
This paper is included in the Proceedings of the
27th USENIX Security Symposium.

August 15–17, 2018 • Baltimore, MD, USA

ISBN 978-1-931971-46-1

Open access to the Proceedings of the
27th USENIX Security Symposium

is sponsored by USENIX.

BurnBox: Self-Revocable Encryption in a
World Of Compelled Access

Nirvan Tyagi, Cornell University; Muhammad Haris Mughees, UIUC;
Thomas Ristenpart and Ian Miers, Cornell Tech

https://www.usenix.org/conference/usenixsecurity18/presentation/tyagi

BurnBox: Self-Revocable Encryption in a World of Compelled Access

Nirvan Tyagi
Cornell University

Muhammad Haris Mughees
UIUC

Thomas Ristenpart
Cornell Tech

Ian Miers
Cornell Tech

Abstract

Dissidents, journalists, and others require technical means
to protect their privacy in the face of compelled access to
their digital devices (smartphones, laptops, tablets, etc.).
For example, authorities increasingly force disclosure of
all secrets, including passwords, to search devices upon
national border crossings. We therefore present the de-
sign, implementation, and evaluation of a new system to
help victims of compelled searches. Our system, called
BurnBox, provides self-revocable encryption: the user
can temporarily disable their access to specific files stored
remotely, without revealing which files were revoked dur-
ing compelled searches, even if the adversary also com-
promises the cloud storage service. They can later restore
access. We formalize the threat model and provide a con-
struction that uses an erasable index, secure erasure of
keys, and standard cryptographic tools in order to provide
security supported by our formal analysis. We report on
a prototype implementation, which showcases the practi-
cality of BurnBox.

1 Introduction

More and more of our digital lives are stored on, or re-
motely accessible by, our laptops, smartphones, and other
personal devices. In turn, authorities increasingly tar-
get these devices for warranted or unwarranted searches.
Often this arises via compelled access, meaning the
physically-present authority requires disclosure (or use)
of passwords or biometrics to make data on the device
temporarily accessible to them. Nowhere is this more
acute than in the context of border crossings, where, for
example, the United States authorities searched 158%
more devices in 2017 than 2016 [5]. This represents a
severe privacy concern for general users [62], but in some
contexts, searches are used to arrest (or worse) dissidents,
journalists, and humanitarian aid workers.

Proposals for privacy-enhancing tools to combat com-

pelled access are not new, but typically do not consider
the range of technical skills and preparedness of the in-
creasingly broad population of targeted users, nor the
frequently cursory nature of these searches. Take for ex-
ample, deniable encryption [9,18,52], in which a user lies
to authorities by providing fake access credentials. Deni-
able encryption has not proved particularly practical, both
because it puts a high burden on users to be willing and
able to successfully lie to authorities (which could, itself,
have legal consequences) and because it fundamentally
relies on realistic “dummy” content which users must
construct with some care.

We explore a new approach that we call self-revocable
encryption. The idea is simple: build applications that can
temporarily remove access to selected content at the user’s
request. This functionality could then be invoked right
before a border crossing or other situation with risk of
compelled access. Should the user’s device be searched,
there is no way for them to give the authority access to
the sensitive content. Because revealing metadata (e.g.,
filenames), whether a file was revoked or deleted, or when
revocation happened could be dangerous, we want self-
revocable encryption to hide all this from searches. The
user should be able to later restore access to their content.

In this work, we focus specifically on the design, im-
plementation, and evaluation of a cloud file storage ap-
plication. Here we target self-revocable encryption in a
strong threat model in which the adversary monitors all
communication with the cloud storage system and can
at some point compel disclosure of all user-accessible
secrets (including passwords) and application state stored
on the device. This means we target privacy not only for
cursory searches of the device, but also for targets of more
thorough surveillance. To be able to later restore access,
we assume the user can store a secret restoration key in
a safe place (e.g., with a friend or in their home) that the
adversary cannot access. Should that not be available,
only secure deletion is possible.

The first challenge we face is refining and formalizing

USENIX Association 27th USENIX Security Symposium 445

this threat model, as it is unclear a priori what privacy
goals are even achievable. For example, no efficient sys-
tem can hide that there exist cloud-stored ciphertexts that
are no longer accessible by the client, because the adver-
sary can, during a search, enumerate all accessible files
and compare to the total amount of (encrypted) content
that has been uploaded to the cloud service. Hiding this
would require prohibitive bandwidth usage to obfuscate
the amount of storage used. Instead, we target that the
adversary, at least, cannot distinguish between regular
deletion of data and temporary revocation. One of our
main technical contributions is a formal security notion
that captures exactly what is leaked to the adversary, a
notion we call compelled access security (CAS). It uses
a simulation-based definition (similar to that used for
searchable encryption [21, 23]).

To achieve CAS, we design an encrypted cloud stor-
age scheme. It combines standard encryption tools
with techniques from the literature on cryptographic era-
sure [16, 22, 57] and use of data structures in a careful
way to avoid their state revealing private information. The
latter is conceptually related to history-independent data
structures [31, 47, 48], though we target stronger security
properties than they provide.

The proof of our construction turns out to be more
challenging than expected, because it requires dealing
with a form of selective opening attack in the symmetric
setting [13, 19, 54]. Briefly, our approach associates to
individual files distinct encryption keys, and in the se-
curity game the adversary can adaptively choose which
files to cryptographically erase by deleting the key. The
remaining files have their keys exposed at the end of the
game. Ultimately this means we must have symmetric
encryption that is non-committing [19]. We achieve this
using an idealized model, which is sufficient for prac-
tical purposes. We leave open the theoretical question
of whether one can build self-revocable encryption from
weaker assumptions.

We bring all the above together to realize BurnBox,
the first encrypted cloud file storage application with self-
revocation achieving our CAS privacy target. We provide
a prototype client implementation that works on top of
Dropbox. BurnBox can revoke content in under 0.03
seconds, even when storing on the order of 10,000 files.

Summary. In this paper, we investigate the problem of
compelled access to user’s digital devices.

• We propose a new approach called self-revocable
encryption that improves privacy in the face of com-
pelled access and should be easier to use than previ-
ous approaches such as deniable encryption.

• We provide formal security definitions for compelled
access in the context of cloud storage applications.
Meeting this notion means that a scheme leaks noth-

ing about private data beyond some well-defined
leakage.

• We design a self-revocable encryption scheme for
cloud storage that provably meets our new definition
of security.

• We provide a prototype implementation of our de-
sign in the form of BurnBox, the first self-revocable
encrypted cloud storage application.

We also discuss the limitations of BurnBox. In partic-
ular, in implementations, the operating system and ap-
plications may unintentionally leak information about
revoked files. While our prototype mitigates this in var-
ious ways, being comprehensive would seem to require
changes to operating systems and applications. Our work
therefore also surfaces a number of open problems, includ-
ing: how to build operating systems that better support
privacy for self-revocable encryption, improvements to
our cryptographic constructions, what level of security
can be achieved when cloud providers actively modify
ciphertexts, and more. We discuss these questions more
throughout the body.

