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Abstract

Cryptographic implementations are a valuable target for
address-based side-channel attacks and should, thus, be
protected against them. Countermeasures, however, are
often incorrectly deployed or completely omitted in prac-
tice. Moreover, existing tools that identify information
leaks in programs either suffer from imprecise abstrac-
tion or only cover a subset of possible leaks. We sys-
tematically address these limitations and propose a new
methodology to test software for information leaks.

In this work, we present DATA, a differential address
trace analysis framework that detects address-based side-
channel leaks in program binaries. This accounts for at-
tacks exploiting caches, DRAM, branch prediction, con-
trolled channels, and likewise. DATA works in three
phases. First, the program under test is executed to
record several address traces. These traces are analyzed
using a novel algorithm that dynamically re-aligns traces
to increase detection accuracy. Second, a generic leakage
test filters differences caused by statistically independent
program behavior, e.g., randomization, and reveals true
information leaks. The third phase classifies these leaks
according to the information that can be obtained from
them. This provides further insight to security analysts
about the risk they pose in practice.

We use DATA to analyze OpenSSL and PyCrypto in
a fully automated way. Among several expected leaks in
symmetric ciphers, DATA also reveals known and pre-
viously unknown leaks in asymmetric primitives (RSA,
DSA, ECDSA), and DATA identifies erroneous bug fixes
of supposedly fixed constant-time vulnerabilities.

1 Introduction

Side-channel attacks infer sensitive information, such
as cryptographic keys or private user data, by moni-
toring inadvertent information leaks of computing de-
vices. Cryptographic implementations are a valuable

target for various side-channel attacks [11, 45, 77], as
a successful attack undermines cryptographic security
guarantees. Especially software-based microarchitec-
tural attacks (e.g., cache attacks, DRAM attacks, branch-
prediction attacks, and controlled-channel attacks) are
particularly dangerous since they can be launched from
software and, thus, without the need for physical access.
Many of these software-based attacks exploit address-
based information leakage to recover cryptographic keys
of symmetric [6, 36] or asymmetric [28, 87] primitives.

Various countermeasures against address-based infor-
mation leakage have been proposed on an architectural
level [52, 62, 81]. However, these require changing the
hardware, which prohibits fast and wide adoption. A
more promising line of defense are software countermea-
sures, which remove address-based information leaks by
eliminating key-dependent memory accesses to data and
code memory. For example, data leakage can be thwarted
by means of bit-slicing [43, 47, 66], and control-flow
leakage by unifying the control flow [21]. Even though
software countermeasures are already well studied, in
practice their adoption to crypto libraries is often par-
tial, error-prone, or non-transparent, as demonstrated by
recent attacks on OpenSSL [27, 28, 88].

To address these issues, leakage detection tools have
been developed that allow developers and security ana-
lysts to identify address-based side-channel vulnerabil-
ities. Most of these tools, however, primarily focus on
cache attacks and can be classified into static and dy-
namic approaches. Many static analysis methods use ab-
stract interpretation [24,25,48,57] to give upper leakage
bounds, ideally proving the absence of information leaks
in already secured implementations, e.g., the evaluation
of Salsa20 [24]. However, these approaches struggle to
accurately describe and pinpoint information leaks due
to over-approximation [24, page 443], rendering leakage
bounds meaningless in the worst case. Moreover, their
approximations of the program’s data plane fundamen-
tally prohibit the analysis of interpreted code.
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In contrast, dynamic approaches [41, 84, 89] focus
on concrete program executions to reduce false posi-
tives. Contrary to static analysis, dynamic analysis can-
not prove the absence of leakage without exhaustive in-
put search, which is infeasible for large input spaces.
However, in case of cryptographic algorithms, testing a
subset of inputs is enough to encounter information leaks
with a high probability, because crypto primitives heav-
ily diffuse the secret input during processing. Thus, there
is a fundamental trade-off between static analysis (mini-
mizing false negatives) and dynamic analysis (minimiz-
ing false positives).

We aim for a pragmatic approach towards minimiz-
ing false positives, allowing developers to identify infor-
mation leaks in real-world applications. Thus, we fo-
cus on dynamic analysis and tackle the limitations of ex-
isting tools. In particular, existing tools either focus on
control-flow leaks or data leaks, but not both at the same
time [80,89]; they consider the strongest adversary to ob-
serve cache-line accesses only [41], which is too coarse-
grained in light of recent attacks (CacheBleed [88]);
many of them lack the capability to properly filter pro-
gram activity that is statistically independent of secret
input [50, 80, 84]; and most do not provide any means
to further assess the severity of information leaks, i.e.,
the risk they bring and the urgency with which they
must be fixed. Based on these shortcomings, we argue
that tools designed to identify address-based information
leaks must tackle the following four challenges:

1. Leakage origin: Detect the exact location of data
and control-flow leaks in programs on byte-address
granularity instead of cache-line granularity.

2. Detection accuracy: Minimize false positives, e.g.,
caused by non-determinism that is statistically inde-
pendent of the secret input, and provide reasonable
strategies to also reduce false negatives.

3. Leakage classification: Provide means to classify
leaks with respect to the information gained by an
adversary.

4. Practicality: Report information leaks (i) fully au-
tomated, i.e., without requiring manual interven-
tion, (ii) using only the program binary, i.e., with-
out requiring the source code, and (iii) efficiently in
terms of performance.

In this work, we tackle these challenges with differen-
tial address trace analysis (DATA), a methodology and
tool to identify address-based information leaks in appli-
cation binaries. DATA is intended to be a companion dur-
ing testing and verification of security-critical software.1

It targets programs processing secret input, e.g., keys or
passwords, and reveals dependencies between the secret
and the program execution. Every leak that DATA iden-

1DATA is open-source and can be retrieved from
https://github.com/Fraunhofer-AISEC/DATA.

tifies in a program is potentially exposed to side-channel
attacks. DATA works in three phases.
Difference Detection: The first phase generates noise-
less address traces by executing the target program with
binary instrumentation. It identifies differences in these
traces on a byte-address granularity. This accounts for
all address-based side-channel attacks such as cache at-
tacks [61,64,87], DRAM attacks [65], branch-prediction
attacks [1], controlled-channel attacks [86], and many
blackbox timing attacks [11].
Leakage Detection: The second phase tests data and
control-flow differences for dependencies on the secret
input. A generic leakage test compares the address traces
of (i) a fixed secret input and (ii) random secret inputs. If
the traces differ significantly, the corresponding data or
control-flow differences are labeled as secret-dependent
leaks. This minimizes false positives and explicitly ad-
dresses non-deterministic program behavior introduced
by blinding or probabilistic encryption, for example.
Leakage Classification: The third phase classifies
the information leakage of secret-dependent data and
control-flow differences. This is achieved with specific
leakage tests that find linear and non-linear relations be-
tween the secret input and the address traces. These leak-
age tests are a valuable tool for security analysts to de-
termine the severity and exploitability of a leak.

We implement DATA in a fully automated evaluation
tool that allows analyzing large software stacks, includ-
ing initialization operations, such as key loading and
parsing, as well as cryptographic operations. We use
DATA to analyze OpenSSL and PyCrypto, confirming
existing and identifying new vulnerabilities. Among sev-
eral expected leaks in symmetric ciphers (AES, Blow-
fish, Camellia, CAST, Triple DES, ARC4), DATA also
reveals known and previously unknown leaks in asym-
metric primitives (RSA, DSA, ECDSA) and identifies er-
roneous bug fixes of supposedly resolved vulnerabilities.
Outline. The remainder of this paper is organized as fol-
lows. In Section 2, we discuss background information
and related work. In Section 3, we present DATA on a
high level. In Sections 4–6 we describe the three phases
of DATA. In Section 7, we give implementation details.
In Section 8, we evaluate DATA on OpenSSL and Py-
Crypto. In Section 9, we discuss possible leakage miti-
gation techniques. Finally, we conclude in Section 10.

2 Background and Related Work

2.1 Microarchitectural Attacks
Microarchitectural side-channel attacks rely on the ex-
ploitation of information leaks resulting from contention
for shared hardware resources. Especially microarchi-
tectural components such as the CPU cache, the DRAM,
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and the branch prediction unit, where contention is based
on memory addresses, enable powerful attacks that can
be conducted from software only. For instance, attacks
exploiting the different memory access times to CPU
caches (aka cache attacks) range from timing-based at-
tacks [11] to more fine-grained attacks that infer ac-
cesses to specific memory locations [61, 64, 87]. Like-
wise, DRAM row buffers have been used to launch side-
channel attacks [65] by exploiting row buffer conflicts of
different memory addresses. Also, the branch prediction
unit has been exploited to attack OpenSSL RSA imple-
mentations [1]. Xu et al. [86] demonstrated a new class
of attacks on shielded execution environments like In-
tel SGX, called controlled-channel attacks. They enable
noise free observations of memory access patterns on a
page granularity. For a detailed overview on microarchi-
tectural attacks we refer to recent survey papers [29, 76].

2.2 Detection of Information Leaks
2.2.1 Terminology

We consider a program secure if it does not contain
address-based information leaks. We distinguish be-
tween data and control-flow leakage. Data leakage oc-
curs if accessed memory locations depend on secret in-
puts. Control-flow leakage occurs if code execution de-
pends on secret inputs. We further distinguish between
deterministic and non-deterministic programs. Latter in-
clude any kind of non-determinism such as randomiza-
tion of intermediates (blinding) or results (probabilistic
constructions). A false positive denotes an identified in-
formation leak that is in fact none. A false negative de-
notes an information leak which was not identified.

2.2.2 Blackbox Timing Leakage Detection

These techniques measure the execution time of imple-
mentations for different classes of inputs and rely on
statistical tests to infer whether or not the implemen-
tation leaks information [23]. Reparaz et al. [67] use
Welch’s t-test [83] to identify vulnerable cryptographic
implementations. More advanced approaches use sym-
bolic execution to give upper leakage bounds [63]. How-
ever, these approaches fall short for more fine-grained
address-based attacks such as cache attacks.

