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Abstract

USB client device drivers are a haven for software bugs,
due to the sheer variety of devices and the tendency of
maintenance to slip as devices age. At the same time,
the high privilege level of drivers makes them a prime
target for exploitation. We present the design and imple-
mentation of POTUS, a system for automatically finding
vulnerabilities in USB device drivers for Linux, which is
based on fault injection, concurrency fuzzing, and sym-
bolic execution. Built on the S2E framework, POTUS
exercises the driver under test in a complete virtual ma-
chine. It includes a generic USB device that can imper-
sonate arbitrary devices and implements a symbolic fault
model. With our prototype implementation, we found
and confirmed two previously undiscovered zero-days in
the mainline Linux kernel. Furthermore, we show that
one of these vulnerabilities can lead to a data-only ex-
ploit affecting even hardened systems protected with the
latest software and hardware defenses.

1 Introduction
Device drivers are a critical part of any modern operat-
ing system (OS) due to their privileged access to hard-
ware and the OS kernel. At the same time, drivers are
challenging to maintain and keep bug free due to the
number of devices requiring support. As a result, device
drivers commonly contain many more bugs than other
parts of the kernel: in a classic study, 70% of Linux de-
vice drivers were reported to have an error rate three to
seven times higher than that of the core kernel [9].

Drivers for devices on the Universal Serial Bus (USB)
have recently received particular attention in the vulner-
ability research community [28, 15, 26, 22, 13]. The
plethora of USB devices and the widespread adoption of
the USB standard makes them a high value target; in par-
ticular, a working exploit against a USB device driver
can permit malware to spread to air-gapped devices.

Several mechanisms have been introduced to protect
against kernel-level exploits, but as long as bugs per-

sist in drivers, they pose a denial of service vulnerabil-
ity at best and a stepping stone for a multi-step exploit at
worst. A wide range of defense techniques are available
today, including Kernel Address Space Layout Random-
ization (KASLR), Data Execution Prevention (DEP), Re-
turn Address Protection (RAP) [24], System Mode Ex-
ecution Prevention (SMEP), System Mode Access Pre-
vention (SMAP), and Control Flow Integrity [11]. All of
these help raise the bar for developing a working exploit
but do not prevent attacks entirely.

The main avenues for eliminating bugs from device
drivers are testing and static analysis. Existing testing ap-
proaches for Linux mainly focus on the core USB mod-
ule (usbcore) instead of individual drivers. This includes
the USB test suite of the Linux Test Project [20] and
hardware-based approaches such as FaceDancer [15],
Teensy [4], and FrisbeeLite [12]. As any testing ap-
proach, these are incomplete, but the large number of
possible interactions between device and driver poses a
particular challenge. Coverity [3] is a mature static an-
alyzer that regularly scans the Linux kernel. However,
like other generic static analysis tools, it will miss bugs
that require knowledge about the runtime environment
and hardware, or that are based on complex and con-
current interactions between different components. In
fact, even though the Linux kernel, including its USB
device drivers, is regularly tested and statically analyzed,
we were able to find critical new vulnerabilities with the
approach presented in this paper.

We describe the concepts behind our tool POTUS
(probing off-the-shelf USB drivers with symbolic fault
injection) that focuses on finding deep bugs requiring
complex interaction with a matching hardware device.
We base the design of our tool on an attacker model of
a user with physical access to a USB port and guest user
privileges; a typical real-world scenario would be an at-
tacker plugging in a custom USB device while a user is
logged in (necessary commands can be typed by sending
keystrokes from the device masquerading as a keyboard).



We make the following contributions:

• We present a design for finding bugs in device
drivers by combining fault injection with concur-
rency fuzzing and symbolic execution. We employ
a search strategy prioritizing the exploration of rel-
evant faults, and we confirm its effectiveness with
two case studies where we found previously un-
known (zero-day) vulnerabilities in drivers part of
the standard Linux kernel.

• We introduce our method for simulating a vir-
tual USB device that allows testing arbitrary client
drivers. As it is built entirely as part of the QEMU
virtual machine [2], it is both operating system and
architecture agnostic. Our virtual device is capa-
ble of specifying most USB devices legal under the
USB specification [27] and can intentionally deviate
from it where necessary.

In the remainder of the paper, we provide technical
background (§2), introduce the design of POTUS (§3),
its implementation (§4), and present our findings about
vulnerabilities in Linux USB drivers (§5). Finally, we
discuss limitations (§6), contrast with related work (§7),
and conclude (§8).

2 Background
We start by giving a brief introduction to selective sym-
bolic execution (§2.1) and explaining some fundamental
concepts of USB and its support in Linux (§2.2).

