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Abstract
Since 2006, many papers were devoted to the analysis
of the security of the Hitag-2 algorithm in the con-
text of vehicles access control. While this algorithm
was proven to be cryptographically broken, it is still
in use in the car industry. Recently, new vulnerabili-
ties regarding Hitag-2 based Remote Keyless Entry
systems have been exposed, leading to the design of
an attack allowing to unlock a vehicle and requiring
the capture of four to eight radio packets.
However, in this study, it will be shown that spe-

cific implementations of Hitag-2 based RKE sys-
tems exist, which apply interesting countermeasures
and thus are not vulnerable to the aforementioned
attack. Furthermore, a detailed black box analysis of
such system, from the physical layer up to the rolling
code implementation will be proposed. Finally, a new
cryptographic weakness will be exposed, which can
be exploited to forge valid packets without retrieving
the cryptographic key and to open the target vehicle,
requiring the capture of only two radio packets.

1 Introduction

Nowadays, manufacturers tend to interconnect mod-
ern cars’ embedded systems to various decentralized
services such as multimedia, voice commands and
speech recognition servers, localization and GPS, etc.
They add more and more layers of complexity in
a world that, until very recently, was motivated to
fulfill very basic features and was mainly focused on
safety issues. As many recent papers have shown [19],
cyber security is becoming a serious concern, espe-
cially when critical Electronic Control Units (ECU)
handling the car sensitive parts (breaks, engine, etc.)
can be compromised via this interconnection.

Most of published studies assume a physical access
to the targeted vehicles. In this context, preserving

the integrity of the interior of a car, i.e. ensuring
that an adversary has no physical access to potential
attack vectors (such as the multimedia radio system),
becomes a critical issue. Hence, all related technolo-
gies involved in opening/closing the car doors should
enforce adequate security functions.
In 2016, Garcia et al. [14] analyzed some of these

systems called RKE (for Remote Keyless Entry):
they exposed vulnerabilities allowing an adversary
to open and close a car after capturing a few RF
packets, by forging a rogue key. One of their main
contributions is a new attack on the Hitag-2 algo-
rithm.
Following a similar approach, this paper presents

a new cryptanalysis of Hitag-2 in a RKE context.
This work deals with the discovery of Hitag-2 based
RKE systems implementing countermeasures that
render the attack proposed in [14] hard to replicate.
We will refer to such systems as “hardened RKE”
in what follows. Exploiting a new flaw discovered
in Hitag-2 allows us to attack such systems with
only two captured RF packets. In addition to the
new findings, the description of the experimental
methodology that allowed us to understand how the
hardened RKE systems work, without any ECU code
reverse engineering or access to private documen-
tation of the components, is proposed. The study
was carried out in a black box context through the
analysis of the RF packets sent to the victim car and
the use of publicly available blank keys.
This paper is organized as follows: in Section 2,

the related work published in the literature is summa-
rized. In Section 3, a focus on the Hitag-2 algorithm
is proposed and known cryptographic weaknesses and
attacks are discussed. New findings related to a so-
called hardened Hitag-2 RKE system are presented
in Section 4. In Section 5, new attacks discovered and
implemented during our experiments are presented.
In supplement, some countermeasures are discussed.



2 Related work on RKE systems

The purpose of this section is to introduce the context
of Remote Keyless Entry systems, and to provide a
brief state of the art of the attacks against them.

2.1 Keys, immobilizers and RKE
Modern car keys are commonly used for two features:

• The Immobilizers aim at detecting the pres-
ence of a valid car key in order to unlock the
ignition sequence. Near-field radiocommunica-
tions (RFID) are generally used for these sys-
tems, with a frequency modulated carrier usually
around 125 kHz. The barrel of the start lock
contains a close field loop (antenna) so that an
authentication protocol between the key and the
ECU can be performed when the key is inserted.

• The Remote Keyless Entry (RKE) systems
control the remote open/close mechanism. Push-
ing the key buttons generates a one-way radio
signal sent to a receiver embedded in the car.
Usually, the communication channel uses ultra-
high frequencies (UHF, 433 MHz or 868 MHz in
Europe), with a range of few meters.

Both of these functions can be integrated inside the
same electronic component called a transponder.
The cryptography used for each of these features
may differ depending on the manufacturers or OEMs.
Combined attacks can be developed when both sys-
tems use the same encryption key, allowing to both
enter and start the engine of the car [14].
Nowadays, RKE systems are gradually being re-

placed by Passive Keyless Entry (PKE) and Passive
Keyless Entry and Start (PKES) systems on new
generations of vehicles. A proximity detection mech-
anism controls the feature unlocking on the car side.

This article focuses on the analysis of classical RKE
systems based on Hitag-2, in a context of attacks
allowing to open and close the car without access to
the genuine key. Garcia et al. have shown in [14]
that many recent car models still use this kind of
system.

2.2 Attacks on RKE
2.2.1 Generic attacks

As RKE systems rely on a unidirectional radio fre-
quency transmission, they are prone to generic phys-
ical layer attacks such as jamming, eavesdropping,
relay and replay attacks.

In [12], the authors demonstrate the feasibil-
ity of relay attacks on PKE systems. Although
their study has been limited to PKE near-field low-
frequency communications, the same principle applies
to RKE UHF communications.
A jamming attack on RKE systems is proposed

in [21]. This attack is based on the possible user
inattention when she closes her vehicle. The idea
is to jam the radio frequency transmission when
the user presses the vehicle lock button, leaving the
vehicle opened.

