
This paper is included in the Proceedings of the
21st USENIX Conference on File and

Storage Technologies.
February 21–23, 2023 • Santa Clara, CA, USA

978-1-939133-32-8

Open access to the Proceedings
of the 21st USENIX Conference on

File and Storage Technologies
is sponsored by

Patronus: High-Performance and
Protective Remote Memory

Bin Yan, Youyou Lu, Qing Wang, Minhui Xie, and
Jiwu Shu, Tsinghua University

https://www.usenix.org/conference/fast23/presentation/yan

https://www.usenix.org/conference/fast23/presentation/yan

Patronus: High-Performance and Protective Remote Memory

Bin Yan, Youyou Lu, Qing Wang, Minhui Xie, and Jiwu Shu*

Department of Computer Science and Technology, Tsinghua University

Abstract
RDMA-enabled remote memory (RM) systems are gaining
popularity with improved memory utilization and elasticity.
However, since it is commonly believed that fine-grained
RDMA permission management is impractical, existing RM
systems forgo memory protection, an indispensable property
in a real-world deployment. In this paper, we propose PA-
TRONUS, an RM system that can simultaneously offer pro-
tection and high performance. PATRONUS introduces a fast
permission management mechanism by exploiting advanced
RDMA hardware features with a set of elaborate software
techniques. Moreover, to retain the high performance under
exception scenarios (e.g., client failures, illegal access), PA-
TRONUS attaches microsecond-scaled leases to permission
and reserves spare RDMA resources for fast recovery. We
evaluate PATRONUS over two one-sided data structures and
two function-as-a-service (FaaS) applications. The experi-
ment shows that the protection only brings 2.4 % to 27.7 %
overhead among all the workloads and our system performs
at most ×5.2 than the best competitor.

1 Introduction
Remote memory (RM) architecture, which decouples CPU
and memory into two independent resource pools (i.e., com-
pute nodes and memory nodes), is changing the landscape of
modern data centers by providing many benefits, such as high
memory utilization and efficient memory sharing [2, 12, 44].
This trend is sparked by the widely-deployed RDMA net-
work, which allows compute nodes to access remote memory
(at memory nodes) in a one-sided and low-latency manner.
There are myriad efforts to make RM systems practical on
multiple fronts, such as proposing easy-to-use programmable
models [1,43,46], designing efficient remote indexes [50,59],
and deploying popular applications [38].

However, there is still an obstacle to cross on the way to
practical RM systems: remote memory protection. Existing
RM systems expose all RM resources or coarse-grained mem-
ory regions to compute nodes without carefully considering
protection [2, 12, 15, 25, 31, 32, 36, 39, 41]. This inevitably
induces several anomalies. First, buggy or malicious code in
clients1 can generate illegal one-sided access to the RM, intro-
ducing data corruption or privacy breaches. Second, even if
the clients are well-behaved, concurrent memory reallocations
can turn the in-flight one-sided access illegal (§3.1).

*Jiwu Shu is the corresponding author (shujw@tsinghua.edu.cn).
1Clients are processes in compute nodes accessing RM.

It is non-trivial to simultaneously achieve protection and
high performance in RM systems. First, considering the
high throughput of RDMA networks (e.g., ~70Mops/s in
100Gbps ConnectX-5 RDMA NIC), clients will frequently
acquire/revoke permission upon memory allocation/dealloca-
tion. But the common RDMA protection mechanism, i.e., (re)-
registering memory region (MR) to targeted memory areas,
suffers high latency due to the overhead from OS kernel and
RNIC (~1 ms for 256 MB; see Figure 1). Even worse, RM sys-
tems typically only have weak computing power at memory
nodes [48, 55, 59], which limits the rate of acquiring/revok-
ing permission, thus bottlenecking the system performance.
Second, on the exception path of RM systems, i.e., clients fail
or access illegal RM addresses, retaining high performance
with a protection guarantee is challenging. Specifically, when
a client fails, it may hold exclusive access permission to some
memory areas. If the failed client’s permission cannot be re-
voked rapidly, the progress of the whole RM system will be
negatively impacted. When a client accesses illegal RM ad-
dresses, RDMA NICs (RNICs) at memory nodes will turn
the associated queue pair (QP) into an error state, disabling
subsequent RM access. Recovering the faulted QP needs a
millisecond-scaled process and thus produces latency spikes
for RM applications.

In this paper, we propose PATRONUS, a protective RM sys-
tem that can provide high performance. In the control path,
memory nodes perform memory (de)-allocation and byte-
wise memory protection for clients using weak computing
power (i.e., ≤ 4 CPU cores). In the data path, clients at com-
pute nodes access RM with permission via one-sided RDMA
verbs. PATRONUS attains efficiency on both normal and excep-
tion paths. This is achieved by combining advanced RDMA
hardware features and careful software design.

To enable fast permission management with weak comput-
ing power on memory side, PATRONUS first exploits memory
window (MW) [42], an advanced RDMA hardware feature
allowing RNICs to regulate the access (thus supporting one-
sided RDMA) while minimizing the overhead of interaction
with RNICs. Different from MR, an MW operation commu-
nicates with RNIC asynchronously and in userspace. With
permission bits modified by hardware, it enjoys low latency
(1.1 µs; see Figure 1). However, simply using MW cannot
meet the performance requirements at peak load. Thus, we
introduce a set of software techniques (e.g., MW handover
and delayed unbinding; §5.4) to reduce the number of MW
operations, saving the computing cycles of memory nodes.

USENIX Association 21st USENIX Conference on File and Storage Technologies 315

To react fast to client failures, we equip MWs with
microsecond-scaled leases, so that the permission will be au-
tomatically reclaimed by memory nodes on timeout. However,
the fine-grained leases introduce the overhead of frequent ex-
tension to memory nodes. We reduce the extension overhead
by delegating the management of lease metadata to the client
with one-sided verbs while retaining the protection guarantee.

To mitigate the negative effect of illegal access (i.e., QP
faults), instead of recovering the faulted QP in the foreground,
we switch to another intact QP as a substitution. To avoid
QP creation in the critical path, PATRONUS prepares a small
number of spare QPs.

We evaluate PATRONUS thoroughly over microbenchmarks
and two sets of realistic applications, i.e., the remote one-sided
data structures (ODS) and the function-as-a-service (FaaS)
platform. Among all the workloads evaluated, the protec-
tion only brings 2.4 % to 27.7 % overhead, and PATRONUS
performs up to ×5.2 better than all the competitors. On the
exception path, we reduce the interruption from faulted QP by
92 %. The lease semantics ensures the progress of the system
under client crashes, evaluated under the case of ODSs.
Contributions. The main contributions are:
• An analysis of the deficiency of existing protection mech-

anisms and the performance goals for a protective RM
system (§3).

• The design and implementation of PATRONUS, a protective
RM system that retains high performance on both normal
and exception path (§5).

• The thorough evaluations over microbenchmarks and re-
alistic workloads to demonstrate the high performance of
PATRONUS (§7).

2 Background

2.1 RDMA and Access Protection
RDMA is a high bandwidth (e.g., 200 Gbps) and low la-
tency (~2 µs) networking technology widely adopted in to-
day’s data centers [12, 13, 20]. RDMA provides two types of
verbs to the application, namely one-sided verbs and two-
sided verbs. The one-sided verbs offer a remote memory
abstraction; it allows direct access to the remote memory
while bypassing remote CPUs. The two-sided verbs offer a
message-passing interface similar to the well-known Linux
socket. The two types of verbs make different trade-offs: the
one-sided verbs are efficient for saving computation resources,
but they risk data corruption for the lack of remote CPU reg-
ulation; the two-sided verbs are vice versa. The one-sided
verbs are more prevalent due to their higher efficiency (i.e.,
×1.7 throughput) [52].
Access protection. RDMA provides basic mechanisms for
regulating RDMA verbs, e.g., queue pair (QP) and memory
region (MR). QP is the communication endpoint on which the
client posts RDMA requests (via ibv_post_send); it offers
channel-wise restrictions on the access type (i.e., readable

Query QP states
Modify QP flags
MR re-register
MW bindingLa

te
nc

y

1us
10µs

100µs

10ms

Memory Size
64B 4K 2M 2G

Figure 1: Median latency of protection-related operations in
RDMA.

or writable). MR represents a memory area registered to the
RNIC for remote access; it restricts both the access type and
the accessible range of memory.

The MR/QP operations, in the RDMA control path, have or-
ders of magnitude higher latency than the microsecond-scaled
RDMA data path (Figure 1, [53]). Specifically, modifying QP
flags includes a transition of QP states in the RNIC, taking
~100 µs per operation. The MR registration is synchronous
and requires kernel involvement (e.g., context switches, page
pre-faulting, and page pinning); it yields a non-scalable per-
formance [3] with ~1 ms latency for a 256 MB area. Due to
the inferior performance, most RM systems only involve QP
constructions and MR registrations on bootstrap [12, 34, 53].

2.2 The Remote Memory Architecture
RDMA is the key enabler to the remote memory (RM) ar-
chitecture for its ultra-low latency in interconnecting. RM
is getting prevalent in the decade because it addresses the
problem of memory usage imbalance in traditional data cen-
ters [6, 14]. With RM, the CPU and memory are assembled
into two separate components, i.e., the compute nodes (CN)
and the memory nodes (MN). The compute nodes gather a
mass of CPU cores (10s - 100s), while the memory nodes
typically have weak and limited computing power [1,59]. The
scarce computation power on MNs catalyzes a range of RM-
native applications that mainly leverage one-sided verbs, such
as KV stores [25, 36, 48], transactional systems [12, 52, 55],
and data structures [4, 35, 50, 51, 58, 59]. These various work-
loads coexist in the cluster and share the remote memory.

3 Motivation
3.1 The Call for Stray Protection in RM
The efficiency of RDMA one-sided access comes at a price:
its direct nature saves the overhead of remote CPU but in turn
escapes the protection against stray access. The stray access
is the illegal one towards an area of memory unowned by the
process. Next, we show two causes for the stray access.
Causes of stray access. (i) Buggy and malicious codes. A
careless bug or a piece of malicious code can generate stray
access to the RM by setting an overflowed address in the
RDMA request. This is a space anomaly that can occur when
RM exposes a larger range of memory space than allowed.
(ii) Race to memory management. The memory deallocation
and reallocation make all the unaware one-sided access to-

316 21st USENIX Conference on File and Storage Technologies USENIX Association

wards the address stray. This is a time anomaly that can occur
when RM exposes a longer duration of permission than the
application logically allowed.

