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Abstract
The Web is replete with tutorial-style content on how to
accomplish programming tasks. Unfortunately, even top-
ranked tutorials suffer from severe security vulnerabil-
ities, such as cross-site scripting (XSS), and SQL injec-
tion (SQLi). Assuming that these tutorials influence real-
world software development, we hypothesize that code
snippets from popular tutorials can be used to bootstrap
vulnerability discovery at scale. To validate our hypothe-
sis, we propose a semi-automated approach to find recur-
ring vulnerabilities starting from a handful of top-ranked
tutorials that contain vulnerable code snippets. We eval-
uate our approach by performing an analysis of tens of
thousands of open-source web applications to check if
vulnerabilities originating in the selected tutorials recur.
Our analysis framework has been running on a standard
PC, analyzed 64,415 PHP codebases hosted on GitHub
thus far, and found a total of 117 vulnerabilities that have
a strong syntactic similarity to vulnerable code snippets
present in popular tutorials. In addition to shedding light
on the anecdotal belief that programmers reuse web tuto-
rial code in an ad hoc manner, our study finds disconcert-
ing evidence of insufficiently reviewed tutorials compro-
mising the security of open-source projects. Moreover,
our findings testify to the feasibility of large-scale vul-
nerability discovery using poorly written tutorials as a
starting point.

1 Introduction

Programming aids such as web tutorials and Q&A web-
sites are popular with novice and expert programmers
alike. To what extent, and how these aids influence the
quality of real-world software remains an open ques-
tion. On the one hand, popular Q&A websites, such as
stackoverflow.com, have an in-built reputation sys-
tem where correct advice gets up-voted through a con-
sensus. Hence, a common expectation is that commu-
nity-driven websites weed out bad coding suggestions.

On the other hand, the Web is replete with tutorial-style
webpages that simply present curated snippets of code
that accomplish a task. Most tutorials omit a discussion
about API quirks or the security-impact a code snippet
might have. It is not surprising, therefore, that the pre-
sented code snippets suffer from basic security vulnera-
bilities.

The connection between tutorials and vulnerabilities
in real-world code is largely unknown. Although previ-
ous studies [9, 16, 29, 36] have shown that copy-pasted
code can lead to recurring vulnerabilities, these stud-
ies have only considered instances of copy-pasted code
within a codebase. We seek to generalize this result by
asserting that, like code snippets originating in the same
codebase, popular programming resources on the Web
constitute a major source of documentation that is regu-
larly consulted by developers and often introduces vul-
nerabilities into software.

Based on our assertion, we hypothesize that vulner-
ability discovery can be seeded by code snippets such
as those found in top-ranked tutorials. Viewed from an
adversarial standpoint, we present a novel approach for
bootstrapping vulnerability discovery at scale. Our main
intuition is that recurring vulnerabilities can be found
by recognizing, and subsequently looking for patterns in
code that correspond to the original vulnerability. We
refer to instances of these patterns as code analogues
throughout the rest of the paper. Our expectation is that
if such a pattern recurs, so will the corresponding vul-
nerability. To identify code analogues, we automatically
generate graph traversals, which can be used to mine
code for these analogues using graph databases. Each
graph traversal is derived from normalized fragments of
a code snippet’s abstract syntax tree (AST), augmented
with data-flow information. These graph traversals thus
express syntactic properties of the original tutorial code.

Our workflow for finding recurring vulnerabilities
consists of two steps. First, we automatically translate
vulnerable code snippets into graph traversals, which
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Figure 1: Workflow for finding recurring vulnerabilities.

concretize our expectations of code that constitutes an
analogue. Second, we serialize a codebase under analy-
sis into a graph database and employ the automatically
generated traversals to search the database for analogue
occurrences. As a result, we obtain a set of locations in
application source code that bear a strong syntactic re-
semblance to vulnerable code snippets.

An empirical evaluation of our approach, on a data set
of 64,415 web applications, shows that an adversary with
access to a standard PC and a DSL broadband connec-
tion can leverage our techniques to efficiently discover
recurring vulnerabilities in web application code (Sec-
tion 3). Although AST is a fundamental construct for
any programming language, we prototype our analysis
framework for analyzing applications written in PHP, the
most widely deployed server side scripting language to
date [33]. Our analysis framework accepts vulnerable
(tutorial) code snippets as input, and returns its analogues
in a target PHP codebase. Since our analysis can not
guarantee that the returned analogues are also vulnera-
ble, we manually review them. Manual review has also
been useful in teasing out the connection insecure tuto-
rials and web application vulnerabilities. Thanks to our
framework, we have uncovered over 100 vulnerabilities
in web application code that bear a strong resemblance to
vulnerable code patterns found in popular tutorials. More
alarmingly, we have confirmed that 8 instances of a SQLi
vulnerability present in different web applications are an
outcome of code copied from a single vulnerable tuto-
rial. Our results indicate that there is a substantial, if not
causal, link between insecure tutorials and web applica-
tion vulnerabilities.

