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Abstract

The very first step for analyzing the security of an em-
bedded device, without prior knowledge of the device’s
construction, is analyzing the printed circuit board (PCB)
of the device, in order to understand its electrical imple-
mentation. This analysis is called PCB reverse engineer-
ing and its results are a list of components, technical doc-
umentation related to those components, and a schematic
reconstruction, that illustrates basic connections between
the PCB’s components.

Motivated by the lack of inexpensive methods for effi-
ciently performing PCB reverse engineering, we propose
a novel framework that formalizes and automates most
of the tasks required for PCB reverse engineering. The
framework is capable of automatically detecting com-
ponents using machine vision, gathering technical docu-
mentation from the internet and analyzing technical doc-
uments to extract security-relevant information. We im-
plement the concept and evaluate the gain of efficiency
and analysis coverage. Our results show that automating
almost all steps of PCB reverse engineering is possible.
Furthermore, we highlight novel use cases that are en-
abled by our approach.

1 Introduction

More and more embedded devices pervade business pro-
cesses and personal activities. From a security perspec-
tive this leads to an increased attack surface and higher
risk by the common utilization of devices. Securing soft-
ware can only reduce part of this risk, since in particular
embedded devices’ security properties are dependent on
the underlying hardware platform. Therefore, an integral
part of a thorough penetration test, to assess the security
of a device, is to analyze the hardware implementation,
as demonstrated by Grand [4] and Oswald et al. [14].
The common basis of all devices is their hardware imple-
mentation as printed circuit boards (PCBs) which contain

the physical circuitry to connect all components, such as
microchips. To assess the attack surface and the secu-
rity risk induced by the hardware design of a device, the
analysis of the employed PCB is necessary. To this end, a
penetration test is a structured process of searching, con-
firming, and reporting vulnerabilities of a specific test
specimen. Without having access to proprietary specifi-
cations about the device under test, a penetration test is
called black-box test. This is a common and important
kind of penetration testing, since it most closely emu-
lates the actions of a real attacker. Particularly for em-
bedded devices, black-box tests are common since most
devices use proprietary PCB-designs and there is almost
no re-use of designs across multiple PCBs of different
products and manufacturers. On the other hand, lacking
the specification makes PCBs hard to analyze.

To be able to perform a black-box penetration test of
the PCB of an embedded device without further doc-
umentation available, the PCB has to be reverse engi-
neered. The PCB reverse engineering task has been in-
vestigated for goals like refurbishing or complete recon-
struction. However, existing techniques for these goals
cannot be applied for penetration tests, since they are too
time-consuming, require specialized equipment, such as
X-ray units, and often destroy the device under test in the
process. Moreover, there is no formalized process to con-
duct the analysis. Thus, the process is unstructured and,
from experience, we know that it is tedious and error-
prone, because it involves repetitive manual work. There
are no tools supporting the process to get a high-level un-
derstanding of each component’s role, which is required
for the subsequent penetration test.

In this paper we present a workflow and automated
method for PCB reverse engineering in preparation of
a black-box penetration test. The goal is to make ana-
lyzing devices easier, faster, and to improve the cover-
age of the analysis. Since penetration tests are conducted
within a limited amount of time and with access to few
testing devices only, the process needs to avoid destruc-



tion of devices so they can be used for actual attacks,
later on. In essence, this kind of hardware reverse en-
gineering considers the components placed on the PCB
and their interconnections. Therefore, the main task our
approach addresses is to identify components, as well as
finding and analyzing their documentation. Moreover,
we show how manual probing for connections between
components on the PCB can be augmented by our ap-
proach. For component identification, document anal-
ysis, and connection probing we present a software ar-
chitecture and show its feasibility by a proof-of-concept
implementation. We evaluated multiple methods for the
component identification and found that image segmen-
tation is the best alternative for the task.

While PCB reverse engineering guides further steps
during penetration testing, we do not address vulnera-
bilities of PCBs themselves. Moreover, our method is
not fully automated, but still requires human interven-
tion. Manual steps can not be fully avoided due to the
fact that we deal with hardware which needs to be han-
dled in the first place. However, we show how to reduce
the amount of manual work to the minimum.

The structure of the paper is as follows: First, we dis-
cuss existing approaches of PCB reverse engineering in
Section 2. We derive a common workflow and require-
ments of its single tasks in Section 3 to provide a basis
for the automation of this workflow in Section 4.1. Ad-
dressing this workflow, we present the design of a soft-
ware architecture in Section 4.2 and its proof-of-concept
implementation in Section 4.3. Our evaluation results
of methods for component identification are discussed in
Section 4.4. Finally, we deduce leverage points for fu-
ture work in Section 5 before concluding the paper in
Section 6.

