns. The total memory
consumption for per-app profiling lists of the nine apps we use
throughout the evaluations only consumes 99 KB of memory.
It can be further minimized by merging neighboring groups
as each node can be transformed into a compact profiling list
that contains <Start LBA, Length>.

Performance overhead: While Hvalve manages the
cached L2Ps with three separate LRU lists, AFG, IFG, and
BG, moving cached entries between the LRU lists does not
necessitate exhaustive search overhead since all lists are man-
aged with hash lists. Retrieval and relocating a specific cached
L2P entry from one list to another list can be done in O(1)
time complexity. The process of promoting or demoting an
entry from one list to another is also simple as it requires
updating only a few associated pointers.

The overhead of dynamic HPB size adjustment is also
negligible as the process of returning HPB memory can be
executed comparatively faster than that of the LMKD’s app-
killing process. Hvalve takes about 1.8 ms on average to
free HPB memory whereas the app-killing process of LMKD
typically takes hundreds of milliseconds. Although unlikely,
in the worst case when Hvalve cannot evict sufficient cached
entries to free the requested amount of memory, an extra time
overhead (a few ms) can incur as LMKD must resume the

suspended app-killing procedure. Despite the potential of
Hvalve increasing the LMKD’s execution time, preferentially
freeing the HPB memory under memory pressure is more
advantageous to the overall system performance. For example,
if an app is killed by LMKD and re-launched after a while, the
evicted app-related data has to be reloaded. On the other hand,
re-fetching the HPB entries only requires a much smaller
number of I/Os.

Energy Consumption: Employing Hvalve does not require
extra energy consumption, since the two proposed HPB man-
agement schemes of Hvalve do not introduce severe search
or space overheads to the system. As the total execution time
of apps is reduced by integrating Hvalve, the total energy
consumption with Hvalve is even decreased by 3.51% com-
pared to UFS+HPB. When comparing to OPTIMAL, UFS+HPB
increases the total energy consumption by 4.02% while Hvalve
only increases by 0.56%. Hvalve successfully mitigates the
negative impacts of UFS+HPB on resource consumption and
the overall quality of UX.

7 Conclusion
In this paper, we present a novel FG app-centric L2P mapping
cache management scheme, HPBvalve, for the HPB-enabled
system. Hvalve is motivated by the fact that the existing HPB
management scheme fails to improve the UX of smartphones
due to two main reasons revealed through our empirical in-
vestigations. First, the priority of app status (FG or BG) is not
considered while managing cached L2P entries in the HPB
memory. Second, the memory pressure of the system could
get critically high as host memory is allocated to the HPB
without considering the memory pressure status. To improve
the overall quality of UX upon these shortcomings of the
existing HPB, Hvalve prioritizes the FG app in managing the
cached L2P entries in HPB memory and dynamically adjusts
the size of the HPB-designated host memory by monitoring
the current memory pressure status. This allows Hvalve to
reduce app kills in the top three priority categories by 70%
while achieving significantly higher L2P hit ratios for FG
apps. Our experimental results show that Hvalve successfully
improves the overall UX quality of smartphones and provides
almost equivalent performance as if most entries are cached
in the HPB memory.

Acknowledgments
We would like to thank Ali R. Butt, our shepherd, and anony-
mous reviewers for their valuable suggestions. This work
was supported by Samsung Electronics Co., Ltd (IO201207-
07809-01) and the National Research Foundation of Ko-
rea(NRF) grant funded by the Korea government(MSIT)
(NRF-2022R1A2C2010529). The ICT at Seoul National Uni-
versity provided research facilities for this study. Sungjin Lee
was supported by the National Research Foundation of Ko-
rea (NRF-2018R1A5A1060031). (Co-corresponding Authors:
Sungjin Lee and Jihong Kim)

USENIX Association 21st USENIX Conference on File and Storage Technologies 453

References

[1] Sangwook Shane Hahn, Sungjin Lee, Inhyuk Yee,
Donguk Ryu, and Jihong Kim. FastTrack: Foreground
App-Aware I/O Management for Improving User Experi-
ence of Android Smartphones. In 2018 USENIX Annual
Technical Conference (ATC), pages 15–28. USENIX
Association, 2018.

[2] Google - Android Open Source Project. Performance
Management. https://source.android.com/dev
ices/tech/power/performance.

[3] Sangwook Kim, Hwanju Kim, Joonwon Lee, and Jinkyu
Jeong. Enlightening the I/O Path: A Holistic Approach
for Application Performance. In 15th USENIX Confer-
ence on File and Storage Technologies (FAST), pages
345–358. USENIX Association, 2017.

[4] Daeho Jeong, Youngjae Lee, and Jin-Soo Kim. Boost-
ing Quasi-Asynchronous I/O for Better Responsiveness
in Mobile Devices. In 13th USENIX Conference on
File and Storage Technologies (FAST), pages 191–202.
USENIX Association, 2015.

[5] Samsung. UFS. https://semiconductor.samsung.
com/estorage/ufs.

[6] Chao Wu, Qiao Li, Cheng Ji, Tei-Wei Kuo, and Chun Ja-
son Xue. Boosting User Experience via Foreground-
Aware Cache Management in UFS Mobile Devices.
IEEE Transactions on Computer-Aided Design of In-
tegrated Circuits and Systems (TCAD), 39(11):3263–
3275, 2020.

[7] Sam Son, Seung Yul Lee, Yunho Jin, Jonghyun Bae,
Jinkyu Jeong, Tae Jun Ham, Jae W. Lee, and Hongil
Yoon. ASAP: Fast Mobile Application Switch via Adap-
tive Prepaging. In 2021 USENIX Annual Technical Con-
ference (ATC), pages 365–380. USENIX Association,
2021.

[8] Aayush Gupta, Youngjae Kim, and Bhuvan Urgaonkar.
DFTL: A Flash Translation Layer Employing Demand-
Based Selective Caching of Page-Level Address Map-
pings. SIGARCH Comput. Archit. News, 37(1):229–240,
2009.

[9] Wookhan Jeong, Hyunsoo Cho, Yongmyung Lee, Jae-
gyu Lee, Songho Yoon, Jooyoung Hwang, and Donggi
Lee. Improving Flash Storage Performance by Caching
Address Mapping Table in Host Memory. In Pro-
ceedings of the 9th USENIX Conference on Hot Top-
ics in Storage and File Systems (HotStorage), page 19.
USENIX Association, 2017.