In summary, we make the following contributions:

• We present a novel approach for bootstrapping
large-scale vulnerability discovery, namely, lever-
aging flawed tutorial code to seed vulnerability
search in application code. We evaluate this ap-
proach using a proof-of-concept framework that
finds recurring vulnerabilities in PHP application
code hosted on GitHub.

• We propose a computationally efficient method to
search for recurring vulnerabilities. We translate

vulnerable snippets of code into graph traversals to
identify code analogues in a program abstraction.

• We show that large-scale vulnerability scanning of
publicly available open-source repositories is feasi-
ble, even with limited resources such as a standard
PC and a broadband DSL connection.

• Finally, our results give credence to the widely
known anecdote that programmers copy and paste
code from vulnerable tutorials. Our case study, in-
volving 64,415 PHP projects hosted on GitHub, in-
dicates that such ad hoc code re-use may endanger
the security of software throughout the open-source
landscape.

Our tools GithubSpider, and CADetector are available
at https://github.com/tommiu/GithubSpider and
https://github.com/tommiu/ccdetection respec-
tively.

2 Methodology

In this study, we take on an attacker’s perspective and de-
sign our method such that it allows for semi-automated
discovery of recurring vulnerabilities without requiring
special access to a hosting platform or considerable com-
putational resources. Figure 1 illustrates our workflow,
that we briefly describe in the following paragraphs.

1. Derivation of templates from tutorials. We ex-
tract templates from vulnerable code snippets con-
tained in tutorials. These templates represent syn-
tactical properties of the vulnerable code as well as
information about data flow (Section 2.1).

2. Generating traversals from templates. We lever-
age templates to automatically generate traversals
for a graph-based code mining system. Graph
traversals enable us to scan large amounts of code
for analogues of these vulnerable snippets in a com-
putationally efficient manner (Section 2.2).

3. Spidering code repositories. We automatically
collect a large data set of open-source code bases

https://github.com/tommiu/GithubSpider
https://github.com/tommiu/ccdetection


from a code hosting site, choosing GitHub as a rep-
resentative case study (Section 2.3).

4. Mining for vulnerabilities. Leveraging our anal-
ysis framework, we automatically mine the code of
our data set for instances of vulnerable tutorial snip-
pets. We manually cross-check if matches returned
by our analysis platform constitute vulnerabilities
(Section 2.4).

In the remainder of this section, we describe each of
these steps in greater detail providing background infor-
mation where necessary.

2.1 Derivation of Templates from Tutorials
Exact copies of vulnerable code snippets can be found
using string matching utilities such as the standard UNIX
tool grep. However, as programmers copy and paste
code from tutorials, they are likely to adapt it slightly,
for example, by changing the names of variables. There-
fore this naı̈ve approach fails in all but the most simple
cases. To account for slight modifications, we require
a method that is robust enough to identify sequences of
statements similar to those found in the tutorial in terms
of the operations they carry out on their input variables.
We refer to these re-occurrences of tutorial code as code
analogues, or simply analogues.

An elegant approach to address this problem is to ex-
tract intermediate graph representations from code that
represent syntax and data flow, and formulate syntactical
and data flow properties of the code snippet in terms of
traversals in these graphs [see 13, 30, 35]. These traver-
sals are formulated such that they succeed when the code
matches, and fail when it does not. Although these graph
traversals can be formulated manually, in this work, we
devise a two-step procedure to automatically generate
them from vulnerable snippets of code, making it pos-
sible to directly search for these snippets without addi-
tional manual work.

The first step of our procedure is to generate a tem-
plate that encodes syntax and data flow of the code snip-
pet that we attempt to scan for. To illustrate this pro-
cess, we consider the vulnerable code snippet shown in
Figure 2 taken from a popular PHP tutorial. The code
contains one SQLi, and one stored XSS vulnerability.
The SQLi vulnerability occurs on line 6 as the attacker-
controlled POST-variable $title is used in the construc-
tion of an SQL query without first undergoing sanitiza-
tion. The XSS vulnerability can be triggered on line 12,
and 13 where databases rows are inserted into the docu-
ment without escaping.

