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Abstract

Protection of Internet communication is becoming more

common in many products, as the demand for privacy

in an age of state-level adversaries and crime syndi-

cates is steadily increasing. The industry standard for

doing this is TLS. The TLS protocol supports a multi-

tude of key agreement and authentication options which

provide various different security guarantees. Recent at-

tacks showed that this plethora of cryptographic options

in TLS (including long forgotten government backdoors,

which have been cunningly inserted via export restric-

tion laws) is a Pandora’s box, waiting to be pried open by

heinous computer whizzes. Novel attacks lay hidden in

plain sight. Parts of TLS are so old that their foul smell of

rot cannot be easily distinguished from the flowery smell

of ‘strong’ cryptography and water-tight security mech-

anisms. With an arcane (but well-known among some

theoretical cryptographers) tool, we put new cracks into

Pandora’s box, achieving a full break of TLS security.

This time, the tool of choice is KCI, or Key Compromise

Impersonation.

The TLS protocol includes a class of key agreement

and authentication methods that are vulnerable to KCI at-

tacks: non-ephemeral Diffie-Hellman key exchange with

fixed Diffie-Hellman client authentication – both on el-

liptic curve groups, as well as on classical integer groups

modulo a prime. We show that TLS clients that sup-

port these weak handshakes pose serious security con-

cerns in modern systems, opening the supposedly se-

curely encrypted communication to full-blown Man-in-

the-Middle (MitM) attacks.

This paper discusses and analyzes KCI attacks in re-

gard to the TLS protocol. We present an evaluation of the

TLS software landscape regarding this threat, including a

successful MitM attack against the Safari Web Browser

on Mac OS X. We conclude that the insecure TLS op-

tions that enable KCI attacks should be immediately dis-

abled in TLS clients and removed from future versions

and implementations of the protocol: their utility is ex-

tremely limited, their raison d’être is practically nil, and

the existence of these insecure key agreement options

only adds to the arsenal of attack vectors against cryp-

tographically secured communication on the Internet.

1 Introduction

The TLS protocol [1, 2, 3] is probably the most

widely used cryptographic protocol on the Internet.

It is designed to secure the communication between

client/server applications against eavesdropping, tamper-

ing, and message forgery, and it also provides additional,

optional security properties such as client authentica-

tion. TLS is an historically grown giant: its predecessor,

SSL [4, 5], was developed more than 20 years ago. It is

designed for compatibility between all kinds of devices,

and to support a large range of different cryptographic

primitives to cater to different purposes, security, and

authentication requirements, as well as to provide alter-

natives to switch to in case new attacks against specific

primitives are discovered.

The TLS protocol consists of two principal layers: the

TLS handshake protocol, and the TLS record protocol.

During the TLS handshake protocol, client and server

negotiate the cipher suite to use. A cipher suit is the

set of algorithms (1) for establishing a shared secret (key

exchange), (2) for authenticating the server to the client

and, optionally, the client to the server, and (3) for en-

crypting and authenticating the communication data sent

with the TLS Record Protocol. Some cipher suites pro-

vide distinctly different security guarantees than others.

For example, cipher suites that contain the null cipher

provide no encryption at all, and thus do not guaran-

tee confidentiality in a trivial way. Another example

are cipher suites that dispense with server authentica-

tion. They are trivially susceptible to Man-in-the-Middle

(MitM) attacks in any reasonable threat model applica-

ble in a network setting (i.e., a threat model that as-



sumes an active attacker, capable of intercepting, mod-

ifying, injecting, and blocking messages). Similarly, the

RSA key exchange algorithm in TLS is less secure than

an ephemeral (Elliptic Curve) Diffie-Hellmann key ex-

change algorithm1. The latter provides Perfect Forward

Secrecy (PFS) [7], while the former does not. Perfect

Forward Secrecy guarantees that previous sessions re-

main secure even after long-term secret key material has

been compromised. All these examples are well-known

among security researchers and practitioners.

However, what lacks widespread insight is the fact

that some cipher suites are vulnerable to Key Compro-

mise Impersonation (KCI) [8] attacks and that the fail-

ure to secure against KCI attacks opens a dangerous se-

curity hole, especially when considering the way client

certificates are handled in actual systems. Cipher suites

that are not resistant to KCI are routinely advertised by

most TLS clients such as web browsers. This unneces-

sarily exposes the communication to an avoidable risk.

Software vendors, not aware of the risk, often make it

easy to install a client certificate maliciously in a vic-

tim’s web browser, or get an app to use a maliciously

installed client certificate – essential ingredients in suc-

cessfully exploiting KCI vulnerabilities. To the best of

our knowledge, this is the first work that investigates and

analyses the threat of KCI attacks in the context of TLS.

Clients that support TLS client authentication with one of

the ClientCertificateType options listed in Table 1

are vulnerable.

Contributions. In this paper, we present an hitherto

undiscussed, novel way to attack TLS. We analyze and

evaluate the threat posed by TLS cipher suites and au-

thentication options that are vulnerable to Key Compro-

mise Impersonation (KCI) attacks. To the best of our

knowledge, we are the first to do so. We show how to

implement a successful MitM attack against affected sys-

tems such as Apple’s Safari Web Browser on Mac OS X.

More specifically:

• We explain KCI attacks against TLS in detail, sculpt

out the necessary preconditions for a successful at-

tack, and discuss how to meet these preconditions

in practice.

• We present an analysis of the TLS software / library

landscape regarding this threat.

• We cooperated with and assisted vendors that have

critically affected software products, such as Ap-

ple’s Safari web browser, during a responsible dis-

closure process.

