
Controlling UAVs with Sensor Input Spoofing Attacks

Drew Davidson
University of Wisconsin
davidson@cs.wisc.edu

Hao Wu
University of Wisconsin

hw@cs.wisc.edu

Robert Jellinek
University of Wisconsin
jellinek@cs.wisc.edu

Thomas Ristenpart
Cornell Tech

ristenpart@cornell.edu

Vikas Singh
University of Wisconsin

vsingh@biostat.wisc.edu

Abstract
There has been a recent surge in interest in autonomous
robots and vehicles. From the Google self-driving car,
to autonomous delivery robots, to hobbyist UAVs, there
is a staggering variety of proposed deployments for au-
tonomous vehicles. Ensuring that such vehicles can plan
and execute routes safely is crucial.

The key insight of our paper is that the sensors that au-
tonomous vehicles use to navigate represent a vector for
adversarial control. With direct knowledge of how sen-
sor algorithms operate, the adversary can manipulate the
victim’s environment to form an implicit control chan-
nel on the victim. We craft an attack based on this idea,
which we call a sensor input spoofing attack.

We demonstrate a sensor input spoofing attack against
the popular Lucas-Kanade method for optical flow sens-
ing and characterize the ability of an attacker to trick op-
tical flow via simulation. We also demonstrate the ef-
fectiveness of our optical flow sensor input spoofing at-
tack against two consumer-grade UAVs, the AR.Drone
2.0 and the APM 2.5 ArduCopter. Finally, we introduce
a method for defending against such an attack on optical-
flow sensors, both using the RANSAC algorithm and a
more robust weighted RANSAC algorithm to synthesize
sensor outputs.

1 Introduction
In recent years, there has been a great deal of interest in
autonomous vehicles. The vehicles themselves come in
a wide variety of form factors suited to various purposes
from driverless cars to minesweeping submarines to self-
routing vacuum cleaners. Despite this variety, nearly all
autonomous vehicles rely on sensors to navigate their
environment and perform their given task. Even semi-
autonomous vehicles, for which there is a human op-
erator, often use sensors to contextualize operator com-
mands or to react to unforeseen circumstances. For ex-
ample, the Google Self-Driving Car uses LIDAR to de-
tect proximity to obstacles and the Roomba automated

vacuum cleaner uses downward-facing “cliff sensors” to
avoid falling off ledges. As these examples illustrate, an
autonomous vehicle’s sensors are integral for ensuring
that the craft can operate safely without doing harm to
itself or its environment.

The primary contribution of our paper is to introduce
the notion of a sensor input spoofing attack, in which
an adversary exerts sustained, direct control over an au-
tonomous vehicle (rather than introducing random noise
or misclassifying a single image frame). Implicit con-
trol channels presented by sensor systems are essentially
unavoidable, since the vehicle cannot completely ignore
its sensor systems and still safely navigate. However, we
argue that sensor systems can be made more robust to
adversarial control. We consider several ways to miti-
gate sensor input spoofing attacks by hardening different
parts of the sensor system’s processing pipeline.

To make our discussion of sensor input spoofing at-
tacks more concrete, we focus on a particular type of
autonomous vehicle: unmanned aerial vehicles (UAVs).
UAVs ares a good target for analysis because they are
widely available, they are used in a variety of contexts,
they rely heavily on sensors, and they are safety criti-
cal. We use the downward-facing optical flow system as
a representative target sensor. These sensors are used for
stabilizing the UAV in mid-flight.

We demonstrate that an attack on this sensor system
gives an attacker complete control over the lateral move-
ment of the UAV, even to the extent of causing collisions
with obstacles at speeds capable of destroying the drone
and damaging the obstacle. We characterize the require-
ments of mounting this attack and show that it is feasible
in practice in both indoor and outdoor settings. We also
propose and evaluate defenses against this instance of the
attack.

The rest of our paper is structured as follows: In Sec-
tion 2 we introduce UAV sensors systems for optical
flow. In Section 3 we demonstrate sensor input spoof-
ing attacks. In Section 4 we build a simulation frame-

1

work and use it to characterize a sensor input spoofing
attacker. In Section 5 we propose and evaluate defenses
for the sensor system. We explore directions for future
work in Section 6. Related work is discussed in Sec-
tion 7. We conclude in Section 8.

2 Optical Flow for UAVs
UAVs use a wide array of sensors in order to fly safely:
accelerometers, barometers, sonar, GPS receivers, cam-
eras, and others. By necessity, the UAV must use its sen-
sors to react to its environment in a predictable, timely
way. Thus, the hardware sensors stream data to the
UAV’s navigation software, which uses a variety of algo-
rithms to interpret this stream of sensor readings and trig-
ger navigation commands. A particularly important sen-
sor is the downward-facing optical flow camera, which is
used to stabilize the UAV.

Optical flow is a good target for input spoofing: The
sensor is a camera, so an unsophisticated adversary can
interact with the sensor simply by obscuring the ground
plane image detected by the camera. Furthermore, UAVs
use optical flow readings to cancel out reported drift us-
ing an equal and opposite lateral movement. Thus, an
adversary with control over optical flow can exercise an
implicit control channel over the lateral movement of the
victim.
Representative UAV Models: To gauge the effective-
ness of optical flow sensor systems as deployed in prac-
tice, we tested a number of the most popular commer-
cially available UAVs. We selected two representative
UAVs to analyze: The AR.Drone 2.0 is a popular, pre-
assembled quadcopter UAV. While the AR.Drone line of
UAVs is primarily used for hobbyists, a number have
been purchased in an official capacity by police de-
partments. The sensor system hardware uses a low-
resolution 60 FPS vertical QVGA camera.

