Bridging Missing Gaps in Evaluating DDoS Research

Lumin Shi, Samuel Mergendahl, Devkishen Sisodia, Jun Li
{luminshi, smergend, dsisodia, lijun}@cs.uoregon.edu
University of Oregon

Preliminary Work Paper
(Short Paper)
DDoS Attacks Today
Real-World Attacks Are Advancing

- Most DDoS attacks have common patterns of the attack traffic [1]
 - E.g., NTP amplification
 - Detection and mitigation are relatively easy

- Attacks have started to employ advanced attack techniques:
 - Pulsing-based attacks [2,3]
 - Carpet-bombing attacks [4,5]

2. https://www.imperva.com/blog/pulse-wave-ddos-pins-down-multiple-targets/
Pulsing-based attacks inundate network links with short and periodic traffic bursts

- **Detection difficulty:**
 - Requires fine-grained time-series network information
 - Difficult if not impossible otherwise
 - E.g., NetFlow

- **Possible consequences:**
 - Reduced quality of real-time applications, e.g., online gaming
 - Reduced network throughput of benign congestion-responsive flows [1]
 - Theoretically possible to attack more networks with a limited number of bots

1. CICADAS, AsiaCCS, 2016
Carpet-bombing attacks address multiple networks/hosts of a network.

- **Detection difficulty:**
 - **Traffic payload:** TCP SYN attacks or the CrossFire scheme [1]
 - **Point of view:** at transit networks or edge networks

- **Possible consequences:**
 - Edge networks not knowing (why) the bandwidth degradation.
 - Blind attack mitigation performed by upstream networks (e.g., AS X).

Missing Gaps
We Know Little About Advanced Attacks

- Only a matter of time before more attacks with advanced attack techniques
- We need to know more about these advanced attacks in action
- Study them in a network with realistic background traffic
A DDoS detection system facilitates better attack mitigation

To better evaluate the efficacy of a detection system
 • Should not only evaluate it using passive network traces
 • It must handle abrupt network changes caused by the mitigation effort
 • E.g., will it label a benign flow that is occupying more bandwidth as an attack flow?

Must evaluate detection systems with realistic background traffic and mitigation systems
DDoS victims (un)knowingly disconnect benign connections during attack mitigation
 • E.g., remotely triggered block hole (RTBH)
 • Destination-prefix-based traffic filtering

Networks starting to adapt fine-grained mitigation solutions
 • E.g., BGP Flowspec can match/filter traffic using 5-tuple packet fields

Limited traffic filtering capacity
 • Broad matching criteria to mitigate the attack at the cost of filtering some benign hosts
 • E.g., a Flowspec filter that blocks traffic from one /24 network to another network

We need realistic IP assignment in DDoS mitigation evaluation
DDoS SandBox
A container-based system
- Low experiment deployment friction
 - Portable experiment node images
- Elastic emulation fidelity
 - Distribute containers across multiple machines
- Nodes are realized by containers
- Physical/virtual links management

An example topology in DDoS SandBox

Legend:
- Container (Node)
- Links
DDoS SandBox -- System Components

- **Inputs:**
 - Usage model is simple/flexible
 - Public and private datasets to create network topology

- **Topology generator**
 - Inter/intra-AS topology
 - IP allocation

- **Traffic mimicker**
 - Reads traffic trace/stream and generates fine-grained time-series flows
 - Create flows using system sockets

- **Node images**
 - E.g., routers, end hosts

- **SandBox Driver**
 - Implement nodes and links.
DDoS SandBox -- An Example Workflow

Required Inputs
- BGP-related info
- Traffic trace/stream
- Experiment specs

Main Sandbox Components
- **SandBox Driver**

SandBox Driver

Physical link

Traffic Mimicker
- **Quagga AS X (a.b.0.0/16)**
- **FRRouting AS Y (c.0.0.0/8)**

Traffic Mimicker

A mini Internet
- Arbitrary node implementation (flexibility)
 - E.g., Quagga, FRRouting
- Realistic AS-level IP assignment
- Congestion-aware (closed-loop) background traffic
We evaluate our proof-of-concept (PoC) from two aspects:

- The correctness of topology generation
- The scalability of network instantiation time

Two machines:

- 3-core virtual machine, 24 GB of main memory
- 96-core machine, 192 GB of main memory (AWS EC2 C5d)

Software environment:

- Ubuntu 18.04 with Docker 19.03 and Containernet
Preliminary Evaluation -- Correctness

- An example traceroute result from an educational network to a cloud provider
- We can find a corresponding AS-level path on bgpview.io
The relationship of *system instantiation time* and *number of Quagga routers*

The 3-core machine w/ 24GB memory can support about 100 routers
Current and Future Work

- Integrating Traffic Mimicker into the SandBox
 - Many challenges that we did not cover in the short paper
- Implementing a set of well-received DDoS attack and defense projects
- Allow the SandBox to distribute container nodes across a cluster of machines for higher scalability
- Consider solutions with better support and compatibility as the SandBox driver
 - E.g., Container Network Interface (CNI) projects are quite promising for managing network interfaces
Conclusion

- A list of evaluation missing gaps in DDoS research
- A container-based emulation system that creates a mini Internet
- A repository of DDoS attack and defense implementations
- Much work ahead 😊
Thank You!

- We appreciate the useful comments from our paper reviewers
- We would love to hear your feedback
- You can reach us via any of the email addresses below:
 - {luminshi, smergend, dsisodia, lijun}@cs.uoregon.edu