
Open access to the Proceedings of the
27th USENIX Security Symposium

is sponsored by USENIX.

DIZK: A Distributed Zero Knowledge Proof System
Howard Wu, Wenting Zheng, Alessandro Chiesa,

Raluca Ada Popa, and Ion Stoica, UC Berkeley

https://www.usenix.org/conference/usenixsecurity18/presentation/wu

This paper is included in the Proceedings of the
27th USENIX Security Symposium.

August 15–17, 2018 • Baltimore, MD, USA

ISBN 978-1-939133-04-5

DIZK: A Distributed Zero Knowledge Proof System

Howard Wu
UC Berkeley

Wenting Zheng
UC Berkeley

Alessandro Chiesa
UC Berkeley

Raluca Ada Popa
UC Berkeley

Ion Stoica
UC Berkeley

Abstract
Recently there has been much academic and industrial
interest in practical implementations of zero knowledge
proofs. These techniques allow a party to prove to another
party that a given statement is true without revealing any
additional information. In a Bitcoin-like system, this
allows a payer to prove validity of a payment without
disclosing the payment’s details.

Unfortunately, the existing systems for generating such
proofs are very expensive, especially in terms of memory
overhead. Worse yet, these systems are “monolithic”,
so they are limited by the memory resources of a single
machine. This severely limits their practical applicability.

We describe DIZK, a system that distributes the gen-
eration of a zero knowledge proof across machines in a
compute cluster. Using a set of new techniques, we show
that DIZK scales to computations of up to billions of log-
ical gates (100× larger than prior art) at a cost of 10µs
per gate (100× faster than prior art). We then use DIZK
to study various security applications.

1 Introduction
Cryptographic proofs with strong privacy and efficiency
properties, known as zkSNARKs (zero-knowledge Succinct
Non-interactive ARgument of Knowledge) [52, 38, 19],
have recently received much attention from academia and
industry [13, 9, 41, 51, 20, 37, 55, 11, 15, 48, 78, 31, 33,
10, 75, 31, 46, 47, 53, 36, 22], and have seen industrial
deployments [7, 5, 3, 4]. For example, zkSNARKs are
the core technology of Zcash [7, 10], a popular cryptocur-
rency that, unlike Bitcoin, preserves a user’s payment
privacy. Bitcoin requires users to broadcast their private
payment details in the clear on the public blockchain,
so other participants can check the validity of the pay-
ment. In contrast, zkSNARKs enable users to broadcast
encrypted transactions details and prove the validity of
the payments without disclosing what the payments are.

More formally, zkSNARKs allow a prover (e.g., a
Zcash user making a payment) to convince a verifier (e.g.,

any other Zcash user) of a statement of the form “given
a function F and input x, there is a secret w such that
F(x,w) = true”. In the cryptocurrency example, w is
the private payment details, x is the encryption of the
payment details, and F is a predicate that checks that x
is an encryption of w and w is a valid payment. These
proofs provide two useful properties: succinctness and
zero knowledge. The first property allows for extremely
small proofs (128B) and cheap verification (2ms plus a
few µs per byte in x), regardless of how long it takes to
evaluate F (even if F takes years to compute). The sec-
ond property enables privacy preservation, which means
that the proof reveals no information about the secret w
(beyond what is already implied by the statement itself).

The remarkable power of zkSNARKs comes at a cost:
the prover has a significant overhead. zkSNARKs are
based on probabilistically checkable proofs (PCPs) from
Complexity Theory, which remained prohibitively slow
for two decades until a line of recent work brought them
closer to practical systems (see §12). One of the main
reasons for the prover’s overhead is that the statement to
be proved must be represented via a set of logical gates
forming a circuit, and the prover’s cost is quasi-linear in
this circuit’s size. Unfortunately, this prover cost is not
only in time but also in space.

Thus, in existing systems, the zkSNARK prover is
a monolithic process running on a single machine that
quickly exceeds memory bounds as the circuit size in-
creases. State-of-the-art zkSNARK systems [59] can only
support statements of up to 10-20 million gates, at a cost
of more than 1ms per gate. Let us put this size in per-
spective via a simple example: the SHA-256 compression
function, which maps a 512-bit input to a 256-bit output,
has more than 25,000 gates [10]; no more than 400 evalu-
ations of this function fit in a circuit of 10 million gates,
and such a circuit can be used to hash files of up to a
mere 13kB. In sum, 10 million gates is not many. This
bottleneck severely limits the applicability of SNARKs,
and motivates a basic question: can zkSNARKs be used

USENIX Association 27th USENIX Security Symposium 675

for circuits of much larger sizes, and at what cost?
DIZK. We design and build DIZK (DIstributed Zero
Knowledge), a zkSNARK system that far exceeds the
scale of previous state-of-the-art solutions. At its core,
DIZK distributes the execution of a zkSNARK across a
compute cluster, thus enabling it to leverage the aggre-
gated cluster’s memory and computation resources. This
allows DIZK to support circuits with billions of gates
(100× larger than prior art) at a cost of 10µs per gate
(100× faster than prior art).

We evaluate DIZK on two applications: proving au-
thenticity of edited photos (as proposed in [53]), and
proving integrity of machine learning models. DIZK en-
ables applications on significantly larger instance sizes,
e.g., image editing on photos of 2048 by 2048 pixels.

DIZK makes a significant conceptual step forward, en-
larging the class of applications feasible for zkSNARKs.
We implement DIZK via Apache Spark [2] and will re-
lease all source code under a permissive software license.

DIZK does inherit important limitations of zkSNARKs
(see §13). First, while DIZK supports larger circuits than
prior systems, its overhead is still prohibitive for many
practical applications; improving the efficiency of zk-
SNARKs for both small and large circuits remains an
important challenge. Also, like other zkSNARKs, DIZK
requires a trusted party to run a setup procedure that uses
secret randomness to sample certain public parameters;
the cost of this setup grows with circuit size, which means
that this party must also use a cluster, which is harder to
protect against attackers than a single machine. Neverthe-
less, the recent progress on zkSNARKs has been nothing
short of spectacular, which makes us optimistic that future
advancements will address these challenges, and bring the
power of zkSNARKs to many more practical applications.
Challenges and techniques. Distributing a zkSNARK
is challenging. Protocols for zkSNARKs on large circuits
involve solving multiple large instances of tasks about
polynomial arithmetic over cryptographically-large prime
fields and about multi-scalar multiplication over elliptic
curve groups. For example, generating proofs for billion-
gate circuits requires multiplying polynomials of a degree
in the billions, and merely representing these polynomials
necessitates terabit-size arrays. Moreover, fast algorithms
for solving these tasks, such as Fast Fourier Transforms
(FFTs), are notoriously memory intensive, and rely on
continuously accessing large pools of shared memory in
complex patterns. But each node in a compute cluster
can store only a small fraction of the overall state, and
thus memory is distributed and communication between
nodes incurs network delays. In addition, these heavy
algorithmic tasks are all intertwined, which is problematic
as reshuffling large amounts of data from the output of
one task to give as input to the next task is expensive.

We tackle the above challenges in two steps. First, we

single out basic computational tasks about field and group
arithmetic and achieve efficient distributed realizations
of these. Specifically, for finite fields, DIZK provides
distributed FFTs and distributed Lagrange interpolant
evaluation (§4.1); for finite groups, it provides distributed
multi-scalar multiplication with fixed bases and with vari-
able bases (§4.2). Throughout, we improve efficiency by
leveraging characteristics of the zkSNARK setting instead
of implementing agnostic solutions.

Second, we build on these components to achieve a dis-
tributed zkSNARK. Merely assembling these components
into a zkSNARK as in prior monolithic systems, however,
does not yield good efficiency. zkSNARKs transform the
computation of a circuit into an equivalent representation
called a Quadratic Arithmetic Program [37, 55]: a circuit
with N wires and M gates is transformed into a satisfac-
tion problem about O(N) polynomials of degree O(M).
The evaluations of these polynomials yield matrices of
size O(N)×O(M) that are sparse, with only O(N +M)
non-zero entries. While this sparsity gives rise to straight-
forward serial algorithms, the corresponding distributed
computations suffer from stragglers with large overheads.

The reason lies in how the foregoing transformation
is used in a zkSNARK. Different parts of a zkSNARK
leverage the sparsity of the matrices above in different
ways: the so-called QAP instance reduction relies on their
column sparsity (§5), while the corresponding QAP wit-
ness reduction relies on their row sparsity (§6). However,
it turns out that the columns and rows are almost sparse:
while most columns and rows are sparse, some are dense,
and the dense ones create stragglers.

We address this issue via a two-part solution. First, we
run a lightweight distributed computation to identify and
annotate the circuit with which columns/rows are dense.
Second, we run a hybrid distributed computation that
uses different approaches to process the sparse and dense
columns/rows. Overall we achieve efficient distributed
realizations for these QAP routines. In particular, this ap-
proach outperforms merely invoking generic approaches
that correct for load imbalances such as skewjoin [6].

Finally, we emphasize that most of the technical work
described above can be re-used as the starting point to
distribute many other similar proof systems. We have
thus packaged these standalone components as a separate
library, which we deem of independent interest.

We also briefly mention that supporting billion-gate
circuits required us to generate and use a pairing-friendly
elliptic curve suitable for this task. See §9 for details.

Authenticity of photos & integrity of ML models. We
study the use of DIZK for two natural applications: (1) au-
thenticity of edited photos [53] (see §7.1); and (2) in-
tegrity of machine learning models (see §7.2). Our ex-
periments show that DIZK enables such applications to
scale to much larger instance sizes than what is possible

676 27th USENIX Security Symposium USENIX Association

via previous (monolithic) systems.
An application uses DIZK by constructing a circuit for

the desired computation, and by computing values for the
circuit’s wires from the application inputs. We do this,
for the above applications, via distributed algorithms that
exploit the parallel nature of computations underlying
editing photos and ML training algorithms.

Cryptography at scale. DIZK exemplifies a new
paradigm. Cryptographic tools are often executed as
monolithic procedures, which hampers their applicability
to large problem sizes. We believe that explicitly de-
signing such tools with distributed architectures in mind
enables “cryptography at scale”, and we view DIZK as a
step in this direction for the case of zkSNARKs.

2 Background on zkSNARKs
The notion of a zkSNARK, formulated in [52, 38, 19], has
several definitions. We consider one known as a publicly-
verifiable preprocessing zkSNARK (see [20, 37]). We
cover necessary background on zkSNARKs by providing
a high-level description (§2.1), an informal definition
(§2.2), and the protocol that we start from (§2.3).

2.1 High-level description
A zkSNARK can be used to prove/verify statements of
the form “given a public predicate F and a public input x,
I know a secret input w such that F(x,w) = true”. It has
three components: setup, prover, and verifier (Fig. 1).
• The setup receives a predicate F (expressed in a cer-

tain way as discussed in §2.2) and outputs a proving
key pkF and verification key vkF . Both keys are pub-
lished as public parameters and pkF /vkF can be used
to prove/verify any number of statements about F . In
particular, the setup for F needs to be run only once.
While the setup outputs keys that are public information,
its intermediate computation steps involve secret values
that must remain secret. Thus, the setup must be run
by a trusted party — this requirement is challenging,
however prior work has studied mitigations (see §13).