Two queries can be generated from the code snippet
shown in Figure 2: one to identify instances of the SQLi
vulnerability, and another for the XSS vulnerability. In

1 <?php
2 include "db.php";
3

4 $title=$_POST["title"];
5 $result=mysql_query("SELECT * FROM wp_posts where;
6 post_title like ’%$title%’
7 and post_status=’publish’");
8 $found=mysql_num_rows($result);
9

10 if($found>0){
11 while($row=mysql_fetch_array($result)){
12 echo "<li>$row[post_title]</br>
13 <a href=$row[guid]>$row[guid]</a></li>";
14 }
15 }else{
16 echo "<li>No Tutorial Found<li>";
17 }
18 // ajax search
19 ?>

Figure 2: Identified vulnerable tutorial, allowing for
SQLi (line 6), and XSS (line 11-12).

the following walk-through, we focus on the SQLi vul-
nerability, as highlighted in Figure 2.

We proceed to generate an AST of the vulnerable code
snippet, a standard tree-representation of program syn-
tax. ASTs provide a hierarchical decomposition of code
into its language elements. As an example, Figure 3(a)
shows the abstract syntax tree for the SQLi vulnerabil-
ity. In this tree, leaf nodes correspond to identifiers (e.g.,
$title), API symbols (e.g., mysql ...), or literals (e.g.,
SELECT), and inner nodes represent operations such as as-
signments, function calls, or array indexing operations.

To derive a template from an AST, we replace all
variables and literals by wildcard symbols and intro-
duce edges between nodes representing the same vari-
able. The template thus abstracts from concrete variable
names and strings, while preserving data flow between
variables. Figure 3(b) shows the corresponding template
for our running example. As indicated by the data flow
edges, the template enforces that there is a match if and
only if the variable occurring on the left-hand side of the
assignment in the first statement, and the variable appear-
ing as an argument in a function call in the next statement
are the same. An assignment to one variable, followed by
the use of a different variable in a function call does not
trigger a match, because there is no data flow between
them.

With templates for code snippets at hand, we are now
ready to generate graph traversals that allow code to be
mined for instances (analogues) of these snippets.

2.2 Generation of Traversals from Tem-
plates

Upon successful generation of a template for a vulnera-
ble code snippet, we transform the template into a corre-
sponding graph traversal. Although in principle, graph
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Figure 3: Abstract syntax tree and derived template for the example in Figure 2.

traversals can be formulated in any programming lan-
guage, the query language Gremlin [7] is specifically
designed for this purpose. Moreover, traversals formu-
lated in Gremlin can be executed on any graph database
system that supports the Blueprints standard [6], a com-
patibility layer for graph databases similar to JDBC for
relational databases.

For a given template, we generate a traversal that iden-
tifies ASTs with (1) the same node types, (2) in the same
order, and (3) nested in the same way. Moreover, the
traversal succeeds only if data flow between statements
is in correspondence with the data-flow edges of the tem-
plate.

In essence, the AST structure is encoded by formu-
lating chains of filter operations that succeed only if the
desired node types can be matched. To account for data
flow, the names of variables are stored as the AST is
traversed, and filtering is performed to ensure that the
correct variable names occur throughout the tree. Algo-
rithm 1 describes this process in detail. Each child node

of the template is converted into a traversal via the re-
cursive function ConvertNode, and prepareNode adds
code to traverse to the next child node.

As an example, Figure 4 shows the traversal generated
by this procedure for the vulnerable code snippet in Fig-
ure 2. For all nodes in the AST, the traversal attempts to
match the left subtree, the subtree in the middle, and the
right subtree starting at lines 4, 20, and 37 respectively.
Subtrees are matched by applying chains of filter expres-
sions. For instance, to match the left-most subtree con-
sisting of an assignment with a variable as a child node,
the traversal first attempts to match an assignment, and,
on success, determines whether the child node is a vari-
able node using a subsequent filter (see lines 4 and 5). Fi-
nally, lightweight data-flow tracking is implemented by
storing the names of variables as they are first encoun-
tered (e.g., on line 8), and filtering based on these names
(e.g., line 38).

The generated traversals implement a computation-
ally efficient code analogue detection. For classic code



Algorithm 1 Pseudocode for translating templates into
graph traversals.

1: function TRAVERSAL(template)
2: t = /0
3: for each child of template do
4: t += convertNode(child)
5: t += prepareNextSubtree()

return t
6:
7: function CONVERTNODE(child)
8: t = /0
9: . Ensure correct node-type

10: t+= filter{ ”node.type == child.type” }
11: if node.type == ”VAR” then
12: if variable with name has been used before

then
13: t += filter { ”this node’s name == name”
}

14: else
15: t += sideEffect { Remember the variable
}

16: for each child node of child do
17: t += convertNode(child node)

return t
18:
19: function PREPARENEXTSUBTREE
20: return { traverse next child }

clone detection tools, the comparison of every subtree
of a given AST of N nodes with every subtree of the
same AST costs O(N3) and can become O(N4) when
also comparing sequences of trees. Since empirically,
a large software system of M lines of code has N = 10M
AST nodes, this AST-based approach suffers a hard scal-
ing problem. There is a solution to this runtime cost,
which involves comparing hashes of AST subtrees in-
stead of the AST subtrees themselves. Then, the runtime
becomes O(N) [see 3]. However, hashing subtrees will
not work with our approach.