2 Related Work

Previous work on automated PCB reverse engineering
can be categorized into destructive and non-destructive
approaches. While destructive methods will destroy the
device during the test procedure, a non-destructive pro-
cess retains full functionality of the device under test af-
ter the analysis. Grand published a survey [6] of all dif-
ferent sorts of methods for PCB deconstruction. The goal
of these methods is to fully reverse-engineer a device, by
extracting images of all PCB layers. A PCB’s complete
reconstruction, in this case, contains all details of phys-
ical connections (traces). It highlights that most decon-
struction techniques require destroying the PCB and a
significant amount of either time or cost. We seek for
a compromise between the detailed but expensive ap-
proaches and the cheap but tedious manual approach of
performing PCB reverse engineering.

Longbotham et al. [9] describe how a PCB can be re-
constructed using X-ray imaging techniques. They re-
gard multi-layered PCBs with connection traces stacked
within the board. Therefore, by this method, all layers
can be inspected and traces can be reconstructed clearly.
This approach generates a very detailed copy of all layers
of a PCB, however, it requires removing all the compo-
nents and access to an X-ray machine. These precondi-
tions are rarely met in a black-box penetration test.

Johnson [8] shows how traces on a PCB can be ana-
lyzed using machine vision. He presents a program that
reconstructs traces from the image of a raw PCB. A raw
PCB is a circuit board that is stripped off components
and solder mask. In order to use this approach on arbi-
trary PCBs, the analyst needs to unsolder the components
and scrape off the solder mask. This makes it a tiresome
process and destroys the device, thereby invalidating the
approach for our scenario. In 2015, Carne presented the
tool “PCBRE” at the conference ReCon [2]. This tool al-
lows to reconstruct a whole PCB using images of all lay-
ers. These images, again, have to be taken using X-Rays
or other means of analyzing the whole PCB. However,
both Johnson and Carne demonstrate that an automated
analysis of PCB traces is possible.

The book “Hacking the Xbox” by Huang [7] outlines
basic steps to classify and identify components of a PCB.
From our experience, we can conclude that manually re-
peating the required steps, such as reading the part identi-
fication number and manually searching for documenta-
tion online is inefficient for complex systems. While the
author explains the most basics steps for reverse engi-
neering an embedded system, the book lacks a workflow
description for a professional analysis.

Grand [5] defines a set of attacks on and possible de-
fenses for embedded systems. With our approach, we
improve the testability and at the same time provide a
more realistic estimation about an attacker’s obstacles
when reverse engineering a system to clone it or to find
vulnerabilities on the physical or the firmware level.

As already indicated, all presented methods work de-
structively, rendering the device unusable after the analy-
sis. A penetration tester, however, may want to avoid de-
stroying the device because of practical, budget, and time
constraints. Previous work highlights the importance of
PCB reverse engineering and suggests that machine vi-
sion can be applied for analyzing PCBs. Yet, none of
these approaches addresses all required tasks, such as
identification of components and gathering of technical
information. Furthermore, the focus of existing methods
lies in analyzing the whole PCB, including all layers of
a multi-layered board. Extracting the detailed physical
layout allows sophisticated tasks such as cloning devices
completely. Nonetheless, it is not required in preparation
of a penetration test.



3 Workflow of
Manual PCB Reverse Engineering

Because advanced methods of PCB analysis are costly
and time-consuming, in practice, analysts perform man-
ual steps to learn how a specific embedded system is
built. To the best of our knowledge, here we present
the first explicit compilation of the manual workflow to
reverse-engineer a PCB. The steps of this workflow are:

1. Identification of components by visual inspection
(finding and reading the part number)

2. Gathering of documents related to these compo-
nents (e. g., datasheets and reference manuals)

3. Extracting information from these documents (e. g.,
pinout diagrams and pin-signal mappings)

4. Probing important signals, such as buses and debug-
ging interfaces, by using a multimeter (e. g., to find
out connectors, test points, etc.)

The results of the workflow are [11]:

• A part list (bill of materials)

• Technical documentation for all components

• A schematic reconstruction (e. g., a graph display-
ing connections between critical components)

Critical components are components that store, gen-
erate, or process data. Passive components, components
like voltage regulators, or simple bus drivers are usually
not investigated further, as their purpose is intuitive.