1Supposedly, under the right circumstances, i.e. if it would have

been implemented correctly in the TLS protocol. Cf. the recent Logjam

attack on DH in TLS [6].

Furthermore, we present a convincing argument for

the IETF TLS working group to drop KCI-vulnerable ci-

pher suites from TLS 1.3, the next version of TLS which

is currently in draft-status and actively developed.

2 Related Work

2.1 Transport Layer Security

During the evolution of the Secure Socket Layer (SSL)

and Transport Layer Security (TLS) protocols, many

new cipher suites and key agreement options have been

added, such as the Elliptic Curve Cryptography cipher

suites [9]; and industry best-practice advice is to dis-

able protocol versions and cryptographic primitives that

are considered to be insecure by now. This includes

cipher suites with key size smaller than 128 bit, ci-

pher suites that contain insecure hash functions such

as MD5 [10, 11], the RC4 algorithm [12, 13], and the

SSLv2 protocol [14, 15]. Tools such as sslyze [16] and

sslscan [17] can be used to test TLS installations for

such insecure configurations, as well as for faulty im-

plementations. Recently, recommendations for secure

use of TLS have been published by the IETF as RFC

7525 [18]. While these recommendations do not fail

to discuss Perfect Forward Secrecy (PFS), Key Com-

promise Impersonation (KCI) is not even mentioned.

Although prohibiting non-PFS cipher suites, as often

recommended, would imply the prohibition of KCI-

vulnerable cipher suites in TLS, security recommenda-

tions should always discuss KCI explicitly: system im-

plementers sometimes have various reasons to forgo PFS

guarantees in TLS (e.g., the performance advantage of

the RSA handshake), but should never have a plausible

reason to forgo KCI resistance.

Currently the IETF TLS working group is discussing

the next overhaul of the protocol, TLS version 1.3 [19,

20]. Among other things, the TLS working group con-

siders dropping less secure cryptographic options such as

the RSA key agreement, dropping problematic features

such as TLS renegotiation [21,22], and considers includ-

ing new cipher suites according to the state-of-the-art in

the field. However, these improvements take years until

industry installations will consider them and some legacy

software will not upgrade to new standards at all. There-

fore, it is not enough to consider the standard but also

the many implementations of TLS libraries which are

used without further consideration. Not only should the

TLS working group drop the support for KCI-vulnerable

cipher suites in TLS 1.3, but also should current TLS

clients and libraries immediately disable the specific ci-

pher suites discussed in this paper and stop offering them

during handshake negotiation, because they pose an im-

manent risk ranging up to a full break of TLS security,

2



allowing a successful attacker to eavesdrop, tamper, and

forge messages from purportedly secure communication.

This paper adds to the vast array of attacks against the

SSL/TLS protocol [14, 23, 24, 25, 26, 27, 28, 29, 30, 21,

31, 32, 33, 34, 35, 36, 37, 38, 22, 39, 40, 6, 13]. For a good

overview and summary of attacks and the history of SSL

research consult Meyer’s recent PhD thesis [41], or the

shorter eprint version [42].

Similar to the recent Logjam attack [6], the attack we

present in this paper is based on flaws in the TLS proto-

col, rather than on implementation errors, such as the re-

lated, also recently published, FREAK attack [40]. Sim-

ilar to the Logjam and the FREAK attacks, our attack is

possible because TLS carries for historical reasons the

burden of outdated, insecure cryptographic algorithms

and options that should have long been deprecated, and

completely eradicated and removed from modern sys-

tems. However, different from Logjam and FREAK, our

attack combines protocol flaws with the way client cer-

tificates are often handled in practice, i.e., in our attack

scenario it is assumed that it is easy in practice for an

attacker to get hold of the secret key corresponding to

some client certificate installed at the victim’s system. In

this paper, we argue that this assumption can be easily

made in many practical scenarios.

MitM attacks against TLS can also be orchestrated

by subverting the certification authority (CA) infrastruc-

ture [43]. An adversary can either try to compromise

an insufficiently secured and vulnerable CA (as was, for

example, the case in the DigiNotar hack [44]); or the

adversary has direct control over a CA (such as state-

level adversaries that have legal power over CAs oper-

ating under their jurisdiction); and thus be able to issue

fraudulent certificates for the purpose of active MitM in-

terception attacks. For the attack presented in this pa-

per, the server certificate does not need to be substituted

with a fraudulent certificate. Thus, mitigation mecha-

nisms against MitM attacks such as Perspectives [45],

Convergence [46], TACK [47], DANE [48], or certifi-

cate pinning are not effectual against KCI-based MitM

attacks.

Recently, it was discovered that Lenovo shipped a mal-

ware product called Superfish with its consumer lap-

tops [49], which, after inserting its own CA certificate

into the browser’s trust store, conducted MitM attacks

by generating fraudulent certificates on-the-fly in order

to inject malicious code in web applications. A similar

malware, using our KCI attack presented in this paper,

would inject only client certificates into the certificate

store, instead of CA certificates, and would not need to

replace server certificates. Thus, such a malware would

be much more difficult to detect, even by experts.

Moxie Marlinspike’s SSLStrip attack [31,32] works by

downgrading an HTTPS connection to an insecure HTTP

rsa_fixed_dh

dss_fixed_dh

rsa_fixed_ecdh

ecdsa_fixed_ecdh

Table 1: List of ClientCertificateType vulnerable

to KCI attacks

connection, and assumes that the victim will not check

user interface indicators that signal that the connection is

not secured by TLS. In the attack presented in this paper,

the respective interface indicator in a web browser re-

mains unchanged, and it is thus much more difficult for

security-aware users to determine whether a connection

is being intercepted by an attacker. Similarly, mitigation

mechanism against SSLStrip such as HSTS [50] are in-

effectual regarding our attack. However, with KCI-based

attacks, the user might get suspicious in some cases, be-

cause he might be asked – depending on the client soft-

ware – to confirm the choice of a specific client certifi-

cate when he does not expect to do so. However, KCI

attackers may be able to alleviate such suspicions eas-

ily with appropriate social engineering techniques (after

a successful attack, the attacker has full control over the

content of the communication, and could use this power

to alleviate possible suspicions).