2.1 Selective Symbolic Execution (S2E)

Symbolic execution is based on the idea of interpreting
a program on symbolic instead of concrete data and hav-
ing instructions manipulate symbolic expressions instead
of concrete values. This allows to express the values of
variables in terms of symbolic inputs at any point during
execution of the program. Conditional instructions are
interpreted by computing the symbolic expression for the
condition and forking the program state if both outcomes
are feasible, recording the outcome in the path condition.
Dynamic symbolic (also called concolic) execution ex-
tends this idea by also executing the program concretely
at the same time. Both suffer from path explosion, the
generally exponential growth in the number of paths in a
program.

Selective symbolic execution, a technique introduced
in S2E [8], reduces path explosion by switching be-
tween concrete and symbolic execution modes at mod-
ule boundaries. S2E uses QEMU [2] and KLEE [5] to
provide a symbolic virtual machine that allows to inject
symbolic data into arbitrary memory addresses. In S2E,
each code block (translation blocks from Jams Tiny Code
Generator) that manipulates symbolic data is compiled
to LLVM instructions and symbolically executed by the

KLEE symbolic execution engine. A plugin system al-
lows for interactions with the virtual machine and pro-
vides an interface to processes running in the guest.

2.2 USB

The USB specification supports a vast amount of fea-
tures, such as hotplugging, generic class drivers, multi-
master USB On-The-Go, and data and power transfer
modes. The protocol follows a master-slave design in
which a Host Controller Interface (HCI) communicates
with USB client devices—‘gadgets’ in the USB specifi-
cation terminology. USB HCIs implement the low-level
protocols of timings, packet scheduling, and signaling
for each version of the specification. This is abstracted to
Universal Request Blocks (URBs), which form the log-
ical basis of communication with gadgets. URBs con-
tain a device address to signify the device connected on
the bus and an endpoint to specify a channel to a device.
They can be one of four types:
• Control Transfers: device configuration and signal

control information;

• Bulk Transfers: large quantities of time-insensitive
data;

• Interrupt Transfers: small quantities of time-
sensitive data;

• Isochronous Transfers: real-time data at pre-
dictable bit-rates.

An endpoint provides an address and direction for
URB transfers from the perspective of the host. Control
transfers to endpoint 0 are special; all USB devices must
implement bi-directional (IN and OUT) communication
to this endpoint and it is used during device initialization.

USB in Linux The Linux kernel’s USB subsystem has
a modular design allowing new client device drivers to
easily interface with hardware [10]. The Linux kernel
maintains a kernel daemon thread called khubd, which is
responsible for monitoring any USB hubs by communi-
cating with the onboard HCI and configuring USB de-
vices. When a USB device is plugged into a machine,
the kernel enumerates the device’s capabilities and con-
figurations in a process called USB enumeration. In this
process, khubd is awoken by the main kernel thread upon
a new USB event being triggered via a Host Controller’s
hardware interrupts. The purpose of USB enumeration
is to iterate over its configuration descriptors to deter-
mine power output, associated endpoint addresses, trans-
fer types, speed, device class, etc.

Once enumeration is complete, the associated client
driver’s probe function is invoked with a reference to the
USB device and a USB client device driver can then com-
municate with the device through library functions in us-
bcore. Such communication requests are sent as URBs
to a HCI and forwarded on to the gadget.



Most Linux device drivers allow userspace processes
to access hardware through special files, e.g., a charac-
ter device, block device, socket, or named pipe. Typi-
cally this involves system calls on files located in devfs
or sysfs, which in turn call functions in kernel drivers.
For example, the driver for USB Mass Storage Devices
wraps a SCSI device around a USB device; file opera-
tions to its node under /dev/sd[a-zA-Z]{1-3} trigger
URB transfers to the corresponding USB device.

3 Design
We now introduce the design of POTUS. We start by ex-
plaining the underlying attacker model (§3.1) and then
give a high-level overview of its components (§3.2).

3.1 Attacker Model

Our approach implements an attacker model where the
adversary has a user account and physical access to USB
ports. A typical scenario would be a workplace environ-
ment in which an employee has access to a machine and
wants to achieve privilege escalation; or a visitor using a
brief moment to plug in a USB device that implements
both a human interface device to send keystrokes and a
device targeting an exploitable driver.