The ArduCopter is an open source UAV platform: the
core model that we tested uses an APM 2.5 circuit board
running the open-source ArduPilot core software, ver-
sion 3.1.5. The optical flow sensor system deployed by
the ArduCopter uses a special purpose optical flow cam-
era, the ADNS-3080.
Optical Flow Details: The fundamental concept behind
optical flow is that the camera hardware can detect if the
UAV is drifting by comparing successive frames of the
ground plane below. In essence, the sensor system will
attempt to infer if the ground plane image has moved by
a relative offset of (∆x,∆y). If so, the system will as-
sume that the ground plane is stationary and infer that it
has drifted (−∆x,−∆y). The UAV will attempt to move
(∆x,∆y), the same displacement reported by the sensor
firmware, in order to compensate for this drift.

In practice, optical flow first requires a feature detec-
tion algorithm to identify regions of the ground plane

image that are particularly amenable to tracking. These
features can then be fed into the optical flow algorithm
proper. The actual optical flow algorithm identifies the
location of features in two successive ground plane im-
age frames and uses these differences to compute an
overall displacement for the image.

A classic configuration for optical flow sensors is
to use the Shi-Tomasi [19] corner detection algorithm
for detecting good candidate features, and the Lucas-
Kanade [13] method of computing optical flow. In Shi-
Tomasi, which is based on the Harris corner detector [9],
features are selected if they represent pixel regions that
are corners, defined as regions of the ground plane frame
in which the first derivative of the image signal is large
in both the x and y direction. Intuitively, this corre-
sponds to sharp contrast between two neighboring pix-
els in both x and y, as opposed to edges, in which the
first derivative of the image signal is in either the x or
y direction. Shi-Tomasi is often used since it performs
well while being efficient; more sophisticated feature de-
tectors (SURF [2], SIFT [12]) are usually much slower
(c.f., [15]).

Lucas-Kanade is the classic optical flow algorithm.
It assumes that the difference between two consecutive
frames is small and approximately constant within some
neighborhood. This assumption is arranged to be met
for UAV sensors by a combination of a sufficiently high
camera framerate and sufficiently low resolution. For
each corner pixel p returned by the Shi-Tomasi corner
detector, define a local window of n neighboring pixels
qi for i ∈ {1, . . . ,n}. Then for each i let

Ix(qi)Vx + Iy(qi)Vy =−It(qi), (1)

where Ix(·), Iy(·), It(·) are partial derivatives of the image
along x, y and time and Vx,Vy are the velocity or motion
along x and y. Lucas-Kanade estimates Vx,Vy using a
least squares method as the set of equations is typically
overdetermined, and then outputs the (component-wise)
average over the Vx,Vy solutions for each feature as the
final motion (∆x,∆y).

3 Real-World Attacks
In this section, we consider the high-level requirements
that a sensor input spoofing attacker must meet in order
to mount an attack in practice, and show that an opti-
cal flow attack on UAVs is realistic and cheap. In many
cases, the attacker gains full control over the lateral mo-
tion of the UAV, even to drive the UAV to collide with
obstacles.

3.1 Attacker Requirements
For a sensor input spoofing attack to work, an adversary
must meet three requirements, which we call the environ-
ment influence requirement, the plausible input require-

2

Environment Illuminance ArduCopter AR.Drone
(lux) Benign Projector Laser Benign Projector Laser

Tile 200 Drift Fail Control Drift Fail Control
Carpet 150 Drift Fail Control Drift Fail Control

Concrete 138 Stable Control Control Stable Control Control
Grass 438 Stable Fail Fail Stable Fail Fail

Table 1: Optical flow results on two reference UAVs. The “Benign” columns indicate whether or not the UAV is stable
or drifts without adversarial influence. The other columns indicate whether the adversary can successfully control the
movement of the UAV using a projector (Projector), or the grid pattern of lasers (Laser), respectively.

ment, and the meaningful response requirement. Meet-
ing the environment influence requirement means that
the adversary can alter the physical phenomenon that the
sensor system measures. For the case of the optical flow
adversary, this means that the attacker must be able to
alter the appearance of the ground plane that the opti-
cal flow camera captures. The strength of a sensor input
spoofing adversary depends on the effort required to in-
fluence the environment. As an example where environ-
mental influence may be hard to achieve, an adversary
who attacks the magnetometer of a UAV would need to
be able to project a powerful enough magnetic field to
stand out against the earth’s natural magnetic field. In the
case of a flying UAV several meters in the air, a ground-
based attacker would need powerful equipment to create
a field strong enough to reach the UAV.

On the other hand, meeting the plausible input require-
ment means that the attacker can use their influence over
the environment to induce a reading by the sensor sys-
tem that will actually be used by the system as valid in-
put. For example, if a sonar sensor only uses regular
sonar pulses, then the adversary must ensure that they are
adding or subtracting pulses in sync with the pulses that
the original sensor emits. We note that the plausible input
requirement is with respect to the sensor firmware: if the
firmware does not employ reasonable sanity checks, then
exceptional input readings may be considered plausible.

Finally, meeting the meaningful response requirement
means that the adversary can induce a behavior on the
UAV, representing the control that the adversary has over
the device. For example, an adversary may be able to
spoof inputs to an infrared thermometer onboard an au-
tonomous vehicle, but they can only exert control over
the vehicle in the unlikely event that the vehicle changes
its behavior based on temperature.

A crucial insight for mounting a sensor input spoof-
ing attack is that an adversary can leverage knowledge
of how the sensor algorithm translates its environment
readings into judgments for the control software of the
autonomous vehicle. With this in mind, plausible input
may correspond to a degenerate case of the algorithm. In
principle, a weaker algorithm allows an adversary with
more limited influence to induce a response.

3.2 Optical Flow Attackers
Consider the above framework in the context of an op-
tical flow attack on a UAV. We discuss each of these re-
quirements, and examine the capabilities of the attacker
to meet each one:

Environment Influence: To meet this requirement, the
adversary must be able to alter or obscure the ground
plane, thus indirectly altering the pixel values reported
by the optical flow camera. To meet the plausible in-
put requirement, the attacker must ensure that the sur-
face quality measurements of the optical flow system are
above the threshold. A strong attacker could accomplish
this by covering the ground plane with a sheet of material
printed with a feature-rich pattern of their choice. How-
ever, we consider this degree of physical proximity to the
victim to be overly onerous to the attacker: physically
entering the ground plane region of the UAV is highly
conspicuous, and the adversary would need to carry the
obscuring material. Instead, the adversary can influence
the ground plane image from a distance by projecting
light onto the surface. This has two advantages: the ad-
versary can mount the attack from a distance, and they
can use an emitter that is smaller than the region that
they need to spoof.