A trivial replay attack must be considered if an
adversary has access to the key for a few seconds and
the car is out of reach, since it is possible to record
opening/closing commands and replay them later.
This weakness is due to the fact that RKE systems
are mono-directional: they solely rely on sending a
single frame to the car. In order to limit the risk
of replay attacks, RKE systems include counters
or rolling codes in the radio frames (this will be
detailed in the next sections). However, it has been
shown in [16] that a combination of jamming and
replay techniques allows to circumvent a RKE system
implementing these countermeasures.
A main limitation of generic attacks on RKE sys-

tems is that they are conducted in a black box fashion:
they require the adversary to record and replay gen-
uine frames generated by the original key. This can
be useful for a “one-shot” attack, but is somewhat
limited if one wants to be able to interact with the
car at any time. This is where targeted attacks prove
to be more efficient: understanding how radio frames
are built and analyzing the weaknesses of a specific
RKE system could allow an adversary to forge a
rogue key with unlimited access.

2.2.2 Cryptographic weaknesses

Modern RKE systems use cryptography in order to
prevent valid frames forgery. A symmetric secret
key is shared between the remote and the car ECU,
and this key is used to produce a rolling code that
an adversary cannot forge without knowing the key.
This is usually done by providing a remote control
unique identifier and a counter as inputs to a cipher
producing an authentication code. The ECU is then
able to check this code.
The security of the RKE scheme hence relies on

the way the authentication code is produced, and on
the strength of the underlying cryptography. Though
the AES cipher becomes a standard in modern cars,
proprietary and weak algorithms have been used for
many years by the industry. Aside from the algorithm
itself, other weaknesses can lead to serious attacks,



as it has been shown on Volkswagen brand vehicles
which all share the same master key [14].

Since 2006, several keyless entry related algo-
rithms have been affected by cryptographic weak-
nesses. Examples of such ciphers are KeeLoq [7] and
Hitag-2 [28, 18, 10, 9, 26]. The security analysis of
Hitag-2 remains a topic of interest since it has been
observed to be still in use by the industry, especially
in the context of vehicles access control. Recently,
a new cryptanalysis targeting RKE systems based
on this cipher has been presented in [14]. According
to the authors, adversaries only need to record from
four to eight radio frames to recover the encryption
key, forge a rogue remote, and open/close the victim
car at will.

3 Hitag-2

Hitag-2 is a stream cipher designed by Mikron, a
company acquired by Philips Semiconductors. The
algorithm emerged in the 1990s and has been kept
proprietary until 2007 when Wiener reverse engi-
neered it [28].
Since then, many public documents, leaked

datasheets [28, 3] and academic papers [18, 10, 20,
28, 9, 24, 23, 15, 17] have been published on the sub-
ject. The purpose of the current section is to give a
brief description of the algorithm, how it is used as a
security function of some RKE systems, and finally
focus on the state of the art of its weaknesses and
attacks.

3.1 Notations
The following notations will be used in the article:

• The binary finite field containing 0 and 1 is
F2. The addition operation XOR on this field is
⊕. The multiplication operation (logical AND) is
noted &. Fn

2 is the Cartesian product:
Fn

2 = F2×·· ·×F2︸ ︷︷ ︸
n time

.

• A string x ∈ Fn
2 composed of n bits will have

its ith bit noted xi, with 0 ≤ i < n. Hence
x = x0 . . .xn−1. For example, in hexadecimal
notation 0x01 (equivalent to 00000001) is an
eight-bit string where x0 to x6 are zero, and
x7 = 1. The string with n zeros is 0n, and the
string with n ones is 1n.

• Given the previous notations, (0x010000)i de-
notes the ith bit of the 24-bit string 0x010000.
Thus (0x010000)7 = 1 and (0x010000)i =
0 for all 0≤ i≤23 and i 6=7.

• The ⊕ operation between two bit strings x and y
of the same size n is the string resulting from bit-
wise addition: x⊕y. Thus 0x0011⊕0x1111 =
0x1100.

• The complement x of a string x is the bitwise
negation. Thus 0x01 = 0xFE.

• The concatenation of two strings x and y, pos-
sibly of different sizes, will be noted indiffer-
ently xy or x‖y. For example 0x010‖0x1111 =
0x0101111.

3.2 Description
A detailed description of Hitag-2 is given in [9, 14],
and a summary is also provided in Appendix A.

Hitag-2 belongs to the family of lightweight
stream ciphers designed to fit low power consump-
tion when implemented in hardware. Many of its
design principles are shared with the Mifare Classic
Crypto1 algorithm [11].

Hitag-2 is based on a 48-bit secret key, a 48-bit
internal state, a linear function acting as Linear Feed-
back Shift Register (LFSR) on the internal state and
one non-linear filtering function f which takes 20
bits at input and produces one bit as output at each
clock cycle. The algorithm can produce as many
bits as necessary for its stream encryption using its
keystream. However, only the first 32 bits (noted ks)
are used as an authentication code in RKE systems,
as it will be described in Section 3.3.

3.3 Hitag-2 used in RKE systems
3.3.1 Radio packets dissection

During their study of Hitag-2 based protocols [14],
Garcia et al. reverse engineered the RF part used by
the PCF7946 [1] chip from Philips. This transponder
is advertised to use Hitag-2 in RKE contexts, and
an important contribution of their paper has been the
dissection of radio packets transmitted from the key
to the car, as well as how the fields in these packets
are connected to the usage of the stream cipher. The
packets transmitted by the PCF7946 transponder are
composed of 7 fields listed in Table. 1.