• The prover receives the proving key pkF , a public in-
put x for F , and a secret input w for F , and outputs a
proof π . The proof attests to the statement “given F
and x, I know a secret w such that F(x,w) = true”, but
reveals no information about w. The generation of π in-
volves randomness that imbues it with zero knowledge.
Anyone can run the prover.

• The verifier receives the verification key vkF , a public
input x for F , and a proof π , and outputs a decision bit
(‘accept’ or ‘reject’). Anyone can run the verifier.

A zkSNARK’s costs are determined by the ‘execution
time’ TF of F (see §2.2) and the size k of the input x
(which is at most TF). The execution time is at least the
size of the input and, in many applications, much larger
than it. Thus, TF is seen to be significantly larger than k.

The key efficiency feature of a zkSNARK is that the
verifier running time is proportional to k alone (regardless
of TF) and the proof has constant size (regardless of k,TF).
The size of vkF is proportional to k (regardless of TF).

However, the setup and the prover are very expensive:
their running times are (at least) proportional to TF . The
size of pkF is large, because it is proportional to TF .

Running the setup and prover is a severe bottleneck
in prior zkSNARK systems since time and space usage
grows in TF . Our focus is to overcome these bottlenecks.

2.2 The zkSNARK language and interface
While one typically expresses a computation F via
a high-level programming language, a zkSNARK re-
quires expressing F via a set of quadratic constraints
φF , which is closely related to circuits of logical gates.
A zkSNARK proof then attests that such a set of con-
straints is satisfiable. The size of φF is related to
the execution time of F . There has been much re-
search [55, 11, 15, 22, 48, 78, 31, 75, 14] devoted to
techniques for encoding programs via sets of constraints,
and in this paper, we consider φF as given.
The zkSNARK language. We describe the type of com-
putation used in the interface of a zkSNARK. Values are
in a field F of a large prime order p.

An R1CS instance φ over F is parameterized by the
number of inputs k, number of variables N (with k ≤ N),
and number of constraints M; φ is a tuple (k,N,M,a,b,c)
where a,b,c are (1+N)×M matrices over F.

An input for φ is a vector x in Fk, and a witness for φ is
a vector w in FN−k. An input-witness pair (x,w) satisfies
φ if, letting z be the vector F1+N composed of 1, x, and
w, the following holds for all j ∈ [M]:(

∑
N
i=0 ai, jzi

)
·
(
∑

N
i=0 bi, jzi

)
= ∑

N
i=0 ci, jzi .

One can treat each quadratic constraint above as repre-
senting a logical gate. Boolean and arithmetic circuits are
easily reducible to this form. We view a,b,c as containing
the ‘left’, ‘right’, and ‘output’ coefficients respectively;
rows index variables and columns index constraints.
The zkSNARK interface. A zkSNARK consists of
three algorithms: setup S , prover P , and verifier V .
• Setup. On input a R1CS instance φ = (k,N,M,a,b,c),

S outputs a proving key pk and a verification key vk.
• Prover. On input a proving key pk (for an R1CS in-

stance φ), input x in Fk, and witness w in FN−k, P
outputs a proof π that attests to the x-satisfiability of φ .

• Verifier. On input a verification key vk (generated for
φ), input x in Fk, and proof π , V outputs a decision bit.

2.3 The zkSNARK protocol of Groth
Our system provides a distributed implementation of
a zkSNARK protocol due to Groth [42]. We selected
Groth’s protocol because it is, to our knowledge, the

USENIX Association 27th USENIX Security Symposium 677

Setup

Prover Verifier

accept
or reject

run once per F

pkF vkF

repeat for any x,w
Here is a proof π that I know
a secret w s.t. F(x,w)=true.

proving key verification
key

π

x

input

w

x

secret input

secret randomness

F
(expressed as a
set of constraints)

predicate

Figure 1: Components of a zkSNARK. Shaded com-
ponents are those that we distribute so to support prov-
ing/verifying statements about large computations. Prior
systems run these components as monolithic procedures
on a single machine.

F
predicate

Setup

Prover

Verifier

accept
or reject

secret randomness

pkF
vkF

π

Here is a proof π that I know
a secret w s.t. F(x,w)=true.

w

x
x

input

secret input

Figure 2: A distributed zkSNARK. The setup algorithm
is run on a compute cluster, and generates a long proving
key pk, held in distributed storage, and a short verifi-
cation key vk. The prover algorithm is also run on a
compute cluster.

most efficient zkSNARK protocol. That said, our tech-
niques are easily adapted to similar zkSNARK protocols
[37, 20, 55, 32, 43]. We now describe only the parts of
Groth’s protocol that are needed to understand our tech-
niques, and refer the reader to [42] for details (including
correctness and security, which we inherit). For reference,
we include the full protocol in Fig. 10 (in the appendix)
using the notation introduced in this section.

QAPs. Groth’s zkSNARK protocol uses Quadratic
Arithmetic Programs (QAPs) [37, 55] to efficiently ex-
press the satisfiability of R1CS instances via certain low-
degree polynomials. Essentially, the M constraints are
‘bundled’ into a single equation that involves univariate
polynomials of degree O(M). The prover’s goal is then
to convince the verifier that this equation holds. In fact, it
suffices for the verifier to know that this equation holds
at a random point because distinct polynomials of small
degree can only agree on a small number of points.

In a little more detail, we now define what is a QAP
instance, and what does satisfying such an instance mean.

A QAP instance Φ over F has three parameters, the
number of inputs k, number of variables N (with k ≤ N),
and degree M; Φ is a tuple (k,N,M,A,B,C,D) where
A,B,C are each a vector of 1+N polynomials over F of
degree < M, and D is a subset of F of size M.

An input for Φ is a vector x in Fk, and a witness for
Φ is a pair (w,h) where w is a vector in FN−k and h is a
vector in FM−1. An input-witness pair

(
x,(w,h)

)
satisfies

Φ if, letting z ∈ F1+N be the concatenation of 1, x, and w:(
∑

N
i=0 Ai(X)zi

)
·
(
∑

N
i=0 Bi(X)zi

)
= ∑

N
i=0 Ci(X)zi +

(
∑

M−2
i=0 hiX i

)
·ZD(X) ,

where ZD(X) := ∏α∈D(X−α).

One can efficiently reduce R1CS instances to QAP
instances [37, 55]: there is a QAP instance reduction qapI
and a QAP witness reduction qapW, for which our system
provides distributed implementations of both.

QAP instance reduction. For every R1CS instance
φ = (k,N,M,a,b,c), qapI(φ) outputs a QAP instance
Φ = (k,N,M,A,B,C,D) that preserves satisfiability: for
every input x in Fk, φ is x-satisfiable iff Φ is x-satisfiable.
It works as follows: let D be a subset of F of size M and
then, for each i ∈ {0,1, . . . ,N}, let Ai be the polynomial
of degree < M that interpolates over D the i-th row of the
matrix a; similar for each Bi and Ci in regards to b and c.

QAP witness reduction. For every witness w in FN−k

s.t. (x,w) satisfies φ , qapW(φ ,x,w) outputs h in FM−1

s.t. (x,(w,h)) satisfies Φ. It works as follows: let h be
the coefficients of the polynomial H(X) of degree less
than M− 1 that equals the quotient of (∑N

i=0 Ai(X)zi) ·
(∑N

i=0 Bi(X)zi)−∑
N
i=0 Ci(X)zi and ZD(X).

Bilinear encodings. Groth’s protocol uses bilinear en-
codings, which enable hiding secrets while still allowing
for anyone to homomorphically evaluate linear functions
as well as zero-test quadratic functions.

We denote by G a group, and consider only groups with
a prime order p, which are generated by an element G .
We use additive notation for group arithmetic: P+Q de-
notes addition of the two elements P and Q. Thus, s ·P
denotes scalar multiplication of P by the scalar s ∈ Z.
Since p ·P equals the identity element, we can equiva-
lently think of a scalar s as in the field F of size p. The
encoding (relative to G) of a scalar s ∈ F is [s] := s ·G ;
similarly, the encoding of a vector of scalars s ∈ Fn is
[s] := (s1 ·G , . . . ,sn ·G). The encoding of a scalar can be
efficiently computed via the double-and-add algorithm;
yet (for suitable choices of G) its inverse is conjecturally

678 27th USENIX Security Symposium USENIX Association

hard to compute, which means that [s] hides (some) infor-
mation about s. Encodings are also linearly homomorphic:
[αs+β t] = α[s]+β [t] for all α,β ,s, t ∈ F.

Bilinear encodings involve three groups of order p:
G1,G2,G3 generated by G1,G2,G3 respectively. The en-
coding of a scalar s ∈ F in Gi is [s]i := s ·Gi. Moreover,
there is an efficiently computable map e : G1×G2→G3,
called pairing, that is bilinear: for every nonzero α,β ∈F,
it holds that e([α]1, [β]2) = αβ · e(G1,G2). (Also, e is
non-degenerate in that e([1]1, [1]2) 6= [0]3.) Pairings al-
low zero-testing quadratic polynomials evaluated on en-
codings. For example, given [s]1, [t]2, [u]1, one can test if
st +u = 0 by testing if e([s]1, [t]2)+ e([u]1, [1]2) = [0]3.

3 Design overview of DIZK
Fig. 2 shows the outline of DIZK’s design. The setup
and the prover in DIZK are modified from monolithic
procedures to distributed jobs on a cluster; F , pkF , and
w are stored as data structures distributed across multiple
machines instead of on a single machine. The verifier
remains unchanged from the vanilla protocol as it is inex-
pensive, enabling DIZK’s proofs to be verified by existing
implementations of the verifier.
Spark. We implemented DIZK using Apache Spark
[2], a popular cluster computing framework, though our
design principles behind DIZK are applicable to other
frameworks [1, 35, 44]. Spark consists of two compo-
nents: the driver and executors. Applications are created
by the driver and assigned to executors, consisting of jobs
split into stages that dictate a set of tasks. Large datasets
are stored as Resilient Distributed Datasets (RDDs).
System interface. The interface of DIZK matches the
interface of a zkSNARK for proving/verifying satisfiabil-
ity of R1CS instances (see §2.2) except that large objects
are represented via RDDs. More precisely:
• The setup receives an R1CS instance φ =
(k,N,M,a,b,c) and outputs corresponding keys
pk and vk. As instance size grows (i.e., as the number
of variables N and of constraints M grow), φ and
pk grow in size (linearly in N and M), so both are
represented as RDDs.

• The prover receives the proving key pk, input x in Fk,
and witness w in FN−k. The prover outputs a proof π

of constant size (128B). As typically the input size k is
small and the witness size N− k is large, we represent
the input as an array and the witness as an RDD.
When using DIZK in an application, the application

setup needs to provide φ to the DIZK setup, and the
application prover needs to provide x and w to the DIZK
prover. Since these items are big, they may also need
to be generated in a distributed way; we do so for our
applications in §7.
High-level approach. The setup and prover in serial
implementations of zkSNARKs run monolithic space-

Prover

QAP witness reduction

varMSM

FFT

Setup

QAP instance reduction

fixMSM

Lag

pkF vkF π

F pkF w
x

Figure 3: Distributed setup and prover (and sub-
components).

intensive computations that quickly exceed memory
bounds. Our approach for an efficient distributed im-
plementation is as follows.

