
Jigsaw: Efficient, Low-effort Mashup Isolation

James Mickens
Microsoft Research

mickens@microsoft.com

Matthew Finifter
University of California, Berkeley

finifter@cs.berkeley.edu

Abstract

A web application often includes content from a va-
riety of origins. Securing such a mashup application
is challenging because origins often distrust each other
and wish to expose narrow interfaces to their private
code and data. Jigsaw is a new framework for isolat-
ing these mashup components. Jigsaw is an extension of
the JavaScript language that can be run inside standard
browsers using a Jigsaw-to-JavaScript compiler. Un-
like prior isolation schemes that require developers to
specify complex, error-prone policies, Jigsaw leverages
the well-understood public/private keywords from tradi-
tional object-oriented languages, making it easy for a do-
main to tag internal data as externally visible. Jigsaw
provides strong iframe-like isolation, but unlike previ-
ous approaches that use actual iframes as isolation con-
tainers, Jigsaw allows mutually distrusting code to run
inside the same frame; this allows scripts to share state
using synchronous method calls instead of asynchronous
message passing. Jigsaw also introduces a novel encap-
sulation mechanism called surrogates. Surrogates allow
domains to safely exchange objects by reference instead
of by value. This improves sharing efficiency by elimi-
nating cross-origin marshaling overhead.

1 Introduction

Unlike traditional desktop applications, web applications
are often mashups: applications that contain code from
different principals. These principals often have asym-
metrical trust relationships with each other. For example,
a page that generates localized news may receive data
from a news feed component and a map component; the
integrating page may want to isolate both components
from each other, and present them with an extremely nar-
row interface to the integrator’s state. As another exam-
ple, a social networking page might embed a third-party
application and an advertisement. The integrating page

may expose no interface to the advertisement. However,
if the developer of the third-party application has signed
a terms-of-use agreement, the integrating page may ex-
pose a relatively permissive interface to its local state.

Given the wide range of trust relationships that exist
between web principals, it is challenging for developers
to create secure mashups. Principals often want to share
with each another, but in explicit and controlled ways.
Unfortunately, JavaScript (the most popular client-side
scripting language) was not designed with mashup secu-
rity in mind. JavaScript is an extremely permissive lan-
guage with powerful reflection abilities but only crude
support for encapsulation.

1.1 Previous Approaches

Given the increasing popularity of web services (and
the deficiencies of JavaScript’s isolation mechanisms),
a variety of mashup isolation frameworks have emerged
from academia and industry. Unfortunately, these frame-
works are overly complex and present developers with
an unwieldy programming model. Many of these ap-
proaches [2, 11] force developers to use asynchronous,
pass-by-value channels for cross-principal communi-
cation. Asynchronous control flows can be difficult
for developers to write and understand, and automated
tools that convert synchronous control flows into asyn-
chronous ones can introduce subtle data races (§2.1).
Additionally, marshaling data over pass-by-value chan-
nels like postMessage() can introduce high serial-
ization overheads (§4.2).

Prior mashup frameworks also present developers with
complex, overly expansive APIs for policy specification.
For example, object views [11] require developers to de-
fine policy code that runs during each property access on
a shared object. Understanding how these filters com-
pose across large object graphs can be difficult. Sim-
ilarly, ConScript [12] policy files consist of arbitrary
JavaScript code. This allows Conscript policies to be



extremely general, but as we demonstrate, such expres-
sive power is often unnecessary. In many cases, secure
mashups require only two policy primitives: a simple
yes-no mechanism for marking JavaScript state as exter-
nally sharable, and a simple grammar based on CSS and
regular expressions that constrains how untrusted code
can access browser resources like persistent storage and
the visual display.

1.2 Our Solution: Jigsaw

In this paper, we introduce Jigsaw, a new framework for
mashup isolation. Jigsaw allows JavaScript code from
mutually distrusting origins to selectively expose private
state. Jigsaw’s design was driven by four goals:

Isolation by default: In Jigsaw, an integrating script
includes guest code which may hail from a different
origin. The integrator has access to browser resources,
and the integrator can provide its guests with access to
some portion of those resources. However, by default, a
guest cannot generate network traffic, update the visual
display, receive GUI events, or access local storage.
Similarly, each principal’s JavaScript namespace is hid-
den from external code by default, and can be accessed
only via public interfaces that are explicitly defined by
the owning principal.

Efficient, synchronous sharing: Jigsaw eschews
asynchronous, pass-by-value sharing in favor of syn-
chronous, pass-by-reference sharing. Inspired by
traditional object-oriented languages like Java and C++,
Jigsaw code uses the public and private keywords
to indicate which data can be accessed by external
domains. When an object is shared outside its local
domain, Jigsaw automatically wraps the object in a
surrogate object that enforces public/private seman-
tics. By inspecting surrogates as they cross isolation
boundaries, Jigsaw can “unwrap” surrogates when
they return to their home domain, ensuring that each
domain accesses the raw version of a locally created
object. Jigsaw also ensures that only one surrogate
is created for each raw object. This guarantees that
reference-comparison == operations work as expected
for surrogates. Using surrogates, Jigsaw can place
mutually distrusting principals inside the same iframe
while providing iframe-style isolation and pass-by-
reference semantics. Since principals reside within
the same iframe, no postMessage() barrier must
be crossed, which allows for true synchronous interfaces.

Simplicity: Using deny-by-default policies for browser
resources like network access, and using the public
and private modifiers to govern access to JavaScript

namespaces, Jigsaw can express many popular types
of mashups—most require only a few lines of policy
code and the explicit definition of a few public interface
methods. In designing Jigsaw, we consciously avoided
more complex isolation schemes like information flow
control, object views [11], and ConScript [12]. While
these schemes are more expressive than Jigsaw, their
interfaces are unnecessarily complex for many of the
mashup patterns that are found in the wild.