Name Size (bits) Description
SYNC 16 Synchronisation (0x0001)
UID 32 Unique Identifier
BTN 4 Button identifier
CNTRL 10 Low part of RKE counter
KS 32 Hitag-2 keystream
CHK 8 Checksum

Table 1: Hitag-2 radio packet structure for PCF7946



The unique identifier UID has a length of 32 bits.
The BTN button ID is encoded on 4 bits (which allows
to index 16 buttons on one key). The counter CNTRL
has a length of 10 bits, and the 32-bit keystream
KS is the output of Hitag-2. In addition, a 16-bit
synchronization sequence SYNC is sent in preamble
to synchronize the clock on the receiver side. A
checksum CHK is computed as an 8-bit sequence re-
sulting from the XOR of all previous bytes in the
packet (except bytes of SYNC). This checksum allows
error detection. Finally, since the number of bits in
the packet is not a multiple of 8 bits (102 bits), a
padding of two bits ’10’ is added after KS, giving a
total of 104 bits per radio packet.
The 10-bit counter CNTRL is in fact a low part of

the 28-bit counter used by the Hitag-2 cipher (L is
for low). The 18-bit high part of the counter CNTRH
(H for high) is kept secret on both the remote control
and the ECU sides. Consequently, the counter CNTR
used by the cryptographic function is 28 bits while
only 10 bits are sent over-the-air.

UID, BTN and CNTRL are sent with the most signifi-
cant bit first. For example, if the lower part of the
counter is equal to CNTRL = 1, then the 10-bits string
is sent in the following order: 0000000001.

3.3.2 Hitag-2 cipher inputs and output

In order to produce the authenticator KS, the sender
and the receiver will have to feed three inputs to
the Hitag-2 cipher: a key k, an identifier id and an
initialization vector iv. The relation between these
inputs and the fields that compose the radio packets
sent over-the-air is described in [14].

The secret key k is obviously unknown to an exter-
nal adversary and remains sealed in the transponder
and in the ECU. The 32-bit value of UID immediately
maps to id. The initialization vector iv is composed
of elements extracted from the button identifier and
the counter. Let btn be the 4-bit string representing
the value BTN. Let ctr be a 28-bit string forged by
naturally concatenating the low and high parts of the
counter CNTRH and CNTRL. The value of iv is then:

iv = iv0 . . . iv31 = ctr‖btn = ctr0 . . . ctr27btn0 . . . btn3

The output of the Hitag-2 algorithm ks maps to
KS with the least significant bit being sent first (in
the order of bits production): KS = ks0 . . .ks31.
In the following sections, we will name triplets

the inputs/output tuples of Hitag-2 without the
unknown secret key: (id, iv, ks) is a triplet containing
the 32-bit authenticator ks produced when feeding
the cipher with the identifier id, the initialization
vector iv, and an unknown key k.

3.4 Hitag-2: cryptographic weak-
nesses and attacks

The security of Hitag-2 is a subject of research since
2007. Many attacks exploiting weaknesses of the
algorithm in various use cases have been published.
These attacks are due to the 48 bits key length, the
low degree of the filtering function f (small varia-
tions of the inputs lead to small variation of the
output), and the fact that the internal state is the
same during the first 48 cycles of each session of a
given transponder.
We provide hereafter a brief overview of some at-

tacks exploiting these weaknesses. The efficiency of
these attacks strongly relies on the use case and the
context where Hitag-2 is considered.

• Exhaustive search: a 48-bit key is below mod-
ern standards, making brute-force attacks prac-
tical. Two triplets (id, iv,ks) are required to find
the key k. Since ks length is 32 bits, an average
of 248−32 = 216 keys produce the same triplet
through collisions: the second triplet brings dis-
ambiguation with very high probability. Such
exhaustive searches have been implemented on
various platforms (CPU, FPGA and GPU): a
summary is given in Table. 2.

Source Platform Time
[10] (2009) CPU 2GHz 4 years
[23] (2011) FPGA COPACOBANA Cluster 2 hours

(Spartan 3 - XC3S1000)
[15] (2012) GPU Nvidia Tesla C2050 11 hours

Table 2: Hitag-2 brute-force attacks

• Algebraic attacks: as for many stream ciphers,
the relations between the output ks and the
inputs k, id and iv can be expressed as a sys-
tem of multivariate quadratic boolean equations.
Courtois et al. showed [10] that in the case
of Hitag-2, these equations can be shaped to
provide an efficient input to SAT solvers. The
estimated time of resolution is 6 hours using 16
input/output sets with a chosen iv, or 45 hours
using 4 input/output sets with random iv (on
a standard PC). These algebraic attacks have
been improved in [20] using CryptoSAT, a dedi-
cated solver, and in [22]. However, a limitation
of these attacks is that to be really efficient, they
either require chosen iv or many bits of gener-
ated keystream, which does not suit very well
with RKE contexts.

• Cryptanalytic attacks: the first practical
cryptanalysis of Hitag-2 exploiting its particu-
lar weaknesses has been introduced in [25]. The



SYNC 0x0001 UID BTN CNTRL KS 10 CHK

16-bit 32-bit 4-bit 10-bit 32-bit 2-bit 8-bit

104-bit

Figure 1: Structure of the data sent by the component PCF7946

authors attack the immobilizer system of sev-
eral cars using 134 frames acquired by sniffing
the near-field communication between the key
and the ECU. The attack consists of filtering
candidate keys and strongly reduces the 248 ex-
haustive search space: bad candidates are invali-
dated using relations between the keystream and
the cipher inputs, and time-memory trade-off
precomputed tables are used to optimize the pro-
cess. The attack is practical when the adversary
has a close access to the anti-start system: only
5 minutes on a standard laptop are needed to
recover the key.