The obtained results serve as basis for all following ac-
tivities: they represent what is known about the system’s
architecture. As of now, no solution exists that either aids
the analyst while performing these steps or helps extract-
ing and saving the information gained from them. This
leads to confusion and mistakes, such as overlooked sig-
nals and wrong assumptions, based on experience gained
solely from other projects or incomplete documentation.
Furthermore, information presented in technical docu-
ments is only represented for the purpose of engineering
or sales. Thus, information that is irrelevant for the secu-
rity assessment is displayed in the same way that critical
facts are displayed, making it harder to quickly analyze a
document. Only a fraction of a document’s information
is needed to understand how the device works.

4 Automated Analysis

An attacker usually does not care about the physical de-
tails of traces on the PCB. It is more important to quickly
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Figure 1: PCB reverse engineering workflow with auto-
mated parts highlighted in red.

gain a rough understanding of the whole system, mean-
ing, to be able to map specific functions, such as “de-
bugging interface” or “main microcontroller” to compo-
nents. A PCB’s components are soldered on either side
of the board, allowing the analyst to probe connections
between components using a multimeter on exposed pins
or connectors. The only exception are microchips with
ball-grid-array packages (BGA), with pads underneath
the plastic or ceramic package. Still, these microchips
can be removed selectively, exposing the pads if needed.
An analysis of both sides of the PCB, including the con-
nections, is sufficient to get a sound understanding of the
device’s inner-workings. Our proposed method aims to
automatically gather as much information as possible,
without destroying the PCB, so the analyst can quickly
decide which parts of the system are most vulnerable.

In this section, we propose a novel, non-destructive
and automated approach to quickly analyze a PCB’s
components and thus, the attack surface of an embedded
system in context of a black-box penetration test. First,
we derive an automated workflow from the manual steps
an analyst has to perform identified in Section 3. We in-
troduce methods for automating each of the steps of the
workflow. Finally, we evaluate this concept by imple-
menting and testing an object detection system that iden-
tifies components and gathers information about them.

4.1 Automated Workflow

Our proposed method processes high-resolution images
of both sides of the PCB. In particular, it automates the
necessary initials steps of identification of components
and the gathering and analysis of information related to
those components. An overview of these automated steps
is illustrated in Figure 1 and explained in the following.

High-resolution cameras are inexpensive and pictures
are usually taken for documentation purposes as part of
the project, which makes our approach easy and cheap.
The images are first segmented by detecting common vi-
sual properties of microchips. The segmentation yields
areas of the chip packages. These areas are then handed
over to an Optical Character Recognition (OCR) library
in order to extract the part number that is printed on
the package of an integrated circuit (IC). The OCR re-
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Figure 2: Components of our software architecture.

sults are matched against a database of known part num-
bers and manufacturer naming patterns in order to re-
duce false positives. If a valid part-number has been
determined, the Internet is searched for related techni-
cal documents. The latter is achieved by using conven-
tional search engines, as well as specialized search en-
gines, that only index datasheets. Matching documents
are downloaded and basic data is extracted from them,
such as the feature description, pinout diagrams and pin-
signal tables. Because technical documents usually come
in PDF format, it is helpful to convert them into XML in
order to easily parse the document’s structure and rele-
vant pages. Based on matching keywords and the num-
ber of pages, the software filters out unrelated documents
such as marketing brochures. All results are persisted
in a well-organized file system structure or database and
presented in a graphical user interface, so the analyst can
access all information quickly.

After every critical component has been identified and
technical documents have been analyzed, the analyst
probes physical connections between components on the
PCB using a multimeter and enters them into the soft-
ware. For example, a serial connection between two
components can be added to the knowledge about the
PCB by selecting both components and denoting their
connection using the graphical user interface. The con-
nections are stored in the database and can be changed or
annotated at any point in time. This is especially useful
for generating a visual report of all findings and com-
municating the attackers point of view to other parties
involved, such as customers or engineering teams.

4.2 Software Architecture
We propose a software architecture that supports the kind
of automation of the PCB reverse engineering workflow
presented in the previous section. As illustrated in Fig-
ure 2, this software consists of three parts: a graphical
user interface, an analysis backend, and a database.

