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Abstract
We introduce consistency-aware durability or CAD, a new ap-
proach to durability in distributed storage that enables strong
consistency while delivering high performance. We demon-
strate the efficacy of this approach by designing cross-client
monotonic reads, a novel and strong consistency property
that provides monotonic reads across failures and sessions
in leader-based systems. We build ORCA, a modified version
of ZooKeeper that implements CAD and cross-client mono-
tonic reads. We experimentally show that ORCA provides
strong consistency while closely matching the performance of
weakly consistent ZooKeeper. Compared to strongly consis-
tent ZooKeeper, ORCA provides significantly higher through-
put (1.8 – 3.3×), and notably reduces latency, sometimes by
an order of magnitude in geo-distributed settings.

1 Introduction
A major focus of distributed storage research and practice
has been the consistency model a system provides. Many
models, from linearizability [20] to eventual consistency [16],
with several points in-between [27, 29, 30, 48–50] have been
proposed, studied, and are fairly well understood.

Despite many years of research, scant attention has been
paid to a distributed system’s underlying durability model,
which has strong implications on both consistency and per-
formance. At one extreme, synchronous durability requires
writes to be replicated and persisted on many nodes before
acknowledgment. This model is often employed to achieve
strong consistency. For example, to prevent stale reads, a
linearizable system (such as LogCabin [28]) synchronously
makes writes durable; otherwise, an acknowledged update
can be lost, exposing stale values upon subsequent reads. Syn-
chronous durability avoids such cases, but at a high cost: poor
performance. Forcing writes to be replicated and persisted,
even with performance enhancements such as batching, re-
duces throughput and increases latency dramatically.

At the other extreme is asynchronous durability: each write
is only lazily replicated and persisted, perhaps after buffer-
ing it in just one node’s memory. Asynchronous durability
is utilized in systems with weaker consistency models (such
as Redis [42]); by acknowledging writes quickly, high per-
formance is realized, but this model leads to weak semantics,
exposing stale and out-of-order data to applications.

In this paper, we ask the following question: is it possible
for a durability layer to enable strong consistency, yet also
deliver high performance? We show this is possible if the dura-

bility layer is carefully designed, specifically by taking the
consistency model the system intends to realize into account.
We call this approach consistency-aware durability or CAD.
We show how cross-client monotonic reads, a new and strong
consistency property, can be realized with high performance
by making the durability layer aware of this model. Cross-
client monotonicity cannot be realized efficiently without a
consistency-aware layer: synchronous durability can enable it
but is slow; it simply cannot be realized upon asynchronous
durability. In this paper, we implement CAD and cross-client
monotonic reads in leader-based replicated systems.

Cross-client monotonic reads guarantees that a read from a
client will return a state that is at least as up-to-date as the state
returned to a previous read from any client, irrespective of fail-
ures and across sessions. To realize this property efficiently,
CAD shifts the point of durability from writes to reads: data is
replicated and persisted before it is read. By delaying dura-
bility of writes, CAD achieves high performance; however, by
making data durable before it is read, CAD enables monotonic
reads across failures. CAD does not incur overheads on every
read; for many workloads, data can be made durable in the
background before applications read it. While enabling strong
consistency, CAD does not guarantee complete freedom from
data loss; a few recently written items that have not been
read yet may be lost if failures arise. However, given that
many widely used systems adopt asynchronous durability and
thus settle for weaker consistency [32, 43, 44], CAD offers a
path for these systems to realize stronger consistency without
compromising on performance.

Existing linearizable systems do provide cross-client
monotonic reads. However, to do so, in addition to using
synchronous durability, most systems restrict reads to the
leader [23, 34, 38]. Such restriction limits read throughput and
prevents clients from reading from nearby replicas, increasing
latency. In contrast, we show how a storage system can realize
this property while allowing reads at many replicas. Such a
system can achieve low-latency reads from nearby replicas,
making it particularly well-suited for geo-distributed settings.
Further, such a system can be beneficial in edge-computing
use cases, where a client may connect to different servers over
the application lifetime (e.g., due to mobility [41]), but still
can receive monotonic reads across these sessions.

We implement CAD and cross-client monotonic reads in
a system called ORCA by modifying ZooKeeper [3]. ORCA

applies many novel techniques to achieve high performance
and strong guarantees. For example, a durability-check mecha-
nism efficiently separates requests that read non-durable items
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from those that access durable ones. Next, a lease-based ac-
tive set technique ensures monotonic reads while allowing
reads at many nodes. Finally, a two-step lease-breaking mech-
anism helps correctly manage active-set membership.

Our experiments show that ZooKeeper with CAD is signif-
icantly faster than synchronously durable ZooKeeper (opti-
mized with batching) while approximating the performance
of asynchronously durable ZooKeeper for many workloads.
Even for workloads that mostly read recently written data,
CAD’s overheads are small (only 8%). By allowing reads
at many replicas, ORCA offers significantly higher through-
put (1.8 – 3.3×) compared to strongly consistent ZooKeeper
(strong-ZK). In a geo-distributed setting, by allowing reads
at nearby replicas, ORCA provides 14× lower latency than
strong-ZK in many cases while providing strong guarantees.
ORCA also closely matches the performance of weakly con-
sistent ZooKeeper (weak-ZK). We show through rigorous
tests that ORCA provides cross-client monotonic reads under
hundreds of failure sequences generated by a fault-injector;
in contrast, weak-ZK returns non-monotonic states in many
cases. We also demonstrate how the guarantees provided by
ORCA can be useful in two application scenarios.

2 Motivation
In this section, we discuss how strong consistency requires
synchronous durability and how only weak consistency can
be built upon asynchronous durability.

2.1 Strong Consistency atop Synchronous Durability
Realizing strong consistency requires synchronous durability.
For example, consider linearizability, the strongest guarantee
a replicated system can provide. A linearizable system offers
two properties upon reads. First, it prevents clients from see-
ing non-monotonic states: the system will not serve a client
an updated state at one point and subsequently serve an older
state to any client. Second, a read is guaranteed to see the
latest update: stale data is never exposed. However, to provide
such strong guarantees upon reads, a linearizable system must
synchronously replicate and persist a write [25]; otherwise,
the system can lose data upon failures and so expose inconsis-
tencies. For example, in majority-based linearizable systems
(e.g., LogCabin), the leader synchronously replicates to a ma-
jority, and the nodes flush to disk (e.g., by issuing fsync). With
such synchronous durability, linearizable systems can remain
available and provide strong guarantees even when all servers
crash and recover.

Unfortunately, such strong guarantees come at the cost of
performance. As shown in Table 1, Redis with synchronous
majority replication and persistence is 10× slower than the
fully asynchronous configuration in which writes are buffered
only on the leader’s memory. While batching concurrent re-
quests may improve throughput in some systems, synchronous
durability fundamentally suffers from high latency.