Following this intuition, our attacker model has sev-
eral degrees of freedom: first, it incorporates any possi-
ble interaction between devices and the operating sys-
tem, which allows to trigger the driver loading, de-
vice enumeration, and driver-device setup stages. This
dimension has been the focus of related work in the
area [19, 8, 26]. Second, our attacker model includes sys-
tem calls from usermode, i.e., the capability to interact
with files created by device drivers. In particular, our at-
tacker, as implemented in the driver exerciser, has the ca-
pability of (concurrently) performing system calls on file
descriptors that trigger execution paths within the device
driver. Third, our attacker model includes the ability to
influence scheduling and cause memory allocation fail-
ures, which an attacker can achieve in practice by placing
the CPU under load or exhausting memory.

3.2 System Overview

An overview of POTUS’s architecture is shown in Fig-
ure 1. POTUS builds on S2E (which in turn builds on
QEMU) to run a full guest OS in a virtual machine.

The USB driver under test resides in the VM and re-
ceives inputs from the driver exerciser and one or sev-
eral USB devices. The USB devices connect through
QEMU’s Universal Host Controller Interface (UHCI)
and may be either virtual usb-generic devices or real de-
vices passed through QEMU’s USB redirector. For our
case studies we relied on virtual devices only, but real
devices may help to explore deep paths in involved pro-
tocols without modeling overhead. The driver exerciser
runs inside the guest and enumerates—in a form of fuzz

Figure 1: System overview of POTUS.

testing—possible interactions of a user process with the
USB device.

We mark data sent from the device as symbolic to al-
low exploring all possible responses in S2E, and we in-
ject faults in the form of symbolic error codes. We use
SystemTap scripts to interface between guest code and
S2E and inject data at function call or return sites. We im-
plemented S2E plugins for state tagging and path pruning
to limit path explosion and prioritize states exploring dif-
ferent types of and locations of faults.

We rely on existing instrumentation tools to de-
tect kernel-level bugs, namely Kernel Address Sani-
tizer (KASAN) for memory errors, Kmemleak for mem-
ory leaks, and Kernel Thread Sanitizer for data races.
While the combination of these tools adds significant
performance overhead, it allows us to have high confi-
dence that we can detect any security-relevant errors as
they occur. We also built a bug detector plugin for S2E
that intercepts kernel bug functions such as BUG_ON()

and panic() calls and retrieves the kernel log file, the
driver exerciser log, and various other system log files to
help debug and interpret the results.

4 Implementation
We now describe the implementation of POTUS, in par-
ticular the generic virtual USB device (§4.1), the mecha-
nism for fault injection (§4.2), the driver exerciser (§4.3),
and its search strategy (§4.4).

4.1 The usb-generic Device

To exercise a USB device driver under all possible con-
figurations, we created the virtual usb-generic device. It
implements a generic USB device with configurable de-
vice descriptors and a symbolic model for data transfer.

The USB specification contains five descriptors: string
descriptors, device descriptors, interface descriptors,
configuration descriptors, and endpoint descriptors. usb-



generic can be configured to impersonate any possible
USB device by configuring its descriptors in a set of con-
figuration files. In principle, this data could also be ex-
tracted from the target driver automatically. Once the de-
scriptors are configured, the usb-generic device is ready
to be used for testing any driver; further customization is
not required, but possible.

There are four URB types used for communication be-
tween a USB gadget and the host controller interface
(see §2.2). By default, usb-generic ignores the content
of OUT URBs and responds to IN URBs by writing the
requested amount of data and marking it as symbolic for
S2E. We found that in practice the combination of sym-
bolic data and a host-specified content length is sufficient
to thoroughly exercise our target drivers, given enough
time. However, usb-generic also provides the option
for further (compile-time) customization by installing
driver-specific callbacks to respond differently to each
URB type. We can further separate functionality by de-
vice, interface, class, and endpoint request codes within
per Device ID and Vendor ID segments. Finally, the usb-
generic device can also be instructed to respond nega-
tively to individual URBs to influence packet scheduling,
inject delays, or intentionally violate the USB specifica-
tion. Outside of vulnerability discovery, we believe that
usb-generic can also be used by developers to aid writing
device drivers in absence of a physical device, in partic-
ular using fine-granular callbacks.

4.2 Fault Injection

POTUS injects faults into the running kernel using Sys-
temTap [25]. SystemTap allows to place probes into ar-
bitrary kernel locations to gather information or inject
compiled C code to modify kernel data structures. PO-
TUS contains SystemTap modules for automatically in-
jecting faults into core kernel submodules used by USB
client device drivers such as usbcore and memory allo-
cation mechanisms, an example of which can be seen in
Listing 1.