[10] JEDEC. Universal Flash Storage (UFS) host perfor-
mance booster (HPB) extension, version 2.0. https:
//www.jedec.org/standards-documents/docs/J
ESD220-3A.pdf, 2020.

[11] Google - Android Open Source Project. Google Pixel 3
kernel source - drivers/scsi/ufs/ufshpb.c. https://an
droid.googlesource.com/kernel/msm/+/23d68f
4b84c3c6a309512f9fef6d80072fb8364a, 2018.

[12] Masafumi Takahashi. UFS Unified Memory Extension.
JEDEC Mobile Forum, 2014.

[13] Konosuke Watanabe, Kenichiro Yoshii, Nobuhiro
Kondo, Kenichi Maeda, Toshio Fujisawa, Junji Wa-
datsumi, Daisuke Miyashita, Shouhei Kousai, Yasuo
Unekawa, Shinsuke Fujii, Takuma Aoyama, Takayuki
Tamura, Atsushi Kunimatsu, and Yukihito Oowaki. 19.3
66.3KIOPS-random-read 690MB/s-sequential-read uni-
versal Flash storage device controller with unified mem-
ory extension. In 2014 IEEE International Solid-State
Circuits Conference Digest of Technical Papers (ISSCC),
pages 330–331, 2014.

[14] NVM Express. NVMe specifications 1.2. http://www.
nvmexpress.org/specifications, 2014.

[15] Google - Android Open Source Project. Android Com-
mon Kernel’s HPB. https://android.googlesour
ce.com/kernel/common/+/refs/heads/android1
2-5.10/drivers/scsi/ufs/ufshpb.c.

[16] Google - Android Open Source Project. Low Memory
Killer Daemon. https://source.android.com/doc
s/core/perf/lmkd.

[17] Qualcomm. Snapdragon 888 HDK. https://develo
per.qualcomm.com/hardware/snapdragon-888-h
dk, 2021.

[18] Jung-Hoon Kim, Sang-Hoon Kim, and Jin-Soo Kim. Uti-
lizing Subpage Programming to Prolong the Lifetime of
Embedded NAND Flash-Based Storage. IEEE Transac-
tions on Consumer Electronics (TCE), 64(1):101–109,
2018.

[19] OnePlus - GitHub. OnePlus 9 kernel source -
drivers/scsi/ufs/ufshpb.c. https://github.com/O
nePlusOSS/android_kernel_oneplus_sm8350/bl
ob/1c052de944b391dd50957b03e1fc92f93f35e12
5/drivers/scsi/ufs/ufshpb.c, 2022.

[20] OnePlus - GitHub. OnePlus 9 kernel source -
drivers/scsi/ufs/ufshpb_skh.c. https://github.com
/OnePlusOSS/android_kernel_oneplus_sm8350/
blob/1c052de944b391dd50957b03e1fc92f93f35e
125/drivers/scsi/ufs/ufshpb_skh.c, 2022.

454 21st USENIX Conference on File and Storage Technologies USENIX Association

https://source.android.com/devices/tech/power/performance
https://source.android.com/devices/tech/power/performance
https://semiconductor.samsung.com/estorage/ufs
https://semiconductor.samsung.com/estorage/ufs
https://www.jedec.org/standards-documents/docs/JESD220-3A.pdf
https://www.jedec.org/standards-documents/docs/JESD220-3A.pdf
https://www.jedec.org/standards-documents/docs/JESD220-3A.pdf
https://android.googlesource.com/kernel/msm/+/23d68f4b84c3c6a309512f9fef6d80072fb8364a
https://android.googlesource.com/kernel/msm/+/23d68f4b84c3c6a309512f9fef6d80072fb8364a
https://android.googlesource.com/kernel/msm/+/23d68f4b84c3c6a309512f9fef6d80072fb8364a
http://www.nvmexpress.org/specifications
http://www.nvmexpress.org/specifications
https://android.googlesource.com/kernel/common/+/refs/heads/android12-5.10/drivers/scsi/ufs/ufshpb.c
https://android.googlesource.com/kernel/common/+/refs/heads/android12-5.10/drivers/scsi/ufs/ufshpb.c
https://android.googlesource.com/kernel/common/+/refs/heads/android12-5.10/drivers/scsi/ufs/ufshpb.c
https://source.android.com/docs/core/perf/lmkd
https://source.android.com/docs/core/perf/lmkd
https://developer.qualcomm.com/hardware/snapdragon-888-hdk
https://developer.qualcomm.com/hardware/snapdragon-888-hdk
https://developer.qualcomm.com/hardware/snapdragon-888-hdk
https://github.com/OnePlusOSS/android_kernel_oneplus_sm8350/blob/1c052de944b391dd50957b03e1fc92f93f35e125/drivers/scsi/ufs/ufshpb.c
https://github.com/OnePlusOSS/android_kernel_oneplus_sm8350/blob/1c052de944b391dd50957b03e1fc92f93f35e125/drivers/scsi/ufs/ufshpb.c
https://github.com/OnePlusOSS/android_kernel_oneplus_sm8350/blob/1c052de944b391dd50957b03e1fc92f93f35e125/drivers/scsi/ufs/ufshpb.c
https://github.com/OnePlusOSS/android_kernel_oneplus_sm8350/blob/1c052de944b391dd50957b03e1fc92f93f35e125/drivers/scsi/ufs/ufshpb.c
https://github.com/OnePlusOSS/android_kernel_oneplus_sm8350/blob/1c052de944b391dd50957b03e1fc92f93f35e125/drivers/scsi/ufs/ufshpb_skh.c
https://github.com/OnePlusOSS/android_kernel_oneplus_sm8350/blob/1c052de944b391dd50957b03e1fc92f93f35e125/drivers/scsi/ufs/ufshpb_skh.c
https://github.com/OnePlusOSS/android_kernel_oneplus_sm8350/blob/1c052de944b391dd50957b03e1fc92f93f35e125/drivers/scsi/ufs/ufshpb_skh.c
https://github.com/OnePlusOSS/android_kernel_oneplus_sm8350/blob/1c052de944b391dd50957b03e1fc92f93f35e125/drivers/scsi/ufs/ufshpb_skh.c

[21] OnePlus - GitHub. OnePlus 9 kernel source -
fs/hpb_supp.c. https://github.com/OnePlusOS
S/android_kernel_oneplus_sm8350/blob/1c052
de944b391dd50957b03e1fc92f93f35e125/fs/hpb
_supp.c, 2022.