Replication Persistence Throughput (ops/s) Avg. Latency (µs)
async async 24215 330
sync async 9889 (2.4× ↓) 809
sync sync 2345 (10.3× ↓) 3412

Table 1: Synchronous Writes Costs. The table shows the overheads
of synchronous writes in Redis with five replicas and eight clients. The arrows
show the throughput drop compared to asynchronous durability. The replicas
are connected via 10-Gbps links and use SSDs for persistence.
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Figure 1: Poor Consistency atop Asynchronous Durability. (i)
shows how non-monotonic reads result upon failures with systems that persist
asynchronously. (ii) shows the same for systems that replicate and persist
asynchronously. Data items shown in grey denote that they are persisted.

Synchronous durability, while necessary, is not sufficient
to prevent non-monotonic and stale reads; additional mech-
anisms are required. For example, in addition to using syn-
chronous durability, many practical linearizable systems re-
strict reads to the leader [23, 28, 34, 38]. However, such a
restriction severely limits read throughput; further, it prevents
clients from reading from their nearest replica, increasing
read latencies (especially in geo-distributed settings).

2.2 Weak Consistency atop Asynchronous Durability
Given the cost of synchronous durability, many systems prefer
asynchronous durability in which writes are replicated and
persisted lazily. In fact, such asynchronous configurations are
the default [32, 44] in widely used systems (e.g., Redis, Mon-
goDB). However, by adopting asynchronous durability, as we
discuss next, these systems settle for weaker consistency.

Most systems use two kinds of asynchronous-durability
configurations. In the first kind, the system synchronously
replicates, but persists data lazily (e.g., ZooKeeper with
forceSync [4] disabled). In the second, the system performs
both replication and persistence asynchronously (e.g., default
Redis, which buffers updates only on the leader’s memory).

With asynchronous persistence, the system can lose data,
leading to poor consistency. Surprisingly, such cases can oc-
cur although data is replicated in memory of many nodes
and when just one node crashes. Consider ZooKeeper with
asynchronous persistence as shown in Figure 1(i). At first, a
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majority of nodes (S1, S2, and S3) have committed an item b,
buffering it in memory; two nodes (S4 and S5) are operating
slowly and so have not seen b. When a node in the majority
(S3) crashes and recovers, it loses b. S3 then forms a major-
ity with nodes that have not seen b yet and gets elected the
leader†. The system has thus silently lost the committed item
b and so a client that previously read a state containing items
a and b may now notice an older state containing only a, ex-
posing non-monotonic reads. The intact copies on S1 and S2
are also replaced by the new leader. Similar cases arise with
fully asynchronous systems too as shown in Figure 1(ii).

In essence, systems built upon asynchronous durability can-
not realize strong consistency properties in the presence of
failures. Such systems can serve a newer state before the fail-
ure but an older one after recovery, exposing non-monotonic
reads. Only models weaker than linearizability such as causal
consistency can be built atop asynchronous durability; such
models offer monotonic reads only in the absence of failures
and within a single client session. If the server to which the
client is connected crashes and recovers, the client has to es-
tablish a new session in which it may see a state older than
what it saw in its previous session [30].

Weakly consistent systems can expose non-monotonic
states also because they usually allow reads at many
nodes [14]. For example, a client can reconnect to a different
server after a disconnection, and may read an older state in the
new session if a few updates have not been replicated to this
server yet. For the same reason, two sessions to two different
servers from a single application may receive non-monotonic
states. While the above cases do not violate causal consistency
by definition (because it is a different session), they lead to
poor semantics for applications.

To summarize our discussion thus far, synchronous durabil-
ity enables strong consistency but is prohibitively expensive.
Asynchronous durability offers high performance, but only
weak consistency can be built upon it. We next discuss how
the seemingly conflicting goals of strong consistency and high
performance can be realized together in a storage system by
carefully designing its durability layer.

3 Strong, Efficient Consistency with CAD
Our goal in this paper is to design a durability primitive that
enables strong consistency while delivering high performance.
To this end, we first observe that asynchronous durability
can lose data arbitrarily upon failures, and so prevents the
realization of both non-stale and monotonic reads together.
While preventing staleness requires expensive synchronous
durability upon every write, we note that monotonic reads
across failures can be useful in many scenarios and can be
realized efficiently. We design consistency-aware durability

†While a node that has lost its data can be precluded from joining the clus-
ter (like in Viewstamped Replication [26]), such solutions affect availability
and practical systems do not employ such a strategy.

or CAD, a new durability primitive that enables this strong
property with high performance.

The main idea underlying CAD is to allow writes to be
completed asynchronously but enforce durability upon reads:
data is replicated and persisted before it is read by clients. By
delaying the durability of writes, CAD achieves high perfor-
mance. However, by ensuring that the data is durable before
it is read, CAD enables monotonic reads even across failures.
CAD does not always incur overheads when data is read. First,
for many workloads, CAD can make the data durable in the
background well before applications read it. Further, only the
first read to non-durable data triggers synchronous replication
and persistence; subsequent reads are fast. Thus, if clients do
not read data immediately after writing (which is natural for
many workloads), CAD can realize the high performance of
asynchronous durability but enable stronger consistency. In
the case where clients do read data immediately after writing,
CAD incurs overheads but ensures strong consistency.

Upon CAD, we realize cross-client monotonic reads, a
strong consistency property. This property guarantees that
a read from a client will always return a state that is at least
as up-to-date as the state returned to a previous read from any
client, irrespective of server and client failures, and across
sessions. Linearizability provides this property but not with
high performance. Weaker consistency models built atop asyn-
chronous durability cannot provide this property. Note that
cross-client monotonicity is a stronger guarantee than the
traditional monotonic reads that ensures monotonicity only
within a session and in the absence of failures [10, 30, 49].

Cross-client monotonic reads can be useful in many sce-
narios. As a simple example, consider the view count of a
video hosted by a service; such a counter should only increase
monotonically. However, in a system that can lose data that
has been read, clients can notice counter values that may seem
to go backward. As another example, in a location-sharing
service, it might be possible for a user to incorrectly notice
that another user went backwards on the route, while in reality,
the discrepancy is caused by the underlying storage system
that served the updated location, lost it, and thus later reverted
to an older one. A system that offers cross-client monotonic
reads avoids such cases, providing better semantics.