First, we identify the heavy computational tasks that
underlie the setup and prover. In Groth’s protocol these
fall in three categories: (1) arithmetic (multiplication and
division) for polynomials of large degree over large prime
fields; (2) multi-scalar multiplication over large prime
groups; (3) the QAP instance and witness reductions de-
scribed in §2.3. Such computations underlie other proof
systems too (see full version).

Second, we design distributed implementations of these
components. While there are simple strawman designs
that follow naive serial algorithms, these are too expensive
(e.g., run in quadratic time); on the other hand, non-naive
serial algorithms gain efficiency by leveraging large pools
of memory. We explain how to distribute these memory-
intensive algorithms.

Finally, we assemble the aforementioned distributed
components into a distributed setup and distributed prover.
This assembly poses challenges as the dataflow from
one component to another requires several large-scale
re-shuffles that we resolve with tailored data structures.

Fig. 3 presents a diagram of the main parts of the de-
sign, and we describe them in the following sections: §4
discusses how to distribute polynomial arithmetic and
multi-scalar multiplication; §5 discusses how to distribute
the QAP instance reduction, and how to obtain the dis-
tributed setup from it; §6 discusses how to distribute the
QAP witness reduction, and how to obtain the distributed
prover from it.

4 Design: distributing arithmetic
We describe the computational tasks involving finite field
and finite group arithmetic that arise in the zkSNARK, and
how we distribute these tasks. These form subroutines of
the distributed setup and distributed prover computations
(see §5 and §6).

USENIX Association 27th USENIX Security Symposium 679

4.1 Distributed fast polynomial arithmetic
The reduction from an R1CS instance
φ = (k,N,M,a,b,c) to a QAP instance Φ =
(k,N,M,A,B,C,D) (in the setup) and its witness
reduction (in the prover) involves arithmetic on Θ(N)
polynomials of degree Θ(M); see §2.3. (N is the number
of variables and M is the number of constraints.)

We distribute the necessary polynomial arithmetic, al-
lowing us to scale to N and M that are in the billions.

4.1.1 Arithmetic from evaluation and interpolation
Fast polynomial arithmetic is well-known to rely on fast
algorithms for two fundamental tasks: polynomial evalu-
ation and interpolation. In light of this, our approach is
the following: (i) we achieve distributed fast implemen-
tations of evaluation and interpolation, and (ii) use these
to achieve distributed fast polynomial arithmetic such as
multiplication and division.

Recall that (multi-point) polynomial evaluation is as
follows: given a polynomial P(X) = ∑

n−1
j=0 c jX j over

F and elements u1, . . . ,un in F, compute the elements
P(u1), . . . ,P(un). One can do this by evaluating P at each
point, costing Θ(n2) field operations overall.

Conversely, polynomial interpolation is as follows:
given elements u1,v1, . . . ,un,vn in F, compute the poly-
nomial P(X) = ∑

n−1
j=0 c jX j over F such that vi = P(ui) for

every i ∈ {1, . . . ,n}. One can do this by using u1, . . . ,un
to compute the Lagrange interpolants L1(X), . . . ,Ln(X),
which costs Θ(n2 logn) field operations [71], and then
output ∑

n
j=1 v jL j(X), which costs another Θ(n2).

While both solutions are straightforward to distribute,
they are too expensive due to the quadratic growth in n.
We describe distributed FFT in the next section, while
leaving the details of Lag to the appendix (§4.1.3).

4.1.2 Distributed FFT
Fast Fourier Transforms (FFTs) [71] provide much faster
solutions, which run in time Õ(n). For instance, the
Cooley–Tukey algorithm [29] solves both problems with
O(n logn) field operations, provided that F has suitable
algebraic structure (in our setting it does). The algorithm
requires storing an array of n field elements in working
memory, and performing O(logn) ‘passes’ on this array,
each costing O(n). The structure of this algorithm can
be viewed as a butterfly network since each pass requires
shuffling the array according to certain memory patterns.

While the Cooley–Tukey algorithm implies a fast paral-
lel algorithm, its communication structure is not suitable
for compute clusters. At each layer of the butterfly net-
work, half of the executors are left idle and the other half
have their memory consumption doubled; moreover, each
such layer requires a shuffle involving the entire array.

We take a different approach, suggested by Sze [65],
who studies the problem of computing the product of
terabit-size integers on compute clusters, via MapReduce.

Sze’s approach requires only a single shuffle. Roughly,
an FFT computation with input size n is reduced to two
batches of

√
n FFT computations, each on input size

√
n.

The first batch is computed by the mappers; after the
shuffle, the second batch is computed by the reducers. We
use the same approach to implement a distributed FFT,
but in the setting of finite fields.

4.1.3 Distributed Lag
An additional task that arises (in the setup, see §5) is
a problem related to polynomial evaluation that we call
Lag (from ‘Lagrange’): given a domain {u1, . . . ,un} ⊆ F
and an element t ∈ F, compute the evaluation at t of all
Lagrange interpolants L1(X), . . . ,Ln(X) for the domain.

A common approach to do so is via the barycen-
tric Lagrange formula [17]: compute the barycentric
weights r1, . . . ,rn as ri := 1/∏ j 6=i(ui−u j), and then com-
pute L1(t), . . . ,Ln(t) as Li(t) := ri

t−ui
·L(t) where L(X) :=

∏
n
j=1(X−u j).
When the domain is a multiplicative subgroup of the

field generated by some ω ∈ F (in our setting it is), this
approach results in an expression, Li(X) = ω i/n

X−ω i · (Xn−
1), that is cheap to evaluate. This suggests a simple but
effective distributed strategy: each executor in the cluster
receives the value t ∈ F and a chunk of the index space
i, and uses the inexpensive formula to evaluate Li(t) for
each index in that space.

4.2 Distributed multi-scalar multiplication
In addition to the expensive finite field arithmetic dis-
cussed above, the setup and prover also perform expensive
group arithmetic, which we must efficiently distribute.

After obtaining the evaluations of Θ(N+M) polynomi-
als, the setup encodes these values in the groups G1 and
G2, performing the operations s→ [s]1 and s→ [s]2 for
Θ(N +M) values of s. In contrast, the prover computes
linear combinations of Θ(N +M) encodings. Again, we
seek to scale to N and M that are in the billions.

These operations can be summarized as two basic com-
putational problems within a group G of a prime order p
(where scalars come from the field F of size p).
• Fixed-base multi-scalar multiplication (fixMSM).

Given a vector of scalars s in Fn and element P in
G, compute the vector of elements s ·P in Gn.

• Variable-base multi-scalar multiplication (varMSM).
Given a vector of scalars s in Fn and a vector of ele-
ments (Pi)

n
i=1 in Gn, compute ∑

n
i=1 si ·Pi in G.

For small n, both problems have simple solutions: for
fixMSM, compute each element si ·P and output it; for
varMSM, compute each si ·Pi and output their sum.

In our setting, these solutions are expensive not only
because n is huge, but also because the scalars are (essen-
tially) random in F, whose cryptographically-large prime
size p has k ≈ 256 bits. This means that the (average)

680 27th USENIX Security Symposium USENIX Association

number of group operations in these simple solutions is
≈ 1.5kn, a prohibitive cost.

Both problems can be solved via algorithms that, while
being much faster, make an intensive use of memory.
We next discuss our approach to efficiently distribute
varMSM. We leave the discussion of distributing fixMSM
to §4.2.2.

4.2.1 Distributed varMSM
An efficient algorithm for varMSM is Pippenger’s algo-
rithm [57], which is within 1+o(1) of optimal for nearly
all scalar vectors [58]. In the setting of serial zkSNARKs
this algorithm outperforms, by 20-30%, the popular Bos–
Coster algorithm [34, §4]. (Other well-known algorithms
like Straus’ algorithm [64] and the Chang–Lou algorithm
[25] are not as fast on large instances; see [16].)

Given scalars s1, . . . ,sn and their bases P1, · · · ,Pn,
Pippenger’s algorithm chooses a radix 2c, computes
bs1/2ccP1 + · · ·+ bsn/2ccPn, doubles it c times, and
sums it to (s1 mod 2c)P1 + · · ·+ (sn mod 2c)Pn. For
the last step, the algorithm sorts the base elements into 2c

buckets according to (s1 mod 2c), . . . ,(sn mod 2c) (dis-
carding bucket 0), sums the base elements in the remain-
ing buckets to obtain intermediate sums Q1, . . . ,Q2c−1,
and computes Q1+2Q2+ · · ·+(2c−1)Q2c−1 =(s1 mod
2c)P1 + · · ·+(sn mod 2c)Pn. For a suitable choice of
2c, this last step saves computation because each bucket
contains the sum of several input bases.

A natural approach to distribute Pippenger’s algorithm
is to set the number of partitions to 2c and use a custom
partitioner that takes in a scalar si as the key and maps
its base element bi to partition (si mod 2c). While this
approach is convenient, we find in practice that the cost
of shuffling in this approach is too high. Instead, we
find it much faster to merely split the problem evenly
across executors, run Pippenger’s algorithm serially on
each executor, and combine the computed results.

4.2.2 Distributed fixMSM
Efficient algorithms for fixMSM use time-space tradeoffs
[23]. Essentially, one first computes a certain look-up
table of multiples of P , and then uses it to compute each
si ·P . As a simple example, via log |F| group operations,
one can compute the table (P,2 ·P,4 ·P, . . . ,2log |F| ·
P), and then compute each si ·P with only log |F|/2
group operations (on average). More generally one can
increase the ‘density’ of the look-up table and further
reduce the time to compute each si ·P . As n increases,
it is better for the look-up table to also grow, but larger
tables require more memory to store them.

A natural approach to distribute this workload across a
cluster is to evenly divide the n scalars among the set of
executors, have each executor build its own in-memory
look-up table and perform all assigned scalar multiplica-
tions aided by that table, and then assemble the output

from all executors. However, this approach does not fit
Spark because each executor receives many ‘partitions’
and these cannot hold shared references to local results
previously computed by the executor. Instead, we let a
single executor (the driver) build the look-up table and
broadcast it to all other executors. Each executor receives
this table and an even distribution of the scalars, and
computes all its assigned scalar multiplications.

5 Distributing the zkSNARK setup
The zkSNARK setup receives as input an R1CS instance
φ = (k,N,M,a,b,c) and produces a proving key pk and
a verification key vk.

Informally, the protocol has three stages: (i) eval-
uate the polynomials A,B,C at a random element
t, where A,B,C are from the QAP instance Φ =
(k,N,M,A,B,C,D) corresponding to φ ; (ii) compute cer-
tain random linear combinations of these; (iii) compute
encodings of corresponding vectors. The second stage
is straightforward to distribute, and the third stage is an
instance of fixMSM (see §4.2.2). Thus here we discuss
efficient distribution of the first stage only.