2.2.3 Address-based Leakage Detection

We distinguish between static and dynamic approaches.
Static Approaches. Well-established static approaches
are CacheAudit [24, 48] and follow-up works [25, 57],
which symbolically evaluate all program paths. Rather
than pinpointing the leakage origin, CacheAudit accu-
mulates potential leakage into a single metric, which rep-

resents an upper-bound on the maximum leakage possi-
ble. While a zero leakage bound guarantees absence of
address-based side channels, a non-zero leakage bound
could become rather imprecise (false positives) due to
abstractions made on the data of the program. Abstrac-
tion also fundamentally prohibits analysis of interpreted
code as it is encoded in the data plane of the interpreter.
Dynamic Approaches. Dynamic analysis relies on
concrete program executions, which possibly introduce
false negatives. Ctgrind [50] propagates secret memory
throughout the program execution to detect its usage in
conditional branches or memory accesses. However, ct-
grind suffers from false positives as well as false nega-
tives [4]. In contrast, Stacco [84] records address traces
and analyzes them with respect to Bleichenbacher at-
tacks [15], for which finding a single control-flow leak
suffices. Stacco does not consider data leakage, and they
do not consider reducing false negatives, i.e., finding
multiple control-flow leaks within the traces. If they did,
they would suffer from false positives due to improper
trace alignment (they use Linux diff tool).

None of the above approaches supports specific leak-
age models to further assess the information leak.
Zankl et al. [89] analyze modular exponentiations un-
der the Hamming weight model, but they do not consider
other leakage models and only detect control-flow leaks.
Combined Approaches. CacheD [80] combines dy-
namic trace recording with static analysis introducing
both, false negatives and false positives. They symbol-
ically execute only instructions that might be influenced
by the secret key. Since they only analyze a single execu-
tion, they miss leakage in other execution paths. More-
over, they do not model control-flow leaks.
Attack-based Approaches. These are dynamic ap-
proaches that conduct specific attacks but do not gen-
eralize to other attacks. For instance, Brumley and
Hakala [19] as well as Gruss et al. [36] suggested to de-
tect implementations vulnerable to cache attacks by re-
lying on template attacks. Irazoqui et al. [41] use cache
observations and a mutual information metric to identify
control-flow and data leaks. Basu et al. [9] and Chat-
topadhyay et al. [20] quantify the information leakage in
cache attacks.
Orthogonal Work. Other approaches analyze source
code [14], which does not account for compiler-
introduced information leaks or platform-specific behav-
ior (cf. [4]). Yet others demand source-code annota-
tions [4, 5, 7] or specify entirely new languages [16].
While they can prove absence of leakage for already se-
cured code, they struggle to pinpoint leaks in vulnerable
code. In contrast, DATA is designed to find and pinpoint
leakage in insecure, unannotated programs. After miti-
gating leakage found by DATA, absence of leakage could
be proven using [4, 5, 7, 16, 25].
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Table 1: Comparison of leakage detection tools.  means that the tool suffers from false positives/negatives. #means
that the tool does not suffer from false positives/negatives. #S denotes statistical guarantees.

Tool Approach Finest Covered vulnerabilities False positives False Output Source code Tool
granularity CF leak Data leak Deterministic Non-deterministic negatives Leaks Key dependency required available

CacheAudit [24] Static analysis Cache line 3 3   # Leakage bound 7 no 3
CacheAudit 2 [25] Static analysis Byte address 3 3   # Leakage bound 7 no 3
CacheD [80] Combined Cache line 7 3    Leak origin 7 no 7
ctgrind [50] Dynamic Byte address 3 3    Leak origin 7 yes 3
Stacco [84] Dynamic (trace-based) Byte address 3 7 #a   Leak origin 7 no 7
MI-Tool [41] Dynamic (attack-based) Cache line 3 3 #S #S  Leak origin generic yes 7
Zankl et al. [89] Dynamic (trace-based) Byte address 3 7 #S #S  Leak origin HW no 3
DATA Dynamic (trace-based) Byte address 3 3 #S #S G# Leak origin generic, HW, etc. no 3

aOnly the first control-flow leak is reliably identified. Reporting multiple leaks could cause false positives.

2.3 Improvement Over Existing Tools

By addressing the identified challenges in Section 1,
DATA overcomes several shortcomings of existing ap-
proaches, as shown in Table 1.
Leakage Origin. DATA follows a dynamic trace-based
approach to identify both control flow and data leakage
on byte-address granularity. This avoids wrong assump-
tions about attackers, e.g., only observing memory ac-
cesses at cache-line granularity [24, 41, 80], which were
disproved by more advanced attacks [1, 88]. Neverthe-
less, identifying information leaks on a byte granularity
still allows to map them to more coarse-grained attacks.
Detection Accuracy. Static approaches like CacheAudit
suffer from false positives. In contrast, DATA filters key-
independent differences with a high probability, thereby
reducing false positives even for non-deterministic pro-
gram behavior. However, as with all dynamic ap-
proaches, DATA could theoretically miss leakage that is
not triggered during execution. Nevertheless, we found
that in practice few traces already suffice, e.g., ≤ 10
for asymmetric algorithms, and ≤ 3 for symmetric al-
gorithms, due to the high diffusion provided by these al-
gorithms. Although without formal guarantee, this gives
evidence that DATA reduces false negatives successfully.
Compared to others, we take multiple measures to reduce
false negatives in DATA. In contrast to CacheD and ct-
grind, we analyze several execution paths. Compared to
Stacco, which has improper trace alignment, we report
all leaks visible in the address traces. Contrary to MI-
Tool, we do not only focus on a specific attack technique
(e.g., cache attacks). In contrast to Zankl et al. [89], we
can detect generic key dependencies. This advantage is
indicated by G# in Table 1.
Leakage Classification. While Zankl et al. [89] use the
Hamming weight (HW) model only, DATA allows test-
ing for various leakage models as well as defining new
ones. Besides pinpointing the information leaks, this rep-
resents valuable information to determine key dependen-
cies in the identified information leaks.
Practicality. DATA analyzes information leaks fully au-
tomatically. It does so on the program binary without

the need for source code, allowing analysis of propri-
etary software. As will be outlined in our evaluation,
we achieve competitive performance, support analysis
of large software stacks and even interpreted code (Py-
Crypto and CPython), and DATA is open source.

3 Differential Address Trace Analysis

DATA is a methodology and a tool to identify address-
based information leaks in program binaries.
Threat Model. To cover a wide variety of possible at-
tacks, we consider a powerful adversary who attempts
to recover secret information from side-channel observa-
tions. In practice, attackers will likely face noisy obser-
vations because side channels typically stem from shared
resources affected by noise from system load. Also,
practical attacks only monitor a limited number of ad-
dresses or memory blocks. For DATA, we assume that
the attacker can accurately observe full, noise-free ad-
dress traces. More precisely, the attacker does not only
learn the sequence of instruction pointers [59], i.e., the
addresses of instructions, but also the addresses of the
operands that are accessed by each instruction. This is
a strong attacker model that covers many side-channel
attacks targeting the processor microarchitecture (e.g.,
branch prediction) and the memory hierarchy (e.g., var-
ious CPU caches, prefetching, DRAM). A strong model
is preferable here to detect as many vulnerabilities as
possible. In line with [35], we consider defenses, such
as address space layout randomization (ASLR) and code
obfuscation, as ineffective against powerful attackers.
Limitations. DATA covers software side channels of
components that operate on address information only,
e.g., cache prefetching and replacement, and branch pre-
diction. In contrast, the recent Spectre [44] and Melt-
down [51] bugs exploit not only address information but
actual data which is speculatively processed but insuffi-
ciently isolated across different execution contexts. In
these attacks, sensitive data spills over to the address
bus. These hardware bugs cannot be detected by an-
alyzing software binaries with tools listed in Table 1.
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Figure 1: Overview of differential address trace analysis (DATA).

While software-only defenses exist for specific CPU
models [22, 78], a generic solution should fix the hard-
ware.
Methodology. DATA consists of three phases, the dif-
ference detection phase, the leakage detection phase, and
the leakage classification phase, as depicted in Figure 1.

In the difference detection phase, we execute the tar-
get program multiple times with varying secret inputs
and record all accessed addresses with dynamic binary
instrumentation in so-called address traces. Thereby, we
ensure to capture both, control flow and data leakages at
their exact origin. The recorded address traces are then
compared and address differences are reported.

The leakage detection phase verifies whether reported
address differences are actually secret-dependent and fil-
ters all that are statistically independent. For this step,
the program is repeatedly executed with one fixed se-
cret input and a set of varying (random) secret inputs. In
contrast to the previous phase, only the initially reported
differences need to be monitored. The address traces be-
longing to the fixed input are then compared to those of
the random inputs using a generic leakage test. Statisti-
cal differences are reported as true information leaks.

The leakage classification phase helps security ana-
lysts to assess the severity of previously confirmed leaks.
This is done with specific leakage tests that find lin-
ear or non-linear relations between a given secret input
and the previously recorded address traces. Such rela-
tions are formulated as so-called leakage models, e.g.,
the Hamming weight model. If a relation is found, the
corresponding leakage model defines the information an
attacker can learn about the secret input by observing
memory accesses to the identified addresses. All de-
tected relations are included in the final leakage report.
Relation to Similar Concepts. The idea of DATA is
similar to differential power analysis (DPA) [46], which
works on power traces. However, power traces are often
noisy due to measurement uncertainty and the underly-
ing physics. Hence, DPA often requires several thou-
sand measurements and non-constant time implemen-
tations demand heavy pre-processing to correctly align
power traces [55]. In contrast, address traces are noise-
free, which minimizes the number of required measure-
ments and allows perfect re-alignment for non-constant
time traces (due to control-flow leaks).

DATA is also related to differential computation analy-
sis (DCA) [17]. DCA relies on software execution traces
to attack white-box crypto implementations. While DCA
is conceptually similar to DATA, DCA attacks (white-
box model) consider a much stronger adversary who can
read the actual content of accessed memory locations.