In our approach, we are comparing a given source
AST S of N nodes, obtained from a tutorial, with a target
AST T of M nodes, which is the code base that should
be scanned for code analogues of S. Therefore, N is
much smaller than M. For this approach, the runtime
is much smaller. More formally, our algorithm starts out
with comparing the first node in N with every node in M,
until it finds one that is equal. This costs O(M). Then,
it will compare the other nodes as well, until all nodes
in S were matched successfully in T . Therefore, when a
code analogue is found, we did N comparisons to match
it. For subtrees that are not analogues of S, we do 1 to
N−1 comparisons. This cost is O(N). In the worst case,
this entails a full check that costs O(N) for every node

1 g.V.sideEffect{ childnumber = 0 }
2

3 // Left subtree
4 .filter{ isType(it, "ASSIGN") }
5 .filter{ isType(it.ithChildren(0), "VAR") }
6

7 // Remember variable "title"
8 .sideEffect{ _title =
9 it.ithChildren(0).varToName().next()}

10 .filter{ isType(it.ithChildren(1), "DIM") }
11 .filter{ isType(it.ithChildren(1).ithChildren(0),
12 "VAR") }
13 .sideEffect{ childnumber = it.childnum }
14 .sideEffect{ childnumber = childnumber + 1 }
15

16 .parents().children().filter{
17 it.childnum == childnumber }
18

19 // Subtree in the middle
20 .filter{ isType(it, "ASSIGN") }
21 .filter{ isType(it.ithChildren(0), "VAR") }
22

23 // Remember variable "result"
24 .sideEffect{ _result =
25 it.ithChildren(0).varToName().next()}
26 .filter{ isType(it.ithChildren(1), "CALL") }
27 .filter{ isType(it.ithChildren(1)
28 .ithChildren(0), "NAME") }
29 .filter{ isType(it.ithChildren(1)
30 .ithChildren(1), "ARG_LIST") }
31 ...
32

33 .sideEffect{ childnumber = it.childnum }
34 .sideEffect{ childnumber = childnumber + 1 }
35

36 // Right subtree
37 .parents().children()
38 .filter{ it.childnum == childnumber }
39 .filter{ isType(it, "ASSIGN") }
40 .filter{ isType(it.ithChildren(0), "VAR") }
41

42 // Remember variable "found"
43 .sideEffect{ _found =
44 it.ithChildren(0).varToName().next()}
45 .filter{ isType(it.ithChildren(1), "CALL") }
46 .filter{ isType(
47 it.ithChildren(1).ithChildren(0), "NAME") }
48 .filter{ isType(it.ithChildren(1)
49 .ithChildren(1), "ARG_LIST") }
50 ...

Figure 4: Generated traversal for the code snippet in Fig-
ure 2.

in T . Thus, the complexity of our approach is O(NM),or
for cases where N�M holds, O(M).

Our algorithm can benefit from knowledge about the
depth of nodes. Let d(x) denote the depth of a node
x, then, comparisons beyond an AST depth of d(T )−
d(S)+ 1 can be safely avoided, given that nodes at the
depth cannot contain the AST S. However, we typically
make use of small vulnerable code snippets (N�M), for
which the saving in computational cost is marginal.

Translation of tutorial templates into graph traver-
sals provides us a means to mine large amounts of
open-source code for recurring vulnerabilities. Since
we assume that the attacker is not an insider (who can
stealthily plug our analyses into the back-end of a host-
ing platform), analysis impinges on the attacker being
able to download a project’s source code. To this end,



we have implemented a tool called GithubSpider to fa-
cilitate code crawling at scale. In the next section, we
briefly discuss its design and implementation.

2.3 Spidering Code Repositories
We make a conservative estimate of computing resources
that an attacker has at his/her disposal. We assume that
an attacker has access to a modest computing device such
as a standard PC, and a DSL broadband connection. Our
threat model lowers the barrier to entry for performing
vulnerability discovery at scale. Additionally, we assume
that the attacker makes every effort to be stealthy. In the
context of code spidering, this implies that rate limits im-
posed by a hosting service cannot be abused. Thus, we
are constrained to spider at a modest speed. The con-
straints that we impose on the attacker make our tooling
and analysis operate in a real-world setting. Understand-
ing whether an attacker, in spite of these constraints, can
use our techniques to find vulnerabilities in open-source
code is part of our research question.

