

GL-Cache: Group-level learning for efficient and high-performance
caching

Juncheng Yang
Carnegie Mellon University

Ziming Mao
Yale University

Yao Yue
Pelikan Foundation

K. V. Rashmi
Carnegie Mellon University

Abstract
Web applications rely heavily on software caches to achieve
low-latency, high-throughput services. To adapt to changing
workloads, three types of learned caches (learned evictions)
have been designed in recent years: object-level learning,
learning-from-distribution, and learning-from-simple-experts.
However, we argue that the learning granularity in existing ap-
proaches is either too fine (object-level), incurring significant
computation and storage overheads, or too coarse (workload
or expert-level) to capture the differences between objects
and leaves a considerable efficiency gap.

In this work, we propose a new approach for learning in
caches (“group-level learning”), which clusters similar objects
into groups and performs learning and eviction at the group
level. Learning at the group level accumulates more signals
for learning, leverages more features with adaptive weights,
and amortizes overheads over objects, thereby achieving both
high efficiency and high throughput.

We designed and implemented GL-Cache on an open-
source production cache to demonstrate group-level learning.
Evaluations on 118 production block I/O and CDN cache
traces show that GL-Cache has a higher hit ratio and higher
throughput than state-of-the-art designs. Compared to LRB
(object-level learning), GL-Cache improves throughput by
228× and hit ratio by 7% on average across cache sizes. For
10% of the traces (P90), GL-Cache provides a 25% hit ra-
tio increase from LRB. Compared to the best of all learned
caches, GL-Cache achieves a 64% higher throughput, a 3%
higher hit ratio on average, and a 13% hit ratio increase at the
P90.

1 Introduction
Large-scale cache deployments enable the success of to-

day’s Internet. Companies have deployed software caches
throughout various layers of the data center infrastructure:
local and remote storage block I/O caches, in-memory and on-
flash key-value caches. Caches are the key to fast data serving
and consume a vast amount of resources. For example, Twitter
reports that TBs of DRAMs are used for caching [104], and
Netflix reports 10s of PBs of storage in use for caching [70].

The main driving force of cache deployments is the cache’s
ability to serve data with high throughput and low latency.
Retrieving data from a cache (e.g., in DRAM) is thousands of
times faster than retrieving it from the backend (e.g., in spin-
ning disks). Because caches are often deployed on expensive
storage media with limited capacity, the cache sizes are often
much smaller than the dataset sizes. Thus, deciding what data
to store in the cache is critical. A more efficient cache stores
more useful data and serves more requests without hitting
backend storage systems. Cache efficiency is often measured
by hit ratio — the fraction of requests served from the cache
(termed “hits”). When a cache is full, it uses an eviction
algorithm to decide what data to keep and what to evict, and
thus, the eviction algorithm is critical to cache efficiency.

Over the years, many eviction algorithms have been pro-
posed to leverage different object features to make better
eviction decisions. For example, several LRU variants [41–
43,69,76,85] use diverse notions of recency to choose eviction
candidates; some algorithms combine frequency and recency
to score objects in different ways [4, 15, 26, 28, 56, 92]; others
use a composition of frequency and object size [17,20]. Since
different features acquire varying degrees of importance for
different workloads, using a specific way to combine one or
two object features typically only achieves high efficiency
on some workloads (§4.5). Recently, several works have em-
ployed machine learning to improve cache evictions. We call
these designs “learned caches”.

We classify learned caches into three categories. First,
“object-level learning”, such as LRB [87], learns the next
access time for each object using dozens of object features
and evicts the object with the furthest predicted request time.
Second, “learning-from-distribution” models request proba-
bility distributions to inform eviction decisions. For example,
LHD [7] measures object hit density using age and size, and
evicts the object with the lowest hit density. Third, “learning-
from-simple-experts”, such as LeCaR [92] and Cacheus [82],
performs evictions by choosing eviction candidates recom-
mended by experts (e.g., LRU and LFU), and updates experts’
weights based on their past performance on the workload.

Because object-level learning, such as LRB, leverages more

Table 1: Comparison of different learned caches (numbers describe the example systems).