We designed two different methods of light-based op-
tical flow sensor input spoofing: In the first method, the
adversary constructs an image that contains a large num-
ber of corners, and uses a projector to shine the image
onto the ground plane. In order to make the attack more
reasonable, we used a AAXA Pico handheld projector, a
battery operated projector that can load an image from a
USB stick. This allows the adversary to easily carry and
conceal the projector in a pocket.

In the second method, the adversary directs lasers onto
the ground plane to induce features. While a single laser
beam is only likely to induce a single feature, the attacker
can split or filter the beam to project a pattern from the
laser, or use an array of laser emitters. For our experi-
ment, we use a single 5 mW laser fitted with a filter to
project a regular grid pattern of dots onto the surface.

Plausible Input: In “loiter” mode, the purpose of the
optical flow sensor system in a UAV is to detect a lat-
eral drift displacement and compensate by instructing

3

the vehicle to move in an equal and opposite displace-
ment. The key insight in our attack is that the sensor
system assumes that the ground plane image is station-
ary, so it interprets a feature’s motion along a vector v as
a drift along a vector −v. However, if the ground plane
is moving, then the UAV will follow the motion – es-
sentially tracking the moving ground plane. The sensor
input spoofing attack can take advantage of this behavior
by controlling and then moving features of the ground
plane image.

Meaningful Response: The adversary can leverage
knowledge of the optical flow algorithm to construct ef-
fective input to the sensor system. If the sensor sys-
tem uses the combination Shi-Tomasi and Lucas Kanade
method discussed in Section 2, then the attacker’s goal is
to project a sharp gradient onto the ground so that the fea-
ture detection algorithm will pick up the light as a corner.
Since the Lucas-Kanade-based optical flow computes a
final displacement based on the average displacement of
each feature, the attacker needs to generate a large num-
ber of corners.

In practice, the attacker can simply sweep their pro-
jected light across the ground plane. If effective, gra-
dients in the projected light source will be picked up
as corners, and induce moving features. As described
above, this will cause the UAV to follow the path of the
light. The challenge of the attack is to overcome the in-
fluence of the “natural” features that are part of the un-
altered ground plane. This is limited by two factors: the
feature-richness of the benign scene upon which the at-
tack projects their light, and the strength of the gradient
that the attacker can project.

3.3 Attack Setting
To test the effectiveness of our attack methods in prac-
tice, we deployed each of our UAVs in a variety of re-
alistic scenes. We selected scenes that naturally present
different levels of challenge to the adversary: in a well-
lit scene, the attacker will have trouble overcoming the
ambient light to create stark gradients. Also, in a scene
that naturally causes a high amount of variation in the
ground pixels, the spoofed features are of less compara-
tive value to the feature selection and are less likely to be
used. We tested both of the reference UAVs introduced in
Section 2 on each of our test scenes by deploying them in
the scene, manually flying them to a height of 3 meters,
and then initiating a “loiter” command to cause the UAV
to maintain it’s position in midair. For the laser attack,
we swept the laser beam across the ground plane from a
distance of 10 feet away. For the project attack, we swept
the projector from the launch site of the UAV across the
ground plane from a distance of 4 feet. The results of
our experiments are shown in Table 1. The four different
scenes are as follows:

Tile: is an enclosed lab space with a clean, white tile
floor. Although the edges of the 9-inch tiles are visible to
the human eye, neither the AR.Drone or the ArduCopter
is equipped with a powerful enough camera to capture
features from the tiles.
Carpet: is a large, carpeted hallway with a slight geo-
metric pattern. We hypothesized that this geometric pat-
tern would be enough for at least one of the UAVs to
recognize features in the surface, but ultimately we saw
no perceivable difference between tile and carpet.
Concrete: is an outdoor sidewalk environment. While
individual slabs of concrete are a uniform color, the gaps
between the slabs are large enough for feature detection.
This means that both the AR.Drone and ArduCopter are
capable of maintaining a stable lateral position over this
surface using optical flow.
Grass: is an outdoor grassy field. This surface appears to
represent a very favorable surface for optical flow, with
a large number of corners for feature detection to find.
Unlike all previous settings, the surface does not contain
any regular pattern and regions of identical pixel values
are small.

3.4 Discussion
Surprisingly, the sensor systems of both UAVs perform
in a similar fashion: Both the carpet and tile do not have
a high enough surface quality for optical flow and cause
the UAV to drift. We also note that the settings tested
span a range of interesting outcomes: the tile and car-
pet settings represent environments that are not amenable
to the benign user’s goal and amenable to the attacker’s
goal: in both settings the UAV will drift in the benign set-
ting, but an attacker can reliably control the UAV using
the laser (though not the projector). The concrete setting
represents an environment in which a user can success-
fully use optical flow in the benign setting, but can be
overpowered by the attacker. Finally, the grass setting
demonstrates an ideal use case for optical flow, in which
the highly varied surface benefits the user and mitigates
the effect of the attack. The attack failed to exert mean-
ingful control over the UAV with either the projector or
laser.

Table 1 shows that the laser attack is effective across
many different scenes in which the UAV is likely to be
expected to work. The vulnerability of the UAV in in-
door environments is particularly troubling, as obstacles
abound. We note that the projector attack was only suc-
cessful in the darkest lighting condition.