In response to the causes, a protective system needs to
expose only the range of memory that is allowed to access,
and invalidate the permission timely after access is finished.
Cases for protection and requirements. We observe two
trends making in-RM protection more urgent, posing re-
quirements for a protective system. (i) The RM architec-
ture catalyzes a wide range of remote one-sided data struc-
tures (ODS) [4,35,50,51,58,59], which involve frequent mem-
ory (de)-allocations and floods of concurrent access, bringing
a high risk of memory management race at runtime. Moreover,
the access to the ODS is typically shared and fine-grained
(e.g., at a granularity of buckets in the hash table), which
requires fine-grained protection for proper access isolation.
(ii) In the function-as-a-service (FaaS) platform, functions
submitted from different users leverage the shared RM for
performant (intermediate) data storage [26,53], which asks for
access isolation to avoid data tampering or leaks. Functions
have a short lifetime (~µs), scale out quickly (to ~millions),
and access RM on demand [9, 14, 27, 33], which requires a
low-latency and high-throughput protection management to
meet performance needs in the critical path.

To conclude, a protective system needs to offer high-
performance protection management in fine granularity.

3.2 Goals for the Protective RM System
Considering that the RM system is an infrastructure to deter-
mine the overall performance of workloads, it should remain
efficient in a variety of situations. Besides offering fast per-
mission management on the normal path, it should be able to
retain performance even under client failures or illegal access.
Next, we elaborate on the performance goals.
Goal#1: manage protection fast. Existing workloads can
introduce a mass of permission requests to the system in the
peak case, demanding high throughput in permission manage-
ment. For example, the bulk load to a remote hash table [59]
brings a flood of concurrent permission acquisitions. Query-
ing to the hash table involves multiple access to disjoint mem-
ory areas (e.g., the bucket and the KV block), introducing
multiple permission acquisitions from one query. Therefore,
we expect a protective system to offer high-throughput pro-
tection management to avoid introducing bottlenecks.
Goal#2: react fast to client failure. A client can affect the
progress of the whole system if it crashes with exclusive per-
mission held. This is common because clients are deemed
error-prone in the distributed system, and access to the meta-
data should be exclusive in many workloads. Therefore, we
expect that a protective system can react fast to client failures.
Goal#3: retain performance under illegal access. The ille-
gal access turns the QP into an error state, in which the QP
rejects any incoming RDMA requests, causing a serious inter-
ruption in application running. The interruption will further

Name Goal#1 Goal#2 Goal#3 For RM
Two-sided - ✓ ✓ ✗

MR ✗ ✗ ✗ ✓

QP ✗ ✗ ✗ ✓

MW ✓ ✗ ✗ ✓

MW + SW ✓ ✓ ✓ ✓ ✓
(PATRONUS) (§5.4) (§5.3) (§5.5)

Table 1: Deficiency of existing solutions. Goals are elaborated
in §3.2. Only MW with software (SW) co-design meets all the
goals (PATRONUS).

affect other innocent clients on the same QP (sharing QPs is
very common under QP virtualization and is widely adopted
for mitigating the scalability problem [12, 49, 53]). Therefore,
we expect a protective system to retain performance in the
appearance of illegal access.

3.3 Deficiency of Existing Solutions

Existing solutions are all deficient for a protective RM sys-
tem (Table 1). The two-sided verbs do not work well in the
RM architecture where computation power is scarce on the
memory node. Other existing solutions that regulate one-sided
access (i.e., MR and QP, §2.1) can not simultaneously meet
the three goals. In this section, we revisit these mechanisms
and examine their applicability.

For protection management (G#1), the QP-based solution
is coarse-grained and the MR-based solution is slow. The QP-
based solution is channel-wise; it is unable to offer byte-wise
protection as workloads require. Therefore, its use is very lim-
ited [3]. The MR-based solution has a high latency (~20 µs per
2 MB2, Figure 1) and does not scale; due to the performance
issue of MR, existing systems do not utilize its protection at
runtime. For example, Octopus [34] registers MRs on boot-
strap and never manipulates them later; FaRM [12] uses a
large memory region of 2 GB, which essentially leaves the
whole region unprotected.

For detecting client failures (G#2), MR is not aware of
any failures on the remote side. Although QP does reveal
remote failures (by issuing RDMA operations as heartbeats),
it does not detect failures that leave QPs intact (e.g., clients
using virtualized QPs as communication channels and clients
getting hanged).

Finally, in the appearance of illegal access (G#3), whether
violating the permission restricted by QP or MR, the QP
will run into an error state, requiring an expensive bootstrap
procedure to recover the QP (~1 ms, §7.2.5).

We conclude that pure hardware solutions are insufficient
to achieve all the goals.

2We use 2 MB huge pages, a widely-adopted solution to reduce RNIC’s
page translation cache misses [12, 52].

USENIX Association 21st USENIX Conference on File and Storage Technologies 317

4 Approach Overview
4.1 Opportunity: Memory Window (MW)
The memory window (MW) [42] is an advanced RDMA fea-
ture widely supported in commodity RNICs. It acts as a sup-
plementary layer over MR to deliver flexible protection man-
agement at runtime.
Interface. The MW needs to be allocated before use. It sup-
ports two types of operations, i.e., bind and unbind3. Binding
an MW over a memory area exposes the access permission
while unbinding the MW invalidates it. Note that we can bind
an MW multiple times after it is allocated; each time the pre-
vious permission will be invalidated and the new permission
will be granted (also called rebind in this paper).

Binding (rebinding) an MW takes the address and size of
the memory area and the access type (read or write) as parame-
ters. The MW exposes the memory area by generating an rkey
(a 32 bit integer) as the permission token to the client, like
in the case of MR. MW is byte-granularity in that it works
for unaligned memory areas of any size. Binding/unbinding
the MW uses the same ibv_post_send interface as RDMA
verbs, which communicates with the RNIC in userspace asyn-
chronously and allows requests batching.
Latency: MW vs. MR. MW binding contrasts with MR
registration in two ways. First, MW binding has a constant
latency with memory areas of any size, unlike MR registration
taking proportional overhead to the size. Second, MW binding
has much lower latency, i.e., 1.1 µs in median (Figure 1).

The reason for the performance difference is that MW bind-
ing communicates to the RNIC asynchronously in userspace,
while MR registration is synchronous and requires kernel in-
volvement4, introducing the additional overhead of context
switches, page pre-faulting, and page pinning.

4.2 Solutions
Although MW accelerates permission modifications, it does
not introduce new features beyond MR. Therefore, MW also
has limited functionality as MR. We observe that to achieve
the goals, direct adoption of MW is not enough, and software
co-design must be involved. Next, we show how software
techniques are developed to fill the gap.
Can software further contribute to the overall perfor-
mance? (G#1) Although MW already acts as a low-latency
mechanism to manage permission, the overhead of MWs can
still burden the memory nodes where CPUs are limited. We
observe that software co-design can exploit the true potential
of hardware for efficient permission management.
Solution: save MW operations without sacrificing protection
semantics. Instead of improving performance by lowering
the protection guarantee, we reduce overhead in a way the

3To distinguish, we use the verb bind for MW and register for MR.
4Although MR supports on-demand paging (ODP), which can remove

page pinning, it is notorious for causing high latency (>=10 ms) on normal
RDMA access upon remote page faults [22].

protection assurance is not sacrificed. This is possible by
leveraging the characteristics we find in management. For ex-
ample, by noticing that permission requests come in a batch,
we can leverage the pairs of opposite operations to reduce
the number of MW operations effectively by half (called MW
handover). By noticing that some memory areas will not be
re-used immediately after being freed, we delay the unbinding
of the MWs to save operations. Finally, by exploiting the po-
tential of address contiguity, we can combine multiple MWs
into one. They are elaborated in §5.4.
How to react fast to client failure? (G#2) Like MR, MW
itself is not aware of any failures from the CN side. Extra
techniques must be developed to detect and handle the failure.
Solution: borrow the idea of leases. MW only offers space-
wise protection. We introduce the lease semantics (i.e., expire
on timeout, [41]) to MW from the software to enable time-
wise protection. In doing so, the system can resume progress
by expiring any exclusive permission on timeout, no matter
whether the permission is held by a crashed or a slow client.

The lease management metadata seems too crucial to be ex-
posed. Nevertheless, we notice the byte-granularity property
of MW, which allows us to expose only the necessary part of
metadata to the client. With this help, we are able to offload
part of the lease management overhead to the client with-
out risking metadata tampering (CN-collaborated extension,
§5.3). It saves CPU cycles for the memory nodes.
How to retain performance under illegal access? (G#3)
Like MR, MW protects against data corruption but does not
protect the QP from running into an error state, which seri-
ously interrupts application running.
Solution: conceal the interruption rather than prevent it. We
notice that illegal access is unable to prevent because the mem-
ory node invalidates the permission (i.e., unbinds the MW)
without notifying the client. Therefore, we try to conceal the
interruption caused by the faulted QP instead of preventing
it. We prepare spare QPs to stand in for the faulted ones at
runtime so that the recovery overhead can be concealed in the
background. In doing so, we leveraged a special property of
MWs: they can remain valid across all QPs5. Therefore, the
granted permission remains valid even if the underlying QP
has changed. They are elaborated in §5.5.

5 PATRONUS: The Protective RM system
Motivated by how stray access is common and necessary to
be prevented (§3.1), we design a protective RM system in
response, called PATRONUS, to offer complete protection with
sufficient performance for existing workloads (§3.2).

Different from previous systems where the whole remote
memory is exposed to the clients [12, 34], the basic idea of
PATRONUS is leaving clients with no initial permission and
demanding permission acquisition before allowing clients to
issue remote access.

5Precisely, MWs work across all QPs under the same protection domain
(PD).