Learning approach
Example
system

Learning
granularity

Features
for eviction

Storage overhead
(bytes per object)

Potential
efficiency

Throughput
relative to FIFO

Object-level learning LRB [87] object 44 189 high 0.001-0.01
Learning-from-simple-experts Cacheus [82] expert 2 32 low 0.2-0.25
Learning-from-distribution LHD [7] workload 2 24 medium 0.2-0.25
Group-level learning (this paper) GL-Cache object group 7 <1 high 0.3-0.8

object features, learns the relative feature importance, and
performs fine-grained learning on each cached object, it has
the highest potential for achieving high efficiency. However,
predicting and ranking objects at each eviction incurs signifi-
cant computation and storage overheads as we observe LRB
suffers from a 775× slow down compared to LRU. Learning-
from-distribution has a lower computation and storage over-
head because it models request probability using fewer fea-
tures at a coarser granularity. However, it still has a lower
throughput compared to simple heuristics (e.g., LRU) because
it has to randomly sample and compare many objects at each
eviction. Moreover, the existing design (e.g., LHD [7]) does
not leverage object features other than age and size, limiting
its potential for high efficiency. Lastly, the performance of
learning-from-simple-experts, which learns the weights of
experts, highly depends on the choice of the experts. Existing
systems use simple experts and cannot leverage features not
considered by the experts (§4). We show the comparisons of
the three types of learned caches in Table 1 and discuss each
of these categories more in-depth in §2.2.

To overcome the challenges in the existing approaches to
leverage learning in caching, we propose learning at the level
of object groups (which we call group-level learning). Group-
level learning leverages multiple group-level features to learn
object-group utility for evictions. It reduces the computa-
tion and storage overheads of learning by hundreds of times
through amortization compared to learning at the object level.
Furthermore, object groups accumulate more “signals” for
learning and can leverage a variety of features for prediction,
enabling better eviction decisions.

While group-level learning seems promising, it introduces
several challenges: (1) How to group objects and perform
evictions efficiently? (2) How to measure the usefulness of
object groups (termed “utility”) to determine the best eviction
candidate? (3) How to learn and predict the object-group
utility online?

We present Group-level Learned Cache (GL-Cache) which
leverages group-level learning by overcoming these chal-
lenges. GL-Cache clusters similar objects into groups using
write time (§3.3) and evicts the least useful groups using a
merge-based eviction (§3.6). GL-Cache introduces a group
utility function (§3.4) to rank groups, which enables group-
based eviction to achieve similar efficiency as object-based
eviction (§4.2). GL-Cache uses a hybrid approach for evic-
tion: it performs the heavyweight learning at the group level
(thus amortizing the overheads) to identify the best groups
to evict. And it leverages lightweight object-level metrics to

retain a few highly useful objects from evicted groups. This
two-level eviction enables GL-Cache to achieve a superior
trade-off between learning overhead and cache efficiency.

We implemented GL-Cache in an open-source production
cache and also developed a storage-oblivious implementa-
tion for running microbenchmarks. We compare GL-Cache
with state-of-the-art designs on 118 production block I/O and
CDN cache traces. Compared to object-level learning (LRB),
group-level learning allows GL-Cache to achieve a 228×
higher throughput on average. Moreover, GL-Cache achieves
a slight improvement in hit ratio compared to LRB, with a
7% increase on average and 25% at P90 (10% of the traces)
compared to LRB. Compared to the learned cache with the
highest hit ratio, GL-Cache increases the hit ratio by 3% on
average and 13% at the P90 tail, with a 64% higher through-
put. Varying group sizes allow GL-Cache to change learning
granularity, leading to a spectrum of algorithms. Along with
two other system parameters, this spectrum enables users to
navigate the trade-off between efficiency and throughput.

This paper makes the following contributions.

• We classify existing learned caches into three categories
based on learning granularity and propose a new approach
for learning in caching — group-level learning. Group-level
learning amortizes overheads over objects in the group to
achieve high throughput. By leveraging multiple group
features and accumulating more training signals, group-
level learning also achieves a high hit ratio.

• We design and implement GL-Cache, which overcomes the
challenges of using group-level learning to achieve high
cache efficiency with low-overhead learning. For the first
time (to the best of our knowledge), a group-level utility
function is defined and used for cache eviction.

• We evaluate GL-Cache using a diverse set of 118 production
traces to illustrate and understand the high efficiency and
high throughput of group-level learning.

