
AVLeak:
Fingerprinting Antivirus Emulators Through Black-Box Testing

Jeremy Blackthorne Alexei Bulazel Andrew Fasano Patrick Biernat Bülent Yener
Rensselaer Polytechnic Institute

Abstract
To fight the ever-increasing proliferation of novel mal-
ware, antivirus (AV) vendors have turned to emulation-
based automated dynamic malware analysis. Malware
authors have responded by creating malware that at-
tempts to evade detection by behaving benignly while
running in an emulator. Malware may detect emulation
by looking for emulator “fingerprints” such as unique
environmental values, timing inconsistencies, or bugs in
CPU emulation.

Due to their immense complexity and the expert
knowledge required to effectively analyze them, reverse-
engineering AV emulators to discover fingerprints is
an extremely challenging task. As an alternative, re-
searchers have demonstrated fingerprinting attacks using
simple black-box testing, but these techniques are slow,
inefficient, and generally awkward to use.

We propose a novel black-box technique to effi-
ciently extract emulator fingerprints without reverse-
engineering. To demonstrate our technique, we imple-
mented an easy-to-use tool and API called AVLeak. We
present an evaluation of AVLeak against several current
consumer AVs and show emulator fingerprints derived
from our experimentation. We also propose a classifica-
tion of fingerprints as they apply to consumer AV emu-
lators. Finally, we discuss the defensive implications of
our work, and future directions of research in emulator
evasion and exploitation.

1 Introduction

Recent estimates from Symantec claim that almost one
million new pieces of malware are created every day
[23]. Given this high rate of proliferation, antivirus soft-
ware (AV) cannot simply rely on static signature-based
malware detection. Automated dynamic analysis is nec-
essary in order to identify packed known malware sam-
ples and to heuristically detect new malware. In response
to the growth of automated dynamic analysis systems,
malware authors have created evasive malware which re-
sists automated analysis. A study from Lastline Labs
showed that in the second half of 2015, over 80% of mal-
ware exhibited evasive behavior [37].

Our research specifically focuses on the emulator-
based automated analysis systems used in consumer AV
products. In order to evade AV emulators, malware au-
thors have limited options. Many write malware that uses

generic anti-analysis tricks (e.g., stalling loops, simple
timing checks, obscure CPU instructions), though these
behaviors can be detected and countered [15, 32, 38].

To more deftly evade emulation, malware authors may
use distinguishing emulator “fingerprints” such as hard-
coded environmental values, timing inconsistencies, or
CPU “red pills.” Malware that observes these finger-
prints can recognize that it is being emulated and sub-
sequently behave benignly to avoid detection. In order to
discover fingerprints, malware authors may pursue chal-
lenging reverse-engineering or use black-box testing.
Our Contribution Our work is motivated by the dif-
ficulty of fingerprinting AV emulators through reverse-
engineering. We propose a novel black-box technique
that efficiently extracts fingerprints from emulators with-
out requiring reverse-engineering. Our approach signif-
icantly advances upon prior black-box approaches, and
our survey of fingerprints is more comprehensive than
has been presented in prior literature. To demonstrate our
attack, we built AVLeak, a tool and API for fingerprinting
consumer AV emulators. We evaluated AVLeak against
Kaspersky, Bitdefender engine (licensed for use in over
twenty other AV products [4]), AVG, and VBA. During
testing, we discovered hundreds of emulator fingerprints
which we classify into six categories: environmental arti-
facts, OS API inconsistency, network emulation, timing,
process introspection, and CPU “red pills.”

In addition to the offensive implications of our re-
search, it is also valuable in a defensive context. Emula-
tor fingerprints can be used to discover advanced evasive
malware in the wild and create new signatures.

Our work contributes to a growing body of research
demonstrating vulnerabilities in AV software and raises
awareness that these systems are not a panacea against
malware, and may in fact expose users to more risk.

2 Background

Modern consumer AV software is highly complex and
uses a number of techniques to identify malware. Our fo-
cus is the emulators embedded inside these systems, used
to examine binaries which cannot be identified as mali-
cious by simpler methods such as hashing, static signa-
turing, or static heuristic analysis. By running suspicious
binaries in isolated virtual environments, emulators may
look for known malware signatures in packed binaries or

1



droppers, or may heuristically classify runtime malicious
behavior in novel malware.

We refer readers interested in a more comprehnsive
overview of AV software to Koret and Bachaalany’s “The
Antivirus Hacker’s Handbook” [35].

2.1 Consumer AV Emulators vs. Academic
and Enterprise Analysis Systems

Consumer AV emulators are highly vulnerable to detec-
tion by malware, more so than high-end systems used
in academic research and enterprise network protection.
Despite their weaknesses, understanding these emulators
(and AV software at large) is challenging.

Academic and enterprise malware analysis systems
generally seek to record malware behavior in order to
create signatures, or as an aid to human malware an-
alysts. These systems return analysis reports that de-
tail specific malware behaviors such as files and reg-
istry keys accessed, mutexes created, and network con-
nections opened. Consumer AV emulators only seek to
identify malicious binaries, using runtime signaturing or
heuristic analysis.

The rich analysis reports provided by high-end sys-
tems may be exploited by attackers to exfiltrate finger-
prints, e.g., creating a file named with the return value of
GetUserName [72]. Consumer AVs are opaque in their
operation and generally only return the names of detected
malware.

Network-connected analysis systems are vulnerable to
fingerprinting by malware which exfiltrates fingerprints
over the network to attacker controlled servers [25, 36,
72]. In our experience, consumer AV emulators do not
provide malware with network access.1

High-end analysis systems often run full installs of
Windows in emulators (QEMU, Bochs), virtual ma-
chines (VMware, VirtualBox), or hypervisors (Xen, Intel
VT). Consumer AVs are limited by copyright and perfor-
mance considerations, preventing them from running a
real Windows OS, or virtualizing a full hardware sys-
tem. Instead, consumer AVs emulate a subset of the
Windows API on top of often incomplete CPU emula-
tion. When analyzing unknown binaries, consumer AV
emulators must present a realistic execution environment
with features such as concurrently executing processes,
file systems, GUI and windows subsystems, a mouse,
and the system clipboard. All of these facilities are pro-
vided by Windows itself for high-end systems.

Even when they are not publicly accessible, attackers
may discover ways to evade high-end analysis systems
by testing their readily-available underlying host plat-
forms, i.e., QEMU, VMware, etc. Consumer AV emu-
lators, on the other hand, are closed source and built on
proprietary software.

Because of these considerations, consumer AV emu-
lators remain incredible vulnerable to detection, but also
difficult to analyze.

2.2 Reverse-Engineering AV Emulators
In our assessment, AVs are one of the most challeng-
ing types of software to reverse-engineer. AV software
is highly complex, closely integrated with the operating
system, and often resistant to analysis.

Reverse-engineers face many practical challenges in
analyzing AV software. Anti-debugging protections pre-
vent debuggers from attaching to AV processes. Li-
braries are often stored in custom non-PE packed file for-
mats, hindering the use of standard static analysis tools.
Even analyzing AV binaries in a disassembler can be dif-
ficult due to their enormous size.

AV emulators are more difficult to analyze than AV
software at large.2 Emulator analysis requires expert
reverse-engineering skill given their immense complex-
ity. Reverse-engineers also need deep knowledge of AV
design; the x86 instruction set architecture, to analyze
CPU emulation; Windows internals, to analyze Windows
API emulation; and malware behavior, as the systems are
purpose-built to run and analyze malware. Emulator bi-
naries are particularly large with thousands of functions,
and often include disassembler-breaking functions with
thousands of basic blocks.3

As Koret and Bachaalany [35] point out, emulators are
frequently updated, so attackers may have to re-analyze
them with each new release in order to discover changes.

While we are not aware of prior art utilizing the tech-
nique, we note that looking for strings in running AV
processes or core dumps may allow attackers to dis-
cover simple hardcoded environmental artifacts (e.g.,
user names, computer names, file system contents, etc.).4

Readers interested in learning more about reverse-
engineering AVs are referred to “The Antivirus Hacker’s
Handbook” [35].

2.3 Black-Box Fingerprinting
Prior approaches to black-box fingerprinting have used
slow, inefficient, and generally unrefined testing to dis-
cover simple, easily found emulator fingerprints.

At Black Hat 2014, Swinnen and Mesbahi [66] pre-
sented a novel packer and a scheme for discovering em-
ulator fingerprints in consumer AV emulators leverag-
ing a black-box construction. At B-Sides Las Vegas
2014, Adams [1] presented similar testing against AVG’s
JavaScript emulator. Sauder’s DeepSec 2014 presenta-
tion [62] uses the same style of testing to create evasive
Metasploit payloads. Nasi’s self-published whitepaper
[42] uses the black-box model to discover fingerprints in

2



AV emulators available on VirusTotal. Perhaps the most
comprehensive work on offensive research against AVs,
Koret and Bachaalany’s “The Antivirus Hacker’s Hand-
book” [35], demonstrates the same style of black-box at-
tacks as described above. All of these efforts exploited
in-emulator malware detection as a means of extracting
the result of a single true or false query about the the em-
ulator. In Figure 1 we show pseudocode demonstrating
this “one-bit oracle” style of attack.

if EMULATOR_READING equals EXPECTED_VALUE:

DropMalware()

else:

Exit()

Figure 1: Pseudocode demonstrating one-bit oracle black-
box testing as described by [1, 35, 42, 62, 66]. When em-
ulated, this code will either drop malware, or exit without
dropping malware. By checking if the emulator detected
malware or not, an attacker can extract one bit of informa-
tion about the internal state of the emulator, revealing if the
value EMULATOR_READING is equal to EXPECTED_VALUE.