All components of the graphical user interface are ar-
ranged around the PCB picture as shown in Figure 3. By

this composition, an analyst can inspect and add infor-
mation about the system. The navigable image display
allows the analyst to spot details on the PCB’s surface
easily without having to use a magnifier on the physical
PCB. It also allows adding miscellaneous remarks onto
any location of the picture to highlight and annotate in-
teresting features. By the surrounding control elements,
the analyst can easily add components that were not au-
tomatically detected and change information, such as the
part number of component. Components also support to
be labeled with discovered vulnerabilities, enabling to
be recalled in other projects based on the part number
of components. This user interface layout makes inter-
action intuitive for beginners and experienced analysts
alike since, in practice, analysis results are often com-
municated by annotating PCB images.

The analysis backend executes a series of modules.
The first module identifies bounding boxes of compo-
nents, whereas the second module performs OCR on
those bounding boxes to recognize the part number. For
each identified component, the part number is used to
query search engines for its documentation. Finally,
any retrieved documentation is processed, yielding sum-
maries, pinout, and pin-signal tables.

The resulting information is persisted into a database,
so it can be modified and shared in a structured way.
Single pieces, such as a PDF-document, but also results
like pinout tables, are called artifacts and each artifact
is stored as an object in the database. Because artifacts
have strong relations to each other, they are organized in
trees. The top-level element is the component, while sub-
elements can be documents and results. This is reflected
in the user interface as well, so unnecessary information
can be hidden at any time. Because the database is a
separate part of the application, multiple programs can
query it independently.

Figure 3: User interface showing control elements beside
the PCB image containing identified components



Figure 4: Stage with lamps and a tripod for the camera.

4.3 Proof-of-Concept Implementation

We implemented the software architecture together with
a hardware testbed as a proof of concept to test our ap-
proach. The software implementation consists of the
modules required for automated analysis and the testbed
contains a camera setup to take photos of PCBs.

With image recognition that is robust enough, any
high-resolution camera can be used for taking pictures of
the PCB. Our test setup uses a Canon EOS 600D DSLR
with a standard 18 to 55 mm lens. In order to take pic-
tures that are consistent between different PCBs and in-
dependent of natural daylight, a small stage, depicted in
Figure 4, was set up. The stage is composed of matte,
white paper and four adjustable LED lamps, to produce
a continuous, matte ambient light. The PCB is mounted
on a stand inside the stage.

The software implements a graphical user inter-
face and algorithms for component identification in
Python [17] and OpenCV [13]. The graphical interface
is using the Qt library [18]. All analysis steps are ex-
ecuted in the background directly after the image has
been imported into the software. We assume that the im-
age is cropped or a close-up, so that only the PCB is de-
picted. However, the background does not interfere with
the analysis as long as it is a bright, solid color.

Since we used a state-of-the-art OCR engine as build-
ing block for the second step, we will focus our descrip-
tion of the proof-of-concept on object detection and doc-
ument analysis in particular. We revisit the employed
OCR during our evaluation in Section 4.3.3.

4.3.1 Object Detection

Object detection consists of pre-processing, filtering, and
the creation of bounding boxes for detected components.
The intermediate results of each image processing stage
are depicted in Figure 5. Identified regions are marked
in purple, while blue rectangles indicate the final compo-
nent bounding boxes. An image segmentation separates
different regions of the image to determine the compo-
nents’ bounding boxes by using pixel information. For
example, continuous areas can be used to divide the im-
age into interesting foreground pixels and uninteresting
background pixels. Because chip packages create dark,
rectangular and continuous areas, those areas can be clas-
sified by their size and color using image segmentation.

First, the image is pre-processed using morphological
operations. In particular, erosion is used to flatten and
expand continuous areas of color and for removing noise
[3]. Morphological operations modify images by consid-
ering the relative ordering of pixels within a structuring
element, also called kernel. A kernel usually is a small
matrix, 3×3 in our case, that consists of ones and zeros.
The ones in the kernel define a pixel-neighborhood and
all pixels in that neighborhood are set to the minimum
(in case of erosion) or the maximum (in case of dilation)
of the neighboring pixels [19]. In our case, the kernel
is positioned and applied on all possible locations of the
image.

After that, thresholding is applied, in order to remove
areas of the image that do not show the visual charac-
teristics of chip packages. Thresholding is performed
by computing a function for each pixel. Let src(x,y)
be the original pixel value at position (x,y) on a hue-
saturation-value (HSV)-encoded image for which we de-
fine a thresholding function dist(x,y) by

dist(x,y) =


0 if H(src(x,y))> maxh,

or S(src(x,y))> maxs,

or V (src(x,y))> maxv,

src(x,y) else.

with maxh, maxs, maxv being the threshold values. This
function sets all pixels of greater hue (H), saturation (S),
or value (V) than maxh, maxs, maxv to zero, effectively
removing their information from the image. We use this
to retain only the pixels of chip packages, which can be
identified by their characteristic range within the HSV-
spectrum. While this step is not able to remove every
unrelated pixel, it performs well in leaving the outlines
of the packages intact and distinguishable.