To ensure cross-client monotonic reads, most existing lin-
earizable systems restrict reads to the leader, affecting scal-
ability and increasing latency. In contrast, a system that pro-
vides this property while allowing reads at multiple replicas
offers attractive performance and consistency characteristics
in many use cases. First, it distributes the load across repli-
cas and enables clients to read from nearby replicas, offering
low-latency reads in geo-distributed settings. Second, similar
to linearizable systems, it provides monotonic reads, irrespec-
tive of failures, and across clients and sessions which can be
useful for applications at the edge [36]. Clients at the edge
may often get disconnected and connect to different servers,
but still can get monotonic reads across these sessions.
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4 ORCA Design
We now describe ORCA, a leader-based majority system that
implements consistency-aware durability and cross-client
monotonic reads. We first provide a brief overview of leader-
based systems (§4.1) and outline ORCA’s guarantees (§4.2).
We then describe the mechanisms underlying CAD (§4.3).
Next, we explain how we realize cross-client monotonic reads
while allowing reads at many nodes (§4.4). Finally, we ex-
plain how ORCA correctly ensures cross-client monotonic
reads (§4.5) and describe our implementation (§4.6).

4.1 Leader-based Majority Systems
In leader-based systems (such as ZooKeeper), all updates flow
through the leader which establishes a single order of updates
by storing them in a log and then replicating them to the fol-
lowers [21, 39]. The leader is associated with an epoch: a slice
of time, in which at most one leader can exist [6, 39]. Each
update is uniquely identified by the epoch in which it was
appended and its position in the log. The leader constantly
sends heartbeats to the followers; if the followers do not hear
from the leader for a while, they elect a new leader. With syn-
chronous durability, the leader acknowledges an update only
after a majority of replicas (i.e., bn/2c+1 nodes in a n-node
system) have persisted the update. With asynchronous dura-
bility, updates are either buffered in memory on just the leader
(asynchronous replication and persistence) or a majority of
nodes (asynchronous persistence) before acknowledgment.

When using synchronous durability and restricting reads to
the leader, the system provides linearizability: a read is guar-
anteed to see the latest update and receive monotonic states.
With asynchronous durability and when allowing reads at all
nodes, these systems only provide sequential consistency [8],
i.e., a global order of operations exists but if servers crash and
recover, or if clients read from different servers, reads may be
stale and non-monotonic [8, 38].

4.2 Failure Model and Guarantees
Similar to many majority-based systems, ORCA intends to
tolerate only fail-recover failures, not Byzantine failures [24].
In the fail-recover model, nodes may fail at any time and
recover at a later point. Nodes fail in two ways; first, they
could crash (e.g., due to power failures); second, they may
get partitioned due to network failures. When a node recovers
from a crash, it loses its volatile state and is left only with its
on-disk state. During partitions, a node’s volatile state remains
intact, but it may not have seen data that the other nodes have.
Guarantees. ORCA preserves the properties of a leader-based
system that uses asynchronous durability, i.e., it provides se-
quential consistency. However, in addition, it also provides
cross-client monotonic reads under all failure scenarios (e.g.,
even if all replicas crash and recover), and across sessions.
ORCA is different from linearizable systems in that it does not
guarantee that reads will never see stale data. For example, if
failures arise after writing the data but before reading it, ORCA
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Figure 2: CAD Durability Check. The figure shows how CAD works.
Data items shown in grey are durable. In (i), the baseline is fully asyn-
chronous; in (ii), the baseline synchronously replicates but asynchronously
persists. At first, when item a is durable, read(a) passes the durability check.
Items b and c are appended then. The check for read(b) fails; hence, the
leader makes the state durable after which it serves b.

may lose a few recent updates and thus subsequent reads can
get an older state. Majority-based systems remain available
as long as a majority of nodes are functional [7, 39]; ORCA

ensures the same level of availability.

4.3 CAD Durability Layer
In the rest of this section, we use asynchronous durability as
the baseline to highlight how CAD is different from it. CAD

aims to perform similarly to this baseline but enable stronger
consistency. We now provide intuition about how CAD works
and explain its mechanisms; we use Figure 2 to do so.

4.3.1 Updates
CAD preserves the update path of the baseline asynchronous
system as it aims to provide the same performance during
writes. Thus, if the baseline employs asynchronous replication
and persistence, then CAD also performs both replication and
persistence asynchronously, buffering the data in the memory
of the leader as shown in Figure 2(i). Similarly, if the baseline
synchronously replicates but asynchronously persists, then
CAD also does the same upon writes as shown in Figure 2(ii).
While preserving the update path, in CAD, the leader keeps
replicating updates in the background and the nodes flush to
disk periodically. We next discuss how CAD handles reads.

4.3.2 State Durability Guarantee
When a read for an item i is served, CAD guarantees that the
entire state (i.e., writes even to other items) up to the last
update that modifies i are durable. For example, consider a
log such as [a,b1,c,b2,d]; each entry denotes a (non-durable)
update to an item, and the subscript shows how many up-
dates are done to a particular item. When item b is read, CAD
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guarantees that all updates at least up to b2 are made durable
before serving b. CAD makes the entire state durable instead
of just the item because it aims to preserve the update order
established by the leader (as done by the base system).

CAD considers the state to be durable when it can recover
the data after any failures including cases where all replicas
crash and recover and in all successive views of the cluster.
Majority-based systems require at least a majority of nodes to
form a new view (i.e., elect a leader) and provide service to
clients. Thus, if CAD safely persists data on at least a majority
of nodes, then at least one node in any majority even after
failures will have all the data that has been made durable (i.e.,
that was read by the clients) and thus will survive into the
new view. Therefore, CAD considers data to be durable when
it is persisted on the disks of at least a majority of nodes.

4.3.3 Handling Reads: Durability Check
When a read request for an item i arrives at a node, the node
can immediately serve i from its memory if all updates to i
are already durable (e.g., Figure 2, read of item a); otherwise,
the node must take additional steps to make the data durable.
As a result, the node first needs to be able to determine if all
updates to i have been made durable or not.

A naive way to perform this check would be to maintain
for each item how many nodes have persisted the item; if
at least a majority of nodes have persisted an item, then the
system can serve it. A shortcoming of this approach is that the
followers must inform the leader the set of items they have
persisted in each response, and the leader must update the
counts for all items in the set on every acknowledgment.

CAD simplifies this procedure by exploiting the ordering
of updates established by the leader. Such ordering is an at-
tribute common to many majority-based systems; for example,
the ZooKeeper leader stamps each update with a monotoni-
cally increasing epoch-counter pair before appending it to the
log [5]. In CAD, with every response, the followers send the
leader only a single index called the persisted-index which
is the epoch-counter of the last update they have written to
disk. The leader also maintains only a single index called
the durable-index which is the index up to which at least a
majority of nodes have persisted; the leader calculates the
durable-index by finding the highest persisted-index among
at least a majority (including self).

When a read for an item i arrives at the leader, it com-
pares the update-index of i (the epoch-counter of the latest
update that modifies i) against the system’s durable-index. If
the durable-index is greater‡ than the update-index, then all
updates to i are already durable and so the leader serves i
immediately; otherwise, the leader takes additional steps (de-
scribed next) to make the data durable. If the read arrives at a
follower, it performs the same check (using the durable-index
sent by the leader in the heartbeats). If the check passes, it

‡An index a is greater than index b if (a.epoch > b.epoch) or (a.epoch
== b.epoch and a.counter > b.counter).

serves the read; otherwise, it redirects the request to the leader
which then makes the data durable.