Although multiple code hosting platforms provide
APIs that could be used for spidering, we focus on
GitHub in our case study. GitHub is the most popu-
lar open-source collaboration platform, hosting approx-
imately 10.3 million developers, and over 25 million
projects [10]. In addition to code, GitHub maintains
meta-data such as a project’s language, creation time,
popularity (stars and forks), and total code size.

Our spidering tool, GithubSpider, uses GitHub’s
REST API to obtain project meta-data for a large num-
ber of projects. GithubSpider is designed to be gen-
eral purpose: It obtains project meta-data and applies
user-defined filters to them, providing the flexibility re-
quired to spider code repository classes of interest. Thus,
GithubSpider can be leveraged towards analysis of a dif-
ferent family of codebases, say C/C++ code. We lever-
age GithubSpider to crawl projects written in the PHP
language. Additionally, we filter projects based on their
popularity. We gauge a project’s popularity by the num-
ber of stars1 it has received. After narrowing down
projects of interest, we leverage GitHubspider to clone
(download) projects and their revision history (see Sec-
tion 3.3).

2.4 Mining for Vulnerabilities
Finally, we automatically mine the downloaded code
repositories using the traversals generated from vulner-
able code snippets (see Section 2.2). We achieve this
by importing the code into the code-mining platform Jo-
ern [35]. Joern first parses source files to generate ASTs,
and subsequently imports the ASTs into a Neo4j graph

1A GitHub user can express interest in a repository by starring it.

Algorithm 2 Algorithm to find code analogues using
graph traversals.

1: procedure MINECODE(repositories, queries)
2: for each repository in respositories do
3: create ASTs for repository
4: import ASTs into graph database and start

server
5: for each query in queries do
6: run query against database server
7: save statistical data
8: save code clone data
9: stop graph database server

database, which allows us to efficiently execute graph
traversals and collect statistical data about our analysis.

Scanning the large number of projects obtained from
our spider in an acceptable time frame is challenging
task, as graph matching needs to be performed on all
ASTs of all retrieved code bases. Fortunately, projects
can be processed independently, and therefore, we can
distribute scanning across several processes running in
parallel by splitting spidered repositories into groups.
This task can also be carried out in a distributed setting.

For a given set of queries and a group of reposito-
ries, Algorithm 2 summarizes the scanning process that
we carry out. For each repository, the algorithm cre-
ates ASTs for each of its source files and imports them
into the graph database. The graph database server is
subsequently started, each query is executed against the
databases, and statistical data such as query execution
time is collected. Upon running all queries on a project,
the graph database server is stopped.

We have implemented the presented algorithm in a
tool, that we call CADetector, short for code analogue
detector. CADetector takes automatically generated
queries (Gremlin traversals), and a PHP project for anal-
ysis as input, and returns matching code as output. Code
analogues are presented to a human analyst for review. In
the next section, we present our evaluation methodology
and results.

3 Evaluation

Our evaluation follows a two-step process. First, we se-
lect a handful of vulnerable code snippets, obtained from
top-ranked PHP tutorials, to seed our study. Second, if
we find a match for a vulnerable snippet in our data set
as a result of our analysis, we flag it for manual review.
Based on this two-step process, we have performed ex-
tensive evaluation of our analysis framework. Our anal-
ysis data set consists of 64,415 PHP codebases that have
been downloaded using GitHubSpider. To gauge its fea-



1 <?php
2 // Check for existing user with the new id
3

4 $sql = "SELECT COUNT(*) FROM user WHERE
5 userid = ’$_POST[newid]’";
6 $result = mysql_query($sql);
7 if (!$result) {
8 error(’A database error occurred in
9 processing your submission.\nIf this

10 error persists, please contact
11 you<at>example.com.’);
12 }
13 if (mysql_result($result,0,0)>0) {
14 error(’A user already exists with your chosen
15 userid.\n. Please try another.’);
16 }
17 ?>

Figure 5: Vulnerable code snippet from tutorial, con-
taining a SQL injection vulnerability between lines 4–6
(slice).

sibility, we have run our analysis against the top 10 PHP
codebases on GitHub, in addition to the codebases in our
data set. The following paragraphs describe how seeds
were obtained and queries generated (Section 3.1), the
nature of the analysis data set (3.3), and our analysis re-
sults (3.4).

3.1 Identification of Vulnerable Tutorials
To identify widely read tutorials, we query the Google
search engine using the following set of terms.