By checking if an AV emulator returns a malware de-
tection or decides that the scanned binary is benign, an
attacker may extract one bit of information about the em-
ulator’s internal state. One-bit testing is best suited for
discovering negative results, e.g., OS API function f is
not emulated correctly, file x is not present on the emu-
lated file system, CPU instruction c does not work cor-
rectly. Specific state information can be slowly extracted
through repeated testing (e.g., is byte b 0? Is it 1? Is it
2?. . . ), as shown by Adams [1].

3 Our Approach: AVLeak

Our approach improves upon and generalizes prior test-
ing schemes (as shown in Figure 1), by exploiting spe-
cific malware detections to leak fingerprints out of AV
emulators. Whereas prior approaches answer a simple
true or false query about emulator state with each scan,
we rapidly extract arbitrary multibyte data. Our tech-
nique extracts emulator fingerprints at least an order of
magnitude faster than previous black-box schemes. Fur-
ther, our system is engineered for ease of test case con-
struction, and offers a programmatic API to script testing
routines.

Figure 2 shows our technique from steps 3 to 7.

Step 1: Filter Malware Samples
We begin by obtaining a large set of malware samples,

and scan each with the AV under test. After scanning,
the set is filtered, keeping only those samples identified

as malware with unique signatures.5

Step 2: Map Malware Samples to Bytes
Given a filtered set of malware samples, we construct

a mapping of malware signatures to bytes.
In our implementation, each malware signature is

assigned to a single unique byte (e.g., Blaster to 0x00,
Nimda to 0x01, and so on, up to 0xFF). Multi-byte
mappings could be used to enable more efficient attacks
(e.g., individual malware samples to multi-byte values,
Blaster to 0x0000, Nimda to 0x0001, etc.).

Step 3: Encrypt and Package Malware Samples
After constructing a mapping, each malware sample

is encrypted to prevent static signature-based detection.
The set of encrypted binaries is then packaged together
into a single file.

Step 4: Write Dropper Code
Given a packaged malware file, we write code to

decrypt and “drop” (write to disk) the encrypted malware
samples when given their corresponding bytes of data
(e.g., drop Blaster for 0x00, Nimda for 0x01).

Step 5: Build Test Case Logic
Next, we write code to find emulator fingerprints, for

example, querying GetUserName, or analyzing register
state after a particular call. Each byte of fingerprint data
to be extracted is passed to our dropper code, as shown
in Figure 3.

Step 6: Compile and Scan
After compilation, the resulting binary is given to the

AV under test for scanning. Unable to statically identify
the previously unseen binary, the AV runs the code within
its emulator.6

During emulation, the binary decrypts and drops
malware samples within the emulator. When emulation
is complete, the AV returns the results of its scanning.

Step 7: Reconstruct Leaked Information
By correlating the malware signatures detected during

emulation with the the bytes that they are mapped to, we
can exfiltrate information from within the emulator. In
Figure 4 we show example output from an antivirus pro-
gram, and how the the leaked data is reconstructed.

3.1 Implementation

We tested four AV emulators: Kaspersky, Bitdefender
(licensed for use in over twenty other AV products, [4]
we tested via Emsisoft7), AVG, and VBA. The AVs
were selected by uploading a dropper for EICAR8 to

3



Logic

GetUserName()

Dictionary
‘A’: Mal 0x41

‘B’: Mal 0x42

‘C’: Mal 0x43

Executable

Encrypted

Mal 0x00

Mal 0x01
. . .

Mal 0xFF

AntivirusScanned by Detects
Mal 0x65
Mal 0x6D
Mal 0x75

Looked up
in Dict. ‘e’

‘m’
‘u’

Figure 2: We begin by constructing an executable from a set of malware, a mapping of malware to bytes, and logic to finger-
print the emulator under test. This executable is then emulated by an AV, where it drops malware in response to fingerprint
readings. The AV’s malware detections are subsequently parsed and cross-referenced with the malware dictionary to leak
data about the emulator. In this example, we extract the fingerprint that the user name within the emulator is “emu”.

// EmulatedFunction is an OS API function

// emulated by the AV emulator, and returns

// the hardcoded value "Antivirus"

for each byte in EmulatedFunction():

WriteToDisk(Decrypt(Malware[byte]))

Figure 3: Pseudocode sketch of the malware drop-
ping process. This code will drop the malware sam-
ples corresponding to each byte of the value returned
by EmulatedFunction. Assuming EmulatedFunction re-
turned “Antivirus”, the binary would drop malware
#0x41 (‘A’), #0x6e (‘n’) . . . #0x73 (‘s’).

VirusTotal and checking for EICAR identifications, in-
dicating that the binary had been emulated. We filtered
the set for AVs which returned uniquely named EICAR
detections, as emulators are often licensed between AV
vendors, and use the same detection strings.9 We further
refined the set of AVs based on their availability, gen-
eral reputation, and ability to invoke scanning from the
command line. We focused on extracting a wide variety
of fingerprints over demonstrating our technique’s obvi-
ous applicability to a wider range of AVs. In testing, we
targeted 32-bit x86 Windows emulators, by far the most
common type of AV emulator in our experience.

3.1.1 Testing Setup

The results presented in this paper were derived from
testing Kaspersky Antivirus 15.0.2.480, Emsisoft Com-
mandline Scanner 10.0.0.5366 (specific underlying Bit-
defender engine version unclear), AVG 2015.0.6173, and

$ antivirus.exe --scan=EmulatedFunction.exe

EmulatedFunction.exe detected as malicious:

DROPPED: Poison Ivy (sample 0x41 = ‘A’)

DROPPED: MyDoom (sample 0x6e = ‘n’)

... (samples for ‘t’,‘i’,‘v’,‘i’,‘r’,‘u’)

DROPPED: Morris Worm (sample 0x73 = ‘s’)

Figure 4: Example output from an AV and reconstruction
of exfiltrated information. Correlating the malware detec-
tions with the values they are mapped to, we reconstruct
that EmulatedFunction returned “Antivirus”.

VBA Windows/CL 3.12.26.4. Testing was conducted on
a 32-bit Windows 7 SP1 VM running within VMware
Fusion on a Mac OS X host system. The VM was allo-
cated 4 GB of RAM and two 2.8 GHz processor cores.

After initial setup, we disconnected the VM from the
internet to prevent the AVs from submitting our samples
to their cloud servers for further analysis, and to stop
them from downloading software or signature updates.

3.1.2 Implementation Specifics

Our first step in building AVLeak was to select sets of
uniquely identified malware for each AV. Bitdefender
and AVG were able to detect one dropped malware sam-
ple per emulator scan, so the AVs were each assigned sets
of 256 malware samples to represent the range of bytes
0x00 to 0xFF. Kaspersky could detect 30 unique dropped
malware samples per scan, while VBA could detect 8, so
they were assigned sets of 7680 (256 x 30) and 2048 (256
x 8) samples respectively. These sets allowed us to write
code for the two AVs that could draw upon a full set of

4



#include "AVLeak.h"

int main(){

char UserName[UNLEN + 1] = {0};

DWORD len = UNLEN+1;

GetUserName(UserName, &len);

leak(UserName);

}

Figure 5: A simple AVLeak test case to extract the user
name from an emulator. The leak function behaves much
like puts, but causes malware to be dropped rather than
printing characters to the terminal. Preprocessor directives
abstracted away from the programmer in header files man-
age backend specifics for each AV.

256 unique malware samples for each byte of data to ex-
tract, bytes 0-29 in Kaspersky and 0-7 in VBA.

After selecting sets of malware, we encrypted the sam-
ples to prevent static detection, and compiled object files
containing the encrypted samples and decryption code.

3.1.3 Software Engineering

AVLeak is implemented in Python, and test cases to fin-
gerprint emulators from within are written in C.

Given the limited and varying detection capabilities of
each AV, leaking multi-byte fingerprints out of their em-
ulators often requires compiling and scanning multiple
test binaries. For example, the first binary will leak fin-
gerprint bytes 0 through 7, the second will leak bytes 8
through 15, and so on. To minimize the time spent writ-
ing C code in this inefficient paradigm, the specifics of
malware dropping are isolated in header files and prepro-
cessor definitions managed by AVLeak. Test case devel-
opers can use simple functions to leak data from within
emulators, much like writing C to print to standard out-
put. In Figure 5 we show a test case that extracts the
username from within an emulator.

AVLeak’s test case compilation, AV interaction, and
data reconstruction are automated in Python. In addition
to a command line tool, AVLeak also offers a Python
API that may be used to script complex testing routines
or integrate with other applications. In Figure 6, we
show a Python function that uses the API to test various
HttpQueryInfo flags.