318 21st USENIX Conference on File and Storage Technologies USENIX Association

Category API Parameters Return Description

Control Path

allocate size, time, ex/shr Perm Allocate memory and acquire permission
acquire addr, size, time, r/w, ex/shr Perm Acquire permission over ⟨addr, size⟩
extend Perm, time Success Extend the permission lease
revoke Perm Success Revoke the permission

Data Path read/write/
Perm, addr, size, buffer Success

Issue remote access
CAS/FAA (support batching)

Table 2: The PATRONUS APIs. In the parameters, r/w specifies read/write permission; ex/shr specifies exclusive/shared access
mode; time specifies the expected lifetime of the permission lease. Perm is an opaque object containing the remote address, the
rkey as the permission token, and the expiration time. Success denotes whether the call succeeded.

Failure model and leases. PATRONUS considers two kinds
of failures for the client, i.e., fail stop and fail slow, both ad-
dressed by leases. First, the lease ensures availability on client
crashes (fail stop). The orphaned exclusive permission held
by a crashed client precludes other clients from accessing
the memory, resulting in unavailability. The lease resumes
system progress by expiring the permission on timeout. Sec-
ond, lease accelerates memory reclamation with slow clients
(fail slow). A slow client (e.g., due to network traffic) hinders
actual memory reclamation, because the active permission
it holds makes the memory area potentially accessible and
thus not reclaimable. The lease forcibly invalidates permis-
sion on timeout to allow reclamation on time. We assume
loosely-synchronized clocks for the lease to work, like similar
work [19]. PATRONUS does not handle the failure of mem-
ory nodes, where orthogonal work (e.g., erase coding) can be
applied [30, 57].

5.1 The Interface
PATRONUS provides control path APIs to acquire new permis-
sion, extend the permission lease, and revoke permission. The
data path APIs accept the permission as a parameter and are
translated into one-sided verbs for remote access (Table 2).
Permission starts in two cases. (i) Client allocates remote
memory via the allocate call. (ii) Client attempts to access
a known remote area for the first time, in which case the client
needs to get the permission via the acquire call. Both calls
will issue an RPC to the memory node, where the memory
node starts new permission by binding MWs to the allocat-
ed/specified memory, and responds with a Perm object to the
client. Perm, needed by all the data path API, contains the per-
mission token (rkeys of the MWs), the expiration time, and
the remote address. Note that re-access to the same memory
can re-use the previous Perm as long as it has not expired.

In the parameters, the client specifies the access mode (read-
/write), ownership (shared/exclusive), and expected lifetime
for the permission lease. For acquisitions that conflict in the
ownership, PATRONUS postpones granting the latter permis-
sion until the conflict resolves.

PATRONUS allows pre-allocation to amortize the overhead;
i.e., clients call allocate at a larger granularity and back
their fine-grained allocators on the blocks. Nevertheless, it

does not speed up the queries or in-place updates from other
clients (which is also common), because those clients still
need to call acquire for their own fine-grained permission.
Permission extends via the extend call. Extending an exist-
ing permission is more efficient than re-acquiring a new one.
We assume that clients only extend the hot permission that is
re-used frequently.
Permission ends when the client explicitly revokes the per-
mission (via revoke) or when the lease expires. The revoke
will issue an RPC. The to-expire leases are detected by period-
ical scans from the memory node. In both cases, the memory
node unbinds the MWs to invalidate the permission.
Data path. PATRONUS purely uses one-sided verbs in the
data path (read, write, CAS, and FAA calls). It supports batch
execution and therefore allows the familiar IO consolidation
optimizations in the application [59].

5.2 Architecture Overview
PATRONUS provides a library for the client in compute
nodes (CN-lib) and a manager daemon for memory nodes,
as illustrated in Figure 2. The manager manages the remote
memory and permission in response to clients’ RPC.
Main components. PATRONUS manager takes over the
whole memory on MN. Most of the memory will be exposed
for the client’s use; we call them buffers in the memory pool.
The other (≤ 0.02 %) is reserved on bootstrap to use as the
header pool.

The header is a central structure that stores all necessary
metadata for a permission. Each individual permission (possi-
bly over the same memory area but owned by different clients)
has an individual header. The header contains two kinds of
information (Figure 3). (i) The resource information, i.e., the
address and size of the RM buffer and the corresponding
MWs. (ii) The lease information, such as when the permis-
sion starts and how long the permission will last. We use the
address of the header as the cluster-wise permission identifier
in the RPC between clients and the manager.
Permission management. The start of permission is triggered
by the client’s allocate or acquire calls. In response, the
manager allocates a header for the new permission and then
binds two MWs to expose both the buffer and the header to
the client (➊ in Figure 2). The header is additionally exposed

USENIX Association 21st USENIX Conference on File and Storage Technologies 319

Promote
Spare QPs

Perm header resourcesaddr

active permissions

Library
on CN

Apps

Manager
on MN

header resourcesaddr

MW

m

Expired

header pool memory pool

MW
QP

rkey

buffer

Figure 2: The architecture of PATRONUS. We assume that
CNs own a mass of CPU cores (10s - 100s), while MNs use
several weak cores to operate the manager.

Header Pool
(<0.02%)

Memory Pool
(others)

Len Addr Start Time

Header
(32B)

RM

MW locs Lifetime
16b 48b 8B 8B 8B

Figure 3: The format of the 32 B header. MW locs denotes
the locations of the MWs. Blue indicates the area exposed
to the client, i.e., the Lifetime variable in the header and the
buffer in the RM.

so that the client can facilitate permission management, a
technique called CN-collaborated extension (§5.3).

The remote memory is managed by slab allocators with
different object sizes, similar to FaRM [12]. Permission has
the same granularity as memory management: clients must
start permission over the whole object, but not a part of it.
The manager uses a per-slab hash table to store all the active
permission, with addresses as the keys; in this way, permission
can be queried efficiently. To detect any to-expire permission,
the manager periodically polls the hash table to collect the
timeout ones (➋ in Figure 2). The polling overhead is minor
because the number of active permissions in the system is
typically small.

To invalidate permission, the memory node unbinds the
MWs, which in turn invalidates the permission token (rkey),
causing RNIC to forcibly reject the RDMA requests with that
rkey (➌ in Figure 2).

5.3 CN-collaborated Extension
Considering that unexpected permission expiration seriously
interrupts application running, PATRONUS allows extending
the permission on runtime. The naive approach is using an
RPC to notify the manager of the extension. However, the
communication brings significant overhead to the memory
node where computation power is scarce. To mitigate this
overhead, we propose to utilize the collaboration from the
CNs for extension while handling careless and malicious
clients correctly.
Collaboration from CN. The metadata in the header seems
too crucial to be exposed. Nevertheless, we notice that MW
is byte-granularity; therefore, it can be used to expose only

the necessary part of metadata to the clients without risking
metadata tampering.

The basic idea is to expose the lifetime variable in the
header (Figure 3) so that the client can update it in a one-sided
way. In turn, the manager will encounter extended permissions
on polling for the timeout ones; the manager skips them.
Regulate the extension. The CN collaboration can introduce
the starvation problem in the system without proper regulation.
Specifically, (i) the client is able to set lifetime to a large
value to own it infinitely. (ii) The client is also able to extend
continuously, starving other clients.

In response, we propose two regulations for the extension.
First, we require that any permission can not live beyond a pre-
defined maximal lifetime (empirically set to several millisec-
onds). Any aged permission will be detected by the manager
and be forcibly invalidated.

Second, to avoid starving other clients, we need an efficient
way to notify the owner that a permission is no longer ex-
tendable. In PATRONUS, the notification is implemented by
setting the lifetime to zero and requiring the CN-lib to update
the lifetime with RDMA_CAS instead of RDMA_WRITE. In this
way, the zeroed lifetime causes RDMA_CAS to fail and thus the
clients are notified. Note that the permission is arbitrated on
the memory node, which means that the manager can always
reclaim the permission by forcibly invalidating the MWs if it
suspects any anomalies, without negotiating with the client.
Trade-off analysis. With collaboration, the overhead of an
RPC (the naive approach) is reduced to one inbound one-sided
access. The collaboration benefits the performance because
(i) one-sided verbs are more efficient than two-sided ones, and
(ii) inbound verbs are more efficient than outbound ones [25].
The benefit will enlarge if extensions occur multiple times.

Exposing the lifetime variable introduces the overhead of
using one more MW. Nevertheless, we deem the overhead
minor compared to the naive approach (taking one RPC), be-
cause the additional MW operations can be batched together
in the ibv_post_send API, communicating with the RNIC
once. Furthermore, as we show in §5.4, this extra MW over-
head can be reduced most time.
Polling: the alternative to lease. An alternative approach to
the lease semantics is QP polling, where MNs track whether
CNs are still alive by periodically issuing RDMA operations
to each QP as heartbeats. Polling has several deficiencies
compared to leases. First, it does not handle fail slow of clients.
Second, polling can not distinguish clients sharing the same
QP (while QP sharing is common [12, 49, 53]). In terms of
overhead, polling and leases both pay one RDMA operation
for keepalive; however, leases allow to save one revoke call
by letting the permission expires itself, potentially yielding
better performance.

5.4 Reduction of Permission Overhead
In this section, we introduce our techniques for reducing the
permission overhead without sacrificing protection assurance.

320 21st USENIX Conference on File and Storage Technologies USENIX Association

Bind 0x10
Bind 0x20
Unbind 0x80
Unbind 0x90

2x
alloc MW

2x
free MW

2 bind + 2 unbind = 4 op

Rebind 0x80->0x10
Rebind 0x90->0x20
Unbind 0x80
Unbind 0x90

2 bind + 2 unbind = 4 op
2 rebind = 2 op

MW

Steal!

(a) Before (b) w/ MW Handovers

Figure 4: The MW handover technique saves half of MW
operations by stealing (reusing) MWs from the unbinding
requests to the binding requests. 0xdd denotes the addr.