After that, the watershed algorithm is used in order
to determine the continuous areas of the chip packages.
The watershed algorithm for image segmentation simu-
lates rising water that accumulates in minima (valleys)



(a) PCB after pre-processing.

(b) PCB after HSV-filtering.

(c) Final segmentation.

Figure 5: Intermediate results of image processing stages

and is held back by maxima (hills) [20]. A set of bound-
ing points defines the established regions which we then
approximate into rectangles. A greedy approximation
calculates these rectangles: Let P be one of the sets of
bounding points, that the segmentation algorithm returns.
Let (px, py) be the coordinates for each point p ∈ P, then
∀p ∈ P calculate:

xmin = min(px) and ymin = min(py) (1)

xmax = max(px) and ymax = max(py) (2)

Using the minimum and maximum coordinates, calculate

r1 =

{
(xmin,ymin) if xmin · ymax > xmax · ymin

(xmax,ymax) else
(3)

and

r2 =

{
(xmax,ymax) if xmin · ymax > xmax · ymin

(xmin,ymin) else.
(4)

Then, (r1,r2) is a rectangle and describes a correct
bounding box around a component if

xmax− xmin ∈ [MINX ,MAXX ]

ymax− ymin ∈ [MINY ,MAXY ]
(5)

with MINX , MAXx, MINy, MAXy defining minimum and
maximum lengths of both sides of the rectangle. This
is done to prevent false positives of rectangles being too
small or too big to be a component. For our purposes,
those values were chosen to be a fraction of the respec-
tive PCB’s dimension in pixels. This rule calculates the
largest possible rectangle around a determined region.
Note that this is not the most terse circumscription if
components are rotated by factors other than 90 degrees.
This can easily be improved by state-of-the-art functions
to approximate a rectangle.

The resulting bounding boxes are forwarded to the
OCR module to determine the part numbers.

An alternative, semi-automated way of identifying
components we implemented is brute-force template
matching. First, a known component is manually marked
on a first PCB or returned by the image segmentation.
After that, the marked region is used as a template to de-
tect other instances of the same component on a second
PCB. Figure 6 shows the marked template and the re-
sulting detection of multiple instances of the component
on a different PCB using brute-force template matching.
Brute-force matching compares a pixel window against
a template by calculating a correlation function that in-
dicates the similarity of both regions [1]. This technique



reduces the number of required user interactions to mark
all components on a PCB even if a fully automated object
recognition is not successful. Moreover, in order to in-
crease the number of detected components, an automated
brute-force matching step after the object segmentation
uses the detected components as templates.

4.3.2 Optical Character Recognition

OCR applied within the detected component bounding
boxes yields the part numbers of the respective ICs. Part
numbers are usually printed on top of the black chip
package in a simple, white font. As input, the OCR
service gets a pre-processed image of the microchip’s
bounding box, and in turn, it outputs an array of detected
words and their positions. In our case, the service per-
forming the actual character recognition is Microsoft’s
Cloud Vision API [12]. For pre-processing, the image
is inverted so that the black package becomes a white
background with black characters printed on it. This is
necessary because OCR programs usually expect high
contrast between characters and background, such as in
scanned documents. Resulting words are concatenated

(a) Template (red bounds) marked for cross-PCB detection.

(b) Matched components (red bounds) on another PCB

Figure 6: Brute-force template matching

into a single sentence by adding a white-space character
between every word. Because manufacturers also print
batch numbers and other identifiers on the chip, only a
fraction of the words form the part number. In order to
extract the part number, all possible sentences are built
by calculating the Cartesian product of the words. Then,
the sentences are matched against common manufacturer
patterns, which have been obtained from electronics dis-
tributors’ catalogs. If there is a matching pattern, the sen-
tence is immediately marked as a correct part number.

4.3.3 Document Analysis

The part numbers of ICs determined by OCR are used to
obtain the corresponding technical documents for anal-
ysis by search engines. To extract relevant component
data about these ICs from found PDF-documents, multi-
ple open-source tools are used. First, the document is
converted to both plain-text and XML using pdfminer
[15]. In order to filter out false positives, like market-
ing brochures, the generated XML allows categorization
of documents by their structure because it contains a
structured and parsable table of contents, including sec-
tion headings and references. If, for example, the docu-
ment does not contain a section called “Feature Descrip-
tion” or the word “Datasheet”, it is likely that it is not a
datasheet. For this, simple regular expressions or a linear
classifier can be used.