2 Background and motivation
2.1 Software caches in data centers

Applications rely heavily on caching to speed up data ac-
cess and increase system throughput. The two most important
metrics of cache are efficiency measured using hit ratio and
performance measured using throughput. Hit ratio is the frac-
tion of requests fulfilled by the cache without fetching from
the backend, and it measures the effectiveness of an eviction
algorithm. A cache is more efficient if it achieves a higher hit
ratio. Throughput measures the volume of requests a cache

can handle in a given duration. Higher throughput means serv-
ing the workload consumes less CPU resources and reduces
expenses.

Over the years, many algorithms have been designed
to improve cache hit ratio under different types of work-
loads [4,7,10,12,13,15,17,21,22,26,28,41–43,45,56,58,59,
68, 69, 76, 79, 82, 85, 87, 92, 98, 103, 109, 110]. However, most
of the algorithms make eviction decisions based on one or two
object features, such as recency in LRU variants [43, 76, 85],
and frequency in LFU variants [4, 48], or a combination of
two features [7, 15, 28, 92]. However, cache workloads are
often too complex to be captured by one or two features, and
different features may acquire different importance across
workloads. Furthermore, the feature importance can be differ-
ent when the same workload is served at different cache sizes,
as we show in §4.5. As a simplified example, assume a work-
load is composed of Zipf and repeated scans. When the cache
size is very small, frequency is more important in selecting
popular objects from the Zipf distribution. However, when
the cache size is large enough to store both popular objects
and repeated scans, recency may become more important in
choosing objects to cache. In addition, prior works [10, 87]
reveal a large hit ratio gap between the state-of-the-art de-
signs and the upper bound (e.g., Belady’s algorithm [8] or
flow-based offline optimal [11]), illustrating the possibility of
improving the cache efficiency further.

2.2 Learning in caching
To make cache eviction algorithms adaptive across work-

loads, cache size, and over time, recent works have explored
the idea of using machine learning in caching [7, 10, 29, 82,
87, 93, 102]. These approaches can be broadly classified into
three classes, which come with their pros and cons, as dis-
cussed below and summarized in Table 1.

2.2.1 Object-level learning
Object-level learning performs learning on each object.

Multiple works have studied the prediction of object reuse
distance [10, 14, 32, 63, 65, 86, 87, 99, 100] and popular-
ity [19, 31, 71, 107]. By predicting reuse distance, a learned
cache can mimic Belady’s algorithm [8], which evicts the ob-
ject requested the furthest in the future using an oracle. How-
ever, predicting reuse distance is challenging [87] because
an object’s reuse distance is not only inherent to the object
but is also affected by the access patterns of the workload.
For example, the reuse distance will increase if a request-
burst or scan happens between the two requests to the same
object. Moreover, cache workloads often follow Zipf distri-
butions [5, 9, 18, 104]. Thus, most objects only get a limited
number of requests. This leads to limited object-level informa-
tion for learning. Meanwhile, it is these less popular objects
that often affect cache efficiency [102]. As a result, exist-
ing works introduce approximations and proxies for learning
reuse distance. For example, LRB [87] introduces Belady
Boundary to reduce the range of reuse distance. While learn-

ing reuse distance is challenging, with careful feature engi-
neering, large enough data, and a complex model, object-level
learning may have the potential to achieve the highest hit ratio
among all learned caches. However, object-level learning
incurs prohibitively high storage and computation overheads.
Storage overhead. Both training and inference require extra
storage. While the storage overhead of training data is often
negligible with optimizations such as sampling and offloading
to cheaper storage, inference data pose a significantly higher
storage overhead. To make predictions on the object level, the
cache needs to track features for each object. For example,
LRB [87] stores 44 features (189 bytes) per object. More-
over, this large per-object metadata overhead is prohibitively
high because it needs to reside in DRAM for frequent up-
dates. Using fewer features is possible, but it leads to worse
performance (§4).
Computation overhead. Both training and inference add
computation overhead. While training data collection and
frequent re-trainings consume CPU cycles, inference is the
major source of computation overhead. The prediction in
object-level learning uses dynamic features (e.g., object age),
and the prediction results cannot be reused over time. There-
fore, object-level learning needs to sample objects and per-
form inference at each write (eviction). For example, LRB
samples 32 objects and copies their features to a matrix for
inference for each eviction. In our measurement, each evic-
tion (including feature copy, inference, and ranking) takes
200 µs on one CPU core, indicating that the cache can evict
at most 5,000 objects on a single core per second. As a com-
parison, a production server achieves over 100,000 requests
per second [75].