Although we mounted our laser attack from 10 feet
away on foot, the attack is almost certainly possible from
a far greater distance. The grid-pattern filter attached to
our single laser causes the beam to become diffuse fairly
quickly. However, when removing this filter and focus-
ing the beam to a single point, we were able to induce

4

a feature on the ground from any distance in which we
could still maintain line of sight with the ground plane.
An adversary with a large number of individual laser
emitters could theoretically bundle them together in par-
allel and direct the entire bundle onto the ground plane.
Thus, we believe that the maximum distance under which
the laser attack can be mounted is likely to be limited not
by the strength of the beam but by the adversary’s ability
to hit the ground plane. On the other hand, the projec-
tor attack emitted light that was simply too weak to in-
duce features. Our original attempt to perform the attack
started by standing 10 feet away from the launch site, but
ultimately required the attacker to move to 4 feet from
the UAV before we observed any meaningful response.

We also note that the adversary may judge the effec-
tiveness of the attack differently depending on his or
her goal. The adversary may simply want to lead the
UAV away from its stationary position. Alternatively, by
rapidly sweeping the light through the ground plane they
could cause either UAV to rapidly accelerate in a dan-
gerous way. For example, in the indoor environments it
was trivial to cause the AR.Drone to accelerate towards
a wall with enough force to damage its protective shield.

These results show that optical flow attacks are possi-
ble in real-world settings. Although our projector attack
showed severe limitations, both in terms of the diversity
of settings where it was effective and in the required to
the target, the laser attack showed that optical flow sen-
sor input spoofing attacks can be achieved with a com-
modity laser pointer. In order to more fully characterize
the strength of this attack strategy, we turn our attention
to exploring how the adversarial control effects optical
flow algorithms.

4 Sensor Input Spoofing Simulation
To better study attacks and educate pursuit of counter-
measures, we analyze the performance of optical flow
algorithms in simulation. We focus in particular on the
popular Lucas-Kanade motion detection algorithm, dis-
cussed in Section 2. Although the firmware of the opti-
cal flow sensors for both of our UAVs are closed source,
the attacks that we mounted in Section 3 demonstrates
behaviors closely associated with Lucas-Kanade. This
fact, in addition to the popularity of Lucas-Kanade for
fast optical flow and low-resolution requirements, make
it a good candidate for baseline measurement.

Simulation of laser-based attack. We perform a sim-
ulation of several variants of the laser-based attack in
which we alter the intensity of the attacker’s laser and
the density of the resulting grid. The simulation is done
on videos captured on a Raspberry Pi camera, configured
for a high frame rates and small field of view (approxi-
mately 1 square meter for the typical hovering height of a
UAV), and which is akin to optical flow cameras built for

UAVs. The grid pattern is projected onto the video via
Povray [1]. We initiate the simulation with a 3× 3 grid
pattern. Each grid dot is a white spot with size around 0.5
centimeters falling off another 0.5 centimeters. While
other configurations are possible, we feel this configura-
tion is sufficient to characterize the behavior of typical
optical flow for the purposes of sensor input spoofing.
This allows identifying the light intensity an adversary
needs to successfully alter the output of optical flow.

We assess the power of the adversary in the follow-
ing way. The adversarial grid pattern is moved across
the field of view in the minus x direction throughout the
video. We then run optical flow on the video under be-
nign and adversarial settings, and compare the accumu-
lated motion in the x direction. The adversary pattern is
in the view for 60 frames, where the laser grid sweeps
through the entire width of the view. In this manner, we
can assess how much optical flow is affected by the sim-
ulated lasers.

We vary two parameters: laser intensity and the space
between grid points. The intensity of lights can be varied
by the averaged increment of the pixel grayscale value,
and the grid is varied in terms of centimeters betwen dots.
The results are presented in Table 2, which gives the
cumulative x direction motion detected in the 60 frame
simulation. As expected, the power of the adversary in-
creases with laser intensity. In contrast, grids that be-
come overly dense can decrease efficacy, because the
Shi-Tomasi corner detector (and most of other feature
detectors) do not favor features within short distances.
Thus an attacker would want to focus more on covering
a larger portion of view, instead of concentrating on a
narrow projected pattern.

In the worst case, the grid causes cumulative move-
ment in the negative x direction of 45.1 centimeters.
Given that the total movement of the adversarial grid is 1
meter, half of the adversarial movement is picked up by
the optical flow algorithm.

Grid spacing (m)
Intensity 0.015 0.012 0.01 0.008

0.6 1.9 16.0 17.3 14.1
0.8 8.5 27.5 25.6 18.4
1.0 20.8 36.7 44.2 24.6
1.2 32.7 45.1 44.9 32.3

Table 2: Simulated cumulative optical flow in negative x
direction (in centimeters) at various levels of laser inten-
sity and distance between grid points.

Simulating other attacks. The discussion above sug-
gests the pattern of pixels controlled by the adversary
impacts the efficacy of manipulating the optical flow out-
puts. To determine the strongest adversarial patterns (in-

5

(a) Controlling for Shape (b) Controlling for Opacity (c) Controlling for Size

Figure 1: Results of performing averaging over output motion pairs in vdiff to arrive at a final (dxout,dyout) pair. The
closer the bar to the optimal, the stronger the effect the adversary had on the algorithm, indicating a strong adversary.
Results are averaged over all four backgrounds for each bar.

terchangeably, “adversaries”), we tested each adversary
against four fixed simulated backgrounds that had vary-
ing patterns and correspondingly, varying feature den-
sities. We treat the background as the “ground truth,”
i.e., what the algorithm should track in the ideal setting.
The adversary wins if the algorithm ends up tracking the
adversarial pattern instead of the background. Thus, if
the background is stationary and the adversary is moving
with (∆x = 5,∆y = 5) pixels, the closer the algorithm’s
output is to (5,5), the better the adversary is doing. If
the algorithm returns a motion pair of (0,0), we say the
adversary is weak relative to the background.

