
One Side-Channel to Bring Them All and in the Darkness Bind Them:
Associating Isolated Browsing Sessions

Tom Van Goethem
imec-DistriNet - KU Leuven

tom.vangoethem@cs.kuleuven.be

Wouter Joosen
imec-DistriNet - KU Leuven

wouter.joosen@cs.kuleuven.be

Abstract

Online tracking and fingerprinting is becoming increas-
ingly more prevalent and pervasive. The privacy threats
associated with these practices have given rise to a wide
variety of privacy-enhancing solutions. However, as
these solutions retroactively apply patches to existing
browsers in an attempt to thwart potential attacks, it is of
key importance that the complete threat surface is known
such that all risks can be considered. In this paper we
evaluate the browser’s threat surface with regard to fin-
gerprinting and tracking in the context of isolated brows-
ing sessions, i.e. regular versus incognito sessions or ses-
sions across different browsers. We uncover and evaluate
three types of side-channels, and show how an adversary
can exploit these to track users across sessions and even
reveal the IP address of Tor users when they use a con-
current browsing session.

1 Introduction

The online advertisement industry is constantly growing.
According to a report by eMarketer, digital ad spend-
ing surpassed television advertising, and is forecasted to
grow to 83 billion USD [11]. In this highly competi-
tive market, advertising companies try to attract adver-
tisers through various means. For instance, by offering
the ability to show advertisements only to a small tar-
get audience, advertisers can reach out to the people they
consider most likely to buy their products. Of course,
this requires the advertising company to create a profile
on the users that are shown advertisements. Such a pro-
file can be constructed by measuring the user’s online
activities, e.g. based on the websites that are visited, the
advertiser can infer the user’s interests.

By having websites include resources from the ad-
vertising company, the user’s browser will trigger a re-
quest to the advertising company, and include cookies
that were previously set. These third-party cookies al-

low the advertising company to track which websites the
user visits (either based on the Referer header of the re-
quest, or by additional information provided by the in-
cluding website). In a large-scale study by Libert, it was
shown that 88% of the websites include third-party re-
sources, and on 62.9%, this resulted in setting a third-
party cookie [20]. These findings are a clear indicator of
the growing ubiquity of online tracking.

One of the key limitations of tracking by means of
third-party cookies, is that when users remove their cook-
ies, they become an entirely new entity to the tracker.
Consequently, the profile of the user that the tracker
had constructed so far becomes obsolete upon removal
of the cookies. To overcome this limitation, several
trackers have resorted to more intrusive tracking tech-
niques. These techniques include abusing persistent stor-
age mechanisms, and fingerprinting the browser and de-
vice, e.g. by enumerating the fonts that are installed on
the system.

As a response to the emerging1 threat imposed by
online web tracking and fingerprinting, a wide variety
of privacy-enhancing efforts have been made. These
range from the privacy or incognito browsing mode that
is available in all popular browsers, to browser exten-
sions such as Ghostery [14] that try to block trackers,
to browsers such as Tor Browser whose main objec-
tive is to provide anonymity to their users. It has been
shown that these defenses are relatively effective at de-
fending against known fingerprinting and tracking tech-
niques [12]. However, because these privacy-enhancing
countermeasures build upon existing browser architec-
tures, e.g. Tor Browser is based on Firefox, most de-
fenses are applied retroactively. This underlines the im-
portance of discovering new classes of fingerprinting
techniques, as they can be used to guide existing counter-

1In a 2013, Acar et al. found that 0.4% of the top 1 million web-
sites performed font enumeration in JavaScript; in a study performed
3 years later by Englehardt and Narayanan [12], the prevalence of this
technique had increased almost fourfold.

measures, or inspire completely new approaches towards
tackling online tracking and fingerprinting.

In this paper, we introduce three classes of fingerprint-
ing techniques that have been little explored or are newly
introduced. Moreover, we show that these techniques can
be used to continue tracking users when they switch to
incognito browsing mode or use a different browser.

The key contributions of our study are:

• We show that side-channel attacks on modern web
browsers is a large threat surface for fingerprinting
attacks.

• As a result of our analysis on various browser mech-
anisms, we discover 3 side-channel attacks that can
be abused to track users along private browsing
mode and across different browsers.

• We conclude that the proposed fingerprinting tech-
niques can have very nefarious consequences, such
as revealing the IP address of Tor users, and indi-
cate that additional countermeasures are required to
defend against the newly introduced threats.

2 Background

In the study by Krishnamurthy and Wills, the researchers
perform a longitudinal analysis of online tracking be-
tween 2005 and 2008 [19]. They show that over the
course of their study, tracking on the web steadily in-
creases. Following research shows that this trend contin-
ues [23, 36]. Moreover, several researchers report that
next to the tracking via cookies, an increasing number
of websites are resorting to more intrusive techniques
[24, 2, 33, 1]. In an attempt to significantly reduce, and
ideally, completely thwart these tracking methods, vari-
ous efforts have been made.

First, a number of browser extensions have been de-
veloped that aim to detect and block online trackers. A
well-known example of such an extension is Ghostery,
which monitors the requests and responses to all third-
party resources, and uses that information to detect and
block trackers. Furthermore, other extensions target a
specific fingerprinting technique; for instance, the Fire-
fox add-on CanvasBlocker2 defends solely against can-
vas fingerprinting [27].

Browser vendors and developers of browser specifi-
cations are also increasingly invested in reducing the
threats of fingerprinting, and try to prevent increasing
the attack surface when new APIs are designed and im-
plemented. A case in point is Firefox’ “Private Brows-
ing” mode which provides tracking protection by using
the block list provided by Disconnect.me3. Moreover, in

2https://addons.mozilla.org/en-us/firefox/addon/
canvasblocker/

3https://disconnect.me/

Figure 1: Threat model of cross-session user tracking.

private mode, the browser prevents storing content orig-
inating from websites to the disk, e.g. by disabling cer-
tain APIs. At the side of specification developers, new
browser APIs typically undergo a security and privacy
evaluation, e.g. by W3C’s Privacy Interest Group, in or-
der to prevent enlarging the threat surface at the design
level.