Efforts have been made to work on formal security

proofs for the TLS protocol [51, 52, 53]. However, a

formal security proof for the complete TLS protocol, in-

cluding all options and variations, seems to be elusive.

Formal analysis are therefore confined to subsets of the

protocol, and thus, attacks like ours remain difficult to

detect by formal analysis methods alone.

2.2 Key Compromise Impersonation

Key Compromise Impersonation (KCI) was first iden-

tified as an attribute of key agreement protocols by

Blake-Wilson, Johnson, and Menezes [8]. KCI-

vulnerability [8] is a weakness of an authenticated key

exchange protocol that allows an attacker who has com-

promised the secret client credentials of a victim (e.g.,

client certificate and corresponding secret key) to not just

impersonate the compromised client to a server, which is

trivial (since the attacker knows the secret client creden-

tials), but also to impersonate any server to the compro-

mised client.

An example of a key agreement protocol that has

been proved secure against KCI attacks is Krawczyk’s

HMQV [54] protocol, a provable secure variant of the

heavily analyzed Menezes-Qu-Vanstone (MQV) [55,56]

protocol. Clearly, as we show presently, the TLS proto-

col is not resistant to KCI attacks. A formal definition

of resistance against KCI attacks has been provided with
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the security analysis of the HMQV [54, 57] protocol in

the Canetti-Krawczyk model [58] of authenticated key

agreement. For the purpose of this paper, an informal

definition is satisfactory.

3 Overview of the attack

To illustrate the problem of KCI with reference to

TLS, consider web browsers. TLS clients such as web

browsers derive the trust for authenticating and thus se-

curely connecting to servers from pre-installed certifica-

tion authority (CA) root certificates. An attacker who

manages maliciously to install his own CA root certifi-

cate in a victim browser’s certificate store can trivially

launch MitM attacks thereafter – he uses the private key

corresponding to the maliciously installed root certificate

to issue certificates for those endpoints to which he wants

to intercept the communication. Now, web browsers usu-

ally allow the user the installation of new certificates –

CA root certificates, as well as client certificates which

can be used for client authentication. While the user usu-

ally receives a warning in one form or another indicating

that the newly to be installed CA root certificate can be

used to identify and authenticate servers, naturally, no

such warnings are displayed when installing a new client

certificate. And prima facie, there seems to be no sensi-

ble reason to do so: a client certificate is meant to authen-

ticate a client to a server, whereas a CA root certificate’s

purpose is as indicated by the typical warning: a means

to identify and authenticate servers. However, as we will

show in detail, by installing client certificates in a vic-

tim’s web browser – leveraging the KCI vulnerability of

certain cipher suites in TLS – the owner of the private

key that corresponds to the maliciously installed client

certificate can also authenticate servers on the Internet

to the client. Thus, an attacker who manipulates a client

into using his prefabricated client certificate can authen-

ticate his malicious server to the client while pretending

to be someone else, and so launch a full-blown MitM

attack against communication to possibly sensitive end-

points. The successful attacker would be able to eaves-

drop and modify messages from the purportedly securely

encrypted and authenticated communication channel.

4 Background:

TLS and Fixed (EC) Diffie-Hellman

We first give a succinct overview of the TLS protocol,

and then review non-ephemeral (Elliptic Curve) Diffie-

Hellman key exchange with fixed (Elliptic Curve) Diffie-

Hellman client authentication (henceforth called fixed

(EC)DH handshake in this paper) more thoroughly. All

TLS fixed (EC)DH handshakes are vulnerable to Key

Compromise Impersonation (KCI) attacks. For a detailed

description of the TLS protocol the reader is referred to

the original specifications [1, 2, 3, 5], as well as to the

additional cipher suites specifications [9, 59, 60, 61, 62],

which extend the TLS protocol. For the purpose of this

paper, we present an abstracted view of the TLS protocol,

and go into the differences regarding different version of

the protocol only where germane to KCI attacks.

4.1 The TLS Protocol

The TLS protocol consists of several subprotocols. All

communication is between a client and a server.

• The TLS record layer is responsible for the trans-

portation of data. This includes application data as

well as the messages of the other subprotocols.

• During the TLS handshake protocol client and

server negotiate the cipher suite, establish a shared

secret, and verify each other’s identities.

• At the end of the handshake protocol, the TLS

ChangeCipherSpec protocol signals the switch to

the newly established cryptographic parameters.

• The TLS alert protocol is employed to signal error

conditions.

At the beginning of a TLS connection,

the TLS record layer is initialized with the

TLS_NULL_WITH_NULL_NULL cipher suite: encryption

is the identity operation, and no message authentication

code (MAC) is used. The first run of the TLS handshake

protocol establishes a TLS session, which defines a set

of cryptographic parameters, including the negotiated

cipher suite and a shared secret, the master secret. TLS

sessions are identified by a session identifier, and can be

resumed on new connections, using an abbreviated ver-

sion of the TLS handshake protocol. A run of the TLS

handshake protocol that does not resume a previously

established session is referred to as full handshake in the

TLS specification. For the purpose of this exposition

we only need to consider full handshakes, because our

MitM adversary can always force a client to make a full

handshake. During a successful run of the handshake

protocol, the record layer is reconfigured to use the

newly negotiated cipher suite and key material derived

from the newly established master secret for encryption

and authentication of the transported data.