2.2.2 Learning-from-simple-experts
Several works use reinforcement learning to choose be-

tween multiple simple experts (eviction algorithms). For
example, LeCaR [93] uses two experts (LRU and LFU). At
each eviction, LeCaR chooses one expert to make an eviction
decision based on the experts’ weights. Similar designs can
be found in ACME [2], FRD [80], and Cacheus [82], which
use different experts and weight adjustment methods.

By using more than one algorithm for eviction, learning-
from-simple-experts can adapt to changing access patterns.
The overhead and efficiency of learning-from-simple-experts
depend on the experts. Existing systems use simple ex-
perts and thus incur lower overhead than object-level learning.
However, existing systems suffer from two problems. First,
a delay exists between a bad eviction and an update on the
expert’s weight. The cache only discovers a bad prior eviction
when the evicted object is requested again. This challenge,
commonly known as “delayed rewards” in reinforcement
learning [3, 36, 47, 90], limits the efficiency of caches that
use learning-from-simple-experts. Second, the cache effi-
ciency is bounded by the experts selected; an efficient policy
requires a good understanding of the workload. Learning-
from-simple-experts cannot leverage features that the experts

do not consider. If a feature is important to the workload
and not considered by any of the experts, then learning-from-
simple-experts will not provide a high hit ratio. Some works
used more experts [34] to capture more features. However,
using more experts incurs higher overheads because it needs
more computation and space to evaluate expert performance
and update experts’ weights.
2.2.3 Learning-from-distribution

The third type of learned cache models the request probabil-
ity distribution and makes decisions based on the distribution.
For example, LHD [7] uses the request probability distribu-
tion to calculate hit density (hits-per-space-consumed) as a
metric for eviction. Specifically, LHD learns the request prob-
ability as a function of ages and then modulates it with size to
arrive at hit density. LHD is simple yet effective and does not
require expensive inference computation to compare objects.
However, LHD’s hit density is calculated based only on two
features: age and size, and it is non-trivial to track probability
with more features. Besides, LHD cannot change relative fea-
ture importance (how features are composed). Furthermore,
because hit density does not change monotonically over time,
LHD must sample objects to rank at each eviction, limiting
its throughput due to slow random memory access.
Takeaways. We summarize the potential efficiency and over-
head of the three types of learned caches in Table 1. We ob-
serve that object-level learning has a high potential to achieve
high efficiency, but it incurs huge storage and computation
overheads. Learning-from-distribution only considers a lim-
ited number of features and has lower overhead with lower
potential for high efficiency. Although having a lower learn-
ing overhead, learning-from-distribution requires random
sampling during each eviction, which limits its throughput.
Learning-from-simple-experts highly depends on the experts
used. Existing systems such as LeCaR and Cacheus achieve
a higher hit ratio than a single expert but still leave a large hit
ratio gap compared to other learned caches (§4.3).

3 GL-Cache: Group-level learned cache
To enable a better trade-off between learning granularity

and learning overhead, we propose learning at the level of
object groups (which we term “group-level learning”). The
key idea behind group-level learning is to learn the usefulness
of groups of objects (called “utility”). Based on this idea,
we designed Group-level Learned Cache (GL-Cache), which
learns the object-group utility and evicts the least useful object
groups. We first give a high-level overview of GL-Cache’s
design and then go into the details of each component.

3.1 Overview of GL-Cache
Fig. 1 shows an overview of GL-Cache. In GL-Cache,

objects are clustered into fixed-size groups when writing to
cache (§3.3). The training module in GL-Cache collects train-
ing data online and periodically trains a model to learn the
utility of object groups (§3.5). The inference module pre-
dicts object-group utility and ranks object groups for eviction.

Fig. 1: Overview of GL-Cache. Objects are clustered into groups
for learning: feature tracking, model training, and inference are
performed on the group level.

Group-level learning requires group-level eviction: when the
cache is full, object groups are evicted using a merge-based
eviction which merges multiple groups into one, evicts most
objects, and retains a small portion of popular objects (§3.6).