We elaborate on the characteristics we find in protection man-
agement and how we leverage them to reduce MW operations.
#1: Leverage pairs of opposite operations. Every active
permission ends eventually. Therefore, among all the MW
operations in the system, about half of them are binding while
the others are unbinding. Following this fact, we can combine
every pair of opposite MW operations into one rebinding op-
eration, a technique we call MW handover (Figure 4). Rebind-
ing an MW, which takes the new ⟨addr, size⟩ as parameters,
generates new rkeys and invalidates the old rkeys (§4.1). To
adopt this technique, the manager collects opposite operations
with the best effort: the to-expire permission will be polled
and clients’ requests will be scanned before performing the
handover.
Trade-off analysis. The benefit of this technique comes with
no price because handover is only performed in a speculative
way. First, the manager never waits for future requests; no
latency is introduced. Second, client requests on the memory
nodes are naturally batched by the RNIC, which is a hardware
approach and does not introduce extra batching overhead.
The memory node, accordingly, always handles requests in a
batch, leaving room for performing handover.
#2: Delay unbinding if memory is not re-used. We observe
that if a memory area is not re-used after deallocation, we can
delay unbinding the MW because stray access to this area does
not introduce data corruption. The header is a good candidate
for doing so: we reserved more-than-enough headers in the
system, so it is easy enough not to re-use the just-deallocated
header in the near future. If the available memory buffers are
adequate in the system, we also delay unbinding the buffer
MW; however, if it is not the case, we unbind the buffer MW
and reclaim (thus re-use) the buffer promptly.
Trade-off analysis. This technique wastes available head-
ers and MWs but in a minor way. The waste of headers is
negligible because we reserve adequate headers in the pool
for the extreme case. We carefully encode the header so that
the pool occupies no more than 0.02 % of a regular memory
node (§5.6 for details). The waste of MWs is trivial because
the RNIC (Mellanox CX-5 in our case) allows ~16 million
MWs, far from possibly being used up.

#3: Exploit the potential of contiguity. We observe that if
two addresses are contiguous and share the same protection
lifetime, we can combine the two MWs into one. At first
glance, the situations of this case are rare because addresses
are generally not contiguous and memory buffers seldom
share the same protection lifetime. We exploit this potential
in handling the allocate RPC: we can allocate an extra 32 B
to place the header right before the buffer; thus, the header
and the buffer are contiguous (this case is not revealed in the
figures for brevity). While doing so, we carefully place the
to-expose variable (i.e., the lifetime variable in Figure 3) at
the tail of the header to make the to-expose areas contiguous.
Trade-off analysis. The benefit comes with no price. At first
glance, allocating an extra header introduces a lot of 32 B
holes. However, these holes are not wasted, because they can
be re-used as headers again when the permission over the
same buffer is re-acquired. This situation is very common; for
example, inserts to the remote hash table involve allocations
of KV blocks. These KV blocks will be re-accessed when
being read or modified. In this case, the following permission
acquisitions can re-use the holes as headers again. On deal-
location, the frontal 32 B will be reclaimed altogether; thus
they are not leaked.

5.5 Isolation from Illegal Access
Although MW can prevent illegal access from corrupting the
memory, it does not handle the consequence of it: the ille-
gal access will turn the underlying QP into an error state.
The faulted QP requires an expensive procedure for recov-
ery (~1 ms), seriously interrupting application running.

We observe that this interruption is not preventable by the
software. This is because process scheduling and network
traffic can introduce a nondeterministic delay to the one-sided
request. During the delay, the permission may have expired.
Therefore, we propose to conceal the interruption rather than
prevent it.
Conceal the interruption. We prepare spare QPs to conceal
the interruption caused by QP failure. Specifically, each client
is assigned a virtual QP number, which maps to a physical
QP initially. On QP failure, we transparently promote one of
the spare QP by altering the virtual-to-physical mapping (➍
in Figure 2). In this way, the client can resume its execution
immediately. A special property from MWs enables continu-
ous execution, i.e., the MWs are able to remain valid across
all QPs. This wide validity allows the previous permission
to remain valid in the new QP. Therefore, the client does not
need to re-acquire permission when QP switches.

A small number of spare QPs are sufficient to hide the
foreground interruption as the manager performs QP recovery
in the background. We assume a low illegal access rate (less
than 1-10s per second) compared with the speed of QP recov-
ery (~1 Kops).
Trade-off analysis. The spare QPs introduce no overhead
for the normal path. The reason is that the spare QPs, while

USENIX Association 21st USENIX Conference on File and Storage Technologies 321

inactive, will not contend for the rare RNIC resources (e.g.,
the limited cache [37]).

The spare QPs consume host memory but in a negligible
way. To adopt this technique, considering that we use the
peer-to-peer RC (reliable connection) type of QP, each mem-
ory node needs to prepare O(C) spare QPs for connection,
where C is the number of compute nodes. It does not cost
much, because even for a large cluster with one thousand
CNs, preparing 3 QPs for each CN only consumes ~1 MB
host memory (each QP takes ~375 B; [40]).

5.6 Implementation Details
MW pool. The allocation of MWs, unlike binding, has a much
higher latency (1 µs vs. 100 µs). We maintain an MW pool to
offload the allocation off the critical path.
Header encoding and overhead. The header only takes up
32 B after our effort on data encoding. We leverage the tagged
pointer [59] to steal the higher 16 bit for the buffer size (Len),
which is able to present 0-64 KB. For the case where larger
buffers are common, we use a scale factor for Len, e.g., 64
or 4096. Since we need to locate two MWs (i.e., header and
buffer) for each permission, we store two 4 B MW indexes
to locate MWs in the MW array. Start time and lifetime are
encoded in microseconds; 8 B is ample to encode any time in
theory. In the extreme case where 1 million permissions are
simultaneously present in the system (clients own very few ac-
tive permissions in general), the headers only occupy 32 MB
in total (< 0.02 % with 128 GB memory). In conclusion, the
memory consumption is negligible.
Handling double invalidation. Without careful management,
double invalidation of permissions may occur in the system,
caused by the famous ABA problem. Specifically, the ABA
problem comes when an obsolete RPC tries to locate the
permission header that has already been re-used. To address
this problem, the start time is additionally attached with the
permission identifier in each RPC. The manager filters out
any RPCs whose start time does not match.

6 The Cases for PATRONUS

In this section, we demonstrate the benefits of PATRONUS
through case studies. We explain the way to adopt PATRONUS
to these cases individually.

6.1 One-sided Data Structure
We mainly focus on two one-sided data structures (ODS),
i.e., the start-of-the-art RACE hashing [59] and a concurrent
queue [17]. Other ODSs, such as the hashing-based ones [51],
the tree-based ones [50, 58], and the skip list [35], are similar.

The RACE hashing is an RDMA-conscious extendible hash
table. It purely uses one-sided verbs and leverages RDMA_CAS
for the lock-free remote concurrency control. The concurrent
queue follows the design in [17]; it is implemented as a lock-
free linked list of segments, with each segment containing
multiple entries.

Necessity for protection. Inserting (removing) elements
to (from) the data structure involves memory allocations.
Since the remote data structure is shared by multiple clients,
the race of memory reallocation, especially invoked from
other clients, turns any concurrent one-sided requests into
stray access. Specifically, RACE hashing uses copy-on-
write (CoW): updating a new value involves freeing the old
KV block ⟨K,Vold⟩. A seriously delayed client, e.g., due to
network traffic or scheduling, may post one-sided access to
Vold , the already unowned memory. Similar situations apply
to any one-sided data structures involving memory manage-
ment. Note that this race is hard to address from the design of
data structures because the delay is nondeterministic.
Necessity for performance. The one-sided data structures are
the essential building block of applications in remote memory;
their efficiency determines the performance of the system.
The data structures typically support millions of operations
per second with microsecond-scaled latency, asking for high-
performance protection at the same level.
Adoption of PATRONUS. For RACE hashing, we take inser-
tion as a concrete example. In the vanilla implementation,
insertion takes four steps in the common path. (i) Allocate a
KV block and write the KV to the block. (ii) Read the bucket
in the subtable. (iii) Link the KV block into the bucket via
CAS. (iv) Re-read the bucket to detect duplicity. To adopt PA-
TRONUS, we use our allocate API for KV block allocation
(and the permission) and use one acquire for the permission
to access the subtable. Among the four RDMA operations
(one write, two reads, one CAS), two PATRONUS operations
are introduced (one allocate and one acquire). Note that
the subtables, as the metadata, are (re)-accessed frequently;
therefore, the active permission to the subtable can be re-used
several times, possibly across insertions.

For concurrent queue, it is implemented as a lock-free
linked list of segments, with each segment containing multi-
ple entries. At insertion, the client tries to fetch an index of
an available entry slot from the segment via FAA, and fill the
entry slot via write. If failed (i.e., the segment is full), the
client allocates a new segment and links it to the back of the
list via CAS. The concurrent queue also contains a metadata
block maintaining the (possibly stale) head and tail of the
linked list. With PATRONUS, each new segment introduces
one allocate for allocation and one acquire for the access
permission to the segment. Each client also maintains a pro-
longed permission to the metadata block.

6.2 Function as a Service
The FaaS is a cloud computing paradigm where the applica-
tions are developed and served at the unit of functions. Each
function runs in a virtualized environment for isolation and
performance fairness. We consider that the FaaS platform
equips RM as an external medium for data storage.
Necessary for protection. In the FaaS system, functions
submitted by different users access shared remote memory

322 21st USENIX Conference on File and Storage Technologies USENIX Association

CPU Xeon Gold 6240M @2.6 GHz,
32 logical cores, with hyperthreading enabled

RAM 186 GB 2666 MHz DDR4
NIC Mellanox MT27800 ConnectX-5 Family
OS 18.04.5 LTS, Linux 4.15.0-153

Table 3: Experimental cluster configuration. The evaluation
was carried out on a 4-node cluster.