In particular, this example shows how fault injection
interacts with symbolic execution: the function will fork
the current state (as long as the per-path fault limit is not
exceeded (see §4.4) and return success in one state and
a symbolic fault code in the other. The symbolic fault
code allows to explore all possible error codes at once,
which would be impossible with purely concrete fault
injection. The Linux kernel uses negative errno return
codes to indicate errors; we therefore constrain the sym-
bolic expressions for the return value on error paths to be
negative. In addition to returning symbolic error codes,
our fault model also injects the maximum admissible de-
lay. While this is by no means a complete approach to
verifying concurrent code, it is often just enough “fuzz”
to expose concurrency bugs.

probe module("usbcore")

.function("usb_bulk_msg").return {

nfaults = s2e_get_annotation(@FAULT_KEY)

if (nfaults < @FAULT_LIMIT) {

child = s2e_fork_state(__FUNC_NAME__ .

" fork")

if(child) {

s2e_annotate(@FAULT_KEY , nfaults +1)

if (@SYMBOLIC_FAULTS)

$return = s2e_get_symb_fault (32)

else

$return = -1

next

}

}

...

}

Listing 1: SystemTap probe for injecting faults into all
usb bulk msg functions.

Some device drivers register asynchronous callbacks
from the resulting URB inline; in that case we must man-
ually write a short SystemTap probe for each. Our library
of fault injectors works on a per module basis, i.e., it only
injects faults into kernel threads that have a call stack as-
sociated with the target module under test.

4.3 Driver Exerciser

The driver exerciser in POTUS initiates operations on the
device from userspace. It randomly invokes file opera-
tions on the target device driver’s file descriptors; to ex-
pose concurrency bugs, it can initiate multiple concurrent
operations on the same or different file descriptors. We
implemented this by using symbolic execution to search
depth first through a weighted tree of operations (see Ta-
ble 1), initially instantiating an active file descriptor with
open(). Currently we support device drivers exposing a
socket, character device or block device file, which cov-
ers the vast majority of USB device drivers.

Figure 2 shows an example execution path for a
guest user opening a character device file owned by
the legousbtower driver. The user initiates the interac-
tion by calling sys_open on a file whose file operations
for open() map to a callback within the legousbtower
driver. Should the driver attempt to allocate memory
or call other kernel subsystems for which fault injec-
tion is currently active, POTUS forks the system state
and returns a symbolic fault in one state, indicated by
the red path. In the fault-free path, the driver callback
calls usb_submit_urb with a device request of a cus-
tom TOWER_RESET device reset code, which is passed to
the HCI via usb_hcd_submit_urb. At this point, the
system state is forked again, with the fault-free path re-
turning successfully, and the other path failing the URB
transfer after the maximum delay.



Function Description

open() Open a new file descriptor corresponding to one of the exposed device files. Upon being called,
the guest driver exerciser forks into two processes, with both accessing the device concurrently
to try and trigger concurrency bugs.

close() Close the active file descriptor.
connect() Simulate a physical hardware connection.
disconnect() Simulate a physical hardware disconnection.
read() Perform a sys_read on the currently active file descriptor of random length. Discard the data

read.
write() Perform sys_write on the currently active file descriptor of random length. Data written is

made symbolic.
poll() Perform sys_poll on the currently active file descriptor. Request all events for a randomized

timeout.
lseek() Perform sys_lseek on the currently active file descriptor. Seek to a random offset for the

current active file descriptor.
ioctl() Perform sys_ioctl on the currently active file descriptor. Currently implemented for driver

specific ioctl calls and arguments however may be made for generic by providing a symbolic
call code and argument.

send() Perform sys_send on the currently active socket. Send a buffer of symbolic data with a random
length and symbolic or concrete flags. Allows for sending data on sockets of domain AF_INET

and type SOCK_STREAM or SOCK_DGRAM.
recv() Perform sys_recv on the currently active socket. Receive a random sized buffer with symbolic

or concrete flags and discard any data read. Allows for receiving data on sockets of domain
AF_INET and type SOCK_STREAM or SOCK_DGRAM.

Table 1: File descriptor operations implemented in the driver exerciser.

USB Hardware usbcore Client Driver Driver Exerciser

t + 0
6

t + 1
6

t + 2
6

t + 3
6

t + 4
6

t + 5
6

t + 6
6

sys open()

/dev/legousbtower0

Return file descriptor.

Driver Exerciser forks.

usb hcd submit urb()

Return usb hcd subit urb

Inject symbolic data.

usb submit urb()

TOWER RESET

Return usb submit urb()

Return USB RET NAK

Error in kzalloc()

Return symbolic fault.

USB RET STALL

Figure 2: Example of flows for viable code paths from the driver exerciser through the Linux USB stack. The diagram
shows fault injection and fork points for the legousbtower client driver.