2 The Compelled Access Setting

We start by taking a deeper dive into the setting of com-
pelled access. To be concrete, we focus our discussion
on cloud storage applications. Consider a user who stores
files both in the cloud and on a device such as a smart
phone or laptop that they carry with them. The cloud store
may be used simply to backup a copy of some or all files
on their device or it may be used to outsource storage off
of the device for increased capacity. We assume the files
include some that are sensitive, such as intimate photos,
videos, or text messages, or perhaps politically sensitive
media such as a journalist’s photos of war zones. As such
the user will not want this data accessible by the cloud
provider, and will want to use client-side encryption.

We consider settings in which the user may be sub-
jected to a compelled access search. After using their
application for some time, a physically present authority
forces the user to disclose or use their access credentials
(passwords, biometric, pin code, etc.) to allow the adver-
sary access to the device and, in particular, the state of the
storage application’s client. Thus all secrets the person
knows or has access to at that time will be revealed to
the authority. We will assume that the user has advanced
warning that they may be searched, but we will target
ensuring the window between warning and search need
not be large (e.g., just a few minutes).

As mentioned in the introduction, compelled access
searches are on the rise. Border crossings are an obvi-
ous example, but they occur in other contexts as well.
Protesters are frequently detained by the police and have

446 27th USENIX Security Symposium USENIX Association

their devices searched [27]. Even random police stops in
some countries have led to compelled access searches, so
much so that people reportedly carry decoy devices [17].
In these settings, standard client-side encryption proves
insufficient: because the user is compelled to give access
to their device and all passwords they have, the authority
gains both the credentials to access the cloud and the keys
necessary to perform decryption.

Surveilled cloud storage. At first glance, one appar-
ent way to resist compelled access searches would be
to simply use a client-side encryption tool, and have the
cloud storage delete ciphertexts associated to sensitive
data. This wouldn’t allow temporary revocation, just
cryptographic deletion. But more fundamentally, it will
not work should the cloud storage fail to act upon delete
requests. Such ciphertext retention can occur either unin-
tentionally, e.g., Dropbox’s accidental retention of deleted
files for 8 years [50], or through collusion with an ad-
versary such as a nation-state intelligence service. For
example, at the time the United States’ National Security
Agency’s PRISM surveillance program was disclosed,
Dropbox, Google, and Microsoft were either active par-
ticipants or slated for inclusion [39].

Beyond existing systems, ciphertext retention seems
unavoidable in newly emerging models of cloud stor-
age that use public peer-to-peer networks. These ap-
proaches range from systems such as Resilio Sync (for-
merly BitTorrent Sync) built on top of distributed hash
tables, to commercial startups using blockchain-based
storage [40, 44, 68, 71]. In such peer-to-peer settings ci-
phertexts are widely distributed and it is impossible to
either assure that copies were not accidentally retained or
deliberately harvested via, e.g., a Sybil attack [72].

In either case, we will want solutions that do not rely
on data written to the cloud being properly deleted.

Potential solutions to compelled access. One com-
mon approach, used widely in practice for boarder
searches, is simply to wipe the device of all informa-
tion (perhaps by destroying it). However, this does not
provide any granularity and forces users to discard every
file. This would deprive them of contacts numbers, travel
documents, and most of the functionality of their device.

Another approach is that of feigned compliance, e.g.,
via tools such as deniable encryption [4, 10, 18, 29, 34,
46, 52, 55, 65] or so-called “rubber hose crypto.” These
require the user to purposefully lie to the authorities, and
manage “dummy” cover data that must be realistic look-
ing. We believe such feigned compliance approaches
have severe limitations in terms of both psychological
acceptability due to the requirement to actively deceive,
and on usability because users must manage cover data.
Given that most users do not really understand basic en-
cryption [60, 63, 70], this seems a significant barrier to

useful deployment.
Our goal will instead be for the user to genuinely com-

ply with demands for access to the device and everything
they know, and not force them to manage cover data or
lie to achieve any security. Of course the user may face
specific questions abut what they deleted or if they can
restore access to files. In this case, the user can choose
to lie or admit to having deleted or (temporarily) revoked
files. But unlike deniable encryption, either choice still
preserves the security of deleted or revoked files. In short,
deception should not be inherent to security.

Given this objective, the next logical straw proposal is
to just selectively delete files. Cryptographic erasure has
been studied in a number of works [16,22,57] that primar-
ily focus on deleting files from local storage. However,
standard cryptographic erasure as a primitive is insuffi-
cient for two reasons. First, without embellishment it does
not allow users to later recover their files. Second, and
more subtly, it does not protect privacy-sensitive meta-
data such as filenames: for efficient retrieval from cloud
storage, the client must store some index enumerating all
files by name.

Self-revocable encryption. We therefore introduce a
new approach that we call self-revocable encryption. Here
the user renders selected information on the device tem-
porarily unreadable, but retains some means to later regain
access. How? The user cannot store material on the de-
vice or memorize a password, as these will be disclosed.
Instead, we leverage the fact that a compelled access at-
tack is limited to what information and devices a user
has on their person: data stored at their home or with a
friend is not accessible. We refer to this storage location,
generically, as a restoration cache and have the user store
a token tokres in it that enables restoration of revoked
ciphertexts. A diagram appears in Figure 1.

We believe self-revocable encryption, should it be
achievable, has attractive properties. It’s conceptually
simple and doesn’t require lying to authorities. Moreover,
the user does not have to manage dummy data.

Threat model. We now review our threat model in
more detail. Our goal is to protect the confidentiality
of a client device and encrypted cloud store in the pres-
ence of an adversary who can compel the user to give the
adversary access to the device. The user stores sensitive
files encrypted in the cloud and on their device which has
the ability to add, retrieve and decrypt files from the cloud.
The adversary can force a user to unlock their device, dis-
close account passwords, and may fully interact with the
device and clone it. Furthermore, we assume they are
a passive adversary with respect to the cloud: obtaining
access logs as well as all versions of any (encrypted) files
the user uploaded (including subsequently deleted files)
but not actively manipulating files. While we will pro-

USENIX Association 27th USENIX Security Symposium 447

BurnBox: Self-Revocable Encryption
in a World Of Compelled Access

Nirvan Tyagi, Muhammad Haris Mughees, Tom Ristenpart, Ian Miers

http://silver.web.unc.edu Cloud Security Horizons Summit, April 2018

Project Silver

The Compelled Access Setting

Goals

{nt355, mm2946, ristenpart, im358}@cornell.edu

file 1

file 2

file 3

file 1

revoke

delete

file 1

file 1

file 2

1

read/write

untrusted
cloud storage

offline
restoration cache

2 3 4

physical
retrieval

User device with
remote cloud storage

● device state
● cloud history

Revoke or delete
sensitive files

Compelled access of
device and known keys

Restore access to
revoked files

File Content Privacy
The content of deleted or revoked files should be
hidden upon compromise

File Name Privacy
The name of deleted or revoked files should be
hidden upon compromise

File Revocation Obliviousness
Temporarily revoked files should be indistinguishable
from securely deleted files upon compromise

Deletion and Revocation Timing Privacy
The timings of deletions and revocations should be
hidden (hard)

Cryptographic Leakage System Leakage

Compelled Access Security
Formalized with a simulation-based notion of
real/ideal world parameterized by a leakage regime
(Real protocol can be simulated using leakage)

Pseudonymous Operation History Regime
- Leaks operation ordering for cloud accesses and

adds along with pseudonym for target file
- Seems fundamental when remote server processes

operations for single files (can hide by batch
processing, e.g. ORAM)

Persistent storage
- Journaling / log-based file storage
- Solution: secure deletion with trusted hardware

Operating system
- Indexing, background processes
- Solution (partial): FUSE to interact with BurnBox

Applications
- Temporary files, swap files
- Solution: Open (restrict to supported BurnBox app?)