Figure 1 gives results for a number of simulations
that measure varying adversarial patterns, opacity of
the adversarial pixels, and size of the adversarial pat-
tern. All adversaries except in the size experiment were
200px× 200px, and the background image was 600px
in all cases. All adversaries moved at a rate of ∆x =
5px,∆y = 5px so that if the algorithm tracked the adver-
sary optimally, it would yield a per-frame optical flow of√

52 +52 = 7.07px/ f rame. This is labeled as optimal in
each graph. (All adversaries achieved this optimal per-
formance against a monotone background, which is to
be expected since such a background introduces no addi-
tional features that would perturb the average.) The other
columns relay the average distance observed by the op-
tical flow algorithm per frame, averaged over the four
backgrounds mentioned above.

Figure 1a shows that while there is a slight ordering
on the effectiveness of the various simple shapes (the
more pointed concave star shapes being stronger than
their convex counterparts), the internally feature-dense
adversaries of the dot-grid and the Sierpinski fractal were
the strongest shapes by far. We focus on these two ad-
versarial patterns in measuring the effects of opacity and
size. Interestingly, Figures 1b and 1c show that the Sier-
pinski adversary performs well almost immediately, even
at small size (50px× 50px) or low opacity (40%). On
the other hand, while the Dot-grid is relatively weak

at low opacity, and is only effective at dimensions of
200px× 200px and greater relative to the 600px back-
ground.

The density of sharp corners present in the Sierpin-
ski fractal would allow the adversary to introduce more
features into the frame. In turn, this provides greater in-
fluence on the outcome of optical flow. This shows that,
in theory, there exists better adversarial strategies than
the laser grid we used before, but whether one can take
advantage of this in practice remains an open question.

5 Defenses
In the previous sections we showed that optical flow can
be adversarially manipulated both in practice against real
UAVs, and in simulations. The latter particularly allowed
measuring efficacy against a known optical flow algo-
rithm, and confirmed the clear intuition that an adversary
that can overwhelm the contribution of background fea-
tures to the average flow can force unwanted movements.
We therefore turn now to whether one can build more ro-
bust optical flow algorithms that make the adversary’s
job more difficult.

Using RANSAC. The Lucas-Kanade optical flow av-
erages flow over all features detected. Such naı̈ve aver-
aging works well in the absence of an adversary, since
it is fairly robust to random noise. That is, if perturba-
tion is uniformly distributed, averaging will still perform
well. However, in the adversarial setting, the introduced
perturbation is ‘structured’ — it is easy to see that the
mean will be sub-optimal because individual adversarial
features may have outsized affect on the average.

Instead of taking a simple mean over the flow of
the detected features, which favors the adversary to a
degree proportional to the number of features he con-
trols and the magnitude of those features, we propose
applying the RANSAC algorithm [5] to obtain a final
(∆xout,∆yout) pair. The algorithm works as follows. Let
vdiff = (dx1,dy1),(dx2,dy2) . . . be the vector of motion
for each feat as output by applying Shi-Tomasi to ob-

6

tain features and then Lucas-Kanade to each of those fea-
tures. Then RANSAC randomly samples k features and
forms a hypothesis for each of them. The hypothesis h j
for vector (dx j,dy j) is the ground truth motion for vector
(dx j,dy j). Then, we let all other features vote for each
of these k hypotheses. For a feature motion (dxi,dyi)
to vote for a hypothesis h j, the two motion vectors need
to be similar in an `1 norm sense (i.e., below a certain
threshold).

|(dxi−dx j,dyi−dy j)|1 < threshold. (2)

In our application, this threshold could be as small as
2 or 3 pixels. If this criterion does not hold, the motion
(dxi,dyi) refrains from voting for h j. RANSAC performs
many realizations of this process, and then picks the hy-
pothesis with the highest vote to be the final hypothesis
for the frame, and the corresponding motion to be the
“ground truth” of the frame, i.e., the pair (∆xout,∆yout).

The main advantage of using RANSAC is that assum-
ing the level of corruption is approximately known, the
probability that we pick a good hypothesis (correspond-
ing to the ‘true’ motion) at least once will approach one
[5]. Let P be the probability that RANSAC picks a true
background motion vector for the frame, p be the proba-
bility that a feature motion actually belongs to the back-
ground, k be the number of random samples (or real-
izations) drawn in the RANSAC process and n be the
number of feature motions returned from Shi-Tomasi and
Lucas-Kanade. Then, with a running time cost of O(nk),
we have,

P > 1− (1− p)k. (3)

Furthermore, RANSAC fails only if all the k samples hit
the adversary. The running time will be slightly slower
compared to averaging. In practice, k is set to a small
constant (10 in our experiments) and is independent of
the number of features.

The voting nature of RANSAC makes it more robust
to noise than averaging. Especially given an adversary
whose motion significantly differs from the background
in both magnitude and direction, averaging tries to pro-
duce a motion vector that fits both the background and
the adversary, while RANSAC will pick the majority
vote, essentially choosing only the “inlier” features of the
background. If the background wins the majority vote,
the resulting motion vector is not compromised by the
adversary at all.

While promising, RANSAC will fail should the num-
ber of adversarial features dominate the background fea-
tures. We thus consider further enhancements to help
mitigate sensor input spoofing attacks in cases where an
adversary can control a relatively large number of fea-
tures.

Weighted RANSAC with momentum. We propose
introducing a notion of “momentum” into optical flow
in order to differentiate background from adversary. As
we will see this can provide stable optical flow even in
cases where the adversary controls more than 50% of the
features.

To do so we introduce context about which features
consistently appeared in the sensor’s field of view in ear-
lier frames. Effectively, we favor features that exhibit
“momentum”, which discounts both arbitrary perturba-
tion and adversarial manipulation. Suppose that for each
feature we have a belief or weight associated with it that
comes from the information in previous frames. In a
weighted RANSAC process, instead of treating each mo-
tion vector uniformly, we sample from a distribution that
is proportional to the weights of each feature that pro-
duces the motion. In voting, instead of counting each
vector as one vote, we weigh the votes accordingly. In
this manner, if we are able to build up weights for back-
ground features, this weighted version of RANSAC will
stand out even in situations where the background does
not control the majority of features, provided that the ad-
versary is either a new arrival, or moves dynamically or
unstably relative to the background.