4.2 Non-ephemeral (EC)DH vs Ephemeral

(EC)DH

The non-ephemeral (EC)DH key exchange in TLS is a

variant of the original Diffie-Hellman key exchange [63].
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Figure 1: (EC)DH key exchange with fixed (EC)DH client authentication

In the non-ephemeral (EC)DH key exchange, the server

uses a static (EC)DH key pair. The server’s static

(EC)DH public key is embedded in the server’s certifi-

cate and signed by a certificate authority (CA). The client

uses the (EC)DH public key from the server’s certificate

and combines it with its (EC)DH private key to obtain the

shared secret. In contrast, during an ephemeral (EC)DH

key exchange in TLS, a client uses the public key in the

server’s certificate for verification of a signature on an

ephemeral (EC)DH public key. Non-ephemeral (EC)DH

has less overhead: The server sends the certificate with

the static (EC)DH public key, which involves no ex-

pensive public key operations, and after it receives the

client’s (EC)DH public key, it only needs to compute

one exponentiation to derive the shared secret. In the

ephemeral case, the server, in addition to the (EC)DH

exponentiation, has to generate an ephemeral (EC)DH

key pair (usually for each handshake), and compute a

signature on this ephemeral public key. Whereas an

ephemeral (EC)DH key exchange provides Perfect For-

ward Secrecy (PFS) [7], PFS does not hold for a non-

ephemeral (EC)DH key exchanges and past communica-

tions can be decrypted if the adversary manages to get

hold of the server’s static private key. A non-ephemeral

key exchange is used in TLS whenever client and server

negotiate one of the cipher suites listed in Table 2 during

the handshake.

In addition to the cipher suites listed in Table 2, also

anonymous non-ephemeral cipher suites exist in TLS.

Any anonymous cipher suite is trivially susceptible to a

MitM attack, so we do not consider them here.

4.3 Fixed (EC)DH Client Authentication

When the non-ephemeral (EC)DH key exchange is com-

bined with fixed (EC)DH client authentication, both the

server and the client have static (EC)DH key pairs: The

client’s static (EC)DH public key is embedded in the

client’s certificate. The server authenticates the client by

(1) verifying the client’s certificate, and (2) by success-

fully completing the handshake and deriving the same

master secret as the client, using the static (EC)DH

public key from the client’s certificate in the standard

(EC)DH key derivation. The fact that the same master

secret has been derived is verified by the exchange of

the Finished messages at the end of TLS handshake,

messages sent by default in every TLS handshake. Thus,

computational overhead for fixed (EC)DH client authen-

tication is added only by the verification of the client’s

certificate, which can involve at best just a single signa-
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ture verification. A server requests fixed (EC)DH client

authentication by demanding one of the certificate types

listed in Table 1.

4.4 Fixed (EC)DH Handshake

Remember, in this paper, we call a non-ephemeral (Ellip-

tic Curve) Diffie-Hellman key exchange with fixed (El-

liptic Curve) Diffie-Hellman client authentication a fixed

(EC)DH handshake.

A successful run of the TLS handshake protocol using

a fixed (EC)DH handshake is depicted in Figure 1. Vari-

ations exist depending on whether a conventional Diffie-

Hellman group is used or whether public key computa-

tions are done over an elliptic curve. Other variations

are due to different signature, MAC, hash, and pseudo

random function algorithms used during the handshake.

The principles are the same regardless of these varia-

tions, and the diagram in Figure 1 and our presentation

unifies them.

As illustrated in Figure 1, the client initiates the hand-

shake by sending a ClientHello message. This mes-

sage includes a randomly generated nonce randc, as well

as a list of supported cipher suites. The client indicates

its support for non-ephemeral (EC)DH key exchange al-

gorithms by including in this list any non-empty subset

of the set of cipher suites from Table 2, that is, any cipher

suite that requires the DH_DSS, DH_RSA, ECDH_ECDSA, or

ECDH_RSA key exchange algorithm, as they are called in

the TLS specification.

Next, the server decides on a cipher suite that requires

a non-ephemeral (EC)DH key exchange, choosing from

the client’s list of supported cipher suites. The server in-

cludes the chosen cipher suite together with a randomly

generated server nonce rands in the ServerHello mes-

sage. If a conventional Diffie-Hellman key exchange

(DH_DSS, or DH_RSA) has been chosen, the server in-

cludes in the Certificate message a certificate with a

static Diffie-Hellman public key and the Diffie-Hellman

parameters: a prime p, a prime q, and a generator g

whose multiplicative order module p is q. Note that such

a certificate is, in general, the same as a Digital Signature

Standard (DSS) certificate, as both verifying a DSS sig-

nature and doing a Diffie-Hellman key exchange requires

the same type of cryptographic key material. If an El-

liptic Curve Diffie-Hellman key exchange (ECDH_RSA or

ECDH_ECDSA) has been chosen, the server includes in the

Certificate message a certificate with a static Elliptic

Curve Diffie-Hellman public key and the elliptic curve

parameters, which also specify, among others, again a

generator g. Also in this case, such a certificate can be

identical to an Elliptic Curve Digital Signature Standard

(ECDSA) certificate. In both the conventional as well as

the Elliptic Curve Diffie-Hellman case, the public key is

the value of gs (but computed in different groups), where

s is the server’s private key.