AVLeak was designed for portability and ease of use.
All Python scripts and C test cases may be written once
and run against any AV. Most AV fingerprints can be ex-
tracted with only a few seconds of testing. We present
several tables evaluating AVLeak’s efficiency in the ap-
pendix.

We found that it was possible to integrate new AVs

from AVLeak import *

http_flags = ["HTTP_QUERY_ACCEPT",

"HTTP_QUERY_ACCEPT_CHARSET",

"HTTP_QUERY_ACCEPT_ENCODING",

... ]

def test_http(av):

for flag in http_flags:

result = av.leak(

testfile = "HttpQueryInfo_flags.c",

string = flag,

printmax = 20)

print flag + ": " + result

Figure 6: A simple AVLeak Python testing function which
enumerates all HTTP attribute flags that can be queried
with HttpQueryInfo and extracts the first 20 bytes of each
returned attribute.

with only a few hours of work, the vast majority of which
is spent running automated scripts.

4 Results

In evaluation, we used AVLeak to find hundreds of emu-
lator fingerprints spanning six categories, as summarized
in Table 1: environmental artifacts, OS API inconsis-
tency, network emulation, timing, process introspection,
and CPU emulator “red pills.”

We chose fingerprints to test by looking to traits of
the emulated environments which we believed would be
likely to be hardcoded or incorrectly emulated. Our intu-
ition about these fingerprints was guided by study of AV
software, evasive malware, and prior research on anti-
analysis (see Section 8).

In this section we provide a brief overview of some of
the most interesting findings from our research.

4.1 Environmental Artifacts
The simplest class of emulator fingerprint are environ-
mental artifacts: traits of the execution environment it-
self. Consumer AVs do not run a real Windows installa-
tion, so their environments must be created from scratch,
leaving them vulnerable to detection from hardcoded or
inaccurate values. AV developers must also keep envi-
ronmental values consistent when they are observed us-
ing different OS functions.

We found that Bitdefender, AVG, and VBA
used hardcoded names for binaries under anal-
ysis, Bitdefender - “C:\TESTAPP.EXE”; AVG -

5



Class Definition Examples
Environmental Artifacts Artifacts of the execu-

tion environment itself
Program / user / computer names, MAC addresses, file
system, registry entries, running processes, GUI windows

OS API Inconsistency Inconsistency in OS
API implementation

Functions which return incorrect results, incorrectly fail
or succeed

Network Emulation Fingerprints related to
network emulation

Hardcoded network responses, responses to invalid re-
quests, protocol emulation inconsistencies

Timing Timing inconsistencies
related to emulation

Timing skews, inconsistencies, and failures

Process Introspection Artifacts in the memory
space of the program

Register states after API calls, runtime process structures,
uninitialized memory, heap metadata, DLLs in memory

CPU “Red Pills” Inconsistencies in CPU
instruction emulation

Incorrectly emulated instructions, unique cycle counts,
out-of-order execution behavior

Table 1: Table summarizing the six categories of fingerprints we examined with AVLeak.

“C:\Documents and Settings\Administrator\My

Documents\mwsmpl.exe”; and VBA -
“C:\SELF.EXE”. Kaspersky randomized the name with
each scan, returning “C:\[5-8 random lowercase

letters].exe”.10

All four AVs used hardcoded computer names:
Kaspersky - “NfZtFbPfH”; Bitdefender - “tz”; AVG -
“ELICZ”; and VBA “MAIN”.

Querying system MAC addresses, we found that
Kaspersky generated a random MAC per scan, Bitde-
fender used a hardcoded value, and AVG and VBA re-
turned zeros.

We used AVLeak’s API to recursively dump the names
of all files on the emulated file systems, and all registry
entries in the emulated registries. We discovered numer-
ous uniquely named files,11 missing system files,12 fake
installs of multiple AV products,13 file sharing clients,14

video games,15 and common consumer software.16 We
believe that many of these files are present to bait un-
known binaries into showing malicious behavior. Bitde-
fender and AVG did not emulate the presence of the “.”
and “..” paths when iterating through directory contents
using the FindFirstFile / FindNextFile functions.

Bitdefender’s file system had several files which
are clearly “easter eggs” from programmers:
“A_E_O_FANTOMA_DE_FISIER_CARE_VA_SA_ZICA_
NU_EXISTA.BAT”17, “TZEAPA_A_LA_BATMAN.EXE”18

and “C:\BATMAN”.
Kaspersky’s file system had 33 files in the “My

Documents” directory with seemingly random file
names and common file extensions (xls, doc, mp3, etc.).
Close examination of the file names showed that they
were likely created by a programmer typing random
characters on a QWERTY keyboard.19 We found PE
headers and the string “<KL Autogenerated>” (pre-
sumably “Kaspersky Lab”) in files on Kaspersky’s file
system (even files without executable extensions).

Taking inspiration from an attack documented by Lin-
dorfer et al. [40], we checked the AVs’ emulated reg-
istries for Windows product IDs, and found that only
AVG’s had one.20

AV emulators do not virtualize a full operating sys-
tem, instead they only run a single (possibly multi-
threaded) user mode process at a time. We used the
CreateToolhelp32Snapshot function to extract pro-
cess listings from each of the AVs, and found that all had
hard-coded listings for other processes running on the
system. Bitdefender’s assigned the process under anal-
ysis to PID 8, running before essential Windows pro-
cesses, and also had six processes sharing PID 12.21

Kaspersky, Bitdefender, and AVG featured multiple AV
processes in their process listings. Many of the fake pro-
cesses were not backed by files on disk.

We also found environmental artifacts related to envi-
ronment variables, open windows, hardware configura-
tion, and system settings, among others.

4.2 OS API Inconsistency

Windows API emulation within AV emulators is often
incomplete, and emulators can be fingerprinted by their
inaccurate behavior. We found that AVLeak was not sig-
nificantly more useful in finding these fingerprints than
one-bit black-box approaches.

API inconsistencies within AV emulators are often
manifested as total failure of certain functions rather than
subtle inconsistencies in API operation, making them
easy to discover with the one-bit testing shown in Figure
1. For more subtle artifacts we found that implementing
test cases and analyzing their output for inconsistencies
was time consuming and did not greatly benefit from the
use of our technique. We also found that many interest-
ing functions that we believed would be inaccurately em-
ulated simply caused analysis to abort, a valuable result,

6



but not necessarily a fingerprint.22

The FormatMessage function returned interesting re-
sults, and benefited specifically from AVLeak’s use. The
function can be used to translate error messages from
numeric codes to text based descriptions of the error.
Kaspersky and VBA returned with failure error codes,
though subsequent calls to GetLastError indicated that
the function had succeeded. In Bitdefender, the function
returned “(from_other)” for all error codes, and AVG
returned a string with the error code in hexadecimal pre-
fixed by “MID”.

We found numerous subtle fingerprints related to in-
correct WinAPI error codes returned by OS functions.
We also explored OS API artifacts related to clipboard
manipulation, permissions enforcement, input device
state, interprocess communication, various file system
actions, GUI interaction, and memory management.

4.3 Network Emulation

The AVs that we tested all denied network access to bina-
ries under analysis, though Kaspersky, Bitdefender, and
AVG emulated network connectivity. VBA returned fail-
ure when we tried to make network connections.

Testing HTTP connectivity was particularly fruitful,
allowing us to discover networking related artifacts
within Kaspersky, Bitdefender, and AVG. These three
AVs returned HTTP success status codes when we at-
tempted to make connections to any URL, including
clearly invalid ones.

We extracted downloaded HTTP content from the
three AVs, and found that all returned Windows exe-
cutables in response to requests. Kaspersky returned
a 32-bit Windows DLL filled with meaningless ran-
dom code, and the string “<Downloaded>” followed
by the URL the binary was “downloaded” from, in
place of “<KL Autogenerated>” as found in binaries
on the file system. Bitdefender returned a malformed
MS-DOS (MZ) executable containing the unique string
“SetSuspect”. AVG returned a 32-bit Windows (GUI)
PE executable which simply executes “lock mov ebx,

0xff810598” when run (perhaps related to AVG’s func-
tion emulation, as detailed in section 4.5.1).

We also tested HTTP status flags, as shown in Figure
6, and found unique values and erroneously absent head-
ers.

4.4 Timing

Garfinkel et al. [22] demonstrated the futility of creat-
ing timing-accurate virtualization systems. Timing at-
tacks against virtualizated automated analyis systems
have been demonstrated in prior research [15, 40, 54, 58].

We were unsurprised to find that consumer AVs struggled
to accurately emulate timing.

We tested seven methods of reading time:
GetSystemTime, GetSystemTimeAsFileTime,
GetTickCount, QueryPerformanceCounter,
NtQuerySystemTime, and the assembly instruc-
tions rdtsc and rdtscp. We found that there was no
need for complex attacks on timing emulation as used in
academic research.

Start times for analysis were hardcoded in all four
emulators, e.g., Kaspersky’s emulator always started the
time at 11:01:19 (+/- a few ms, likely due to natural vari-
ation in the time for the function call to complete), July
13, 2012; while VBA returned 1,234,560,000 in response
to calls to QueryPerformanceCounter, a unique value
we assume was hardcoded by a programmer.

While Kaspersky and AVG’s emulators attempted to
accurately emulate timing, Bitdefender and VBA’s were
completely dysfunctional.