Finally, with a main focus on providing online
anonymity, completely new browsers have been intro-
duced, most notably Tor Browser [34]. By routing all
traffic over the Tor network, Tor Browser ensures that
the IP address of the user is not known to the visited
website. Additionally, Tor Browser, which is based on
Firefox, adds a wide variety of countermeasures against
tracking, e.g. by blocking third-party cookies, and fin-
gerprinting. These fingerprint defenses include, among
other things, preventing the enumeration of fonts, and
disabling various browser APIs that could potentially
leak identifying information. Furthermore, as a defense-
in-depth strategy, both for security as well as privacy rea-
sons, the timers of Tor Browser have a reduced resolution
(100ms), and introduce random noise.

3 Exploring Browser Operations

3.1 Threat Model

We consider a threat model as the one depicted in Fig-
ure 1. In this model, the user/victim is using multiple
browsing sessions that are isolated from each other. This
could either be two browsing sessions from the same
browser, where one is a regular browsing session and
the other is in incognito or private mode. Alternatively,
the user could also be using different browsers to sepa-
rate, and thus shield off, multiple browsing sessions from
each other. The adversary, which we consider capable
of running JavaScript code in the victim’s browser, e.g.
through a malicious advertisement, aims to associate the
different sessions, and thus link the victim’s identity to
these multiple sessions.

In case the attack is successful, and the adversary can
link together different browsing sessions, the user’s ex-

Figure 2: Overview of operations that a browser can use to
interact with the host device.

pectations of privacy are broken. A concrete example of
this is when users perform their day-to-day browsing in
regular browsing mode, but use the incognito mode to
visit sensitive websites, e.g. to look up information on
certain medical conditions. An adversary can use regu-
lar tracking methods to follow the user’s web visits in the
regular browsing mode. However, once the user switches
to incognito mode, the browser creates an entirely new
environment isolated from the other browsing session,
preventing the attacker to further track the user over this
session. Additionally, we also consider associating iso-
lated browsing sessions across browsers. For instance,
someone could use Tor Browser to access highly sen-
sitive information (Tor Browser provides anonymity by
routing all traffic over the Tor network, and implement-
ing numerous fingerprinting and tracking defenses [34]),
but at the same time use another browser for general
usage (traffic over the Tor network suffers from a high
latency, and in some cases may be blocked entirely by
websites). An adversary capable of associating the Tor
Browser session to a browser session that is not routed
over the Tor network, can reveal the IP address of the
user, defeating their anonymity.

Unless an anonymity network is used, the IP address
of a user will be known to all parties the user’s browser
requests a resource from. As was pointed out by Boda et
al. [4], the IP address can be used to track users across
browsers. However, this only works when the IP address
is not shared among a larger group of people. As such,
this tracking technique is rendered obsolete when users
browse the web over a VPN, or when their traffic is tun-
neled through an HTTP proxy, as is common in corporate
environments. The cross-browser tracking techniques in-
troduced in this paper work irrespective of IP-level coun-
termeasures.

Table 1: An overview of fingerprinting and tracking techniques.

Technique Operation Related work Defenses Cross-
browser

Canvas FP (4) [27, 1] [10], [25]†, TB 3

Font enumeration (3) [9, 33, 2] [3, 32], TB 3

Browser properties (1) [22, 9] TB 7

System config. (3) [4] TB 3

JS Engine (4) [26, 31] 7

Extension detect. (1) [39, 38] IM, TB 7

Extension detect. (1) Sec. 4 TB 7

Simultaneous events (5) Sec. 5 3

Covert channels (4) Sec. 6 3

† Only performs detection, not a defense.
TB stands for Tor Browser, IM for incognito mode.

3.2 Methodology and Prior Findings
In order to uncover and assess techniques that can be
used to link together different browsing sessions, we first
make an abstraction of the browser model. In this ab-
straction, shown in Figure 2, we identify five concep-
tual operations, of which two are browser-specific, and
the remaining three are based on interactions with the
host device. It is important to note that because the
browser-specific operations leverage information from
one particular browser, these can only be used to link
together regular and incognito sessions. As the other op-
erations are performed on system-wide artifacts, which
are shared among all applications, and thus by extension
all browsers, these artifacts can be exploited for cross-
browser session syncing.

As browser fingerprinting is a well-researched topic,
a plethora of techniques have been discovered that can
be used to identify users. Table 3 shows a summarized
overview of fingerprinting techniques that have been pre-
viously discovered, combined with known defenses that
thwart the attack. For each technique, we indicate the
associated browser operation that is exploited, whether
Tor Browser (TB) or incognito mode (IM) defend against
the technique, and finally whether it can be used to track
users across browsers. The bottom part of the table
shows the tracking techniques that are discussed in the
following sections. It should be noted that the extension
detection technique introduced in this paper can, in con-
trast to prior findings, be performed in incognito mode,
although extensions are disabled there by default.

Experimental setup Unless explicitly mentioned oth-
erwise, the experiments in the following sections have
been performed on a Mid-2012 MacBook Pro, with a
2.5GHz Intel Core i5 processor and 16GB RAM. These
experiments were then later re-evaluated on four differ-
ent devices, spanning a variety of hardware and operat-
ing systems. Unless the results from the other machines
showed a different behavior, they have been omitted.

4 Enumerating Browser Extensions

Browser extensions allow users to incorporate additional
features, such as blocking advertisements, into their
browsers. With more than 100,000 extensions in to-
tal [21], of which the most popular one has more than
500 million downloads [41], browser extensions are an
interesting target for fingerprinting. In this section, we
first provide a brief view on the history of extension fin-
gerprinting, and then introduce a novel technique, based
on exploiting timing side-channels that can be used to
detect the presence of browser extensions, even in incog-
nito mode.