[22] Xiaomi - GitHub. Redmi 10X, Redmi 10X Pro, Redmi
K30 Ultra kernel source - drivers/scsi/ufs/ufshpb.c. ht
tps://github.com/MiCode/Xiaomi_Kernel_OpenS
ource/blob/9be022c0db171ac622e528752410d61
3c0e4e64d/drivers/scsi/ufs/ufshpb.c, 2021.

[23] Xiaomi - GitHub. Redmi 10X, Redmi 10X Pro, Redmi
K30 Ultra kernel source - drivers/scsi/ufs/ufshpb_skh.c.
https://github.com/MiCode/Xiaomi_Kernel_Ope
nSource/blob/9be022c0db171ac622e528752410d
613c0e4e64d/drivers/scsi/ufs/ufshpb_skh.c,
2021.

[24] Samsung - Samsung Open Source. Galaxy S20 kernel
source - drivers/scsi/ufs/ufshpb.c, fs/hpb_supp.c. https:
//opensource.samsung.com/uploadSearch?searc
hValue=G981NKSU1FUL9, 2021.

[25] Motorola - GitHub. Motorola Edge 30 kernel source -
Samsung HPB. https://github.com/MotorolaMob
ilityLLC/kernel-msm/commit/a6cc1ed04b2a76f
d325929a7925c01a99a310e0d, 2022.

[26] Motorola - GitHub. Motorola Edge 30 kernel source -
SK Hynix HPB. https://github.com/MotorolaMob
ilityLLC/kernel-msm/commit/e297cf514d64bf8
5fdc2a1ee8722da8baf0afd4c, 2022.

[27] Motorola - GitHub. Motorola Edge 30 kernel source -
Micron HPB. https://github.com/MotorolaMobil
ityLLC/kernel-msm/commit/26150eb5bb48d37b6
0f279b9766761926ba17de3, 2022.

[28] Motorola - GitHub. Motorola Edge 30 kernel source -
Kioxia HPB. https://github.com/MotorolaMobil
ityLLC/kernel-msm/commit/f4da8e2db63f5d581
8abc37ba1677b79e604bacd, 2022.

[29] Google - Android Open Source Project. Identifying
Capacity-Related Jank. https://source.android.c
om/docs/core/debug/jank_capacity.

[30] Google - Android Open Source Project. Cgroup Ab-
straction Layer. https://source.android.com/doc
s/core/perf/cgroups.

[31] Google - Android Open Source Project. Cached Apps
Freezer. https://source.android.com/docs/core
/perf/cached-apps-freezer.

[32] Howard Oakley. How M1 Macs feel faster than Intel
models: it’s about QoS. https://eclecticlight.co

/2021/05/17/how-m1-macs-feel-faster-than-i
ntel-models-its-about-qos, 2021.

[33] Niel Lebeck, Arvind Krishnamurthy, Henry M. Levy,
and Irene Zhang. End the Senseless Killing: Improving
Memory Management for Mobile Operating Systems.
In 2020 USENIX Annual Technical Conference (ATC),
pages 873–887. USENIX Association, 2020.

[34] Yu Liang, Jinheng Li, Rachata Ausavarungnirun, Riwei
Pan, Liang Shi, Tei-Wei Kuo, and Chun Jason Xue. Ac-
claim: Adaptive Memory Reclaim to Improve User Ex-
perience in Android Systems. In 2020 USENIX Annual
Technical Conference (ATC), pages 897–910. USENIX
Association, 2020.

[35] Google - Android Developers. App startup time. https:
//developer.android.com/topic/performance/
vitals/launch-time.

[36] Google - Android Developers. Josh sees increased cus-
tomer retention by improving app startup time by 30%.
https://developer.android.com/stories/apps
/josh.

[37] Google - Android Developers Blog. Improving App
Performance with Baseline Profiles. https://andr
oid-developers.googleblog.com/2022/01/impr
oving-app-performance-with-baseline.html,
2022.

[38] Google - Android Developers Blog. Improving app
performance with ART optimizing profiles in the cloud.
https://android-developers.googleblog.com/
2019/04/improving-app-performance-with-art
.html, 2019.

[39] Google - Android Developers (Medium). Testing App
Startup Performance. https://medium.com/android
developers/testing-app-startup-performance
-36169c27ee55, 2020.

[40] Google - Android Developers. Increasing app speed
by 30%: a key ingredient in Zomato’s growth recipe.
https://developer.android.com/stories/apps
/zomato.

[41] Google - Android Developers (Medium). Improving
app startup with I/O prefetching. https://medium.c
om/androiddevelopers/improving-app-startup
-with-i-o-prefetching-62fbdb9c9020, 2020.

[42] Samsung. Z-SSD. https://semiconductor.samsun
g.com/ssd/z-ssd.

[43] Forbes. Why Brands Are Fighting Over Milliseconds.
https://www.forbes.com/sites/steveolenski/
2016/11/10/why-brands-are-fighting-over-mi
lliseconds, 2016.