Driver Tested LOC Driver-specific Probes Functions in Driver Exposed Interface

AirSpy 1,108 1 32 v4l2 device
Apple USB Display 369 1 8 Backlight device
Chaos Key 579 0 11 Character file
Cytherm 407 0 13 Sysfs files
IO Warrior 919 2 15 Character file
Lego USB Tower 982 2 15 Character file

Table 2: List of device drivers tested.

4.4 Path Prioritization

Since we see POTUS as complementary to existing test-
ing and bug finding approaches, we particularly focus
our vulnerability search on deep bugs arising from con-
currency errors, faults, and their interplay. Our intu-
ition is that those bugs that are detectable by light-weight
static analysis will have already been found in the Linux
kernel. Still, the multitude of low-level concurrency
primitives in a Linux kernel running on modern hardware
harbor great potential for lingering concurrency bugs.

The combination of symbolic faults, concurrency
fuzzing with delays, and symbolic data aggravates the
state explosion problem in symbolic execution. Since
we are interested in exploring deep paths, we prioritize
a primary path without faults or delays, and use it to
spawn new states at potential fault and delay injection
points. POTUS attaches a map of annotations to each
state, which is cloned upon forking; we use this map to
track the number of faults already injected into the state
(see Listing 1, line 3) and the number of children cre-
ated. We use this to limit the number of fork points by
preventing further fault injection when the limit of faults
is reached. This balances general code coverage with the
exploration of fault routines. The intuition behind this
optimization is that paths with a high number of faults
will likely lead to exploring the same code numerous
times without exploring new error handlers. We thus pri-
oritize complex driver-device exchanges over exploring
the entire, generally infinite, set of possible interactions.

5 Evaluation
We now present a preliminary evaluation of our ap-
proach; we were interested in evaluating POTUS’s abil-
ity to effectively find bugs and its potential for general-
izing to different types of USB drivers. We first discuss
our setup and methodology (§5.1), explain how POTUS
applies to six target USB device drivers (§5.2), and then
provide details and an assessment of exploitability for the
two previously unknown vulnerabilities we discovered:
CVE-2016-54001 resulted in a denial-of-service attack

1https://nvd.nist.gov/vuln/detail/CVE-2016-5400

on Linux kernels 3.17–4.6 (§5.3); CVE-2017-XXXX2

allows an arbitrary write/read primitive affecting Linux
kernels pre 2.6–4.6 since 2003 (§5.4).

5.1 Experimental Setup

All of our experiments were run on a Ubuntu 12.04 LTS
with dual Intel(R) Xeon(R) CPU E5-2640. We used our
own fork of S2E based on the latest version as of 2016-
11-01 and Debian Sid as the guest OS running a custom
vanilla Linux 4.6 kernel, which only enables the required
modules and keeps a minimal guest OS. We dynamically
loaded usb-generic devices through QEMU’s moni-
tor interface and executed S2E on all the available CPU
threads of the host platform.

We developed an automation framework to control ex-
periments, including booting the OS, inserting System-
Tap probes, and loading client device drivers. The guest
OS was executed with a QEMU emulated Core 2 Duo
CPU and 1 GB of RAM. Overall, we ran each driver
for up to one hour, exploring in the order of hundreds
of states per experiment. We used S2E in concolic mode,
exploring a state until termination before switching to a
new state, to explore deeper code paths.

POTUS’s memory requirements are kept manageable
(considering it is based on full-VM symbolic execution)
by our path pruning strategy. For instance, in testing the
Lego USB Tower driver for one hour with 32 S2E pro-
cesses, POTUS forked 488 different VM states and used
6.6 GB of RAM. As POTUS runs S2E in concolic mode,
it executes the driver exerciser to a fixed number of oper-
ations before terminating the state, which improves PO-
TUS overall memory footprint as all the states resources
do not have to be saved simultaneously.

5.2 Adapting to Target Device Drivers

To evaluate our claim of a generic testing tool suite for
USB device drivers, we consider the effort it takes to test
new drivers. We selected six open source USB device
drivers that are included in the mainline Linux kernel,
touch on several of its different subsystems, and have a
significant number of lines of code. Table 2 lists the de-
vice drivers that we tested along with their lines of code,

2We have requested a CVE but are yet to receive an assigned ID.

https://nvd.nist.gov/vuln/detail/CVE-2016-5400


number of functions, the exposed interface, and the num-
ber of driver-specific probes we had to write.