4.1 Previously Discovered Attacks

In 2011, James Kettle found that extensions in Chrome
and Firefox could be detected by including
elements which source was set to the chrome://4 URLs
of the extensions [17]5. Since the load event of the
 element would only fire when the extension was
present, this allowed an adversary to detect all installed
extensions by testing them one by one using brute force.
Upon the introduction of the Web Accessible Resources
property in the extension manifest, these techniques
were largely rendered obsolete: only the resources
listed by the extension developer could be accessed by
external web pages. As such, the presence of extensions
that did not list any resources as web-accessible could
no longer be detected. In a recent study by Sjösten
et al., it has been shown that despite these counter-
measures, more than 50% of the 1,000 most popular
Chrome extensions could still be detected (as these
include at least one web-accessible resource in their
manifest) [38]. It is important to note that these tech-
niques do not work against Firefox and Safari because
these generate a unique, random identifier for every
installation. For Firefox, the web-accessible resources
can be accessed through moz-extension://<random-
UUID>/<path/to/resource> [30]; in Safari these
resources are accessible under the following pattern:
safari-extension://<extensionID>-<developerID>
/<random-number>/<path/to/resource>. As
web-accessible URLs can only be generated through the
browser.extension.getURL API for Firefox, and the
safari.extension.baseURI API for Safari, an adversary
is unable to guess the random identifier in the exten-
sion’s resource path, and therefore cannot access these
resources (and thus is unable to detect its presence).

In a recent study by Starov and Nikiforakis, the re-

4The chrome:// URL was later replaced by the chrome-
extension:// URL.

5This technique was independently discovered a few months later
by Krzysztof Kotowicz [18].

searchers introduce XHOUND, a fully automated sys-
tem for fingerprinting browser extensions [39]. Their
system leverages the changes an extension introduces to
a page’s DOM. The researchers show that 9.2% of the
10,000 most popular Chrome extensions introduce de-
tectable changes to any URL. As such, by detecting these
changes, and identifying which extension caused them,
the tool is capable of detecting tens of extensions in a
few seconds. Interestingly, because of the intrinsic nature
of this detection technique, it is not limited to a specific
browser implementation, and thus can be applied to any
browser that supports extensions. However, an impor-
tant limitation of this technique, rendering it impractical
in cross-session attacks, is that extensions are by default
disabled in incognito mode. While it is possible to re-
enable extensions in incognito mode, it is not guaranteed
that a user will enable all extensions there, which will
therefore result in a different fingerprint. In the follow-
ing section, we introduce a new technique that does not
suffer from this limitation, and thus can be used to detect
which extensions have been installed, even when they are
disabled.

4.2 Timing Attack on Browser Extensions

Every extension following WebExtensions, a cross-
browser system for developing browser add-ons, is re-
quired to define a manifest file that details various prop-
erties of the extension. The property named web_
accessible_resources can be used to indicate which re-
sources are allowed to be accessed from the web. For
extensions that still have the manifest version set to 1,
all resources are available by default, unless the web_
accessible_resources property has been set. Contrast-
ingly, for extensions following manifest version 2 or
above, access to the extensions’ resources is blocked by
default, and can only be enabled by whitelisting certain
resources [16].

An important observation that forms the basis for the
timing attack is that the browser will always need to eval-
uate the extension’s manifest to determine whether a re-
quested resource can be accessed. First, the browser has
to determine the default behavior: allow-by-default or
whitelist-only. Next, in case only whitelisted resources
are allowed, the browser has to loop over all web_
accessible_resources entries (which can include wild-
cards) and evaluate whether any of these match the re-
quested resource. Because these steps are only be per-
formed on installed extensions (obviously, because for
extensions that are not installed there is no manifest that
can be parsed), this introduces a timing side-channel that
can be abused to detect the presence of any extension.
Figure 3 displays a timeline of a request to an extension’s
resource, showing that an early-exit for extensions that

Figure 3: Timeline showing the difference in timing for accessing a resource of an installed vs. not-installed extension.

are not installed causes a timing difference.
Concretely, to determine the presence or absence of

an extension, the adversary uses the Fetch API to make
a request for a randomly selected endpoint of the ex-
tension, i.e. chrome-extension://<UUID>/resource,
where <UUID> is the identifier of the extension, e.g.
cfhdojbkjhnklbpkdaibdccddilifddb for Adblock Plus.
At this point, the attacker starts a timer, e.g. by storing
the result of performance.now() in a variable. After a
short time period, the Promise returned by the fetch()
operation will be rejected, either because the extension
was not installed (and the manifest could not be evalu-
ated), or because the requested resource was not allowed
according to the web_accessible_resources property.
Upon rejection of the Promise, the adversary stops the
timer and records the time that was measured. Finally,
the adversary obtains a similar measurement but for a re-
source of a non-existent extension, and compares it to the
timing of the tested extension. When the measurement of
the targeted extension is significantly higher, the attacker
can conclude that the manifest was parsed and evaluated,
and thus is present in the victim’s browser.

4.2.1 Evaluation

In order to assess the success rate of this timing at-
tack, we performed two experiments. In the first ex-
periment, we obtained a large sample (10,000 per exten-
sion) of timing measurements, alternately for a random
resource of both an installed and non-existent extension.
Figure 4 shows a kernel density plot of these measure-
ments and clearly indicates that on average, there is a
noticeable timing difference between the two cases. We
performed these measurements on the latest version of
Google Chrome that was available at the time of writ-
ing (58.0.3029.110), on a variety of host devices, includ-
ing various operating system (macOS, Linux, Windows).
For most combinations, we found that results were simi-
lar to the upper graph on Figure 4.

Interestingly, we did find one exception, which ex-
hibited a different distribution, namely on systems run-

0.0 0.5 1.0 1.5

0
2

4
6

Timing measurement (ms) − macOS
D

en
si

ty

installed
non−existent

0.0 0.5 1.0 1.5

0
1

2
3

4

Timing measurement (ms) − Windows 10

D
en

si
ty

installed
non−existent

Figure 4: Distribution of timing measurements for both an in-
stalled and non-existent extension, as obtained on macOS and
Windows.

ning Windows 10. Here, we found that after several tim-
ing measurements, the time required to perform a sin-
gle measurement would significantly decrease (from 1ms
to 0.5ms, and after a few hundred measurement further
down to 0.25ms). We believe this behavior is related to
certain optimizations at the level of the operating system
or hardware (e.g. JIT compilation or caching). While
this behavior might be an interesting target for finger-
printing, in line with the JavaScript performance finger-
print introduced by Mowery et al. [26], it is in fact detri-
mental for our extension fingerprint attack. Nevertheless,
we found that by introducing a short (100ms) timing de-
lay every 100th measurement attempt, these side-effects
could largely be mitigated. The bottom graph of Fig-
ure 4 shows the distribution of timing measurements for
Windows 10. This graph still shows evidence of certain
performance optimizations, especially in the case of an
installed extension. By increasing the timing delay, these
effects can be further reduced, at the expense of a higher
time required to perform the fingerprinting attack.