3.2 Group-level learning
Group-level learning has several advantages over existing

learned caches:
Grouping amortizes overheads. Learning in caching incurs
both computation and storage overheads. In group-level learn-
ing, these overheads are amortized over multiple objects in
the group. In terms of storage, instead of adding huge per-
object metadata, the metadata overhead is only added for each
group. As a result, each object only incurs a tiny overhead
on average (less than one byte in our implementation). The
cost of inference computation is also amortized over objects.
Compared to object-level learning, which performs one infer-
ence per eviction, each inference in group-level learning is
used to evict a group of objects.
Grouping accumulates more signal. Many cache workloads
follow a Zipf distribution [16, 104], and most of the objects
receive very few requests. Because an object group has many
objects, it often receives more requests than an individual
object. More requests lead to more information on the group
level compared to the object level, which makes it easier to
learn and predict.

While group-level learning is promising, several challenges
need to be addressed to leverage the power of learning:

• How to cluster objects into groups (§3.3)?
• How to compare the usefulness of object groups (§3.4)?
• How to learn the utility of object groups (§3.5)?
• How to perform evictions at group level (§3.6)?

While the ideas of grouping [105] and learning [87] have
been studied independently in the context of caching, the com-
bination of the two ideas in group-level learning leads to the
unique challenges of understanding, defining, and learning
group utility. We discuss these challenges and how GL-Cache
overcomes them in this section.

3.3 Object groups
Using group-level learning, both learning and eviction are

performed at the granularity of an object group, which usually
contains tens to thousands of objects. Object grouping hap-
pens when an object enters the cache, and an object should
not switch groups for two reasons. First, changing groups

102 103 104

Group size
0.00

0.25

0.50

0.75

1.00

Co
ef

fic
ie

nt
 o

f v
ar

ia
tio

n

time-based group
random group

(a)

0 1 2 3 4
time (day)

0

50

100

M
ea

n
re

us
e

tim
e

(h
ou

r)

(b)
Fig. 2: a) Objects grouped using write time have more similar
(smaller coefficient of variation) mean reuse time than objects
grouped randomly. As group size increases, write-time-based group-
ing become closer to random grouping. b) Different object groups
written at different times exhibit a large variation in mean reuse time.

invalidates the learning pipeline. When an object is added to
or removed from a group, the accumulated group information
becomes stale and cannot be used for learning. Second, in
implementation, changing groups often requires copying data
on the storage device. Therefore, the grouping of an object
is decided when entering the cache using simple static object
features. Depending on workload types, such features include
time, tenant id, content type, object size, etc. In this work, we
focus on grouping based on write time, which is available in
all systems and hence more generalizable.

Similar to observations made in prior works [82, 105], we
observe that objects written at a similar time exhibit similar
behaviors. Using traces from the evaluation, we measure the
mean reuse time variation of objects in (1) write-time-based
groups and (2) random groups. Fig. 2a plots the mean coeffi-
cient of variation (standard deviation over mean) of 100,000
groups for the two grouping methods at different group sizes.
Compared to random groups, write-time-based groups aggre-
gate objects with closer mean reuse time. Besides reuse time,
we have similar observations on the frequency and the group
utility defined below (not shown due to the space limit).

While objects within each write-time-based group have
similar reuse, object groups created at different times exhibit
dramatically different mean reuse times. Using a group size of
100 objects on the same trace, Fig. 2b shows that some groups
exhibit more than 10× higher mean reuse time than others.
These high-reuse-time groups are potentially good candidates
for eviction. The two observations illustrate the feasibility of
group-level learning using write-time-based grouping: objects
inside groups are similar. Grouping by write time also allows
an efficient implementation using a log-structured cache.

3.4 Utility of object groups
Identifying a good eviction candidate in object-based evic-

tion has been well-studied. When object size is uniform,
Belady [8] algorithm evicts the object that is requested the
furthest in the future. When object size is not uniform, iden-
tifying the optimal candidate is NP-hard [11]. A common
approximation is to evict the object that has the largest time till
the next request over object size (called “size-aware Belady”).
However, no metric exists that applies to object groups, and

it is not trivial to adapt object-level metrics to the group level.
In this section, we define an object-group utility function to
measure object-group usefulness. A group with a lower util-
ity is less useful and hence should be preferred for eviction.
Because identifying the optimal object for eviction (when ob-
jects do not have the same size) can be reduced to identifying
the optimal group for eviction, and the former is NP-hard [11],
finding the optimal group for eviction is also NP-hard. There-
fore, we define an empirical group utility that satisfies several
properties.