The server then indicates via the

CertificateRequestmessage that it wishes the client

to authenticate itself using a certificate that contains a

static Diffie-Hellman key by listing rsa_fixed_dh or

dss_fixed_dh (conventional Diffie-Hellman key ex-

change), or rsa_fixed_ecdh or ecdsa_fixed_ecdh

(Elliptic Curve Diffie-Hellman). The server can request

a client certificate signed by specific CAs by providing a

list of distinguished names in the CertificateRequest

message. This also allows the server to describe the

desired authorization space. The server marks the

end of the first round of communication by sending a

ServerHelloDonemessage.

The client starts the second round of communi-

cation by sending the client certificate with a static

(EC)DH public key in the Certificate message.

The public key is the value gc, where c denotes the

client’s secret key. In the fixed (EC)DH handshake, a

ClientKeyExchange message with empty content is

sent. The static (EC)DH public keys embedded in the

certificates are used to calculate the master secret: the

client computes (gs)c, the server computes (gc)s, and

both obtain, because exponentiation in the respective

group is commutative, the same master secret by comput-

ing PRF(gcs
,”mastersecret”,randc||rands), where PRF

is a pseudo-random function specified by the chosen ci-

pher suite, and || denotes string concatenation.

The ChangeCipherSpec messages indicate that

henceforth, the record layer will use encryption

and message authentication according to the nego-

tiated cipher suite, using key material derived from

the just established master secret. The handshake

protocol is completed after both server and client

have received and verified the (already encrypted)

Finished message, which contains the result of

PRF(master secret, f inished label,hash(handshake)),
combining a cryptographic hash of the previous

handshake messages with the master secret and a

server/client-dependent finished label using again the

pseudo-random function specified by the chosen cipher

suite.

5 KCI attacks against TLS

In an authenticated key agreement protocol, two parties

C and S establish a shared secret and authenticate them-

selves to each other over an insecure channel. A TLS

handshake consisting of a key exchange mechanism and

client and server authentication mechanism is an exam-

ple of an authenticated key agreement protocol. As has

already been mentioned in Section 2.2, an authenticated

key agreement protocol is resistant to KCI attacks if the
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compromise of the private key material of C by mallory

M does not allow M to impersonate other, uncorrupted

parties to C.

Obviously, if the adversary, mallory M, gets hold of

the private key material of C, he can always trivially im-

personate C to other parties. KCI deals with the opposing

situation, ‘reverse impersonation’. Resistance to KCI at-

tacks is a very desirable property of any key agreement

protocol.

KCI allows for MitM attacks as follows. An adversary

M who is in possession of the secret key material of C can

impersonate any party S to whom C would legitimately

authenticate itself. Thus, assume C is a client (e.g., a

TLS capable web browser) which wants to connect se-

curely to a server S. If an adversary M is in possession

of a client certificate certc and the corresponding secret

key skc installed at C, then M would intercept and block

the communication from C to S, pose as S, force C to

use client authentication using certc, and launch a KCI-

attack to successfully impersonate S to C. The adversary

M would then connect to S (not necessarily using client

authentication), and forward all traffic from C to S and

vice versa, while being able to eavesdrop on and modify

plaintext messages at will.

5.1 Prerequisites for KCI attack on TLS

Certain prerequisites need to be met so that an adversary

M is able to launch a KCI-based MitM attack against a

TLS client C that intends to securely connect to a TLS

server S.

5.1.1 Prerequisite 1: Client Support

The client C must support a non-ephemeral (EC)DH ci-

pher suite. C indicates this support by including any

of the non-ephemeral (EC)DH cipher suites available in

TLS, as listed in Table 2, during the ClientHello mes-

sage. Additionally, the client implementation must sup-

port any of the fixed (EC)DH client authentication op-

tions implied by the client certificate types listed in Ta-

ble 1. A client that fully implements any of the common

SSL/TLS versions (SSLv3, TLS 1.0, TLS 1.1, TLS 1.2),

but not necessarily any of the various TLS extensions,

fulfills this prerequisite.

TLS libraries which fulfill this first prerequiste are,

e.g., (1) the system TLS library on Mac OS X (Secure

Transport), which is used by the Safari Web Browser, (2)

the BouncyCastle library, or (3) recent versions of the

OpenSSL library2.

2Support for fixed DH client authentication has been very recently

added to the OpenSSL 1.0.2 branch.