4.3.4 Making the Data Durable
If the durability check fails, CAD needs to make the state (up
to the latest update to the item being read) synchronously
durable before serving the read. The leader treats the read for
which the check fails specially. First, the leader synchronously
replicates all updates upto the update-index of the item being
read if these updates have not yet been replicated. The leader
also informs the followers that they must flush their logs to
disk before responding to this request.

When the followers receive such a request, they syn-
chronously append the updates and flush the log to disk and
respond. During such a flush, all previous writes buffered are
also written to disk, ensuring that the entire state up to the
latest update to the item being read is durable. Fortunately,
the periodic background flushes reduce the amount of data
that needs to be written during such foreground flushes. The
persisted-index reported by a node as a response to this re-
quest is at least as high as the update-index of the item. When
the flush finishes on a majority, the durable-index will be up-
dated, and thus the data item can be served. The fourth column
of Figure 2 shows how this procedure works. As shown, the
durability check fails when item b is read; the nodes thus flush
all updates upto index 2 and so the durability-index advances;
the item is then served.

As an optimization, ORCA also persists writes that are after
the last update to the item being read. Consider the log [a,b,c]
in Figure 2; when a client reads b, the durability check fails.
Now, although it is enough to persist entries up to b, CAD also
flushes update c, obviating future synchronous flushes when
c is read as shown in the last column of the figure.

To summarize, CAD makes data durable upon reads and so
guarantees that state that has been read will never be lost even
if servers crash and recover. We next discuss how upon this
durability primitive we build cross-client monotonic reads.

4.4 Cross-Client Monotonic Reads
If reads are restricted only to the leader, a design that many
linearizable systems adopt, then cross-client monotonic reads
is readily provided by CAD; no additional mechanisms are
needed. Given that updates go only through the leader, the
leader will have the latest data, which it will serve on reads (if
necessary, making it durable before serving). Further, if the
current leader fails, the new view will contain the state that
was read. Thus, monotonic reads are ensured across failures.

However, restricting reads only to the leader limits read
scalability and prevents clients from reading at nearby repli-
cas. Most practical systems (e.g., MongoDB, Redis), for this
reason, allow reads at many nodes [31, 33, 45]. However,
when allowing reads at the followers, CAD alone cannot en-
sure cross-client monotonic reads. Consider the scenario in
Figure 3. The leader S1 has served versions a1 and a2 after
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Figure 3: Non-monotonic Reads. The figure shows how non-
monotonic states can be exposed atop CAD when reading at the followers.

making them durable on a majority. However, follower S5 is
partitioned and so has not seen a2. When a read later arrives
at S5, it is possible for S5 to serve a1; although S5 checks
that a1 is durable, it does not know that a has been updated
and served by others, exposing non-monotonic states. Thus,
additional mechanisms are needed which we describe next.

4.4.1 Scalable Reads with Active Set
A naive way to solve the problem shown in Figure 3 is to make
the data durable on all the followers before serving reads from
the leader. However, such an approach would lead to poor
performance and, more importantly, decreased availability:
reads cannot be served unless all nodes are available. Instead,
ORCA solves this problem using an active set. The active
set contains at least a majority of nodes. ORCA enforces the
following rules with respect to the active set.
R1: When the leader intends to make a data item durable
(before serving a read), it ensures that the data is persisted
and applied by all the members in the active set.
R2: Only nodes in the active set are allowed to serve reads.

The above two rules together ensure that clients never see
non-monotonic states. R1 ensures that all nodes in the active
set contain all data that has been read by clients. R2 ensures
that only such nodes that contain data that has been previously
read can serve reads; other nodes that do not contain the
data that has been served (e.g., S5 in Figure 3) are precluded
from serving reads, preventing non-monotonic reads. The key
challenge now is to maintain the active set correctly.

4.4.2 Membership using Leases
The leader constantly (via heartbeats and requests) informs
the followers whether they are part of the active set or not. The
active-set membership message is a lease [12, 18] provided
by the leader to the followers: if a follower F believes that
it is part of the active set, it is guaranteed that no data will
be served to clients without F persisting and applying the
data. The lease breaks when a follower does not hear from
the leader for a while. Once the lease breaks, the follower
cannot serve reads anymore. The leader also removes the
follower from the active set, allowing the leader to serve reads
by making data durable on the updated (reduced) active set.

To ensure correctness, a follower must mark itself out be-
fore the leader removes it from the active set. Consider the
scenario in Figure 4(i), which shows how non-monotonic
states can be exposed if the leader removes a disconnected
follower from the active set hastily. Initially, the active set con-
tains all the nodes, and so upon a read, the leader tries to make
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Figure 4: Active Set and Leases. (i) shows how removing a follower
hastily can expose non-monotonic states; (ii) shows how ORCA breaks leases.

a2 durable on all nodes; however, follower S5 is partitioned.
Now, if the leader removes S5 (before S5 marks itself out)
and serves a2, it is possible for S5 to serve a1 later, exposing
out-of-order states. Thus, for safety, the leader must wait for
S5 to mark itself out and then only remove S5 from the active
set, allowing the read to succeed.

ORCA breaks leases using a two-step mechanism: first, a
disconnected follower marks itself out of the active set; the
leader then removes the follower from the active-set. ORCA re-
alizes the two-step mechanism using two timeouts: a mark-out
timeout (mt) and a removal timeout (rt); once mt passes, the
follower marks itself out; once rt passes, the leader removes
the follower from the active set. ORCA sets rt significantly
greater than mt (e.g., rt >= 5∗mt) and mt is set to the same
value as the heartbeat interval. Figure 4(ii) illustrates how
the two-step mechanism works in ORCA. The performance
impact is minimal when the leader waits to remove a failed
follower from the active set. Specifically, only reads that ac-
cess (recently written) items that are not durable yet must
wait for the active set to be updated; the other vast majority
of reads can be completed without any delays.

Like any lease-based system, ORCA requires non-faulty
clocks with a bounded drift [18]. By the time rt passes for the
leader, mt must have passed for the follower; otherwise, non-
monotonic states may be returned. However, this is highly
unlikely because we set rt to a multiple of mt; it is unlikely for
the follower’s clock to run too slowly or the leader’s clock to
run too quickly that rt has passed for the leader but mt has not
for the follower. In many deployments, the worst-case clock
drift between two servers is as low as 30 µs/sec [17] which
is far less than what ORCA expects. Note that ORCA requires
only a bounded drift, not synchronized clocks.