USENIX Association 21st USENIX Conference on File and Storage Technologies 455

https://github.com/OnePlusOSS/android_kernel_oneplus_sm8350/blob/1c052de944b391dd50957b03e1fc92f93f35e125/fs/hpb_supp.c
https://github.com/OnePlusOSS/android_kernel_oneplus_sm8350/blob/1c052de944b391dd50957b03e1fc92f93f35e125/fs/hpb_supp.c
https://github.com/OnePlusOSS/android_kernel_oneplus_sm8350/blob/1c052de944b391dd50957b03e1fc92f93f35e125/fs/hpb_supp.c
https://github.com/OnePlusOSS/android_kernel_oneplus_sm8350/blob/1c052de944b391dd50957b03e1fc92f93f35e125/fs/hpb_supp.c
https://github.com/MiCode/Xiaomi_Kernel_OpenSource/blob/9be022c0db171ac622e528752410d613c0e4e64d/drivers/scsi/ufs/ufshpb.c
https://github.com/MiCode/Xiaomi_Kernel_OpenSource/blob/9be022c0db171ac622e528752410d613c0e4e64d/drivers/scsi/ufs/ufshpb.c
https://github.com/MiCode/Xiaomi_Kernel_OpenSource/blob/9be022c0db171ac622e528752410d613c0e4e64d/drivers/scsi/ufs/ufshpb.c
https://github.com/MiCode/Xiaomi_Kernel_OpenSource/blob/9be022c0db171ac622e528752410d613c0e4e64d/drivers/scsi/ufs/ufshpb.c
https://github.com/MiCode/Xiaomi_Kernel_OpenSource/blob/9be022c0db171ac622e528752410d613c0e4e64d/drivers/scsi/ufs/ufshpb_skh.c
https://github.com/MiCode/Xiaomi_Kernel_OpenSource/blob/9be022c0db171ac622e528752410d613c0e4e64d/drivers/scsi/ufs/ufshpb_skh.c
https://github.com/MiCode/Xiaomi_Kernel_OpenSource/blob/9be022c0db171ac622e528752410d613c0e4e64d/drivers/scsi/ufs/ufshpb_skh.c
https://opensource.samsung.com/uploadSearch?searchValue=G981NKSU1FUL9
https://opensource.samsung.com/uploadSearch?searchValue=G981NKSU1FUL9
https://opensource.samsung.com/uploadSearch?searchValue=G981NKSU1FUL9
https://github.com/MotorolaMobilityLLC/kernel-msm/commit/a6cc1ed04b2a76fd325929a7925c01a99a310e0d
https://github.com/MotorolaMobilityLLC/kernel-msm/commit/a6cc1ed04b2a76fd325929a7925c01a99a310e0d
https://github.com/MotorolaMobilityLLC/kernel-msm/commit/a6cc1ed04b2a76fd325929a7925c01a99a310e0d
https://github.com/MotorolaMobilityLLC/kernel-msm/commit/e297cf514d64bf85fdc2a1ee8722da8baf0afd4c
https://github.com/MotorolaMobilityLLC/kernel-msm/commit/e297cf514d64bf85fdc2a1ee8722da8baf0afd4c
https://github.com/MotorolaMobilityLLC/kernel-msm/commit/e297cf514d64bf85fdc2a1ee8722da8baf0afd4c
https://github.com/MotorolaMobilityLLC/kernel-msm/commit/26150eb5bb48d37b60f279b9766761926ba17de3
https://github.com/MotorolaMobilityLLC/kernel-msm/commit/26150eb5bb48d37b60f279b9766761926ba17de3
https://github.com/MotorolaMobilityLLC/kernel-msm/commit/26150eb5bb48d37b60f279b9766761926ba17de3
https://github.com/MotorolaMobilityLLC/kernel-msm/commit/f4da8e2db63f5d5818abc37ba1677b79e604bacd
https://github.com/MotorolaMobilityLLC/kernel-msm/commit/f4da8e2db63f5d5818abc37ba1677b79e604bacd
https://github.com/MotorolaMobilityLLC/kernel-msm/commit/f4da8e2db63f5d5818abc37ba1677b79e604bacd
https://source.android.com/docs/core/debug/jank_capacity
https://source.android.com/docs/core/debug/jank_capacity
https://source.android.com/docs/core/perf/cgroups
https://source.android.com/docs/core/perf/cgroups
https://source.android.com/docs/core/perf/cached-apps-freezer
https://source.android.com/docs/core/perf/cached-apps-freezer
https://eclecticlight.co/2021/05/17/how-m1-macs-feel-faster-than-intel-models-its-about-qos
https://eclecticlight.co/2021/05/17/how-m1-macs-feel-faster-than-intel-models-its-about-qos
https://eclecticlight.co/2021/05/17/how-m1-macs-feel-faster-than-intel-models-its-about-qos
https://developer.android.com/topic/performance/vitals/launch-time
https://developer.android.com/topic/performance/vitals/launch-time
https://developer.android.com/topic/performance/vitals/launch-time
https://developer.android.com/stories/apps/josh
https://developer.android.com/stories/apps/josh
https://android-developers.googleblog.com/2022/01/improving-app-performance-with-baseline.html
https://android-developers.googleblog.com/2022/01/improving-app-performance-with-baseline.html
https://android-developers.googleblog.com/2022/01/improving-app-performance-with-baseline.html
https://android-developers.googleblog.com/2019/04/improving-app-performance-with-art.html
https://android-developers.googleblog.com/2019/04/improving-app-performance-with-art.html
https://android-developers.googleblog.com/2019/04/improving-app-performance-with-art.html
https://medium.com/androiddevelopers/testing-app-startup-performance-36169c27ee55
https://medium.com/androiddevelopers/testing-app-startup-performance-36169c27ee55
https://medium.com/androiddevelopers/testing-app-startup-performance-36169c27ee55
https://developer.android.com/stories/apps/zomato
https://developer.android.com/stories/apps/zomato
https://medium.com/androiddevelopers/improving-app-startup-with-i-o-prefetching-62fbdb9c9020
https://medium.com/androiddevelopers/improving-app-startup-with-i-o-prefetching-62fbdb9c9020
https://medium.com/androiddevelopers/improving-app-startup-with-i-o-prefetching-62fbdb9c9020
https://semiconductor.samsung.com/ssd/z-ssd
https://semiconductor.samsung.com/ssd/z-ssd
https://www.forbes.com/sites/steveolenski/2016/11/10/why-brands-are-fighting-over-milliseconds
https://www.forbes.com/sites/steveolenski/2016/11/10/why-brands-are-fighting-over-milliseconds
https://www.forbes.com/sites/steveolenski/2016/11/10/why-brands-are-fighting-over-milliseconds

[44] NVIDIA. Analysing Stutter – Mining More from Per-
centiles. https://developer.nvidia.com/content
/analysing-stutter-%E2%80%93-mining-more-p
ercentiles-0, 2014.

[45] Engadget. Razer Phone hands-on. https://www.enga
dget.com/2017-11-01-razer-phone-hands-on.h
tml, 2017.

[46] Samsung. Galaxy S20 Display Developers on What
Makes the 120Hz Display Special. https://news.s
amsung.com/global/interview-galaxy-s20-dis
play-developers-on-what-makes-the-120hz-di
splay-special, 2020.

[47] Apple. Apple unveils iPhone 13 Pro and iPhone 13 Pro
Max — more pro than ever before. https://www.ap
ple.com/newsroom/2021/09/apple-unveils-iph
one-13-pro-and-iphone-13-pro-max-more-pro-
than-ever-before, 2021.

[48] ASUS. The ROG Phone 3 turns mobile gaming up to
144Hz. https://rog.asus.com/articles/produc
t-news/the-rog-phone-3-turns-mobile-gaming
-up-to-144hz, 2020.