Taking timing readings with GetTickCount before
and after a call to Sleep(1000) (sleep for 1,000
ms, or one second), Bitdefender showed average tick
count differences of approximately 150,000,000 ms;
150,000 times larger than the expected 1,000. 23

VBA featured similar disproportionately large time
deltas approximately 500 times larger than would
be expected. Bitdefender aborted analysis after
calls to NtQuerySystemTime, and did not mod-
ify the SYSTEMTIME structure given in to a call to
GetSystemTime.

VBA identified the date and time as 1:31:12.123,
11/3/2013 in calls to GetSystemTime but re-
turned 7:30:01.110, 7/17/2009 in calls to
GetSystemTimeAsFileTime. VBA’s implementa-
tion FileTimeToSystemTime always returned a system
time of 0:0:0.0, 0/0/2000, no matter what FILETIME was
passed in, and NtQuerySystemTime did nothing.

Kaspersky and AVG’s higher fidelity timing emulation
was detectable through “hyperreality”, wherein the pas-
sage of time was emulated too accurately without con-
sideration for the inherent overheard and variability of a
real computer. Taking timing readings over executions of
Sleep, we found that the emulators failed to account for
the time it would take for Sleep to call into the kernel,
and for the process to be put to sleep and subsequently
woken. AVG monotonically incremented the time by the
number of ms requested for sleep, showing 0 ms of over-
head for the operation. Kaspersky showed some variabil-
ity in timing, with roughly half of sub-15 second sleeps
incurring a 15-16 ms overhead, while those above 15 sec-
onds incurred 0 ms of overhead. For reference, our test
VM incurred 14-16 ms of overhead for all Sleep calls.

While conducting networking testing, we timed the
four emulators making HTTP requests to “www.google.

7



com”, and found that all reported that requests took 0 ms.
In our isolated test VM, each failed request took approx-
imately 300 ms.

4.5 Process Introspection

Process introspection artifacts are fingerprints related to
the observable state of code and data within a given bi-
nary’s process space. Examples include heap metadata,
periodicity of heap allocation, contents of uninitialized
memory, Windows runtime data structures such as the
PEB and TEB, data left on the stack or in registers be-
tween function calls, and DLLs loaded in memory.

We built AVLeak test cases to extract process intro-
spection artifacts, but found that they are often very sub-
tle and require deep knowledge of undocumented Win-
dows internals. These fingerprints are not as obvious as
others such as hardcoded environmental strings.

4.5.1 Library Code Artifacts

We analyzed the code of Windows system DLLs loaded
in the process space of our test binaries, and found com-
mon patterns in three of the four emulators. We extracted
code by dumping the raw bytes at addresses returned by
calls to GetProcAddress, and found that obscure or ex-
cepting operations were used as a means of signaling the
need for function emulation.

To trigger function emulation, AVG uses the ob-
scure “lock mov ebx” instruction (shown in Fig-
ure 7), while Bitdefender calls or returns to an in-
valid address, and VBA moves the number 0x406

to address 0xFFF1[two byte ordinal number of

invoked function]. Kaspersky was unique in at-
tempting to prevent detection by generating random
bytes on per-run basis after the standard “mov edi,

edi” and a “push” of the current function’s address.

mov edi, edi ; WinAPI hot patch point

push ebp ; function prologue

mov ebp, esp ; function prologue

nop

lock mov ebx, 0xff[1b lib #][2b func #]

pop ebp ; function epilogue

ret [size of args] ; stack cleanup

nop... ; nops between functions

Figure 7: Example of code extracted from AVG’s
kernel32.dll in memory. The second byte of the mov in-
struction argument denotes the library, while the third and
fourth bytes denote a specific function. AVG’s CPU emu-
lator presumably intercepts the obscure “lock mov ebx”,
and invokes code to emulate the function.

In addition to the unique signatures within functions,
we also found inaccurate use of the WinAPI hot patch
point appearing on functions that do not have it in real
Windows systems. Padding between functions was inac-
curate in Bitdefender (“int 3”) and VBA (“hlt”).

4.6 CPU “Red Pills”

CPU “red pills” are instructions which behave differently
on a CPU emulator than they do on a real CPU [53]. Ef-
ficient red pill discovery requires complex testing frame-
works [53, 64]. We considered building such a frame-
work to be beyond the scope of our current research.
However, we were able to build tools for CPU state se-
rialization and extraction with AVLeak, and preliminary
experimentation appears promising. We hope to further
document our red pill testing in future publications.

We were able to discover some red pills by creating
custom testing scripts for particularly unique instructions
unlikely to be correctly emulated.

Testing the CPUID instruction revealed that all four
emulators under test identified themselves using Intel’s
vendor ID string “GenuineIntel”, but implementa-
tion of other CPUID functions were inconsistent. When
checking the processor brand string for the emulated
CPUs, Kaspersky returned “Intel(R) Pentium(R) 4

CPU 2.40GHz”; while VBA identified as “Intel(R)
Core(TM)2 Duo CPU P8600 @ 2.40GHz”; and Bit-
defender did not return anything. AVG identified
its processor as “x86 Family 15 Model 4 Stepping

3, AuthenticAMD”, contradicting its vendor identifica-
tion of “GenuineIntel”. Further, AVG did not pro-
duce the “IT’S HAMMER TIME” string for CPUID func-
tion 0x8FFFFFFF, a feature in AMD processors [19].

We found interesting preliminary results from testing
the RDTSC instruction to retrieve CPU cycle counts. We
believe that it may be possible to fingerprint specific
CPU emulators by the number of (emulated) CPU cycles
which specific instructions take. Further, RDTSC-derived
cycle counts may be used to detect the lack of concur-
rently executing processes and an real operating system.

While conducting timing testing, we found that the
RDTSCP instruction caused analysis to abort within
Kaspersky and VBA’s emulators.

4.7 Evasion

We briefly evaluated AVLeak’s viability for operational
use by creating twenty evasive malware droppers using
AV fingerprints we discovered. We achieved 100% eva-
sion, all of the binaries were not detected as malicious
during emulation, but successfully dropped malware on
a real system.

8



5 Malware Discovery

Through Google searches of strings found within the
emulators, we discovered numerous malware samples
profiled on automated malware analysis sites such as
totalhash.com and malwr.com.24 We were limited by
our ability to only search for simple text based patterns
in public malware reports.

AVLeak-derived fingerprints can be used defensively
to create new static malware signatures for use in net-
work protection systems, or to search through existing
malware databases. Knowledge of specific emulation de-
tection methods may be used to build mitigations against
future detection, or to illicit previously unseen behavior
in evasive malware.

5.1 Thai Malware

When searched on Google in March 2015, the AVG
product ID20 we discovered through registry dumping
returned a single result, a file hosted on a Thai middle
school’s website.25,26 The file has since been removed
from the site. We extracted a user mode executable27

and a kernel driver28 from the file. Uploading the user-
mode binary to VirusTotal showed that we were the third
to upload the file, with the first upload on 11/12/2012.
The kernel driver had never been uploaded before.

We found a third PE header in the file, but it did not
correspond with any easily extractable executable. In the
rest of the file, we found numerous environmental strings
related to AVG’s emulator as well as over 1,300 code
snippets using AVG’s function emulation triggering in-
structions, as discussed in section 4.5.1.

While their ultimate intentions remain unknown, the
creators of the malware undoubtedly possessed intimate
knowledge of AVG’s emulator internals.29

5.2 EvilBunny

Our research also enabled better understanding of “Evil-
Bunny”, a highly advanced malware platform associated
with the “Animal Farm” APT, first discovered by Marion
Marschalek of Cyphort [41]. Before unpacking its mul-
tithreaded Lua scripting engine, EvilBunny’s dropper30

checks if its name contains “TESTAPP”, the name used
for binaries under analysis in Bitdefender’s emulator.
If named “TESTAPP”, the malware aborts execution to
avoid detection. EvilBunny also checks that its name is
not “afyjevmv.exe” (among several other anti-analysis
checks), which we believe may be a randomly gener-
ated name from Kaspersky’s emulator.31 EvilBunny’s
dropped payload32 exhibits the same anti-analysis behav-
ior, but checks for the string “testapp.exe”. Prior to

our research, it was not known that that the “TESTAPP”
string was related to Bitdefender evasion.33

6 Future Work

Directions for future work include improvements to test-
ing and AV integration, as well as the development of
novel emulation detection attacks, and vulnerability re-
search targeting emulators for breakout. We plan to con-
struct more pre-built test cases and integrate more AV
products with AVLeak.
Alternative Platforms AV emulators for ELF binaries,
x86_64, ARM, .NET bytecode, JavaScript, and Action-
Script have been documented [1, 35]. We hope to experi-
ment with fingerprinting these emulators using AVLeak.
Autonomous Fingerprinting Our technique requires
advance access to AV software in order to discover em-
ulator fingerprints before creating evasive malware. Sec-
ond Part To Hell’s emulator detection technique [63]
does not require prior access, and may be autonomously
deployed in malware. Future researchers in this field may
look into discovering other approaches to heuristically-
enabled autonomous evasion.
Environmental Artifacts Future research in discovering
environmental artifacts may look more deeply at file sys-
tem and registry artifacts, emulated hardware devices,
and other environmental traits. We are particularly in-
terested in exploring fingerprints related to statistical dis-
crepancies in file properties and metadata in emulated file
systems versus real file systems.
OS API Inconsistency Improvements to OS API testing
may benefit from the Wine project [70], which provides a
compatibility layer allowing Windows binaries to run on
POSIX systems. Unit tests for Wine’s implementation
of the Windows API could be repurposed for API testing
with AVLeak.
Network Emulation Our exploration of network em-
ulation primarily looked at HTTP traffic, but we be-
lieve valuable insights may come from exploration of
other methods potentially used for exfiltration (FTP,
raw sockets), command and control (IRC, email, DNS),
DNS implementation, and HTTPS cryptographic ne-
gotiation. Preliminary results from manual reverse-
engineering during initial experimentation showed us
that some emulators may also support email protocols
in order to analyze spambots.
Timing Swinnen and Mesbahi [66] intentionally intro-
duced race conditions into multi-threaded code in order
to detect incorrect timing emulation. We implemented
tests for multi-threading-related fingerprints, but found
that this style of testing did not benefit from the use of
AVLeak over prior black-box schemes. Future research
could develop more advanced threading-based detection
attacks which benefit from AVLeak’s use.