TLS_DH_DSS_WITH_3DES_EDE_CBC_SHA

TLS_DH_RSA_WITH_3DES_EDE_CBC_SHA

TLS_DH_DSS_WITH_AES_128_CBC_SHA

TLS_DH_RSA_WITH_AES_128_CBC_SHA

TLS_DH_DSS_WITH_AES_256_CBC_SHA

TLS_DH_RSA_WITH_AES_256_CBC_SHA

TLS_DH_DSS_WITH_AES_128_CBC_SHA256

TLS_DH_RSA_WITH_AES_128_CBC_SHA256

TLS_DH_DSS_WITH_AES_256_CBC_SHA256

TLS_DH_RSA_WITH_AES_256_CBC_SHA256

TLS_DH_DSS_WITH_CAMELLIA_128_CBC_SHA

TLS_DH_RSA_WITH_CAMELLIA_128_CBC_SHA

TLS_DH_DSS_WITH_CAMELLIA_256_CBC_SHA

TLS_DH_RSA_WITH_CAMELLIA_256_CBC_SHA

TLS_DH_DSS_WITH_SEED_CBC_SHA

TLS_DH_RSA_WITH_SEED_CBC_SHA

TLS_DH_RSA_WITH_AES_128_GCM_SHA256

TLS_DH_RSA_WITH_AES_256_GCM_SHA384

TLS_DH_DSS_WITH_AES_128_GCM_SHA256

TLS_DH_DSS_WITH_AES_256_GCM_SHA384

TLS_ECDH_ECDSA_WITH_NULL_SHA

TLS_ECDH_ECDSA_WITH_RC4_128_SHA

TLS_ECDH_ECDSA_WITH_3DES_EDE_CBC_SHA

TLS_ECDH_ECDSA_WITH_AES_128_CBC_SHA

TLS_ECDH_ECDSA_WITH_AES_256_CBC_SHA

TLS_ECDH_RSA_WITH_NULL_SHA

TLS_ECDH_RSA_WITH_RC4_128_SHA

TLS_ECDH_RSA_WITH_3DES_EDE_CBC_SHA

TLS_ECDH_RSA_WITH_AES_128_CBC_SHA

TLS_ECDH_RSA_WITH_AES_256_CBC_SHA

TLS_ECDH_ECDSA_WITH_AES_128_CBC_SHA256

TLS_ECDH_ECDSA_WITH_AES_256_CBC_SHA384

TLS_ECDH_RSA_WITH_AES_128_CBC_SHA256

TLS_ECDH_RSA_WITH_AES_128_CBC_SHA256

TLS_ECDH_ECDSA_WITH_AES_128_GCM_SHA256

TLS_ECDH_ECDSA_WITH_AES_256_GCM_SHA384

TLS_ECDH_RSA_WITH_AES_128_GCM_SHA256

TLS_ECDH_RSA_WITH_AES_256_GCM_SHA384

Table 2: TLS cipher suites potentially vulnerable to KCI

attacks

5.1.2 Prerequisite 2: Server Support

The adversary M must be in possession of a certificate

certs belonging to server S that contains static (EC)DH

values. Such a certificate might be available because S

supports a non-ephemeral (EC)DH key exchange. How-

ever, it is not necessary that S supports a non-ephemeral

cipher suite (in practice, not many server do): a DSS cer-

tificate or an ECDSA certificate contains the same cryp-

tographic parameters as a certificate that is used during a

non-ephemeral (EC)DH key exchange.
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Figure 2: Establishing prerequisites to carry out a KCI attack

ECDSA certificates are structured identical to ECDH

certificates, and can be used in the attack instead of

ECDH certificates under certain circumstances: If the

X509 Key Usage extension is used in the certificate,

in principle, the KeyAgreement bit must be set so

that these certificates can be used for the attack. The

KeyAgreement bit is sometimes wrongly set in prac-

tice (e.g., it is set in the current ECDSA certificate

for facebook.com). Also, many TLS implementations

(such as GnuTLS, CyaSSL, MatrixSSL) do not honor

X509 Key Usage Extensions [64]. embed TLS (former:

PolarSSL) allows developers to disable the checking of

X509 Key Usage extension without due warning. Also,

if the X509 Key Usage extension is not used (it is not

mandatory), the ECDSA certificate can be used in the

attack.

In the case of DSS certificates, a static DH certificate

is structured differently than a static DH certicate, and

thus, different to the ECDSA case, DSS certificates can

be used for the attack only if an implementation error in

the client’s TLS library allows accepting an DSS certifi-

cate when a static DH certificate is expected.

Thus, depending on the specific attack scenario,

any server that supports DSS or ECDSA signatures in

the handshake (e.g., S supports the ECDHE_ECDSA –

ephemeral elliptic curve Diffie-Hellman with ECDSA

signature – key exchange algorithm) might provide an el-

igible certificate. Note that if such a certificate exists for

any of the reasons stated above, it can be easily queried

and obtained by M.

5.1.3 Prerequisite 3: Compromised Client Cert

The adversary M must be in possession of a client cer-

tificate certc and the corresponding secret key skc that

must both be installed at the client C. The client cer-

tificate certc must be ‘compatible’ with the server certifi-

cate certs from prerequisite 2: That means, the public key

must lie on the same elliptic curve, or use the same con-

ventional Diffie-Hellman parameters (prime p, q, gener-

ator g). At least in the elliptic curve case, since most

often standardized elliptic curve parameters are used in

practice, a suitable client certificate certc will be com-

patible to many other server certificates certs for different

servers S. Note that although secure mechanisms for gen-

erating and installing client certificates exist, in practice

it is often quite easy for an adversary M to maliciously

install a client certificate certc at a client C in a way so

that M remains in possession of the corresponding secret

key skc, as we will discuss in more detail in the next sub-

section.

In the next two subsections, we describe how a KCI-

based MitM attack on TLS might work in detail. Fig-

ure 2 and Figure 3 illustrate how an adversary M might

proceed to exploit the fact that TLS does not guarantee

resistance to KCI.

5.2 Pre-Attack Phase

In a pre-attack phase (see Figure 2) adversary M estab-

lishes prerequiste 3 as defined in the previous subsection.

The pre-attack phase can be carried out well in advance

of the actual attack. Its main purpose is to procure a

client certificate certc and its corresponding private key

skc that is or will be installed at the client.

Successfully stealing a compatible pair (certc,skc)
from a client might be a possibility, but seems to be

rather unlikely for most situations in practice. However,

there are different ways for an adversary M to foist the

required pair (certc,skc) on a client, after M generated

the certificate-key pair himself.

• A malicious software vendor, distributer, or an in-

filtrated malicious actor within a software com-

pany might prepare a software product so that it

ships with client certificates pre-installed in order

to cunningly hide a secret backdoor in the product.

The product would contain no obvious flaws, could

8
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Figure 3: KCI attack used in a TLS MitM scenario

completely conform to the TLS specification, and

nothing suspicious might hint at the backdoor, since

there might exist completely legitimate reasons to

include pre-installed client certificates in the prod-

uct.