When a failed follower recovers (from a crash or a parti-
tion), the leader adds the follower to the active set. However,
the leader ensures that the recovered node has persisted and
applied all entries up to the durable-index before adding the
node to the active set. Sometimes, a leader may break the
lease for a follower G even when it is constantly hearing from
G, but G is operating slowly (perhaps due to a slow link or
disk), increasing the latency to flush when a durability check
fails. In such cases, the leader may inform the follower that it
needs to mark itself out and then the leader also removes the
follower from the active set.
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The size of the active set presents a tradeoff between scala-
bility and latency. If many nodes are in the active set, reads
can be served from them all, improving scalability; however,
reads that access recently written non-durable data can incur
more latency because data has to be replicated and persisted
on many nodes. In contrast, if the active set contains a bare
majority, then data can be made durable quickly, but reads
can be served only by a majority.
Deposed leaders. A subtle case that needs to be handled is
when a leader is deposed by a new one, but the old leader
does not know about it yet. The old leader may serve some
old data that was updated and served by the other partition,
causing clients to see non-monotonic states. ORCA solves
this problem with the same lease-based mechanism described
above. When followers do not hear from the current leader,
they elect a new leader but do so after waiting for a certain
timeout. By this time, the old leader realizes that it is not the
leader anymore, steps down, and stops serving reads.

4.5 Correctness
ORCA never returns non-monotonic states, i.e., a read from a
client always returns at least the latest state that was previously
read by any client. We now provide a proof sketch for how
ORCA ensures correctness under all scenarios.

First, when the current leader is functional, if a non-durable
item (whose update-index is L) is read, ORCA ensures that the
state at least up to L is persisted on all the nodes in the active
set before serving the read. Thus, reads performed at any node
in the active set will return at least the latest state that was
previously read (i.e., up to L). Followers not present in the
active set may be lagging but reads are not allowed on them,
preventing them from serving an older state. When a follower
is added to the active set, ORCA ensures that the follower
contains state at least up to L; thus any subsequent reads on
the added follower will return at least the latest state that
was previously read, ensuring correctness. When the leader
removes a follower, ORCA ensures that the follower marks
itself out before the leader returns any data by committing
it on the new reduced set, which prevents the follower from
returning any older state.

When the current leader fails, ORCA must ensure that latest
state that was read by clients survives into the new view. We
argue that this is ensured by how elections work in ORCA

(and in many majority-based systems). Let us suppose that
the latest read has seen state up to index L. When the leader
fails and subsequently a new view is formed, the system must
recover all entries at least up to L for correctness; if not, an
older state may be returned in the new view. The followers, on
a leader failure, become candidates and compete to become
the next leader. A candidate must get votes from at least
a majority (may include self) to become the leader. When
requesting votes, a candidate specifies the index of the last
entry in its log. A responding node compares the incoming
index (P) against the index of the last entry in its own log

(Q). If the node has more up-to-date data in its log than the
candidate (i.e., Q > P), then the node does not give its vote to
the candidate. This is a property ensured by many majority-
based systems [2, 6, 39] which ORCA preserves.

Because ORCA persists the data on all the nodes in the ac-
tive set and given that the active set contains at least a majority
of nodes, at least one node in any majority will contain state
up to L on its disk. Thus, only a candidate that has state at
least up to L can get votes from a majority and become the
leader. In the new view, the nodes follow the new leader’s
state. Given that the leader is guaranteed to have state at least
up to L, all data that have been served so far will survive into
the new view, ensuring correctness.

4.6 Implementation
We have built ORCA by modifying ZooKeeper (v3.4.12). We
have two baselines. First, ZooKeeper with synchronous repli-
cation but asynchronous persistence (i.e., ZooKeeper with
forceSync disabled). Second, ZooKeeper with asynchronous
replication; we modified ZooKeeper to obtain this baseline.

In ZooKeeper, write operations either create new key-value
pairs or update existing ones. As we discussed, ORCA follows
the same code path of the baseline for these operations. In ad-
dition, ORCA replicates and persists updates constantly in the
background. Read operations return the value for a given key.
On a read, ORCA performs the durability check (by comparing
the key’s update-index against the system’s durable-index)
and enforces durability if required.

ORCA incurs little metadata overheads compared to unmod-
ified ZooKeeper to perform the durability check. Specifically,
ZooKeeper already maintains the last-updated index for every
item (as part of the item itself [9]) which ORCA reuses. Thus,
ORCA needs to additionally maintain only the durable-index,
which is 8 bytes in size. However, some systems may not
maintain the update indexes; in such cases, CAD needs eight
additional bytes for every item compared to the unmodified
system, a small price to pay for the performance benefits.

Performing the durability check is simple in ZooKeeper
because what item a request will read is explicitly specified
in the request. However, doing this check in a system that
supports range queries or queries such as “get all users at
a particular location” may require a small additional step.
The system would need to first tentatively execute the query
and determine what all items will be returned; then, it would
enforce durability if one or more items are not durable yet.

We modified the replication requests and responses as fol-
lows. The followers include the persisted-index in their re-
sponse and the leader sends the followers the durable-index
in the requests or heartbeats. These messages are also used
to maintain the active-set lease. We set the durable-index as
the maximum index that has been persisted and applied by all
nodes in the active set. We set the follower mark-out timeout
to the same value as the heartbeat interval (100 ms in our
implementation). We set the removal timeout to 500 ms.
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Figure 5: Write-only Workload: Latency vs. Throughput. The
figure plots the average latency against throughput by varying the number of
clients for a write-only workload for different durability layers.

5 Evaluation
In our evaluation, we ask the following questions:
• How does CAD perform compared to synchronous and

asynchronous durability?
• How does ORCA perform compared to weakly consistent

ZooKeeper and strongly consistent ZooKeeper?
• Does ORCA ensure cross-client monotonic reads in the

presence of failures?
• Does ORCA provide better guarantees for applications?

We conduct a set of experiments to answer these questions.
We run our performance experiments with five replicas. Each
replica is a 20-core Intel Xeon CPU E5-2660 machine with
256 GB memory running Linux 4.4 and uses a 480-GB SSD to
store data. The replicas are connected via a 10-Gbps network.
We use six YCSB workloads [15] that have different read-
write ratios and access patterns: W (write-only), A (w:50%,
r:50%), B (w:5%, r:95%), C (read-only), D (read latest, w:5%,
r:95%), F (read-modify-write:50%, r:50%). We do not run
YCSB-E because ZooKeeper does not support range queries.
Numbers reported are the average over five runs.

5.1 CAD Performance
We first evaluate the performance of the durability layer in
isolation; we compare CAD against synchronous and asyn-
chronous durability. With asynchronous durability and CAD,
the system performs both replication and persistence asyn-
chronously. With synchronous durability, the system repli-
cates and persists writes (using fsync) on a majority in the
critical path; it employs batching to improve performance.