We could test Chaos key and Cytherm entirely with
POTUS’s default libraries for injecting faults, because
these drivers rely only on synchronous usbcore library
functions such as usb_bulk_msg to transfer data. Al-
though the driver exerciser must be instructed to point to
the corresponding device files, there was no need for ad-
ditional SystemTap probes. Conversely, drivers that also
rely on asynchronous usbcore library functions expose
specific callbacks that have to be instrumented, and re-
quired one to two driver-specific probes (see Table 2). It
is feasible to automatically address such contexts (e.g.,
we can modify our SystemTap libraries with inline C
code to dereference forward referencing functions), but
the currently necessary manual effort is minimal.

5.3 Airspy (CVE-2016-5400)

CVE-2016-5400 represents a memory leak vulnerabil-
ity in a USB device driver for communicating with an
Airspy Software Defined Radio (SDR), located under
drivers/media/usb/airspy/airspy.c in the kernel
source tree. The memory leak can be triggered purely
from hardware to perform a Denial of Service (DoS) at-
tack, crashing the host by plugging in a specially-crafted
USB device. The USB device driver interacts with the
Video For Linux 2 (V4L2) subsystem and, as a result, re-
quires the allocation of v4l2 device structures and regis-
tration with the subsystem. The programming error that
led to the memory leak was situated in the drivers probe
function; a function that is called when a new device as-
sociated with the driver is plugged into the host. The
relevant code snippet can be seen in Listing 2 and shows
that if the video_register_device function fails, the
driver fails to free any of the control variables registered
with the v4l2 subsystem. POTUS’s automatic fault in-
jection identified this memory leak.

Exploitability. The Airspy kernel module was in-
stalled by default in most Linux distributions, includ-
ing, but not limited to Ubuntu, Debian, Arch Linux, and
Trisquel; it loads whenever a USB device with the Airspy
device descriptor is plugged in.

An attacker can make video_register_device fail
with a specially-crafted hardware as the Linux kernel
only supports a maximum of 64 minor numbers for
VFL_TYPE_SDR type devices attached to a host at any
given time. By creating a USB device that acts as a
hub and attaches 65 of the same devices, we can trig-
ger the memory leak vulnerability. The sequence of con-
nection and disconnection operations on the 65th device
consumes all the available RAM and effectively triggers
a DoS attack. We successfully verified the feasibility of
this attack under POTUS testing framework.

static int airspy_probe(struct

usb_interface *intf ,

const struct usb_device_id *id)

{

...

v4l2_ctrl_handler_init (&s->hdl , 5);

...

ret = video_register_device (&s->vdev ,

VFL_TYPE_SDR , -1);

if (ret) {

dev_err(s->dev , "Failed to...");

goto err_unregister_v4l2_dev;

}

dev_info(s->dev , "Registered as ...");

return 0;

err_free_controls:

v4l2_ctrl_handler_free (&s->hdl);

err_unregister_v4l2_dev:

v4l2_device_unregister (&s->v4l2_dev);

err_free_mem:

kfree(s); return ret;

}

Listing 2: Airspy probe function.

5.4 Lego USB Tower (CVE-2017-XXXX)

CVE-2017-XXXX is a Use-After-Free vulnerability that
has existed in the Linux kernel’s Lego USB Tower driver
since 2003 (drivers/usb/misc/legousbtower.c).
The driver is quite pervasive: it is compiled and avail-
able with the majority of Linux distributions, including
the latest server editions of Ubuntu 16.04 LTS and Fe-
dora 25. The vulnerability is a race condition that leads
to a NULL pointer dereference; if remapped to a user-
controlled memory location, it can be abused to escalate
privileges or execute arbitrary code.

Listing 3 shows the driver probe function and entry
point into the program. The function registers a char-
acter device file /dev/usb/legousbtower[0-9]+ and
proceeds to submit a request for the device firmware
version. If this URB request fails, the driver then calls
tower_delete, which deletes the device structures as-
sociated with the driver without checking for any active
connection. Registering the device file grants file opera-
tions from userspace, an action which could happen be-
fore the probe function terminates. Listing 4 details the
tower_write function, which maps to the sys_write

system call and checks that the device is still connected
before copying data from userspace into a local kernel
buffer pointed to by dev->interrupt_out_buffer. If
tower_delete is called after the write function checks
that the device is connected, it will delete the dev struc-
ture, setting its value to NULL and causing a NULL
pointer dereference in tower_write.

Exploitability. An attacker can create a USB device
that will hold open or drop the control message for the



static int

tower_probe(struct usb_interface ...)

{

...

/* register the device now , as it is

ready */

usb_set_intfdata (interface , dev);

retval = usb_register_dev (interface ,

...);

...