Th
ro

ug
hp

ut
 (M

op
s) PatronusRPC MR QP

(a)

QP
MR
RPC
Patronus Latency

(b)

QP

MR

RPC

Patronus

1µ
s

1m
s

10
µs

10
0µ

s

0.1

1

10

of Clients
1 10 100 1000

Figure 5: The throughput (a) and latency (b) of random access
of RM with PATRONUS and other protection techniques. QP
does not scale beyond 32 clients per machine.

simultaneously. It asks for the isolation of remote access in
addition to the existing isolation of local memory and storage.
With PATRONUS, future FaaS systems can offer sandboxed
remote memory to functions with flexible control over which
function is allowed to access which piece of remote memory.
Necessity for performance. First, functions in FaaS have a
low bootstrap latency. The state-of-the-art FaaS systems [9,14,
27,33] enable microsecond-scaled ultra-low bootstrap latency
in the case of hot starts, emphasizing the need for low-latency
permission management. Second, functions scale out quickly
to millions of instances [33]. Even if each function accesses
remote memory once, it introduces a flood of permission
acquisitions, asking for high throughput permission manage-
ment to meet performance needs. Finally, functions access
remote memory on demand. Functions are spawned dynam-
ically in response to user requests, and remote access from
functions can not be known in advance. It involves permission
management in the critical path, precluding the optimization
of pre-acquiring permission.
Adoption of PATRONUS. Functions access remote memory
on bootstrap, do some calculations, and exit. With PATRONUS,
for each data on RM, one acquire call is introduced on func-
tion bootstrap and one revoke is introduced on exit. Re-
access to the same data shares the same permission from
one acquire. Specifically, for the image processing and data
analysis workloads we evaluated in the experiment, functions
call acquire for permission to access the input image and
in-memory database respectively. We assume cascadingly in-
voked functions are executed in the same container so that
they can share permission (communicate) with local mem-
ory (a technique called sequence function chain [8, 16]).

7 Evaluation
Compared mechanisms. We adopt PATRONUS to enable
protection in various workloads and compare it against three

Name (Abbr) # of MW # of RPC
Baseline 2 + 2 2
Delay Unbind (+ Delay) 2 + 1 2
Use Contiguity (+ Cont) 1 + 1 2
MW Handover (+ HO) 1 + 0 † 2
Lease Expire (+ Expr) 1 + 0 † 1

Table 4: A summary of techniques for reducing the permission
management overhead (§5.4). The # of MW column reports
binding + unbinding operations. † means at probability.

mechanisms used in existing RM systems. (i) Re-registration
of memory region (MR), representing the mechanism adopted
by FaRM [12] and Octopus [34]. (ii) Modification of QP
flag (QP), used by uPaxos [3]. (iii) Using RPC in the data
path (no permission acquisitions needed), used by AIFM [43]
and Redy [56]. Finally, Unprot stands for the vanilla imple-
mentation of workloads without any protection.

Experimental setup. We perform the evaluations on a cluster
with 4 nodes. Table 3 summarizes the configuration. One node
acts as the memory node with limited use of 4 CPU cores.
The others are compute nodes with 32 cores. We bind each
client thread to a core; for more than 32 clients, we spawn
coroutines in each thread to simulate a larger deployment. On
reporting latency, we disable coroutines to avoid the schedule
variance. The number of clients reported is per machine.

7.1 Overall Performance

Experimental setting. We performed an experiment to reveal
the overall data path performance of PATRONUS and com-
pared mechanisms. In the experiment, each client randomly
accesses 64 B within a large memory region. The client will
re-access the same address three times while using the same
permission, representing the common use cases with space
locality [12, 52]. The effective access throughput and latency
are reported in Figure 5.

Result. Among these techniques, PATRONUS performs the
best and only RPC can keep pace with it. The performance
gap will be enlarged significantly for a larger IO size because
RPC pays extra overhead of memory copy for each access,
but the MW overhead that PATRONUS pays is irrelevant to
the size. The performances of MR and QP are not comparable
to PATRONUS. The MR registration is expensive, because it
is synchronous and incurs kernel involvement (§2.1). The
latter requires modification to the QP flag, which includes the
complex QP state management overhead in the RNIC. The
QP-based solution also precludes sharing QPs among clients;
therefore, we can not evaluate it with more clients.

7.2 Effect of Software Co-design

In this section, we evaluate the effect of the software co-design
that makes PATRONUS achieve all the goals.

USENIX Association 21st USENIX Conference on File and Storage Technologies 323

Th
ro

ug
hp

ut
 (M

op
s)

(a)

Baseline
+Delay
+Cont
+HO
+Expr

Latency (µs)

(b)Network
+Expr

+HO
+Cont

+Delay
Baseline

10 50 100 150

Network

of Clients

2.0

4.0

1 10 100 1000

Figure 6: Throughput (a) and latency (b) of permission acqui-
sition under different optimizations.

7.2.1 Performance of Permission Management (G#1)
Experimental setting. We evaluate the performance of per-
mission management by breaking down the techniques we
adopt. Table 4 summarizes the technique. Besides the three
techniques described in §5.4, we additionally consider the
lease semantics as the final technique, which effectively elim-
inates the overhead of revoke RPC.

To evaluate the performance, we saturate the system with
enough clients to acquire (and revoke) permission over 64 B
areas with random addresses. We report the throughput and
latency of permission acquisitions in Figure 6.
Result. The combination of all the techniques effectively
leads to a performance close to the network bound (bare RPC
performance). The eventual throughput is more than 1 Mops
per core, which is only achievable with our effort in software
co-design, considering that additional overhead besides MWs
also exists in the system, such as memory management, RPC,
and lease management. In theory, we reduce the overhead of
managing a full permission lifecycle to one MW operation
and one RPC (the last line in Table 4), which doubles the
performance as the baseline and, we believe, exploits the true
potential of the hardware.

7.2.2 CN-collaborated Extension (G#2)
In this section, we demonstrate the necessity of the extension
API and the effectiveness of our CN-collaborated extension
technique (§5.3).
Experimental setting. We evaluate three cases: no extension
API, the naive RPC-based extension, and our CN-collaborated
extension technique. Without extensions, the unexpected per-
mission expiration requires another acquire call to get the
permission again (denoted as Re-acquire). The RPC-based
implementation allows extension but in a naive way, i.e., uses
an RPC to notify the memory nodes (+ Extend). Finally, our
technique (+ CN Extend) offloads the management overhead
to the CN. In the evaluation permission extends eight times.
Result. Figure 7 reports the throughput and latency. With-
out the extension, the Re-acquire brings both extra MW
operations and RPC overhead, which bottlenecks the system
seriously and gives only 202 Kops. The RPC-based extension
implementation, although saves unnecessary MW operations,
still introduces the RPC overhead to bottleneck the system.
The CN-collaborated technique reduces both the MW and
RPC overhead, effectively producing a ×6 performance gain.

Th
ro

ug
hp

ut
 (M

op
s) Re-acquire

+Extend
+CN Extend

Latency (µs)

Re-acquire

+Extend

+CN Extend

(b)

25 50 75

(a)

0

0.5

1.0

1.5

of Clients
1 2 4 8 32 128 512

Figure 7: Comparison of not allowing extension (Re-acquire),
using RPC for extension (Extend), and our CN-collaborated
extension technique (CN Extend). Reporting throughput (a)
and latency (b).

Patronus
Vanilla

crash

timeout
finished resizing

(a)

Lo
ad

 F
ac

to
r

0%
20%
40%
60%
80%

100%

Epoch (0.1 ms)
0 200 400 600 800 Th

ro
ug

hp
ut

 (K
op

s)

lease
polling

(b)

0

5

10

Slow Time (us)
0 500

Figure 8: (a) The load factor of RACE hashing under client
crash for vanilla implementation and PATRONUS. (b) The
comparison of polling and leases with clients of different fail-
slow degrees.

7.2.3 Effect of Lease Semantics (G#2)
We evaluate how the lease semantics enables the system to
resume progress when the client crashes while holding exclu-
sive permission. We use resizing in RACE hashing [59] as a
case.
Experimental setting. In the experiment, clients are concur-
rently accessing the hash table while resizing occurs. RACE
hashing does not allow cascaded resizing, so the resizing
client accesses the metadata (i.e., the resizing subtable) in
an exclusive way. The resizing client crashes at epoch 240,
leaving the orphaned exclusive permission (or an orphaned
lock in the vanilla design) in the system, potentially causing
deadlocks. We compare PATRONUS against the vanilla design.
Result. Figure 8 (a) shows the load factor of the hash table
while clients are concurrently loading data into the table and
the resizing client crashes. In the vanilla design, the orphaned
lock results in deadlock and prevents the following insertions
into the table (red line in the figure). With PATRONUS, the
exclusive permission to the metadata can be re-granted to
the other concurrent clients after the permission expires. The
other clients resume progress and load the table full.
7.2.4 Compare QP polling to leases (G#2)
Experimental setting. QP polling (polling) is an alternative
approach to leases (lease) where memory nodes periodically
issue RDMA operations to each QP as heartbeats. On heart-
beat timeout, which we set to the same value of lease time
(100 µs), the memory node suspects that the compute node has
crashed and reclaims the permission. We report the through-
put of exclusive permission acquisitions under the anomalies
where clients fail slow (get hanged due to network traffic or

324 21st USENIX Conference on File and Storage Technologies USENIX Association

Name w/o w/
Failure Reported 769 µs
Promote QP - 78 µs
Notify QP Failure 8 µs -
Recover QP 1004 µs -
Summary 1012 µs 78 µs

(8 %)

Table 5: Latency breakdown of handling QP faults with (w/)
or without (w/o) the spare QPs technique.

scheduling); a zero slow time denotes the case of normal
clients.
Result. Figure 8 (b) shows the throughput with normal and
slow clients. With normal clients (zero slow time), lease
performs slightly better than polling (6 % better) because it
allows the lease to expire itself, saving one revoke call than
polling. With slow clients, lease is able to retain perfor-
mance by timely expiration while polling does not detect it
and degrades performance seriously.
7.2.5 Spare QPs for Concealing Interruption (G#3)
In this section, we evaluate how the spare QPs can conceal
the interruption caused by QP faults with illegal access. We
prepare spare QPs and trigger illegal access (an out-of-bound
write) deliberately.
Result. We break down the latency with and without the
technique in Table 5. After illegal access triggers QP faults,
the case without spare QPs needs to go through the QP re-
bootstrap procedure, introducing significant overhead (Re-
cover QP, 1004 µs). Since QP recovery needs effort from both
sides, the client needs to notify the manager (Notify QP Fail-
ure, 8 µs). On the other hand, for the case with spare QPs,
only the promotion of spare QPs is required (Promote QPs,
78 µs), which involves a handy resource swap in the software.
Therefore, it reduces the interrupted time to 8 %.