5.1.1 Write-only Micro-benchmark
We first compare the performance for a write-only workload.
Intuitively, CAD should outperform synchronous durability
and match the performance of asynchronous durability for
such a workload. Figure 5 shows the result: we plot the aver-
age latency seen by clients against the throughput obtained
when varying the number of closed-loop clients from 1 to
100. We show two variants of synchronous durability: one
with batching and the other without. We show the no-batch
variant only to illustrate that it is too slow and we do not use
this variant for comparison; throughout our evaluation, we
compare only against the optimized synchronous-durability

Workload Throughput (Kops/s) % of reads triggering
durability in CADsync async CAD

A 10.2 35.3 (3.5×) 33.7 (3.3 ×) 5.1 (of 50% reads)
B 23.1 39.4 (1.7×) 38.7 (1.7 ×) 0.83 (of 95% reads)
D 23.3 40.1 (1.7×) 36.9 (1.6 ×) 4.32 (of 95% reads)
F 11.8 35.7 (3.0×) 34.6 (2.9 ×) 4.07 (of 67% reads)

Table 2: CAD Performance. The table compares the throughput of
the three durability layers; the numbers in parenthesis in columns 3 and 4
are the factor of improvement over synchronous durability. The last column
shows the percentage of reads that trigger synchronous durability in CAD.

variant that employs batching.
We make the following three observations from the fig-

ure. First, synchronous durability with batching offers better
throughput than the no-batch variant; however, even with ag-
gressive batching across 100 clients, it cannot achieve the high
throughput levels of CAD. Second, writes incur significantly
lower latencies in CAD compared to synchronous durability;
for instance, at about 25 Kops/s (the maximum throughput
achieved by synchronous durability), CAD’s latency is 7×
lower. Finally, CAD’s throughput and latency characteristics
are very similar to that of asynchronous durability.

5.1.2 YCSB Macro-benchmarks
We now compare the performance across four YCSB work-
loads that have a mix of reads and writes. A, B, and F have a
zipfian access pattern (most operations access popular items);
D has a latest access pattern (most reads are to recently modi-
fied data). We run this experiment with 10 clients. We restrict
the reads only to the leader for all three systems as we are
evaluating only the durability layers. Table 2 shows the result.

Compared to synchronous durability with batching, CAD’s
performance is significantly better. CAD is about 1.6× and 3×
faster than synchronous durability for read-heavy workloads
(B and D) and write-heavy workloads (A and F), respectively.

CAD must ideally match the performance of asynchronous
durability. First, performance of writes in CAD should be
identical to asynchronous durability; making data durable on
reads should not affect writes. Figure 6(a) shows this aspect
for YCSB-A; results are similar for other workloads too.

Second, most read operations in CAD must experience la-
tencies similar to reads in asynchronous durability. However,
reads that access non-durable items may trigger synchronous
replication and persistence, causing a reduction in perfor-
mance. This effect can be seen in the read latency distribu-
tions shown in Figure 6(b) and 6(c). As shown, a fraction
of reads (depending upon the workload) trigger synchronous
durability and thus incur higher latencies. However, as shown
in Table 2, for the variety of workloads in YCSB, this frac-
tion is small. Therefore, the drop in performance for CAD

compared to asynchronous durability is little (2% – 8%).
A bad workload for CAD is one that predominantly reads

recently written items. Even for such a workload, the per-
centage of reads that actually trigger synchronous durability
is small due to prior reads that make state durable and peri-
odic background flushes in CAD. For example, with YCSB-D,
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Figure 6: Operation Latencies. (a) shows the latency distribution of writes in YCSB-A for the three durability layers. (b) and (c) show read latencies for
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Figure 7: ORCA Performance. (a) plots the average latency against throughput by varying the number of clients for a read-only workload for the three
systems. (b) compares the throughput of the three systems across different YCSB workloads. In (b)(i), weak-ZK and ORCA asynchronously replicate and persist;
in (b)(ii), they replicate synchronously but persist data lazily. The number on top of each bar shows the performance normalized to that of strong-ZK.

although 90% of reads access recently written items, only
4.32% of these requests trigger synchronous replication and
persistence; thus, CAD’s overhead compared to asynchronous
durability is little (only 8%).
CAD performance summary. CAD is significantly faster
than synchronous durability (that is optimized with batching)
while matching the performance of asynchronous durability
for many workloads. Even for workloads that mostly read
recently modified items, CAD’s overheads are small.

5.2 ORCA System Performance
We now evaluate the performance of ORCA against two ver-
sions of ZooKeeper: strong-ZK and weak-ZK. Strong-ZK
is ZooKeeper with synchronous durability (with batching),
and with reads restricted to the leader; strong-ZK provides
linearizability and thus cross-client monotonic reads. Weak-
ZK replicates and persists writes asynchronously, and allows
reads at all replicas; weak-ZK does not ensure cross-client
monotonic reads. ORCA uses the CAD durability layer and
reads can be served by all replicas in the active set; we config-
ure the active set to contain four replicas in our experiments.

5.2.1 Read-only Micro-benchmark
We first demonstrate the benefit of allowing reads at many
replicas using a read-only benchmark. Figure 7(a) plots the av-
erage latency against the read throughput for the three systems
when varying the number of clients from 1 to 100. Strong-ZK
restricts reads to the leader to provide strong guarantees, and
so its throughput saturates after a point; with many concurrent
clients, reads incur high latencies. Weak-ZK allows reads at

many replicas and so can support many concurrent clients,
leading to high throughput and low latency; however, the cost
is weaker guarantees as we show soon (§5.3). In contrast,
ORCA provides strong guarantees while allowing reads at
many replicas and thus achieving high throughput and low
latency. The throughput of weak-ZK and ORCA could scale
beyond 100 clients, but we do not show that in the graph.

5.2.2 YCSB Macro-benchmarks
We now compare the performance of ORCA against weak-
ZK and strong-ZK across different YCSB workloads with 10
clients. Figure 7(b) shows the results.

In Figure 7(b)(i), weak-ZK and ORCA carry out both repli-
cation and persistence lazily; whereas, in 7(b)(ii), weak-ZK
and ORCA replicate synchronously but persist to storage lazily,
i.e., they issue fsync-s in the background. As shown in Fig-
ure 7(b)(i), ORCA is notably faster than strong-ZK (3.04 –
3.28× for write-heavy workloads, and 1.75 – 1.97× for read-
heavy workloads). ORCA performs well due to two reasons.
First, it avoids the cost of synchronous replication and persis-
tence during writes. Second, it allows reads at many replicas,
enabling better read throughput. ORCA also closely approxi-
mates the performance of weak-ZK: ORCA is only about 11%
slower on an average. This reduction arises because reads that
access non-durable items must persist data on all the nodes
in the active set (in contrast to only a majority as done in
CAD); further, reads at the followers that access non-durable
data incur an additional round trip because they are redirected
to the leader. Similar results and trends can be seen for the
asynchronous-persistence baseline in Figure 7(b)(ii).
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Figure 8: Geo-distributed Latencies. (i) shows the distribution of latencies for operations originating near the leader; (ii) shows the same for requests
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5.2.3 Performance in Geo-Replicated Settings
We now analyze the performance of ORCA in a geo-replicated
setting by placing the replicas in three data centers (across the
US), with no data center having a majority of replicas. The
replicas across the data center are connected over WAN. We
run the experiments with 24 clients, with roughly five clients
near each replica. In weak-ZK and ORCA, reads are served at
the closest replica; in strong-ZK, reads go only to the leader.
In all three systems, writes are performed only at the leader.