• Although modern browsers – with mechanisms

such as the HTML5 keygen tag [65] – support the

secure generation and installation of client certifi-

cates in a way so that the secret key never has to

leave the client computer, it is nevertheless com-

mon practice among various institutions and com-

panies (as numerous tutorials and how-to guides

on the Internet illustrate) that network adminis-

trators distribute pre-generated pairs (certc,skc) to

clients. Some operating systems, such as Apple’s

iOS, have even integrated user interface functional-

ity that allows for easy and smooth installation of

pairs (certc,skc) received via email. A malicious

network administrator, or a random attacker using

social engineering techniques, can leverage this sit-

uation and subvert the security of TLS clients by

foisting legitimate access credentials for some arbi-

trary resource in form of client certificates on un-

suspecting users.

• An innocuous looking but malicious Android app

might install a pair (certc,skc) to the system’s trust

store in a way so that it may get used to authenti-

cate/attack the TLS connections occasioned by an-

other, target application. We validated this scenario

with a proof-of-concept implementation on Android

4.4.

This list of examples is most probably very far from

exhaustive, and creative minds will be able to devise

many more vectors that could enable an adversary to suc-

cessfully foist pairs (certc,skc) on clients. Awareness of

the danger of KCI attacks seems to be very limited un-

til now, and thus many systems are not designed to treat

client certificate installation routines with the care ade-

quate to the danger as propounded in this paper.

5.3 Attack Phase

Once preconditions are met or have been successfully es-

tablished, an attacker can leverage the KCI weakness of

TLS to launch MitM attacks against the connection from

a client C to a targeted server S. The attack proceeds as

sketched in Figure 3. We will now describe the details.

The client C initiates a TLS connection to server S.

Adversary M blocks the traffic on its way to S and

poses as S. When the client C starts the TLS hand-

shake protocol by sending a ClientHello message,

M responds as follows. In the ServerHello mes-

sage, M chooses a cipher suite with a non-ephemeral

(EC)DH key exchange (one from Table 2). In the

Certificate message, M sends S’s authentic server

certificate certs, which contains S’s public key sks =
gs. Via the CertificateRequestmessage, M requests

fixed (EC)DH client authentication by requesting one of

the certificate types listed in Table 1. M chooses the ci-

pher suite and certificate type that match the type of the

certificates of certc and certs. By specifying the distin-

guished name of the CA that was used to sign certc, M

can request that C uses the specific compromised pair

(certc,skc) to authenticate itself.

The client C now finishes the handshake as it would

normally finish any fixed (EC)DH handshake. Since the

certificate certs is authentic, C believes that the connec-

tion to S has been correctly authenticated, and any user

interface indicators that C might employ will communi-

cate that to the user. Mallory, on the other hand, will

slightly deviate from the normal fixed (EC)DH protocol.

He does not know the server’s secret key sks, only S’s
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public key pks = gs’. However, since he knows C’s se-

cret key skc = c, he can derive the same master secret

MS just by engaging in the exact same computation as C

does:

MS := PRF((gs)c
,”master secret”,randc||rands)

Apart from this slightly altered computation, M fin-

ishes the handshake with C like any normal fixed

(EC)DH handshake. M has now successfully established

a secure TLS connection, impersonating server S. M can

now connect to server S and forward any communication

from C to S and vice versa, while being able to secretly

eavesdrop on and modify messages at will.

6 Evaluation and Impact

6.1 Clients and Client Libraries

We implemented a prototype MitM attack by patching

the OpenSSL3 library with a few lines of code, and using

stunnel4 to simulate a MitM attacker. With this proto-

type, we tested the most common web browsers (Firefox,

Safari, Chrome, Internet Explorer, Opera) on Linux, MS

Windows, Android, Mac OS X and iOS. Furthermore,

we analyzed manually common TLS libraries, such as

OpenSSL, Mozilla NSS, MS SChannel, BouncyCastle,

GnuTLS, mbed TLS, MatrixSSL, wolfSSL.

We found that the TLS implementation in the Bouncy-

Castle library fully implements the fixed (EC)DH hand-

shake options. That means, any client program using the

BouncyCastle TLS implementation might be vulnerable

to our attack. We also found that the system’s TLS li-

brary on Mac OS X (Secure Transport) to be similarly

vulnerable. We then confirmed that our attack works

for the Safari web browser on Mac OS X: Versions be-

fore Mac OS X 10.5.3 would allow the attack to succeed

completely silently, after a client certificate has been ma-

liciously installed in the certificate store. This behavior

changed with Mac OS X version 10.5.35. With version

10.5.3 and later, the browser asks the user to confirm

the selection of a client certificate when our MitM proxy

starts the attack. However, after selecting the malicious

certificate for the first time for a particular domain, the

attack would proceed completely silently on consecutive

connections. We could not reproduce the attack with the

most recent versions of Mac OS X (version 10.8., 10.9,

10.10). Further analysis of the source code made public

by Apple6 showed that the necessary code had been (pos-

sibly temporarily, according to the comments) disabled

via preprocessor macros in these versions. We assisted

3https://www.openssl.org/
4https://www.stunnel.org/
5https://support.apple.com/en-us/ht1679
6http://opensource.apple.com

Apple’s security team in identifying, and analyzing vul-

nerable systems. The currently most commonly used

branches of the OpenSSL library (branches 0.9.8, 1.0.0,

and 1.0.1) do not support the necessary TLS options (so

systems such as Google Android seem to be safe at this

time). However, the source code of the OpenSSL library

contains ‘TODO’s in the source code for implementing

support for fixed ECDH handshakes. Not much code is

missing for fixed ECDH support in OpenSSL (we added

basic support with only a few lines of code for our MitM

setup). After engaging the OpenSSL developer team dur-

ing the responsible disclosure process, we found that the

newest branch (branch 1.0.2) just recently added support

for static DH, but not (yet) for fixed ECDH handshakes.