• Correlation attack: the cryptanalysis of
Hitag-2 previously described is not practical
in a RKE context since the adversary would
have to get 134 radio packets. Waiting for the
legitimate user to open or close her car so many
times is hardly practicable. This is why the au-
thors of [14] have introduced a new cryptanalysis
where capturing only 4 to 8 frames is needed
to extract the secret key from the transponder.
For the sake of succinctness, we will not detail
all the steps of the attack: we will only give an
overview of its key concepts that will explain
why this cryptanalysis operates poorly in some
RKE contexts that we have discovered (see Sec-
tion 4.3.4).
Following the same concepts introduced in [25],
the main idea of the attack is to limit the ex-
haustive search by identifying good candidate
keys with a high correlation score (this concept
is explained hereafter). In the sequel, we sup-
pose that the adversary has recorded several
radio frames of the same transponder (possibly
corresponding to different buttons), i.e. she has
multiple triplets (id, iv, ks), the value of id be-
ing the same for all these triplets. The score of
n bit candidates (16≤ n≤ 48) is computed via a
correlation relative to the observed output bits
ks of the algorithm.
Let’s take the example of the 16-bit length can-
didates: the adversary guesses the 16 lowest
significant bits k0 . . .k15 of the key k. These
bits are used during the initialization phase of
Hitag-2, and are located on the left part of the

internal state at the 32th clock cycle. Namely
a32 . . .a32+15 = k0 . . .k15 (for more details see
Appendix A, and Fig. 6). The bit ks0 is then
produced by using 8 bits among k0 . . .k15, se-
lected by the filtering function f (bits 2, 3, 5, 6,
8, 12, 14 and 15 of the internal state). The other
12 bits used when computing ks0 are other bits
of the internal state related to non-guessed key
bits. Hence, it is possible to compute a correla-
tion score by averaging over the 212 non-guessed
bits: the result reflects the likelihood of realizing
the observed bit ks0 given the guessed bits of
the key. All the captured frames participate to
making this score more accurate, since many
bits ks0 are observed. The score on a single
bit is very limited: the attack is extended to
bits ks1 . . .ks15 to refine it. The 16 bits of the
guessed candidate act on these bits of keystream
during clock cycles ≤ 32+16 (they are thrown
out of the internal state after). Finally, the
score of a 16-bit length candidate key is denoted
k̃16 = k̃0 . . . k̃15 and is computed as an average
over all the bits of keystream that they produce,
as well as over all the triplets available to the
adversary. The same score computation is ex-
tended to the candidate keys of which n bits are
guessed k̃n = k̃0 . . . k̃n−1, moving n from 16 to
48. At each step, only the best candidates are
kept using a ranking on a fixed size table.

The best known attack on Hitag-2 in a RKE
context is the correlation based cryptanalysis. The
authors of [14] advertise a result in 10 minutes on
average on a standard laptop, with 4 to 8 captured
frames and a table with a fixed size of 400,000 candi-
dates in memory. They also discuss a major issue that
must be overcome when dealing with the PCF7946
produced radio frames: the 18-bit high part of the
counter CNTRH (used to produce a part of the iv in-
puts of Hitag-2) is not known to the adversary, since
it is not sent over-the-air. The authors propose to get
around this issue by observing that it takes 1024 key
pushes on the transponder key to produce a carry
to CNTRH. If CNTRH is set to 0 at manufacturing time,
the value of CNTRH is presumably low and can be
inferred using the age of the vehicle. Consequently,
the adversary can repeat the cryptanalysis as many
times as necessary by forging a new iv and ultimately



find the secret key after a reasonable time. They have
validated their assumption on various vehicles. As we
will see in the next sections, this assumption might
become inadequate for some Hitag-2 based RKE
systems such as the one we have been experimenting
with.

4 Hardened Hitag-2 RKE unveiled

This section will provide details on some interesting
points that were discovered during our experiments
with a Hitag-2 RKE system at our disposal. As we
will see, some discrepancies have been observed on
our system. As a consequence it has shown to be
immune to the correlation attack presented in [14].

First, we briefly present the radio framework that
we have used to capture and dissect the packets.
Then, we detail the discrepancies implemented in
the hardened RKE system, and why the correlation
attack fails.

4.1 From RF signal to bits
In the framework of wireless communication security
analysis, it is necessary to set-up an environment to
receive and analyse RF signals. Thus, the first task is
to define adequate hardware and software resources
fitting with the characteristics of the signal under test.
One could list the following parameters to start with:
central frequency, channel bandwidth and any details
about the complexity of the physical layer. To get
access to these parameters, it is possible to investigate
the open literature about the technology, standards,
FCC certification documents or any related document
dealing with the integrated circuits used in the device.
If no information is available about the targeted
protocol, an empirical reverse engineering can be
applied, starting with the detection of the central
frequency.
The RKE system has been intensively studied,

open source signal processing tools are available for
receiving, demodulating and decoding packets (e.g.
[6]). During the review of the existing literature, the
characteristics of the physical and logical layers have
been found. A summary of these parameters is given
in Table. 3.

Parameter Value
Working frequency ISM 433 MHz
Modulation ASK/FSK
Channel encoding Manchester
Packet format see Table. 1

Table 3: RKE physical and logical layers

In what follows, a white box methodology (in the

sense that most of the physical and logical layers are
known) is proposed to check the parameters accuracy
regarding the device under test (DUT).

4.1.1 Demodulation

The working frequency of the DUT is 433.92 MHz. A
preliminary step is the analysis of the spectrum (anal-
ysis in the frequency domain). As the RKE system
is a narrow bandwidth technology a simple RTL-
SDR [27] is used with the related GNU-Radio script.
After setting the center frequency to 433.92 MHz and
a bandwidth of 2 MHz, the central frequency of the
system has been confirmed.

The next step is to confirm the modulation type. It
is known that amplitude and frequency modulations
can be used by common RKE systems. The choice
is related the configuration of the RF IC by the
manufacturer of the key. A waterfall representation
(power spectral density in time-domain and frequency
domain) has confirmed that an amplitude modulation
is used by the DUT.

4.1.2 Decoding

Once the demodulation has been applied (the signal
obtained after demodulation is represented on Fig. 2
- time domain waveform), it is necessary to recover
the symbol duration and the type of encoding.