Recall from the QAP instance reduction (in §2.3) that
A = (A0, . . . ,AN) where Ai is the polynomial of degree
< M that interpolates over D the i-th row of the matrix
a; similarly for each B and C with regard to b and c.
Focusing on a for simplicity and letting L1, . . . ,LM be the
Lagrange interpolants for the set D (i.e., L j evaluates to 1
at the j-th element of D and to 0 everywhere else in D),
the task we need to solve in a distributed way is:

in: a ∈ F(1+N)×M and t ∈ F
out: (Ai(t))N

i=0 where Ai(t) := ∑
M
j=1 ai, jL j(t)

The parameters N and M are big enough such that no
single machine can store any vector of length N or M.

In both serial zkSNARK systems and in our distributed
system, the first step is to compute (L j(t))M

j=1. We do
so via the distributed Lag protocol described in §4.1.3,
which computes and stores (L j(t))M

j=1 in an RDD. We
now focus on the remainder of the task.

A key property of the matrix a exploited in serial zk-
SNARK systems is its sparsity; that is, a contains very
few non-zero entries. This enables the serial algorithm to
iterate through every nonzero ai, j, look up the value L j(t),
and add ai, jL j(t) to the i-th entry in A(t). Distributing
this approach in the natural way, however, results in a
solution that is both inefficient in time and cannot scale
to large N and M, as discussed next.

Strawman. Represent a = (ai, j)i, j and (L j(t)) j as two
RDDs and perform the following computations:
1. Join the set (ai, j)i, j with the set (L j(t)) j by index j.
2. Map each pair (ai, j,L j(t)) to its product ai, jL j(t).
3. Reduce the evaluations by i to get (∑M

j=1 ai, jL j(t))N
i=0.

USENIX Association 27th USENIX Security Symposium 681

When running this computation, we encounter notable
issues at every step: the set of joined pairs (ai, j,L j(t)) is
unevenly distributed among executors, the executors take
drastically differing amounts of time to perform the pair
evaluations, and a small set of executors quickly exceed
memory bounds from insufficient heap space.

Our problems lie in that, while the matrix a is sparse,
its columns are merely almost sparse: most columns are
sparse, but a few are dense. This occurs when in an R1CS
instance φ some constraints “touch” many variables. This
is not a rarity, but a common occurrence in typical con-
straint systems. E.g., consider the basic linear-algebraic
operation of computing the dot product between a large
variable vector and a large constant vector. The single
constraint in φ that captures this dot product has as many
variables as the number of non-zero constants in the con-
stant vector, inducing a dense column.

The default (hash-based) partitioner of the join algo-
rithm maps all entries in a column to the same executor,
resulting in executors for dense columns becoming strag-
glers. While there exist alternative join algorithms to han-
dle load imbalances, like blockjoin and skewjoin
[6], these do not perform well, as we now explain.

First, blockjoin replicates each entry in one RDD
(the one for (L j(t)) j) in the hopes that when joining with
the other RDD (the one for (ai, j)i, j) the partitions will
be more evenly distributed. However, in our setting we
cannot afford blowing up the size of the first RDD.

Second, skewjoin takes a more fine-grained ap-
proach, by computing statistics of the second RDD and
using it to calculate the replication factor for each entry
in the first RDD. While the memory footprint is smaller,
it remains undesirable.

A problem in both approaches is that replicating entries
entails changing the keys of the two RDDs, by first adding
counters to each key before joining and then removing
these after joining. Each of these changes requires ex-
pensive shuffles to relocate keys to the correct partitions
based on their hash. A second inefficiency comes from
performing a single monolithic join on the two (modified)
RDDs, costing significant working memory.

We circumvent all these problems via systematic two-
part solution tailored to our setting, as described below.
(And only briefly mention that the foregoing skewjoin
approach does not scale beyond 50 million constraints on
even 128 executors and is twice as slow as our solution.)

Part 1: identify dense vectors. Before running the
setup, DIZK runs a lightweight, distributed computation
to identify the columns that have many non-zero elements
and annotates them for Part 2. Using a straightforward
map and reduce computation would also result in strag-
glers because of the dense columns. DIZK avoids strag-
glers as follows. Suppose that the matrix a is stored as an
RDD with ` partitions. First, DIZK assigns each partition

to a random executor. Second, each executor computes,
for every column j, the number of non-zero elements it
receives. Third, the executors run a shuffle, during which
the elements for the same column go to the same executor.
Finally, each executor computes the final count for its
assigned columns. Thus even dense columns will have at
most ` values to aggregate, avoiding stragglers.

DIZK identifies which columns have more than a
threshold of non-zero elements and annotates them for
Part 2. We heuristically set the threshold to be

√
M. As a

is overall sparse, there are not many dense constraints.
Let Ja be the set of indices j identified as dense.

Part 2: employ a hybrid solution. DIZK now executes
two jobs: one for the few dense columns, and one for
the many sparse columns. The first computation filters
each dense column into multiple partitions, so that no
executor deals with an entire dense column but only with
a part of it, and evaluates the joined pairs. The second
computation is the strawman above, limited to indices not
in Ja. We do so without having to re-key RDDs or incur
any replication. In more detail, the computation is:

1. For all dense column indices j ∈ Ja:
(a) filter a by index j to obtain column a j as an RDD;
(b) join the RDD (ai, j)i, j with L j(t) for j;
(c) map each pair (ai, j,L j(t)) to its product ai, jL j(t).

2. Join the set (ai, j)i, j/∈Ja with L j(t) by index j.
3. Map each pair (ai, j,L j(t)) to its evaluation ai, jL j(t).
4. Union (ai, jL j(t)) j∈Ja with (ai, jL j(t)) j/∈Ja .
5. Reduce all ai, jL j(t) by i to get (Ai(t))N

i=0.

6 Distributing the zkSNARK prover
The zkSNARK prover receives a proving key pk, input x
in Fk, and witness w in FN−k, and samples a proof π .

The protocol has two stages: (i) extend the x-witness w
for the R1CS instance φ to a x-witness (w,h) for the QAP
instance Φ; (ii) use x, w, h and additional randomness to
compute certain linear combinations of pk. The second
stage is an instance of varMSM (see §4.2.1). Thus here
we discuss efficient distribution of the first stage only.

Recall from the QAP witness reduction (in §2.3) that
h is the vector of coefficients of the polynomial H(X) of
degree less than M−1 that equals the ratio

(∑N
i=0 Ai(X)zi) · (∑N

i=0 Bi(X)zi)−∑
N
i=0 Ci(X)zi

ZD(X)
.

This polynomial division can be achieved by: (a) choos-
ing a domain D′ disjoint from D of size M (so that the
denominator ZD(X) never vanishes on D′, avoiding divi-
sions by zero); (b) computing the component-wise ratio
of the evaluations of the numerator and denominator on
D′ and then interpolating the result. Below we discuss
how to evaluate the numerator on D′ because the same
problem for the denominator is not hard since ZD(X) is a
sparse polynomial (for suitably chosen D).

682 27th USENIX Security Symposium USENIX Association

The evaluation of the numerator on D′ is computed by
first evaluating the numerator on D, and then using FFT
techniques to convert this evaluation into an evaluation
on the disjoint domain D′ (run an inverse FFT on D and
a forward FFT on D∪D′). The second part is done via a
distributed FFT (§4.1.2).

Let us focus for simplicity on computing the evaluation
of the polynomial Az(X) := ∑

N
i=0 Ai(X)zi on D, which is

one of the terms in the numerator. Since the evaluation of
Ai on D equals the i-th row of a, the task that needs to be
solved in a distributed way is the following.

in: a ∈ F(1+N)×M and z ∈ F1+N

out: (∑N
i=0 ai, jzi)

M
j=1

Again, the parameters N and M are huge, so no single
machine can store an array with N or M field elements.
Strawman. Encode a = (ai, j)i, j and z = (zi)i as two
RDDs and perform the following distributed computation:
1. Join the set (ai, j)i, j and the set (zi)i by the index i.
2. Map each (ai, j,zi) pair to their product ai, jzi.
3. Reduce the evaluations by index j to get

(∑N
i=0 ai, jzi)

M
j=1.

When running this computation, we ran into a strag-
glers problem that is the converse of that described in
§5: while matrix a is sparse, its rows are almost sparse
because, while most rows are sparse, some rows are dense.
The join overloaded the executors assigned to dense rows.

The reason underlying the problem is also the converse:
some variables participate in many constraints. This situ-
ation too is a common occurrence in R1CS instances. For
example, the constant value 1 is used often (e.g., every
constraint capturing boolean negations) and this constant
appears as an entry in z.

Generic solutions for load imbalances like skewjoin
[6] were not performant for the same reasons as in §5.
Our approach. We solve this problem via a two-part
solution analogous to that in §5, with the change that the
computation is now for rows instead of columns. The
dense vectors depend on the constraints alone so they
do not change during proving, even for different inputs
x. Hence, Part 1 runs once during setup, and not again
during proving (only Part 2 runs then).

7 Applications
We study two applications for our distributed zkSNARK:
(1) authenticity of edited photos [53] (see §7.1); and (2) in-
tegrity of machine learning models (see §7.2). In both
cases the application consists of algorithms for two tasks.
One task is expressing the application predicate as an
R1CS instance, which means generating a certain set of
constraints (ideally, as small as possible) to pass as input
to the setup. The other task is mapping the application
inputs to a satisfying assignment to the constraints, to
pass as input to the prover.

Recall that our distributed zkSNARK expects the R1CS
instance (set of constraints) and witness (assignment)
to be distributed data structures (see §3). In both ap-
plications, we distribute the constraint generation and
witness generation across multiple machines, which for
sufficiently large instance sizes, confers greater efficiency.

7.1 Authenticity of photos
Authenticity of photos is crucial for journalism and crime
investigations but is difficult to ensure due to powerful
digital editing tools. A recent paper, PhotoProof [53], pro-
poses an approach that relies on a combination of special
signature signing cameras and zkSNARKs to prove, in
zero knowledge, that an edited image was obtained from
a signed (and thus valid) input image only according to
a set of permissible transformations. More precisely, the
camera actually signs a commitment to the input image,
and this commitment and signature also accompany the
edited image, and thus can be verified separately.

We benchmark our system on this application because
the original PhotoProof relies on monolithic zkSNARK
implementations and is thus limited to small photo sizes.
Our system’s scalability allows for proofs of relatively
large images (see §11). Below we describe the three trans-
formations that we implemented: crop, rotation, and blur;
the first two are also implemented in [53], while the third
one is from [49]. Throughout, we consider images of di-
mension r× c that are black and white, which means that
each pixel is an integer between 0 and 255; we represent
such an image as a list of rc field elements each storing
a pixel. Our algorithms can be extended to color images
via RGB representation, but we do not do so in this work.

Crop. The crop transformation is specified by a r× c
mask and maps an input r× c image into an output r× c
image by keeping or zeroing out each pixel according to
the corresponding bit in the mask. This choice is realized
via a MUX gadget controlled by the mask’s bit. We obtain
that the number of constraints is rc and the number of
variables is 3rc. In our implementation, we distribute
the generation of constraints and variable assignment by
individually processing blocks of pixels.

Rotation. The rotation transformation is specified by
an angle θ ∈ [0,π/4] and maps a pixel in position (x,y)
to
(

cosθ −sinθ

sinθ cosθ

)
(x,y); this rotates the image by angle θ

around (0,0). Some pixels go outside the image and are
thus lost, while new pixels appear and are set to zero.