9



Process Introspection Further work in discovering pro-
cess introspection fingerprints may look to detection
attacks against dynamic binary instrumentation frame-
works such as Intel Pin and DynamoRIO [65].
CPU Red Pills Advancements in CPU red pill discovery
may draw upon prior work in the field, using open test
suites such as Shi et al.’s [64] against AV CPU emulators.

6.1 New Reverse-Engineering Approaches

Future fingerprinting research could combine light
reverse-engineering with black-box testing.

As emulators use functions to emulate the Windows
API, an attacker could hook emulation functions and ex-
amine their arguments. For example, hooking an emu-
lator’s implementation of WriteFile, and saving off all
data being written to the emulated file system within the
AV. Fingerprinting binaries would then write observed
fingerprints to a “file” with WriteFile to leak data.

In addition to tapping function calls within emulators
for hooking, attackers could leak sensitive data though
passive observation of an emulator process. If pre-
dictable or static memory locations are used as part of
emulation, attackers could create emulator profiling bi-
naries which place fingerprint observations in these lo-
cations for collection. Collection could be facilitated by
an injected library, observing process, or external instru-
mentation. If memory locations are randomized, finger-
printing binaries could format observations with patterns
so that they can be easily found in process memory.

6.2 Vulnerability Research

AVLeak may also be useful to researchers attacking
emulators to discover vulnerabilities allowing break-
out and in the case of many AVs, simultaneous privi-
lege escalation.34 AV exploitation has received recent
attention from Joxean Koret [33, 34, 35], and Tavis
Ormandy. Ormandy’s Google Project Zero blog post
“Analysis and Exploitation of an ESET Vulnerability”
[46] demonstrates an ESET emulator breakout exploit.
Various Project Zero bug reports from Ormandy have
shown vulnerabilities in other emulators [47, 48, 49, 50,
51, 52]. While exploit development requires intensive
reverse-engineering, AVLeak may provide vulnerability
researchers with a good starting point for their analyses.

7 Mitigations

Our technique exploits AVs’ essential ability to detect
malware as a means of undermining them. Without fun-
damental changes to the structure of AV software, black-
box attacks will continue to be effective against them.

We were surprised by the number of hardcoded en-
vironmental artifacts we discovered. Simply randomiz-
ing data where appropriate could make emulators more
difficult to fingerprint. Kaspersky randomized program
names, MAC addresses, and in-memory DLL code, but
we did not observe any other randomization during ex-
perimentation.

Future developments in AV software may look to
heuristically detecting anti-emulation behavior in mal-
ware. AV vendors can draw upon a wealth of academic
research on the topic from the past decade [5, 26, 30,
31, 32, 39, 40]. Consumer AVs have an advantage over
academic systems in that they only need to block mal-
ware from infecting endpoint computers, whereas aca-
demic systems seek to automate malware analysis. If an
AV heuristically detects malicious or anti-emulation be-
havior, blocking the binary and sending it back to the
AV’s vendor for further analysis is a useful action.

Kolbitsch et al.’s work [32] uses five traits of system
call invocation over time in order to detect stalling behav-
ior in analysis-resistant binaries. Similar, but less com-
putationally complex techniques may be useful for de-
tecting anti-emulation in consumer AVs. The behaviors
exhibited by AV emulation resistant malware are likely
quantifiably different those seen in benign programs.

Program analysis techniques such as taint analysis,
symbolic execution, and forced path exploration could
eliminate the need for traditional emulation, or at least
frustrate fingerprinting efforts. However, the use of these
techniques in malware analysis remains an open area of
research, and they are unlikely to be employed in con-
sumer AV software anytime in the near future.

8 Related Work

Our research builds upon prior work from academic, in-
dustry, and independent security researchers.

Our literature survey focuses on attacks against
Windows-based automated malware analysis systems
and AVs, as well as publicly available materials on em-
ulators from AV vendors themselves. We note that sim-
ilar attacks have also been documented against alterna-
tive virtualization systems, including those for mobile
devices and web browsers.

8.1 Academic Work
Prior academic research has used black-box analysis
against commercial AV products, and has explored anti-
analysis behavior seen in the wild. Academic research
into virtualization detection and counter-detection miti-
gations is too vast to sufficiently document here, we re-
fer interested readers to Egele et al.’s [18] survey of auto-
mated malware analysis system designs, Pék et al.’s [55]

10



survey of security issues in hardware virtualization, and
Raffetseder et al.’s [58] demonstration of low-level de-
tection attacks against system emulators.

Independently conducted work from Filiol et al. [20]
and Hamlen et al. [24] demonstrates how black-box anal-
ysis may be used to extract static signatures from AVs
by repeatedly scanning modified malware samples. Fur-
ther work from Filiol et al. [21] uses a similar black-box
scheme to extract information about run-time behavioral
signatures. Borello et al. [11] use black-box analysis
against sixteen AV products to evaluate their ability to
detect metamorphic malware.

Yoshioka et al.’s work [72] is particularly relevant to
our research, demonstrating the use of analysis reports
as a means of exfiltrating fingerprints from within auto-
mated analysis systems.

Chen et al. [15] propose a taxonomy of anti-
virtualization and anti-debugging techniques, and ana-
lyze the prevalence of anti-analysis behavior in malware.
Bayer et al. [38], present statistics on malware behavior
observed in the wild in the Anubis sandbox, and discuss
detection attacks used against it.

Oberheide et al.’s PolyPack [44] provides a cloud ser-
vice which packs malware binaries using multiple pack-
ers and evaluates their detection by consumer AVs.

In experimentation, we sought to use attacks on virtu-
alization and emulation as documented in prior work, but
found that consumer AVs were vulnerable to far simpler
attacks. Our research is unique in attacking consumer AV
emulators, we are not aware of prior academic treatment
of the topic.

8.2 Industry and Non-Academic Work
Emulation detection and black-box testing of AV emu-
lators has also been explored in whitepapers and confer-
ence talks from industry and non-academic researchers.
We note that other non-academic research has also at-
tacked high-end virtualization systems, and similar at-
tacks have also been mounted against dynamic binary
instrumentation frameworks [65].

As noted in Section 2.3, previous conference talks and
written work have used one-bit black-box constructions
to fingerprint AV emulators [1, 35, 42, 62, 66].

In presentations at REcon and Black Hat 2010, Georg
Wicherski of Kaspersky Lab’s Global Research and
Analysis Team (GReAT) discussed emulator evasion
techniques while presenting “dirtbox”, an x86 Windows
emulator for malware analysis motivated by shortcom-
ings in AV emulators [68, 69].

In 2009, Kleissner mounted an attack on several AV
companies, distributing a binary which contacted his
servers to leak sensitive system fingerprints when exe-
cuted in a network-connected analysis system [25, 36].

Kleissner’s attack is the same as Yoshioka et al.’s [72],
and was carried out shortly after the publication of the
first technical report on the technique [71]. The finger-
prints were subsequently made available on the now de-
funct avtracker.info.

In a blog post, Rolles [60] discusses an attack against
Renovo, an academic automated analysis system, which
exploits its ability to detect and return unpacked code in
order to exfiltrate data about the host system.

Austrian virus author Second Part To Hell (SPTH)
[63], proposes a method of using black-box analysis to
detect AV emulators by examining undocumented regis-
ter states left after the invocation of Windows API func-
tions. SPTH’s technique is particularly notable as it may
be deployed autonomously by malware running in an un-
known emulator, and does not require exfiltration of data
from the emulator to enable evasion.

In a self-published paper, Ormandy [45] discusses the
design of Sophos’ emulator with insights presumably
gleaned from manual reverse-engineering.

AV emulator evasion has received attention among
penetration testers. SideStep [16] and peCloak [17] pack
Metasploit payloads to evade AV emulators, while Veil
[67] enables AV evasion at large.

Our work takes inspiration from prior black-box test-
ing, but we use an expanded exfiltration bandwidth, and
conduct a more through survey of consumer AV emulator
fingerprints than previously presented.

8.3 Promotional Material and Patents
AV vendors generally do not discuss the internals of
their software, though some have described their emu-
lator technology in promotional material and patents.