Table 2: Accuracy and total execution time to detect the pres-
ence of a browser extension over a growing number of mea-
surements.

Detect presence Detect absence
Measurements Accuracy Runtime Accuracy Runtime

10 87.3% 11.36ms 88.4% 10.70ms
20 93.4% 22.67ms 93.0% 21.40ms
30 96.9% 33.44ms 97.2% 33.77ms
40 98.8% 45.97ms 97.0% 42.97ms
50 98.3% 56.61ms 99.0% 53.36ms
60 98.8% 67.27ms 98.7% 64.22ms
70 100.0% 79.63ms 99.3% 74.79ms
80 99.5% 89.67ms 100.0% 85.74ms
90 100.0% 101.86ms 100.0% 94.89ms

100 100.0% 113.62ms 100.0% 106.91ms

To further explore the feasibility of the fingerprinting
attack in a real-world scenario, we performed a subse-
quent experiment. Because the timing measurements are
not clearly distinctive, i.e. the distributions show a sig-
nificant overlap, an adversary has to obtain multiple mea-
surements before being able to determine the presence of
a browser extension.

In our experiment, we set out to explore the number of
measurements per extension that are required to obtain a
high accuracy within an acceptable execution time. As
such, we computed the average accuracy and runtime for
a varying number of measurements per extension. More
precisely, in the test with 10 measurements, we did a
pairwise comparison6 between the timing result of an in-
stalled and non-installed extension. Next, we counted
the number of correct measurements, i.e. those for which
the timing measurement was higher for the installed ex-
tension. When the number of correct measurements ex-
ceeded a predefined threshold, we consider it a success-
ful attack. Through empirical tests, we found that 70%
provides a good trade-off between correctly classifying
an extension as present versus absent. Finally, we com-
puted the average accuracy over 1,000 iterations of this
test.

The results of this experiment are displayed in Table 2,
and show that with around 90 measurements, the attack
achieves a quasi-perfect accuracy, allowing an adversary
to detect the presence or absence of an extension in a bit
over 100ms. It should be noted that the reported run-
time includes the measurement time for two extension
identifiers (installed and non-installed, or two different
non-installed extensions). As such, an adversary could
reduce the execution time of his attack to approximately
half of the reported values.

6A pairwise comparison was used to reduce the random noise that
is introduced over time.

4.2.2 Defense

We have reported our findings to the Chromium team7,
and they are in the process of preventing the fingerprint-
ing techniques. We propose two methods that can be
used to prevent the attack. A first solution could be to
make the identifiers of browser extensions unguessable,
e.g. by making it installation-specific, as is the case with
Firefox. This prevents the adversary from trying to ac-
cess any extension resource, and thus completely thwarts
the attack. However, a downside of this defense is that
it might break existing web applications (detecting the
presence of the official Chromecast extension is done by
accessing a web-accessible resource8).

Another defense strategy could be to prevent the tim-
ing side-channel. Ideally, this should be done by guaran-
teeing a constant execution time when trying to access a
resource of an extension. As the difference in timing be-
tween installed and non-installed extensions is relatively
small (approximately 0.2ms), the operations that cause
this difference could be padded to the estimated worst-
case execution time (WCET) without incurring a large
performance overhead.

Finally, as part of a defense-in-depth strategy, exten-
sions that are installed, but disabled in incognito mode,
should not be considered when requesting a resource
from them. While this countermeasure would still al-
low fingerprinting browser extensions in regular brows-
ing mode, it would prevent associating the incognito
browsing sessions to the regular ones.

5 Cross-Session Events

As a result of a privacy and security review of the then-
proposed Media Capture and Streams API, it was pointed
out that if the devicechange event9 would fire in all
browsing contexts at the same time, this would allow
websites to associate the different contexts, which may
include multiple browsers or incognito mode [8]. As
these events are relatively uncommon, and fire across
contexts within a short timespan, an adversary can as-
sociate sessions for which the same type of event is ob-
served within a few milliseconds of each other. As a
response to these potentially nefarious consequences on
the user’s privacy, the specification was altered to only
fire the event on tabs that were either previously given
permission to access media devices, or that are active10.

7https://bugs.chromium.org/p/chromium/issues/detail?
id=709464

8https://bugs.chromium.org/p/chromium/issues/detail?
id=139592#c32

9The devicechange event fires when a media device, such as an
external microphone is attached or removed.

10https://github.com/w3c/mediacapture-main/pull/412/
commits

Table 3: Overview of events that can be leveraged to associate
browsing sessions, evaluated on Google Chrome (GC), Firefox
(FF), Edge (ED). Safari (SA), and Tor Browser (TB).

Event name Affected
browsers Incognito? Cross-

browser?

devicechange GC, FF •, ED 3 3

devicemotion GC 3 † ‡ 7

languagechange GC, FF, SA, TB 3 7

offline/online GC, FF, ED, SA 3 3

Battery∗ GC 3 7

• On Firefox, the devicechange event is not available, but can be simulated
by constantly polling the enumerateDevices API.
† Events are only fired on active tabs.
‡ Requires a device with an accelerometer or gyroscope (e.g. Macbook

Pro).
∗ The Battery API exposes following events: chargingchange, charging-
timechange, dischargingtimechange, levelchange

As modern browsers heavily interact with a wide va-
riety of external components, it is possible that other
APIs are subject to similar threats. In order to explore
the prevalence and potential impact of related issues,
we constructed a testing platform that allows us to cap-
ture and analyze a wide variety of events. Using this
framework, we evaluated all events that are fired on the
Window object, as well as events that can be listened
on through interactions with the Navigator object. As
part of this evaluation, which we performed on multi-
ple browsers, we assessed which events could be abused
to associate different browsing sessions, i.e. associating
normal and incognito mode, or sessions across different
browsers.

The results of our evaluation are summarized in Ta-
ble 3. In total, we found 9 types of events that can be used
to associate different browsing sessions; four of these are
related to the Battery API, and two are indicators of con-
nectivity. Interestingly, the events that are most effective
at associating different browser sessions, even across dif-
ferent browsers, are the offline and online events which
are fired when the host device disconnects, or reconnects,
respectively. We found that the events do not fire at ex-
actly the same time in every tab, but rather within the
range of a few milliseconds. Nevertheless, because these
events typically only occur rarely, the adversary can still
link different browsing sessions to a single entity, even
within a relatively large pool.