Fail-safe legacy code: In most cases, regular JavaScript
code that has not been adapted for Jigsaw will work
as expected when used within a single domain. In all
cases, unmodified legacy code will fail safely (i.e.,
leak no data) when accessed by external domains.
Jigsaw prohibits some JavaScript features like dynamic
prototype manipulation, but these features are rarely
used by benevolent programs (and are potentially
exploitable by attackers) [1, 11]. Jigsaw makes few
changes to the core JavaScript language, and we believe
that these changes will be understandable by the average
programmer, since the changes make JavaScript’s object
model behave more like that of a traditional, class-based
OO language like C#. Jigsaw preserves many of the
language features that make JavaScript an easy-to-use
scripting language. For example, Jigsaw preserves
closures, first-class function objects, object literals, an
event-driven programming model, and pass-by-reference
semantics for all objects, not just those that are shared
within the same isolation domain.

2 Design

In Jigsaw, domains are entities that provide web content.
In the context of the same-origin policy, a Jigsaw do-
main corresponds to an origin, and we use the terms “do-
main” and “origin” interchangeably. A principal is an
instance of web content provided by a particular domain.
A principal may contain HTML, CSS, and JavaScript.
Note that some principals might contain only JavaScript,
e.g., a cryptographic library might only define JavaScript
functions to be invoked by external parties.

A user visits top-level web sites; each of these sites
can be an integrator principal. An integrator may include
another principal Pi by explicitly downloading content
from Pi’s origin. In turn, Pi may include another princi-
pal Pj . Figure 1 depicts the relationship between the user
and this hierarchy of client-side principals. When there
is an edge from Pi to Pj , we refer to Pi as the including
principal or parent, and Pj as the included principal or
child.
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Figure 1: An example of a principal hierarchy. The user visits
an integrator site that includes other principals. Each of those
principals may include additional principals.

2.1 Boxes

Jigsaw places each principal in an isolation container that
we call a box. Each box is associated with the following
resources:
• A JavaScript namespace containing application-

defined objects and functions.
• A DOM tree, which is a browser-defined data struc-

ture representing the HTML and CSS content be-
longing to the principal.
• An event loop, which captures mouse and keyboard

activity intended for that box.
• A rectangular visual region with a width, a height,

a location within the larger browser viewport, and a
z-axis value.
• A network connection, which allows the principal

to issue HTTP fetches for data.
• A local storage area, which stores cookies and im-

plements the DOM storage abstraction.
In some ways, a Jigsaw box resembles a traditional
iframe. Both provide a principal with a local JavaScript
namespace, DOM tree, event loop, and visual field.
However, Jigsaw boxes differ from iframes in three im-
portant ways.

First, if two iframes share the same origin, they
can directly access each other’s JavaScript names-
paces via frame references like window.parent and
window.parent.frames. A Jigsaw box does not
allow such unfettered cross-principal access. By default,
two boxes have no way to communicate with each other,
even if they belong to the same origin. This enables fault

//Download a script and place it inside a
//new box. The return value of the script
//is its principal object.
var p = Jigsaw.createBox(’http://x.com/box.js’,

{network: /(x|y)\.com/,
storage: true, dom: null});

//Call a public method defined by the box.
//The pass-by-reference of localData and
//result is made safe by the use of
//surrogates.
var result = p.f(localData);

Figure 2: An integrator creating and interacting with a box.
The box can exchange network traffic with servers from x.com
and y.com; it can also access its origin’s DOM storage, but it
cannot access the integrator’s DOM. Surrogates are explained
in Section 2.6.2.

isolation and privilege separation for different principals
that originate from the same domain. To allow cross-
box communication, each principal must explicitly de-
fine public functions on a principal object. By exchang-
ing principal objects with each other, boxes define the set
of external domains with which they communicate, and
the operations that these domains may invoke on private
state.

A second difference between iframes and Jigsaw
boxes is that boxes use nesting relationships to more
tightly constrain the resources of children. A page’s top-
most Jigsaw box is given a full visual field that is equiv-
alent to the entire browser viewport. The root box is also
given the maximal network permissions allowed by the
same-origin policy. By default, descendant boxes lack
access to non-computational browser resources. For ex-
ample, child boxes cannot issue network requests, and
they cannot access the visual field (and thus they can-
not receive GUI events from the user). A parent box
may delegate a region of its visual field to a child. Sim-
ilarly, a parent can grant a child box a portion of its net-
work permissions. In both cases, parent-child delegation
has monotonically increasing strictness, i.e., a parent can
never give a child a larger visual field or more network-
ing permissions than the parent has. Figure 2 shows an
example of how an integrator creates a new box. Note
that DOM storage ACLs are unique because the browser
gives each origin a local storage area. Thus, an integra-
tor can grant a child access to the child domain’s local
storage, or completely prohibit such accesses. However,
the integrator cannot directly expose its own local stor-
age to a child domain (although it can define a method
on its principal object that mediates access to its DOM
storage).

The final difference between iframes and boxes in-
volves communication channels. Applications in dif-
ferent iframes communicate with the asynchronous



var x = 0; //Global variable

function increment(){
x++;

}

function f(){
alert(x);
increment();
alert(x);

}

//Create two tasks that fire every 100 ms.
setInterval(f, 100);
setInterval(f, 100);

Figure 3: In regular JavaScript, all code is given the illusion
of single-threaded execution. Thus, in this example, only one
version of f() can be executing at any given time. This means
that the alert() statements from a particular instance of f()
will always output two consecutive numbers.

function f(){
alert(x);
increment->(); //This version of f() now

//relinquishes the CPU!
alert(x);

}

Figure 4: If increment() is asynchronous and replaced with
a pseudo-synchronous continuation, a particular invocation of
f() may be swapped off of the processor without executing
atomically, allowing the other f() to execute fully, and caus-
ing the first one to output 0 and then 2. This would be impossi-
ble if the -> continuation operator provided true synchronous
semantics.

postMessage() call. postMessage() can only
transmit immutable strings; thus, passing large objects
across this channel can incur significant marshaling over-
head, and explicit message passing is needed to keep mir-
rored data structures synchronized between iframes. The
asynchronous nature of postMessage() also makes it
difficult to provide true synchronous RPC semantics. Al-
though tools exist to convert asynchronous function calls
into continuation-passing style (CPS) [18], CPS can in-
troduce data races that do not exist when function calls
are truly synchronous (see Figures 3 and 4). Ensuring
that such races do not exist requires the programmer to
explicitly reason about synchrony and use application-
level coordination mechanisms like locks.