4 Difference Detection Phase

We now introduce address-based information leaks and
discuss the steps to identify them, namely recording of
address traces and finding differences within the traces.
Notation. DATA analyzes a program binary P with re-
spect to address leakage of secret input k. Let P(k) de-
note the execution of a program with controllable secret
input k. We write t = trace(P(k)) to record a trace of
accessed addresses during program execution. We de-
fine an address trace t = [a0,a1,a2,a3...] as a sequence
of executed instructions, augmented with memory ad-
dresses. For instructions operating on CPU registers,
ai = ip holds the current instruction pointer ip. In case
of memory operations, ai = (ip,d) also holds the ac-
cessed memory address d. Information leaks appear as
differences in address traces. We develop an algorithm
diff(t1, t2) that, given a pair of traces (t1, t2), identifies all
differences. If the traces are equal, diff(t1, t2) = ∅. A
deterministic program P is leakage free if and only if no
differences show up for any pair of secret inputs (ki, k j):

∀ki,k j : diff(trace(P(ki)), trace(P(k j))) =∅ (1)

4.1 Address-based Information Leakage
Data leakage is characterized by one and the same in-
struction (ip) accessing different memory locations (d).
Consider the code snippet in Listing 1, assuming line
numbers equal code addresses. Execution with two dif-
ferent keys keyA = [10,11,12] and keyB = [16,17,18]
yields two address traces tA = trace(P(keyA)) and tB =
trace(P(keyB)), with differences marked bold:

tA = [0,18,19,(17,1),20,(17,11),21,(17,12),22,(17,13),23]

tB = [0,18,19,(17,1),20,(17,01),21,(17,02),22,(17,03),23]

The function ’transform’ leaks the argument kval,
which is used as index into the array LUT (line 17).
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0 program e n t r y : c a l l p r o c e s s wi th u s e r - i n p u t
1 unsigned char LUT[ 1 6 ] = { 0x52 ,
2 0x19 ,

. . .
16 0x37 } ;
17 i n t t r a n s f o r m ( i n t k v a l ) { re turn LUT[ k v a l %16]; }
18 i n t p r o c e s s ( i n t key [ 3 ] ) {
19 i n t v a l = t r a n s f o r m ( 0 ) ;
20 v a l += t r a n s f o r m ( key [ 0 ] ) ;
21 v a l += t r a n s f o r m ( key [ 1 ] ) ;
22 v a l += t r a n s f o r m ( key [ 2 ] ) ;
23 re turn v a l ;
}

Listing 1: Table look-up causing data leak.

Since the base address of LUT is 1, this operation leaks
memory address kval + 1. The first call to transform
(line 19) with kval = 0 results in a1 = (17,1). Subse-
quent calls (line 20–22) leak sensitive key bytes. The
differences in the traces—marked bold—reveal key de-
pendencies.

To accurately report data leakage and to distinguish
non-leaking cases (line 19) from leaking cases (line 20–
22), we take the call stack into account. We formalize
data leaks as tuples (ip,cs,ev) of the leaking instruction
ip, its call stack cs, and the evidence ev. The call stack is
a list of caller addresses leading to the leaking function.
For example, the first leak has the call stack cs = [0,20].
The evidence is a set of leaking data addresses d. The
larger the evidence set, the more information leaks. For
example, ev = {11,01} for the first leak, ev = {12,02}
for the second one, etc. Our diff algorithm would report:

diff(tA, tB) = {(17, [0,20],{11,01}),
(17, [0,21],{12,02}),
(17, [0,22],{13,03})}

Control-flow leakage is caused by key-dependent
branches. Consider the exponentiation in Listing 2, exe-
cuted with two keys kA = 4 = 100b and kB = 7 = 111b.
This yields the following address traces, where R, P, and
T denote the data addresses of the variables r, p, and t.

trace(P(kA)) = tA = [0,1,2,3,4,(7,R),(8,P),(9,R),
2,3,5,(7,T),(8,P),(9,T),
2,3,5,(7,T),(8,P),(9,T),2,6]

trace(P(kB)) = tB = [0,1,2,3,4,(7,R),(8,P),(9,R),
2,3,4,(7,R),(8,P),(9,R),
2,3,4,(7,R),(8,P),(9,R),2,6]

There are two differences in the traces, both marked
bold. The differences occur due to the if in line 3 which
branches to line 4 or 5, depending on the key bit b, and
causes operations in line 7 and 9 to be done either on the
intermediate variable r or a temporary variable t.

0 program e n t r y : c a l l exp wi th u s e r - i n p u t
1 f u n c t i o n exp ( key , ∗p ) {

. . .
2 foreach ( b i t b i n key )
3 i f ( b )
4 mul ( r , p ) ;

e l s e
5 mul ( t , p ) ;
6 re turn r ;
}
f u n c t i o n mul (∗ a ,∗ b ) {

7 tmpA = ∗a ;
8 tmpB = ∗b ;

/ / c a l c u l a t e r e s = tmpA ∗ tmpB
9 ∗a = r e s ;
}

Listing 2: Branch causing control-flow leak.

A control-flow leak is characterized by its branch
point, where the control flow diverges, and its merge
point, where branches coalesce again. In this example,
the branch point is at line 3 and the merge point at line 2,
when the next loop iteration starts. We model control-
flow leaks as tuples (ip,cs,ev) of branch point ip, call
stack cs, and evidence ev. For example, both differences
occur at the same call stack cs = [0]. Hence, they are
reported as the same leak. The evidence is a set of sub-
traces corresponding to the two branches. Our diff algo-
rithm would report:

diff(tA, tB) = {(3, [0],{[4,(7,R),(8,P),(9,R)],
[5,(7,T ),(8,P),(9,T )]} )}

4.2 Recording Address Traces
We execute the program on a dynamic binary instrumen-
tation (DBI) framework, namely Intel Pin [54], and store
the accessed code and data addresses in an address trace.
To execute the program in a clean and noise-free envi-
ronment, we disable ASLR and keep public inputs (e.g.,
command line arguments, environment variables) to the
program fixed. As shown in Figure 1, we repeat this mul-
tiple times with varying inputs, causing address leaks to
show up as differences in the address traces.

The concept of DATA is agnostic to concrete
recording tools and, hence, could also rely on other
tools [71] or hardware acceleration like Intel Processor
Trace (IPT) [39]. Since the recording time is small com-
pared to trace analysis, we did not investigate other tools.

4.3 Finding Trace Differences
The trace comparison algorithm (diff) in Algorithm 1
sequentially scans a pair of traces (tA, tB) for address
differences, while continuously re-aligning traces in the
same pass. Whenever ip values match but data addresses
(d) do not, a data difference is detected (lines 4–6).
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Algorithm 1: Identifying address trace differences (diff).
input : tA, tB ... the two traces
output: rep ... the report of all differences

1 rep =∅, i = 0, j = 0
2 while i < |tA|∧ j < |tB| do
3 a = tA[i], b = tB[i]
4 if a.ip = b.ip then
5 if a.d 6= b.d then
6 rep = rep∪ report data diff(tA, tB, i, j)
7 end
8 i++, j++
9 else

10 rep = rep∪ report cf diff(tA, tB, i, j)
11 (i, j) = find merge point(tA, tB, i, j)
12 end
13 end
14 return rep

Algorithm 2: find merge point
input : tA, tB ... the two traces
input : i, j ... the trace indices of the branches
output: k, l ... the indices of the merge point

1 k = i, l = j, CA = 0, CB = 0, SA =∅, SB =∅
2 while k < |tA|∧ l < |tB| do
3 if isCall(tA[k]) then CA++ ;
4 if isRet(tA[k]) then CA– – ;
5 if isCall(tB[l]) then CB++ ;
6 if isRet(tB[l]) then CB– – ;
7 if CA <= 0 then SA = SA ∪ tA[k].ip ;
8 if CB <= 0 then SB = SB ∪ tB[l].ip ;
9 M = SA ∩SB

10 if M 6=∅ then
11 k = find(tA[i...k],M)
12 l = find(tB[ j...l],M)
13 return (k, l)
14 end
15 if CA >= 0 then k++ ;
16 if CB >= 0 then l++ ;
17 end
18 error No merge point found

Control-flow differences occur when ip differs (line 9–
11). Differences are reported using report data diff and
report cf diff using the format specified in Section 4.1.
Trace Alignment. For control-flow differences, it is cru-
cial to determine the correct merge points, as done by Al-
gorithm 2. Starting from the branch point, it sequentially
scans both traces, extending two sets SA and SB (lines
7–8) with the scanned instructions. If their intersection
M becomes non-empty (lines 9–10), M holds the merge
point’s ip. We then determine the first occurrence of M
in both branches using find (lines 11–12) and realign the
traces before proceeding (Algorithm 1, line 11).
Context-Sensitivity. Since control-flow leaks could in-
corporate additional function calls (e.g., function mul in
Listing 2), we need to exclude those from the merge point
search. Therefore, we maintain the current calling depth
in counters CA and CB (lines 3–6) and skip calling depths

> 0 (lines 7–8). The functions isCall(a) and isRet(a) re-
turn true iff the assembler instruction at address a.ip
is a function call or return, respectively. If the calling
depth drops below zero, the trace returned to the func-
tion’s call-site. We stop scanning this trace (lines 15–17)
and wait for the other trace to hit a merge point.

Our context sensitive alignment also works for tech-
niques like retpoline [78] that aim to prevent Spectre at-
tacks, since they just add additional call/ret layers. Code
directly manipulating the stack pointer (return stack re-
fill [78], setjmp/longjmp, exceptions, etc.) could be
supported by detecting such stack pointer manipulations
alongside calls and rets.
Comparison to Related Work. Trace alignment has
been studied before as the problem of correspondence
between different execution points. Several approaches
for identifying execution points exist [74]. Instruction
counter based approaches [58] uniquely identify points
in one execution but fail to establish a correspondence
between different executions. Using calling contexts
as correspondence metric could introduce temporal am-
biguity in distinguishing loop iterations [75]. Xin et
al. [85] formalize the problem of relating execution
points across different executions as execution index-
ing (EI). They propose structural EI (SEI), which uses
taken program paths for indexing but could lose com-
prehensiveness by mismatching execution points that
should correspond [74]. Other approaches combine call
stacks with loop counting to avoid problems of ambi-
guity and comprehensiveness [74]. Many demand re-
compilation [74, 75, 85], which prohibits their usage
in our setting. Specifically, EI requires knowledge of
post-dominators, typically extracted from control flow
graphs (CFGs) [30], which are not necessarily available
(e.g., obfuscated binaries or dynamic code generation).
Using EI, Johnson et al. [42] align traces in order to prop-
agate differences back to their originating input. We use
a similar intuition as Johnson et al. in processing and
aligning traces in a single pass, however, without the
need to make program execution indices explicit. By
constantly re-aligning traces, we inherently maintain cor-
respondence of execution points. Our set-based approach
does not require CFG or post-dominator information.