We follow the approach of [53], and use the method
of rotation by shears [54], which uses the identity(

cosθ −sinθ

sinθ cosθ

)
=
(

1 − tan(θ/2)
0 1

)(
1 0

sinθ 1

)(1 − tan(θ/2)
0 1

)
. The

first is a shear by row, the second a shear by column, and
the third again a shear by row. Each shear is performed by
individually invoking a barrel shifter to every row or col-
umn, with the correct offset. For more details on how to

USENIX Association 27th USENIX Security Symposium 683

compute the offsets and the shear transformations, please
refer to the full version.

In our implementation, we distribute the generation
of constraints and variable assignment by distributing
each shear, which can be done by generating each barrel
shifter’s constraints and variable assignment in parallel.
Blur. The blur transformation is specified by a position
(x,y), height u, and width v; it maps an input r× c im-
age into an output r× c image in which Gaussian blur
has been applied to the u× v rectangle whose bottom-
left corner is at (x,y). More precisely, we approximate
Gaussian blur via three sequential box blurs, which are
further reduced to six directional blurs [49]. To realize
this transformation as constraints, we need to verify, for
each of the uv positions in the selected region and for
each of the 6 directional blurs, that the new pixel is the
correct (rounded) average of the 2r+1 pixels in the old
image. For more details on the algorithm, please refer to
the full version.

In our implementation, since the value of each new
pixel only depends on several surrounding pixels, we
distribute the generation of constraints and witnesses by
pixel blocks in the selected region.

7.2 Integrity of machine learning models
Suppose that a hospital owns sensitive patient data, and
a researcher wishes to build a (public) model by running
a (public) training algorithm on this sensitive data. The
hospital does not want (or legally cannot) release the data;
on the other hand, the researcher wants others to be able
to check the integrity of the model. One way to resolve
this tension is to have the hospital use a zkSNARK to
prove that the model is the output obtained when running
it on the sensitive data.1

In this paper, we study two operations: linear regres-
sion and covariance matrix calculation (an important sub-
routine for classification). Both rely on linear algebraic
operations that are simple to express as constraints and to
distribute across machines.
Linear regression. Least-squares linear regression is a
popular supervised machine learning training algorithm
that models the relationship between variables as linear.
The input is a labeled dataset D = (X ,Y) where rows of
X ∈Rn×d and Y ∈Rn×1 are the observations’ independent
and dependent variables. Assuming that Xw≈Y for some
w ∈ Rd×1, the algorithm’s goal is to find such a w that
minimizes the mean squared-error loss. The solution to
the optimization problem is w = (XT X)−1XTY .

1More precisely, the hospital also needs to prove that the input data
is consistent, e.g., with some public commitment that others trust is
a commitment to the hospital’s data. This can be a very expensive
computation to prove, but we do not study it in this paper since hash-
based computations have been studied in many prior works, and we
instead focus on the machine learning algorithms. In a real-world
application both computations should be proved.

While the formula to compute w uses a matrix inver-
sion, one can easily check correctness of w by verifying
that XT Xw = XT y. The problem is thus reduced to check-
ing matrix multiplications, which can be easily expressed
and distributed as we now describe.

We generate the constraints and variable assignments
by following a distributed block-based algorithm for ma-
trix multiplication [24, 50, 70]. Such an algorithm splits
the output matrix into blocks, and assigns and shuffles the
data needed to generate each block to the same machine.
Each block can independently generate its constraints and
variable assignments after receiving the necessary values.
This simple approach works well for us because mem-
ory usage is dominated by the number of constraints and
variables rather than the size of the input/output matrices.

Covariance matrix. Computing covariance matrices is
an important subroutine in classification algorithms such
as Gaussian naive Bayes and linear discriminant analysis
[18]. These algorithms classify observations into discrete
classes by constructing a probability distribution for each
class. This reduces to computing the mean and covariance
matrix for each class of sample points.

Suppose that {xi ∈Rd×1}i=1..n is an input data set from
a single class. Its covariance matrix is M := 1

n−1 ∑
n
i=1(xi−

x̄)(xi− x̄)T ∈ Rd×d , where x̄ := (1
n ∑

n
i=1 xi) ∈ Rd×1 is the

average of the n observations.
To verify M, we first check the correctness of x̄ by

individually checking each of the d entries; for each entry
we use the same approach as in the case of blur (in §7.1).
Then, we check correctness of each matrix multiplication
(xi− x̄)(xi− x̄)T , using the same distribution technique
from linear regression. Finally, we check correctness of
the ‘average’ of the n resulting matrices.

8 Implementation
We implemented the distributed zkSNARK in≈ 10K lines
of Java code over Apache Spark [2], a popular cluster com-
puting framework. All data representations are designed
to fit within the Spark computation model. For example,
we represent an R1CS instance φ = (k,N,M,a,b,c) via
three RDDs, one for each of the three matrices a,b,c, and
each record in an RDD is a tuple (j,(i,v)) where v is the
(i, j)-th entry of the matrix. (Recall from §2.2 that a,b,c
are coefficient matrices that determine all constraints of
the instance.) Since DIZK deals with large instances, we
carefully adjust the RDD partition size such that each
partition fits on an executor’s heap space.

9 Experimental setup
We evaluated DIZK on Amazon EC2 using r3.large in-
stances (2 vCPUs, 15 GiB of memory) and r3.8xlarge
instances (32 vCPUs, 244 GiB of memory). For single-
machine experiments, we used one r3.large instance.
For distributed experiments, we used a cluster of ten

684 27th USENIX Security Symposium USENIX Association

r3.8xlarge instances for up to 128 executors, and a cluster
of twenty r3.8xlarge for 256 executors.

We instantiate the zkSNARK via a 256-bit Barreto–
Naehrig curve [8], a standard choice in prior zkSNARK
implementations. This means that G1 and G2 are elliptic
curve groups of a prime order p of 256 bits, and the scalar
field F has this same size.

An important technicality is that we cannot rely on
curves used in prior zkSNARK works, because they do
not support the large instance sizes in this work, as we
now explain. To allow for efficient implementations of the
setup and the prover one needs a curve in which the group
order p is such that p−1 is divisible by 2a, where 2a is
larger than the maximum instance size to be supported
[11]. As the instance sizes that we support are in the
billions (at least 230), we need, say, a≥ 40.

We thus generated (by modifying the sampling
algorithm in [8]) a 256-bit Barreto–Naehrig curve with
a = 50, which suffices for our purposes. The curve is
E/Fq : y2 = x3 +13 with q = 178558083348049028502
609238317702557737797405798625193380108245358
56509878273, and its order is p = 17855808334804902
850260923831770255773646114952324966112694569
107431857586177.

10 Evaluation of the distributed zkSNARK
We evaluated our distributed zkSNARK and show that:
1. We support instances of more than a billion gates, a

significant improvement over serial implementations,
which exceed memory bounds at 10-20 million gates.

2. Fixing a number of executors on the cluster and letting
the instance size increase (from several millions to
over a billion), the running time of the setup and prover
increases close to linearly as expected, demonstrating
scalability over this range of instance sizes.

3. Fixing an input size and increasing the number of
executors, the running time of the setup and prover
decreases close to linearly as expected, demonstrating
parallelization over this range of executors.

In the next few sub-sections we support these findings.

10.1 Evaluation of the setup and prover
We evaluate our distributed implementation of the zk-
SNARK setup and prover. Below we use ‘instance size’ to
denote the number of constraints M in a R1CS instance.2

First, we measure the largest instance size (as a power
of 2) that is supported by:

2The number of variables N also affects performance, but it is usually
close to M and so our discussions only mention M with the understand-
ing that N ≈M in our experiments. The number of inputs k in an R1CS
instance is bounded by the number of variables N, and either way does
not affect the setup’s and prover’s performance by much; moreover, k
is much, much smaller than N in typical applications and so we do not
focus on it.

• the serial implementation of Groth’s protocol [59], a
state-of-the-art zkSNARK library; and

• our distributed implementation of the same protocol.
(Also, we plot the same for the serial implementation
of PGHR [55]’s protocol in libsnark, a common zk-
SNARK choice.)

Data from our experiments, reported in Fig. 4, shows
that using more executors allows us to support larger
instance sizes, in particular supporting billions of con-
straints with sufficiently many executors. Instances of
this size are much larger than what was previously possi-
ble via serial techniques.

Next, we measure the running time of the setup and the
prover on an increasing number of constraints and with
an increasing number of executors. Data from our experi-
ments, reported in Fig. 5, shows that (a) for a given num-
ber of executors, running times increase nearly linearly
as expected, demonstrating scalability over a wide range
of instance sizes; (b) for a given instance size, running
times decrease nearly linearly as expected, demonstrating
parallelization over a wide range of number of executors.

Finally, we again stress that we do not evaluate the zk-
SNARK verifier because it is a simple and fast algorithm
that can be run even on a smartphone. Thus, we sim-
ply use libsnark’s implementation of the verifier [59],
whose running time is ≈ 2ms+ 0.5µs · k where k is the
number of field elements in the R1CS input (not a large
number in typical applications).

10.2 Evaluation of the components
We separately evaluate the performance and scalability of
key components of our distributed SNARK implementa-
tion: the field algorithms for Lag and FFT (§10.2.1) and
group algorithms for fixMSM and varMSM (§10.2.2). We
single out these components since they are starting points
to distribute other similar proof systems.

10.2.1 Field components: Lag and FFT
We evaluate our implementation of distributed algorithms
for Lag (used in the setup) and FFT (used in the prover).
For the scalar field F, we measure the running time, for an
increasing instance size and increasing number of execu-
tors in the cluster. Data from our experiments, reported in
Fig. 6, shows that our implementation behaves as desired:
for a given number of executors, running times increase
close to linearly in the instance size; also, for a given
instance size, running times decrease close to linearly as
the number of executors grow.

10.2.2 Group components: fixMSM and varMSM
We evaluate our implementation of distributed algorithms
for fixMSM (used in the setup) and varMSM (used in
the prover). For each of the elliptic-curve groups G1 and
G2, we measure the total running time, for increasing
instance size and number of executors in the cluster. Data

USENIX Association 27th USENIX Security Symposium 685

19 20 21 22 23 24 25 26 27 28 29 30 31
log2 instance size

libsnark PGHR
libsnark Groth

1
4
8

16
32
64

128
256

ex

ec
ut

or
s

Largest supported instance size

Figure 4: Largest instance size supported by
libsnark’s serial implementation of PGHR’s
protocol [55] and Groth’s protocol [42] vs. our distributed
system.

16 18 20 22 24 26 28 30
log2 instance size

4
6
8

10
12
14

lo
g

2
 ti

m
e

(s
ec

)

Setup

16 18 20 22 24 26 28 30
log2 instance size

4
6
8

10
12
14

lo
g

2
 ti

m
e

(s
ec

)

Prover

executors

1 4 8 16 32 64 128 256

1 4 8 16 32 64 128 256
executors

3
4
5
6
7
8
9

10
11
12
13
14

lo
g

2
 ti

m
e

(s
ec

)

1 4 8 16 32 64 128 256
executors

3
4
5
6
7
8
9

10
11
12
13
14
15

lo
g

2
 ti

m
e

(s
ec

)

log2 instance size

215

223

216

224

217

225

218

226

219

227

220

228

221

229

222

230

Figure 5: Setup and prover running times for different
combinations of instance size and number of executors.

from our experiments, reported in Fig. 7, shows that our
implementation behaves as desired: for a given number of
executors, running times increase close to linearly in the
instance size; also, for a given instance size, running times
decrease close to linearly in the number of executors.