Parsing pinout diagrams is challenging because they
are embedded as vector graphics or binary images inside
the documents. Thus, the software will determine the
location of these diagrams and generate only images of
the page using the tool pdftoppm [16]. This way, the dia-
grams can still be extracted and saved, so the analyst does
not have to search through the document in a dedicated
PDF-viewer.

Pin-signal tables map signals to physical pins, for ex-
ample UART1_TX to PIN31. The analyst requires this
information to probe traces on the PCBs for locating s
or connections between components. In order to extract
pin-signal tables from the documents, Tabula [21] was
used to generate CSV-documents that in turn are parsed
by our software to be presented to the analyst.

4.4 Evaluation

Besides the fully-automated color-based object segmen-
tation process and the brute-force template-based match-
ing used in our proof-of-concept, we implemented and
evaluated alternative approaches for detecting the areas
of microchips inside a PCB. In particular, the alterna-
tives we discuss in this section are grayscale-based object
segmentation and feature-based matching. Moreover, the
results of the integration of OCR and implementation of



document analysis for the subsequent workflow-steps are
discussed. All approaches have been evaluated using the
proposed stage-camera-setup and a total of eight PCBs,
taken from real-world assessments and other hardware
development projects. At the end of this section, we
round up the individual results to provide an assessment
of the overall outcome of PCB reverse engineering per-
formed according to our workflow and method.

4.4.1 Object Detection

For image segmentation we used a color-based segmen-
tation in our proof-of-concept. We compared this to
grayscale-based segmentation approaches, which proved
usable for most PCBs. However, using color-information
greatly increased robustness on PCBs that have big
copper-areas in light silkscreens which generate dark ar-
eas. Using a manually determined set of parameters
(maximum and minimum area of segments, HSV thresh-
olds) color-based image segmentation correctly detected
more than 65 percent of components of the PCBs. These
parameters depend on the camera and light conditions of
the photography setup and are determined by iterating
them in the graphical user interface to minimize false-
positives on an arbitrary PCB. After this one-time config-
uration effort, all parameters can be transferred to future
projects without re-evaluation. On average, four false-
positives were detected per PCB, with each PCB having
an average of twelve components. False-positives were
caused by the clamps of the PCB-mount but also by con-
nectors on the PCBs in our test-cases.

For detecting components using patterns from already
classified components, our proof-of-concept uses the
template-based matching approach. While highly ac-
curate, it proved less feasible to use across multiple PCBs
than the presented alternatives because details, like vari-
ations in package size, dust, or differences in ambient
light, already decrease the detection-rate of new compo-
nents significantly. On the other hand, when used for
detecting multiple instances of a component on the same
PCB, the template-based approached reduces the amount
of manual interaction by over 82 percent on our test-
ing set of PCBs. As a baseline, the amount of manual
steps necessary to select all components of one type has
been used. For example, a board with 16 identical com-
ponents requires 16 click-and-drag interactions, without
brute-force matching. With brute-force matching, only
three interactions are necessary. Small components, like
voltage regulators, transistors, or bus-drivers, may occur
multiple times, and since manufacturers usually stick to
one specific component type for one function, the type
often is identical. Furthermore, this approach yields no
falsely classified components as long as the template
contains the whole area of the IC. Because of this, we

decided on implementing the template-based approach
using brute-force matching in our proof-of-concept.

An alternative to template-based matching is feature-
based matching. We evaluated the SIFT algorithm [10]
for feature-based matching of components in PCB-
images. SIFT uses different levels of blurring to deter-
mine so-called keypoints, which are stored in a descrip-
tor. The assumption is that if a visual feature is distinct
across multiple levels of blurring, it is a good keypoint.
Descriptors can be compared to other images’ descrip-
tors, for example by calculating the distance between sets
of keypoints and determining the sets with low distance,
indicating an occurrence of the template. In order to eval-
uate SIFT, descriptors of manually selected component
bounding boxes were generated and matched to descrip-
tors of other PCB images. This feature-based approach
proved infeasible because of the small sizes of compo-
nents in the images, resulting in few key-points being
detected. In contrast, the presented image segmentation
approaches proved most robust and accurate for identify-
ing components.