In contrast to EI, we do not explicitly recover loops.
This could cause imprecision when merging control-flow
leaks embedded within loops. If the two branches are
significantly asymmetric in length, we might match mul-
tiple shorter loop iterations against one longer iteration,
thus introducing an artificial control-flow leak (false pos-
itive) when one branch leaves the loop while the other
does not. Should such leaks occur, they would be dis-
missed as key independent in phase two. Note that cor-
respondence (correct alignment) would be automatically
restored as soon as both branches leave the loop. Also,

USENIX Association 27th USENIX Security Symposium    609



this is not a fundamental limitation of DATA, as other
trace alignment methods could be implemented as well.
Combining Results. We run our diff algorithm pairwise
on all recorded traces and accumulate the results in an in-
termediate report. Testing multiple traces helps capture
nested leakage, that is, leakage which appears condition-
ally, depending on which branches are taken in a super-
ordinate control-flow leak. Nested leakage would remain
hidden when testing trace pairs which either take the
wrong superordinate branch or exercise both branches.

5 Leakage Detection Phase

We implement a generic leakage test to reduce the num-
ber of false positives in case of (randomized) program
behavior and events that are statistically independent of
the secret input. The program is repeatedly executed with
one fixed secret input and a set of random secret inputs.
If the distributions of accessed addresses in these two sets
can be distinguished, the corresponding address differ-
ences are marked as secret-dependent. A challenge that
arises during this generic leakage test is that false nega-
tives might occur if the fixed input is particularly similar
to the average random case. We address this challenge by
repeating the generic leakage test with multiple distinct
fixed inputs and merging the results in the end. We intro-
duce an appropriate leakage-evidence representation to
compare distributions of accessed addresses.

5.1 Evidence Representation
We unify the representation of both data and control-flow
evidences in so-called evidence traces. These traces hold
a time-ordered sequence of memory addresses that a par-
ticular instruction accesses during one program execu-
tion. Note the difference to evidence sets used in Sec-
tion 4.1, which are computed over multiple program ex-
ecutions. Evidence traces contain all essential informa-
tion exploited in practical attacks, such as how often an
address is accessed [11, 45] and also when, i.e., at which
position an address is accessed in the trace [87].
Recording. Similar to the difference detection phase, the
target program is executed to gather address traces. This
time, however, we only monitor the previously detected
differences, which significantly reduces trace sizes and
instrumentation time. For each instruction that caused
address differences in the first phase, we gather individ-
ual evidence traces. Addresses accessed in case of data
differences are written to the trace in chronological or-
der. For control flow differences, the branch target ad-
dresses taken at the branch points are written to the evi-
dence trace, again in chronological order.
Building Histograms. As we execute the target program
with multiple inputs, we accumulate the evidence traces
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Figure 2: Histogram Hfull over evidence traces.

of the same instruction in a two-dimensional histogram,
as depicted in Figure 2. The y-axis contains the addresses
accessed by the instruction, r0 and r1 in this case. The
x-axis specifies their positions in the trace. A single ev-
idence trace, e.g., [r0,r1,r1,r0,r0,r1], would appear as
dots in the x-y plane. When aggregating multiple traces,
the z-axis accumulates all dots into bars, specifying the
overall number of accesses for each address and position.
This histogram, named Hfull, fully captures the charac-
teristics of evidence traces, namely when and how often
addresses are accessed. The downside of Hfull is that a
large number of traces is required to accurately estimate
it. This would prolong the leakage detection phase and
increase storage requirements. We therefore use two sim-
plified histograms, each of which captures one character-
istic of Hfull. The first one, Haddr, tracks the total number
of accesses per address, thus, collapsing the x-axis and
omitting time information. The second one collapses the
y-axis and counts the total number of accesses per po-
sition. This omits address information and is compara-
ble to counting the length of evidence traces. Observe
that counting the length of evidence traces equals the
(negative) difference between consecutive positions. We
therefore define Hpos as counting the length of evidence
traces. We illustrate how Haddr and Hpos are compiled
with the following example of three evidence traces:

ev0 = [r1,r2], ev1 = [r3,r3,r2,r3,r1], ev2 = [r2,r1,r2]

Haddr contains one entry per address, counting how
often each address occurs in the traces. Thus, Haddr =
[3,4,3] for addresses [r1,r2,r3]. Hpos records the length
of the traces, which yields Hpos = [0,1,1,0,1] for lengths
1 to 5. For illustration purposes, counting the number
of accesses per position would yield [3,3,2,1,1,0] for
positions 1 to 6. The (negative) differences between the
positions are [0,1,1,0,1], which is exactly Hpos.
Implications. While the use of Haddr and Hpos reduces
the measurement effort, we might miss leaks that only
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show up in Hfull. Such a leak would occur, if the se-
cret permutes the addresses in the evidence traces, e.g.,
[r1,r2] and [r2,r1], while the length of the evidence traces
as well as the number of accesses per address remains
the same. These special cases can still be detected with a
multi-dimensional generic leakage test using Hfull.

5.2 Generic Leakage Test
We compile the evidence traces into two histograms,
namely Hfix

addr and Hfix
pos for fixed secret inputs, and Hrnd

addr
and Hrnd

pos for random inputs. If these histograms can be
distinguished, the corresponding address difference con-
stitutes a true information leak. In side-channel litera-
ture [33, 67], this fixed-vs-random input testing is typ-
ically done by applying Welch’s t-test [83] to distribu-
tions of power consumption, electromagnetic emanation,
or execution time measurements. For DATA, we can-
not use the t-test, because it assumes normal distribu-
tions and evidence trace distributions are not necessar-
ily normal. Instead, we use the more generic Kuiper’s
test [49], which does not make this assumption. The test
essentially determines whether two probability distribu-
tions stem from the same base distribution or not. It is
closely related to the Kolmogorov-Smirnov (KS) test but
performs better when distributions differ in the tails in-
stead of around the median. Since we do not assume
anything about the tested distributions, we choose the in-
creased sensitivity of Kuiper’s test over the KS test at
almost identical computational cost.

In preparation for Kuiper’s test, we normalize our pre-
viously compiled histograms to obtain probability dis-
tributions. For the explanation of the test, assume two
random variables X and Y , for which nX and nY samples
are observed. The first step of the test is to derive the
empirical distribution functions FX (x) and FY (x) as

FX (x) =
1

nX
·

nX

∑
i=1

I[Xi,∞] (x) . (2)

I is the indicator function, which is 1 if Xi ≤ x, and 0
otherwise. FY (x) is calculated accordingly. The Kuiper
statistic V is then computed as

V = sup
x
[FX (x)−FY (x)]+ sup

x
[FY (x)−FX (x)] . (3)

The deviation of both distributions is significant if the
Kuiper statistic V exceeds the significance threshold:

Vst =
Q−1

st (1−α)

Cst (nX ,nY )
. (4)

Cst relates the threshold to the number of samples each
empirical distribution is based on. This is important, as a

larger number of samples increases the sensitivity of the
Kuiper statistic. It is approximated as

Cst (nX ,nY ) =

√
nX nY

(nX +nY )
+0.155+

0.24√
nX nY

(nX+nY )

. (5)

Qst is derived from the asymptotic distribution of the
Kuiper statistic. It links the test statistic to a certain con-
fidence level and is defined as

Qst(λ ) = 2
∞

∑
i=1

(
4i2λ

2−1
)

e−2i2λ 2
. (6)

Its inverse, Q−1
st , is calculated numerically. The value

(1−α) determines the probability with which Kuiper’s
test produces false positives. For all tests performed in
this work, this probability is set to 0.0001. If Kuiper’s
test statistic is significant, the corresponding data or
control-flow difference is flagged as an information leak.
Accuracy. The probability of reporting false positives
is sufficiently minimized by the choice of (1−α). False
negatives can occur, if the histograms Haddr and Hpos are
insufficient estimations of the underlying evidence dis-
tributions. This happens if the number of program exe-
cutions for fixed and random inputs is too small. It is,
however, a common problem of unspecific leakage test-
ing to determine a required minimum number [55, 72].
Analysts using DATA should therefore add traces until
the test results stabilize and no new leaks are detected.

6 Leakage Classification Phase

The leakage classification phase is based on a specific
leakage test, which tests for linear and non-linear rela-
tions between the secret input and the evidences of in-
formation leaks. Finding these relations requires appro-
priate representations for both input and evidence traces,
which are described in the following two sections.

6.1 Evidence Representation
Similar to the leakage detection phase, we collect evi-
dence traces for multiple random secret inputs. Unlike
before, however, we do not merge evidence traces into
histograms, since this would dismiss information about
which input belongs to which evidence trace. Instead, we
aggregate evidence traces into evidence matrices, where
each column represents a unique trace (and unique se-
cret input). Since evidence traces might differ both in
length and accessed addresses, we cannot store them di-
rectly in a matrix. Instead, we capture the characteristics
of the evidence traces in two separate matrices, Mev

addr
and Mev

pos. The rows in both matrices correspond to the
possible addresses in the traces. Mev

addr stores the number
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of accesses per address. If an address does not occur in a
trace, the corresponding matrix entry is set to zero. Mev

pos
stores the position of each address in the evidence trace.
If an address does not occur in a trace, the matrix entry is
set to ’-1’. This labels an absent address and has no neg-
ative impact on the statistical test. Any other negative
value works as well, because all valid positions are non-
negative integers. If an address occurs more than once in
a trace, the matrix entry is set to the rounded median of
the trace positions. The median adequately determines
around which position in the evidence trace an address is
accessed most frequently.