Figure 1: Self-revocable encryption for cloud storage. A user stores data on their device and in the cloud. Anticipating
their device will be inspected, the user temporarily revokes access to file 2, a sensitive file they will need access to later,
and deletes file 3. When the device is searched, file contents and filenames of deleted or revoked files are hidden. After
the search, the user can restore access to revoked files using their device and the restoration cache—key material stored
at their home, office, or with friends.

vide some mechanisms against tampering in the concrete
construction, our formal analysis does not consider active
attacks on the cloud store.

In this context, we now describe the properties we want
of our system for deleted and revoked files in the presence
of compelled access.

File content privacy. The content of deleted or revoked
file should be protected post compromise. File con-
tents may include intimate details of a user’s life
such as photo or videos, politically controversial
content such as banned books or newspapers, or
sensitive business information.

File name privacy. The names of deleted or revoked files
should be protected post compromise. File names
can reveal information about the content of the file.
Moreover, it allows the adversary to check if a user
owns a flagged file from a list of, e.g., politically
“subversive” works.

We next describe two secondary goals to support the (op-
tional) ability of a person to equivocate about revocation
and deletion history. These properties are not necessary
for BurnBox to be useful, but may be desirable in some
instances.

File revocation obliviousness. Whether a file was deleted
or revoked should remain hidden. If the adversary
determines access to files was self-revoked, then she
has learned the user explicitly has files he wants to
hide. Revocation is done precisely to avoid com-
pelled disclosure. In contrast, deletions can be done
for many reasons.

Deletion and revocation timing privacy. The timings of

file deletions and revocations should, to the extent
possible, be concealed. If the adversary has reason
to believe a user deleted or revoked data specifically
to avoid compelled access, the user could face con-
sequences. As we discuss in Section 8 this is not
fully realizable without certain forensic guarantees
on persistent storage.

Threats not modeled. We do restrict the threat model
in several ways. First, the adversary cannot force the user
to retrieve keys from other locations such as their home
or office, i.e., the restoration cache. If that were possible,
then one can only provide privacy via secure deletion
(which is supported by BurnBox). Second, the adversary
cannot implant malware on the device that persists after
the compelled access search ends. In that case, files will
be exposed when later restored and the only solution
would be to never use the device again with those sensitive
files. Third, we assume the adversary does not get access
to system memory, i.e., the device is turned off prior to
compelled access (at which point it may be turned on
again). Fourth, we assume the adversary only has passive
access to the cloud.

Finally, although we hide the individual number of
deleted or revoked files, we will not target hiding the sum
of these values, meaning the total number of files that have
been either revoked or deleted. Similarly, we will not hide
some forms of access patterns. We will hide whether a
delete or revoke occurs, but we will reveal to the cloud
storage adds and accesses. We discuss the implications of
this leakage in Section 8.

448 27th USENIX Security Symposium USENIX Association

3 Overview and Approach

In this section we give some intuition about our approach
to realizing self-revocable encryption in the context of
cloud storage systems. Section 4 presents the details.

From encrypted files to erasable files. Consider a
cloud storage provider that offers a simple key value store
mapping a human-readable filename ` to its contents m
via a Put(`,m),Get(`) interface. We start with the sim-
pler problem of permanently deleting files from the cloud
store and then extend the system to support temporary
self-revocation and to protect metadata. To enable secure
deletion of encrypted files, we generate a random per file
key k f which is stored locally, and store Enck f (m) instead
of m in the cloud under label `. Here Enc is a symmet-
ric encryption scheme (technically, one should use an
authenticated-encryption scheme). Erasing the local copy
of k f erases the file contents.

While cryptographic erasure securely deletes the file
contents, it failures to provide filename privacy: there
is still an index, i.e., a mapping from filename ` to an
(undecryptable) ciphertext. This index must be preserved
to enable file retrieval. Thus cryptographic erasure does
not provide a full solution to the problem.

Following the approach of many searchable encryp-
tion schemes [23], one could create a “PRF index” that
replaces ` with a filename pseudonym t = Fk(`) where
F is a secure pseudorandom function (PRF). This hides
the human readable filename but still enables efficient
retrieval of the file given its name. It does not completely
fulfill our goals, however. On compromise, knowledge of
the PRF key k and a previously stored value t would allow
an attacker to enumerate the filename space and learn
filenames, essentially mounting a brute-force dictionary
attack like those used for password cracking. If the PRF
is also used to generate encryption keys, they can learn
these as well.

From erasable files to erasable index entries. Punc-
turable PRFs [30] would appear to resolve the issue of
leaking label to filename pseudonym mappings by provid-
ing an algorithm, puncture, that converts the PRF key k to
a key k′ for which one cannot evaluate the PRF on a par-
ticular point v. If the key is punctured on the filename, an
attacker with access to k′ cannot enumerate filenames by
testing evaluations of the PRF on candidate filenames. Un-
fortunately, puncturable PRFs do not hide the points the
key is punctured on: while an attacker would not be able
to identify the mapping from filename to ciphertext, they
would be able to identify the punctured filenames them-
selves. This can be resolved with a private puncturable
PRF [15] which hides the points the key is punctured on.
Unfortunately, these are not currently practical and thus
not (yet) suitable for BurnBox.

Instead, we construct an erasable index using a simple
table to store a mapping from filename to a randomly
sampled value. This can be viewed as a form of state-
ful, private puncturable PRF. While extremely simple in
concept, secure implementation is complicated by the
requirement that the table is persisted to disk.

In the compelled access setting, an attacker gets full
access both to the on-disk representation of the table and
the physical state of the disk. This raises two distinct prob-
lems: first any data that has been overwritten or deleted
from the table may still be be retained by the file system
(e.g., in a journaled file system) or physically extractable
from the drive (e.g., due to ware-leveling for SSDs or the
hysteresis of magnetic storage media). Second, even if
we can ensure old data is erased, the current state of the
backing data-structure may reveal operations even if the
data itself is gone. Were we to use a simple hash table,
for example, the location of a particular entry depends
on whether collisions occurred with other entries at in-
sertion time. This lack of history independence leaks the
past presence of other colliding entries even if the entries
themselves are removed and physically erased.

We are thus left with two questions: how to ensure
individual entries in the table can be removed without
leaving forensic evidence, and how to structure the table
so no trace is left when they are.