/* get the firmware version and log it */

result = usb_control_msg (udev ,

usb_rcvctrlpipe(udev , 0),

LEGO_USB_TOWER_REQUEST_GET_VERSION ,

USB_TYPE_VENDOR | USB_DIR_IN |

USB_RECIP_DEVICE ,

0, 0, &get_version_reply ,

sizeof(get_version_reply), 1000);

if (result < 0) {

dev_err(idev , "LEGO USB Tower get\

version control\

request failed\n");

retval = result;

goto error;

}

...

error:

tower_delete(dev); return retval;

}

Listing 3: Lego USB Tower probe function.

boards firmware, providing with the time necessary to
exploit the race condition. As the kernel executes in the
same address space as userspace, an unprivileged user
may map the NULL page (or use alternative techniques
to work around limitations) to control the location of the
data being written to. As an attacker also controls the
data, it is possible to write an arbitrary payload to arbi-
trary memory locations, thus overwriting the local user
id for the process to gain root privileges.

If the NULL page is mappable through the sysctl

setting mmap_min_addr or by using a user account with
the Linux personality of MAP_PAGE_ZERO, an adversary
can easily force the location and data on a buffer writ-
ten inside the kernel. Other methods, such as those
that execute a setuid binary to remap existing memory
have previously been shown to circumvent this protec-
tion3. Linux kernels before 2009 have no protection
against mapping the NULL page and are thus easily ex-
ploitable using a specially-crafted USB device and a low-
privileged guest user account to trigger the race condi-
tion. Upon further inspection, the device file exposed
by this driver is made globally readable and writable on
most systems by udev; something which happens after
the probe function finishes and closes the race condition.
This significantly lowers the impact of the vulnerability

3http://blog.cr0.org/2009/06/bypassing-linux-null-pointer.html

static int write_buffer_size = 480;

...

static ssize_t

tower_write (struct file *file ,

const char __user *buffer , size_t

count , ...)

{

struct lego_usb_tower *dev;

size_t bytes_to_write;

...

/* verify that the device wasn ’t

unplugged */

if (dev ->udev == NULL) {

retval = -ENODEV;

pr_err("No device or device\

unplugged %d\n", retval);

goto unlock_exit;

}

/* wait until previous transfer is

finished */

while (dev ->interrupt_out_busy) {

if (file ->f_flags & O_NONBLOCK) {

retval = -EAGAIN;

goto unlock_exit;

}

}

/* write the data into

interrupt_out_buffer

from userspace */

bytes_to_write = min_t(int , count ,

write_buffer_size);

if (copy_from_user

(dev ->interrupt_out_buffer ,

buffer , bytes_to_write))

...

}

Listing 4: Lego USB Tower tower write function.

but it may be used in a multi-stage exploit or to escape
containers where the user already has an fsuid of 0.

Bypassing SMEP, SMAP and RAP. To assess the ex-
ploitability of CVE-2017-XXXX on a modern, security-
hardened kernel, we decided to build a proof of concept
of a local privilege escalation exploit that would work on
the latest kernel at the time of development: Linux 4.6
with PaX’s grsecurity patches applied. The underlying
idea is to reallocate the same memory used by the struct
deletion described above to control the location of the
output buffer.

To be able to remap the same memory location as
the kernelspace dev struct, we abused the Linux ker-
nel’s SLUB memory allocator that re-provisions previ-
ous allocations of the same size. Invoking sys_sendmsg

allowed us to force the kernel to allocate arbitrarily
sized memory in the general kernel cache. Once we
identified the size of the message to send, we created
a USB device to insert a one second delay for the
tower_probe’s device firmware URB request, which



enabled us to consistently remap the same memory freed
from tower_delete. Unfortunately, sys_sendmsg

does not allow us to control the first 40 bytes of memory
allocated, due to it being reserved for the messages meta-
data. In our case, while the main data structures were
outside this region, it overlapped with a device mutex,
which would block execution of the exploit indefinitely.

We relaxed the condition for exploitation and created
a kernel module that would first leak memory addresses
to bypass KASLR and discover the running process’
task struct to overwrite its credentials and increase
privileges and, secondly, allow us to allocate memory
of arbitrary size on a kernel. Under such assumptions,
we were able to dereference a pointer to the current pro-
cesses credentials struct and overwrite {u,g}id,
e{u,g}id, s{u,g}id, fs{u,g}id and capabilities.
Our final exploit bypasses SMAP through the kernels
own use of copy_from_user, temporarily disabling it
without performing any buffer overflow or control flow
hijacking, thus remaining unaffected by both SMEP and
RAP. We believe that our relaxed exploitation conditions
are realistic [16] and do not affect the feasibility of a suc-
cessful attack. For instance, the second condition can be
addressed by adjusting the bMaxPacketSize of the de-
vice descriptor to load data into that memory location to
read and write data to the device.