Kaspersky Lab CEO Eugene Kaspersky has discussed
Kaspersky’s emulator in two blog posts [27, 28]. A case
study from Bitdefender discusses high level features in
the company’s “B-HAVE” engine [9].

Kaspersky Lab has been particularly thorough in
patenting technologies associated with their emulator
[3, 6, 7, 8, 56, 57, 73]. A patent from Bitdefender
[43] discusses a method for identifying known code se-
quences during emulation.

9 Conclusion

We have presented a novel technique for extracting arti-
facts of emulation from AV emulators. We constructed
a tool, AVLeak, that successfully demonstrates our tech-
nique against several popular commercial AV products.
Previously, discovering emulator fingerprints required
difficult reverse-engineering or inefficient black-box test-
ing, while our work makes the problem tractable to even
novice programmers. AVLeak is efficient, generic, and

11



easy to use, making it a viable alternative to reverse-
engineering. AVLeak can be integrated with new AVs
in a matter of hours, and its API and abstracted design
allows attackers to write fingerprinting code that works
against any AV.

Our work contributes to a growing corpus of research
attacking consumer AV software, exposing vulnerabili-
ties in its operation previously protected by obscurity.
Our findings show that advanced attackers are already
aware of many consumer AV fingerprints, and have been
using them to evade detection in the wild for years.

Emulation is a vital tool in stopping modern malware,
and the battle between analysis-resistant malware and au-
tomated analysis systems remains highly active. In aca-
demic research, the most state-of-the-art automated anal-
ysis systems rely on instrumentation to physical hard-
ware (avoiding emulation entirely) [29, 31, 61] or com-
plex program analysis techniques and large scale test sys-
tems [2], both infeasible for deployment in consumer AV
software.

We have just scratched the surface in fingerprinting
AV emulators, and we hope to continue this research in
order to enable more advanced attacks and greater AV
coverage.

References
[1] ADAMS, K. Evading Code Emulation: Writing Ridiculously Ob-

vious Malware That Bypasses AV, 2014. Talk at BSides Las Ve-
gas 2014, Las Vegas, Nevada.

[2] ALWABEL, A., SHI, H., BARTLETTE, G., AND MIRKOVIC, J.
Safe and Automated Live Malware Experimentation on Public
Testbeds. In 7th Workshop on Cyber Security Experimentation
and Test (CSET 14) (2014).

[3] ANTUKH, A., AND MALANOV, A. System and method for
generating emulation-based scenarios for error handling, Dec. 31
2013. US Patent 8,621,279.

[4] AV COMPARATIVES. List of AV Vendors (PC). http://www.

av-comparatives.org/av-vendors, 2014.

[5] BALZAROTTI, D., COVA, M., KARLBERGER, C., AND KIRDA,
E. Efficient Detection of Split Personalities in Malware. In NDSS
2010, 17th Annual Network and Distributed System Security Sym-
posium (2010).

[6] BELOV, S. Method for accelerating hardware emulator used
for malware detection and analysis, Feb. 21 2012. US Patent
8,122,509.

[7] BELOV, S. System and method for countering detection of emu-
lation by malware, Dec. 9 2014. US Patent 8,910,286.

[8] BELOV, S. System and method for improving the efficiency
of application emulation acceleration, Jan. 27 2015. US Patent
8,943,596.

[9] BITDEFENDER. B–HAVE –The Road To Success. Tech. rep.,
2010.

[10] BLACKTHORNE, J., AND YENER, B. Reverse Engineering
Anti-Virus Emulators through Black-box Analysis. Tech. rep.,
Computer Science Department, Rensselaer Polytechnic Institute,
2015.

[11] BORELLO, J. M., FILIOL, E., AND MÉ, L. From the design
of a generic metamorphic engine to a black-box classification of
antivirus detection techniques. Journal in Computer Virology 6
(2010).

[12] BULAZEL, A. AVLeak: Fingerprinting Antivirus Emulators For
Advanced Malware Evasion, 2016. Talk at Black Hat 2016, Las
Vegas, NV.

[13] BULAZEL, A. AVLeak: Turning Antivirus Emulators Inside Out,
2016. Talk at ShmooCon 2016, Washington, DC.

[14] BULAZEL, A., AND YENER, B. AVLeak: Profiling Commer-
cial Anti-Virus Emulators Through Black Box Testing. Master’s
thesis, Rensselaer Polytechnic Institute, Troy, NY, 2015.

[15] CHEN, X., ANDERSEN, J., MAO, Z. M., BAILEY, M., AND
NAZARIO, J. Towards an understanding of anti-virtualization
and anti-debugging behavior in modern malware. In 2008 IEEE
International Conference on Dependable Systems and Networks
With FTCS and DCC (DSN) (2008), IEEE.

[16] CODEWATCH. SideStep: Another AV Evasion Tool. https:

//www.codewatch.org/blog/?p=414, 2015.

[17] CZUMAK, M. peCloak.py An Experiment in AV Eva-
sion. http://www.securitysift.com/pecloak-py-an-

experiment-in-av-evasion, 2015.

[18] EGELE, M., THEODOOR, S., KIRDA, E., AND KRUEGEL, C.
A Survey on Automated Dynamic Malware Analysis Techniques
and Tools. ACM Computing Surveys 44, 2 (2012).

[19] FERRIE, P. Attacks on Virtual Machine Emulators. Tech. rep.,
Symantec Advanced Threat Research, 2006.

[20] FILIOL, E. Malware pattern scanning schemes secure against
black-box analysis. Journal in Computer Virology 2 (2006).

[21] FILIOL, E., JACOB, G., AND LIARD, M. L. Evaluation method-
ology and theoretical model for antiviral behavioural detection
strategies. Journal in Computer Virology 3 (2007).

[22] GARFINKEL, T., ADAMS, K., WARFIELD, A., AND FRANKLIN,
J. Compatibility is Not Transparency: VMM Detection Myths
and Realities. In HOTOS’07 Proceedings of the 11th USENIX
workshop on Hot topics in operating systems (2007).

[23] HALEY, K. 2015 Internet Security Threat Report: Attackers
are bigger, bolder, and faster. http://www.symantec.com/

connect/blogs/2015-internet-security-threat-

report-attackers-are-bigger-bolder-and-faster,
2015.

[24] HAMLEN, K. W., MOHAN, V., MASUD, M. M., KHAN, L.,
AND THURAISINGHAM, B. Exploiting an Antivirus Interface.
Computer Standards & Interfaces 31 (2009).

[25] KAMLUK, V. A black hat loses control. https:

//securelist.com/blog/incidents/30575/a-black-

hat-loses-control, 2009.

[26] KANG, M. G., YIN, H., HANNA, S., MCCAMANT, S., AND
SONG, D. Emulating Emulation-Resistant Malware. In VMSec
’09 Proceedings of the 1st ACM workshop on Virtual machine
security (2009).

[27] KASPERSKY, E. Emulation: A headache to develop – but
oh-so worth it. http://eugene.kaspersky.com/2012/03/

07/emulation-a-headache-to-develop-but-oh-so-

worth-it, 2012.

[28] KASPERSKY, E. Emulate to exterminate. http://eugene.

kaspersky.com/2013/07/02/emulate-to-exterminate,
2013.

[29] KIRAT, D., GIOVANNI, V., AND KRUEGEL, C. BareBox: Effi-
cient Malware Analysis on Bare-Metal. In ACSAC ’11 Proceed-
ings of the 27th Annual Computer Security Applications Confer-
ence (2011).

12



[30] KIRAT, D., AND VIGNA, G. MalGene: Automatic Extraction of
Malware Analysis Evasion Signature. In CCS ’15 Proceedings of
the 22nd ACM SIGSAC Conference on Computer and Communi-
cations Security (2015).

[31] KIRAT, D., VIGNA, G., AND KRUEGEL, C. BareCloud: Bare-
metal Analysis-based Evasive Malware Detection. In SEC’14
Proceedings of the 23rd USENIX conference on Security Sym-
posium (2014).

[32] KOLBITSCH, C., KIRDA, E., AND KRUEGEL, C. The Power of
Procrastination: Detection and Mitigation of Execution-Stalling
Malicious Code. In CCS ’11 Proceedings of the 18th ACM con-
ference on Computer and communications security (2011).

[33] KORET, J. Breaking Antivirus Software, 2014. Talk at SYSCAN
2014, Singapore, Singapore.

[34] KORET, J. AV: Additional Vulnerabilities, 2016. Talk at Hack &
Beers Bilbao 2016, Bilbao, Spain.

[35] KORET, J., AND BACHAALANY, E. The Antivirus Hacker’s
Handbook. Wiley, Indianapolis, Indiana, 2015.

[36] KREBS, B. Former Anti-virus Researcher Turns Ta-
bles On Industry. http://voices.washingtonpost.

com/securityfix/2009/10/former_anti-virus_

researcher_t.html, 2009.

[37] KRUEGEL, C. Three interesting changes in malware activity
over the past year. http://labs.lastline.com/three-

interesting-changes-in-malware-activity-over-

the-past-year, 2016.