The illegal request takes much longer for the RNIC to com-
plete (Failure Reported, 769 µs), measured between posting
the request and the error being notified. Unfortunately, this
procedure purely happens in the RNIC firmware and is confi-
dential; we are unable to analyze and optimize it. Neverthe-
less, we expect that this period can be significantly shortened
by simple modifications to the firmware for future RNICs.

7.3 Case Study: One-sided Data Structures
Next, we reveal the performance of PATRONUS under realistic
workloads. In this section, we focus on two remote one-sided
data structures, i.e., RACE hashing [59] and the concurrent
queue (adopted from [17, 24]). We omit the QP-based mecha-
nism in the figures because it has much worse performance
and does not allow scaling beyond 32 clients per CN (not
allow clients to share QP).
7.3.1 Hash Table
Experimental setting. We adopt PATRONUS to RACE hash-
ing [59], the state-of-the-art one-sided extendable hash ta-

ble. Since RACE hashing is not open-sourced, we implement
RACE hashing following the original paper, with all the opti-
mizations described in the paper enabled. We verified that the
performance of our version is on par with the one reported
in the paper. In the evaluation, we set the size of KV blocks
to 4 KB. The key follows Zipfian distribution with skewness
parameter 0.99. We also consider memory allocation in the
critical path as the extended version of the paper does [59],
with a pre-allocation factor of four to amortize allocation over-
head. The lease time is set to 100 µs. The detailed adoption
of PATRONUS is described in §6.1.
Result. Figure 9 shows the throughput under read-only, 50%
read-write and write-only workloads (a-c) and the read-only
latency (d) respectively. PATRONUS performs the best and has
a reasonable price for memory protection. The protection only
introduces 4 µs to the median latency (+29 %), which is an ac-
ceptable price for most use cases. The MR-based mechanism
is not scalable under all workloads. It is because insert and
query to RACE hashing involve a lot of memory access, gen-
erating a flood of permission requests in turn. The MR-based
mechanism is unable to meet the performance requirements.
The P99 latency of MR degrades severely because of the syn-
chronous API it exposes. The RPC mechanism gets better,
but it is still inferior due to the memory copy overhead.
7.3.2 Concurrent Queue
Experimental setting. The concurrent queue is implemented
as a lock-free linked list of segments; each segment contains
1024 entries. The lease time is set to 100 µs. The implementa-
tion and adoption of PATRONUS are described in §6.1.
Result. Figure 10 reports the throughput and latency of inserts
with the variety of producers. The performance of PATRONUS
is very close to the theoretical upper bound without protec-
tion. The reason for the high efficiency is that the overhead
of one PATRONUS operation can be amortized into multiple
insert operations. Nevertheless, the MR-based solution is still
insufficient in terms of throughput because its overhead is
too high to amortize (17.5 % throughput as PATRONUS). The
RPC-based solution also gets inferior performance because it
uses two-sided verbs in its data path, introducing overhead to
the limited CPU cores on memory nodes. We also vary seg-
ment size from 64 to 1024 to reveal the effect; PATRONUS is
×5.18 to ×1.78 better than MR (not shown for space limits).

7.4 Case Study: Function as a Service
Description. To evaluate how PATRONUS performs with the
FaaS platform, we adopt ServerlessBench [54], a thorough
benchmark with representative realistic serverless workloads.
We consider two typical applications in TC4 of Serverless-
Bench, i.e., image processing and data analysis. The former
is one of the most popular workloads in the cloud [5], which
comprises five functions in the chain to extract metadata and
generate the thumbnail of the input image. The data analysis
application is a workflow that analyses the salary of employ-
ees, triggered by data alteration in the database.

USENIX Association 21st USENIX Conference on File and Storage Technologies 325

Unprot
Patronus
RPC
MR

of Clients

(a) RO

0

2

4

1 2 4 16 64 512Th
ro

ug
hp

ut
 (M

op
s)

of Clients

(b) RW

0

2

4

1 2 4 16 64 512
of Clients

(c) WO

0

1

2

1 2 4 16 64 512

Unprot
Patronus
RPC
MR

Median P99

µs

Latency

(d) Lat.
 of RO

0

200

400

600

800

0
100

Figure 9: Performance of RACE hashing. (a-c) The throughput under read-only (RO), 50%-mixed read-write (RW), and
write-only (WO) workloads. (d) The latency under RO workload.

Unprot
Patronus
MR
RPC

Th
ro

ug
hp

ut
 (M

op
s) Unprot

Patronus
RPC
MR

µs

Latency
Median P99

(b)

0

200

400

600

0
20

(a)
2.0

4.0

of Clients
1 2 4 8 16 32

Figure 10: Throughput of producers for the one-sided concur-
rent queue.

Th
ro

ug
hp

ut

Unprot
Patronus
RPC
MR

(a) Image
processing

0

2×104

4×104

6×104

8×104

of Clients
1 2 4 8 16 32

(b) Data analysis

0

2×105

4×105

6×105

of Clients
1 2 4 8 16 32

Figure 11: Performance of two serverless applications.

Experimental setting. In the evaluation, we launch enough
functions to saturate the system. We assume hot starts for all
the functions, excluding the overhead of disk IO and container
bootstrap. The lease time is set to multiple times of function
lifetime so that lease extensions are rare. The adoption of
PATRONUS is described in §6.2.
Result. For the image processing application (Figure 11 (a)),
PATRONUS has a performance close to the unprotected case.
The reason is that generating the thumbnail is a CPU-intensive
task, and thus the bottleneck shifts from the protection over-
head to the CPU computation. Besides, MW has a constant
overhead over the memory size; therefore, the protection per-
formance remains constant even with larger images. On the
contrary, the overhead of MR and RPC is so high that they
still bottleneck the system even in this CPU-intensive case.

For the data analysis workload (Figure 11 (b)), it is more
IO-intensive than the previous workload and therefore a wider
performance gap is shown between PATRONUS and the unpro-
tected case. Nevertheless, PATRONUS still performs the best
and the gap is shortened with more concurrent clients (≥ 8)
in the system.

8 Related Work
The development of fast networks, especially the emergence
of RDMA, leads to a wide discussion on resource disaggrega-

tion [18, 21, 23, 44, 45]. Among them, remote memory is one
of the most typical forms of disaggregation, and it has gained
much research interest in the last decade [2,15,31,32]. To our
best knowledge, no prior RM system has provided efficient
protective interfaces with commodity RNICs.

Performance-oriented RM. A wide range of research on RM
focuses on optimizing performance with customized hard-
ware. Kona [11] eliminates the virtual memory overhead with
a new architecture. Other work [4, 7, 10] extends the RDMA
interface for richer semantics. StRoM [47] adopts the idea of
near-data processing by performing task offload to the smart
remote memory. On the contrary, PATRONUS focuses on the
less-discussed access protection issue, which is neglected by
these systems. PATRONUS runs on unmodified commodity
hardware, allowing a lower cost and a wider deployment.

Protective interfaces. Some RM systems provide ac-
cess protections with customized hardware, such as pro-
grammable switches [29], FPGA [22], and architectural
modifications [28]. PATRONUS is designed for commod-
ity hardware, serving as a ready-to-use solution for exist-
ing data centers. On the other hand, transactional RM sys-
tems [12, 52, 55] also provide protection for data consistency
with the transaction interface. However, the transaction se-
mantics is overkilled for most cases (e.g., data structures)
because it introduces the expensive overhead of transaction
logging and distributed commit protocol.

9 Conclusion

In this paper, we designed, implemented, and evaluated PA-
TRONUS, a protective remote memory system. PATRONUS
achieves high performance under all situations by hardware
and software co-design. Deployed to realistic applications, it
performs ×5.2 better than all the competitors and introduces
acceptable overhead (≤ 27.7 %).

Acknowledgments

We sincerely thank our shepherd Hyungon Moon and the
anonymous reviewers for their valuable feedback. This work
is funded by the National Natural Science Foundation of
China (Grant No. 61832011, 62022051) and the National Key
R&D Program of China (Grant No. 2021YFB0300500).

326 21st USENIX Conference on File and Storage Technologies USENIX Association

References
[1] Marcos K. Aguilera, Nadav Amit, Irina Calciu, Xavier

Deguillard, Jayneel Gandhi, Stanko Novaković, Arun
Ramanathan, Pratap Subrahmanyam, Lalith Suresh, Ki-
ran Tati, Rajesh Venkatasubramanian, and Michael Wei.
Remote regions: a simple abstraction for remote mem-
ory. In 2018 USENIX Annual Technical Conference
(USENIX ATC 18), pages 775–787, Boston, MA, July
2018. USENIX Association.

[2] Marcos K. Aguilera, Nadav Amit, Irina Calciu, Xavier
Deguillard, Jayneel Gandhi, Pratap Subrahmanyam,
Lalith Suresh, Kiran Tati, Rajesh Venkatasubramanian,
and Michael Wei. Remote memory in the age of fast
networks. In Proceedings of the 2017 Symposium on
Cloud Computing, SoCC ’17, page 121–127, New York,
NY, USA, 2017. Association for Computing Machinery.

[3] Marcos K. Aguilera, Naama Ben-David, Rachid Guer-
raoui, Virendra J. Marathe, Athanasios Xygkis, and Igor
Zablotchi. Microsecond consensus for microsecond ap-
plications. In 14th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 20), pages
599–616. USENIX Association, November 2020.

[4] Marcos K. Aguilera, Kimberly Keeton, Stanko No-
vakovic, and Sharad Singhal. Designing far memory
data structures: Think outside the box. In Proceedings
of the Workshop on Hot Topics in Operating Systems,
HotOS ’19, page 120–126, New York, NY, USA, 2019.
Association for Computing Machinery.

[5] Istemi Ekin Akkus, Ruichuan Chen, Ivica Rimac,
Manuel Stein, Klaus Satzke, Andre Beck, Paarijaat
Aditya, and Volker Hilt. SAND: Towards High-
Performance serverless computing. In 2018 USENIX
Annual Technical Conference (USENIX ATC 18), pages
923–935, Boston, MA, July 2018. USENIX Association.