[49] Google - Android Open Source Project. Identifying
Jitter-Related Jank. https://source.android.com
/docs/core/debug/jank_jitter.

[50] Johannes Weiner. PSI - Pressure Stall Information. ht
tps://docs.kernel.org/accounting/psi.html,
2018.

[51] Google - Android Open Source Project. Google Pixel
7 Pro device tree - device-panther.mk. https://andr
oid.googlesource.com/device/google/pantah/
+/c9139250db92931907cd2bba1b5253846c389711,
2022.

[52] ASUS. ROG Phone 6 Pro - Tech Specs. https://rog.
asus.com/phones/rog-phone-6-pro-model/spec,
2022.

[53] Yu Zhao. Multigenerational LRU Framework. https:
//lore.kernel.org/linux-mm/20220208081902.
3550911-1-yuzhao@google.com, 2022.

[54] Google - Android Developers. Memory allocation
among processes. https://developer.android.
com/topic/performance/memory-management.

[55] Google - Google Play Apps & Games (Medium).
Shrinking APKs, growing installs. https://medium.c
om/googleplaydev/shrinking-apks-growing-in
stalls-5d3fcba23ce2, 2017.

[56] Google - Android Open Source Project. ProcessList.
https://android.googlesource.com/platform/
frameworks/base/+/refs/tags/android-12.1.0
_r27/services/core/java/com/android/server
/am/ProcessList.java#188, 2022.

[57] Google - Android Developers. ActivityMan-
ager.AppTask. https://developer.android.co
m/reference/android/app/ActivityManager.Ap
pTask.

[58] Google - Android Developers. Android Debug Bridge
(adb). https://developer.android.com/studio
/command-line/adb.

[59] Daniel Rosenberg. f2fs: checkpoint disabling. https:
//lore.kernel.org/lkml/20180807234843.1293
87-1-drosen@google.com, 2018.

456 21st USENIX Conference on File and Storage Technologies USENIX Association

https://developer.nvidia.com/content/analysing-stutter-%E2%80%93-mining-more-percentiles-0
https://developer.nvidia.com/content/analysing-stutter-%E2%80%93-mining-more-percentiles-0
https://developer.nvidia.com/content/analysing-stutter-%E2%80%93-mining-more-percentiles-0
https://www.engadget.com/2017-11-01-razer-phone-hands-on.html
https://www.engadget.com/2017-11-01-razer-phone-hands-on.html
https://www.engadget.com/2017-11-01-razer-phone-hands-on.html
https://news.samsung.com/global/interview-galaxy-s20-display-developers-on-what-makes-the-120hz-display-special
https://news.samsung.com/global/interview-galaxy-s20-display-developers-on-what-makes-the-120hz-display-special
https://news.samsung.com/global/interview-galaxy-s20-display-developers-on-what-makes-the-120hz-display-special
https://news.samsung.com/global/interview-galaxy-s20-display-developers-on-what-makes-the-120hz-display-special
https://www.apple.com/newsroom/2021/09/apple-unveils-iphone-13-pro-and-iphone-13-pro-max-more-pro-than-ever-before
https://www.apple.com/newsroom/2021/09/apple-unveils-iphone-13-pro-and-iphone-13-pro-max-more-pro-than-ever-before
https://www.apple.com/newsroom/2021/09/apple-unveils-iphone-13-pro-and-iphone-13-pro-max-more-pro-than-ever-before
https://www.apple.com/newsroom/2021/09/apple-unveils-iphone-13-pro-and-iphone-13-pro-max-more-pro-than-ever-before
https://rog.asus.com/articles/product-news/the-rog-phone-3-turns-mobile-gaming-up-to-144hz
https://rog.asus.com/articles/product-news/the-rog-phone-3-turns-mobile-gaming-up-to-144hz
https://rog.asus.com/articles/product-news/the-rog-phone-3-turns-mobile-gaming-up-to-144hz
https://source.android.com/docs/core/debug/jank_jitter
https://source.android.com/docs/core/debug/jank_jitter
https://docs.kernel.org/accounting/psi.html
https://docs.kernel.org/accounting/psi.html
https://android.googlesource.com/device/google/pantah/+/c9139250db92931907cd2bba1b5253846c389711
https://android.googlesource.com/device/google/pantah/+/c9139250db92931907cd2bba1b5253846c389711
https://android.googlesource.com/device/google/pantah/+/c9139250db92931907cd2bba1b5253846c389711
https://rog.asus.com/phones/rog-phone-6-pro-model/spec
https://rog.asus.com/phones/rog-phone-6-pro-model/spec
https://lore.kernel.org/linux-mm/20220208081902.3550911-1-yuzhao@google.com
https://lore.kernel.org/linux-mm/20220208081902.3550911-1-yuzhao@google.com
https://lore.kernel.org/linux-mm/20220208081902.3550911-1-yuzhao@google.com
https://developer.android.com/topic/performance/memory-management
https://developer.android.com/topic/performance/memory-management
https://medium.com/googleplaydev/shrinking-apks-growing-installs-5d3fcba23ce2
https://medium.com/googleplaydev/shrinking-apks-growing-installs-5d3fcba23ce2
https://medium.com/googleplaydev/shrinking-apks-growing-installs-5d3fcba23ce2
https://android.googlesource.com/platform/frameworks/base/+/refs/tags/android-12.1.0_r27/services/core/java/com/android/server/am/ProcessList.java#188
https://android.googlesource.com/platform/frameworks/base/+/refs/tags/android-12.1.0_r27/services/core/java/com/android/server/am/ProcessList.java#188
https://android.googlesource.com/platform/frameworks/base/+/refs/tags/android-12.1.0_r27/services/core/java/com/android/server/am/ProcessList.java#188
https://android.googlesource.com/platform/frameworks/base/+/refs/tags/android-12.1.0_r27/services/core/java/com/android/server/am/ProcessList.java#188
https://developer.android.com/reference/android/app/ActivityManager.AppTask
https://developer.android.com/reference/android/app/ActivityManager.AppTask
https://developer.android.com/reference/android/app/ActivityManager.AppTask
https://developer.android.com/studio/command-line/adb
https://developer.android.com/studio/command-line/adb
https://lore.kernel.org/lkml/20180807234843.129387-1-drosen@google.com
https://lore.kernel.org/lkml/20180807234843.129387-1-drosen@google.com
https://lore.kernel.org/lkml/20180807234843.129387-1-drosen@google.com