"mysql tutorial"

"php database user"

"php mysql user query"

"php search form"

"php ajax search tutorial"

"javascript echo user input"

For each of these search terms, we manually review
the first five results returned by the search engine. We
evaluate each of the tutorials for SQLi and XSS vulner-
abilities by following established secure programming
guidelines by the Open Web Application Security Project
(OWASP), namely, the guide on Reviewing Code for SQL
Injection [14], and the Cross Site Scripting Prevention
Cheat Sheat [28]. Among the top five results (30 in to-
tal), we find 9 tutorials that contain vulnerable code: 6
tutorials with SQLi, and 3 tutorials with XSS. A snippet
from a representative tutorial containing both SQLi and
XSS vulnerabilities is shown in Figure 2.

3.2 Query Generation
We expect copy-pasted code from vulnerable tutorials

to result in recurring vulnerabilities in application code.
A more subtle manner in which recurring vulnerabili-
ties may manifest themselves is when developers follow

the same (vulnerable) programming idiom(s) presented
by a tutorial. To cater to both possibilities, we gener-
ate queries using an exact replica of code present in a
tutorial (normal query), and a slice of the tutorial code
containing the vulnerability (strict query). A strict query
abstracts only the vulnerable slice of code, whereas a
normal query abstracts the entire tutorial. We use strict
queries to identify known vulnerable patterns in web ap-
plications, and normal queries to identify code analogues
of tutorial code. Figure 5 illustrates the difference be-
tween code snippets used for generating normal, and
strict queries. Entire tutorial code is shown in the list-
ing with the vulnerable slice highlighted in red. Lines
4–6 of the tutorial contain a classic SQLi vulnerability:
Unsanitized user-input from a POST variable is used in a
MySQL query. The vulnerable slice contains only these
lines, which represents the minimal working snippet con-
taining the vulnerability.

3.3 Analysis Data-set
We leverage GitHub to obtain a large data set of web
applications for analysis. GitHub hosts over 25 mil-
lion projects written in several programming languages.
Thus, we filter content (PHP projects) that is relevant to
us. Our crawler inspects project metadata (accessible via
REST API) to perform the filtering. GihubSpider, our
code crawler implementation, has filtered through a to-
tal of 462,069 PHP repositories on GitHub. Of these,
we have downloaded a total of 64,415 PHP codebases
for analysis. These codebases comprise our analysis data
set.

We divide our data set into three groups by popularity.
We quantify the popularity of a codebase by the number
of times it has been starred by users on GitHub. Our
classification results in the following data set partitions:

1. Barely known projects (Not popular). 42,064
projects that are starred at most three times and have
a total file size of less than 3 MB.

2. Projects known by several people (Popular).
16,037 projects that are starred at least four times,
but at most nine times, and have a total file size of
less than 3 MB.

3. Popular projects (Very popular). 6,314 projects
that are starred at least ten times and have a total
file size of less than 3 MB.

GitHub imposes a rate limit of 5000 API requests per
authenticated user per hour. The imposed rate limit
proved to be the main bottleneck in downloading repos-
itories. Although using multiple authenticated accounts
for crawling is a simple workaround for removing the
bottleneck, we stayed clear of it.



Data set Size Code
ana-
logues

Vulnerabilities

(percentage)

Not popular 42,064 269 80 (29.74%)
Popular 16,037 528 35 (6.63%)
Very popular 6,314 23 2 (8.7%)

Total 64,415 820 117 (14.27%)

Table 1: Analysis summary for codebases in our data set.
In total, 820 code analogues were found which included
117 recurring vulnerabilities. The table shows a break
down of our findings in each data set partition.

3.4 Analysis Results

We used auto-generated graph traversals (queries) to
mine for analogues in our analysis data set. Discovered
analogues were manually reviewed, and vulnerable ana-
logues identified. Table 1 shows an overview of the ana-
logues, and vulnerabilities discovered by our analyses.
With under two dozen graph traversals generated from
a handful of vulnerable tutorials, we obtained 820 code
analogues of which 117 were found to be vulnerable. We
found that string normalization in the AST resulted in
non-exact matches. For instance, a query generated from
the code snippet $var = $ GET[’var’] matched not
only its replica but also a seemingly benign snippet such
as $var = $value[’id’]. Thus, matches returned by
the traversals had to be manually validated. In spite of
string normalization, we found that automatically gener-
ated queries result in interesting corner cases. Among
non popular codebases, roughly 1 out of 3 code ana-
logues is vulnerable, and on average 1 out of 7 analogues
is vulnerable across the entire data set. Analogues are
localized to a small portion of application code, which
facilitates manual review of all candidates returned by
our analyzer.