4.4.2 Optical Character Recognition

For extracting the part numbers of detected components
different OCR-frameworks have been evaluated. Ini-
tially, Tesseract [22] was chosen as an OCR program,
but was quickly replaced by Microsoft’s Cloud Vision
API [12] because the latter proved to be more reliable in
detecting the part numbers correctly. 15 out of 18 part
numbers were recognized correctly by Cloud Vision. In
contrast, Tesseract failed to detect any part numbers. The
main reasons for Tesseract’s failure were manufacturer
logos obstructing the character classification and also the
lack of text alignment, that is usually found in a scanned
document.

4.4.3 Document Analysis

The document analysis performance was evaluated us-
ing a set of eleven datasheets that correspond to com-
ponents identified in the object detection evaluation. It
was checked whether the analysis successfully extracts
memory maps, pinout diagrams, and pin-signal tables, if
applicable. 10 out of 12 datasheet documents could be
found automatically. Out of these, all available mem-
ory maps, 8 out of 10 pinout diagrams, and 5 out of
8 pin-signal tables could be extracted. All of the in-
valid results in either memory maps or pinout diagrams
originate from formatting issues in the PDF-document:
Section-headings appearing one page before the actual
content prevented the correct recognition. Pin-signal ta-
bles sometimes were garbled because of line-breaks and
missing column delimiters.



Component Identified Part-No. Document Memory Map Pinout Pin-Signal Tbl.
MN4164P-15A* yes yes yes NA yes NA
TMM41256P* yes yes yes NA no NA
HM50464P yes no - - - -
L9959t yes yes yes NA yes yes
K4S641632H yes no - - - -
88i6545 yes yes no - - -
L6283 yes yes yes NA yes no
PC74HC257P* yes yes NA - - -
PC74HC10P* yes yes NA - - -
PC74HC86P* yes yes NA - - -
T74LS139B1* yes yes no - - -
SI8608 yes no - - - -
SN74LS245N yes yes yes NA yes yes
UM82C11* yes yes yes NA no no
PAL16L8ACN* yes yes yes NA yes no
STM32F051 yes yes yes yes yes yes
PIC16F1519 yes yes yes yes yes yes
G2452 yes yes yes yes yes yes

Table 1: Intermediate results of all automated steps, applied on each unique PCB component.

4.4.4 Result Overview

Finally, all analysis modules were combined in order to
test overall performance and relevancy. Table 1 depicts
the results of this test, for brevity including only compo-
nents that were correctly identified. Therefore, nine un-
detected components were excluded. In the table, NA de-
notes that the specific result was not available. Because
the memory map, pinout, and pin-signal table analyses
depend on the respective document, the dashes represent
their absence because of a missing or misclassified docu-
ment. Components marked with a star (*) have not been
manufactured for at least five years and their datasheets
are only obtainable in form of scanned documents which
can not be parsed in the same way as all other documents.
In particular, they only contain images and are lacking a
document structure and the plain-text.

Table 1 shows that for modern components, such as
the STM32F051, all the analysis results are produced
correctly. Except for three instances, the part numbers
of all components were correctly detected, which proves
that modern OCR algorithms are capable of performing
this task. Given the part number, almost all documents
have been found, which proves that the approach of us-
ing a search engine is valid. Apart from these findings,
all other expected results to be found in Table 1 have
been achieved correctly with only minor exceptions. Pin-
signal table interpretation is subject to further research,
because pin-signal tables can be quite complex. Most
often, manufacturers include different packages or even
product-lines and configurations in their pin-signal ta-
bles, which complicates automated parsing.

All image processing modules perform fast on a sin-
gle image. On an Intel i7-6820HQ CPU, the segmen-
tation takes less than a second on a 12 megapixel im-
age. Brute-Force matching performance scales linearly
with the number of templates and with the resolution
of the PCB’s image. With eight templates, brute-force
matching completes within 200 milliseconds on a 12
megapixel image. However, brute-force matching thou-
sands of templates on a high-resolution image would re-
quire significantly more processing power. On the other
hand, the image segmentation’s execution time is nearly
constant, regardless of how many components are to be
detected. This makes brute-force matching less interest-
ing for mass-scale component detection.

Overall, our results show that the software performs
well and aids in the process of reverse engineering by
providing an intuitive interface and automated conduct-
ing of the targeted initial tasks. Once each component
has been identified and available information about them
has been gathered the single remaining task of PCB re-
verse engineering is manual probing of the connections
between components.