Figure 8 shows the distribution of operation latencies across
different workloads. We differentiate two kinds of requests:
ones originating near the leader (the top row in the figure)
and ones originating near the followers (the bottom row). As
shown in Figure 8(a)(i), for a read-only workload, in all sys-
tems, reads originating near the leader are completed locally
and thus experience low latencies (∼2 ms). Requests originat-
ing near the followers, as shown in 8(a)(ii), incur one WAN
RTT (∼33 ms) to reach the leader in strong-ZK; in contrast,
weak-ZK and ORCA can serve such requests from the nearest
replica and thus incur 14× lower latencies.

For a write-only workload, in strong-ZK, writes originating
near the leader must incur one WAN RTT (to replicate to a
majority) and disk writes, in addition to the one local RTT
to reach the leader. In contrast, in weak-ZK and ORCA, such
updates can be satisfied after buffering them in the leader’s
memory, reducing latency by ∼14×. Writes originating near
the followers in strong-ZK incur two WAN RTTs (one to
reach the leader and other for majority replication) and disk
latencies; such requests, in contrast, can be completed in one
WAN RTT in weak-ZK and ORCA, reducing latency by ∼2×.

Figure 8(c) and 8(d) show the results for workloads with
a read-write mix. As shown, in strong-ZK, most operations
incur high latencies; even reads originating near the leader
sometimes experience high latencies because they are queued
behind slow synchronous writes as shown in 8(c)(i). In con-
trast, most requests in ORCA and weak-ZK can be completed
locally and thus experience low latencies, except for writes
originating near the followers that require one WAN RTT, an
inherent cost in leader-based systems (e.g., 50% of operations
in Figure 8(d)(ii)). Some requests in ORCA incur higher la-
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Figure 9: An Example Failure Sequence. The figure shows an
example sequence generated by our test framework.

tencies because they read recently modified data. However,
only a small percentage of requests experience such higher
latencies as shown in Figure 8(d)(i).
ORCA performance summary. By avoiding the cost of syn-
chronous replication and persistence during writes, and allow-
ing reads at many replicas, ORCA provides higher throughput
(1.8 – 3.3×) and lower latency than strong-ZK. In the geo-
distributed setting, ORCA significantly reduces latency (14×)
for most operations by allowing reads at nearby replicas and
hiding WAN latencies with asynchronous writes. ORCA also
approximates the performance of weak-ZK. However, as we
show next, ORCA does so while enabling strong consistency
guarantees that weak-ZK cannot offer.

5.3 ORCA Consistency
We now check if ORCA’s implementation correctly ensures
cross-client monotonic reads in the presence of failures and
also test the guarantees of weak-ZK and strong-ZK under
failures. To do so, we developed a framework that can drive
the cluster to different states by injecting crash and recovery
events. Figure 9 shows an example sequence. At first, all
nodes are alive; then nodes 1,3 crash; 1 recovers; 2 crashes; 3
recovers; finally, 2 recovers. In addition to crashing, we also
randomly choose a node and introduce delays to it; such a
lagging node may not have seen a few updates. For example,
1 2345→ 245→ 1 2 45→ 145→ 134 5→ 12345 shows how
nodes 1, 2, and 5 experience delays in a few states.

We insert new items at each stage and perform reads on the
non-delayed nodes. Then, we perform a read on the delayed
node, triggering the node to return old data, thus exposing non-
monotonic states. Every time we perform a read, we check
whether the returned result is at least as latest as the result of
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System
Outcomes (%)

Correct
Non-

monotonic
weak-ZK 17 83
strong-ZK 100 0

sync-ZK-all 63 37
ORCA 100 0

(a) Async persistence

System
Outcomes (%)

Correct
Non-

monotonic
weak-ZK 4 96
strong-ZK 100 0

sync-ZK-all 63 37
ORCA 100 0

(b) Async replication & persistence

Table 3: ORCA Correctness. The tables show how ORCA provides
cross-client monotonic reads. In (a), weak-ZK and ORCA use asynchronous
persistence; in (b), both replication and persistence are asynchronous.

any previous read. Using the framework, we generated 500
random sequences similar to the one in Figure 9. We subject
weak-ZK, strong-ZK, and ORCA to the generated sequences.

Table 3(a) shows results when weak-ZK and ORCA syn-
chronously replicate but asynchronously persist. With weak-
ZK, non-monotonic reads arise in 83% of sequences due to
two reasons. First, read data is lost in many cases due to crash
failures, exposing non-monotonic reads. Second, delayed fol-
lowers obliviously serve old data after other nodes have served
newer state. Strong-ZK, by using synchronous durability and
restricting reads to the leader, avoids non-monotonic reads in
all cases. Note that while synchronous durability can avoid
non-monotonic reads caused due to data loss, it is not suffi-
cient to guarantee cross-client monotonic reads. Specifically,
as shown in the table, sync-ZK-all, a configuration that uses
synchronous durability but allows reads at all nodes, does not
prevent lagging followers from serving older data, exposing
non-monotonic states. In contrast to weak-ZK, ORCA does not
return non-monotonic states. In most cases, a read performed
on the non-delayed nodes persists the data on the delayed
follower too, returning up-to-date data from the delayed fol-
lower. In a few cases (about 13%), the leader removed the
follower from the active set (because the follower is experi-
encing delays). In such cases, the delayed follower rejects
the read (because it is not in the active set); however, retry-
ing after a while returns the latest data because the leader
adds the follower back to the active set. Similar results can be
seen in Table 3(b) when weak-ZK and ORCA asynchronously
replicate and persist writes.

5.4 Application Case Studies

We now show how the guarantees provided by ORCA can be
useful in two application scenarios. The first one is a location-
sharing application in which an user updates their location
(e.g., a → b → c) and another user tracks the location. To
provide meaningful semantics, the storage system must ensure
monotonic states for the reader; otherwise, the reader might
incorrectly see that the user went backwards. While systems
that provide session-level guarantees can ensure this property
within a session, they cannot do so across sessions (e.g., when
the reader closes the application and re-opens, or when the
reader disconnects and reconnects). Cross-client monotonic
reads, on the other hand, provides this guarantee irrespective
of sessions and failures.