Erasing index entries securely. To remove or over-
write entries from the table without accidentally leaving
old values accessible via forensics, we follow the ap-
proach of previous cryptographic erasure techniques [58].
We assume a small (e.g., 256-bit) securely erasable “ef-
faceable storage” in which to store a master key. Naively,
we could encrypt the entire table under this key and update
or remove a row by overwriting the effaceable storage
with a new key and writing an updated version of the
table encrypted under the new key to disk. However, this
means operations on a single entry require work linear in
the size of the table.

Instead, we adopt a tree-based approach [58] for key
management. Each entry in the table is encrypted with a
unique key. Keys are stored as leaves of a key tree; sibling
nodes are encrypted with a new key, which is stored as
their parent. The root of the tree is encrypted under the
master key stored in effaceable storage. Thus, an update
(1) re-encrypts the updated row under a new key and (2)
updates the key tree by sampling new keys for the tree
path corresponding to that row and re-encrypting the tree
path and path siblings. In summary, the erasable index
consists of an encrypted table with encryption per entry
and corresponding key tree, depicted in Figure 2.

Using data structures privately. While we have en-
sured individual entries in the table can be erased with-
out leaving direct forensic evidence, we now need to en-

USENIX Association 27th USENIX Security Symposium 449

filename metadata
foo.txt cc64c3...
bar.pdf 87ecc6...
... ...

effaceable storage

key tree

row-encrypted table

Figure 2: An erasable index for four items consisting of
a key tree where each leaf encrypts a separate row of the
table. The root of the key tree is encrypted by a master key
stored in effaceable storage such as a hardware keystore.

sure the data structures as persisted to disk do not reveal
past (erased) content. History independent data struc-
tures [47, 48] are a natural candidate for structuring the
index and avoiding such leakage. Strongly history inde-
pendent hash tables [47] achieve privacy for a particular
update to the data structure even if an attacker has access
to a snapshot both before and after a series of updates.

In the compelled access setting, however, due to the
previously stated non-assumption of persistent storage
deletion (e.g., journaling or hardware forensics), the at-
tacker may get snapshots at each and every update. While
cryptographic erasure ensures the actual content of the
update is opaque, the timing, location, and size of indi-
vidual writes needed to make the update is not. Although
some schemes consider this type of storage leakage in the
context of PROM for voting machines [47], we are aware
of no general approaches. Indeed, eliminating all such
leakage in the presence of an arbitrary file system and stor-
age medium is problematic: even heavyweight techniques
like ORAM leak the size of writes. Thus, these kinds of
generic history-independent data structure techniques do
not seem suitable for our setting.

We therefore take an application-specific approach, ar-
ranging that our data structures are used in a way that is
independent of our application’s privacy-sensitive infor-
mation. Here we take that to be filenames, and so our
data structures cannot be dependent on filename. Our key
tree is already independent of filenames. To ensure the
table is independent of filenames, we maintain it sorted
in insertion order. While this means we leak some infor-
mation about insertion order, we deem this acceptable
(see Section 5). Looking ahead to the performance eval-
uation (Section 7), this ordering makes it harder to do
efficient filename search, but appears to be necessary for
our desired privacy properties.

From permanent erasure to self revocation. The
above approach does not support self-revocation—it can
only permanently delete files. To solve this, we use a
form of key escrow. We generate a asymmetric key pair
(pkres,skres) and store skres only in the secure restoration
cache (and not on the device). When adding a file to the

storage, we generate a restoration ciphertext of the form
Encpkres(` || k) which contains both the key k for a given
file and its filename `. The restoration ciphertext is only
stored locally on the device.

To revoke access to the file, the entry in the erasable
index is deleted. To delete the file, we must also erase the
restoration information. Deleting the restoration cipher-
text itself would violate deletion-revocation obliviousness
upon compromise. Instead, we overwrite the ciphertext
with an encryption of a random value. For the same rea-
son, the ciphertext must be stored only on the device:
if the adversary can observe accesses to the restoration
ciphertext, this would violate both deletion-revocation
obliviousness and deletion timing privacy.

Enabling backup and recovery. The approach so far
does not support recovery of files should the device be
lost or damaged. If BurnBox is used for cloud backup,
rather than just to extend a device’s storage capacity, this
is a major limitation. One option would be to create a
backup key and augment our approach to ensure all files
are decryptable with that key. However, such a key would
be able to decrypt any file, including deleted ones. A safer
way to enable recovery would be to sync key state between
multiple devices over a secure channel. The choice of
channel must be made carefully as an adversary could
observe the channel to learn the timings of operations or
block sync messages to prevent deletes.

4 Construction

We now provide a detailed description of the crypto-
graphic primitives underlying BurnBox.

Syntax and semantics. We start by defining self-
revocable encrypted cloud storage (SR-ECS). In the fol-
lowing we use y←$Alg(x) to denote running a random-
ized algorithm Alg with fresh coins on some input x and
letting y be assigned the resulting output.

An SR-ECS scheme consists of seven algorithms:
SR-ECS= (Init, Add, Access, Delete, Revoke, Restore).

• st0, tokres←$ Init() : The initialization algorithm re-
turns an initial local client state and a secret restora-
tion token to be hidden off the local client.

• sti+1←$Add(sti, `,m) : The add algorithm takes as
input the current state sti, filename `, and file con-
tents m and outputs a new local client state.

• sti+1,m←$Access(sti, `) : The access algorithm
takes a state and a filename, and returns a new state
and file contents for that filename, or an error.

• sti+1←$Delete(sti, `) : The delete algorithm takes
as input a state and filename, and outputs a new
state. The filename and associated content should be
permanently deleted.

450 27th USENIX Security Symposium USENIX Association

• sti+1←$Revoke(sti, `) : The revoke algorithm takes
as input a state and filename, and outputs a new state
with filename and associated content temporarily
deleted.

• sti+1, tokres←$Restore(sti, tokres) : The restore al-
gorithm takes as input a state and secret restoration
token, and outputs a new state with all self-revoked
files restored along with a (potentially new) restora-
tion token.

We require our schemes to be correct. Informally, that
means that encrypted files that are not currently revoked
or deleted should be accessible and correctly decrypt-
able. Accesses on filenames not added to the system or
that were revoked/deleted, that return a special error sym-
bol ⊥. As a consequence, the set of all filenames and, by
extension, file contents that are not revoked or deleted are
learnable by an adversary with control of the device, e.g.,
by mounting a brute force search. Hiding the set of active
files is not a goal of SR-ECS as it is in related deniable
encryption schemes.

ECS algorithms will use access to a remote storage
server, which we abstract as a key-value (KV) store with
operations Put(K,V) and Get(K) that put and retrieve en-
tries from the store. Both Put and Get are available as or-
acles to all ECS scheme algorithms, though we omit their
explicit mention from the notation for simplicity. Looking
ahead, we will be interested in the transcript of calls to
the KV store, representing the state of the server. For
example, if an ECS algorithm made the call Put(2, foo),
the transcript would include the tuple (Put,2, foo). We
later will use implicitly defined transcript-extended ver-
sions of ECS algorithms that add an extra return value, the
transcript τ , consisting of calls to the oracle made during
algorithm execution.