That means, client that use the 1.0.2 branch of OpenSSL

might as well be vulnerable to our attack.

Apart from BouncyCastle, the Mac OS X Secure

Transport TLS library, and the newest branch of the

OpenSSL library, we could not confirm that any other

client TLS library that we looked at implements the nec-

essary fixed (EC)DH handshake. However, since TLS

use is widespread, and since TLS is not only used to se-

cure web traffic, but all kinds of client-server communi-

cations, we estimate that many more systems might in

fact be affected than the ones explicitly identified by us.

Also, we have to warn that negative results should not

necessarily be trusted, since, (1) the weakness is in the

TLS protocol, (2) source code is in constant flux, and

the missing features might be implemented by TLS li-

brary developers anytime in the future, as the example of

adding support for fixed DH handshakes to the OpenSSL

1.0.2 library branch has shown.

6.2 TLS Servers

In order to get a feeling for how many servers are vul-

nerable to our attack, we leveraged Internet-wide scan-

ning of TLS servers on the HTTPS/443 port, using a

modified toolset based on the ZMap scanning frame-

work [66, 67] and Paul Graham’s masscan [68], as well

as current datasets published by the ZMap team7. Our

analysis results confirmed our initial suspicions (occa-

sioned by the regular scan results conducted and pub-

lished by Hubert Kario8 using the cipherscan tool [69]

on the TLS servers of the Alexa Top 1M most popular

server list) that TLS servers implementing (EC)DH key

agreement are very rare to find on the public Internet.

However, at least around 9.25 % of all reachable HTTPS

server in the Alexa Top 1M list offer ECDSA certifi-

cates, according to our analysis (Server offering DSS or

ECDSA signature-based handshakes are prone to being

attacked as well). Some of these ECDSA certificates,

7https://scans.io
8https://securitypitfalls.wordpress.com/
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such as the ECDSA certificates for facebook.com, have

the KeyAgreement bit set while some do not have the

X509 Key Usage extensions at all, and are thus vulner-

able to our attack even if client implementations checks

for X509 Key Usage extensions are done correctly ac-

cording to the TLS specification.

Currently, most public TLS servers use RSA signa-

tures in the handshake for performance reason. How-

ever, the history of TLS attacks has shown that once a

new attack against a specific TLS cipher suite is discov-

ered, TLS server administrators immediately get forced

to switch to a different cipher suite. The next such switch

could very well be to ECDSA signatures. In addition

popular TLS service providers such as Cloudflare [70]

use and advocate the use of ECDSA certificates per de-

fault. For RSA certificates, unnecessarily setting the

KeyAgreementbit is quite common by many CAs. Once

more CAs are going to offer ECDSA certificates, it can

be assumed that this practice will transfer to ECDSA cer-

tificate generation, and highly-ranked advise on the Inter-

net supports such behavior [71].

7 Mitigation

In order to mitigate against KCI attacks, server operators

of security or privacy critical TLS services must

1. Disable non-ephemeral (EC)DH handshakes,

2. Set appropriate X509 Key Usage extension for

ECDSA and DSS certificates, and disable specifi-

cally the KeyAgreement flag.

TLS client implementors should immediately

1. Disable non-ephemeral (EC)DH handshake op-

tions,

2. Or disable at least support for fixed (EC)DH authen-

tication.

TLS library implementors should immediately

1. Check whether they fully consider X509 Key Usage

extensions,

2. Mark and properly document non-ephemeral

(EC)DH handshakes as deprecated and dangerous.

Moreover, the common practice of insecure client cer-

tificate handling should end. Only mechanisms that en-

sure that a client’s private key does not leave its machine,

such as the HTML keygen tag, should be employed. Sys-

tem administrators at universities and industries should

update their procedure to distribute client certificates ac-

cordingly.

TLS security best-practice recommendations such as

the recent RFC 7525 [18] should be updated accordingly,

and warn against KCI-vulnerable cipher suites. More-

over, the next version of TLS, v1.3, should definitely not

include KCI-vulnerable cipher suites.

8 Conclusion

We have identified a novel way to attack TLS imple-

mentations. Although the attack has been known to at

least some theoretical cryptographers who research in

the field of authenticated key exchange protocols, knowl-

edge has not yet spread to a wider audience of security

researchers and practitioners. In this paper we explained

KCI attacks against TLS and argued that they are practi-

cal in real-world scenarios. We identified and confirmed

that widespread TLS clients, such as Apple’s Safari Web

browser on Mac OS X, are vulnerable. The immediate

impact is not as serious as, for example, the one from the

recent Logjam attack, because support for the necessary

options in TLS clients and servers (both is necessary)

is currently not as widespread as a malicious attacker

would hope for. However, without adequate measures,

this situation could change anytime in the future: Re-

cently, OpenSSL developers have just added support for

the vulnerable fixed DH handshake to the newest branch

(1.0.2) of the library, and they seemed to be on track for

also adding support for the fixed ECDH handshake op-

tion. Also ECDSA certificates will very probably be-

come more popular in the future. We hope that our dis-

closure of the vulnerability prohibits any possible large-

scale exploitation of the attack in the future, and stops

malevolent actors form using it to cunningly hide back-

doors in security or privacy critical systems.
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