It can be trivially observed that the demodulated
frame contains a preamble for synchronization pur-
poses and the same packet repeated twice. In each
packet, a preamble is also present from which we can
directly obtain the symbol duration (Fig. 3).

In order to assess the channel encoding scheme used
by the DUT, the knowledge of the packet structure
allows us to eliminate efficiently possible schemes.
In particular, the synchronization preamble and the
knowledge of the total size of the packets lead us to
consider a Manchester encoding scheme. As it can
be observed, a zero crossing transition appears at
least once in a symbol duration, a pure NRZ scheme
can be taken out of consideration. Indeed, due to
the expected entropy of the data contained in the
packets (counter, output of an encryption algorithm,
checksums), there is a low probability of having so
few symbol repetitions.

Finally, the presence of checksums allows for veri-
fying the decoding accuracy.

4.2 Correlation attack failure
Once the radio frames are retrieved and decoded
following the methodology presented in 4.1, the goal
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Figure 2: Demodulated radio frame

SYNC

Symbol duration

DATA

Figure 3: Demodulated packet. The symbol duration is highlighted.

is to extract the 48-bit key k from the target PCF7946
transponder.

We have implemented the correlation attack of [14]
described in 3.4, but it failed at extracting the key
even with hundreds of captured radio packets as
input.

Software implementations are prone to errors, and
in order to set aside such a cause of cryptanaly-
sis failure we have validated our implementation
against crafted frames following the specifications
given in [14]. In our experimental test cases, the at-
tack allowed to recover the correct key with less than
12 distinct packets with a probability of 2

3 , and this
probability drastically increases with more packets.
These expected results confirm the efficiency of the
cryptanalysis in this setup, and points towards some
divergence between the RKE system at our disposal
and the specifications we have implemented.

4.3 Black box reverse engineering
In order to understand why our RKE system setup
does not fit the expected specifications, a reverse
engineering of the way the Hitag-2 output KS is
produced given the elements sent over-the-air in the
radio packets was necessary.
One way to achieve this would be to analyze the

firmware embedded in the ECU or the one embedded
in the PCF7946 transponder. However, extracting the
ECU firmware implies tampering with the vehicle,
which was not an option. Moreover, most of the
PCF7946 logic is hardwired, and this transponder is
hardened against physical tampering: extracting the
key implies hardware reverse engineering, which is
time and resource consuming.
This leaves us with a black box analysis of the

system. In order to overcome the strong limitations
of a blind investigation, we used publicly available
blank remote keys allowing us to set up an arbitrary

cryptographic key in the transponder. This approach
allowed us to indeed discover a hardened RKE system
detailed in this section.

4.3.1 Using blank keys

Many car manufacturers allow legitimate users to
program new remote keys for backup purposes (in
the case a key is lost for example). In the case of
the PCF7946, the transponder can be switched in a
programming mode where parts of the EEPROM can
be written with user defined values: this is the case for
the cryptographic key and some configuration flags.
For obvious security reasons, this programming mode
should be permanently disabled using commands that
blow electronic fuses in the transponder after the
sensitive elements have been written in EEPROM.
The protocol set up to communicate with the

transponder in this mode uses the 125 kHz near-field
frequency (see [17] for a complete description), and
this is generally performed transparently between
the ECU and the blank key after the ECU is put in
a specific mode with a documented actions sequence.
It is possible to interact with blank keys using

a dedicated NFC reader. As Fig. 4 reveals, we
can read the UID and the secret key k embedded
in the transponder: the key has the default manufac-
turing value 0x4f4e4d494b521 documented in the
datasheets [2] and in the reference code [28].

Unfortunately, these parts of the blank key’s EEP-
ROM do not reveal other critical elements involved
in the Hitag-2 RKE protocol, namely the low and
high fields of the counter CNTRL and CNTRH.

4.3.2 Variations in the Hitag-2 inputs

In order to understand how the initialization vector
iv input of Hitag-2 is constructed using the fields

1This key is in fact the transcription in ASCII of MIKRON,
the name of the company that designed Hitag-2.



-----------------------------
Transponder : PCF7946 
Reading with configuration = IDE : AA800820, ISK_Lo : 4D494B52, ISK_Hi : 4F4E
-----------------------------
Read page 0 IDE : AA 80 08 20 
Read page 1 : 4D 49 4B 52 
Read page 2 : .. .. 4F 4E 
Read page 3 : 06 .. .. .. 
Read page 4 : .. .. .. .. 
Read page 5 : .. .. .. .. 
Read page 6 : .. .. .. .. 
Read page 7 : .. .. .. ..

ID
Secret Key

Configuration

Figure 4: A blank key and its EEPROM data

of the RF packets, we have exploited the following
property:

The iv is only 32 bits long: it is possible to per-
form an exhaustive search over the 232 possible
values in a reasonable time (seconds on a stan-
dard PC). This allows to find values realizing an
observed keystream ks, given known and fixed
identifier id and key k.

Property

Due to the nature of the randomization phase
of Hitag-2, different iv could produce the same
keystream bits with fixed id and k. While these
collisions add some “noise” when trying to infer how
the iv depends on (BTN, CNTRL, CNTRH), repeating the
exhaustive search on different packets with various
values for the buttons and the low counter make a
structured pattern emerge.
The structure of iv that we have discovered on

our experimental RKE system shows two major dif-
ferences when compared to the specifications given
in [14], as presented on Fig. 5:

• The values of BTN, CNTRL and CNTRH are not
used in the same order to form iv.