Besides the performance and correctness challenges,
asynchronous iframe/postMessage architectures
are often ill-suited for many mashup designs. For exam-
ple, consider pure computational libraries. If an integra-
tor has some data that it wants to process using N calls to
a cryptographic library or an image manipulation library,
it is cumbersome for the integrator to set up a chain of

asynchronous callbacks that executes the (i + 1)th op-
eration when the ith operation has completed. A syn-
chronous programming model is much more natural.

There are also event-driven mashups that are ill-suited
for the asynchronous iframe/postMessage model.
For example, suppose that an integrator uses an external
library to sanitize AJAX data as it streams in. As chunks
of data arrive, the browser fires the XMLHttpRequest
callback multiple times. During each invocation, the in-
tegrator must pass the new AJAX data to the sanitiza-
tion library. However, if the sanitizer lives in a separate
iframe, the integrator cannot receive the sanitized data
immediately—instead, the integrator must buffer data
and wait for the sanitizer to asynchronously return the
scrubbed results. This introduces two sources of asyn-
chrony (the XMLHttpRequest handler and the sani-
tizer callback) when only one should be necessary (the
XMLHttpRequest handler).

A Jigsaw application can have multiple boxes, but all
of the boxes live in the same frame. As shown in Fig-
ure 2, this means that data can be passed synchronously
and by reference. As described later, Jigsaw code uses
the public and private modifiers to indicate which
methods and variables are accessible to external do-
mains. The Jigsaw runtime uses these modifiers to vali-
date cross-domain operations (§2.6.2).

A single Jigsaw application may contain multiple prin-
cipals that originate from the same domain. Jigsaw
places each of these principals in a separate box. These
principals interact with each other using the same pub-
lic interfaces that are used by principals from different
domains.

2.2 Principal Objects

A principal object defines the public functions and
variables that a domain exposes to untrusted code; to
communicate with an external domain, a box must
possess a reference to that domain’s principal ob-
ject. A principal can access its parent’s principal ob-
ject by calling Jigsaw.getParentPrincipal().
Similarly, the Jigsaw.principals array contains
principal objects for all of a box’s immediate chil-
dren. Jigsaw.getRootOriginPrincipal() re-
turns the principal object belonging to the highest-level
box from the caller’s origin. This ancestor can act as a
coordination point for all principals from that domain,
e.g., if the principals want to synchronize their writes to
DOM storage. Principal objects can be passed between
boxes like any other object.

2.3 The DOM Tree

Each Jigsaw box can potentially contain a DOM tree and
an associated visual field. If the box’s parent did not del-



egate a visual field, Jigsaw sets the box’s DOM tree to
null, and prevents the child principal from adding DOM
nodes to it. Otherwise, the child may update its visual
field and receive GUI events for that field by modifying
the DOM tree in the standard way. Jigsaw ensures that
the visual updates respect the constraints defined by the
parent.

A visual field consists of a width, a height, a location
within the parent’s visual field, and a z-order. Parents
specify these parameters using CSS-style syntax. Thus, a
child can have a static visual geometry, or one that flows
in dynamic ways, e.g., to occupy a percentage of the par-
ent’s visual field, regardless of how the parent is resized.

Visual parameters are associated with each principal
object (e.g., principal.height). A parent can dy-
namically change a child’s visual field by writing to these
fields. If a child wants to change its visual field, it can
also try to write to these fields. However, the changes
must be validated by the parent. A child write to a vi-
sual field parameter fires a special Jigsaw event in the
parent called childVisualFieldRequest. If the
parent has registered a handler for this event, the handler
inspects the changes requested by the child. If the parent
approves the change, the handler returns true, otherwise
it returns false. Jigsaw will only implement the change if
the parent has defined such a handler, the handler returns
true, and the change would not place the child’s visual
field outside the one owned by the parent.

Similar to the Gazelle browser [24], Jigsaw requires
visually overlapping boxes to be opaque with respect to
each other. In other words, boxes cannot request trans-
parent blending of their overlapping visual region—the
box with the higher z-order occludes all others in the
stack. This prevents a malicious box from making it-
self transparent, creating a child box containing a victim
page, and then collecting GUI events that the user in-
tended to send to the victim box.

Even with these protections, a principal must still trust
its ancestors in the principal hierarchy. This is because a
malicious parent can virtualize a child’s runtime (§3) in
subversive ways, or not create a child at all. Jigsaw can
only guarantee that parents are protected from descen-
dants, and that sibling principal hierarchies are protected
from each other if the shared parent is non-malicious.

2.4 Network Access

A principal uses HTTP requests to communicate with
remote servers. The principal’s parent controls the set
of servers that are actually reachable. Like visual field
permissions, network privileges nest in a monotonically
restrictive way. The most expansive privilege is “*”,
which means that a principal can fetch any resource that
is allowed by the same-origin policy. Parents can also

restrict children to a limited set of accessible domains.
Parents can specify a group of related domains using a
straightforward wildcard syntax, e.g., *.foo.com or
cache.*.bar.com. As a syntactic shortcut, a parent
can specify the “self” domain to indicate that the child
can communicate with servers from the child’s origin.
Similarly, the “parent” token resolves to the parent’s ori-
gin.

2.5 Local Storage

In HTML5, the DOM storage abstraction allows each
origin to maintain a client-side key/value database. Each
database can be accessed only by JavaScript code from
the associated origin. Jigsaw partitions DOM storage in
the same way. If principals from different origins want to
exchange data from their respective DOM storage areas,
they must do so via public interface methods.

2.6 The JavaScript Namespace

In traditional JavaScript, objects are dictionaries that
map property strings to values. Using JavaScript’s
extremely permissive reflection interface, a program
can dynamically enumerate an object’s properties and
read, write, or delete those properties. Unlike standard
class-based languages like Java and C#, JavaScript uses
prototype-based inheritance. A prototype object is an
exemplar which defines the property names and default
property values for other instances of that object. By set-
ting an object’s proto property to the exemplar, the
object becomes an instance of the prototype’s class. By
setting the proto fields of prototype objects, one
creates inheritance hierarchies. By default, an object’s
property list is dynamic, so an instance of a particular
prototype can dynamically gain additional properties that
are not defined by the prototype. An object’s proto
field is just another property, meaning that an object’s
class can dynamically change as well.