Another surprising finding is the one related to the
languagechange event, which is fired when the user al-
ters the default language in the browser’s settings. It
should be noted that the language change is not system-
wide, and thus can not be used to associate cross-browser
sessions. We determined that this event is fired at ap-

proximately the same time, for Google Chrome, Fire-
fox, Safari, and the Tor Browser. In particular for the
Tor Browser this could be a significant threat: by design,
the Tor Browser aims to ensure unlinkability across ori-
gins, e.g. by using a different circuit for every browser
tab [34]. When an event is broadcasted to all tabs at
the same time, this allows an adversary to link all page
visits to a single user. Although it can be considered
uncommon that users would change languages in their
browser, the potential consequences of this seemingly
innocuous action can be relatively severe. As the Tor
Browser is a privacy-oriented adaptation of Firefox, we
suspect this event was overlooked (the offline and online
events are disabled in order to prevent precisely these
consequences).

6 Resource Contention as Covert Channel

Similar to how browsers interact with a wide variety of
components of the host device, they also (have to) make
use of various system resources. These resources include
the CPU, e.g. to run the JavaScript code, the disk, e.g. to
cache HTTP responses, the GPU, e.g. to render a web
page, the device’s memory, e.g. to store the contents of
a JavaScript variable, . . . Moreover, these resources are
shared between all applications on a host device, causing
these applications to contend for the shared resources.

As performance is one of the key requirements of a
browser, it will completely exhaust any resource it makes
use of in order to achieve the result as fast as possible.
However, as resources are typically bound by an upper
limit for their bandwidth, usually imposed by hardware
constraints, two concurrent browser threads will not be
able to use the resource at its maximum capacity. As a
result, the browsers will experience a performance degra-
dation when the resource they want to use is concurrently
used by another browser (or application). This poten-
tially introduces a covert channel which may allow an ad-
versary to set up a communication channel between two
browser sessions. These could either be within the same
browser, i.e. a regular browsing session and an incog-
nito one, or, since the resources are shared system-wide,
between different browsers on the same host. The adver-
sary could leverage this communication channel to ex-
change unique identifiers, thereby linking the sessions to
a single entity.

In order to send information over this covert chan-
nel, the two browsers will exploit the resource contention
as follows. As with all direct communication channels,
there is a sender and receiver. In this case, the receiver
will attempt to saturate the shared resource constantly,
over the whole duration of the communication, and con-
tinuously measure its performance. The sender will first
encode its message as binary, i.e. a sequence of 1’s and

 0

 100

 200

 300

 400

 500

st

or
e

op
er

at
io

ns
 p

er
 in

te
rv

al

Time (per interval)

0 000000000000 01 11111111111111111

Figure 5: Trace of the disk contention covert channel, showing the operations per interval for the receiver thread.

0’s. Next, the sender iterates over this sequence, and
when it encounters a 0 bit, it will try to saturate the shared
resource during a predefined time interval. As a result,
the receiver will observe a performance degradation dur-
ing this time interval, indicating that a 0 bit was transmit-
ted. When the sender encounters a 1 bit, it will simply
remain inactive during the time interval. This allows the
receiver to obtain exclusive - aside from other applica-
tions - use over the shared resource, resulting in a high
throughput. Once the complete message has been sent,
the receiver will have obtained a series of performance
measurements, which it then has to decode into the bi-
nary stream. This can be done by splitting the series into
discrete intervals and decoding them as 1 when a high
throughput was observed during the interval, and 0 in
case of a noticeable performance degradation.

6.1 Disk Contention

In order to ascertain the presence of covert channels in
modern web browsers, and assess their practicability,
we created an implementation that leverages the disk as
shared resource. The reason why the disk was selected
is fourfold. First, the bandwidth of hard disks is rela-
tively stable and limited to a few hundred MB/s; this al-
lows the browser process to saturate the entire bandwidth
without causing an other resource to become the bottle-
neck. Second, the use of the hard disk in general is rela-
tively small; while browsing, the disk usage is typically
limited to caching resources, which is bound by the net-
work speed, and thus only consumes a fraction of the to-
tal bandwidth. Third, because the overall use of the hard
disk is limited, the saturation of this resource will not dis-
rupt normal browsing behavior; during our experiments
we did not encounter any observable performance degra-
dation, indicating that this covert channel can be used
without alerting the victim. Furthermore, we evaluated
our experiments under various conditions, ranging from
restricting background noise, to a more realistic setting:
opening 10 tabs of well-known news websites and social

networks, including tabs streaming videos. We did not
encounter any significant performance degradation due
to the presence of the other tabs. Last, modern browsers
provide various APIs that can be used to write large blobs
to the disk and later retrieve them; by writing large blobs,
the disk operation will be the primary operation, reduc-
ing the impact of other resources.

In our implementation of the covert channel, we used
the IndexedDB API, which is designed as a low-level
API that provides a transactional database system that
can be used to store large amounts of data [29]. Of
course, other APIs can be used as well, e.g. the Cache
API, as long as they provide functionality that can be
abused to saturate the hard disk’s bandwidth. In our re-
ceiver session, we constantly update the value of a single
key to a precomputed random string of 512kB, using the
put() operation. We then measure the number of update
operations that can be performed within a single time in-
terval, which for the purpose of this proof-of-concept,
we set to 200 milliseconds. In the sender session, we use
the same update operations to communicate the 0 bit val-
ues. Here, we used an interval of 2 seconds, allowing the
receiver to obtain 10 measurements per interval.

Figure 5 shows a trace of the performance measure-
ments observed by the receiver (an incognito tab in
Google Chrome). This trace clearly shows that during
the intervals the sender (a regular tab in Google Chrome)
was active, the receiver’s observed performance is re-
duced by more than half. Within little over a minute,
the sender managed to communicate a sequence of 32
bits (the ASCII encoding of the string "WOOT"11). The
time required to perform the attack can be significantly
reduced by minimizing the time interval as well as by
using a ternary or quaternary encoding instead of a bi-
nary one. In case of a ternary encoding, the adversary
will use 2 concurrent sender threads instead of a single
one (2 concurrent threads will further reduce the perfor-
mance of the receiver thread, thus providing 3 levels of
observed performance).