5 Future Work

The proposed framework allows for further automation
directly enhancing our approach. For example, statis-
tical analysis could be done on common components
and patterns could be extracted from the arrangement
of components. This may guide the decision on which
common components or sub-systems further targeted re-



search would improve results. An example for this would
be to conduct a broad analysis of third-party PCB images
from the Internet to determine common patterns, partic-
ularly from reference designs, among manufacturers and
product types.

As already indicated, an analysis of pin-signal tables
and pinout diagrams during document analysis could
yield valuable information. For example, knowing the
physical location of a signal, the connections can au-
tomatically be mapped to physical pins and communi-
cation protocols. Detection of single pins on packages
should be trivial using one of the proposed methods for
object-detection, assuming that the component’s bound-
ing box has already been defined. This applies only to
packages where the pins are clearly visible. For example,
packages such as Ball Grid Array (BGA) require removal
of the component to reveal the pins.

However, actually mapping the pin to a signal is not
trivial as the information is embedded in images or vector
graphics inside the datasheets. One approach would be,
instead of PDF-documents, to analyze commonly avail-
able CAD libraries that provide pin mappings which may
be easier to parse. These CAD libraries are used and cre-
ated by engineers when designing a PCB. They contain
information about components, such as pin-signal map-
pings and mechanical specifications.

In conjunction with PCB deconstruction techniques,
our method could be used to reproduce a perfect repre-
sentation of the device under test. This would allow re-
construction and extraction of circuits that, in combina-
tion with rapid prototyping techniques, could be used to
build test-beds for particular applications. For example,
the PCB layout could be extracted and modified so that
buses are directly exposed, enabling man-in-the-middle
attacks without requiring to reverse-engineer and design
the test-PCB by hand.

In order to make interaction with the database even
more intuitive, augmented reality applications can be re-
alized using the proposed framework. Component names
and annotations could be directly projected into the field-
of-view of an analyst. This would make all the informa-
tion available even in situations where a location-change
is needed, for example, when soldering wires onto the
PCB.

6 Conclusion

Within this paper to the best of our knowledge, we
derived the first explicit workflow description for non-
destructive PCB reverse engineering from the current
state of the art. The proposed process comprises of com-
ponent identification, gathering documentation, extract-
ing relevant information from the documentation, and fi-
nally physical probing of signals on the board. We de-

rived a software architecture supporting this workflow
and simplifying the task of PCB reverse engineering by
automation. Our automated approach allows the ana-
lyst to perform the initial three out of four steps sequen-
tially on a computer. This clear separation of automated
and manual tasks eliminates context switches between
looking up information and physical probing. We imple-
mented this software architecture into a framework as a
proof-of-concept, showing that the desired automation is
possible and performs well. Using image segmentation,
we achieved a component detection rate of over 65 per-
cent. We reduced the number of required click-and-drag
operations for identifying multiple instances of compo-
nents, that have not been automatically detected by the
software, by 85 percent. Furthermore, we successfully
demonstrated how to abstract away irrelevant informa-
tion from technical documents with high accuracy.

Once the proposed automatic analysis completes, criti-
cal components can be identified to guide the subsequent
test activities. Thus, critical traces or signals can target-
edly be probed in one pass. Furthermore, the method
aids the analyst in extracting and storing gathered in-
formation in a structured way to prevent confusion and
mistakes. The software keeps track of all results in a
database and thus, eases sharing results among different
analysts, teams or customers. Assuming the more com-
plex methods of PCB deconstruction are infeasible, this
approach defines the most structured and cost-efficient
way of analyzing a PCB.

PCB reverse engineering is an essential step during in-
formation gathering at the beginning of black-box pene-
tration tests and vulnerability testing of hardware compo-
nents. Our approach for PCB reverse engineering allows
for dependable and comparable results that can optimally
be utilized as prerequisite of penetration tests. More-
over our approach allows for a new set of possibilities
for hardware security testing and engineering. Now it is
possible to consider the underlying hardware platform in
quicker and more focused test assignments where in the
past the effort would not have been taken. It may become
possible to continuously annotate a PCB on-the-fly using
a smartphone (augmented reality). This can be used to
highlight important components, interfaces, or pins. On
the other hand, larger PCBs become easier to analyze be-
cause the software automates critical steps and allows in-
specting the PCB without requiring physical handling or
access to the PCB. These new applications and use cases
are enabled by our method due to the improved analysis
coverage, reduced effort, and structured storage of data.
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