Outcome(%) Location-tracking Retwis
weak-ZK strong-ZK ORCA weak-ZK strong-ZK ORCA

Inconsistent 13 0 0 8 0 0
Consistent (old) 39 0 7 20 0 12

Consistent (latest) 48 100 93 72 100 88

Table 4: Case Study: Location-tracking and Retwis. The table
shows how applications can see inconsistent (non-monotonic), and consistent
(old or latest) states with weak-ZK, strong-ZK, and ORCA.

We test this scenario by building a simple location-tracking
application. A set of users update their locations on the stor-
age system, while another set of users reads those locations.
Clients may connect to different servers over the lifetime of
the application. Table 4 shows result. As shown, weak-ZK ex-
poses inconsistent (non-monotonic) locations in 13% of reads
and consistent but old (stale) locations in 39% of reads. In con-
trast to weak-ZK, ORCA prevents non-monotonic locations,
providing better semantics. Further, it also reduces staleness
because of prior reads that make state durable. As expected,
strong-ZK never exposes non-monotonic or old locations.

The second application is similar to Retwis, an open-source
Twitter clone [46]. Users can either post tweets or read their
timeline (i.e., read tweets from users they follow). If the time-
line is not monotonic, then users may see some posts that may
disappear later from the timeline, providing confusing seman-
tics [14]. Cross-client monotonic reads avoids this problem,
providing stronger semantics for this application.

The workload in this application is read-dominated: most
requests retrieve the timeline, while a few requests post new
content. We thus use the following workload mix: 70% get-
timeline and 30% posts, leading to a total of 95% reads and
5% writes for the storage system. Results are similar to the
previous case study. Weak-ZK returns non-monotonic and
stale timelines in 8% and 20% of get-timeline operations, re-
spectively. ORCA completely avoids non-monotonic timelines
and reduces staleness, providing better semantics for clients.

6 Discussion
In this section, we discuss how CAD can be beneficial for
many current systems and deployments, and how it can be im-
plemented in other classes of systems (e.g., leaderless ones).
Application usage. As we discussed, most widely used sys-
tems lean towards performance and thus adopt asynchronous
durability. CAD’s primary goal is to improve the guarantees of
such systems. By using CAD, these systems and applications
atop them can realize stronger semantics without forgoing the
performance benefits of asynchrony. Further, little or no mod-
ifications in application code are needed to reap the benefits
that CAD offers.

A few applications such as configuration stores [19] cannot
tolerate any data loss and so require immediate synchronous
durability upon every write. While CAD may not be suitable
for this use case, a storage system that implements CAD can
support such applications. For example, in ORCA, applications
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can optionally request immediate durability by specifying a
flag in the write request (of course, at the cost of performance).
CAD for other classes of systems. While we apply CAD to
leader-based systems in this paper, the idea also applies to
other systems that establish no or only a causal order of up-
dates. However, a few changes compared to our implementa-
tion for leader-based systems may be required. First, given
that there is no single update order, the system may need
to maintain metadata for each item denoting whether it is
durable or not (instead of a single durable-index). Further,
when a non-durable item x is read, instead of making the en-
tire state durable, the system may make only updates to x or
ones causally related to x durable. We leave such extension
as an avenue for future work.

7 Related Work
Consistency models. Prior work has proposed an array of
consistency models and studied their guarantees, availability,
and performance [10, 19, 27, 29, 30, 48–50]. Our work, in
contrast, focuses on how consistency is affected by the un-
derlying durability model. Lee et al., identify and describe
the durability requirements to realize linearizability [25]. In
contrast, we explore how to design a durability primitive that
enables strong consistency with high performance.
Durability semantics. CAD’s durability semantic has a sim-
ilar flavor to that of a few local file systems. Xsyncfs [37]
delays writes to disk until the written data is externalized, re-
alizing high performance while providing strong guarantees.
Similarly, file-system developers have proposed the O_RSYNC
flag [22] that provides similar guarantees to CAD. Although
not implemented by many kernels [22], when specified in
open, this flag blocks read calls until the data being read
has been persisted to the disk. BarrierFS’ fbarrier [52] and
OptFS’ osync [13] provide delayed durability semantics sim-
ilar to CAD; however, unlike CAD, these file systems do not
guarantee that data read by applications will remain durable
after crashes. Most of the prior work resolves the tension
between durability and performance in a much simpler single-
node setting and within the file system. To the best of our
knowledge, our work is the first to do so in replicated systems
and in the presence of complex failures (e.g., partitions).
Improving distributed system performance. Several ap-
proaches to improving the performance of replicated systems
using speculation [19, 51], exploiting commutativity [35], and
network ordering [40] have been proposed. However, these
prior approaches do not focus on addressing the overheads
of durability, an important concern in storage systems. ORCA

avoids durability overheads by separating consistency from
freshness: reads can be stale but never out-of-order. Lazy-
Base [14] applies a similar idea to analytical processing sys-
tems in which reads access only older versions that have been
fully ingested and indexed. However, such an approach often
returns staler results than a weakly consistent system. In con-

trast, ORCA never returns staler data than a weakly consistent
system; further, ORCA reduces staleness compared to weak
systems by persisting data on many nodes upon reads (as
shown by our experiments). SAUCR reduces durability over-
heads in the common case but compromises on availability
for strong durability in rare situations (e.g., in the presence
of many simultaneous failures) [1]. ORCA makes the opposite
tradeoff: it provides better availability but could lose a few
recent updates upon failures.
Cross-client monotonic reads. To the best of our knowledge,
cross-client monotonic reads is provided only by lineariz-
ability [25, 38]. However, linearizable systems require syn-
chronous durability and most prevent reads at the followers.
ORCA offers this property without synchronous durability
while allowing reads at many nodes. Gaios [11] offers strong
consistency while allowing reads from many replicas. Al-
though Gaios distributes reads across replicas, requests are
still bounced through the leader and thus incur an additional
delay to reach the leader. The leader also requires one addi-
tional round trip to check if it is indeed the leader, increasing
latency further. In contrast, ORCA allows clients to directly
read from the nearest replica, enabling both load distribution
and low latency. ORCA avoids the extra round trip (to verify
leadership) by using leases. ORCA’s use of leases to provide
strong consistency is not new; for example, early work on
cache consistency in distributed file systems has done so [18].

8 Conclusion
In this paper, we show how the underlying durability model
of a distributed system has strong implications for its consis-
tency and performance. We present consistency-aware dura-
bility (CAD), a new approach to durability that enables both
strong consistency and high performance. We show how cross-
client monotonic reads, a strong consistency guarantee can
be realized efficiently upon CAD. While enabling stronger
consistency, CAD may not be suitable for a few applications
that cannot tolerate any data loss. However, it offers a new,
useful middle ground for many systems that currently use
asynchronous durability to realize stronger semantics without
compromising on performance.
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