These default reflection semantics are obviously un-
suited for cross-domain encapsulation. JavaScript does
allow a limited form of data hiding using closures, which
are functions that can access a hidden, non-reflectable
namespace. Unfortunately, closures are an imperfect
substrate for cross-domain sharing. They cannot be
shared across iframes, and within an iframe, each closure
has unfettered access to the DOM tree, event loop, and
network resources that belong to the enclosing frame.
Furthermore, closures are clumsy to program and main-
tain, since the hidden closure variables are implicitly ob-
scured via lexical scoping instead of explicitly marked
via a special keyword. Jigsaw provides simpler, stronger
encapsulation using boxes and the public/ private
keywords.



function Ctor(x, y){
public this.x = -1;
private this.y = 42;
this.z = 100; //By default, a new

//field is private.
}

public Ctor.prototype.prop1 = "hi";
private Ctor.prototype.prop2 = "bye";
Ctor.prototype.prop3 = "aloha"; //Private

//by default

obj = {};
public obj.a = 0;
private obj.b = 1;
obj.c = 2; //Private by default.

Figure 5: Jigsaw code example (private-by-default property
visibility).

function Ctor(){}
private Ctor.prototype.x = 0;

obj = new Constructor();
obj.x = 42; //Succeeds: Private properties

//visible within the creating box.
public obj.x; //Fails: can’t override modifier

//specified by prototype

Figure 6: Jigsaw code example (visibility modifiers flow from
prototypes to instances).

2.6.1 Visibility modifiers

The public and private keywords allow a principal
to define which object properties are visible when an ob-
ject is shared across boxes. For example, if a principal
from domain X creates the following object . . .

var obj = {public x: "foo",
private y: "bar"};

. . . and passes it to domain Y , Y can access obj.x but
not obj.y. Note that “access” means the ability to read,
write, and delete a property.

The public/private keywords can be used any-
where a variable is declared. If a variable is declared
and no visibility modifier is specified, it is private by de-
fault, as shown in Figure 5. When code from domain X
enumerates the properties of an object from domain Y ,
private fields do not appear in the enumeration. Within
Y , private fields do show up in the enumeration.

As shown in Figure 6, public and private modifiers
“flow downward” from prototypes to instances, overrid-
ing any attempts by instance objects to reset the modi-
fiers. JavaScript allows object properties to be declared at
arbitrary moments, so during program execution, when
Jigsaw encounters a public or private statement, it
must dynamically check whether the statement satisfies
the visibility settings for the relevant prototype object.

When Jigsaw passes objects between boxes using sur-
rogates (§2.6.2), it never exposes object prototypes or
constructor functions. This prevents a wide class of ex-
ploits called prototype poisoning [1, 11] in which an at-
tacker dynamically modifies the inheritance chain for an
object and subverts the object’s intended implementa-
tion.

2.6.2 Surrogate Objects

Jigsaw uses surrogate objects to enforce public/private
semantics. When an object obj is passed between
boxes, e.g., when box X invokes a function on Y ’s
principal object and passes a local object obj as
an argument, Jigsaw wraps obj in a surrogate and
passes that surrogate, not the original object, to the
destination domain Y . To create the surrogate, Jig-
saw first creates an initially empty object. Then, for
each public property belonging to obj, Jigsaw adds
a getter/setter pair for a corresponding property on
the surrogate object. Getter/setters are a JavaScript
feature that allow an object to interpose on reads and
writes to a property. For obj’s surrogate, the getter
for property p returns createSurrogate(obj.p).
The setter for property p executes obj.p =
createSurrogate(newVal);.

The createSurrogate() function has several im-
portant features. First, createSurrogate() asso-
ciates at most one surrogate for each “raw” object. Thus,
calling createSurrogate(obj) multiple times on
the same object will always return the same surrogate ob-
ject. This ensures that the reference-compare == opera-
tor has the expected semantics for surrogates. For exam-
ple, if a box is passed two surrogates from two different
domains, and those surrogates refer to the same back-
ing object, then the surrogates will reference-compare as
equal.

Another important property of
createSurrogate() is that it does not always return
a surrogate object. For immutable, pass-by-value prim-
itive properties like numbers, createSurrogate()
returns the primitive value. More interestingly, if
a surrogate is being passed to its originating box,
createSurrogate() returns the backing object. In
the previous example, this means that if Y passes obj’s
surrogate back to X , Jigsaw will “unwrap” the surrogate
and hand the raw object back to X . This convenient
feature also helps == to work as expected, since boxes
do not need to worry about receiving a surrogate for a
local object that lacks reference equality with that local
object.

A final property of createSurrogate() is that
surrogate getter/setters invoke it lazily—if a surrogate
property is never accessed by external boxes, the sur-



rogate will never call createSurrogate() for that
property. As we show in Section 4.2, this lazy evaluation
is beneficial when boxes share enormous object graphs
but only touch a fraction of the objects. Using lazy eval-
uation, Jigsaw never devotes computational resources to
protect objects that are shared but never accessed.

For each public method belonging to obj, the sur-
rogate defines a wrapper function whose this pointer
is bound to obj. Thus, even if external code assigns
the surrogate method to be a property on another object,
the method will always treat obj as its this pointer.
This prevents attacks in which a malicious box subverts
a method’s intended semantics by supplying an inappro-
priate this object.

When a surrogate function is invoked, it calls
createSurrogate() on all of its arguments before
passing those arguments to the underlying function. The
surrogate function also calls createSurrogate()
on the underlying function’s return value, and returns
that surrogate object to the original caller of the surro-
gate function.

In summary, surrogates automatically protect cross-
box data exchanges. Since principal objects are surro-
gates, and boxes can be accessed only via their principal
objects, Jigsaw ensures that all cross-box interactions re-
spect public/private semantics.

2.6.3 Predefined JavaScript Objects

The browser predefines a set of JavaScript objects that
live in each box’s JavaScript namespace. The most im-
portant predefined object is the DOM tree; others pro-
vide support for regular expressions, mathematical func-
tions, and so on. Jigsaw virtualizes the DOM tree in
each box (§3), redirecting the box’s DOM operations to
a Jigsaw-controlled data structure that performs security
checks before reflecting operations into the real DOM.
Jigsaw also ensures that constructor functions for glob-
ally shared built-in objects like regular expressions are
private and immutable. These safeguards prevent a ma-
licious box from arbitrarily manipulating the visual dis-
play, or redefining constructor functions that are used by
all boxes.