Our construction. We detail our construction in pseu-
docode in Figure 3. Enc,Dec represent authenticated
symmetric encryption operations while PKEnc,PKDec
represent IND-CCA secure public key encryption and
decryption operations. System state is represented by st
and is assumed to be stored persistently by the calling
program.

We abstract our erasable index data structure as
Tbl. We will make use of an initialize operation
(T ← Tbl.Init()), insert and lookup key operations no-
tated by brackets (T [k]), and a delete key operation
(Tbl.Delete(T,k)). For all tables we assume that T [k] =
⊥ if k is not currently in the table. Furthermore, we define
a random mapping operation on a key that checks if the
key is in the table, and if not, randomly samples a value of
length 2n to store with the key, returning the stored value
(v←$Tbl.RandMap(T,k)). This operation acts to lazily
construct a random function and is used in the protocol to
map filenames to random values used for key derivation,

Init():

T ← Tbl.Init() // index

B← Tbl.Init() // backup

pkres,skres←$PKKeyGen()

st← T || B || pkres

tokres← pkres || skres

return st, tokres

Add(st, `,m):

(T,B,pkres)← st

(id,km)←$Tbl.RandMap(T, `)

B[id]←$PKEncpkres (` || id || km)

Put(id, Enckm (m))

return st← T || B || pkres

Delete(st, `):

(T,B,pkres)← st

if T [`] =⊥ : return st

(id,km)← T [`]

B[id]← PKEncpkres (0
|`|+2n)

Tbl.Delete(T, `)

return st← T || B || pkres

Access(st, `):

(T,B,pkres)← st

if T [`] =⊥ : return st,⊥
(id,km)← T [`]

ct← Get(id)

m←Deckm (ct)

st← T || B || pkres

return st, m

Revoke(st, `):

(T,B,pkres)← st

Tbl.Delete(T, `)

return st← T || B || pkres

Restore(st, tokres):

(T,B,pkres)← st

(pkres,skres)← tokres

for (id,ct) ∈ B :

(`, id,km)← PKDecskres (ct)

if ` || id || km 6= 0|`|+2n :

T [`]← id || km

st← T || B || pkres

return st, tokres

Figure 3: BurnBox algorithms for self-revocable en-
crypted cloud storage.

where length n corresponds to length of derived symmet-
ric keys. To iterate over table T , the notation “(x,y) ∈ T ”
treats T as the set {(x,y) |T [x] = y} where x,y 6=⊥.

5 Compelled Access Security

We formalize compelled access security (CAS) for
SR-ECS schemes. Our treatment most closely resem-
bles the simulation-based notions used in the symmetric
searchable encryption literature [21, 23]. Our definition
is parameterized by a leakage regime. One can prove
security relative to a leakage regime, but the actual level
of security achieved will then depend on (1) what can be
learned from the leakage; and (2) how well the leakage
regime abstracts the resources of a real world attacker.

To address the first concern, our cryptographic analysis
(Section 5.3) will not only reduce to a leakage regime, but
then also evaluate the implications of our chosen leakage
regime by formally analyzing the implications of leakage
using property-based security games. The second concern
manifests when considering the device state leaked upon
compelled access. Our abstraction necessarily dispenses
with all but the cryptographic state of the SR-ECS scheme.
We defer discussion of the limitations of this abstraction
with respect to other device state, such as operating sys-

USENIX Association 27th USENIX Security Symposium 451

tem state, to Section 8.

5.1 Simulation-based Security Definition
We use two pseudocode games, shown in Figure 4. In the
real game, the adversary has access to a number of oracles,
which we denote by AO. The adversary can adaptively
make queries to an SR-ECS protocol Π using oracles
Add,Access,Delete,Revoke,Restore. At each query, a
transcript τ is returned to the adversary, representing the
adversary’s view of a query execution. In our setting
where the storage used by the scheme is a key-value store,
the transcript τ consists of tuples of the form (Put,K,V)
for puts and (Get,K) for gets. Finally, the adversary may
also query a Compromise oracle which returns the client
state st. This models the search during compelled access.

The ideal world is parameterized by a leakage
regime L and a simulator S. A leakage regime L =
{Linit,Ladd,Lacc,Ldel,Lrev,Lres,Lcom} consists of a se-
quence of leakage algorithms, one for each oracle. Each
leakage algorithm takes as input a shared leakage state,
stL, along with the arguments to the corresponding oracle
call. The leakage algorithm acts as a filter on these inputs
and returns a leakage value, σ , that is passed to the sim-
ulator. The leakage algorithm may also alter the shared
leakage state, stL. The leakage regime therefore forms a
kind of whitelist for what information about queries can
be leaked by a scheme.

A simulator S attempts to use the leakage to effectively
“simulate” the transcript τ and compromised state using
only the leakage values σ output by L. In other words,
security is achieved if an adversary cannot tell if they are
in the real world viewing the actual protocol transcript or
in the ideal world viewing the transcript simulated given
just the leakage. Intuitively, if the adversary view can
be simulated from L, then the adversary view in the real
world reveals no more information than what L specifies.

Notice that the simulator does not get executed on
Delete,Restore, and Revoke queries. This reflects the
fact that we demand no leakage in response to these
queries, and our scheme can achieve this because we
do not interact with the cloud for these operations.

Formally, the advantage of an adaptive adversary A
over an SR-ECS scheme Π is defined with respect to a
simulator S and leakage function L by

Advcas
Π,S,L(A) =∣∣∣P[REALA,Π

SR-ECS = 1
]
−P
[
IDEALA,S,L

SR-ECS = 1
]∣∣∣

where the probabilities are over the random coins used in
the course of executing the games. We will not provide
asymptotic definitions of security, but instead measure
concretely the advantage of adversaries given certain run-
ning time and query budgets.

We restrict attention to adversaries that do not query
Add on the same ` more than once. We believe one can
relax this by changing the scheme and formalizations to
handle sets of values associated to filename labels.

Ideal encryption model. Looking ahead, we will prove
security in an ideal encryption model (IEM) which is an
idealized abstraction of symmetric encryption. In the IEM
model, the real world is augmented with two additional
oracles, an encryption oracle Encrypt and a decryption
oracle Decrypt. The former allows queries on an arbitrary
symmetric key k and message m, and returns a random
bit string ct of the appropriate length. We let clen be
a function of the message length |m| to an integer that
represents the length in bits of the ciphertext. The oracle
also stores m in a table indexed by k || ct. The oracle
Decrypt can be queried on a key k and ciphertext string ct,
and it returns the table entry at k || ct. We assume all table
entries that are not set have initial value ⊥. The adversary
can make queries to Encrypt,Decrypt at any point in the
games, including after the Compromise query is made.

In the ideal world the Encrypt and Decrypt oracles
are implemented by the simulator S. This means, im-
portantly, that they can “program” the encryption, which
seems necessary in our context since we require non-
committing encryption [19]; the simulator must commit
to an encryption of a message on Add before learning the
contents of the message on Compromise. It is known that
one requires programmability to achieve non-committing
encryption (when secret keys are short) [51].