3.4.1 Desired properties
(1) Because large objects occupy more space, the utility

should consider object sizes. Groups composed of larger
objects should have lower utilities.

(2) Similar to Belady, the utility should consider the time
till the next access of objects in the group. A group of objects
that are requested further in the future should have a lower
utility. Importantly, the utility definition should properly
handle objects with no future requests.

(3) When the group size is one object, group-level learning
becomes object-level learning. In this case, ranking using the
defined utility should produce the same result as Belady.

(4) The utility should be easy and accurate to track online.
Calculating the ground truth (used for training) requires fu-
ture information, but the cache cannot wait indefinitely to
calculate it. This property requires that within a limited time
horizon, the online tracked utility should be close to the utility
calculated with complete future information. In other words,
objects requested further in the future, including the ones with
no future requests, should contribute less to the utility.

3.4.2 Utility definition
We observe that the cost of evicting one object is always

only one miss. After a cache miss, the evicted object will be
inserted into the cache. Meanwhile, the benefit of evicting
one object o is proportional to its size so and time till next
access To(t) from current time t. Therefore, similar to the
cost-benefit analysis in LFS [83] and RAMCloud [77, 78],
we define the utility of an object as its cost (one miss) over
benefit (freed space multiplied by time till its next request).

Uo(t) =
1

To(t)× so
(1)

Because GL-Cache evicts object groups, we further define
the group utility as the sum of object utilities.

Ugroup(t) = ∑
o∈group

1
To(t)× so

(2)

The utility of a group measures the penalty of evicting the
group or the benefit of keeping the group. Groups with lower
utilities are thus better candidates for eviction. We remark
that this is one definition of group utility that both satisfies the
desired properties and performs well in our experience (§4).
With this definition, we compare object-group utility and evict
the group with the lowest utility. Since the true utility relies

Fig. 3: The read flow in GL-Cache.

on the time till the next request and can only be calculated
with future information, we design GL-Cache, which learns a
model that can predict a group’s utility based on its features.

3.5 Learning object-group utility in GL-Cache
GL-Cache learns a function F that calculates a group’s

utility given its features: F (Xgroup) =Ugroup where Xgroup is
the features of an object group.
Object-group features. Features play a crucial role in learn-
ing [24, 38]. We consider two types of features in GL-Cache.
The first type is static features, which includes request rate,
write rate, miss ratio in the time window when the group was
created (the write time of the first object), and mean object
size. The second type is dynamic features, which includes
age (in seconds), the number of requests, and the number
of requested objects. Dynamic features increase over time.
Static features do not change after creating a group and cap-
ture the workload and cache states (e.g., daily scan, request
spike) during group creation time. We focus on these states
because access pattern changes are often reflected in these
metrics. For example, object groups created from scans are
good candidates for evictions, and they often co-appear with
increased request rates, write rates, and miss ratios. Com-
pared to many of the existing works [87, 100], which mostly
use dynamic features, GL-Cache uses far fewer dynamic fea-
tures because tracking dynamic features is computationally
expensive. We observe that adding more dynamic features
only brings marginal hit ratio improvement, which does not
justify the added computation overhead.

In total, GL-Cache uses seven features occupying 20 bytes
for each group or 28 bytes if mean object size and creation
time are not already tracked.
Learning model and objective function. GL-Cache uses
gradient boosting machines (GBM) because tree models do
not require feature normalization, and they have been shown
to work well in previous works [10, 87] as well as many pro-
duction environments [84,96]. We formulate the learning task
as a regression problem that minimizes the mean square loss
(L2) of object-group utilities. We also explored the ranking
objective function without observing a significant difference.
Training. GL-Cache trains a model using online collected
training data, which consists of features and utilities of object
groups. GL-Cache generates new training data by sampling
cached object groups, and it copies the features of the sampled
groups into a pre-allocated memory region. The utilities of

the sampled groups are initialized to zero at the beginning and
calculated over time. When an object o from a sampled group
is requested, GL-Cache can calculate the To(t) (time till next
request since sampling) and object utility using Eq. 1 and add
the object utility into the group utility. GL-Cache then marks
the object to ensure that it only contributes to the group utility
once. It is possible that some objects may not be requested
before training, and the online calculated group utility may
be lower than the true utility. However, as mentioned in §3.4,
these objects contribute marginally to the group utility due to
their large reuse time.