2.6.4 Cross-box Events

Box X may wish to register one of its functions as an
event handler in a different box Y . To do so, X sim-
ply passes the handler to Y via Y ’s public interface; Y
can then register the handler with the browser’s event en-
gine in the standard way. When the relevant event in Y
occurs, the browser executes the handler like any other.
However, the browser passes a scrubbed event object to
the handler. This event does not contain references to Y ’s
private-by-default JavaScript namespace. This prevents

information leakage via foreign event handlers. Like all
foreign methods, the handler executes in the JavaScript
context of the box that created it.

2.7 Client-side Communication Privileges

A parent can restrict the principal objects
that are visible to a child. By default, a
child can reference its parent’s principal ob-
ject (Jigsaw.getParentPrincipal()),
the principal objects of its own children (the
Jigsaw.principals array), and the princi-
pal objects of other boxes from its own domain
(Jigsaw.getSameDomainPrincipals()). Jig-
saw associates each principal with a unique id, and
a parent can restrict a child’s access to a subset of
principals ids.

2.8 Dropping Privileges

Jigsaw allows a box to voluntarily restrict the networking
privileges that it received from its parent. A box can also
relinquish the right to a visual field, or abandon the abil-
ity to write to DOM storage. Privilege can drop only in a
monotonically decreasing fashion. For example, if a par-
ent gives a child unrestricted network access, the child
cannot restrict its privileges to only foo.com and then
unrestrict itself.

2.9 Summary

Jigsaw provides a robust encapsulation technique for
cross-principal sharing. All data is accessible by refer-
ence, but all data is implicitly hidden from external par-
ties unless it is explicitly declared as public by the
owning principal. Parents define resource permissions
for the execution contexts of their children. Such per-
missions become monotonically stricter as the principal
nesting depth increases.

Jigsaw does enforce some restrictions on the stan-
dard JavaScript language. In particular, a surrogate
never exposes the prototype object or constructor func-
tion for the underlying object. Jigsaw also prevents
box code from tampering with the prototypes of global
built-in objects like Array. While this prevents boxes
from changing externally defined prototype chains, well-
written JavaScript code rarely uses such tricks, and al-
lowing such behavior allows malicious boxes to launch
prototype poisoning attacks [1, 11] against other boxes.
Despite these restrictions, Jigsaw preserves many fea-
tures of the standard JavaScript language. For exam-
ple, Jigsaw supports closures, first-class function objects,
object literals, an event-driven programming model, and
pass-by-reference semantics for all objects, not just those
shared within the same domain.



3 Implementation

Our Jigsaw implementation consists of a Jigsaw-to-
JavaScript compiler and a client-side JavaScript library.
The compiler parses Jigsaw code using an ANTLR
toolchain [20]. A custom C# program adds static se-
curity checks to the resulting ASTs, and then translates
the modified ASTs to JavaScript code that a browser
can execute. The emitted JavaScript code also contains
the client-side Jigsaw library, which implements runtime
security checks and defines box management interfaces
like Jigsaw.createBox().

The rewriter modifies every object creation so that
each object receives a unique integer id. This al-
lows the Jigsaw library to maintain a mapping from
raw objects to the associated surrogates, ensuring that
createSurrogate() makes at most one surrogate
for each raw object.1

The rewriter also tags each object with the id of
its creating box (the Jigsaw library defines an internal
getCurrentBoxId() function to which the rewriter
can insert a call). This tag allows the Jigsaw library to
determine whether a surrogate is being passed to its orig-
inal box—if so, Jigsaw “unwraps” the surrogate, return-
ing the backing object instead of the surrogate (§2.6.2).
To allow createSurrogate() to determine the cur-
rently executing box context, the rewriter modifies all
function definitions such that on entry, a function pushes
its box id onto a stack, and on exit, a function pops the
stack.

The rewriter translates public and private prop-
erty declarations into operations on a per-object map of
visibility metadata. The rewriter assigns such a map to
each object at object creation time. Using property de-
scriptors [19], Jigsaw ensures that per-object metadata
is immutable and cannot be modified by a malicious or
buggy box.

The Jigsaw library is responsible for creating new
boxes. To do so, the library uses an eval() statement to
dynamically load the (rewritten) box code. However, the
eval() call is invoked within the context of a special
Jigsaw function that defines aliasing local variables for
standard global properties like window, document,
and so on. The Jigsaw-defined aliases implement a virtu-
alized browser environment that forces a box’s commu-
nication with the outside world to go through Jigsaw’s
security validation layer. For example, Jigsaw’s virtual
XMLHttpRequest object ensures that a box’s AJAX
requests satisfy the security policies defined by the box’s
parent. Similarly, the virtual DOM tree is backed by a
branch of the real DOM tree, but virtual operations are

1To prevent this data structure from hindering garbage collection,
Jigsaw requires weak maps, whose design is being finalized for the
next version of JavaScript [16].

not reflected into the real tree unless they satisfy the par-
ent box’s security policy. For dangerous functions like
eval(), and for sensitive internal Jigsaw functions, Jig-
saw creates null virtualizations that do nothing or throw
exceptions on access. As with all things JavaScript, there
are various subtleties in the virtualization process that we
elide due to space constraints.

Our current Jigsaw prototype implements the bulk of
the design from Section 2. The primary exception is full
DOM tree virtualization. This is still a work-in-progress
due to the complexity of the DOM interface.

4 Evaluation

Jigsaw’s goal is to provide an efficient, developer-
friendly isolation framework. In this section, we describe
our experiences with porting preexisting JavaScript li-
braries to Jigsaw; we then evaluate the performance of
the modified libraries. We show that porting legacy
code to Jigsaw is straightforward, that Jigsaw’s pass-by-
reference surrogates are much more efficient than pass-
by-value marshaling, and that Jigsaw’s dynamic secu-
rity checks are similar in performance to those of other
rewriting-based systems like Caja [15].