6 Limitations
QEMU’s current UHCI implementation supports USB
devices up to USB 1.1. Although many devices are
backwards compatible and simply transfer data at lower
speeds, they may use some features of newer USB speci-
fications that we therefore cannot test. For instance, usb-
generic currently does not support a multi-master device
setup and hence does not support the USB On-The-Go
extension.

The implementation of usb_submit_urb in usbcore
contains an interval parameter which specifies a time
period for periodically polling the device, indefinitely. If
we are masking data input from the device as completely
symbolic data, and if each URB will result in at least one
state being created from injected faults, then this presents
an infinite set of possible paths to explore and further
increases path explosion.

Furthermore, the high runtime overhead of symbolic
execution in S2E increases the frequency of timer inter-
rupts relative to the execution of other instruction. As a
result, we had to slow down QEMU’s internal clock by
a factor of five to avoid exploring only device polling in
drivers using short intervals.

7 Related Work
Our approach draws on a range of previous work, which
we compare and contrast to in this section.

Symbolic execution has been widely used for vulner-
ability discovery (e.g., [6, 14, 7]). Most closely related
are S2E itself [8] and in particular its predecessor project
DDT [19]. Both have been used to find bugs in userspace
applications and device drivers. POTUS builds on S2E
and expands it with features specific to the problem do-
main of Linux USB drivers. In a way, POTUS is a sister
project to DDT in that it allows testing USB drivers on
the latest Linux versions similarly to how DDT tested
PCI drivers for Windows XP. However, DDT used fully
symbolic PCI devices that would be too generic to allow
meaningful exploration of devices communicating via a
USB host controller.

Tonder and Engelbrecht [28] describe a hardware
based mutation fuzzing scheme for USB. Their approach
builds on the Facedancer project [15] to mutate the inter-
actions of existing USB devices with the host. A pure
software approach is inherently easier to deploy (e.g.,
where no related device is available) and more flexi-
ble; e.g., the reported 300ms delay in control transfers
would make it difficult to discover timing-sensitive race
conditions such as CVE-2017-XXXX. Furthermore, a
hardware-only approach is likely to only exercise a very
limited portion of the USB subsystem, in particular the
USB device enumeration in usbcore.

Jodeit et al.’s [18] combined a physical USB device
with a mutational based fuzzer to test an Apple iPod on
Windows and found multiple software bugs in Windows
XP drivers. Schumilo et al. [26] presented the software
USB fuzzer vUSBf, which relies on QEMU’s usbredir
server to redirect URB packets from host emulated de-
vices into the guest operating system. vUSBf mainly
focuses on fuzzing values in USB descriptors and USB
HID drivers and provides no systematic way of exercis-
ing device drivers.

NCC’s umap24 allows to fuzz USB device drivers by
recording traces from emulated devices and then fuzzing
replays of the traces. The project relies on gadgetfs or
Facedancer and a Python program to describe each de-
vice. The project is currently able to emulate 13 device
classes, each specified in hundreds of lines of Python
code. In contrast, POTUS provides significantly more
automation, requiring typically to only adapt a few Sys-
temTap scripts and configure the virtual device.

Software-implemented fault injection (SWIFI) is a
widely used technique for testing the robustness of soft-
ware. Natella et al. [23] provide a recent survey of the
area. A flexible framework for fault injection at the level
of libraries was presented in LFI [21]. LFI automatically
generates error models for libraries, which we aim to also
achieve at kernel level for POTUS in future work. A
comparative study of fault injection techniques by Jar-

4https://github.com/nccgroup/umap2

https://github.com/nccgroup/umap2


boui et al. [17] showed that internal software faults or
faults caused by device drivers could not be easily emu-
lated by injecting faults at the system call level only. This
validates our design choice in POTUS to allow fault in-
jection at any point in the kernel, and in particular at the
level of the kernel subsystem APIs. The impact of device
drivers on the Linux kernel is a known cause for concern.
For example, Albinet et al. [1] characterized the kernel’s
robustness based on the impact of faulty device drivers.

8 Conclusion
We have presented POTUS, a new approach for testing
USB device drivers that, while still a work in progress,
has found long existing bugs that previous state-of-the-
art tools failed to find. As our approach is built on top of
Free & Libre Open Source Software, it is easily extend-
able, adaptable and can work together with existing open
source projects to provide further functionality. We have
found two critical vulnerabilities in the latest version of
the Linux kernel and built proof of concept exploits to ex-
plore their severity. All our code and configuration data
are available as open source.
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