The following example illustrates how evidence ma-
trices are compiled. We reuse the evidence traces ev0
to ev2 from Section 5.1 and insert one column for each
trace. For each of the addresses r1 to r3, we insert one
row. After adding the data, we obtain:

Mev
addr =

 1 1 1
1 1 2
0 3 0

 , Mev
pos =

 0 4 1
1 2 1
-1 1 -1


6.2 Leakage Model
The transformation of the input is called leakage model.
It defines which property or part of the secret input
is compared to the evidence representations stored in
Mev

addr and Mev
pos. This serves two purposes. First, it con-

fines the scope of the statistical test. This is important
because the complete input space of a secret is often too
large to handle in practice, e.g., > 2128 for strong crypto-
graphic keys. Second, this confinement implicitly quan-
tifies the information an adversary could gain from ob-
serving evidences. A well-known leakage model is the
Hamming weight model [55], which reduces a secret in-
put to the number of its 1-bits. In [89], the Hamming
weight model is used to find leaks in asymmetric cipher
implementations. Another popular approach is slicing
the secret input into smaller chunks [46], e.g., bytes or
bits. While input slices are a good fit for byte- and bit-
wise operations in symmetric ciphers, they might not
be the best fit for big-integer operations in asymmetric
ciphers. Clearly, the choice of an appropriate leakage
model is important, but ultimately depends on the target
program. It requires some degree of domain knowledge,
which we assume that analysts have. Our framework is
designed to support a variety of leakage models, includ-
ing Hamming weight and input slicing.

6.3 Specific Leakage Test
For the specific leakage test, the target binary is executed
n times with random secret inputs. Instead of gathering
new measurements, we reuse the (random input) traces
from the leakage detection phase. In preparation for the

test, we derive Mev
addr and Mev

pos from the traces. We
also transform the secret inputs according to the chosen
leakage model L and store the results in the input ma-
trix Min

L . Similar to the evidence matrices, every input
gets assigned a column in Min

L . The number of rows is
defined by the model, e.g., the Hamming weight of the
entire input requires one row. All rows in Min

L are then
compared to all rows in Mev

addr and Mev
pos. For these com-

parisons, the selected rows are interpreted as pairwise
observations of two random variables, X and Y , with
length nX = nY = n. We then use the Randomized De-
pendence Coefficient (RDC) [53] to determine the rela-
tion between the observations. The RDC detects linear
and non-linear relations between random variables, its
test statistic R is defined between 0 and 1, with R = 1
showing perfect dependency and R = 0 stating statistical
independence. The parameters of the RDC are set to the
values proposed in [53]: k = 20 and s = 1

6 . In contrast to
mutual information estimators and similar metrics [68],
which are also used in side-channel literature [31], the
RDC can be calculated efficiently, especially for large
sample sizes (n > 100). We precompute the significance
threshold Rst for a given confidence level α by generat-
ing a sufficiently large number (≥ 104) of statistically in-
dependent sequences of length n (the same length as the
rows in Mev

addr, Mev
pos, and Min

L ) and estimating the distri-
bution of R. Since the resulting distribution is approxi-
mately normal, we estimate the mean µ and the standard
deviation σ . The significance threshold is then derived
from Φ−1(x), which is the inverse cumulative distribu-
tion function of the standard normal distribution, as fol-
lows:

Rst = µ +σ ·Φ−1 (α) . (7)

The value (1−α) determines the probability with
which the RDC produces false positives. For all tests
performed in this work, it is set to 0.0001. If R exceeds
Rst , the tested rows exhibit a significant statistical rela-
tion. This means that an adversary is able to infer the
values and properties of the secret input that are defined
by the leakage model from side-channel observations.
Accuracy. The probability of reporting false positives is
sufficiently minimized by the choice of (1−α). False
negatives can occur if the number of observations n is
too small. Similar to the discussion in Section 5, it is
not possible to determine a required minimum number
of observations that holds for arbitrary target programs.
Naturally, simple and direct relations will be discovered
with far less observations than faint and indirect ones.

7 Implementation and Optimizations

While the concept of DATA is platform independent, we
implement trace recording on top of the Intel Pin frame-
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Figure 3: OpenSSL AES T-table leakage classification.

work [38] for analyzing x86 binaries. We record address
traces in separate trace files. To reduce their size, we only
monitor instructions with branching behavior and their
target branch as well as instructions performing memory
operations. This suffices to detect control-flow and data
leakage. To speed up recording of evidence traces in the
second phase, we only record those instructions flagged
as potential leaks in the first phase.

We implement the difference detection as well as the
generic and the specific leakage tests in Python scripts,
which condense all findings into human-readable leakage
reports in XML format, structuring information leaks by
libraries, functions, and call stacks.
Tracking Heap Allocations. Depending on the utiliza-
tion of the heap, identical memory objects could get as-
signed different addresses by the memory allocator. Dur-
ing trace analysis, this could cause the same objects to
be interpreted as different ones. We encountered such
behavior for OpenSSL, which dynamically allocates big
numbers on the heap and resizes them on demand. This
causes frequent re-allocations and big numbers hopping
between different heap addresses for different program
executions. Our Pintool can therefore be configured to
detect heap objects and replace their virtual address with
its relative address offset. Currently, our analysis treats
all heap objects equally, making the results more read-
able. More elaborate approaches like [73] are left as fu-
ture work.

8 Evaluation and Results

We used Pin version 3.2-81205 for instrumentation and
compiled glibc 2.24 as well as OpenSSL 1.1.0f2 in a
default configuration with additional debug information,
using GCC version 6.3.0. Although debug symbols are
not required by DATA, it incorporates available debug
symbols in the final report. This allows to map detected
leaks to the responsible functions and data symbols.

2Specifically, we tested commit 7477c83e15.

Table 2: Leakage summary of algorithms.
Algorithm Differences Generic Specific

Dismissed CF Data Byte/Bit HW
AES-NI 0 (2) 0 0 0 (2) 0 (2) -
AES-VP 0 0 0 0 0 -
AES bit-sliced 4 0 0 4 4 -
AES T-table 20 0 0 20 20 -
Blowfish 194 0 0 194 171 -
Camellia 82 0 0 82 55 -
CAST 202 0 0 202 133 -
DES 138 0 0 138 63 -
Triple DES 410 0 0 410 292 -
ECDSA (secp256k1) 515 487 1 27 3 1
DSA 781 354 160 267 19 33

O
pe

nS
SL

RSA 2248 1510 278 460 11 139
AES 96 0 0 96 96 -
ARC4 5 0 0 5 5 -
Blowfish 384 0 0 384 384 -
CAST 284 0 0 284 216 -Py

C
ry

pt
o

Triple DES 108 0 12 96 101 -

8.1 Analysis Results

Table 2 shows the results of the three phases of DATA,
namely address differences, generic and specific leaks.
OpenSSL (Symmetric Primitives). As summarized
in the upper part of Table 2, AES-NI (AES new in-
structions [37]) as well as AES-VP (vector permuta-
tions based on SSSE3 extensions) do not leak. However,
when using AES-NI (and other ciphers) via the OpenSSL
command-line tool, the key parsing yields two data leaks,
as indicated in brackets. Calling the AES-NI implemen-
tation without this command-line tool, as also done for
the other three AES implementations, does not trigger
these two data leaks. Besides, we identified four data
leaks in the bit-sliced AES. While OpenSSL uses the pro-
tected implementation by Käspar and Schwabe [43] for
the actual encryption, they use the same unprotected key
expansion as used in T-table implementations.

All other tested symmetric implementations yield a
significant number of data leaks since they rely on
lookup tables with key-dependent memory accesses,
which makes them vulnerable to cache attacks [11, 77].
These leaks have also been confirmed by the byte leak-
age model test. Figure 3 shows statistical test results of
the vulnerable AES T-table implementation for the first
five rounds, averaged over the 16 table lookups in each
round. Phase two finds generic key dependencies, re-
gardless of the round (values well above Vst ), confirm-
ing its accuracy. The chosen byte leakage model detects
linear dependencies to the first round state (s1), which
allows known-plaintext attacks [11]. For intermediate
rounds, for which the chosen byte leakage model is not
applicable, the test output is well below the threshold Rst .
By adapting the leakage model to the last round state, one
could also test for ciphertext-only attacks [60]. More-
over, one can see that the Hamming weight model on
key bytes detects the same leakage but with a lower con-
fidence, since it loses information about the key. This
emphasizes the importance of choosing appropriate leak-
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age models. We summarize results in Appendix A.
OpenSSL (Asymmetric Primitives). The asymmetric
primitives show significant non-deterministic behavior,
which is dismissed in the leakage detection phase. For
example, OpenSSL uses RSA base blinding with a ran-
dom blinding value. From 2248 differences in RSA,
1510 are dismissed, leaving 278 control-flow and 460
data leaks with key dependency. Among those, we found
two constant-time vulnerabilities in RSA and DSA, re-
spectively, which bypass constant-time implementations
in favor of vulnerable implementations. This could allow
key recovery attacks similar to [3, 82]. Moreover, DATA
reconfirms address differences in the ECDSA wNAF im-
plementation, as exploited in [10, 26, 79].

For asymmetric ciphers, we applied the Hamming
weight (HW) model as well as the key bit model. The
majority of leaks reported by the HW model are indi-
cating that the length of the key or of intermediate val-
ues leaks (as the HW usually correlates with the length).
For example, we detect leaks in functions that deter-
mine the length of big numbers, reconfirming the find-
ings of [80]. Also, OpenSSL uses lazy heap allocation to
resize objects on demand. This can cause different heap
addresses for different key lengths, which will show up
as data leakage. In contrast to the HW, the key bit model
is more fine-grained and thus targets very specific leaks
only, e.g., it reveals leaks that occur when the private key
is parsed. This constitutes an insecure usage of the pri-
vate key, and a very subtle bug to find. Details about
leaking functions are given in Appendix A.
Python. We tested PyCrypto 2.6.1 running on CPython
2.7.13. The lower part of Table 2 summarizes our results.
PyCrypto incorporates native shared libraries for certain
cryptographic operations. From a side-channel perspec-
tive, this is desirable since those native libraries could be
tightened against side-channel attacks, independently of
the used interpreter. However, we found that all ciphers
leak key bytes via unprotected lookup table implemen-
tations within those shared libraries, as indicated by the
byte leakage model. We list the leaks in Appendix A.
Leakage-free Crypto. We analyzed Curve25519 in
NaCl [13] as well as the corresponding Diffie-Hellman
variant of OpenSSL (X25519) and found no address-
based information leakage (apart from OpenSSL’s key
parsing), approving their side-channel security.