We construct the weights in the following way: as-
sume that the adversary enters the view gradually (al-
ternatively, assume that in the first few frames after the
drone and its optical flow sensor start, the benign back-
ground accounts more than 50% of the features). Initially
each feature in the first frame is assigned a constant de-
fault weight (or the same “momentum”). Then for each
frame, after the final motion (∆xout,∆yout) is computed,
we upgrade or downgrade the weight of each feature. For
a feature whose motion vector (dxi,dyi) is close to the
motion (∆xout,∆yout), we upgrade the weights by a fac-
tor of 1+ r where r is a learning rate. Otherwise, we
downgrade the weight of the feature by a factor of 1

1+r .
In our experiments we use r = 0.1, which proves to be
sufficient to build a strong enough belief for background
features. Other stages of the pipeline are similar to stan-
dard RANSAC. In each frame, we sample k features ac-
cording to the weights and pick the one with the best
weighted vote.

We performed a set of simulations over carpet, grass
and asphalt backgrounds and used the full-screen Sier-
pinski fractal as adversary, as it was the strongest adver-
sary from our previous experiments. The adversary en-
ters the view from left at a constant speed of dx = 5 pix-
els per frame. The background stays static. Shi-Tomasi
corner detection returns the best 100 features detected in
the image frame. The carpet background loses almost
all features when the adversary is only half-way into the
view. The grass background is stronger, since it con-
tains about 10 features when the adversary occupies the

7

(a) Carpet background.

(b) Grass background.

(c) Asphalt background.

Figure 2: Motion detected from Sierpinski adversary on
different backgrounds.

full view. Meanwhile, the asphalt background is even
stronger since more background features remain after the
adversary enters the scene.

RANSAC performs well when the number of fea-

tures controlled by the background is greater than 50, or
p > 0.5 in Equation 3. The performance of RANSAC
depends heavily on p as we can see in Figure 2a and Fig-
ure 2b. Whenever p falls below 0.5, RANSAC switches
immediately towards the adversary. This is because the
bound in Eq. 3 applies for adversary as well, meaning
that it follows the adversary with high probability when
p < 0.5. The weighted RANSAC algorithm outperforms
both averaging and standard RANSAC in most cases.
Even in Figure 2a where the features from background
drop quickly, giving the algorithm little time to build
up weights for background features, it still sticks to the
background quite well until the adversary takes all the
features, after which there is no more ground truth mo-
tion to follow so it switches to the adversarial features.

In summary, as long as there is a small period of
time to build up the weights for the background fea-
tures and there are at least some background features
in view, weighted RANSAC is still able to pick up the
background motion. This is evident, for example, in Fig-
ure 2b, where despite there being almost no background
features at the end, weighted RANSAC still tracks those
features.

Finally, we note that all three approaches—averaging,
standard RANSAC, and weighted RANSAC—respond
in real time to the movement of the background when
only a background is present in the field of view and there
is no adversary. However, while it is trivial to defeat
averaging and standard RANSAC (the adversary must
only control more than 50% of the features), weighted
RANSAC is robust to adversarial inputs so long as the
assumption holds that the algorithm was initialized with
the true background in its view, and the adversary only
appeared after a delay.

We finally evaluate weighted RANSAC on the set of
simualted laser grid videos described previously in Sec-
tion 4. Here we quantify the laser light by the increment
of grayscale intensity each laser dot contributes. For ex-
ample, value 50 on the horizontal axis denotes a three-
by-three grid, where each of the laser dots in the grid
contributes an increment of 50 in the total grayscale in-
tensity of the image. In Figure 3, the dashed lines are
the performance of Lucas-Kanade and the solid lines are
representing weighted RANSAC. In all cases, weighted
RANSAC outperforms Lucas-Kanade by a wide mar-
gin. The best adversary for Lucas-Kanade picks up about
45% of the adversary movement, while under the same
adversary weighted RANSAC is affected by 29% only.
The percentage is obtained via dividing the extra move-
ment by the width of the frame (96) since the adver-
sary moves across the whole frame. The strongest ad-
versary for weighted RANSAC occurs at a different den-
sity, where weighted RANSAC is affected by 37% in the
worst case.

8

35 40 45 50 55 60 65 70 75
Light intensity

0

5

10

15

20

25

30

35

40

45

Ex
tr

a
di

sp
la

ce
m

en
t o

n
m

in
us

 x
 d

ire
ct

io
n

space=0.008
space=0.01
space=0.012
space=0.015

Figure 3: Adversarially induced motion for Lucas-
Kanade (dotted lines) versus weighted RANSAC (solid
lines) on simulated laser grids with different spacings.
The background is taken from a Raspberry Pi camera
video. Lower is better.

6 Future Work
Our evaluation shows that sensor input spoofing attacks
constitute a real attack vector that must be addressed to
secure autonomous vehicles, and our case study shows
that such attacks can be exercised under realistic condi-
tions. The previous section describes mitigation strate-
gies to defend against sensor input spoofing attacks, but
we believe that there is still much work to be done in the
general realm of sensor input spoofing and in the spe-
cific case of hardened optical flow. In this section, we
describe some of the more promising directions.

Additional sensor attacks: The optical flow attacks
demonstrated in this paper are representative of a class
of sensor input spoofing attacks. Future work could in-
vestigate similar attacks on other sensor systems. In par-
ticular, it is important to consider spoofing attacks on
LIDAR and sonar, as both of these sensor systems are
used to detect proximity to obstacles (UAVs commonly
use a downward-facing sonar to detect proximity to the
ground). While the attacks discussed in this paper intu-
itively attempt to make the autonomous vehicle detect an
object not actually present, it may be possible through
LIDAR or sonar interference to cause the autonomous
vehicle to fail to see an object which actually is present.

Hardware-level robustness: Our experiments above
show that an adversary’s strength can be quantified by
the number of features they can control. Thus, we may
consider ways for the optical flow sensor to sense the
features from the background more reliably. In partic-
ular, a higher resolution camera, while more expensive,
produces a larger, crisper field of view, which is harder
for the adversary to cover.