In addition, a sampled group may be evicted before being
used for training. Such evictions halt the tracking of group
utility. Inspired by prior works [69, 82], GL-Cache keeps
ghost entries for objects which have not been factored into
group utility. A future request on the ghost entry will update
the group utility, bringing it closer to the true utility.

Fig. 3 shows the read flow in GL-Cache. A successful hash
table lookup may find two types of entries: a pointer to the
object or a ghost entry. If it is a regular object, GL-Cache
first updates the group features. Further, if the object is on
a sampled group and has not contributed to the group utility,
GL-Cache also updates the group utility before returning the
data to the user. If it is a ghost entry, GL-Cache updates the
corresponding utility and removes the ghost entry from the
hash table, then returns a cache miss.

Given the access patterns change over time, the model
needs to be retrained regularly. GL-Cache retrains the model
every day (i.e., using wall clock time as a reference) because
many real-world events that trigger requests repeat on a daily
basis, such as cron jobs. In contrast, the other option of retrain-
ing every certain number of requests may cause the system to
enter metastable failure [40] when an access pattern change
increases the system load. Besides, GL-Cache chooses to
retrain from scratch each time because tree models do not
benefit from continuous training. Moreover, the inference
overhead grows with training iterations because a new tree is
added to the model in each iteration.

Inference. When GL-Cache needs to perform evictions, it
predicts the utilities of all object groups and ranks them. GL-
Cache uses the inference/ranking result for multiple evictions,
which reduces the frequency of inference and thus the com-
putation overhead. We denote eviction fraction Feviction as the
fraction of ranked groups to evict using one inference. That
is, GL-Cache performs an inference every Feviction ×Ngroup
groups where Ngroup is the total number of groups. In our
evaluation, Nranked−group is the total number of groups, but we
remark that one can also sample some groups for inference
if the total number of groups is too large. Also, the groups
are evicted over time on demand rather than all at once, and
neither training nor inference need to be on the critical path
of request serving. In summary, GL-Cache only needs to
perform 1

Feviction
inferences to write a full cache of objects.

Fig. 4: Object group utility prediction and merge-based group evic-
tion in GL-Cache.

3.6 Evictions of object groups
Learning at the object-group level introduces an interesting

challenge to cache eviction: unlike most caches which evict
one object each time, GL-Cache evicts a group of objects.
Although evicting object groups leads to lower overhead due
to batching and amortization, it may evict objects that are still
popular. GL-Cache optimizes the group eviction by using
a merge-based eviction, similar to Segcache [105]. Upon
each eviction, GL-Cache picks the least useful object group
and merges it with the Nmerge −1 object groups that are clos-
est with respect to write time. The merge process retains
Sgroup objects from the merged groups and evicts all other
objects. The retained objects form a new group, and the orig-
inal Nmerge groups are evicted. This is the only time that an
object changes its group membership in GL-Cache. Unlike
group selection, which uses ranking, object selection uses a
simple metric based on object age and size: 1

size·age where age
is the time since the last access. We choose to use this metric
because recency and size are the two most common metrics
used in other eviction algorithms (§2). GL-Cache performs
the heavyweight online learning at the group level to identify
the best groups to evict. It leverages lightweight object-level
metrics to retain a few highly useful objects. This two-level
eviction approach enables GL-Cache to achieve a superior
tradeoff between learning overhead and cache efficiency.

In summary, each eviction evicts Nmerge groups of objects
and retains one group of objects, as illustrated in Fig. 4. The
features (except mean object size) of the merge-produced
group take the mean values of the Nmerge merged groups.
Note that only the first object group is picked based on the
group utility; the next Nmerge −1 object groups are chosen as
ones with write time close to the first group. This ensures
that objects in the new group after a merge-based eviction are
still close in write time and similar. In contrast, objects from
the Nmerge least useful groups may not be similar. Clustering
similar objects into groups is critical for effective group-level
learning. In our experience, merging the Nmerge least use-
ful groups shows lower efficiency with up to 20% decrease
in hit ratio. Compared to evicting one object each time,
group-based eviction evicts more objects than needed at each
eviction, which may reduce the efficiency upper bound group-
level learning can achieve. However, we show in §4.2 that
evicting object groups can achieve hit ratios very close to Be-
lady, indicating that group eviction will not be the bottleneck
for cache efficiency.