	Blank Page
	Blank Page
	fast23_full_proceedings_interior.pdf
	fast23-kadekodi
	Introduction
	Background
	Motivation for studying wide LRCs
	Practical challenges of wide LRCs
	Definitions
	(n, k, r, p)-Optimal Cauchy LRCs
	Code construction
	Distance

	(n, k, r, p)-Uniform Cauchy LRCs
	Experiments and analysis
	Maintenance-robust deployment
	Related Work
	Conclusion
	Acknowledgements
	Optimal Cauchy LRCs
	Distance optimality of Optimal Cauchy LRCs
	Relaxing constraints

	fast23-li
	fast23-kotlarska
	Introduction
	Background
	Deduplication Storage
	Lifecycle of Backups
	Cloud Storage
	Cloud Computing

	InftyDedup Architecture
	Cloud Cost Considerations
	Assumptions and Design Decisions
	Data and Metadata in Cloud
	Communication between Tiers
	Batch Deduplication
	Batch Garbage Collection
	File Restore

	Cold Storage Utilization
	Evaluation
	Performance Evaluation
	Batch Deduplication Processing
	Batch Garbage Collection Processing

	Strategies Evaluation
	Workload Characteristics
	Garbage Collection Strategies Evaluation
	Storage Type Selection Evaluation
	Different Public Clouds
	FSL Traces

	Related Work
	Conclusions

	fast23-lu
	Introduction
	Background
	System Architecture
	Dataset Description
	Impact of Fail-Slow Failures

	Unsuccessful Attempts & Lessons
	Design Goals
	Attempt 1: Threshold Filtering
	Attempt 2: Peer Evaluation
	Attempt 3: Iaso-Based Model
	Guidelines for Perseus

	Perseus
	High-Level Workflow
	Outlier Detection
	Regression Model
	Identifying Fail-Slow Event
	Risk Score

	Evaluation
	Fail-slow Benchmark
	Test Candidates
	Threshold Filtering
	Peer Evaluation
	Iaso-Based Model
	Perseus

	Evaluation Metrics
	Evaluation Results
	Effectiveness of Perseus Design
	Benefit of Deployment

	Root Cause Analysis
	Ill-Implemented Scheduler
	Case 1: In Open-Channel SSD Cluster
	Case 2: In All-HDD Cluster

	Hardware Defects
	Environment

	Limitation
	Related Work
	Conclusion

	fast23-yu
	Introduction
	Background
	Advanced Storage Devices
	Architecture of LSM-KVs
	Write Stall Issue

	Observations from Previous Studies
	Experimental Settings
	Limitations of Existing Studies

	Data Overflow
	Data Overflow in Modern LSM-KVs
	Explaining the Unexplained

	Automatic Data Overflow Control
	Evaluation
	Experiment Setups
	Microbenchmark Performace
	Macro Benchmark
	Number of Threads versus Batch Size

	Related Work
	Conclusion

	fast23-shen
	Introduction
	Background and Motivation
	The Disaggregated Memory Architecture
	KV Stores on Disaggregated Memory

	Challenges
	Client-Centric Index Replication
	Remote Memory Allocation
	Metadata Corruption

	The FUSEE Design
	Overview
	RACE Hashing
	The SNAPSHOT Replication Protocol
	Two-Level Memory Management
	Embedded Operation Log
	Optimizations

	Failure Handling
	Failure Model
	Memory Node Crashes
	Client Crashes
	Mixed Crashes

	Evaluation
	Experiment Setup
	Microbenchmark Performance
	YCSB Performance
	Fault Tolerance & Elasticity

	Related Work
	Conclusion

	fast23-li-pengfei
	fast23-yang
	Introduction
	Background and motivation
	Software caches in data centers
	Learning in caching
	Object-level learning
	Learning-from-simple-experts
	Learning-from-distribution

	GL-Cache: Group-level learned cache
	Overview of GL-Cache
	Group-level learning
	Object groups
	Utility of object groups
	Desired properties
	Utility definition

	Learning object-group utility in GL-Cache
	Evictions of object groups
	A spectrum of GL-Cache

	Evaluation
	Experiment methodology
	Group-based eviction
	Cache efficiency
	Throughput and overheads
	Understanding GL-Cache's efficiency
	Sensitivity analysis

	Related work
	Conclusion

	fast23-khan
	Introduction
	Background
	Distributed Deep Learning Training
	I/O Characteristics of Data-Parallel DL Training
	DL Training with Importance Sampling

	Motivation
	Exploiting Importance Sampling

	Shade Design
	Challenges
	Shade Overview
	Control Layer
	Data Layer

	Implementation
	Evaluation
	Experimental Setup
	Cache Hit Ratio
	Accuracy vs. Time
	Throughput
	Minibatch Load Time
	End-to-End System Comparison

	Related Work
	Conclusion
	Acknowledgments

	fast23-liu
	fast23-oh
	Introduction
	Background and Motivation
	Journaling in EXT4
	 Concurrency Control in Filesystem Journaling
	Existing Solutions to Scale Journaling

	Scalability of EXT4 Journaling
	Workloads
	Scalability Results
	Analysis on Scalability Bottleneck
	Transaction Conflict
	Transaction Lock-up
	Limited Coalescing Degree

	Design
	Dual Thread Journaling
	Multi-Version Shadow Paging
	Opportunistic Coalescing
	Compound Flush

	Discussion
	Evaluation
	Experiment Setup
	Effect of Individual Techniques
	Macro Benchmarks
	Crash Consistency

	Related Work
	Conclusion

	fast23-basu
	Introduction
	Background: From Cases to Collisions
	Motivations for Increasing Case Diversity
	Name Collisions

	From Collisions to Calamities
	Causes of Name Collisions
	An Example Collision Vulnerability
	The State of Defenses for Name Confusions

	Overview
	Testing for Name Collisions
	Test Case Generation
	Detecting Collision Effects

	Name Collisions on Linux Copy Utilities
	Collecting Responses to Name Collisions
	Unsafe Responses to Name Collisions
	Silent data loss with tar, cp* & rsync
	Merge directories with tar, zip, rsync & cp*
	Stale names
	Symbolic link traversal at target
	The case of hardlink – hardlink name collisions