10.3 Effectiveness of our techniques
We ran experiments (32 and 64 executors for all feasible
instances) comparing the performance of the setup and

16 18 20 22 24 26 28 30 32 34 36
log2 instance size

1
3
5
7
9

11
13

lo
g

2
 ti

m
e

(s
ec

)

Lag

16 18 20 22 24 26 28 30 32 34
log2 instance size

0
2
4
6
8

10
12

lo
g

2
 ti

m
e

(s
ec

)

FFT

executors

1 4 8 16 32 64 128 256

Figure 6: Running times of Lag and FFT over F for dif-
ferent combinations of instance size and number of ex-
ecutors.

16 18 20 22 24 26 28 30 32 34
log2 instance size

-2
0
2
4
6
8

lo
g

2
 ti

m
e

(s
ec

)

fixMSM in G1

16 18 20 22 24 26 28 30 32
log2 instance size

2
4
6
8

10
12
14

lo
g

2
 ti

m
e

(s
ec

)

fixMSM in G2

16 18 20 22 24 26 28 30 32
log2 instance size

-1
1
3
5
7
9

11

lo
g

2
 ti

m
e

(s
ec

)

varMSM in G1

16 18 20 22 24 26 28 30 32
log2 instance size

-1
1
3
5
7
9

11

lo
g

2
 ti

m
e

(s
ec

)

varMSM in G2

executors

1 4 8 16 32 64 128 256

Figure 7: Running times of fixMSM,varMSM over
G1,G2 for combinations of instance size and number
of executors.

prover with two implementations: (1) the implementation
that is part of DIZK, which has optimizations described
in the design sections (§4, §5, §6); and (2) an implemen-
tation that does not employ these optimizations (e.g., uses
skewjoin instead of our solution, and so on). Our data
established that our techniques allow achieving instance
sizes that are 10 times larger, at a cost that is 2-4 times
faster in the setup and prover.

11 Evaluation of applications
We evaluated the performance of constraint and witness
generation for the applications described in §7.

Fig. 9 shows, for various instances of our applications,
the number of constraints and the performance of con-
straint and witness generation. In all cases, witness gen-
eration is markedly more expensive than constraint gen-
eration due to data shuffling. Either way, both costs are
insignificant when compared to the corresponding costs

686 27th USENIX Security Symposium USENIX Association

225 226 227 228 229 230

constraints

23

24

25
tim

e
(s

ec
)

32 executors
64 executors
128 executors

(a) Constraints generation

225 226 227 228 229 230

constraints

23

24

25

26

27

28

tim
e

(s
ec

)

32 executors
64 executors
128 executors

(b) Witness generation

23 24 25 26 27 28

executors

22

23

24

25

26

tim
e

(s
ec

)

2.0e+08 constraints
1.6e+08 constraints

(c) Constraints generation

23 24 25 26 27 28

executors

25

26

27

28

29

tim
e

(s
ec

)

2.0e+08 constraints
1.6e+08 constraints

(d) Witness generation

Figure 8: Scalability of linear regression.

Application Size Constraint Witness
matrix multiply

(700×700 matrices) 685 M 12 s 62 s
covariance matrix
(20K points, 100 dims) 402 M 13 s 67 s
linear regression

(20K points, 100 dims) 404 M 18 s 77 s
2048
×2048
image

blur 13.6 M 3 s 31 s
crop 4.2 M 1 s 34 s
rotation 138 M 7 s 14.6 s

Figure 9: Costs of some applications: number of con-
straints, time to generate constraints, and time to generate
the witness. (Both times are for 64 executors.)

of the SNARK setup and prover. Hence, we did not try to
optimize this performance further.

Fig. 8 shows the scaling behavior of constraint and
witness generation for one application, linear regression.
Fig. 8a and Fig. 8b show the time for constraint and wit-
ness generation when fixing the number of executors and
increasing the instance size (as determined by the number
of constraints); the graphs show that time scales nearly
linearly, which means that the algorithm parallelizes well
with respect to instance size. Fig. 8c and Fig. 8d show the
time for constraint and witness generation when fixing the
instance size and increasing the number of executors; the
graphs show that the system scales well as the number of
executors are increased (at some point, a fixed overhead
dominates, so the time flattens out).

12 Related work
Optimization and implementation of proof systems.
Recent years have seen beautiful works that optimize
and implement information-theoretic and cryptographic
proof systems. These proof systems enable a weak verifier
(e.g., a mobile device) to outsource an expensive compu-
tation to a powerful prover (e.g., a cloud provider). For
example, doubly-efficient interactive proofs for parallel
computation [40] have been optimized and implemented
in software [30, 68, 66, 67, 77] and hardware [73, 74].
Also, batch arguments based on Linear PCPs [45] have

attained remarkable efficiency [60, 62, 63, 61, 72, 22].
Some proof systems, such as zkSNARKs, also pro-

vide zero knowledge, which is important for applications
[33, 10, 75, 31, 46, 47, 53, 36]. Approaches to construct
zkSNARKs include using PCPs [52, 13] or Linear PCPs
[41, 51, 20, 37]. An implementation following the first
approach has been attained [9], but most other implemen-
tations follow the second approach [55, 11, 15, 48, 78, 31].
The zkSNARK setup and prover in prior implementations
run on a single machine.

Some recent work explores zero knowledge proofs
based not on probabilistic checking techniques and do not
offer constant-size proofs, but whose provers are cheaper
(and need no setup). See [39] and references therein.

Proof systems & distributed systems. While prior
work does not distribute the prover’s computation across
a cluster, some prior work did show how even monolithic
provers can be used to prove correct execution of dis-
tributed computations. For example, the system Pantry
[22] transforms a proof system such as a batch argument
or a zkSNARK into an interactive argument for outsourc-
ing MapReduce computations (though it does not preserve
zero knowledge). Also, the framework of Proof-Carrying
Data [26, 27] allows reasoning, and proving the correct-
ness of, certain distributed computations via the technique
of recursive proof composition on SNARKs. This tech-
nique can be used to attain zkSNARKs for MapReduce
[28], and also for ‘breaking up’ generic computation into
sub-computations while proving each correct [14, 31].

Our work is complementary to the above approaches:
prior work can leverage our distributed zkSNARK (in-
stead of a ‘monolithic’ one) to feasibly support larger in-
stance sizes. For instance, Pantry can use our distributed
zkSNARK as the starting point of their transformation.

Trusted hardware. If one assumes trusted hardware,
achieving ‘zero knowledge proofs’, even ones that are
short and cheap to verify, is easier. For example, trusted
hardware with attested execution (e.g. Intel SGX) suffices
[69, 56]. DIZK does not assume trusted hardware, and
thus protects against a wider range of attackers at the
prover than these approaches.

USENIX Association 27th USENIX Security Symposium 687

13 Limitations and the road ahead
While we are excited about scaling to larger circuits, zk-
SNARKs continue to suffer from important limitations.

First, even if DIZK enables using zkSNARKs for much
larger circuits than what was previously possible, doing
so is still very expensive (we resort to using a compute
cluster!) and so scaling to even larger sizes (say, hundreds
of billions of gates) requires resources that may even
go beyond those of big clusters. Making zkSNARKs
more efficient overall (across all circuit sizes) remains a
challenging open problem.

Second, the zkSNARKs that we study, like most other
‘practical’ ones, require a trusted party to run a setup pro-
cedure that uses secret randomness to sample certain pub-
lic parameters. This setup is needed only once per circuit,
but its time and space costs also grow with circuit size.
While DIZK does provide an efficient distributed setup (in
addition to the same for the prover), performing this setup
in practice is challenging due to many real-world security
concerns. Currently-deployed zkSNARKs have relied on
Secure Multi-party Computation “ceremonies” for this
[12, 21], and it remains to be studied if those techniques
can be distributed by building on our work.

Our outlook is optimistic as the area of efficient proof
systems sees tremendous progress [76], not only in terms
of real-world deployment [7] but also for zkSNARK con-
structions that, while still somewhat expensive, rely only
on public randomness (no setup is needed) [13, 9].

14 Conclusion
We design and build DIZK, a distributed zkSNARK sys-
tem. While prior systems only support circuits of up
to 10-20 million gates (at a cost of 1ms per gate in the
prover), DIZK leverages the combined CPU and memory
resources in a cluster to support circuits of up to billions
of gates (at a cost of 10µs per gate in the prover). This is
a qualitative leap forward in the capabilities zkSNARKs,
a recent cryptographic tool that has garnered much aca-
demic and industrial interest.

Acknowledgements
The authors are grateful to Jiahao Wang for participating
in early stages of this work. This work was supported
by the Intel/NSF CPS-Security grants #1505773 and
#20153754, the UC Berkeley Center for Long-Term Cy-
bersecurity, and gifts to the RISELab from Amazon, Ant
Financial, CapitalOne, Ericsson, GE, Google, Huawei,
IBM, Intel, Microsoft, and VMware. The authors thank
Amazon for donating compute credits to RISELab, which
were extensively used in this project.

References
[1] Apache Hadoop, 2017. http://hadoop.

apache.org/.

[2] Apache Spark, 2017. http://spark.apache.
org/.

[3] Chronicled, 2017. https://www.
chronicled.com/.

[4] J.P. Morgan Quorum, 2017. https://www.
jpmorgan.com/country/US/EN/Quorum.

[5] QED-it, 2017. http://qed-it.com/.

[6] skewjoin, 2017. https://github.com/
tresata/spark-skewjoin.

[7] ZCash Company, 2017. https://z.cash/.

[8] BARRETO, P. S. L. M., AND NAEHRIG, M. Pairing-
friendly elliptic curves of prime order. In Pro-
ceedings of the 12th International Conference on
Selected Areas in Cryptography (2006), SAC’05,
pp. 319–331.

[9] BEN-SASSON, E., BENTOV, I., CHIESA, A., GABI-
ZON, A., GENKIN, D., HAMILIS, M., PERGA-
MENT, E., RIABZEV, M., SILBERSTEIN, M.,
TROMER, E., AND VIRZA, M. Computational
integrity with a public random string from quasi-
linear PCPs. In Proceedings of the 36th Annual
International Conference on Theory and Applica-
tion of Cryptographic Techniques (2017), EURO-
CRYPT ’17, pp. 551–579.

[10] BEN-SASSON, E., CHIESA, A., GARMAN, C.,
GREEN, M., MIERS, I., TROMER, E., AND VIRZA,
M. Zerocash: Decentralized anonymous payments
from Bitcoin. In Proceedings of the 2014 IEEE
Symposium on Security and Privacy (2014), SP ’14,
pp. 459–474.

[11] BEN-SASSON, E., CHIESA, A., GENKIN, D.,
TROMER, E., AND VIRZA, M. SNARKs for C:
Verifying program executions succinctly and in
zero knowledge. In Proceedings of the 33rd An-
nual International Cryptology Conference (2013),
CRYPTO ’13, pp. 90–108.