4.1 Porting Effort

We found that many preexisting JavaScript libraries al-
ready had an implicit notion of “public” and “private”;
thus, porting these libraries to Jigsaw primarily con-
sisted of making implicit visibility settings explicit via
the public and private keywords. For example, at
initialization time, many libraries add a single new ob-
ject to the global JavaScript namespace, and use that ob-
ject’s properties as the high-level interface to the library
code. This object serves as a de facto principal object (al-
though it has none of the security protections afforded by
Jigsaw). To port libraries like this to Jigsaw, we first de-
clared the de facto gateway object to be the Jigsaw prin-
cipal object for the library. We marked that object’s prop-
erties with the public keyword. We then identified the
public properties of other library objects with the help
of an instrumented version of the Jigsaw runtime. For
each surrogate that crossed a box boundary, the instru-
mented runtime logged the public and private properties
for the surrogate’s backing object; the runtime also mod-
ified each surrogate so that all foreign box accesses to
private properties on the backing object threw an imme-
diate exception instead of returning undefined.

The surrogate log and the fail-stop exceptions on pri-
vate property accesses made it easy to identify legacy
code properties that needed to be marked as public. Port-
ing was also simplified because we did not have to worry
about asynchronous control flows as in PostMash [2].



0

5

10

15

Depth: 4, ObjBr: 2,
FuncBr: 2

Depth: 5, ObjBr: 2,
FuncBr: 2

Depth: 6, ObjBr: 2,
FuncBr: 2

Ti
m

e
 t

o
 P

as
s 

O
b

je
ct

 
G

ra
p

h
 (

m
s)

 
Serialize by value

Surrogates

155 nodes 
315 nodes 

635 nodes 

Figure 7: When mutually distrusting domains must share
objects with each other, Jigsaw’s pass-by-reference surro-
gate mechanism is much faster than pass-by-value marshaling
(Depth: depth of shared object tree, ObjBr: Number of ob-
ject properties per object, FuncBr: Number of function prop-
erties per object).

We also did not need to explicitly insert object saniti-
zation calls—in contrast to Caja [15], which requires de-
velopers to invoke a tame() sanitization function wher-
ever an object crosses a trust boundary, Jigsaw automat-
ically creates surrogates when “raw” objects travel be-
tween boxes. We provide a more detailed comparison of
Jigsaw, PostMash, and Caja in Section 5.

4.2 Performance

In this section, we use microbenchmarks and Jigsaw-
modified applications to evaluate Jigsaw’s performance
overheads. All of the results were generated on a
Windows 7 PC with 4 GB of RAM and a dual-core 3.2
GHz processor. All web pages were executed in the
Firefox 8.0.1 browser.

Sharing overheads: In mashup frameworks that use
postMessage(), isolation containers share data by
asynchronously exchanging immutable strings. If con-
tainers wish to share more complex objects, each end-
point must implement a marshaling protocol that serial-
izes objects on sends and deserializes objects on receives.
The marshaling costs can be high, particularly if con-
tainers wish to share functions, since the recipient has to
dynamically compile each shared function’s source code
using eval().

When a sender passes an object to a recipient, the
sender actually shares an object graph that includes all
of the objects that are recursively reachable from the
root. Figure 7 depicts the sharing cost for synthetic ob-
ject graphs of various sizes. In these experiments, the
graphs were trees. The “Depth” metric corresponds to
the height of the tree. The “ObjBr” (object branch) met-
ric indicates how many of an object’s properties refer-
enced other objects; similarly, the “FuncBr” (function
branch) metric indicates how many properties pointed to
functions. Functions had no child objects or functions,
i.e., they were leaf nodes in the object tree.
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Figure 8: Jigsaw’s extra security tests add between 0x–12x per-
formance overhead (the dotted line indicates a slowdown fac-
tor of 1, i.e., no slowdown). Jigsaw’s performance overheads
are similar to those [10, 22] of other rewriting-based mashup
frameworks like Caja [15].

As Figure 7 demonstrates, passing an object graph be-
tween isolation containers using surrogates has almost
zero overhead. When the root of an object graph is
passed across a box boundary, Jigsaw must create a
new surrogate object for it; however, the only cost is
an object creation (for the surrogate object itself) and
a function call for each public property on the back-
ing object (to create the getter/setter property descrip-
tors (§2.6.2)). In contrast, marshaling pass-by-value data
is much more expensive, since the entire object graph
must be traversed, serialized, and then deserialized, with
costly eval() operations on the receiver-side to recre-
ate shared functions. Note that the results in Figure 7 do
not include postMessage() overhead, i.e., the sender
and the receiver were in the same frame. Thus, these re-
sults are a conservative estimate of the marshaling costs
in a postMessage() system.

In Jigsaw, passing large object trees across isolation
barriers is efficient because surrogates are lazily created
when a box actually tries to access a foreign object.
Thus, at sharing time, initially only one surrogate
must be created for the root of the object graph. In
pass-by-value systems, once an object graph has been
recreated by the receiver, property accesses on the graph
are just as cheap as regular property access on locally
created objects. In contrast, accessing a property through
a Jigsaw surrogate introduces the overhead of invoking a
getter or setter. Such accesses are roughly 30 times more
expensive than a regular property access. However, we
believe that this cost is acceptable for three reasons.
First, it is only paid upon accessing external objects;
it is not paid for objects that are never accessed by
external domains, nor is it incurred when a box accesses
its locally declared objects. Second, since Jigsaw’s
initial sharing cost is O(1) in the size of the object
graph to share, Jigsaw reduces the initial sharing costs
of non-trivial graphs by multiple orders of magnitude
compared to a pass-by-value solution. Modern web
applications already have object graphs containing



hundreds of thousands of objects [14], so for complex
mashups exchanging complex object graphs, the initial
sharing cost of pass-by-value will be unattractive due to
the computational latencies. Third, unlike pass-by-value
systems, surrogates allow mashups to communicate
synchronously using pass-by-reference semantics. This
makes developing mashups much easier, and makes
Jigsaw’s property access penalties easier to bear.