[6] Emmanuel Amaro, Christopher Branner-Augmon, Zhi-
hong Luo, Amy Ousterhout, Marcos K. Aguilera, Auro-
jit Panda, Sylvia Ratnasamy, and Scott Shenker. Can far
memory improve job throughput? In Proceedings of the
Fifteenth European Conference on Computer Systems,
EuroSys ’20, New York, NY, USA, 2020. Association
for Computing Machinery.

[7] Emmanuel Amaro, Zhihong Luo, Amy Ousterhout,
Arvind Krishnamurthy, Aurojit Panda, Sylvia Rat-
nasamy, and Scott Shenker. Remote memory calls. In
Proceedings of the 19th ACM Workshop on Hot Topics
in Networks, HotNets ’20, page 38–44, New York, NY,
USA, 2020. Association for Computing Machinery.

[8] Apache OpenWhisk. http://openwhisk.apache.
org/. Accessed: 2022-09-01.

[9] Sol Boucher, Anuj Kalia, David G. Andersen, and
Michael Kaminsky. Putting the "micro" back in mi-
croservice. In 2018 USENIX Annual Technical Confer-
ence (USENIX ATC 18), pages 645–650, Boston, MA,
July 2018. USENIX Association.

[10] Matthew Burke, Sowmya Dharanipragada, Shannon
Joyner, Adriana Szekeres, Jacob Nelson, Irene Zhang,
and Dan R. K. Ports. Prism: Rethinking the rdma in-
terface for distributed systems. In Proceedings of the
ACM SIGOPS 28th Symposium on Operating Systems
Principles, SOSP ’21, page 228–242, New York, NY,
USA, 2021. Association for Computing Machinery.

[11] Irina Calciu, M. Talha Imran, Ivan Puddu, Sanidhya
Kashyap, Hasan Al Maruf, Onur Mutlu, and Aasheesh
Kolli. Rethinking software runtimes for disaggregated
memory. In Proceedings of the 26th ACM International
Conference on Architectural Support for Programming
Languages and Operating Systems, ASPLOS ’21, page
79–92, New York, NY, USA, 2021. Association for Com-
puting Machinery.

[12] Aleksandar Dragojević, Dushyanth Narayanan, Miguel
Castro, and Orion Hodson. FaRM: Fast remote mem-
ory. In 11th USENIX Symposium on Networked Systems
Design and Implementation (NSDI 14), pages 401–414,
Seattle, WA, April 2014. USENIX Association.

[13] Aleksandar Dragojević, Dushyanth Narayanan, Ed-
mund B. Nightingale, Matthew Renzelmann, Alex
Shamis, Anirudh Badam, and Miguel Castro. No com-
promises: Distributed transactions with consistency,
availability, and performance. In Proceedings of the 25th
Symposium on Operating Systems Principles, SOSP ’15,
page 54–70, New York, NY, USA, 2015. Association
for Computing Machinery.

[14] Dong Du, Tianyi Yu, Yubin Xia, Binyu Zang, Guanglu
Yan, Chenggang Qin, Qixuan Wu, and Haibo Chen. Cat-
alyzer: Sub-millisecond startup for serverless computing
with initialization-less booting. In Proceedings of the
Twenty-Fifth International Conference on Architectural
Support for Programming Languages and Operating
Systems, ASPLOS ’20, page 467–481, New York, NY,
USA, 2020. Association for Computing Machinery.

[15] Paolo Faraboschi, Kimberly Keeton, Tim Marsland, and
Dejan Milojicic. Beyond processor-centric operating
systems. In 15th Workshop on Hot Topics in Operating
Systems (HotOS XV), Kartause Ittingen, Switzerland,
May 2015. USENIX Association.

[16] Fn Protect. https://fnproject.io. Accessed: 2022-
09-01.

USENIX Association 21st USENIX Conference on File and Storage Technologies 327

http://openwhisk.apache.org/
http://openwhisk.apache.org/
https://fnproject.io

[17] Folly UnboundedQueue. https://github.com/
facebook/folly/blob/main/folly/concurrency/
UnboundedQueue.h. Accessed: 2022-09-01.

[18] Peter X. Gao, Akshay Narayan, Sagar Karandikar, Joao
Carreira, Sangjin Han, Rachit Agarwal, Sylvia Rat-
nasamy, and Scott Shenker. Network requirements for
resource disaggregation. In 12th USENIX Symposium on
Operating Systems Design and Implementation (OSDI
16), pages 249–264, Savannah, GA, November 2016.
USENIX Association.

[19] Rachid Guerraoui, Antoine Murat, Javier Picorel,
Athanasios Xygkis, Huabing Yan, and Pengfei Zuo.
uKharon: A membership service for microsecond appli-
cations. In 2022 USENIX Annual Technical Conference
(USENIX ATC 22), pages 101–120, Carlsbad, CA, July
2022. USENIX Association.

[20] Chuanxiong Guo, Haitao Wu, Zhong Deng, Gaurav Soni,
Jianxi Ye, Jitu Padhye, and Marina Lipshteyn. Rdma
over commodity ethernet at scale. In Proceedings of
the 2016 ACM SIGCOMM Conference, SIGCOMM ’16,
page 202–215, New York, NY, USA, 2016. Association
for Computing Machinery.

[21] Zhiyuan Guo, Zachary Blanco, Mohammad Shahrad,
Zerui Wei, Bili Dong, Jinmou Li, Ishaan Pota, Harry Xu,
and Yiying Zhang. Resource-centric serverless comput-
ing. arXiv preprint arXiv:2206.13444, 2022.

[22] Zhiyuan Guo, Yizhou Shan, Xuhao Luo, Yutong Huang,
and Yiying Zhang. Clio: A hardware-software co-
designed disaggregated memory system. In Proceedings
of the 27th ACM International Conference on Architec-
tural Support for Programming Languages and Oper-
ating Systems, ASPLOS ’22, page 417–433, New York,
NY, USA, 2022. Association for Computing Machinery.

[23] Sangjin Han, Norbert Egi, Aurojit Panda, Sylvia Rat-
nasamy, Guangyu Shi, and Scott Shenker. Network sup-
port for resource disaggregation in next-generation data-
centers. In Proceedings of the Twelfth ACM Workshop
on Hot Topics in Networks, HotNets-XII, New York, NY,
USA, 2013. Association for Computing Machinery.

[24] Timothy L. Harris. A pragmatic implementation of non-
blocking linked-lists. In Proceedings of the 15th Inter-
national Conference on Distributed Computing, DISC
’01, page 300–314, Berlin, Heidelberg, 2001. Springer-
Verlag.

[25] Anuj Kalia, Michael Kaminsky, and David G. Ander-
sen. Using rdma efficiently for key-value services. SIG-
COMM Comput. Commun. Rev., 44(4):295–306, aug
2014.

[26] Anurag Khandelwal, Yupeng Tang, Rachit Agarwal,
Aditya Akella, and Ion Stoica. Jiffy: Elastic far-memory
for stateful serverless analytics. In Proceedings of the
Seventeenth European Conference on Computer Sys-
tems, EuroSys ’22, page 697–713, New York, NY, USA,
2022. Association for Computing Machinery.

[27] Ana Klimovic, Yawen Wang, Patrick Stuedi, Animesh
Trivedi, Jonas Pfefferle, and Christos Kozyrakis. Pocket:
Elastic ephemeral storage for serverless analytics. In
13th USENIX Symposium on Operating Systems Design
and Implementation (OSDI 18), pages 427–444, Carls-
bad, CA, October 2018. USENIX Association.

[28] Vamsee Reddy Kommareddy, Clayton Hughes, Si-
mon David Hammond, and Amro Awad. Deact:
Architecture-aware virtual memory support for fabric
attached memory systems. In 2021 IEEE International
Symposium on High-Performance Computer Architec-
ture (HPCA), pages 453–466. IEEE, 2021.

[29] Seung-seob Lee, Yanpeng Yu, Yupeng Tang, Anurag
Khandelwal, Lin Zhong, and Abhishek Bhattacharjee.
Mind: In-network memory management for disaggre-
gated data centers. In Proceedings of the ACM SIGOPS
28th Symposium on Operating Systems Principles,
SOSP ’21, page 488–504, New York, NY, USA, 2021.
Association for Computing Machinery.

[30] Youngmoon Lee, Hasan Al Maruf, Mosharaf Chowd-
hury, Asaf Cidon, and Kang G. Shin. Hydra : Resilient
and highly available remote memory. In 20th USENIX
Conference on File and Storage Technologies (FAST
22), pages 181–198, Santa Clara, CA, February 2022.
USENIX Association.

[31] Kevin Lim, Jichuan Chang, Trevor Mudge,
Parthasarathy Ranganathan, Steven K. Reinhardt,
and Thomas F. Wenisch. Disaggregated memory for
expansion and sharing in blade servers. SIGARCH
Comput. Archit. News, 37(3):267–278, jun 2009.

[32] Kevin Lim, Yoshio Turner, Jose Renato Santos, Alvin
AuYoung, Jichuan Chang, Parthasarathy Ranganathan,
and Thomas F. Wenisch. System-level implications of
disaggregated memory. In IEEE International Sympo-
sium on High-Performance Comp Architecture, pages
1–12, 2012.

[33] Ming Liu, Simon Peter, Arvind Krishnamurthy, and
Phitchaya Mangpo Phothilimthana. E3: Energy-
Efficient microservices on SmartNIC-Accelerated
servers. In 2019 USENIX Annual Technical Confer-
ence (USENIX ATC 19), pages 363–378, Renton, WA,
July 2019. USENIX Association.

328 21st USENIX Conference on File and Storage Technologies USENIX Association

https://github.com/facebook/folly/blob/main/folly/concurrency/UnboundedQueue.h
https://github.com/facebook/folly/blob/main/folly/concurrency/UnboundedQueue.h
https://github.com/facebook/folly/blob/main/folly/concurrency/UnboundedQueue.h

[34] Youyou Lu, Jiwu Shu, Youmin Chen, and Tao Li. Octo-
pus: an RDMA-enabled distributed persistent memory
file system. In 2017 USENIX Annual Technical Confer-
ence (USENIX ATC 17), pages 773–785, Santa Clara,
CA, July 2017. USENIX Association.