[12] BEN-SASSON, E., CHIESA, A., GREEN, M.,
TROMER, E., AND VIRZA, M. Secure sampling
of public parameters for succinct zero knowledge
proofs. In Proceedings of the 36th IEEE Symposium
on Security and Privacy (2015), S&P ’15, pp. 287–
304.

[13] BEN-SASSON, E., CHIESA, A., AND SPOONER,
N. Interactive oracle proofs. In Proceedings of the
14th Theory of Cryptography Conference (2016),
TCC ’16-B, pp. 31–60.

688 27th USENIX Security Symposium USENIX Association

http://hadoop.apache.org/
http://hadoop.apache.org/
http://spark.apache.org/
http://spark.apache.org/
https://www.chronicled.com/
https://www.chronicled.com/
https://www.jpmorgan.com/country/US/EN/Quorum
https://www.jpmorgan.com/country/US/EN/Quorum
http://qed-it.com/
https://github.com/tresata/spark-skewjoin
https://github.com/tresata/spark-skewjoin
https://z.cash/

Setup. The setup S receives an R1CS instance
φ = (k,N,M,a,b,c) and then samples a proving key
pk and a verification key vk as follows. First, S re-
duces the R1CS instance φ to a QAP instance Φ =
(k,N,M,A,B,C,D) by running the algorithm qapI.
Then, S samples random elements t,α,β ,γ,δ in F
(this is the randomness that must remain secret). Af-
ter that, S evaluates the polynomials in A,B,C at the
element t, and computes

Kvk(t) :=
(

βAi(t)+αBi(t)+Ci(t)
γ

)
i=0,...,k

Kpk(t) :=
(

βAi(t)+αBi(t)+Ci(t)
δ

)
i=k+1,...,N

and

Z(t) :=
(

t jZD(t)
δ

)
j=0,...,M−2

Finally, the setup algorithm computes encodings of
these elements and outputs pk and vk defined as fol-
lows:

pk :=
(
[α]1,

[β]1, [δ]1
[β]2, [δ]2

, [A(t)]1,
[B(t)]1
[B(t)]2

,
[Kpk(t)]1
[Z(t)]1

)
,

vk :=(e(α,β) , [γ]2, [δ]2, [Kvk(t)]1) .

Prover. The prover P receives a proving key pk, in-
put x in Fk, and witness w in FN−k, and then samples
a proof π as follows. First, P extends the x-witness
w for the R1CS instance φ to a x-witness (w,h) for the

QAP instance Φ by running the algorithm qapW. Then,
P samples random elements r,s in F (this is the ran-
domness that imbues the proof with zero knowledge).
Next, letting z := 1‖x‖w, P computes three encodings
obtained as follows

[Ar]1 :=[α]1 +
N

∑
i=0

zi[Ai(t)]1 + r[δ]1 ,

[Bs]1 :=[β]1 +
N

∑
i=0

zi[Bi(t)]1 + s[δ]1

[Bs]2 :=[β]2 +
N

∑
i=0

zi[Bi(t)]2 + s[δ]2 .

Then P uses these two compute a fourth encoding:

[Kr,s]1 := s[Ar]1 + r[Bs]1− rs[δ]1

+
N

∑
i=k+1

zi[Kpk
i (t)]1 +

M−2

∑
j=0

h j[Z j(t)]1 .

The output proof is π := ([Ar]1, [Bs]2, [Kr,s]1).
Verifier. The verifier V receives a verification key vk,
input x in Fk, and proof π , and, letting x0 := 1, checks
that the following holds:

e([Ar]1, [Bs]2) = e(α,β)

+e

(
k

∑
i=0

xi[Kvk
i (t)]1, [γ]2

)
+ e([Kr,s]1, [δ]2) .

Figure 10: The zkSNARK setup, prover, and verifier of Groth [42] (using notation from §2.3).

[14] BEN-SASSON, E., CHIESA, A., TROMER, E., AND
VIRZA, M. Scalable zero knowledge via cycles
of elliptic curves. In Proceedings of the 34th An-
nual International Cryptology Conference (2014),
CRYPTO ’14, pp. 276–294. Extended version at
http://eprint.iacr.org/2014/595.

[15] BEN-SASSON, E., CHIESA, A., TROMER, E., AND
VIRZA, M. Succinct non-interactive zero knowl-
edge for a von Neumann architecture. In Pro-
ceedings of the 23rd USENIX Security Symposium
(2014), Security ’14, pp. 781–796. Extended version
at http://eprint.iacr.org/2013/879.

[16] BERNSTEIN, D. J., DOUMEN, J., LANGE, T., AND
OOSTERWIJK, J. Faster batch forgery identification.
In Proceedings of the 13th International Conference
on Cryptology in India (2012), INDOCRYPT ’12,
pp. 454–473.

[17] BERRUT, J., AND TREFETHEN, L. N. Barycentric
Lagrange interpolation. SIAM Review 46, 3 (2004),
501–517.

[18] BISHOP, C. M. Pattern recognition and machine
learning. Springer-Verlag New York, 2006.

[19] BITANSKY, N., CANETTI, R., CHIESA, A., AND
TROMER, E. From extractable collision resistance
to succinct non-interactive arguments of knowledge,
and back again. In Proceedings of the 3rd Innova-
tions in Theoretical Computer Science Conference
(2012), ITCS ’12, pp. 326–349.

[20] BITANSKY, N., CHIESA, A., ISHAI, Y., OS-
TROVSKY, R., AND PANETH, O. Succinct non-
interactive arguments via linear interactive proofs.
In Proceedings of the 10th Theory of Cryptography
Conference (2013), TCC ’13, pp. 315–333.

USENIX Association 27th USENIX Security Symposium 689

http://eprint.iacr.org/2014/595
http://eprint.iacr.org/2013/879

[21] BOWE, S., GABIZON, A., AND GREEN, M.
A multi-party protocol for constructing the
public parameters of the Pinocchio zk-SNARK.
https://github.com/zcash/mpc/blob/
master/whitepaper.pdf, 2016.

[22] BRAUN, B., FELDMAN, A. J., REN, Z., SETTY, S.,
BLUMBERG, A. J., AND WALFISH, M. Verifying
computations with state. In Proceedings of the 25th
ACM Symposium on Operating Systems Principles
(2013), SOSP ’13, pp. 341–357.

[23] BRICKELL, E. F., GORDON, D. M., MCCURLEY,
K. S., AND WILSON, D. B. Fast exponentiation
with precomputation. In Proceedings of the 11th
Annual International Conference on Theory and Ap-
plication of Cryptographic Techniques (1993), EU-
ROCRYPT ’92, pp. 200–207.

[24] CANNON, L. E. A cellular computer to implement
the Kalman filter algorithm. Tech. rep., DTIC Doc-
ument, 1969.

[25] CHANG, C.-C., AND LOU, D.-C. Fast parallel
computation of multi-exponentiation for public key
cryptosystems. In Proceedings of the 4th Interna-
tional Conference on Parallel and Distributed Com-
puting, Applications and Technologies (2003), PD-
CAT ’2003, pp. 955–958.

[26] CHIESA, A., AND TROMER, E. Proof-carrying
data and hearsay arguments from signature cards. In
Proceedings of the 1st Symposium on Innovations in
Computer Science (2010), ICS ’10, pp. 310–331.

[27] CHIESA, A., AND TROMER, E. Proof-carrying data:
Secure computation on untrusted platforms (high-
level description). The Next Wave: The National
Security Agency’s review of emerging technologies
19, 2 (2012), 40–46.

[28] CHIESA, A., TROMER, E., AND VIRZA, M. Clus-
ter computing in zero knowledge. In Proceedings of
the 34th Annual International Conference on The-
ory and Application of Cryptographic Techniques
(2015), EUROCRYPT ’15, pp. 371–403.

[29] COOLEY, J. W., AND TUKEY, J. W. An algorithm
for the machine calculation of complex Fourier se-
ries. Mathematics of Computation 19 (1965), 297–
301.

[30] CORMODE, G., MITZENMACHER, M., AND
THALER, J. Practical verified computation with
streaming interactive proofs. In Proceedings of the
4th Symposium on Innovations in Theoretical Com-
puter Science (2012), ITCS ’12, pp. 90–112.

[31] COSTELLO, C., FOURNET, C., HOWELL, J.,
KOHLWEISS, M., KREUTER, B., NAEHRIG, M.,
PARNO, B., AND ZAHUR, S. Geppetto: Versatile
verifiable computation. In Proceedings of the 36th
IEEE Symposium on Security and Privacy (2015),
S&P ’15, pp. 250–273.

[32] DANEZIS, G., FOURNET, C., GROTH, J., AND
KOHLWEISS, M. Square span programs with appli-
cations to succinct NIZK arguments. In Proceedings
of the 20th International Conference on the Theory
and Application of Cryptology and Information Se-
curity (2014), ASIACRYPT ’14, pp. 532–550.

[33] DANEZIS, G., FOURNET, C., KOHLWEISS, M.,
AND PARNO, B. Pinocchio Coin: building Zero-
coin from a succinct pairing-based proof system.
In Proceedings of the 2013 Workshop on Language
Support for Privacy Enhancing Technologies (2013),
PETShop ’13.

[34] DE ROOIJ, P. Efficient exponentiation using precom-
putation and vector addition chains. In Proceedings
of the 13th Annual International Conference on The-
ory and Application of Cryptographic Techniques
(1994), EUROCRYPT ’94, pp. 389–399.

[35] DEAN, J., AND GHEMAWAT, S. MapReduce: Sim-
plified data processing on large clusters. In Pro-
ceedings of the 6th Symposium on Operating Sys-
tem Design and Implementation (2004), OSDI ’04,
pp. 137–149.

[36] DELIGNAT-LAVAUD, A., FOURNET, C.,
KOHLWEISS, M., AND PARNO, B. Cin-
derella: Turning shabby X.509 certificates into
elegant anonymous credentials with the magic of
verifiable computation. In Proceedings of the 37th
IEEE Symposium on Security and Privacy (2016),
S&P ’16, pp. 235–254.

[37] GENNARO, R., GENTRY, C., PARNO, B., AND
RAYKOVA, M. Quadratic span programs and suc-
cinct NIZKs without PCPs. In Proceedings of
the 32nd Annual International Conference on The-
ory and Application of Cryptographic Techniques
(2013), EUROCRYPT ’13, pp. 626–645.

[38] GENTRY, C., AND WICHS, D. Separating suc-
cinct non-interactive arguments from all falsifiable
assumptions. In Proceedings of the 43rd Annual
ACM Symposium on Theory of Computing (2011),
STOC ’11, pp. 99–108.

[39] GIACOMELLI, I., MADSEN, J., AND ORLANDI,
C. ZKBoo: Faster zero-knowledge for boolean cir-
cuits. In Proceedings of the 25th USENIX Security
Symposium (2016), Security ’16, pp. 1069–1083.