• A random mask MSK seems to be inserted in the
least significant bits of iv, somehow mixed with
or taking the role of CNTRH. Inferring that this is
not related to a particularly high value of CNTRH
(but rather done on purpose) has been confirmed
with further investigations while interacting with
the test vehicle. This will be detailed in 4.3.3.
One should however notice that MSK is still a high
part of the counter associated to the RKE, and
is changed when CNTRL overflows through carry
propagation (every 1024 packets since CNTRL is
10 bits long).

In the sequel of the article, since CNTRH and MSK
can be conceptually assimilated, we will only use
MSK as a notation for this 18-bit field of iv.

Notation

4.3.3 Randomization of the iv

During our tests on the target vehicle, it has been
discovered that the random mask MSK that takes
place in the least significant bits of iv seems to be
in fact a countermeasure implemented in the ECU
against replay attacks.
When the ECU detects a chronological inconsis-

tency between the received RF packet and the stored
internal counter, it programs a modification of the
value of CNTRL and MSK in the transponder at the
next start-up of the engine. This resynchronization of
the ECU with the transponder is performed through
commands using the near-field 125 KHz protocol.
The rationale behind this is an out-of-band authenti-
cation through the immobilizer channel, confirming
that the genuine key is indeed used, before updating
the RKE parameters.

A chronological inconsistency is typically detected
when a RF packet is legitimate in the sense that the
authenticator ks is valid, but the field CNTRL is below
the low part of the counter stored in the ECU.
At this point of the article, one can wonder how

it was possible for us to detect this countermeasure.
We have in fact used the improved attacks presented
in 5. This resynchronization countermeasure has also
practical impacts on the correlation attack as we will
describe in 4.3.4.

4.3.4 Impacts on the correlation attack

The two discrepancies that were discovered explain
why the correlation attack does not give proper re-
sults:

1. The difference in the bit order extracted from
BTN and CNTRL implies that in the case of our
RKE system, the low part (least significant bits)
of iv has almost no variation in consecutive pack-
ets. The reason is that this part corresponds
to MSK which changes every 1024 packets. Since
the least significant bits of iv are the ones that
participate the most to the production of the
first bits of ks, they usually act as a catalyst
when averaging the score on distinct RF packets:
they emphasize a good candidate and make it



get higher scores in the first steps of the correla-
tion attack. When there is not enough variation
in these bits with the different RF packets, the
good candidate can get evicted by the rank-
ing algorithm with high probability in the early
generations (i.e. when dealing with candidates
beginning with size 16).
On the contrary, when the least significant bits
of iv correspond to CNTRL as this is the case in
the RKE systems presented in [14], consecutive
packets yield in much better performance for the
correlation attack.

2. The random 18-bit value MSK is unknown to
the adversary (not sent over-the-air), and the
solution proposed by the authors of [14] to guess
it from the age of the car cannot be used. We
will see in 5.2 that one can nonetheless get rid
of this unknown part using the equivalent keys
property of Hitag-2.

5 Attacking hardened Hitag-2 RKE

For the reasons described in 4.3.4, we consider the
RKE system under study as a hardened one. A new
attack methodology must be designed to fulfill the
goal of implementing a rogue remote key that gener-
ates packets containing legitimate authenticators to
open and close a target vehicle.
The purpose of the current section is to describe

new attacks on Hitag-2 in the hardened RKE con-
text. First, we describe the implementation of an
optimized brute-force attack on Hitag-2 that allows
an adversary to recover the key using two triplets in
a reasonable time. Then, we show how combining
brute-force with an interesting property of Hitag-2
allowed us to overcome the issues described in 4.3.4
with new attacks. Finally, we discuss the possible
countermeasures against them.

5.1 Optimized brute-force attack
We have developed an optimized brute-force attack
on Hitag-2 in OpenCL. This exhaustive search is
based on the particularly adapted bitslice way of
operating the algorithm. Our implementation is in-
spired from the one presented in [15], with adapta-
tions though. While the original code only focuses
on one GPU (11 hours on a Nvidia Tesla C2050, see
Table. 2), our version removes minor specific opti-
mizations to gain in scalability: it uses as many CPU
and GPU resources as available.
This results in a 18 hours search over the 248

possible keys on a single Nvidia GeForce GTX780 Ti,

improved to 45 minutes on an Amazon EC2 instance
with 16 Tesla K80 and 64 CPU2, and 15 minutes on
three of these instances in parallel. The cost of these
15 minutes is approximately 45 euros.

Consequently, exhaustive search now becomes a
practical option for an adversary when it comes
to break Hitag-2 in a context where time matters
(which can be the case for RKE where the target
vehicle might not stay stationary for hours). All the
adversary needs is a distant connexion to EC2 or
any other High Performance Distributed Computing
system (big bandwidth between the client and the
computing cluster is not necessary since only a small
amount of data is exchanged).
Finally, an interesting convenience of the brute-

force attack on Hitag-2 compared to other ap-
proaches is that it only requires two outputs and
known inputs of the algorithm to extract the key.

5.2 Equivalent keys of Hitag-2

We have presented an optimized exhaustive search
allowing to recover a Hitag-2 key given two input
triplets (id, iv, ks).

Nevertheless, one major issue that arises when try-
ing to apply this attack to the context of hardened
RKE is that iv is not fully known to the adver-
sary: only 14 bits are extracted from the RF packets,
formed by the 4-bit button value BTN and the 10-bit
low counter value CNTRL. The 18-bit MSK value is un-
known and random, and performing 218 brute-force
attacks over all the possible values of this mask is ob-
viously not achievable: hundreds of thousands years
of computational power would be needed.
In order to solve this problem and to be able to

generate valid radio frames, we have exploited the
following interesting property of the Hitag-2 algo-
rithm:

Let M = M0 . . .M31 ∈ F32
2 be a 32-bit mask.