End-to-end performance: In addition to performing
checks during property accesses, Jigsaw must perform a
variety of bookkeeping tasks, e.g., assigning box ids and
object ids to newly created objects, and interposing on
accesses to virtualized browser resources to ensure that
boxes adhere to the security policies established by their
parents. Figure 8 shows the end-to-end performance
slowdown for several Jigsaw-enabled applications. The
slowdown is normalized with respect to the performance
of the baseline, non-Jigsaw-enabled applications. The
dotted line indicates a slowdown of 1, i.e., a situation in
which Jigsaw adds no performance overhead. We exam-
ined the following applications:
• JSON-RPC [9] is a JavaScript library that layers

an RPC protocol atop an AJAX connection. We
defined the performance of a JSON-RPC session
as the integrator-perceived completion rate of null
RPCs that performed no actions at a localhost RPC
server. Using a localhost server instead of a remote
one eliminated the impact of network delay and al-
lowed us to focus on Jigsaw’s CPU overhead.
• The DOM-SQL [3] library provides a SQL interface

to DOM storage. We defined the performance of
DOM-SQL as the number of rows that the integrator
could insert into a table per second. Each insertion
caused a synchronous write to DOM storage.
• The AES encryption function belongs to the Stan-

ford JavaScript crypto library [21]. Performance
was defined as the throughput with which the inte-
grator could feed plaintext to the library and receive
ciphertext.
• Mousemove is a simple benchmark library which

registers a handler for mouse movement in the in-
tegrator’s DOM. A human user moves the mouse
back and forth as quickly as possible, and the li-
brary increments a counter every time that its han-
dler fires. Performance was defined as the number
of times that the handler fired.

In the Jigsaw version of each application, the library code
was placed in a separate box from the integrator, and all
integrator-integratee communication took place through
a principal object or a virtualized DOM resource.

Figure 8 shows that Jigsaw’s security checks cause a 0-
12x slowdown. The slowdown is application-dependent.
For example, in the Mousemove test, the rate at which

the browser fired mouse handlers was slow enough that
Jigsaw’s security overhead was hidden. The JSON-RPC
test was similar, since the rate at which AJAX callbacks
fired was also slow enough to hide Jigsaw’s overhead. In
contrast, in the encryption test and the DOM-SQL test,
the applications were rarely blocked on external browser
activity. Instead, these programs executed many small,
application-defined functions. This incurred a lot of Jig-
saw bookkeeping overhead, since Jigsaw had to update
its internal call stack for each function invocation and
return (§3). Nevertheless, Jigsaw’s performance over-
heads were similar to those of other rewriting systems
like Caja [10, 22].

5 Related Work

There are many preexisting frameworks for securing
mashup applications. As we describe in more detail be-
low, these systems present very different programming
models to developers. At a high level, Jigsaw differs
from all of these systems due to its focus on providing
simple, efficient isolation mechanisms. Jigsaw is simple
because it defines a concise ACL language for browser
resources, a straightforward public/private distinc-
tion for JavaScript properties, and an automatic surro-
gate mechanism that transparently protects cross-domain
data exchanges while preserving synchronous function
call semantics. Jigsaw is efficient because its pass-by-
reference surrogates avoid the marshaling overhead that
afflicts pass-by-value systems.

ADsafe, FBJS, and Dojo Secure: ADsafe [6] and
Dojo Secure [25] use a language subsetting approach,
forcing guest code to be written in a restricted portion
of the larger JavaScript language. In contrast, Jigsaw al-
lows guest code to be written in a larger, more expres-
sive subset. This makes it easier for developers to port
legacy applications to Jigsaw (and write new Jigsaw ap-
plications from scratch). However, Jigsaw does pay a
performance penalty due to the dynamic security checks
that are required to secure the larger language subset.

FBJS [8] uses rewriting to prepend guest code
identifiers with a unique random prefix. This ef-
fectively isolates the guest code from the integrator.
FBJS allows guest code to interact with its parent
through a restricted, virtualized API, e.g., through calls
to a VirtDOMnode.getParentNode() method
instead of through direct accesses to the parent’s
DOMnode.parentNode property.

Broadly speaking, FBJS, ADsafe, and Dojo Secure
present a similar architectural model: strict guest isola-
tion with a narrow, predefined interface between isola-
tion containers. In contrast, Jigsaw allows principals to
define their own public interfaces.



Caja: Like Jigsaw, Caja [15] is a rewriting system that
places scripts inside virtualized execution environments.
Caja defines a tame(obj) function that makes obj
safe to pass to untrusted JavaScript contexts. tame()
performs many of the security checks described in Sec-
tion 2.6.2. For example, it prevents dynamic proto-
type manipulation, and it ensures that methods cannot
be called with arbitrary this references.

Jigsaw differs from Caja in several important ways. In
Jigsaw, objects and their properties are invisible to ex-
ternal domains by default. Developers use the public
keyword to mark an interface as externally visible; visi-
bility annotations are defined as part of the interface dec-
laration. In contrast, Caja’s visibility metadata is man-
aged at interface sharing time instead of interface dec-
laration time. In Caja, programmers must remember to
invoke tame(obj) before obj is passed across an iso-
lation barrier. This makes a program’s security proper-
ties more difficult to understand, since developers can no
longer reason about how an object can be accessed with-
out inspecting all of the places at which the object crosses
an isolation boundary. In contrast, Jigsaw’s declaration-
time visibility modifiers provide clearer, more central-
ized indications of object access rights. Jigsaw’s sur-
rogate mechanism also provides automatic “taming” as
objects flow between boxes. This eliminates the devel-
oper burden of having to manually tame objects at shar-
ing time. It also guarantees that taming takes place all
of the time, regardless of whether the developer remem-
bered to tame an object.

Also note that Caja’s primary goal is to make it easy
for an integrating page to incorporate untrusted scripts—
guest-to-guest interactions are of secondary importance.
Thus, host-to-guest communication is straightforward,
but guest-to-guest interactions must be mediated by the
host. This requires the integrator to define and manage
a shared communication infrastructure. In contrast, Jig-
saw’s goal is to make it easy for arbitrary execution con-
texts to communicate through restricted interfaces. Us-
ing principal objects, any two contexts in Jigsaw can ex-
change information. Furthermore, the integrator is no
longer responsible for managing cross-script communi-
cation. Instead, each script implements its own cross-box
protocols.

Secure ECMAScript (SES): Secure ECMAScript
(SES) [17] uses newly standardized features of EC-
MAScript 5 [7] to provide Caja-like isolation without
requiring Caja-like rewriting and runtime virtualization.
By pushing dynamic security checks into the JavaScript
engine, SES can potentially offer dramatic reductions in
the costs of these checks. SES is still being formulated,
but once ECMAScript 5 becomes widespread, Jigsaw
can use SES techniques to implement its security abstrac-
tions.