Newly discovered vulnerabilities We manually veri-
fied a total of 117 vulnerabilities in our data set. Of these,
8 vulnerabilities were replicas of code from a popular
SQL tutorial that we found on the first Google results
page. Although all of the 8 vulnerabilities were found
among non popular code repositories, the finding shows
that ad-hoc code reuse is a reality. We are in the process
of notifying the tutorial authors about our findings. Our
hope is that the presented vulnerabilities are fixed in a
timely manner, so that developers borrowing code from
these tutorials in the future will not inherit the same vul-
nerabilities in their code.

1 // SQL injection vulnerability
2 $questionQuery = "SELECT * FROM Questions
3 WHERE AssnID=’$_GET[AssnID]’";
4 $questionResult = mysql_query($questionQuery);

1 // Path-traversal vulnerability
2 $filename = "signatures/{$_GET[’id’]}.png";
3 $handle = fopen($filename, "r");

1 // Potential SQL injection vulnerability
2 $oldBusSeats = "SELECT businessseats FROM flight
3 WHERE flightNo = $flight[0]";
4 $busseats = mysql_query($oldBusSeats);

Figure 6: The figure shows three analogues returned by
CADetector that match the traversal generated for the
vulnerable slice in Figure 5. Although we expected to
find only SQLi vulnerabilities, we also uncovered a path-
traversal vulnerability that matched our query template.

80% of the discovered vulnerabilities were SQLi vul-
nerabilities, and the rest were XSS, and path-traversal
vulnerabilities. As shown in Table 1, the proportion
of vulnerable codebases is higher among low popular-
ity codebases, compared to medium and high popularity
codebases. During manual review, we found a plausi-
ble explanation for this disparity in vulnerability density:
PHP applications in the moderate and high popularity
categories make consistent use of newer, and more se-
cure, MySQL APIs in PHP which are not vulnerable to
classic (first-order) SQLi attacks. We found that use of
the PDO MySQL interface [31], and the MySQLi exten-
sion [32] was widespread among these codebases.

3.5 Discussion

Manual review of the code analogues and vulnerabil-
ities returned by our analysis framework suggests that,
graph traversals are very good at eliciting vulnerable
snippets in a large amount of code. Firstly, our approach
ensures that the code analogues that we find are small
snippets of code, typically spanning under 10 lines of
code in our dataset. Figure 6 shows three code analogues
returned by CADetector for a query originating from the
vulnerable code snippet in Figure 5. All three analogues
span two lines of code and can be quickly assessed by a
human analyst.

Secondly, we find that the abstraction that we choose
(AST augmented with data-flow information) is robust.
For example, we discovered a path-traversal vulnerabil-
ity in the process of mining a codebase using a SQLi
query. Indeed, both vulnerabilities share the same syn-
tactic structure of code: A tainted PHP variable is used in
a security-sensitive PHP function call (mysql query and
fopen). However, since our abstraction does not con-
vey information about taintedness of data, our analysis
returns analogues where vulnerabilities may need to be



manually verified. The third analogue shown in Figure 6
serves as a demonstrative example. The analogue con-
tains a potential SQLi vulnerability. It is vulnerable if
the PHP variable $flight reads from a tainted variable
(say, an attacker-controlled $ POST variable). This needs
to be manually verified in our setup.

Analysis runtime Our timing measurements showed
that our analysis is fast for even relatively large code-
bases. For the top 10 PHP code repositories on GitHub,
CADetector analysis runtime varies between 19 seconds
(for the laravel project, 777 lines of code) and 53 minutes
(for symfony, 209 thousand lines of code). Our evalua-
tions suggest that CADetector is a fast analogue detec-
tor for codebases with hundreds of thousands of lines of
code and above.

4 Related Work

Our work touches upon two distinct problems: finding
similar code, and flagging vulnerabilities in source code.
In the following, we contextualize our work in both
domains.

Code clone detection Despite modern software de-
sign processes and state of the art programming environ-
ments, real-world software development accommodates
ad-hoc code re-use. In their seminal work on code clone
detection, Baxter et al. [3], citing earlier work [1, 25],
state that 5-10% of source code is duplicated in large
software projects. The initial motivation for code clone
detection was that ridding software of seemingly redun-
dant code might achieve a performance gain. Thus, tra-
ditional code clone detection tools seek code replicas in
a single codebase, or a set of codebases with the same
provenance. This has guided the design of several code
clone detection tools [2–5, 8, 15, 17, 18, 20, 21, 21–
24, 26, 27].

Recent research [16, 29] has shown that code clones
pose a more serious threat: Vulnerabilities in cloned code
get propagated but their fixes do not. ReDeBug [16]
flags unpatched code clones by finding replicas of a
known vulnerable snippet in an OS distribution. Like
earlier proposals on code clone detection, ReDeBug flags
clones within codebases of similar provenance, because
of which it may look for exact matches. In contrast,
we cannot always expect to find borrowed code from an
external source as is: Developers typically adapt tuto-
rial code for their own end. This subtle difference pre-
cludes the use of hashing functions to measure similarity
of code in our work. Instead, our queries attempt to rec-
ognize the structure of vulnerable code.