11W: 01010111 O: 01001111 O: 01001111 T: 01010100

 17

 18

 19

 20

 21

 22

 23

 24

 25

Ar
ra

yB
uf

fe
r c

re
at

e
op

er
at

io
n

pe
r i

nt
er

va
l

Time (per interval)

0 000000000000 01 11111111111111111

Figure 6: Trace of the ArrayBuffer-based covert channel, showing the number of times a buffer could be created per interval.

6.2 Memory Contention

It should be noted that Tor Browser, and Firefox in pri-
vate browsing mode, disable IndexedDB, and, to the best
of our knowledge, all other operations that write to the
disk. As such, these aforementioned covert channel can-
not be applied here. Nevertheless, we found that other
resources can be used to set up covert channels as well.
More precisely, we found that when two browser ses-
sions try to concurrently allocate memory, a minor but
still measurable performance degradation occurs. To
evaluate this memory-based covert channel, we set up
a similar experiment as with the covert channel based on
disk contention. The memory contention was exploited
by iteratively creating ArrayBuffer elements of 20MB in
size; this triggers the browser to allocate memory for the
buffer [28]. For this experiment, the sender was a tab in
Tor Browser, and the receiver a tab in a regular Chrome
browsing session. Additionally, because of the reduced
timer resolution in Tor Browser, the sending interval was
set to 4 seconds, and the receiving interval was changed
accordingly, to 400ms.

The trace obtained by the receiver is shown in Fig-
ure 6. Compared to the disk-based covert channel, the
performance degradation caused by the resource con-
tention is less pronounced. Nevertheless, by computing
the median value for each interval, these are all consis-
tently smaller for 0 bits (values of 21 or lower) than for
1 bits (values of 22 or higher). This shows that the at-
tack still remains feasible. It should be noted that be-
cause the timer in Tor Browser introduces random noise,
the intervals of send and receiver slightly drifted. As
such, the grid lines indicating the intervals were slightly
tweaked to account for this. In a real-world setting, an
adversary could create a more accurate timer, follow-
ing the techniques introduced by Schwarz et al. [37], or
use a more intelligent way to automatically decode the
measurements back into a binary sequence. The conse-
quences of a cross-browser covert channel affecting Tor
Browser can be considered more severe, as it can be used
to reveal the victim’s IP address.

7 Discussion

7.1 Attack Consequences
In Section 4, we report on a newly introduced timing at-
tack that can be used to detect the presence of browser
extensions in Google Chrome. Because the attack can
be launched, even when the user is in incognito mode,
an adversary could enumerate the extensions that have
been installed and use that as a fingerprint. Interestingly,
because Chrome extensions are by default synchronized
across all browsers the user logs in to, such a fingerprint
even allows tracking a user across devices, assuming they
are logged in to the same account on their browser.

In Section 5, we evaluate the potentially nefarious con-
sequences of events that fire across browsing sessions.
We find that in their current implementation, browsers
will simultaneously fire events that are caused by an ex-
ternal event, e.g. when the client disconnects or recon-
nects to the network. Although these events may only
occur sporadically, depending on the user’s environment,
a single event suffices to link together all concurrently
opened browser sessions. More precisely, when a user
has a Chrome and Firefox browser open (possibly in the
background), and a piece of JavaScript code is executed
on at least one page per browser (Englehardt et al. show
that content of certain third-parties is included by more
than 50% of the websites), the adversary can link to-
gether the two, otherwise completely separated, browser
sessions.

In Section 6, we show that covert channels that are
caused by resource contention can be an effective way
of covertly communicating identifiers across different
browsers. We report on a covert channel that leverages
disk contention, as well as one that exploits contention
at the memory level. Our evaluation shows that the disk-
based attack is highly effective and robust against back-
ground noise. This attack can be used to associate ses-
sions of concurrently opened browsers, or sessions in
regular mode to incognito mode, with the exception of
Tor Browser and Firefox’s Private Browsing mode, as

these prevent writing to the disk. Our follow-up attack,
which exploits memory contention, serves as a strong in-
dicator that resource-contention attacks are not limited to
a single type of resource, with varying levels of success.
With this attack, we show that even browsers that pro-
vide the highest level of anonymity can be subjected to
resource contention attacks. Our attack proved success-
ful against Tor Browser, which means that an adversary
can exploit it to reveal the IP address of a user in case
the user has a concurrent browsing session that is not
over Tor. Due to the network overhead imposed by the
anonymity network, and because various websites block
all traffic originating from Tor, we consider it probable
that users simultaneously use a different browser for vis-
iting websites that are not be considered sensitive.

7.2 Defenses

Because the session-associating techniques span a va-
riety of classes, and stem from various side-channels,
we consider it highly unlikely that a single countermea-
sure would be able to defend against all attacks. Nev-
ertheless, there are a number of countermeasures that
could be applied, which would make exploiting the side-
channels more difficult. For the timing attack against
browser extensions, we suggest making the extension
URLs unguessable, as is the case with Firefox, or re-
moving the timing side-channel from the implementa-
tion. This is discussed in more detail in Section 4.2.2.

To counter the attack that leverages cross-session
events, we suggest to prevent firing the same event at
exactly the same time across different tabs. For instance,
when events are only fired on active tabs, this signifi-
cantly reduces the attack surface. Although an adversary
could still try to bypass this, for instance running his code
in a pop-under window, which may go unnoticed for an
extended time period, this defense makes a real-world at-
tack significantly more difficult to successfully execute.

For the covert channels that abuse resource contention,
defenses are not straightforward. One of the key goals of
modern browsers is to load web pages as fast as possi-
ble. To achieve this goal, browsers try to utilize system
resources to their fullest extent, which is in fact the main
cause of the resource contention side-channel. A poten-
tial defense could be to restrict the resource usage for ev-
ery tab (including the background processes they launch,
e.g. as service workers or web workers). However, this
could cause a significant performance overhead when ap-
plied naively. Nevertheless, when these restrictions are
only imposed on inactive tabs12 (along with their back-

12Since Google Chrome version 57, the CPU usage of background
tabs is restricted, however this does not apply to tabs playing audio [15].
As such, an adversary could play a silent audio file in the offending tab.
Moreover, since only CPU wall time is affected, it is uncertain whether

ground threads), the performance overhead would be-
come less noticeable, and similar to the defense against
cross-session events, it limit the adversary’s ability to
successfully execute the attack in a real-world setting.