	Case Studies
	dpkg Package Manager
	Rsync
	Apache httpd

	Potential Defenses
	Related Work
	Conclusion

	fast23-mahmud
	Introduction
	Limitations of the State of the Art
	Our Efforts & Contributions

	Background & Related Work
	Background
	Related Work

	Configuration Dependencies in File Systems
	Methodology
	Findings

	Extracting & Using Multilevel Configuration Dependencies
	Extracting Configuration Dependencies
	Metadata-assisted Taint Analysis
	Multilevel Dependency Analysis
	Dependency-guided State Generation
	User Input

	Leveraging Configuration Dependencies

	Experimental Results
	Can ConfD extract multilevel dependencies?
	Can ConfD help address configuration issues?
	Dependency-agnostic vs. Dependency-guided
	Summary of Configuration Issues
	State Generation: FB-HYDRA vs. ConfD

	Limitations & Future Work
	Conclusion

	fast23-he
	Introduction
	Motivation and Background
	Motivation
	The contradiction between BBs' scalibility and application behaviors
	Complex metadata management mismatches application behaviors
	Inefficiencies in data management

	Background

	Design and Implementation
	Overview of HadaFS
	Localized Triage Architecture
	Namespace and metadata handling
	HadaFS I/O control and data flow
	Data management tool
	Optimizations on HadaFS
	Consistency semantics and metadata optimization
	Optimization on the shared file
	Interference avoidance

	HadaFS on the SNS

	Evaluation
	Metadata performance evalutaion
	Data performance evaluation
	Data migration evaluation
	Evaluation with real-world applications
	Performance evaluation on the shared files
	Performance evaluation on the mount policy
	Performance evaluation on the interference
	Evaluation with large scale applications

	Related work
	Conclusion

	fast23-li-qiang
	Introduction
	Background and Motivation
	File Systems
	Cloud Native
	Motivation

	Overview of Fisc
	Design Rationale
	Architecture
	Workflow of Fisc

	Design and Implementation
	Lightweight Fisc Client
	Function Offloading and Aggregation Tradeoff
	Simplification and Compatibility

	Storage-aware Distributed Gateway
	Direct Highway Between Agents and Proxies
	Storage-aware Failure Handling
	Locality-aware Read

	SW/HW Co-design with DPU
	DPU-based Virtio-Fisc Device
	Fast Path
	Resource Optimizations

	Large-scale Deployment
	vRPC
	Load Balance
	E2E QoS

	Evaluations
	Testbed Setup
	Lightweight Client
	Latency
	Availability
	QoS
	Load Balancing

	Discussion
	Related Work
	Conclusion

	fast23-krishnan
	Introduction
	Background and Motivation
	NVM Media Errors
	Memory Safety in NVM Programs
	Prior NVM Data Protection Approaches
	Prior PTMs for NVM

	Overview of Tenet
	Threat Model and Assumptions
	Design Goals
	Design Overview
	Putting It All Together For TimeStone

	Tenet Design
	Tenet Transaction
	NVM Object Dereference
	Updating an Object
	Committing a Transaction
	Aborting a Transaction

	Unauthorized NVM Write Prevention
	Enforcing Memory Safety
	On-commit Spatial Safety Design
	On-first-dereference Temporal Safety Design
	Spatial and Temporal Safety for Array Objects

	Enforcing fault tolerance Against UMEs
	Transaction Log Replication
	Off-critical Path NVM Replication to SSD
	Off-critical Path Writes to SSD
	Enforcing NVM-SSD Consistency

	Recovery

	Implementation
	Discussion
	Leveraging the Concurrency Guarantees of PTM
	Tenet's Ideas on ARM Architecture
	Limitations and Future Work

	Evaluation
	Performance Analysis of Tenet
	Tenet-MS vs TimeStone
	Tenet vs TimeStone

	Real-world Workload Evaluation
	Comparison with Other PTMs
	Other Evaluations and Analysis
	Error Detection and Correction

	Related Work
	Conclusion

	fast23-zhong
	Introduction
	Background and Motivation
	Filesystems for Persistent Memory
	Challenges in Metadata Management
	Challenges in Crash Consistency
	Challenges in Concurrency Control

	Per-File Virtualization
	MadFS: Design and Implementation
	Metadata Embedding
	Block Management
	Compact Log-Structured Metadata
	Lock-Free Concurrency Control
	Non-Blocking Garbage Collection
	Implementation

	Evaluation
	Single-Threaded Microbenchmark
	Multi-Threaded Microbenchmark
	Metadata Operations
	Real-World Applications

	Conclusion

	fast23-woo
	Introduction
	Background and Motivation
	Stackable File System
	Steering Synchronous Writes
	Hash-based Global File Mapping

	Design of SPFS
	File Block Placement Mode
	Profiling Mechanism: Sync Point Profiler
	Migration to Lower File system

	Hash-based Block Management
	Free Space Management
	Extent Hashing
	Path-name Resolution
	Recovery

	Evaluation
	Experimental Setup
	Analysis of Extent Hashing
	Standalone Mode with DCPMM
	FIO Results
	Filebench Results

	Quantification of Stackable Design
	Parameters for Sync Point Profiler
	Delegating I/O Requests to Lower File System
	Stacking Overhead

	Stacked Mode Performance Comparison
	FIU Traces
	RocksDB

	Conclusion

	fast23-gao
	1 Introduction
	2 Background
	2.1 RDMA
	2.2 Distributed Range Lock Management

	3 Design
	3.1 Challenges and Design Principles
	3.2 Basic Assumptions
	3.3 Components of Citron
	3.4 Formats of Lock Tree Nodes
	3.5 Lock Acquisition
	3.5.1 Step 1: Split the range
	3.5.2 Step 2(a): Lock an internal node
	3.5.3 Step 2(b): Wait for node's ancestors
	3.5.4 Step 2(c): Occupy or lock node
	3.5.5 Step 2(d): Notify ancestors, wait for descendants

	3.6 Lock Release
	3.7 Proof Sketch of Correctness
	3.8 Fast Path Optimization
	3.9 Scaling the Lock Tree
	3.9.1 Scale up
	3.9.2 Scale down

	3.10 Handling Client Failures

	4 Evaluation
	4.1 Experiment Setup
	4.2 Microbenchmarks
	4.3 Application Benchmarks
	4.3.1 BT-IO: a non-conflicting I/O workload
	4.3.2 Filebench OLTP: a conflicting I/O workload