Applying the Hitag-2 algorithm with inputs:
⇒ identifier id, key k, initialization vector iv

produces the same keystream ks as with
inputs :
⇒ identifier id, key k⊕ (016‖M), initialization
vector iv⊕M .

Property

It is trivial to see why this property holds using
the equations of the cipher during the randomization
step (see Appendix A).

2The instance is p2.16xlarge, see https://aws.amazon.
com/en/ec2/instance-types/
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Figure 5: Bits order difference in Hitag-2 iv – (a) Article [14] (b) Hardened RKE

We have ∀i ∈ [0,31] (32 clock cycles):
a48+i =k16+i ⊕ ivi⊕f(ai . . .a47+i)

=(k16+i⊕Mi) ⊕ (ivi⊕Mi)⊕f(ai . . .a47+i)

Hence, the 32 most significant bits of the key
k16 . . .k47 are xored with the initialization vector
iv0 . . . iv31. Masking these two values with the same
mask M will be offset during this operation.

Now, let’s consider a set of radio packets that have
been collected from hardened RKE using a PCF7946
transponder. This set is made of triplets (id, îv, ks)
where îv are the values of the initialization vectors
where the 18 least significant bits are zeroed (i.e. îv
are only composed of the 14 known bits extracted
from the radio packet). We will name these elements
equivalent triplets. Let iv be the real values of the
initialization vectors including the unknown part MSK,
meaning that îv = iv⊕ (MSK‖014).

The property of Hitag-2 previously exposed allows
us to derive the following interesting result:

A cryptanalysis performed on equivalent triplets
(id, îv, ks) for a transponder with a key k allows
to find an equivalent key such that:

k̂ = k⊕ (016‖MSK‖014)
The keystream authenticators ks generated by
the equivalent key k̂ are the same as the ones
generated by k as long as MSK is not modified.

Result

This means that given two radio packets, i.e. two
equivalent triplets, an adversary can perform the
brute-force attack presented in 5.1 and get an equiv-
alent key k̂ in a few minutes. Thanks to the previous
property, it is possible to forge valid radio packets
using k̂ as long as the unknown value MSK is not
modified. One should notice that it is important that
the two packets used for the exhaustive search also
share the same mask MSK, meaning that they must
belong to the same 1024 low counter session (see the
discussion below).

5.3 Wrapping up the new attacks
As we have already uncovered, MSK is modified when:

• The low counter CNTRL overflows and a carry is
propagated to MSK (every 1024 button pushes).

• The ECU detects a replay attack and modifies
MSK with a random value as described in 4.3.3.

When MSK is modified, capturing two new RF pack-
ets and performing a brute-force search again to find
the new equivalent key can be a rather expensive
option. However, using results from 5.2, we will
present new attacks to efficiently deal with these
situations. Let us assume that the adversary has
previously captured two RF packets providing a first
equivalent key k̂ after an exhaustive search. The
adversary can then choose between two paths:
1. Zero capture and guess: the extraction of the

equivalent key k̂ through brute-force provides a
primitive to forge valid packets in a 1024 button
push timeline when there is no ECU resynchro-
nization. This means that if the low counter
CNTRL has the value x, the adversary can gener-
ate (1024−x) packets that the ECU will consider
authentic. The first x packets can also be gen-
erated, but they are useless to the adversary
since they belong to the “past”. Beyond these
(1024−x) packets, there is a carry and the adver-
sary must adapt the equivalent key to generate
legitimate packets for the new frame. Let k̂′ be
the new equivalent key. Abusing the addition
notation, we have k̂′ ≈ k⊕ (016‖(MSK +1)‖014).
Since an incrementation of a 18 bits value can
produce at most 18 chained carries, it is possible
to precompute the 18 possible equivalent keys k̂′

derived from k̂. Then, it is easy to check which
one of all these possible values indeed opens/-
closes the car, and keeps it as the new equivalent
key.
It is also important to bring a precision at this
point: when the car receives malformed frames,
it does not activate its anti-replay countermea-
sure. Indeed, since the other 17 packets are
derived from bad guesses for the iv, they will
produce non-authentic packets and will simply
be dropped by the ECU.

2. Recapture and adapt: in this scenario, we
suppose that the adversary has an equivalent



key k̂ associated to a mask MSK, but for some rea-
son the 18-bit mask has changed to MSK’ yielding
in a new unknown equivalent key k̂′. In order to
compute k̂′, a new radio packet is captured, pro-
viding a new equivalent triplet associated to this
equivalent key that will be noted (id, îv′, ks′).
The adversary performs a fast exhaustive search3
over the 218 elements to find a 18-bit value M
such that the observed keystream ks′ is realised
by applying Hitag-2 using k̂ as a key, id and
îv′⊕ (M‖014) as inputs. Then, the new equiv-
alent key corresponds to k̂′ = k̂⊕ (016‖M‖014).
It is easy to see that the value M found here
is in fact the difference between the two masks:
M = MSK⊕MSK′.

Both of the scenarios previously described suppose
a brute-force search using two packets as a preamble,
which implies the access to a computing cluster if
getting the key within minutes is needed (see 5.1).
However, one should notice that any efficient crypt-
analysis of Hitag-2 can replace this step without
modifying the rest of the attacks: the parts that use
the equivalent keys concept still hold.
The “zero capture and guess” strategy better fits

situations where the adversary ensures that no ECU
resynchronization occurs (i.e. when the user does
not open the car and start the engine after a rogue
packet has been sent). This is the case when a one-
shot open/close of the target is needed for example.
This scenario uses only two captured packets (hence
the title of the article).

The “recapture and adapt” strategy complies with
situations where the adversary knows that the mask
MSK has changed (either because of an incrementation
overflow of CNTRL, or because of the ECU counter-
measure): a new packet must be captured to adapt
the equivalent key.