Optical flow parameter tuning: It is likely the case that
our defenses could be tuned to particular use cases for
UAVs. For example, both of our UAV models threshold

the displacement that the optical flow sensor reported,
allowing an attacker to quickly move their light source
through the ground plane and cause the UAV to veer off
sharply in feature-poor environments. Although we do
not have a full view into the firmware of the UAVs, we
believe that no thresholds are in place, or if so do not
prevent highly implausible input which results in dan-
gerous behavior on the part of the UAVs. From a purely
statistical point of view, it may be possible to bound the
displacement of the optical flow system in a number of
ways such as maximum speed, perceived light gradient,
etc.
Sensor fusion: Combining data from multiple distinct
sensors, known as sensor fusion [3], significantly raises
the difficulty of sensor input spoofing attacks. As an ex-
ample, actual drift by a UAV will be detected by the ac-
celerometer, while spoofed input motion will not. If the
UAV used both sensors to determine drift, the adversary
would have to interfere with both sensors simultaneously.
This significantly raises the bar for the attack, since each
sensor detects distinct physical phenomena. One spe-
cific direction for future work is to analyze the control
software of the UAV to ensure that control channels are
appropriately guarded by sensor fusion sanity checks.

7 Related Work
Fully-autonomous and semi-autonomous vehicles are
subject to a large body of work. To our knowledge, this
paper is the first work to broadly characterize sensor in-
put spoofing attacks and in particular to describe such
attacks against optical flow. In this section, we describe
work most closely related to our own.
Robust optical flow: Drone navigation using optical
flow has been studied before in [7, 4]. Their focus was on
using optical flow for lateral stabilization and navigation
in GPS-deprived environments.

Seegmiller et al. studied optical flow in the context
of semi-autonomous vehicle navigation for planetary
rovers [18]. They observe the need for robust optical
flow algorithms, and propose the use of RANSAC to
avoid miscalculating optical flow due to the movement
of a rover’s shadow within the field of view of its optical
flow sensor. Seegmiller et al. did not consider adversar-
ial manipulation of the scene, but only when faced with
a specific and predictable bias introduced by the rover’s
shadow.

To the best of our knowledge, our work is the first to
consider intentional manipulation of the optical flow en-
vironment, and is the first to study how such interference
could be used to control a UAV rather than simply lose
sensor fidelity due to noise.
Channel hijacking: Sensor input spoofing attacks lever-
age an implicit control channel. In constrast, channel hi-
jacking is focused on hijacking the explicit channels that

9

are intended to control an autonomous vehicle. For ex-
ample, we found that the AR.Drone operates over an un-
encrypted tcp/ip WiFi channel. Consequently, we found
that it was trivial for a 3rd-party with a WiFi-enabled de-
vice to deauthenticate the legitimate controller, and in the
worst case wresting control over the WiFi channel to the
UAV.

A representative project in the domain of channel hi-
jacking is Skyjack [11]. Skyjack equips an autonomous
vehicle with additional hardware and a WiFi stack. The
vehicle can then be piloted within range of target UAVs,
and used to hijack the unsecured WiFi channel of the tar-
get midflight. We consider such attacks to be orthogonal
to sensor input spoofing attacks, because they leverage
protocol weaknesses in designated channels. As such,
The natural solution to channel hijacking is encrypt the
channel (e.g., by encrypting the target UAV’s WiFi chan-
nel) or to otherwise harden the protocol itself. In con-
trast, sensor input spoofing interferes with the detection
of physical phenomena outside the control of protocol
designers. Nevertheless, channel hijacking may be used
in coordination with a sensor input spoofing attacks.
Signal jamming: A number of attacks on UAVs are
based on sending noise into a sensor or receiver so that it
can no longer report a signal [10, 14, 20]. We do not con-
sider attacks on jamming attacks to be instances of sen-
sor spoofing attacks, as our attacks are designed to spoof
plausible data that change the behavior of the UAV.

Kune et al. describe attacks and defenses based on
electromagnetic interference (EMI) [6]. In these attacks,
electromagnetic signals are used to confuse the electron-
ics in various sensors. Kune et al. demonstrate Ghost
Talk, for using EMI to confuse acoustic sensors. The ap-
plication of Ghost Talk that is closest to our own work
is in its use of EMI to make acoustic sensors register
dial tones that were never actually emitted. Unlike sen-
sor spoofing attacks, which rely on exploit weaknesses
in the sensing algorithm, Kune et al. exploit weaknesses
in the electronics of the sensors. As a result, Kune et
al. propose mitigation techniques such as shielding the
electronics from the EM signal or using components that
detect the EM signal. These strategies do not apply to
sensor input spoofing attacks, since they do not rely on
EMI. Ultimately, EMI shielding and algorithmic robust-
ness are complementary and necessary defenses for se-
curing electronic sensors.
Adversarial machine learning: A recent body of work
constructs adversarial inputs to machine learning algo-
rithms [16, 17, 21, 8]. The goal of this work is to mod-
ify an input such that the machine learning algorithm
misclassifies it. In the worst case, the change may be
too subtle to be recognized by a human, but powerful
enough that the attacker can choose any classification
they wish. While adversarial machine learning is similar

in spirit to sensor input spoofing attacks, the techniques
are different. Sensor input spoofing directly attacks the
sensor algorithm, rather than a trained classifier. Thus,
adversarial machine learning relies on “imperfections in
the training phase” [16] whereas sensor input spoofing
does not. Similarly defenses against adversarial machine
learning focus on hardening the training phase of the al-
gorithm [17] rather than direct changes to the algorithm
and hardware, as we propose.

8 Conclusion
Autonomous vehicles are useful in a wide variety of set-
tings, but the capabilities that they provide also offer
unique attack vectors: in addition to finding the pres-
ence of traditional control channel vulnerabilities, we
also found a new class of vulnerabilities, called sensor
input spoofing attacks that exploit the environmental sen-
sors of UAVs to open implicit control channels.