In our evaluation, we only considered disk-based and
memory-based contention side-channels. We consider
it an interesting avenue for future work to further ex-
plore which other resources could be leveraged to cre-
ate a covert channel, as well as evaluate their impact on
possible defenses.

8 Related Work

Browser Fingerprinting

Prior work in the area of fingerprinting and online track-
ing has primarily focused on creating unique fingerprints
by extracting information at various levels. At the level
of the browser, Eckersley found that by enumerating var-
ious properties, such as version and configuration infor-
mation, online users can be uniquely identified [9]. More
recently, it was found that the presence of browser ex-
tensions can be detected, either by observing changes
they introduce to the DOM [39], or by levering resources
from the web_accessible_resources property [38]. In
contrast to the previously known techniques that detect
the presence of browser extensions, the timing attack de-
scribed in Section 4 can, at the time of writing, be ap-
plied even when the extension is inactive, e.g. in incog-
nito mode.

At the level of the system, prior work has focused on
fingerprinting by means of enumerating system config-
urations [4, 6] and installed fonts [9, 33, 2]. Since the
enumeration of these system properties will be identical
across browsers, these fingerprints can also be used to
associate isolated browsing sessions, provided the finger-
print is sufficiently unique. Similarly, it has been found
that a unique fingerprint can be extracted from various
hardware components, For instance, the way the GPU
renders drawings of a <canvas> element can be used
to create a unique fingerprint [27, 1, 6]. Other hard-
ware components such as the accelerometer and gyro-
scope have also been shown to leak fingerprintable infor-
mation [7, 5].

Side-channel Attacks

The tracking techniques introduced in this paper exploit
side-channels, which, to some extent, resemble side-
channel attack that have been performed in different con-
texts. For instance, in Section 4, we exploit a timing at-
tack by measuring the time required to perform a fetch
operation. Such timing attacks have been known for

this would counter all covert channels based on resource contention.

several decades, and in the context of the web, have
been introduced by Felten et al. [13]. Furthermore, Van
Goethem et al. have shown that timing side-channels ex-
posed by browsers can be used to leak the size of cross-
origin resources [40]. The timing attack introduced in
this paper is similar, in the sense that both attacks mea-
sure the time required for the browser to perform an
action, thereby leaking sensitive information. More re-
cently, Vela and Köpf discovered a timing attack against
shared event loops in Google Chrome which can be ex-
ploited to create a covert channel or detect which web-
sites a user is visiting.

The resource contention covert channel presented in
Section 6, was also exploited by Ristenpart et al. in the
context of cloud computing [35]. In their attack, they
used the covert channel to determine co-residency of two
EC2 instances.

9 Conclusion

A wide variety of methods have been proposed and im-
plemented to thwart online tracking and fingerprinting.
In this paper, we show that existing solutions, which typi-
cally apply defenses retroactively, fall short of protecting
users against attacks that link together separate browsing
sessions. As a result of assessing various components
of the browser, guided by the interactions it makes with
its surrounding environment, we discovered 3 classes
of side-channels that are highly effective at associating
browsing sessions, even across browsers. We show that
these side-channels, which are based on timing, making
simultaneous observations, and resource contention, are
able to circumvent existing privacy-enhancing solutions.
When current threat models on fingerprinting and on-
line tracking are extended with our newly introduced at-
tacks, browser vendors and specification developers have
a more accurate view on the threat surface. This allows
them to discover similar issues more easily and work to-
wards privacy-preserving solutions.

Acknowledgments

We thank the anonymous reviewers for their valuable
comments. This research is partially funded by the Re-
search Fund KU Leuven.

References
[1] ACAR, G., EUBANK, C., ENGLEHARDT, S., JUAREZ, M.,

NARAYANAN, A., AND DIAZ, C. The web never forgets: Per-
sistent tracking mechanisms in the wild. In Proceedings of the
2014 ACM SIGSAC Conference on Computer and Communica-
tions Security (2014), ACM, pp. 674–689.

[2] ACAR, G., JUAREZ, M., NIKIFORAKIS, N., DIAZ, C.,
GÜRSES, S., PIESSENS, F., AND PRENEEL, B. Fpdetective:

dusting the web for fingerprinters. In Proceedings of the 2013
ACM SIGSAC conference on Computer & communications secu-
rity (2013), ACM, pp. 1129–1140.

[3] BODA, K. Firegloves.

[4] BODA, K., FÖLDES, Á. M., GULYÁS, G. G., AND IMRE,
S. User tracking on the web via cross-browser fingerprinting.
In Nordic Conference on Secure IT Systems (2011), Springer,
pp. 31–46.

[5] BOJINOV, H., MICHALEVSKY, Y., NAKIBLY, G., AND BONEH,
D. Mobile device identification via sensor fingerprinting. arXiv
preprint arXiv:1408.1416 (2014).

[6] CAO, Y., LI, S., AND WIJMANS, E. (cross-)browser fingerprint-
ing via os and hardware level features. In NDSS (2017).

[7] DEY, S., ROY, N., XU, W., CHOUDHURY, R. R., AND
NELAKUDITI, S. Accelprint: Imperfections of accelerometers
make smartphones trackable. In NDSS (2014).

[8] DOTY, N. Re: Comments/Questions on Media Cap-
ture Streams âĂŞ Privacy and Security Considera-
tions. https://lists.w3.org/Archives/Public/public-
privacy/2015OctDec/0028.html, 2015.

[9] ECKERSLEY, P. How unique is your web browser? In Inter-
national Symposium on Privacy Enhancing Technologies Sympo-
sium (2010), Springer, pp. 1–18.

[10] ELECTRONIC FRONTIER FOUNDATION. Privacy Badger. https:
//www.eff.org/privacybadger, 2017.

[11] EMARKETER. US Ad Spending: The eMarketer Fore-
cast for 2017. https://www.emarketer.com/Report/US-
Ad-Spending-eMarketer-Forecast-2017/2001998, March
2017.