8.2 Discussion

Detection Accuracy. For symmetric algorithms in
OpenSSL, we recorded up to 10 traces in the difference
detection phase. We found that 3 traces are sufficient as
more traces did not uncover additional differences. The
low number of traces results from the high diffusion and
the regular design of symmetric ciphers, which yields a

2 5 10 15 20 25 30
0

500

1,000

1,500

2,000

No. traces

N
o.

di
sc

ov
er

ed
le

ak
s/

di
ff

er
en

ce
s

Non-determinism
RSA data leaks
RSA control-flow leaks

Figure 4: Dismissed non-deterministic differences and
discovered leaks for OpenSSL RSA as stacked plot.

high probability for quickly hitting all variations in the
program execution. This suggests that the difference
detection phase achieves good accuracy for symmetric
ciphers. Symmetric ciphers are typically deterministic,
thus all differences are key-dependent. Indeed, Table 2
shows that the leakage detection phase confirms all dif-
ferences as leaks.

To evaluate DATA’s accuracy on non-deterministic
programs, we tested OpenSSL asymmetric ciphers and
collected up to 30 traces, as shown in Figure 4. While
the address differences found in the difference detection
phase do not settle within 30 traces (introducing false
negatives), an important finding is that the majority of
these differences are due to statistically independent pro-
gram activity, e.g., RSA base blinding. These differences
are characterized as key-independent and successfully
filtered in the leakage detection phase. The number of
actual data and control-flow leaks with key dependencies
already settles at 4 traces. The few leaks observable with
more traces are due to heap cleanup (these leaks were al-
ready discovered at heap allocation), leakage of the heap
object’s size, and exploring more paths of already dis-
covered programming bugs. For example, DATA discov-
ered the aforementioned RSA constant-time vulnerabil-
ity, which was missed by other solutions, with only two
traces. Analyzing more traces identifies more informa-
tion leaks caused by the same programming bug. Hence,
we recommend ≤ 10 traces for asymmetric primitives as
a conservative choice. We observed similar behavior for
DSA and ECDSA, but omit the details for brevity.
Performance. We ran our experiments on a Xeon E5-
2630v3 with 386 GB RAM. DATA achieves good perfor-
mance, adapting its runtime to the number of discovered
leaks. Analysis of the leakage-free AES-NI and AES-
VP took around 6 s, as only the first phase is needed.
Finding leaks in the OpenSSL AES T-table implementa-
tion took 5 CPU minutes. Leakage classification took 8
CPU min. Asymmetric algorithms require more traces
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and yield significantly more differences. Hence, the first
phases took between 29.8 (for DSA) and 79.8 CPU min-
utes (for ECDSA). Running all three phases on RSA
takes 233.8 CPU minutes with a RAM utilization of less
than 4.5 GB (single core). By exploiting parallelism,
the actual execution time can be significantly reduced,
e.g., from 55 min to approximately 250 s for the first
phase of RSA. Analyzing PyCrypto yields large address
traces due to the interpreter (1GB and more), neverthe-
less DATA handles such large traces without hassle: The
first phase discards all non-leaking instructions, stripping
down trace sizes of the subsequent phases to kilobytes
(see Appendix B).

Summary. The adoption of side-channel countermea-
sures is often partial, error-prone, and non-transparent
in practice. Even though countermeasures have been
known for over a decade [66], most OpenSSL symmetric
ciphers as well as PyCrypto do not rely on protected im-
plementations like bit-slicing. Also, the bit-sliced AES
adopted by OpenSSL leaks during the key schedule, as
the developers integrated it only partially [43] since prac-
tical attacks have not been shown yet. Moreover, we dis-
covered two new vulnerabilities, bypassing OpenSSL’s
constant-time implementations for RSA and DSA initial-
ization. Considering incomplete bug fixes of similar vul-
nerabilities identified by Garcia et al. [27, 28], this sums
up to four implementation bugs related to the same coun-
termeasure. This clearly shows that the tedious and error-
prone task of implementing countermeasures should be
backed by appropriate tools such as DATA to detect and
appropriately fix vulnerabilities as early as possible.

We found issues in loading and parsing cryptographic
keys as well as initialization routines. Finding these is-
sues demands analysis of the full program execution,
from program start to exit, which is out of reach for many
existing tools. Also, analysis often neglects these infor-
mation leaks because an attacker typically has no way
to trigger key loading and other single events in prac-
tice. However, when using OpenSSL inside SGX en-
claves (cf. Intel’s SGX SSL library [40]), the attacker
can trigger arbitrarily many program executions, mak-
ing single-event leakage practically relevant, as demon-
strated by the RSA key recovery attack in [82].

Responsible Disclosure. We informed the library de-
velopers as well as Intel of our findings. In response,
OpenSSL merged our proposed patches upstream.

Security Implications. A leak found by DATA does not
necessarily constitute an exploitable vulnerability. The
leakage classification phase helps in rating its severity,
however, an accurate judgment often demands significant
effort in assembling and improving concrete attacks [12].
We argue that, unless good counter-arguments are given,
any leak should be considered serious.

9 Mitigating Address-based Leaks

After using DATA to identify address-based information
leaks in cryptographic software implementations, the fol-
lowing approaches could be applied as mitigation.
Software-based Mitigations. Coppens et al. [21]
proposed compiler transformations to eliminate key-
dependent control-flow dependencies. Similar ap-
proaches are followed by other program transforma-
tions [2, 56] and transactional branching [8]. Data leaks
of lookup table implementations can be mitigated by bit-
slicing [43, 47, 66]. Scatter-gather prevents data leaks on
RSA exponentiation by interleaving data in memory such
that cache lines are accessed irrespective of the used in-
dex. However, scatter-gather must be implemented cor-
rectly to prevent more sophisticated attacks [88]. Obliv-
ious RAM [32, 77, 91] has been proposed as a generic
countermeasure against data leaks by hiding memory ac-
cess patterns. Hardened software implementations could
then be proven leakage-free using [4, 5, 7, 16, 25].
Mitigations on Architectural/OS Level. Cache color-
ing [69] and similar cache isolation mechanisms [52]
have been proposed to mitigate cache attacks. Oth-
ers [90] proposed OS-level defenses against last-level
cache attacks by controlling page sharing via a copy-on-
access mechanism. Hardware transactional memory can
be used to mitigate cache attacks by keeping all sensitive
data in the cache during the computation [34]. Compiler-
based tools aim to protect SGX enclaves against cache
attacks [18] or controlled channel attacks [70].

10 Conclusion

In this work, we proposed differential address trace
analysis (DATA) to identify address-based information
leaks. We use statistical tests to filter non-deterministic
program behavior, thus improving detection accuracy.
DATA is efficient enough to analyze real-world software
– from program start to exit. Thereby, we include key
loading and parsing in the analysis and found leakage
which has been missed before. Based on DATA, we con-
firmed existing and identified several unknown informa-
tion leaks as well as already (supposedly) fixed vulnera-
bilities in OpenSSL. In addition, we showed that DATA
is capable of analyzing interpreted code (PyCrypto) in-
cluding the underlying interpreter, which is conceptually
impossible with current static methods. This shows the
practical relevance of DATA in assisting security analysts
to identify information leaks as well as developers in the
tedious task of correctly implementing countermeasures.
Outlook. The generic design of DATA also allows
detecting other types of leakage such as variable time
floating point instructions by including the instruction
operands in the recorded address traces. DATA also
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paves the way for analyzing other interpreted languages
and quantifying the effects of interpretation and just-in-
time compilation on side-channel security. Moreover,
DATA could be extended to analyze multi-threaded pro-
grams by recording and analyzing individual traces per
execution thread.
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A Leaking Functions

OpenSSL (Symmetric Primitives). To analyze AES,
we implemented a wrapper that calls the algorithm di-
rectly. For other algorithms, we used the openssl enc

command-line tool with keys in hex format. DATA iden-
tified information leaks in the code that parses these keys.
In particular, the leaks occur in function set hex, which
uses stdlib’s isxdigit function that performs leaking
table lookups. Besides, OPENSSL hexchar2int uses a
switch case to convert key characters to integers. Al-
though symmetric keys are usually stored in binary for-
mat, one should be aware of such leaks.

The bit-sliced AES implementation uses the vulner-
able x86 64 AES set encrypt key function for key
schedule. In addition, the unprotected AES leaks in func-
tion x86 64 AES encrypt compact. Blowfish leaks
at BF encrypt, Camellia leaks the LCamellia SBOX at
Camellia Ekeygen and x86 64 Camellia encrypt,
CAST leaks the CAST S table0 to 7 at CAST set key

as well as CAST encrypt, DES leaks the des skb at
DES set key unchecked as well as DES SPtrans at
DES encrypt2.

OpenSSL (Asymmetric Primitives). For the analysis
of asymmetric ciphers, we use OpenSSL to generate keys
in PEM format and then invoke the openssl pkeyutl

command-line tool to create signatures with those keys.

1 i n t BN MONT CTX set (BN MONT CTX ∗mont ,
2 BIGNUM ∗mod , BN CTX ∗ c t x ) {
3 . . .
4 BN copy (&( mont ->N) , mod ) ;
5 . . .
6 BN mod inverse ( Ri , R , &mont ->N, c t x ) ;
7 . . .
8 }

Listing 3: OpenSSL RSA vulnerability.

Similar to symmetric ciphers, asymmetric implementa-
tions leak during key loading and parsing. We found
leaks in EVP DecodeUpdate, in EVP DecodeBlock via
lookup table data ascii2bin, in c2i ASN1 INTEGER

that uses c2i ibuf and in BN bin2bn. Although the key
is typically loaded only once at program startup, this has
direct implications on applications using Intel SGX SSL.

DATA discovered two new vulnerabilities regarding
OpenSSL’s handling of constant-time implementations.
The first one leaks during the initialization of Mont-
gomery constants for secret RSA primes p and q. This
is a programming bug: the so-called constant-time
flag is set for p and q in function rsa ossl mod exp

but not propagated to temporary working copies inside
BN MONT CTX set, as shown in Listing 3, since the func-
tion BN copy in line 3 does not propagate the consttime-
flag from mod to mont->N. This causes the inversion in
line 5 to fall back to non-constant-time implementations
(int bn mod inverse and BN div). The second vul-
nerability is a missing constant-time flag for the DSA
private key inside dsa priv decode. This causes the
DSA key loading to use the unprotected exponentiation
function BN mod exp mont. Moreover, DATA confirms
that ECDSA still uses the vulnerable point multiplication
in ec wNAF mul, which was exploited in [10, 26, 79].