We perform a case study on optical flow sensors. We
find that the algorithms currently employed by this sen-
sor are vulnerable to a sensor input spoofing attack,
which is exacerbated by control software that fails to val-
idate readings from its optical flow sensor.

Finally, we explore defense-in-depth mitigation for the
entire range of attacks that we found, including a novel
algorithm that is robust to malicious input.

As autonomous vehicles become increasingly ubiqui-
tous, the importance of discovering, characterizing, and
mitigating new attack vectors will continue to grow. We
believe that sensor input spoofing attacks are a step in this
direction, and represent a promising direction for further
work.

References
[1] Pov-ray - the persistence of vision raytracer by

david k. buck, aaron a. collins.

[2] H. Bay, T. Tuytelaars, and L.V. Gool. Surf:
Speeded up robust features. In In ECCV, pages
404–417, 2006.

[3] Richard R Brooks and Sundararaja S Iyengar.
Multi-sensor fusion: fundamentals and applica-
tions with software. Prentice-Hall, Inc., 1998.

[4] M. Dille, B. Grocholsky, and S. Singh. Outdoor
downward-facing optical flow odometry with com-
modity sensors. In Field and Service Robotics,
pages 183–193. Springer, 2010.

[5] M.A. Fischer and R.C. Bolles. Random sample
consensus: A paradigm for model fitting with ap-
plications to image analysis and automated cartog-
raphy. In Comm. of the ACM, pages 381–395, 1981.

10

[6] Denis Foo Kune, John Backes, Shane S. Clark,
Daniel B. Kramer, Matthew R. Reynolds, Kevin Fu,
Yongdae Kim, and Wenyuan Xu. Ghost talk: Mit-
igating EMI signal injection attacks against analog
sensors. In Proceedings of the 34th Annual IEEE
Symposium on Security and Privacy, May 2013.

[7] N. Gageik, M. Strohmeier, and S. Montenegro.
An autonomous UAV with an optical flow sensor
for positioning and navigation. INTERNATIONAL
JOURNAL OF ADVANCED ROBOTIC SYSTEMS,
10, 2013.

[8] Ian J. Goodfellow, Jonathon Shlens, and Christian
Szegedy. Explaining and harnessing adversarial
examples. Proceedings of the 2015 International
Conference on Learning Representations, 2015.

[9] Chris Harris and Mike Stephens. A combined cor-
ner and edge detector. In In Proc. of Fourth Alvey
Vision Conference, pages 147–151, 1988.

[10] A.Y. Javaid, W. Sun, V.K. Devabhaktuni, and
M. Alam. Cyber security threat analysis and mod-
eling of an unmanned aerial vehicle system. In
Homeland Security (HST), 2012 IEEE Conference
on Technologies for, pages 585–590. IEEE, 2012.

[11] S. Kamkar. SkyJack. http://www.samy.pl/

skyjack, December 2013. Accessed: 2014-05-16.

[12] D.G. Lowe. Distinctive image features from
scale-invariant keypoints. Int. J. Comput. Vision,
60(2):91–110, November 2004.

[13] B.D. Lucas and T. Kanade. An iterative image reg-
istration technique with an application to stereo vi-
sion. In Proceedings of the 7th International Joint
Conference on Artificial Intelligence - Volume 2, IJ-
CAI’81, pages 674–679, San Francisco, CA, USA,
1981. Morgan Kaufmann Publishers Inc.

[14] T. Nighswander, B. Ledvina, J. Diamond, R. Brum-
ley, and D. Brumley. Gps software attacks. In Pro-
ceedings of the 2012 ACM conference on Computer
and communications security, CCS ’12, pages 450–
461, New York, NY, USA, 2012. ACM.

[15] N. Nourani-Vatani, P. Borges, and J. Roberts. A
study of feature extraction algorithms for opti-
cal flow tracking. In Australasian Conference on
Robotics and Automation, 2012.

[16] Nicolas Papernot, Patrick McDaniel, Somesh Jha,
Matt Fredrikson, Z. Berkay Celik, and Ananthram
Swami. The limitations of deep learning in ad-
versarial settings. In IEEE European Sympo-
sium on Security and Privacy, EuroS&P 2016,

Saarbrücken, Germany, March 21-24, 2016, pages
372–387, 2016.

[17] Nicolas Papernot, Patrick McDaniel, Xi Wu,
Somesh Jha, and Ananthram Swami. The limita-
tions of deep learning in adversarial settings. In
IEEE Symposium on Security and Privacy, S&P
2016, San Jose, California, May 23-25, 2016,
pages 372–387.

[18] N. Seegmiller and D. Wettergreen. Optical
flow odometry with robustness to self-shadowing.
In Intelligent Robots and Systems (IROS), 2011
IEEE/RSJ International Conference on, pages 613–
618. IEEE, 2011.

[19] J. Shi and C. Tomasi. Good features to track. In The
IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pages 593–600, June 1994.

[20] Yunmok Son, Hocheol Shin, Dongkwan Kim,
Youngseok Park, Juhwan Noh, Kibum Choi, Jung-
woo Choi, and Yongdae Kim. Rocking drones with
intentional sound noise on gyroscopic sensors. In
24th USENIX Security Symposium (USENIX Secu-
rity 15), pages 881–896, Washington, D.C., 2015.
USENIX Association.

[21] Christian Szegedy, Wojciech Zaremba, Ilya
Sutskever, Joan Bruna, Dumitru Erhan, Ian J.
Goodfellow, and Rob Fergus. Intriguing properties
of neural networks. Proceedings of the 2015 Inter-
national Conference on Learning Representations,
2014.

11

http://www.samy.pl/skyjack
http://www.samy.pl/skyjack

	Introduction
	Optical Flow for UAVs
	Real-World Attacks
	Attacker Requirements
	Optical Flow Attackers
	Attack Setting
	Discussion

	Sensor Input Spoofing Simulation
	Defenses
	Future Work
	Related Work
	Conclusion