[38] KRUEGEL, C., KIRDA, E., COMPARETTI, P. M., BAYER, U.,
AND HLAUSCHEK, C. Scalable, Behavior-Based Malware Clus-
tering. In Proceedings of the 16th Annual Network and Dis-
tributed System Security Symposium (NDSS 2009) (2009).

[39] LAU, B., AND SVAJCER, V. Measuring virtual machine detec-
tion in malware using DSD tracer. Journal in Computer Virology
6, 3 (Aug. 2008).

[40] LINDORFER, M., KOLBITSCH, C., AND COMPARETTI, P. M.
Detecting Environment-Sensitive Malware. In RAID’11 Proceed-
ings of the 14th international conference on Recent Advances in
Intrusion Detection (2011).

[41] MARSCHALEK, M. EvilBunny: Malware Instrumented
By Lua. http://www.cyphort.com/evilbunny-malware-

instrumented-lua, 2014.

[42] NASI, E. Bypass Antivirus Dynamic Analysis: Limitations of the
AV model and how to exploit them. Tech. rep., Self-published,
2014.

[43] NOVITCHI, M. Anti-malware emulation systems and methods,
Mar. 26 2013. US Patent 8,407,797.

[44] OBERHEIDE, J., BAILEY, M., AND JAHANIAN, F. PolyPack:
An Automated Online Packing Service for Optimal Antivirus
Evasion. In WOOT’09 Proceedings of the 3rd USENIX confer-
ence on Offensive technologies (2009).

[45] ORMANDY, T. Sophail: Applied attacks against Sophos An-
tivirus. Tech. rep., Self-published, 2012.

[46] ORMANDY, T. Analysis and Exploitation of an ESET Vulner-
ability. http://googleprojectzero.blogspot.com/2015/
06/analysis-and-exploitation-of-eset.html, 2015.

[47] ORMANDY, T. Comodo Antivirus: Emulator Stack Buffer Over-
flow handling PSUBUSB (Packed Subtract Unsigned with Sat-
uration). https://bugs.chromium.org/p/project-zero/

issues/detail?id=753, 2016.

[48] ORMANDY, T. Comodo: Comodo Antivirus Forwards Emulated
API calls to the Real API during scans. https://bugs.

chromium.org/p/project-zero/issues/detail?id=769,
2016.

[49] ORMANDY, T. Comodo: Integer Overflow leading to Heap Over-
flow in Win32 emulation. https://bugs.chromium.org/p/

project-zero/issues/detail?id=738, 2016.

[50] ORMANDY, T. ESET Emulation Vulnerability. https://bugs.
chromium.org/p/project-zero/issues/detail?id=456,
2016.

[51] ORMANDY, T. ESET NOD32 emulator fails if you modify .idata
after imports. https://bugs.chromium.org/p/project-

zero/issues/detail?id=470, 2016.

[52] ORMANDY, T. ESET NOD32 Heap overflow unpacking
EPOC installation files. https://bugs.chromium.org/p/

project-zero/issues/detail?id=466, 2016.

[53] PALEARI, R., MARTIGNONI, L., ROGLIA, G. F., AND BR-
USCHI, D. A fistful of red-pills : How to automatically generate
procedures to detect CPU emulators. In WOOT’09 Proceedings
of the 3rd USENIX conference on Offensive technologies (2009).

[54] PÉK, G., BENCSÁTH, B., AND BUTTYÁN, L. nEther : In-guest
Detection of Out-of-the-guest Malware Analyzers. In EUROSEC
’11 Proceedings of the Fourth European Workshop on System Se-
curity (2011).

[55] PÉK, G., BUTTYÁN, L., AND BENCSÁTH, B. A Survey of Secu-
rity Issues in Hardware Virtualization. ACM Computing Surveys
(CSUR) 45, 3 (2013).

[56] PINTIYSKY, V., AND BELOV, S. System and method for pre-
serving and subsequently restoring emulator state, Aug. 18 2015.
US Patent 9,111,096.

[57] PINTIYSKY, V., KIRSANOV, D., AND ANIKIN, D. System and
method of transfer of control between memory locations, Aug. 25
2015. US Patent 9,116,621.

[58] RAFFETSEDER, T., KRUEGEL, C., AND KIRDA, E. Detecting
System Emulators. In ISC’07 Proceedings of the 10th Interna-
tional Conference on Information Security (2007).

[59] ROLLES, R. Detecting an emulator using the windows api.
http://reverseengineering.stackexchange.com/

questions/2805/detecting-an-emulator-using-the-

windows-api, 2013.

[60] ROLLES, R. Memory Lane: Hacking Renovo. http:

//www.msreverseengineering.com/blog/2015/7/16/

hacking-renovo, 2015.

[61] ROYAL, P. Entrapment: Tricking Malware with Transparent,
Scalable Malware Analysis. Talk at Black Hat 2012, Las Vegas,
Nevada.

[62] SAUDER, D. Why Antivirus Software Fails, 2014. Talk at
DeepSec 2014, Vienna, Austria.

[63] SECOND PART TO HELL. Dynamic Anti-Emulation using Black-
box Analysis. http://vxheaven.org/lib/vsp42.html,
2011.

[64] SHI, H., ALWABEL, A., AND MIRKOVIC, J. Cardinal Pill Test-
ing of System Virtual Machines. In 23rd USENIX Security Sym-
posium (USENIX Security 14) (2014).

[65] SUN, K., LI, X., AND OU, Y. Break Out of The Truman Show:
Active Detection and Escape of Dynamic Binary Instrumentation,
2016. Talk at Black Hat Asia 2016, Singapore, Singapore.

[66] SWINNEN, A., AND MESBAHI, A. One Packer to Rule Them
All: Empirical Identification, Comparison and Circumvention of
Current Antivirus Detection Techniques, 2014. Talk at Black Hat
2014, Las Vegas, Nevada.

[67] VEIL FRAMEWORK. Veil-Evasion. https://www.veil-

framework.com/framework/veil-evasion/, 2016.

[68] WICHERSKI, G. dirtbox, an x86/Windows Emulator, 2010. Talk
at Black Hat 2010, Las Vegas, Nevada.

13



[69] WICHERSKI, G. dirtbox, an x86/Windows Emulator, 2010. Talk
at REcon 2010, Montreal, Canada.

[70] WINE PROJECT. WineHQ. https://www.winehq.org/, 2016.

[71] YOSHIOKA, K., HOSOBUCHI, Y., ORII, T., AND MATSUMOTO,
T. Vulnerability in Public Malware Sandbox Analysis Systems.
In Tenth Annual International Symposium on Applications and
the Internet, SAINT 2010 (2010).

[72] YOSHIOKA, K., HOSOBUCHI, Y., ORII, T., AND MATSUMOTO,
T. Your Sandbox is Blinded: Impact of Decoy Injection to Public
Malware Analysis Systems. Journal of Information Processing
19 (2011).

[73] ZAITSEV, O. System and method for detection of malware using
behavior model scripts of security rating rules, Mar. 10 2015. US
Patent 8,978,142.

Notes
1In a particularly odd bug report, Google Project Zero’s Tavis Or-

mandy demonstrates how Comodo’s emulator unwittingly provides
malware with network connectivity, and constructs a keylogger for
the host system that runs from within the emulator while exfiltrating
keystrokes to an attacker controlled server [48].

2Even locating specific modules within AV software dedicated to
emulation can be challenging. Koret and Bachaalany discuss chal-
lenges related to locating emulator libraries and propose some simple
heuristic methods for finding them in “The Antivirus Hacker’s Hand-
book” [35], pages 304-306.

3Following advice from Rolf Rolles in response to a Stack Ex-
change post [59] we made early in our development of AVLeak, we an-
alyzed several AV emulators by searching for large switch cases in IDA
Pro. After increasing IDA’s per-function basic block limit to 10,000, we
attempted to look at these large functions in IDA’s graph view, which
froze the window during rendering, was slow to navigate, and crashed
the program when non-trivial annotations were made.

4We used this technique to find fingerprints during initial experi-
mentation and subsequently confirmed our findings with AVLeak.

5Specifically, we used a large set of DOS viruses (the VX Heaven
Virus Collection, a 45 GB collection available on numerous torrents
online), selected for their small size. Checking for unique identi-
fication is important, as many AVs use broad signatures that cover
multiple variants of individual malware samples (i.e., identifying two
distinct binaries known to us as “Trojan.DOS.KillCMOS.7” and
“Trojan.DOS.KillCMOS.A” both as “Trojan.DOS.KillCMOS”).

6Making sure that code is not heuristically identified as malicious
and is emulated with every single run is non-trivial, and required us
to specially craft our test cases and experiment with various scanning
parameters of the AVs.

7We began testing Emsisoft and F-Secure, which use Bitdefender’s
emulator, but found the same fingerprints in both AVs, and subse-
quently moved to just testing Emsisoft, as its command line scanner
is considerably faster than F-Secure’s.

8A file developed as a standard test case for AVs by the European
Institute for Computer Antivirus Research (EICAR). We used this file
due to its nearly universal detection by AV products.

9e.g., “EICAR.Test.File” vs “EICAR-Test-File (not a

virus)” vs “EICAR.TEST.NOT-A-VIRUS”, etc.
10e.g., C:\[lstcvix, tudib, izmdmv, ubgncn, jidgdsp,

evabgzib, qzqjafyt, cnyporqb, gfydwrkt].exe.
11The Bitdefender file system included “COMMAND.COM”,

“NOTHING.BAT”, “NOTHING.COM”, “FILE001.EXE”, 100 files named
“EMPTY[2 digit number 00-99].INI”, and several files called
“TRAP” with various extensions.