The IEM model can be viewed as a lifting of the ideal
cipher model (ICM) or random oracle model (ROM) [14]
to randomized authenticated encryption. Formally, one
can replace ideal encryption with an indifferentiable
authenticated-encryption scheme [12], applying the com-
position theorem of [45]. Those schemes are, however,
not as efficient as standard ones, and we conjecture that
one can directly prove our CAS scheme secure using
standard authenticated encryption schemes while model-
ing their underlying components as ideal ciphers and/or
random oracles.

5.2 Pseudonymous Operation History
Leakage

We now introduce the leakage regime we will target,
what we call the pseudonymous operation history leakage
regime, denoted LPOH. See Figure 5 for pseudocode.

Simply put, the leakage algorithms of LPOH reveal
the operation name along with a pseudonym identifier
for the operation target. For example, on a call to the
add leakage algorithm, Ladd(stL, `,m), a new random
pseudonym p is sampled (without replacement) and re-
turned along with the operation name, specifying an Add

452 27th USENIX Security Symposium USENIX Association

REALA,Π
CAS

(st, tokres,τ)←$ Init()

b′←$AO(τ)

return b′

Add(`,m)

(st,τ)←$Add(st, `,m)

return τ

Delete(`)

st←$Delete(st, `)

Access(`)

(st,m,τ)←$Access(st, `)
return τ

Revoke(`)

st←$Revoke(st, `)

Restore()

st←$Restore(st, tokres)

Compromise

return st

Encrypt(k,m)

ct←${0,1}clen(|m|)

D[k || ct]← m
return r

Decrypt(k,ct)

return D[k || ct]

IDEALA,S,L
CAS

stL←Linit()

(stS ,τ)←$S()

b′←$AO(τ)

return b′

Add(`,m)

(stL,σ)←Ladd(stL, `,m)

(stS ,τ)←$S(stS ,σ)

return τ

Delete(`)

stL←Ldel(stL, `)

Access(`)

(stL,σ)←Lacc(stL, `)

(stS ,τ)←$S(stS ,σ)

return τ

Revoke(`)

stL←Lrev(stL, `)

Restore()

stL←Lres(stL, tokres)

Compromise

σ ←Lcom(stL)

(stS ,st)←$S(stS ,σ)

return st

Encrypt(k,m)

(stS ,ct)←$Senc(stS ,k,m)

return ct

Decrypt(k,ct)

(stS ,m)←$Sdec(stS ,k,ct)
return m

Figure 4: Games used in defining CAS security. The adversary has access to oracles O = {Add, Access, Delete,
Revoke, Restore, Compromise, Encrypt, Decrypt} and is tasked with distinguishing between the “real”world and
the simulated “ideal” world.

has occurred (σ = (Add, p,clen)). The length of the con-
tent is also leaked upon Add. The pseudonym is saved
within stL, so that on future operations involving that file,
e.g., Access, the same pseudonym can be returned. Note
that in the pseudonymous operation history neither the
filename ` nor the file contents m are leaked.

The compromise leakage algorithm, Lcom, leaks
pseudonyms of all currently available files along with
their associated label and contents. Operations that do
not interact with the remote server, Ldel,Lrev,Lres, do not
leak anything when first called, but do update the leak-
age state to change the set of files that are leaked upon
compromise.

Pseudonymous operation history leakage fits the SR-
ECS setting with an adversary-controlled remote server
processing Add and Access operations for individual files.
The adversary may not learn the underlying contents or
file name, but can trivially link the upload of a file ci-
phertext to when it is served back to the client. While
techniques that add, access, and permute batches of mes-
sages can attempt to obscure these links, e.g. ORAM [53],
they remain impractical in the near term. We discuss
implications of access pattern leakage in Section 8.

5.3 Cryptographic Security Analysis

There are two steps to our formal cryptographic secu-
rity analysis. First, we show that our protocol is secure
with respect to the pseudonymous operation history leak-
age regime LPOH, by presenting a simulator SPOH (see
Figure 6) that can effectively emulate the real world pro-

tocol given only access to the leakage in the ideal world.
For simplicity, we define operation-specific simulators,
SPOH = {Sadd,Sacc,Scom,Senc,Sdec}, which are invoked
based on the leakage from LPOH. The simulator SPOH

uses programmabililty of the ideal encryption oracles,
which it simulates.

This simulation-based security can be thought of as
a whitelist which specifies what is revealed through the
leakage regime. In many ways, this approach is desirable,
as it does not require the prover to defend against specific
attacks. However, complex models lead to complex leak-
age regimes in which the interactions between leakage
algorithms can be unintuitive. In the worst case, proving
simulation-based security would lead to a false sense of
confidence should leakage suffice to violate security in
ways explicitly targeted by scheme designers.

We therefore complement simulation-based security
analysis with formalization of, and analyses of our scheme
under, two relevant property-based security games. As
we will see, these results end up being straightforward
corollaries of the more general leakage-based security,
which provides evidence that our leakage regime suffices
to guarantee important security properties.

Main security result. The following theorem proves
CAS security of our scheme Π (as shown in Fig-
ure 3). It upper bounds the advantage of any adver-
sary against the scheme by the advantage of adversaries
against INDCPAPKE of the underlying components, plus
a birthday-bound term associated to the probability of
collisions occurring in identifiers or the success of a

USENIX Association 27th USENIX Security Symposium 453

Ladd(stL, `,m):

(P,R)← stL

p←${0,1}n \P

P[`]← (p,m)

σ ← (Add, p, |m|)

stL← P || R

return stL, σ

Lacc(stL, `):

(P,R)← stL

(p,m)← P[`]

σ ← (Access, p)

return stL, σ

Ldel(stL, `):

(P,R)← stL

Tbl.Delete(P, `)

return stL← P || R

Lrev(stL, `):

(P,R)← stL

R[`]← P[`]

Tbl.Delete(P, `)

return stL← P || R

Lres(stL, tokres):

(P,R)← stL

for (`,(p,m)) in R :

P[`]← (p,m)

Tbl.Delete(R, `)

return stL← P || R

Lcom(stL):

(P,R)← stL

σ ← (Compromise,P)
return σ

Figure 5: Leakage algorithms defining the pseudonymous
operation history leakage, LPOH. Table P tracks undeleted
file pseudonyms and R tracks revoked file pseudonyms.

brute-force key recovery attack against the ideal encryp-
tion. The full proof and description of the (standard)
INDCPAPKE security game are given in our extended
technical report [67].

Theorem 1. Let A be a CAS adversary for protocol Π

and leakage regime LPOH. Let SPOH be the simulator
defined in Figure 6. Then we give adversary B such
that if A makes at most qAdd, qEnc, qDec queries to Add,
Encrypt, Decrypt, respectively, and runs in time T then

Advcas
Π,SPOH,LPOH(A)≤

Advindcpa
PKE (B)+ qAdd · (2qAdd+qDec)

2n

where n is the length of identifiers and symmetric keys.
Moreover, B runs in time T ′ ≈ T and makes at most qAdd
queries to its oracle.