690 27th USENIX Security Symposium USENIX Association

https://github.com/zcash/mpc/blob/master/whitepaper.pdf
https://github.com/zcash/mpc/blob/master/whitepaper.pdf

[40] GOLDWASSER, S., KALAI, Y. T., AND ROTH-
BLUM, G. N. Delegating computation: Interac-
tive proofs for muggles. Journal of the ACM 62, 4
(2015), 27:1–27:64.

[41] GROTH, J. Short pairing-based non-interactive zero-
knowledge arguments. In Proceedings of the 16th
International Conference on the Theory and Applica-
tion of Cryptology and Information Security (2010),
ASIACRYPT ’10, pp. 321–340.

[42] GROTH, J. On the size of pairing-based non-
interactive arguments. In Proceedings of the 35th
Annual International Conference on Theory and Ap-
plication of Cryptographic Techniques (2016), EU-
ROCRYPT ’16, pp. 305–326.

[43] GROTH, J., AND MALLER, M. Snarky signatures:
Minimal signatures of knowledge from simulation-
extractable SNARKs. In Proceedings of the 37th
Annual International Cryptology Conference (2017),
CRYPTO ’17, pp. 581–612.

[44] ISARD, M., BUDIU, M., YU, Y., BIRRELL, A.,
AND FETTERLY, D. Dryad: distributed data-parallel
programs from sequential building blocks. In Pro-
ceedings of the 2007 EuroSys Conference (2007),
EuroSys ’07, pp. 59–72.

[45] ISHAI, Y., KUSHILEVITZ, E., AND OSTROVSKY,
R. Efficient arguments without short PCPs. In
Proceedings of the Twenty-Second Annual IEEE
Conference on Computational Complexity (2007),
CCC ’07, pp. 278–291.

[46] JUELS, A., KOSBA, A. E., AND SHI, E. The ring
of Gyges: Investigating the future of criminal smart
contracts. In Proceedings of the 2016 ACM SIGSAC
Conference on Computer and Communications Se-
curity (2016), CCS ’16, pp. 283–295.

[47] KOSBA, A. E., MILLER, A., SHI, E., WEN, Z.,
AND PAPAMANTHOU, C. Hawk: The blockchain
model of cryptography and privacy-preserving smart
contracts. In Proceedings of the 2016 IEEE Sym-
posium on Security and Privacy (2016), SP ’16,
pp. 839–858.

[48] KOSBA, A. E., PAPADOPOULOS, D., PAPAMAN-
THOU, C., SAYED, M. F., SHI, E., AND TRIAN-
DOPOULOS, N. TRUESET: Faster verifiable set
computations. In Proceedings of the 23rd USENIX
Security Symposium (2014), Security ’14, pp. 765–
780.

[49] KUTSKIR, I. Fastest Gaussian blur (in
linear time). http://blog.ivank.net/
fastest-gaussian-blur.html.

[50] LEE, H., ROBERTSON, J. P., AND FORTES, J. A. B.
Generalized Cannon’s algorithm for parallel ma-
trix multiplication. In Proceedings of the 11th In-
ternational Conference on Supercomputing (1997),
ICS ’97, pp. 44–51.

[51] LIPMAA, H. Progression-free sets and sublinear
pairing-based non-interactive zero-knowledge argu-
ments. In Proceedings of the 9th Theory of Cryp-
tography Conference on Theory of Cryptography
(2012), TCC ’12, pp. 169–189.

[52] MICALI, S. Computationally sound proofs. SIAM
Journal on Computing 30, 4 (2000), 1253–1298.
Preliminary version appeared in FOCS ’94.

[53] NAVEH, A., AND TROMER, E. Photoproof: Crypto-
graphic image authentication for any set of permis-
sible transformations. In Proceedings of the 2016
IEEE Symposium on Security and Privacy (2016),
SP ’16, pp. 255–271.

[54] PAETH, A. W. A fast algorithm for general raster ro-
tation. In Proceedings on Graphics Interface ’86/Vi-
sion Interface ’86 (1986), pp. 77–81.

[55] PARNO, B., GENTRY, C., HOWELL, J., AND
RAYKOVA, M. Pinocchio: Nearly practical ver-
ifiable computation. In Proceedings of the 34th
IEEE Symposium on Security and Privacy (2013),
Oakland ’13, pp. 238–252.

[56] PASS, R., SHI, E., AND TRAMÈR, F. Formal ab-
stractions for attested execution secure processors.
In Proceedings of the 36th Annual International
Conference on Theory and Application of Cryp-
tographic Techniques (2017), EUROCRYPT ’17,
pp. 260–289.

[57] PIPPENGER, N. On the evaluation of powers and
related problems. In Proceedings of the 17th Annual
Symposium on Foundations of Computer Science
(1976), FOCS ’76, pp. 258–263.

[58] PIPPENGER, N. On the evaluation of powers and
monomials. SIAM Journal on Computing 9, 2
(1980), 230–250.

[59] SCIPR LAB. libsnark: a C++ library for zk-
SNARK proofs, 2017. https://github.com/
scipr-lab/libsnark.

[60] SETTY, S., BLUMBERG, A. J., AND WALFISH, M.
Toward practical and unconditional verification of
remote computations. In Proceedings of the 13th
USENIX Conference on Hot Topics in Operating
Systems (2011), HotOS ’11, pp. 29–29.

USENIX Association 27th USENIX Security Symposium 691

http://blog.ivank.net/fastest-gaussian-blur.html
http://blog.ivank.net/fastest-gaussian-blur.html
https://github.com/scipr-lab/libsnark
https://github.com/scipr-lab/libsnark

[61] SETTY, S., BRAUN, B., VU, V., BLUMBERG, A. J.,
PARNO, B., AND WALFISH, M. Resolving the con-
flict between generality and plausibility in verified
computation. In Proceedings of the 8th EuoroSys
Conference (2013), EuroSys ’13, pp. 71–84.

[62] SETTY, S., MCPHERSON, M., BLUMBERG, A. J.,
AND WALFISH, M. Making argument systems for
outsourced computation practical (sometimes). In
Proceedings of the 2012 Network and Distributed
System Security Symposium (2012), NDSS ’12.

[63] SETTY, S., VU, V., PANPALIA, N., BRAUN, B.,
BLUMBERG, A. J., AND WALFISH, M. Taking
proof-based verified computation a few steps closer
to practicality. In Proceedings of the 21st USENIX
Security Symposium (2012), Security ’12, pp. 253–
268.

[64] STRAUS, E. G. Addition chains of vectors (problem
5125). The American Mathematical Monthly 71, 7
(1964), 806–808.

[65] SZE, T. Schönhage–Strassen algorithm with mapre-
duce for multiplying terabit integers. In Proceedings
of the 2011 International Workshop on Symbolic-
Numeric Computation (2011), SNC ’11, pp. 54–62.

[66] THALER, J. Time-optimal interactive proofs for
circuit evaluation. In Proceedings of the 33rd An-
nual International Cryptology Conference (2013),
CRYPTO ’13, pp. 71–89.

[67] THALER, J. A note on the GKR pro-
tocol. http://people.cs.georgetown.
edu/jthaler/GKRNote.pdf, 2015.

[68] THALER, J., ROBERTS, M., MITZENMACHER, M.,
AND PFISTER, H. Verifiable computation with mas-
sively parallel interactive proofs. In Proceedings of
the 4th USENIX Workshop on Hot Topics in Cloud
Computing (2012), HotCloud ’12.

[69] TRAMÈR, F., ZHANG, F., LIN, H., HUBAUX, J.,
JUELS, A., AND SHI, E. Sealed-glass proofs: Using
transparent enclaves to prove and sell knowledge.
In Proceedings of the 2017 IEEE European Sympo-
sium on Security and Privacy (2017), EuroS&P ’17,
pp. 19–34.

[70] VAN DE GEIJN, R. A., AND WATTS, J. SUMMA:
scalable universal matrix multiplication algorithm.
Concurrency - Practice and Experience 9, 4 (1997),
255–274.

[71] VON ZUR GATHEN, J., AND GERHARD, J. Modern
Computer Algebra, 3rd ed. Cambridge University
Press, 2013.

[72] VU, V., SETTY, S., BLUMBERG, A. J., AND WAL-
FISH, M. A hybrid architecture for interactive verifi-
able computation. In Proceedings of the 34th IEEE
Symposium on Security and Privacy (2013), Oak-
land ’13, pp. 223–237.

[73] WAHBY, R. S., HOWALD, M., GARG, S. J., SHE-
LAT, A., AND WALFISH, M. Verifiable ASICs. In
Proceedings of the 37th IEEE Symposium on Secu-
rity and Privacy (2016), S&P ’16, pp. 759–778.

[74] WAHBY, R. S., JI, Y., BLUMBERG, A. J., SHELAT,
A., THALER, J., WALFISH, M., AND WIES, T. Full
accounting for verifiable outsourcing. Cryptology
ePrint Archive, Report 2017/242, 2017.

[75] WAHBY, R. S., SETTY, S., REN, Z., BLUMBERG,
A. J., AND WALFISH, M. Efficient RAM and con-
trol flow in verifiable outsourced computation. In
Proceedings of the 22nd Network and Distributed
System Security Symposium (2015), NDSS ’15.

[76] WALFISH, M., AND BLUMBERG, A. J. Verifying
computations without reexecuting them. Communi-
cations of the ACM 58, 2 (2015), 74–84.

[77] ZHANG, Y., GENKIN, D., KATZ, J., PAPADOPOU-
LOS, D., AND PAPAMANTHOU, C. vSQL: Verify-
ing arbitrary SQL queries over dynamic outsourced
databases. In Proceedings of the 38th IEEE Sym-
posium on Security and Privacy (2017), S&P ’17,
pp. 863–880.

[78] ZHANG, Y., PAPAMANTHOU, C., AND KATZ, J.
Alitheia: Towards practical verifiable graph process-
ing. In Proceedings of the 21st ACM Conference
on Computer and Communications Security (2014),
CCS ’14, pp. 856–867.

692 27th USENIX Security Symposium USENIX Association

http://people.cs.georgetown.edu/jthaler/GKRNote.pdf
http://people.cs.georgetown.edu/jthaler/GKRNote.pdf

	Abstract
	1 Introduction
	2 Background on zkSNARKs
	2.1 High-level description
	2.2 The zkSNARK language and interface
	2.3 The zkSNARK protocol of Groth

	3 Design overview of DIZK
	4 Design: distributing arithmetic
	4.1 Distributed fast polynomial arithmetic
	4.1.1 Arithmetic from evaluation and interpolation
	4.1.2 Distributed FFT
	4.1.3 Distributed Lag

	4.2 Distributed multi-scalar multiplication
	4.2.1 Distributed varMSM
	4.2.2 Distributed fixMSM

	5 Distributing the zkSNARK setup
	6 Distributing the zkSNARK prover
	7 Applications
	7.1 Authenticity of photos
	7.2 Integrity of machine learning models

	8 Implementation
	9 Experimental setup
	10 Evaluation of the distributed zkSNARK
	10.1 Evaluation of the setup and prover
	10.2 Evaluation of the components
	10.2.1 Field components: Lag and FFT
	10.2.2 Group components: fixMSM and varMSM

	10.3 Effectiveness of our techniques

	11 Evaluation of applications
	12 Related work
	13 Limitations and the road ahead
	14 Conclusion