Table 2: Parameters used in the design.
Para Meaning
Sgroup Size of an object group (in number of objects or bytes)
Nmerge Number of object groups to merge each eviction
Feviction Each inference evicts Feviction fraction of ranked groups

Table 3: Three sets of 128 traces were used in the evaluation.

Dataset # traces
requests
(millions) Source

CloudPhysics [94] 103 2115 VM disk I/O
MSR [73] 14 410 Disk I/O
Wikimedia [87] 1 2804 CDN requests

3.7 A spectrum of GL-Cache
GL-Cache has three parameters in its design (Table 2): the

size of each object group Sgroup, the number of object groups
to merge at each eviction Nmerge, and how many groups are
evicted using one inference which is determined by Feviction.
Varying these parameters leads to a spectrum of algorithms for
optimizing hit ratio and throughput. A larger Sgroup reduces
learning granularity; a larger Nmerge retains fewer objects; and
a larger Feviction reduces the ranking frequency. Each of these
changes reduces the computation overhead with a potential hit
ratio drop. Therefore, GL-Cache allows the users to navigate
the trade-off between cache efficiency and throughput. For
scenarios that are more sensitive to overheads, such as local
cache deployments, GL-Cache can provide higher throughput
with a slightly lower hit ratio, and vice versa. In §4.6, we
show that these parameters generalize well across workloads.

4 Evaluation
In this section, we evaluate GL-Cache to answer the fol-

lowing questions.
• Will group-based eviction limit the efficiency upper bound

when compared to object-based eviction (§4.2)?
• Can GL-Cache improve hit ratio and efficiency over other

learned caches (§4.3)?
• Can GL-Cache meet production-level throughput require-

ments and how much overhead does GL-Cache add (§4.4)?
• How does GL-Cache improve efficiency without compro-

mising throughput (§4.5)?

4.1 Experiment methodology
Prototype system. GL-Cache groups objects using write time
and can be efficiently implemented using a log-structured
cache. Hence, we implement GL-Cache on top of Seg-
cache [105], an open-source production in-memory cache
that uses segment-structured (log-structured) storage. We
map an object group in GL-Cache to a “segment” in Seg-
cache and replace FIFO with the learned model. We use the
XGBoost [1] library to implement our GBM models and use
the default values for all parameters. GL-Cache has three
parameters (Table 2). In our evaluation, GL-Cache uses 1 MB
group size, merges five groups at each eviction, and evicts
5% of ranked groups after each inference. We compare GL-
Cache with Segcache [105], a segment-structured cache used

https://github.com/Thesys-lab/fast23-glcache
https://github.com/Thesys-lab/fast23-glcache

https://github.com/dmlc/xgboost

https://static.googleusercontent.com/media/research.google.com/en//pubs/archive/42542.pdf
https://static.googleusercontent.com/media/research.google.com/en//pubs/archive/42542.pdf
https://static.googleusercontent.com/media/research.google.com/en//pubs/archive/42542.pdf

https://netflixtechblog.medium.com/cache-warming-leveraging-ebs-for-moving-petabytes-of-data-adcf7a4a78c3
https://netflixtechblog.medium.com/cache-warming-leveraging-ebs-for-moving-petabytes-of-data-adcf7a4a78c3
https://netflixtechblog.medium.com/cache-warming-leveraging-ebs-for-moving-petabytes-of-data-adcf7a4a78c3

https://github.com/twitter/pelikan
https://docs.aws.amazon.com/sagemaker/latest/dg/xgboost.html
https://docs.aws.amazon.com/sagemaker/latest/dg/xgboost.html
https://eng.uber.com/productionizing-distributed-xgboost/
https://eng.uber.com/productionizing-distributed-xgboost/

https://github.com/1a1a11a/libCacheSim
https://github.com/1a1a11a/libCacheSim

	Introduction
	Background and motivation
	Software caches in data centers
	Learning in caching
	Object-level learning
	Learning-from-simple-experts
	Learning-from-distribution

	GL-Cache: Group-level learned cache
	Overview of GL-Cache
	Group-level learning
	Object groups
	Utility of object groups
	Desired properties
	Utility definition

	Learning object-group utility in GL-Cache
	Evictions of object groups
	A spectrum of GL-Cache

	Evaluation
	Experiment methodology
	Group-based eviction
	Cache efficiency
	Throughput and overheads
	Understanding GL-Cache's efficiency
	Sensitivity analysis

	Related work
	Conclusion