Above when we say that T ′ ≈ T , we mean that those
adversaries run in time that ofA plus the (small) overhead
required to simulate oracle queries. A more granular
accounting can be derived from the proof. Here we just
briefly sketch the analysis.

Proof Sketch. We can divide the simulator’s role in two:
simulating the cloud transcript (on Add and Access) and
simulating the client state (on Compromise). To sim-
ulate the cloud transcript in Add, the simulator must
commit to a random ciphertext for file contents that are
not known. To simulate client state, the simulator must
provide (1) restoration ciphertexts and (2) keys and file

Sadd(stS , p, |m|):

(TS ,B,D,pkres)← stS

(id,km)←${0,1}2n

ct←${0,1}clen(|m|)

TS [p]← (id,km,ct)

B[id]←$PKEncpkres (0
|`|+n)

stS ← TS || B || D || pkres

τ = [(Put, id, ct)]

return stS ,τ

Scom(stS ,P):

(TS ,B,D,pkres)← stS

T ← Tbl.Init()

for (`,(p,m)) in P :

(id,km,ct)← TS [p]

T [`]← id || km

D[km || ct]← m

stS ← TS || B || D || pkres

st← T || B || pkres

return stS , st

Sacc(stS , p):

(TS ,B,D,pkres)← stS

if p =⊥ : return stS ,⊥
(id,km,ct)← TS [p]

τ = [(Get, id)]

return stS ,τ

Senc(stS ,k,m):

(TS ,B,D,pkres)← stS

ct←${0,1}clen(|m|)

D[k || ct]← m

stS ← TS || B || D || pkres

return stS ,ct

Sdec(stS ,k,ct):

(TS ,B,D,pkres)← stS

return stS ,D[k || ct]

Figure 6: The simulator for the pseudonymous opera-
tion history leakage regime SPOH used in the proof of
Theorem 1. Table TS stores added file pseudonyms and
committed ciphertexts, B stores restoration ciphertexts,
and D is used for ideal encryption.

contents that are consistent with the ciphertexts to which
the simulator previously committed. The first step is a
straightforward reduction to the INDCPA security of PKE.
The second step is more challenging. In the IEM, the sim-
ulator can “program” the Encrypt and Decrypt responses
to match the previously committed-to ciphertexts once
file contents are leaked in Compromise. However, prior
to compromise, it is possible for the adversary to brute-
force decrypt ciphertexts by querying the ideal encryption
oracles which, if successful, will catch the simulator in its
attempt at programming. But we can show this probabil-
ity is small, at most qAddqDec/2n because the adversary
has no information about these keys. The remaining part
of the bound, 2q2

Add/2n, accounts for the need in the proof
to switch identifiers to being chosen without replacement
and then back again.

Property-based security. Recall two security goals
for BurnBox in the compelled access threat model: (1)
file name/content privacy — the content and name of
deleted or revoked files should be hidden upon com-
promise; and (2) file revocation obliviousness — tem-
porarily revoked files should be indistinguishable from
securely deleted files upon compromise. We formalize
these goals as adaptive security games FilePrivacyA,b

Π
and

454 27th USENIX Security Symposium USENIX Association

DelRevObliviousA,b
Π

and give the following two corollar-
ies of Theorem 1. The full description of the security
games including advantage definitions and proof sketches
are given in our extended technical report [67].

Corollary 2. Let A be a FilePrivacy adversary for
SR-ECS protocol Π. Then we give an adversary B such
that

AdvFilePrivacy
Π

(A)≤ 2 ·Advcas
Π,SPOH,LPOH(B)

where if A runs in time T and makes at most q oracle
queries, B runs in time T ′ ≈ T and makes at most q
queries to the CAS oracle defined in Figure 4.

Corollary 3. Let A be a DelRevOblivious adversary for
SR-ECS protocol Π. Then we give an adversary B such
that

AdvDelRevOblivious
Π (A)≤ 2 ·Advcas

Π,SPOH,LPOH(B)

where if A runs in time T and makes at most q oracle
queries, B runs in time T ′ ≈ T and makes at most q
queries to the CAS oracle defined in Figure 4.

6 Implementation

We design and implement a prototype of BurnBox in C++
suitable for use on commodity operating systems. The
system architecture is depicted in Figure 7. The prototype
consists of 3,373 lines of code. The core cryptographic
functionality is exposed through a file system in userspace
(FUSE) [8] that can be deployed as a SR-ECS scheme
by mounting it within a cloud synchronization directory,
e.g., Dropbox. Add, Access, and Delete algorithms are
captured and handled transparently via the file system
write, read, and delete interfaces. Revoke and Restore
are implemented as special FUSE commands and can be
invoked through either the file system user interface or a
command-line interface.

BurnBox maintains local state in an erasable in-
dex (Section 3) which stores filenames, file keys, and
restoration ciphertexts. From the Crypto++ library [6],
we use AES-GCM with 128-bit keys for encryption
of file contents and of the erasable index key tree.
We use ECIES [64] with secp256r1 for public key
encryption of restoration keys. The implementation
is available open source at https://github.com/

mhmughees/burnbox.

Effaceable storage. As discussed in Section 4, to con-
struct the erasable index, we require some mechanism
that can securely store and delete symmetric keys. Both
iOS [3] and Android [1] provide keystore APIs that, when
backed by hardware security elements, provide this func-
tionality. On desktops, there are no built-in mechanisms

Untrusted App

Container

OS Kernel

Persistent Storage

File System

BurnBox (FUSE)

Trusted App

Userspace

(e.g. HDD, SSD)

Figure 7: BurnBox is implemented as a file system in
userspace (FUSE). Trusted applications that are known
not to leak file information about files can interact freely
with BurnBox and the rest of the file system. Untrusted
applications can be run in a container with access to Burn-
Box and a temporary file system that can be wiped on
application exit.

for doing so, but the functionality can be constructed from,
for example, SGX [2]. For our prototype, we leverage
the functionality provided by a trusted platform module
(TPM) [66], and test it using IBM’s software TPM [7].

It is possible to use BurnBox without hardware support
for secure storage of the master key of our encryption tree.
In this case, the master key is stored in persistent storage.
This, of course, is insecure in the threat model where
hardware forensics can recover past writes to persistent
storage, e.g., a previous master key and key tree pair can
be recovered to learn the key material for deleted files.

Operating system leakage. BurnBox is designed
specifically to address leakage from persistent storage.
To restrict an adversary to this scenario, BurnBox is
implemented using memory-locked pages when appro-
priate and prompts users to restart their device follow-
ing deletes/revokes prior to compelled access. This ap-
proach eliminates many issues such as kernel state and
in-memory remnants of data, however, it is not a complete
solution; BurnBox is not the only program that can write
to disk. Both the operating system and applications can
persist data that, although outside of BurnBox’s control,
will expose what it wishes to hide (e.g., through recently-
used lists, search indices, buffers, etc.). We discuss these
limitations further in Section 8.