[35] Teng Ma, Dongbiao He, and Ning Liu. Hybridskiplist:
A case study of designing distributed data structure with
hybrid rdma. In 2021 IEEE 45th Annual Computers,
Software, and Applications Conference (COMPSAC),
pages 68–73, 2021.

[36] Christopher Mitchell, Yifeng Geng, and Jinyang Li.
Using One-Sided RDMA reads to build a fast, CPU-
Efficient Key-Value store. In 2013 USENIX Annual
Technical Conference (USENIX ATC 13), pages 103–
114, San Jose, CA, June 2013. USENIX Association.

[37] Sumit Kumar Monga, Sanidhya Kashyap, and Chang-
woo Min. Birds of a feather flock together: Scaling
rdma rpcs with flock. In Proceedings of the ACM
SIGOPS 28th Symposium on Operating Systems Prin-
ciples, SOSP ’21, page 212–227, New York, NY, USA,
2021. Association for Computing Machinery.

[38] Jacob Nelson, Brandon Holt, Brandon Myers, Pre-
ston Briggs, Luis Ceze, Simon Kahan, and Mark Os-
kin. Latency-Tolerant software distributed shared mem-
ory. In 2015 USENIX Annual Technical Conference
(USENIX ATC 15), pages 291–305, Santa Clara, CA,
July 2015. USENIX Association.

[39] Jacob Nelson, Brandon Holt, Brandon Myers, Pre-
ston Briggs, Luis Ceze, Simon Kahan, and Mark Os-
kin. Latency-Tolerant software distributed shared mem-
ory. In 2015 USENIX Annual Technical Conference
(USENIX ATC 15), pages 291–305, Santa Clara, CA,
July 2015. USENIX Association.

[40] Stanko Novakovic, Yizhou Shan, Aasheesh Kolli,
Michael Cui, Yiying Zhang, Haggai Eran, Boris Pis-
menny, Liran Liss, Michael Wei, Dan Tsafrir, and Mar-
cos Aguilera. Storm: A fast transactional dataplane
for remote data structures. In Proceedings of the 12th
ACM International Conference on Systems and Storage,
SYSTOR ’19, page 97–108, New York, NY, USA, 2019.
Association for Computing Machinery.

[41] John Ousterhout, Parag Agrawal, David Erickson, Chris-
tos Kozyrakis, Jacob Leverich, David Mazières, Subha-
sish Mitra, Aravind Narayanan, Guru Parulkar, Mendel
Rosenblum, Stephen M. Rumble, Eric Stratmann, and
Ryan Stutsman. The case for ramclouds: Scalable high-
performance storage entirely in dram. SIGOPS Oper.
Syst. Rev., 43(4):92–105, jan 2010.

[42] RDMA Memory Window. https://docs.nvidia.
com/networking/pages/viewpage.action?
pageId=25138102. Accessed: 2022-09-01.

[43] Zhenyuan Ruan, Malte Schwarzkopf, Marcos K. Aguil-
era, and Adam Belay. AIFM: High-Performance,
Application-Integrated far memory. In 14th USENIX
Symposium on Operating Systems Design and Imple-
mentation (OSDI 20), pages 315–332. USENIX Associ-
ation, November 2020.

[44] Yizhou Shan, Yutong Huang, Yilun Chen, and Yiying
Zhang. LegoOS: A disseminated, distributed OS for
hardware resource disaggregation. In 13th USENIX
Symposium on Operating Systems Design and Imple-
mentation (OSDI 18), pages 69–87, Carlsbad, CA, Oc-
tober 2018. USENIX Association.

[45] Yizhou Shan, Will Lin, Zhiyuan Guo, and Yiying Zhang.
Towards a fully disaggregated and programmable data
center. In Proceedings of the 13th ACM SIGOPS Asia-
Pacific Workshop on Systems, APSys ’22, page 18–28,
New York, NY, USA, 2022. Association for Computing
Machinery.

[46] Yizhou Shan, Shin-Yeh Tsai, and Yiying Zhang. Dis-
tributed shared persistent memory. In Proceedings of
the 2017 Symposium on Cloud Computing, SoCC ’17,
page 323–337, New York, NY, USA, 2017. Association
for Computing Machinery.

[47] David Sidler, Zeke Wang, Monica Chiosa, Amit Kulka-
rni, and Gustavo Alonso. Strom: Smart remote memory.
In Proceedings of the Fifteenth European Conference on
Computer Systems, EuroSys ’20, New York, NY, USA,
2020. Association for Computing Machinery.

[48] Shin-Yeh Tsai, Yizhou Shan, and Yiying Zhang. Dis-
aggregating persistent memory and controlling them
remotely: An exploration of passive disaggregated Key-
Value stores. In 2020 USENIX Annual Technical Con-
ference (USENIX ATC 20), pages 33–48. USENIX As-
sociation, July 2020.

[49] Shin-Yeh Tsai and Yiying Zhang. Lite kernel rdma
support for datacenter applications. In Proceedings of
the 26th Symposium on Operating Systems Principles,
SOSP ’17, page 306–324, New York, NY, USA, 2017.
Association for Computing Machinery.

[50] Qing Wang, Youyou Lu, and Jiwu Shu. Sherman: A
write-optimized distributed b+tree index on disaggre-
gated memory. In Proceedings of the 2022 Interna-
tional Conference on Management of Data, SIGMOD
’22, page 1033–1048, New York, NY, USA, 2022. Asso-
ciation for Computing Machinery.

USENIX Association 21st USENIX Conference on File and Storage Technologies 329

https://docs.nvidia.com/networking/pages/viewpage.action?pageId=25138102
https://docs.nvidia.com/networking/pages/viewpage.action?pageId=25138102
https://docs.nvidia.com/networking/pages/viewpage.action?pageId=25138102

[51] Tinggang Wang, Shuo Yang, Hideaki Kimura, Garret
Swart, and Spyros Blanas. Efficient usage of one-sided
rdma for linear probing. In Eleventh International Work-
shop on Accelerating Analytics and Data Management
Systems Using Modern Processor and Storage Architec-
tures (AMDS’20), 2020.

[52] Xingda Wei, Zhiyuan Dong, Rong Chen, and Haibo
Chen. Deconstructing RDMA-enabled distributed trans-
actions: Hybrid is better! In 13th USENIX Sympo-
sium on Operating Systems Design and Implementation
(OSDI 18), pages 233–251, Carlsbad, CA, October 2018.
USENIX Association.

[53] Xingda Wei, Fangming Lu, Rong Chen, and Haibo Chen.
KRCORE: A microsecond-scale RDMA control plane
for elastic computing. In 2022 USENIX Annual Tech-
nical Conference (USENIX ATC 22), pages 121–136,
Carlsbad, CA, July 2022. USENIX Association.

[54] Tianyi Yu, Qingyuan Liu, Dong Du, Yubin Xia, Binyu
Zang, Ziqian Lu, Pingchao Yang, Chenggang Qin, and
Haibo Chen. Characterizing serverless platforms with
serverlessbench. In Proceedings of the 11th ACM Sym-
posium on Cloud Computing, SoCC ’20, page 30–44,
New York, NY, USA, 2020. Association for Computing
Machinery.

[55] Ming Zhang, Yu Hua, Pengfei Zuo, and Lurong Liu.
FORD: Fast one-sided RDMA-based distributed trans-
actions for disaggregated persistent memory. In 20th

USENIX Conference on File and Storage Technologies
(FAST 22), pages 51–68, Santa Clara, CA, February
2022. USENIX Association.

[56] Qizhen Zhang, Philip A. Bernstein, Daniel S. Berger,
and Badrish Chandramouli. Redy: Remote dynamic
memory cache. Proc. VLDB Endow., 15(4):766–779,
dec 2021.

[57] Yang Zhou, Hassan M. G. Wassel, Sihang Liu, Jiaqi Gao,
James Mickens, Minlan Yu, Chris Kennelly, Paul Turner,
David E. Culler, Henry M. Levy, and Amin Vahdat.
Carbink: Fault-Tolerant far memory. In 16th USENIX
Symposium on Operating Systems Design and Imple-
mentation (OSDI 22), pages 55–71, Carlsbad, CA, July
2022. USENIX Association.

[58] Tobias Ziegler, Sumukha Tumkur Vani, Carsten Bin-
nig, Rodrigo Fonseca, and Tim Kraska. Designing
distributed tree-based index structures for fast rdma-
capable networks. In Proceedings of the 2019 Interna-
tional Conference on Management of Data, SIGMOD
’19, page 741–758, New York, NY, USA, 2019. Associ-
ation for Computing Machinery.

[59] Pengfei Zuo, Jiazhao Sun, Liu Yang, Shuangwu Zhang,
and Yu Hua. One-sided RDMA-Conscious extendible
hashing for disaggregated memory. In 2021 USENIX
Annual Technical Conference (USENIX ATC 21), pages
15–29. USENIX Association, July 2021.

330 21st USENIX Conference on File and Storage Technologies USENIX Association

	Introduction
	Background
	RDMA and Access Protection
	The Remote Memory Architecture

	Motivation
	The Call for Stray Protection in RM
	Goals for the Protective RM System
	Deficiency of Existing Solutions

	Approach Overview
	Opportunity: Memory Window (MW)
	Solutions

	Patronus: The Protective RM system
	The Interface
	Architecture Overview
	CN-collaborated Extension
	Reduction of Permission Overhead
	Isolation from Illegal Access
	Implementation Details

	The Cases for Patronus
	One-sided Data Structure
	Function as a Service

	Evaluation
	Overall Performance
	Effect of Software Co-design
	Performance of Permission Management (G#1)
	CN-collaborated Extension (G#2)
	Effect of Lease Semantics (G#2)
	Compare QP polling to leases (G#2)
	Spare QPs for Concealing Interruption (G#3)

	Case Study: One-sided Data Structures
	Hash Table
	Concurrent Queue

	Case Study: Function as a Service

	Related Work
	Conclusion