Finally, we found that the majority of information
leaks reported for OpenSSL are leaking the length of the
key or of intermediate variables. For example, we recon-
firm the leak in BN num bits word [80], which leaks the
number of bits of the upper word of big numbers. There
are several examples where the key length in bytes is
leaked, e.g., via ASN1 STRING set, BN bin2bn, strlen
of glibc as well as via heap allocation.

PyCrypto. PyCrypto symmetric ciphers leak dur-
ing encryption, mostly via lookup tables. AES
leaks the tables Te0 to Te4 and Td0 to Td3

in functions ALGnew, rijndaelKeySetupEnc and
rijndaelEncrypt. Blowfish leaks in functions ALGnew
and Blowfish encrypt. CAST leaks the tables S1 to
S4 in function block encrypt and the tables S5 to S8

in schedulekeys half. Triple DES leaks the table
des ip in function desfunc as well as deskey. ARC4
leaks in function ALGnew.
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B Performance

Table 3 summarizes the performance figures of DATA
for each phase.3 Unless stated otherwise, all timings re-
flect the runtime in CPU minutes (single-core) and thus
represent a fair and conservative metric. If tasks are par-
allelized, the actual runtime can be significantly reduced.
Difference Detection Phase. For OpenSSL, the trace
size is < 30 MB for symmetric and < 55 MB for asym-
metric ciphers. For PyCrypto, each trace has approxi-
mately 1 GB, because the execution of the interpreter is
included. Regarding runtime, OpenSSL symmetric ci-
phers require less than a minute. PyCrypto ciphers finish
in 5 minutes or less, despite large trace sizes. OpenSSL
asymmetric ciphers need between 29.8 and 79.8 CPU
minutes for two reasons. First, they require more traces.
As we compare traces pairwise in the first phase, the run-
time grows quadratically in the number of traces. Sec-
ond, asymmetric ciphers yield significantly more differ-
ences that need to be analyzed. Especially control-flow
differences demand costly re-alignment of traces. Yet,
these results are quite encouraging, especially since the
automated analysis of large real-world software stacks is
out of reach for many existing tools. Also, we see possi-
ble improvements in further speeding up analysis times.
Leakage Detection Phase. We analyze three fixed and
one random set à 60 traces, yielding 240 traces in to-
tal. Since this phase only analyzes address differences
reported by the previous phase, the sizes of the recorded
traces are significantly smaller. From several MB to over
1 GB in phase one, the traces are now several KB to
around 1.3 MB for RSA. This makes recording and an-
alyzing an even larger number of traces, e.g., more than
240, efficient. For example, the analysis of OpenSSL bit-
sliced AES takes less than 5 CPU minutes. As expected,
analyzing PyCrypto takes longer due to the instrumen-
tation of the Python interpreter. Also, analysis of RSA
is slower due to the high number of address differences
to analyze. For example, RSA generates traces of up to
1343.9 KB to be analyzed. Nevertheless, phase two com-
pletes within less than 61 CPU minutes.
Leakage Classification Phase. The last phase records
and analyzes 200 traces with random keys. To speed up
recording, we reuse traces from the random input set of
the previous phase. We benchmarked symmetric ciphers
with the byte leakage model. Analysis times vary heav-
ily between ciphers, because the performance critically
depends on the number of reported address leaks and the
size of the evidences, which need to be classified. For
instance, most ciphers complete in less than 80 minutes,
and AES bit-sliced in even 3.2 minutes. In contrast, Py-
Crypto Blowfish took almost 9 CPU hours because of a

3The overall performance might be higher than the sum of all
phases because it includes the generation of final reports.

much larger number of evidences compared to PyCrypto
AES, as can be seen from their trace sizes (271.8 kB for
Blowfish versus 13.6 kB for AES). In general, testing
the HW model is faster than the bit model because the
HW cumulates all key bits into a single metric, while for
the bit model we need to analyze multiple key bits in-
dependently. Table 2 shows that the cumulative runtime
over both models is between 55 and 95 min. Also, the
classification phase is generally slower than the leakage
detection phase. This is because, first, DATA performs
more specific leakage tests than generic ones (Haddr/pos
vs. Mev

addr/pos), and second, the RDC is more costly to
compute than Kuiper’s test. We believe significant per-
formance savings are possible by pruning large evidence
lists and by optimizing the RDC implementation.
Summary. The last two columns illustrate that the over-
all performance of DATA adapts to the amount of dis-
covered leakage, which is desirable. Leakage-free im-
plementations finish within 6 s, while leaky ones take up
to 580 CPU minutes. In any of the phases, analysis re-
quires less than 4.5 GB of RAM when executing on a sin-
gle core. This is within the range of desktop computers
and commodity laptops. When multi-core environments
are available, one can exploit parallelism to greatly speed
up analysis times. In fact, we parallelized phase one and
reduced its runtime for RSA from 55 CPU minutes to
approximately 250 real seconds. Similar optimizations
could be implemented for phase two and three. More-
over, when doing frequent testing, software developers
could not only omit the leakage classification phase in-
tended for security analysts but also skip the leakage de-
tection phase in case of deterministic algorithms.
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[3] ALDAYA, A. C., GARCÍA, C. P., TAPIA, L. M. A., AND BRUM-
LEY, B. B. Cache-Timing Attacks on RSA Key Generation.
IACR Cryptology ePrint Archive 2018 (2018), 367.

[4] ALMEIDA, J. B., BARBOSA, M., BARTHE, G., DUPRESSOIR,
F., AND EMMI, M. Verifying Constant-Time Implementations.
In USENIX Security Symposium 2016 (2016), USENIX Associa-
tion, pp. 53–70.

[5] ALMEIDA, J. B., BARBOSA, M., PINTO, J. S., AND VIEIRA,
B. Formal Verification of Side-Channel Countermeasures Using
Self-Composition. Sci. Comput. Program. 78 (2013), 796–812.

[6] APECECHEA, G. I., EISENBARTH, T., AND SUNAR, B. S$A:
A Shared Cache Attack That Works across Cores and Defies VM
Sandboxing - and Its Application to AES. In IEEE Symposium
on Security and Privacy – S&P 2015 (2015), IEEE Computer
Society, pp. 591–604.

[7] BARTHE, G., BETARTE, G., CAMPO, J. D., LUNA, C. D., AND
PICHARDIE, D. System-level Non-interference for Constant-

USENIX Association 27th USENIX Security Symposium    617



Table 3: Performance of DATA during the analysis of OpenSSL (top) and PyCrypto (bottom). Sizes are per trace.
Time is in CPU minutes. Trace sizes for Classification are identical to Leakage Detection.

Algorithm
Difference Detection Leakage Detection Classification Total

Traces Size Time Traces Size Time Traces Time Time RAM
(MB) (min.) (kB) (min.) (min.) (min.) (MB)

AES-NI 3 0.5 0.1 - - - - - 0.1 72.0
AES-VP 3 0.5 0.1 - - - - - 0.1 72.2
AES bit-sliced 3 0.5 0.4 240 0.2 4.6 200 3.2 8.4 77.1
AES T-table 3 0.5 0.4 240 1.8 4.6 200 8.0 13.2 101.4
Blowfish 3 28.2 0.8 240 264.8 13.7 200 79.1 96.0 717.8
Camellia 3 27.3 0.6 240 2.5 9.0 200 17.5 27.3 146.8
CAST 3 27.3 0.6 240 5.4 9.2 200 36.3 46.4 247.5
DES 3 27.3 0.6 240 3.9 9.1 200 9.9 19.9 139.5
Triple DES 3 27.3 0.7 240 13.9 10.5 200 49.2 60.9 351.7
ECDSA (secp256k1) 10 54.1 79.8 240 387.9 18.3 200 55.3 161.2 1,316.3
DSA 10 35.6 29.8 240 195.4 14.7 200 56.9 106.1 1,054.6

O
pe

nS
SL

RSA 10 44.2 55.0 240 1,343.9 60.9 200 94.3 233.8 4,414.0
AES 3 1081.6 4.0 240 13.6 43.6 200 88.2 136.2 1,223.0
ARC4 3 1081.5 3.9 240 6.4 43.1 200 60.3 107.6 1,222.7
Blowfish 3 1082.3 5.0 240 271.8 47.9 200 526.5 582.2 2,302.6
CAST 3 1081.6 4.0 240 11.8 44.0 200 76.7 125.1 1,223.0Py

C
ry

pt
o

Triple DES 3 1082.4 4.2 240 65.8 45.0 200 63.3 113.3 1,223.8

time Cryptography. In Conference on Computer and Commu-
nications Security – CCS 2014 (2014), ACM, pp. 1267–1279.

[8] BARTHE, G., REZK, T., AND WARNIER, M. Preventing Tim-
ing Leaks Through Transactional Branching Instructions. Electr.
Notes Theor. Comput. Sci. 153 (2006), 33–55.

[9] BASU, T., AND CHATTOPADHYAY, S. Testing Cache Side-
Channel Leakage. In Internaional Conference on Software Test-
ing, Verification and Validation Workshops – ICST Workshops
(2017), IEEE Computer Society, pp. 51–60.

[10] BENGER, N., VAN DE POL, J., SMART, N. P., AND YAROM, Y.
”Ooh Aah... Just a Little Bit” : A Small Amount of Side Channel
Can Go a Long Way. In Cryptographic Hardware and Embed-
ded Systems – CHES 2014 (2014), vol. 8731 of LNCS, Springer,
pp. 75–92.

[11] BERNSTEIN, D. J. Cache-Timing Attacks on AES,
2004. Technical report: https://cr.yp.to/antiforgery/

cachetiming-20050414.pdf. Accessed: 2018-05-29.

[12] BERNSTEIN, D. J., BREITNER, J., GENKIN, D., BRUIN-
DERINK, L. G., HENINGER, N., LANGE, T., VAN VREDEN-
DAAL, C., AND YAROM, Y. Sliding Right into Disaster: Left-to-
Right Sliding Windows Leak. In Cryptographic Hardware and
Embedded Systems – CHES 2017 (2017), vol. 10529 of LNCS,
Springer, pp. 555–576.

[13] BERNSTEIN, D. J., LANGE, T., AND SCHWABE, P. NaCl: Net-
working and Cryptography library. https://nacl.cr.yp.to/.
Accessed: 2018-05-29.