Pass-by-value systems: Systems like PostMash [2]
use iframes as isolation containers, and implement cross-
domain communication using the asynchronous, pass-
by-value postMessage() call. Such isolation frame-
works have several drawbacks. First, there is signif-
icant marshaling overhead if domains share non-trivial
object graphs (§4.2). To avoid this penalty, domains can
keep local copies of object graphs and synchronize views
across iframes. However, this approach still requires fre-
quent exchanges of synchronization messages. In Post-
Mash, this message traffic induced a 60% performance
decrease in a Google Maps mashup [2].

A second drawback of these systems is that they rely
on an asynchronous channel for cross-domain commu-
nication. Asynchronous communication is an awkward
fit for many mashup applications; for example, it is ill-
suited for the integration of computationally intensive
modules that implement databases, cryptographic op-
erations, input sanitizers, image manipulation routines,
and so on. Rewriters can transform asynchronous oper-
ations into quasi-synchronous ones using continuation-
passing [11]. However, many programmers find it diffi-
cult to reason about continuations. Furthermore, contin-
uations can introduce subtle race conditions that are not
present in truly synchronous environments (§2.1).

Browsers give each iframe a separate execution thread.
Thus, iframe isolation does have the advantage that a par-
ent can make forward progress if a child is hung or com-
putationally intensive. In Jigsaw, each box resides within
the same iframe, so a misbehaving child can intentionally
or inadvertently perform a denial-of-service attack on its
parent. We do not view this as a major disadvantage of
Jigsaw, since modern browsers allow users to terminate
unresponsive scripts via a pop-up warning dialog.

Object views: Object views [11] let developers spec-
ify policy code that controls how objects are shared
across isolation boundaries. Policy code is written in
the full JavaScript language and is attached to view ob-
jects that mediate external access to private backing ob-
jects. This security model is very expressive, but we
believe that it is unnecessarily complex (and therefore
error-prone). Jigsaw’s public and privatemodifiers
present a more intuitive programming model, allowing
developers to express simple “yes-no” disclosure poli-
cies. In contrast, when a developer writes an object view
policy, she must reason about the execution context that
initiates an access request, and how context-specific fac-
tors should influence data exposure. Jigsaw’s visibility
identifiers act as explicit, declaration-time indications of
visibility policy.

IFC: Information flow control (IFC) systems like
Jif [13] assign security labels to variables, allowing de-
velopers to precisely specify the data that principals



should be allowed to read or write. We eschewed an
IFC mashup architecture for two reasons. First, a well-
known problem with IFC is that programmers are loath
to generate the required security annotations. In contrast,
simple visibility modifiers like public and private
have not triggered a similar level of complaint. IFC-style
labels are also ill-suited for governing access to browser
resources. For example, it is difficult to use labels to ex-
press policies like “give a principal update rights to the
leftmost 30% of the visual display.” Jigsaw can easily
express such a policy using a simple CSS-style rule.

ConScript: ConScript [12] uses a modified browser
engine to enforce security. Integrators restrict the behav-
ior of guests by attaching policy code to key execution
points, e.g., the invocation of a function or the loading
of a new script. Like object view policies, ConScript
policies are written in arbitrary JavaScript and can be ex-
tremely expressive. However, as mentioned above, Jig-
saw strives to provide simple, developer-friendly secu-
rity policies, and we have found that in practice, Jigsaw’s
simpler policies are sufficient to express many kinds of
mashup architectures.

OMash: Like Jigsaw, OMash [5] allows each princi-
pal to define a public set of functions that other principals
can invoke. However, OMash does not have a private-
by-default visibility policy, nor does it wrap objects in
proxies before handing them to external domains. Thus,
public OMash functions expose an ostensibly narrow in-
terface, but their return values can expose sensitive data.
For example, the caller of a public OMash function can
perform arbitrary JavaScript reflection on the properties
of the returned object (and any other objects reachable
from that root). If the caller modifies any of this data, the
modifications will be visible in the data’s source domain.

MashupOS: MashupOS [23] provides a new set of
isolation abstractions for web browsers. In MashupOS,
a service instance is a browser-side analogue of a tradi-
tional OS process. Each instance gets a partitioned set of
hardware resources like CPU and memory, and commu-
nicates with other instances using asynchronous, pass-
by-value messages. Jigsaw eschews such a communi-
cation style in favor of synchronous, pass-by-reference
messaging. This necessitates a mechanism like surro-
gates (§2.6.2) for securely exchanging objects across iso-
lation boundaries.

CommonJS Modules: CommonJS [4] defines a mod-
ule system for JavaScript. CommonJS gives each library
a protected namespace and the ability to define external
interfaces. However, CommonJS namespaces are imple-
mented using closures. Thus, unlike Jigsaw boxes, Com-
monJS namespaces do not protect against attacks like
prototype poisoning [1, 11]. CommonJS also does not
provide strong notions of public and private data. Thus,

as in OMash, the return values from public functions can
inadvertently leak private module data.

6 Conclusion

Jigsaw is a new mashup framework for web applica-
tions. It allows mutually distrusting content providers to
define narrow public interfaces for their private client-
side state. Jigsaw strives to be developer-friendly, so
it eschews the complicated security policies of prior
mashup frameworks; instead, Jigsaw uses the public
and private keywords to mark data as externally vis-
ible or domain-private. Jigsaw’s security semantics are
thus easily understandable to programmers who are fa-
miliar with popular languages like Java that also use
public/private distinctions.

Prior mashup frameworks often isolate state using
iframes or iframe-like abstractions. These isolation
containers force domains to communicate using asyn-
chronous pass-by-value channels. In contrast, Jigsaw’s
novel surrogate mechanism allows domains to pass ob-
jects by reference using synchronous function calls. This
makes it easier for developers to reason about cross-
origin sharing, since accessing a locally defined object
or function looks no different than accessing an object
or function that has been shared by an external domain.
Pass-by-reference surrogates are also more efficient than
pass-by-value approaches because surrogates do not in-
cur marshaling overhead when they travel between do-
mains.

Our evaluation shows that existing web applications
are easily ported to the Jigsaw framework. Our evalua-
tion also demonstrates that Jigsaw has similar or better
performance than prior mashup schemes.
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