	4.4 Effects of the Fast Path
	4.5 Performance with Scale-ups
	4.6 False Conflict Rate
	4.7 Lock Abort Rate

	5 Related Work
	6 Conclusion

	fast23-yan
	Introduction
	Background
	RDMA and Access Protection
	The Remote Memory Architecture

	Motivation
	The Call for Stray Protection in RM
	Goals for the Protective RM System
	Deficiency of Existing Solutions

	Approach Overview
	Opportunity: Memory Window (MW)
	Solutions

	Patronus: The Protective RM system
	The Interface
	Architecture Overview
	CN-collaborated Extension
	Reduction of Permission Overhead
	Isolation from Illegal Access
	Implementation Details

	The Cases for Patronus
	One-sided Data Structure
	Function as a Service

	Evaluation
	Overall Performance
	Effect of Software Co-design
	Performance of Permission Management (G#1)
	CN-collaborated Extension (G#2)
	Effect of Lease Semantics (G#2)
	Compare QP polling to leases (G#2)
	Spare QPs for Concealing Interruption (G#3)

	Case Study: One-sided Data Structures
	Hash Table
	Concurrent Queue

	Case Study: Function as a Service

	Related Work
	Conclusion

	fast23-li-qiang_more
	Introduction
	Background
	Overview of Pangu
	Design Goals of Pangu 2.0
	Related Work

	Phase One: Embracing SSD and RDMA
	Append-Only File System
	Unified, Append-Only Persistence Layer
	Heavyweight Client
	Append-only Chunk Management
	Metadata Operation Optimization

	Chunkserver USSOS
	User-Level Memory Management
	User-Space Scheduling Mechanism
	Append-Only USSFS

	High Performance SLA Guarantee
	Evaluations

	Phase Two: Adapting to Performance-Oriented Business Model
	Network Bottleneck
	Bandwidth Expansion
	Traffic Optimization

	Memory Bottleneck
	Adding Small-Capacity DRAMs
	Shifting Background Traffic From TCP to RDMA
	Remote Direct Cache Access

	CPU Bottleneck
	Hybrid RPCs
	Supporting Hyper-Threading Using CPU Wait
	Hardware and Software Co-design

	Evaluations

	Operation Experiences
	Pangu's Operation Cycle
	Case Studies

	Lessons
	Conclusion

	fast23-yang-zhe
	Introduction
	Background and Motivation
	In-Storage Computing and IO Stack
	Host-Device Coordination
	eBPF and its Limitations

	Design
	Overall Architecture
	-IO APIs and Workflow
	Cross-Platform Runtime
	Computation: Extending eBPF to sBPF
	Data: Consistent File Access

	Dynamic Request Dispatching
	Modeling Execution Time
	Periodical Profiling and Dispatching

	Implementation
	Evaluation
	Experimental Setup
	Single Application
	Collocated Applications
	Sensitivity Analysis
	Dataset Size
	Warmup
	Profiling Period and Profiling Length
	Buffer Size
	Thread Count

	Overhead of sBPF
	Case Study: Spark SQL

	Related Work
	Conclusion

	fast23-su
	Introduction
	Background and Motivation
	NVM-based Storage Systems
	The Data Movement Bottleneck
	On-Chip DMA and its Challenges

	DMA Optimization Opportunities
	DMA-enabled Data Moving Workflow
	I/OAT and Optane PM Demonstration
	Associated Time Costs
	Intra-Request Parallel Copy
	Impacts of Inter-Request Parallelism

	Study Generalization

	Overview of Fastmove
	Fastmove's Architecture
	API Abstraction

	Design and Implementation
	High-Performance DMA Module
	DMA-CPU Cooperated Bulk Reads
	Controlling and Scheduling
	Implementation Details

	Evaluation
	Experimental Setup
	Microbenchmark Results
	Latency Threshold Choices
	Breakdown Analysis

	Overall Performance
	Application Configurations
	MySQL Enhancement
	GraphWalker Enhancement
	Fileserver Enhancement
	CPU Consumption Improvement

	Other Factors
	Emulated NVM Performance
	DDIO Impacts

	Related Work
	Conclusion
	Acknowledgment

	fast23-kim
	Introduction
	Background and Related Work
	NVM Express Standard
	NVMe Operation
	Related Work

	NVMeVirt Internals
	Motivation
	Virtualizing a PCIe/NVMe Device
	Supporting Various NVMe Device Types
	Performance Model
	Data Storage and Handling

	Evaluation
	Evaluation Setup
	Emulation Quality
	Emulating a Real Device Performance
	Supporting Various Storage Environments
	Case for the Database Engine Analysis
	Case for NVMe Interface Study

	Conclusion

	fast23-zhou-su
	Introduction
	Background
	Alibaba Cloud OSS
	Host-Managed HM-SMR

	Evaluating Existing Solutions
	Evaluation Configurations
	Performance Comparison

	SMRstore Design Choices
	SMRstore Design & Implementation
	Architecture Overview
	On-Disk Data Layout
	Data Index
	Zone Management
	Garbage Collection
	Recovery

	Evaluation
	High Concurrency Microbenchmark
	Multi-Stream Benchmark
	Effectiveness of Placement Strategy
	Recovery Performance
	Resource Consumption
	Field Deployment

	Limitation & Future Work
	Related Work
	Conclusion

	fast23-zhang-yuqi
	Introduction
	Data Analysis and Motivation
	Dataset
	Failure Analysis

	Design and Implementation
	Overview
	Multi-view Feature Extraction
	Raw Features
	Histogram Features
	Sequence-related Features

	MVTRF
	Cause Identification and Failure Handling

	Evaluation
	Comparison with Existing Schemes
	Discussion on Multi-view Features
	Multi-task Learning and Prediction
	Similar Decision Extraction

	Related Work
	Conclusions

	fast23-ryu
	fast23-kim-yoona
	Introduction
	Background
	Controller-side L2P Mapping Structure
	Host-side L2P Mapping Structure

	Related Work
	Empirical Study of HPB on Smartphones
	Evaluation Study Setup
	Impact of L2P Cache Misses on UX
	Impact of HPB Management Policy on UX
	Impact of HPB Size on UX

	Design and Implementation of HPBvalve
	Overall Architecture of HPBvalve
	FG App-centric HPB Management
	Dynamic HPB Size Adjustment

	Experimental Results
	Experimental Setup
	Performance Evaluation
	FG app-centric HPB management
	Dynamic HPB size adjustment

	Overhead Analysis

	Conclusion