[14] BLAZY, S., PICHARDIE, D., AND TRIEU, A. Verifying
Constant-Time Implementations by Abstract Interpretation. In
European Symposium on Research in Computer Security – ES-
ORICS 2017 (2017), vol. 10492 of LNCS, Springer, pp. 260–277.

[15] BLEICHENBACHER, D. Chosen Ciphertext Attacks Against Pro-
tocols Based on the RSA Encryption Standard PKCS #1. In
Advances in Cryptology – CRYPTO 1998 (1998), vol. 1462 of
LNCS, Springer, pp. 1–12.

[16] BOND, B., HAWBLITZEL, C., KAPRITSOS, M., LEINO, K.
R. M., LORCH, J. R., PARNO, B., RANE, A., SETTY, S. T. V.,

AND THOMPSON, L. Vale: Verifying High-Performance Cryp-
tographic Assembly Code. In USENIX Security Symposium 2017
(2017), USENIX Association, pp. 917–934.

[17] BOS, J. W., HUBAIN, C., MICHIELS, W., AND TEUWEN, P.
Differential Computation Analysis: Hiding Your White-Box De-
signs is Not Enough. In Cryptographic Hardware and Embed-
ded Systems – CHES 2016 (2016), vol. 9813 of LNCS, Springer,
pp. 215–236.

[18] BRASSER, F., CAPKUN, S., DMITRIENKO, A., FRASSETTO,
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[47] KÖNIGHOFER, R. A Fast and Cache-Timing Resistant Imple-
mentation of the AES. In Topics in Cryptology – CT-RSA 2008
(2008), vol. 4964 of LNCS, Springer, pp. 187–202.
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of Cache Side Channels Across AES Implementations. In En-
gineering Secure Software and Systems – ESSoS 2017 (2017),
vol. 10379 of LNCS, Springer, pp. 213–230.

USENIX Association 27th USENIX Security Symposium    619



[58] MELLOR-CRUMMEY, J. M., AND LEBLANC, T. J. A Software
Instruction Counter. In Architectural Support for Programming
Languages and Operating Systems – ASPLOS 1989 (1989), ACM
Press, pp. 78–86.

[59] MOLNAR, D., PIOTROWSKI, M., SCHULTZ, D., AND WAG-
NER, D. A. The Program Counter Security Model: Automatic
Detection and Removal of Control-Flow Side Channel Attacks.
In Information Security and Cryptology – ICISC 2005 (2005),
vol. 3935 of LNCS, Springer, pp. 156–168.

[60] NEVE, M., AND SEIFERT, J. Advances on Access-Driven Cache
Attacks on AES. In Selected Areas in Cryptography – SAC 2006
(2006), vol. 4356 of LNCS, Springer, pp. 147–162.

[61] OSVIK, D. A., SHAMIR, A., AND TROMER, E. Cache Attacks
and Countermeasures: The Case of AES. In Topics in Cryptology
– CT-RSA 2006 (2006), vol. 3860 of LNCS, Springer, pp. 1–20.

[62] PAGE, D. Partitioned Cache Architecture as a Side-Channel De-
fence Mechanism. IACR Cryptology ePrint Archive 2005 (2005),
280.

[63] PASAREANU, C. S., PHAN, Q., AND MALACARIA, P. Multi-
run Side-Channel Analysis Using Symbolic Execution and Max-
SMT. In Computer Security Foundations – CSF 2016 (2016),
IEEE Computer Society, pp. 387–400.

[64] PERCIVAL, C. Cache Missing for Fun and Profit,
2005. Technical report: http://www.daemonology.net/

hyperthreading-considered-harmful/. Accessed: 2018-
05-29.

[65] PESSL, P., GRUSS, D., MAURICE, C., SCHWARZ, M., AND
MANGARD, S. DRAMA: Exploiting DRAM Addressing for
Cross-CPU Attacks. In USENIX Security Symposium 2016
(2016), USENIX Association, pp. 565–581.

[66] REBEIRO, C., SELVAKUMAR, A. D., AND DEVI, A. S. L. Bit-
slice Implementation of AES. In Cryptology and Network Secu-
rity – CANS 2006 (2006), vol. 4301 of LNCS, Springer, pp. 203–
212.

[67] REPARAZ, O., BALASCH, J., AND VERBAUWHEDE, I. Dude, is
my code constant time? In Design, Automation & Test in Europe
– DATE 2017 (2017), IEEE, pp. 1697–1702.

[68] RESHEF, D. N., RESHEF, Y. A., SABETI, P. C., AND MITZEN-
MACHER, M. M. An Empirical Study of Leading Measures of
Dependence. CoRR abs/1505.02214 (2015).

[69] SHI, J., SONG, X., CHEN, H., AND ZANG, B. Limiting cache-
based side-channel in multi-tenant cloud using dynamic page col-
oring. In Dependable Systems and Networks Workshops – DSNW
(2011), IEEE, pp. 194–199.

[70] SHIH, M., LEE, S., KIM, T., AND PEINADO, M. T-SGX: Erad-
icating Controlled-Channel Attacks Against Enclave Programs.
In Network and Distributed System Security Symposium – NDSS
2017 (2017), The Internet Society.

[71] SONG, D. X., BRUMLEY, D., YIN, H., CABALLERO, J.,
JAGER, I., KANG, M. G., LIANG, Z., NEWSOME, J.,
POOSANKAM, P., AND SAXENA, P. BitBlaze: A New Approach
to Computer Security via Binary Analysis. In International Con-
ference on Information Systems Security – ICISS 2008 (2008),
vol. 5352 of LNCS, Springer, pp. 1–25.

[72] STANDAERT, F. How (not) to Use Welch’s T-test in Side-Channel
Security Evaluations. IACR Cryptology ePrint Archive 2017
(2017), 138.

[73] SUMNER, W. N., AND ZHANG, X. Memory indexing: canoni-
calizing addresses across executions. In Foundations of Software
Engineering – FSE 2010 (2010), ACM, pp. 217–226.

[74] SUMNER, W. N., AND ZHANG, X. Identifying execution points
for dynamic analyses. In Automated Software Engineering – ASE
2013 (2013), IEEE, pp. 81–91.

[75] SUMNER, W. N., ZHENG, Y., WEERATUNGE, D., AND
ZHANG, X. Precise calling context encoding. In International
Conference on Software Engineering – ICSE 2010 (2010), ACM,
pp. 525–534.

[76] SZEFER, J. Survey of Microarchitectural Side and Covert Chan-
nels, Attacks, and Defenses. IACR Cryptology ePrint Archive
2016 (2016), 479.

[77] TROMER, E., OSVIK, D. A., AND SHAMIR, A. Efficient Cache
Attacks on AES, and Countermeasures. J. Cryptology 23 (2010),
37–71.

[78] TURNER, P. Retpoline: a software construct for prevent-
ing branch-target-injection, 2018. https://support.google.
com/faqs/answer/7625886. Accessed: 2018-05-29.

[79] VAN DE POL, J., SMART, N. P., AND YAROM, Y. Just a Little Bit
More. In Topics in Cryptology – CT-RSA 2015 (2015), vol. 9048
of LNCS, Springer, pp. 3–21.

[80] WANG, S., WANG, P., LIU, X., ZHANG, D., AND WU, D.
CacheD: Identifying Cache-Based Timing Channels in Produc-
tion Software. In USENIX Security Symposium 2017 (2017),
USENIX Association, pp. 235–252.

[81] WANG, Z., AND LEE, R. B. New Cache Designs for Thwart-
ing Software Cache-Based Side Channel Attacks. In Interna-
tional Symposium on Computer Architecture – ISCA 2007 (2007),
ACM, pp. 494–505.

[82] WEISER, S., SPREITZER, R., AND BODNER, L. Single Trace
Attack Against RSA Key Generation in Intel SGX SSL. In ASIA
Conference on Information, Computer and Communications Se-
curity – AsiaCCS 2018 (2018), ACM.

[83] WELCH, B. L. The generalization of student’s problem when
several different population varlances are involved. Biometrika
34, 1-2 (1947), 28–35.

[84] XIAO, Y., LI, M., CHEN, S., AND ZHANG, Y. STACCO:
Differentially Analyzing Side-Channel Traces for Detecting SS-
L/TLS Vulnerabilities in Secure Enclaves. In Conference on
Computer and Communications Security – CCS 2017 (2017),
ACM, pp. 859–874.

[85] XIN, B., SUMNER, W. N., AND ZHANG, X. Efficient Program
Execution Indexing. In Programming Language Design and Im-
plementation – PLDI 2008 (2008), ACM, pp. 238–248.

[86] XU, Y., CUI, W., AND PEINADO, M. Controlled-Channel At-
tacks: Deterministic Side Channels for Untrusted Operating Sys-
tems. In IEEE Symposium on Security and Privacy – S&P 2015
(2015), IEEE Computer Society, pp. 640–656.

[87] YAROM, Y., AND FALKNER, K. FLUSH+RELOAD: A High
Resolution, Low Noise, L3 Cache Side-Channel Attack. In
USENIX Security Symposium 2014 (2014), USENIX Associa-
tion, pp. 719–732.

[88] YAROM, Y., GENKIN, D., AND HENINGER, N. CacheBleed:
A Timing Attack on OpenSSL Constant-time RSA. J. Crypto-
graphic Engineering 7 (2017), 99–112.

[89] ZANKL, A., HEYSZL, J., AND SIGL, G. Automated Detection
of Instruction Cache Leaks in Modular Exponentiation Software.
In Smart Card Research and Advanced Applications – CARDIS
2016 (2016), vol. 10146 of LNCS, Springer, pp. 228–244.

[90] ZHOU, Z., REITER, M. K., AND ZHANG, Y. A Software Ap-
proach to Defeating Side Channels in Last-Level Caches. In Con-
ference on Computer and Communications Security – CCS 2016
(2016), ACM, pp. 871–882.

[91] ZHUANG, X., ZHANG, T., AND PANDE, S. HIDE: An Infras-
tructure for Efficiently Protecting Information Leakage on the
Address Bus. In Architectural Support for Programming Lan-
guages and Operating Systems – ASPLOS 2004 (2004), ACM,
pp. 72–84.

620    27th USENIX Security Symposium USENIX Association