VBA had “STD_OUTxe”, “Dummy.exebat” and “welcome.exe”.
Kaspersky’s file system erroneously contained an empty

“Arquivos de programas” (Spanish for “Program Files”) directory.

12AVG’s file system was particularly sparse, the
C:\WINDOWS\system32 directory contained just three files:
“victim.exe” (a file system fingerprint for AVG itself),
“ntdll.exe”, “kernel32.dll”, and several directories
“Drivers\etc”, “dllcache”, and “wbem”.

VBA’s system32 only contained “calc.exe”, “KERNEL32.DLL”,
“WSOCK32.DLL”, and a “Drivers\etc” directory which in turn con-
tained a “hosts” file.

13Kaspersky’s file system, the largest and most comprehensive of
the file systems we examined, contained directories and fake executa-
bles for twenty AV products in the C:\Program Files directory (Ag-
nitum, AntiVir PersonalEdition Classic, eMule, Eset, F-Secure Inter-
net Security, Kaspersky Lab, KAV6, McAfee, mcafee.com, Messenger,
Network Associates, Norton AntiVirus, Norton Internet Security, QIP,
Rising, Sygate, Symantec, Symantec AntiVirus, Tencent, Trillian).

Bitdefender similarly featured directories for Anti Virus, Bitde-
fender (and versions 8, 9, and 10), Complus Applications, F-PROT95,
Grisoft, Inoculate, Kaspersky Lab, McAfee, Network Associates, Nor-
ton Antivirus, Panda Software, Softwin, Symantec, TBAV, Trend Mi-
cro, and Zone Labs.

14Kaspersky had directories for CuteFTP, eDonkey2000, and Kazaa.
Bitdefender also had a Kazaa directory.

15Kaspersky’s registry contained keys related to World of Warcraft.
Bitdefender included files for Windows default install games such as
Pinball.

16VBA’s file system contained “C:\Program Files\Far

\Far.exe”, the name of Far Manager’s executable (a file manager
popular in Eastern European countries, such as Belarus where VBA is
based). Kaspersky (based in Russia) had references to Far Manager in
its emulated registry.

17This roughly translates from Romanian (Bitdefender is based
in Romania) to “this is a ghost file which will tell you

[that] it doesn’t exist.bat”. The C:\WINDOWS directory
where we found the file also contained “A_E_O_FANTOMA_DE_
FISIER_CARE_VA_SA_ZICA_NU_EXISTA.EXE”, “Z_E_O_FANTOMA_
DE_FISIER_CARE_VA_SA_ZICA_NU_EXISTA.BAT’, and “Z_E_O_
FANTOMA_DE_FISIER_CARE_VA_SA_ZICA_NU_EXISTA.EXE”.

18Google Translate was not able to produce a clear translation, but
removing “TZ”, the computer name for Bitdefender, returned “screed
of the Batman”. Files with this name appeared in many places through-
out the Bitdefender file system, including in directories for various AV
products in C:\PROGRAM FILES (e.g., C:\PROGRAM FILES\NORTON

ANTIVIRUS\TZEAPA_A_LA_BATMAN.EXE) .
19The file names featured keys that are close together on a QWERTY

keyboard, such as “koio.mpg” (k, i, and o are all all directly adjacent),
“muuo.mp3” (three characters on the right hand side of the keyboard),
“wcwe.jpg” (three characters on the left hand side of the keyboard).

2076588-371-4839594-51979
21explorer.exe, iexplore.exe, winlogon.exe, lsass.exe,

smss.exe, msnmsgr.exe all had PID 12.
22In evaluation we reimplemented a number of fingerprinting tests

demonstrated by prior researchers, and found that many actually caused
emulators to prematurely abort analysis, rather than being actual finger-
prints. To researchers simply looking to see if malware was or was not
detected during emulation, this behavior could make it appear that they
had discovered a fingerprint.

23The tick count was evidently stored in an unsigned 32-bit inte-
ger, as it would overflow over the course of multiple timing tests.
We observed it roll over from 3,305,476,124 to 510,508,871 af-
ter a call to Sleep(10000), indicating that it was incremented by
1,500,000,043 ≈ 150,000×10,000.

24Readers are encouraged to try searching for the unique strings
mentioned in this paper to verify these findings.

25http://kpp.nfe.go.th/
26MD5: 7a1a62b7fd6a631ebe7bcbbf704b754a
27MD5: 6eb177dedc858b55daadc9a3b1bb4d07
28MD5: 6698f547e3a3dc0cfd21ef6f757e6c73

14



29Analysts with any insight into these binaries, or an interest in ana-
lyzing them are encouraged to reach out to the authors. We conducted
a cursory analysis of the files, but their overall purpose is unclear.

The usermode executable had five functions. The program ac-
cesses the GdiHandleBuffer entry in the PEB and enters a switch case
based on the last element of the buffer. In switch cases four and five
respectively, the program then loads a DLL with a name specified in
the command line arguments of the program and calls a command line-
specified function in it. In cases three, six, eleven, twelve, and thirteen,
the program exits with ExitProcess(1). The remaining default cases
loops calling a function while the value in register eax is non-zero, and
breaks to the ExitProcess call when the value is zero. The function
called in the loop simply executes the instruction “lock mov ebx,

0xff810598” and returns. We were not able to identify the function
within AVG which this operation corresponds to, but it follows AVG’s
form of using “lock mov ebx” to trigger function emulation as shown
in Figure 7.

The kernel driver was built with debug information in a file called
“UNISYS.pdb”, we were not able to find any information about the
name from Google searches. The driver disassembled to a single empty
Windows driver entry.

30MD5: c40e3ee23cf95d992b7cd0b7c01b8599

31It is possible that this name was extracted from an earlier version
of Kaspersky that does not do per-run name randomization, or that the
programmers simply extracted the name from a single run.

32MD5: 3bbb59afdf9bda4ffdc644d9d51c53e7

33We shared this information with Marion Marschalek when we dis-
covered it, she has since presented it in talks at SYSCAN, REcon, and
VirusBulletin, among others.

34Ormandy’s Google Project Zero blog post “Analysis and Exploita-
tion of an ESET Vulnerability” [46] shows how a vulnerability in emu-
lator code shared across ESET software for Windows, Mac, and Linux
can be exploited to achieve NT AUTHORITY\SYSTEM privilege on Win-
dows and root privilege on Mac and Linux.

Appendix

AV Binaries Time Bytes per Sec.
Kaspersky 4 14.86 8.07
Bitdefender 120 157.80 0.76
AVG 120 137.52 0.87
VBA 15 46.73 2.57

Table 2: Table showing AVLeak’s efficiency in leaking a
120 byte static string from the emulators (average time
in seconds over five trials). Extracting emulator finger-
prints often only takes a few seconds, and rarely exceeds
a minute. Note that Bitdefender’s speed may be slowed by
pre-emulation processing in the Emsisoft scanner that in-
vokes it.

AV Binaries Bytes Time
Kaspersky 1 14 (avg) 2.29
Bitdefender 14 14 19.10
AVG 63 63 83.95
VBA 2 11 6.11

Table 3: Table showing AVLeak’s efficiency in leaking a
argv[0] (program name, as described in Section 4.1) from
the emulators (average time in seconds over five trials).

AV Files Binaries Bytes Time
Kaspersky 590 2317 6381 1:06:58
Bitdefender 518 6580 5491 2:23:20
AVG 52 687 518 14:57
VBA 23 104 207 5:14

Table 4: Table showing AVLeak’s efficiency in leaking the
names of every file on the emulated file system from each of
the emulators (time in hours, minutes, and seconds). Our
calculation of number of files is the number of directories
and files on the file system C:\ drive, not counting the “.”
and “..” paths which come up when iterating through files
in directories (these paths were extracted with AVLeak, and
are included in the calculation of number of bytes leaked).
Our process for dumping file system entries involves recur-
sively exploring all directories starting at the C:\ drive. The
process is somewhat inefficient as in we did not have an easy
way to convey how many files are in a given directory, or
how long each file name is, so we recursed through the di-
rectories until no more files were present, and dumped file
names until a null byte was encountered. We believe that we
could expedite this process by a factor of at least two with
some optimizations to our design. The process is fully au-
tomated by a ~35 line Python script using the AVLeak API,
and ~30 lines of C code for the binaries that are scanned to
leak information.

Acknowledgements

The authors would like to thank the following individuals
for their support: Marion Marschalek, Rolf Rolles, Alex
Ionescu, Dr. Sergey Bratus, Bruce Dang, Dr. Gregory
Hughes, and RPISEC.

Notes on Prior Presentation

Blackthorne and Yener created a preliminary version of
AVLeak under the name AV Oracle. Their findings were
published in a technical report from Rensselaer Polytech-
nic Institute Computer Science Department [10]. Bulazel
extended this work in his Master’s thesis at Rensselaer
Polytechnic Institute [14] and presented on AVLeak at
ShmooCon 2016 [13] and Black Hat 2016 [12].

15