[12] ENGLEHARDT, S., AND NARAYANAN, A. Online tracking: A
1-million-site measurement and analysis. In Proceedings of the
2016 ACM SIGSAC Conference on Computer and Communica-
tions Security (2016), ACM, pp. 1388–1401.

[13] FELTEN, E. W., AND SCHNEIDER, M. A. Timing attacks on
web privacy. In Proceedings of the 7th ACM conference on Com-
puter and communications security (2000), ACM, pp. 25–32.

[14] GHOSTERY. Cleaner, faster, and safer browsing. https://www.
ghostery.com/, 2017.

[15] GOOGLE CHROME. Background Tabs in Chrome 57.
https://developers.google.com/web/updates/2017/
03/background_tabs, 2017.

[16] GOOGLE CHROME. Manifest - Web Accessible Resources.
https://developer.chrome.com/extensions/manifest/
web_accessible_resources, 2017.

[17] KETTLE, J. Sparse bruteforce addon detection. http:
//www.skeletonscribe.net/2011/07/sparse-bruteforce-
addon-scanner.html, 2011.

[18] KOTOWICZ, K. Intro to Chrome addons hacking: fingerprint-
ing. http://blog.kotowicz.net/2012/02/intro-to-chrome-
addons-hacking.html, 2012.

[19] KRISHNAMURTHY, B., AND WILLS, C. Privacy diffusion on the
web: a longitudinal perspective. In Proceedings of the 18th inter-
national conference on World wide web (2009), ACM, pp. 541–
550.

[20] LIBERT, T. Exposing the invisible web: An analysis of third-
party HTTP requests on 1 million websites. International Journal
of Communication 9 (2015), 18.

[21] MARIÉ, D. Chrome Extensions Archive. https://crx.dam.io/,
2017.

[22] MAYER, J. R. Any person... a pamphleteerâĂİ: Internet
anonymity in the age of web 2.0. Undergraduate Senior Thesis,
Princeton University (2009).

[23] MAYER, J. R., AND MITCHELL, J. C. Third-party web tracking:
Policy and technology. In Security and Privacy (SP), 2012 IEEE
Symposium on (2012), IEEE, pp. 413–427.

[24] MCDONALD, A. M., AND CRANOR, L. F. A survey of the use
of adobe flash local shared objects to respawn http cookies. ISJLP
7 (2011), 639.

[25] MIAGKOV, A. Chameleon. https://github.com/
ghostwords/chameleon, 2017.

[26] MOWERY, K., BOGENREIF, D., YILEK, S., AND SHACHAM, H.
Fingerprinting information in javascript implementations. Pro-
ceedings of W2SP 2 (2011), 180–193.

[27] MOWERY, K., AND SHACHAM, H. Pixel perfect: Fingerprinting
canvas in html5. Proceedings of W2SP (2012), 1–12.

[28] MOZILLA DEVELOPER NETWORK. ArrayBuffer.
https://developer.mozilla.org/en-US/docs/Web/
JavaScript/Reference/Global_Objects/ArrayBuffer,
2017.

[29] MOZILLA DEVELOPER NETWORK. IndexedDB API.
https://developer.mozilla.org/en/docs/Web/API/
IndexedDB_API, 2017.

[30] MOZILLA DEVELOPER NETWORK (MDN).
web_accessible_resources. https://developer.mozilla.
org/en-US/Add-ons/WebExtensions/manifest.json/
web_accessible_resources, 2017.

[31] MULAZZANI, M., RESCHL, P., HUBER, M., LEITHNER, M.,
SCHRITTWIESER, S., WEIPPL, E., AND WIEN, F. Fast and reli-
able browser identification with javascript engine fingerprinting.
In Web 2.0 Workshop on Security and Privacy (W2SP) (2013),
vol. 5.

[32] NIKIFORAKIS, N., JOOSEN, W., AND LIVSHITS, B. Privarica-
tor: Deceiving fingerprinters with little white lies. In Proceedings
of the 24th International Conference on World Wide Web (2015),
ACM, pp. 820–830.

[33] NIKIFORAKIS, N., KAPRAVELOS, A., JOOSEN, W., KRUEGEL,
C., PIESSENS, F., AND VIGNA, G. Cookieless monster: Explor-
ing the ecosystem of web-based device fingerprinting. In Secu-
rity and privacy (SP), 2013 IEEE symposium on (2013), IEEE,
pp. 541–555.

[34] PERRY, M., CLARK, E., MURDOCH, S., AND KOPPEN, G. The
design and implementation of the Tor Browser. https://www.
torproject.org/projects/torbrowser/design/, 2017.

[35] RISTENPART, T., TROMER, E., SHACHAM, H., AND SAVAGE,
S. Hey, you, get off of my cloud: exploring information leakage
in third-party compute clouds. In Proceedings of the 16th ACM
conference on Computer and communications security (2009),
ACM, pp. 199–212.

[36] ROESNER, F., KOHNO, T., AND WETHERALL, D. Detect-
ing and defending against third-party tracking on the web. In
Proceedings of the 9th USENIX conference on Networked Sys-
tems Design and Implementation (2012), USENIX Association,
pp. 12–12.

[37] SCHWARZ, M., MAURICE, C., GRUSS, D., AND MANGARD,
S. Fantastic Timers and Where to Find Them: High-Resolution
Microarchitectural Attacks in JavaScript.

[38] SJÖSTEN, A., VAN ACKER, S., AND SABELFELD, A. Discover-
ing browser extensions via web accessible resources. In Proceed-
ings of the Seventh ACM on Conference on Data and Application
Security and Privacy (2017), ACM, pp. 329–336.

[39] STAROV, O., AND NIKIFORAKIS, N. Xhound: Quantifying the
fingerprintability of browser extensions.

[40] VAN GOETHEM, T., JOOSEN, W., AND NIKIFORAKIS, N. The
clock is still ticking: Timing attacks in the modern web. In Pro-
ceedings of the 22nd ACM SIGSAC Conference on Computer and
Communications Security (2015), ACM, pp. 1382–1393.

[41] WILLIAMS, B. Adblock Plus and (a little) more.
https://adblockplus.org/blog/decadblock-adblock-

plus-turns-10, 2016.