Yamaguchi et al. [36] propose a machine-learning
based method for extrapolating (i.e., finding other in-
stances of) known vulnerable code patterns that are man-
ually specified. Our work is closer to theirs in that we
employ structural code fragments (such as AST frag-
ments) to drive the search for vulnerabilities. Having said
that, a notable difference is that Yamaguchi et al. per-
form computations on a code abstraction (specifically, a
vector space). In our work, the query for a similar code
snippet is concretized in the form of graph traversals.
Moreover, we automatically generate vulnerability pat-
terns from code snippets.

Vulnerability discovery Since we use static program
analysis in discovering vulnerabilities, we shall restrict
our discussion to prior work in this domain. The dynamic
nature of web programming languages, such as PHP and
JavaScript, has made static analysis of web applications
a challenging task. Researchers have approached vulner-
ability discovery in PHP code as a static taint analysis
problem: Detect the flow of untrusted user input into a
security sensitive sink. Pixy [19] is a static analysis tool
that flags XSS, and SQLi vulnerabilities in PHP code-
bases. In the same vein as Pixy, Xie et al. [34] present a
summary-based static analysis algorithm to discover se-
curity vulnerabilities in PHP code. Our proposal is not
another vulnerability scanner for PHP code. Rather, our
techniques provide a means to draw inferences about un-
safe coding practices among web application developers.
Considering that web applications are ultimately user-
facing programs that handle sensitive data, our study is
timely.

5 Limitations and Future Work

A limitation of our study is that our prototype restricts
the evaluation scope of recurring vulnerability detection
to PHP application code; that is, we cannot say that pro-
grammers employing other languages are similarly prone
to copying from tutorials. Moreover, we restrict our anal-
ysis to open-source code, and thus, the possibility exists
that the practice of copying from tutorials is particularly
prevalent in the open-source world and less common in
closed-source environments. Exploring these questions
is left for future work.

For the detection of code analogues, we employ an ap-
proach that allows the names of identifiers to be changed,
but is otherwise strict about the code it matches. For ex-
ample, if additional statements are introduced in between
statements of a seed, we do not detect the corresponding
code as a clone. This is a deliberate design choice. Al-
though it may result in the discovery of fewer tutorials,
the identified code is more similar to that contained in the



tutorial, and therefore, more likely to have been copied
from it.

Our approach—formulating graph traversal queries
from code snippets, and issuing these queries in a code
mining system—is generic enough to be decoupled from
the specifics of a programming language. Thus, our anal-
ysis techniques can be incorporated into existing code
analysis platforms such as Kythe [11], Joern [35], and
Frappé [12]. Systematically leveraging popular tutorial
content from the Web to seed vulnerability discovery is
an avenue for future research. For instance, portals such
as Google Trends can be queried to obtain high-value
seeds for vulnerability discovery.

6 Conclusion

Developers routinely consult programming resources as
software is written. Although formal documentation
such as language and API reference manuals provide de-
tailed guidance, tutorials on the Web are as easily avail-
able and are more succinct. The lure of quick action-
able advice makes tutorials an appealing reference for
developers. We find that tutorials are not only ubiquitous
on the Web but also very popular, consistently appear-
ing in the first Google results page. Several tutorials be-
tray a lack of understanding of secure coding practices
advocated by well-regarded online communities such as
OWASP. In our large-scale case study, we find over 100
vulnerable code snippets in application code that are syn-
tactically similar, and in 8 instances identical, to tutorial
code. These findings corroborate our hypothesis that vul-
nerable tutorials can be used to seed large-scale vulnera-
bility discovery. They also suggest that there is a pressing
need for code audit of widely consumed tutorials, per-
haps with as much rigor as for production code.

We show that the syntactic structure of code can be
used to infer similarities between code snippets of differ-
ent provenance. Because syntactic analysis is relatively
lightweight, it is fast enough to mine a large number of
differently-sized codebases for recurring vulnerabilities.
Our large-scale study is a testament to the efficiency of
our proposal. This also means that there is low barrier
to entry for performing vulnerability discovery at scale.
Even an adversary with access to modest computing re-
sources may be seen as direct threat to the security of
software in the large open-source landscape. Although
our study provides a single data point for an objective
assessment of both our adversarial strategy and the con-
nection between tutorials and real-world software, there
appears to be promise in the applicability of our tech-
niques to other application classes.
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