Interestingly, these attacks do not require the full
recovery of the real secret key k embedded in the
transponder, though information is learnt about the
18 unknown bits of k every 1024 packets (when CNTRL
overflows). Nonetheless, it is possible to generate
authentic packets using the equivalent keys, resulting
in the implementation of a software rogue remote
control.
This rogue key has been tested against the two

attack scenarios previously described and validated
with our target vehicle, using a YARD Stick One [13]
and the RfCat framework [5] for the radio part.

3A few seconds on a standard PC.

5.4 Discussing countermeasures
Obviously, several misconceptions compose the root
cause of the attack presented in this paper, starting
with the use of the Hitag-2 algorithm to produce au-
thentication codes. This cipher has been known to be
cryptographically broken for a decade: using obsolete
or proprietary cryptography is widely discouraged in
favour of public standards.

Independently of the cryptographic algorithm, the
management of the secret elements, randomness
sources and initialization vectors is also an important
point. In particular, the key diversification strategy
among devices has a direct importance regarding the
impact of the compromise of one particular device,
as recalled in [14].

Regarding the out-of-band update of secret param-
eters, the idea is quite interesting and would be even
more efficient, in the context of the attack presented
in this study, if this was performed every time the car
is started. As a consequence, the adversary would
face a very short time window to use the forged au-
thentic frames against the RKE system. However, a
successful attack against the near-field protocol could
result in a ban of the legitimate key.
On the physical layer, several countermeasures

could be implemented in order to increase the adver-
sary profile. First, distance bounding protocols [8]
seem to be a promising approach to mitigate relay at-
tacks. Additionally, as suggested in [4], RF front-end
fingerprinting can also be used for the identification
of the legitimate transponder. Their deployment
would however involve significant costs.

Finally, monitoring and logging systems could be
both integrated in vehicles and made accessible to
the end users. Indeed, with the integration of several
information systems into modern cars, it seems rele-
vant to provide users with means to supervise and
monitor the activity of key functionalities, among
which the last time the car was unlocked or the num-
ber of invalid unlock attempts would be of special
interest in this case.

6 Conclusion

Modern transportation vehicles enclose an increas-
ing amount of electronic devices in order to manage
both safety and entertainment functionalities. These
devices expose interfaces which can be accessed from
inside the vehicle or wirelessly. Therefore, the mecha-
nisms allowing to open vehicles become critical from
an information security point of view.
In this study, an analysis of a Hitag-2 based Re-

mote Keyless Entry system has been proposed. A



black box methodology for performing this analysis
has been detailed, with a focus on the physical layer
characterisation and on the rolling code implemen-
tation. As an outcome, it has been shown that the
tested system was not vulnerable to the most recent
state of the art attacks. Furthermore, an interest-
ing countermeasure was shown to be implemented,
resulting in a near-field modification of some param-
eters of the RKE protocol when several inconsistent
radio packets are received by the vehicle.

Interestingly, this analysis leads to the design of a
new cryptanalysis based on an optimized exhaustive
search and taking advantage of a specificity of the
Hitag-2 algorithm. It has been demonstrated that
it is possible, for an adversary having captured a
limited number of packets (at least two), to forge
valid opening radio frames without finding the se-
cret key. Instead, it is possible to compute equiva-
lent keys which allow to obtain the same Hitag-2
keystream than with the legitimate secret key. With
this approach, the countermeasure could be trivially
circumvented by capturing a single supplementary
radio packet.
These attacks are mainly possible due to the per-

sistent use of obsolete and proprietary ciphers. It
is highly recommended to stick with standardized
encryption algorithms with a proven robustness.
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A Description of Hitag-2
Internal state (48 bits) at cycle i will be noted:
αi = ai . . .a47+i ∈ F48

2 .
Functions: a linear function and a non-linear function.
• LFSR – linear function L : F48

2 → F2 such that:
L(x) =x0⊕x2⊕x3⊕x6⊕x7⊕x8⊕x16⊕x22⊕x23

⊕x26⊕x30⊕x41⊕x42⊕x43⊕x46⊕x47

• Non-linear function f : F48
2 → F2 such that:

f(x) =fc(fa(x2x3x5x6),fb(x8x12x14x15),
fb(x17x21x23x26),fb(x28x29x31x33),
fa(x34x43x44x46))

Non linear functions fa, fb et fc are defined by:

– fa,fb : F4
2→ F2 with fa(i) = (0xA63C)i

and fb(i) = (0xA770)i

– fc : F5
2→ F2 with fc(i) = (0xD949CBB0)i

Inputs: the three inputs of the algorithm are:

• a 32-bit initialization vector iv ∈ F32
2

• a 48-bit key k ∈ F48
2

• a 32-bit identifier id ∈ F32
2

Algorithm steps: the algorithm is split in two main steps
that change the internal state at each clock cycle.

1. The initialization and randomization phases: they
make the internal state evolve during 80 clock cycles by
using the three inputs. Only the non-linear function f is
used.
ai = idi, ∀i ∈ [0,31] (32 cycles)
a32+i = ki, ∀i ∈ [0,15] (16 cycles)
a48+i = k16+i ⊕ivi⊕f(ai . . .a47+i), ∀i∈ [0,31] (32 cycles)

2. The nominal phase: apply the LFSR on the internal
state.
a80+i = L(a32+i . . .a79+i), ∀i ∈ N

Outputs: the output is a keystream producing one bit per
clock cycle starting from the nominal phase. The output bits
ksi are computed from the internal state using the non-linear
function:

ksi = f(a32+i . . .a79+i), ∀i∈N

The RKE system only use the 32 first bits of the keystream
as an authentication code: ks= ks0 . . .ks31.
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Figure 6: Hitag-2 – synthetic view of the algorithm