Application support. Our prototype provides two
ways for applications to use files stored in BurnBox.
Trusted apps can obtain direct access to the BurnBox file
system. These apps should be carefully vetted to ensure
they do not leak damaging information about deleted or
revoked files, e.g., by saving temporary data to other por-
tions of the file system. Obviously such vetting is highly
non-trivial, and so our prototype also allows a sandboxing

USENIX Association 27th USENIX Security Symposium 455

https://github.com/mhmughees/burnbox
https://github.com/mhmughees/burnbox

0 20000 40000 60000 80000 100000
number of files

0

25

50

75

100

125

siz
e

(M
B)

(a) Total Client Storage

table size
tree size

0 20000 40000 60000 80000 100000
number of files

0

2

4

6

8

10

12

 ti
m

e
(m

s)

(b) File Add Time

encrypt file
add row to table
update key tree

20000 40000 60000 80000 100000
number of files

0.5

0.6

0.7

0.8

0.9

1.0

1.1

tim
e

(m
s)

(c) Delete Time

update key tree

0 20000 40000 60000 80000 100000
number of files

0

1

2

3

4

tim
e

(s
)

(d) Load time

decrypt table
decrypt key tree

0 20000 40000 60000 80000 100000
number of files

0

2

4

6

8

tim
e

(m
s)

(e) File Access Time

decrypt file
lookup key

0 20000 40000 60000 80000 100000
number of files

0

20

40

60

80

100

120

tim
e

(s
)

(f) Restore time

restore table
decrypt key tree

Figure 8: Evaluation of the storage and latency overheads imposed by BurnBox with respect to the number of files
stored. Operation costs are plotted broken down into constituent parts and stacked to make up the total cost.

mechanism for untrusted applications. In particular, we
allow running an application within a Docker container
given access to BurnBox and a temporary file system
that is wiped on application exit. For the latter we use a
ramdisk [41].

7 Evaluation

As with a standard encrypted cloud store, the time to add
and read files is primarily a function of client bandwidth
and file length. BurnBox adds storage and timing over-
head on top of these costs in order to maintain an erasable
index and support revocation/restoration. Our evaluation
answers the following questions:

(1) What is the storage overhead imposed by BurnBox
on the client and cloud server?

(2) What are the latency overheads of BurnBox oper-
ations and how are they affected by the number of
files (i.e. size of erasable index)?

Experimental setup. To answer the questions above,
we run a series of experiments on a 2.2 GHz Intel core i7
Haswell processor with 16GB of RAM. We use a constant
file size of 1 MB. File size affects the time to encrypt
and decrypt files, but is a shared cost of all encrypted
cloud storage schemes. We focus on measuring the addi-
tional overhead BurnBox incurs, such as maintaining the
erasable index, which is not dependent on file size. In our
experiments, we do not mount BurnBox within a cloud
sync directory. Thus our measurements capture crypto-
graphic and I/O costs, but not the additional network costs
that would be present in a cloud setting.

Storage overhead. The erasable index on the client
stores a filename (16 B), key-value store key (16 B), sym-
metric key (16 B), and restoration ciphertext (305 B) for
each file. The key tree, whose leaves are used to encrypt
individual rows of the index, grows linearly in the total
number of files with new branches generated lazily. As
expected, total client storage, consisting of the key tree
and the encrypted rows, increases linearly with the num-
ber of files (Figure 8). This amounts to a reasonable client
overhead for most use cases. For example, a device can
store 105 files in BurnBox while incurring less than 80
MB of local storage overhead. Note that the number of
files includes deleted, revoked, and active files. In order to
store the restoration ciphertext, revoked files incur almost
the same storage overhead as active files; and thus, to
achieve deletion-revocation obliviousness, deleted files
also incur the same storage overhead. Finally, there is no
storage overhead for the cloud server on top of the cost of
the encrypted file contents.

Operation latency. Before any operation can be per-
formed, our design requires reading the entire erasable
index (i.e., filename to key mappings) into memory. Ide-
ally, only the relevant row corresponding to the filename
specified by each operation would be loaded. However,
recall in order to prevent leakage of filename informa-
tion from storage patterns, the index is not ordered by
filename. This makes efficient direct row level accesses
to the persisted index based on filename impossible. As
a result, the start-up cost is linear in the number of files
(in-order traversal of the key tree and decryption of each
row). Nevertheless it is not prohibitively large, e.g., re-
quiring 4.2 seconds for 105 files (Figure 8), since, once
loaded, the index can be stored in memory using a fast

456 27th USENIX Security Symposium USENIX Association

data structure, e.g., a hash table.
Next we turn to evaluating the latency of each operation.

Delete and Revoke operations simply update a row of the
erasable index. Updating a row consists of sampling a
new key to encrypt the row and updating the keys in the
key tree path. Figure 8 shows the expected logarithmic
relationship with number of files (i.e., height of key tree)
and is independent of the size of files. The Add operation
consists of the standard file encryption cost along with
the overhead of an erasable index row update (Figure 8).
The file encryption cost shown here is constant since
our experiments add files of constant size (1 MB), but in
general this cost will depend linearly on the size of the file.
We see that the majority of the cost is from file encryption
and overhead is small (< 20%). The Access operation
does not modify the erasable index and consists only of
the file decryption cost. The Restore operation decrypts
all restoration ciphertexts and updates the leaves of the
key tree, executing in time linear to the number of files
(Figure 8). The bulk of the cost in Restore comes from
the public key decryption of a restoration ciphertext for
each file (∼ 1 ms / decryption).

8 Limitations

Access pattern inference. BurnBox does not hide ac-
cess patterns for files stored in the cloud. In other contexts
such as searchable encryption, access pattern leakage has
been known to allow attacks that recover plaintext in-
formation [32, 33, 49] given some information about the
underlying encrypted documents. The success of these
types of attacks have so far been limited to recovering in-
formation of highly structured data types, such as columns
of first names or social security numbers. It remains to
be seen in what contexts attacks exist for a space as large
and unstructured as files. While these issues are indepen-
dent of BurnBox and instead stem from the general use of
cloud storage, we consider if compelled access presents a
unique problem for access pattern attacks.

By learning the plaintexts of undeleted files upon com-
pelled access, the adversary may be able to better model
the access distribution for a particular user leading to a
stronger inference attack. Certainly if accesses between
known plaintexts and unknown plaintexts can be corre-
lated this would lend a strong advantage to the adversary
(e.g., a set of files is known to be accessed in quick suc-
cession; if a few of the files are revealed, it can be inferred
that the other deleted files accessed in succession belong
to the set). However, should sensitive revoked files have
little correlation with unrevoked files, the adversary will
not be able to exploit the revealed files in this way.

Another consideration for leakage is file name length
and file size which, for example, might uniquely identify
files. Names can be padded to a maximum length with

little loss as most file systems only allow 255 character
names. File sizes are more challenging. If BurnBox is
used with files where sizes are unique, these sizes should
be padded. The granularity of such padding is dependent
on the distribution of file lengths.

One final note is that access patterns after a compromise
can reveal whether files were deleted or just revoked,
because deleted files will never be read from or written
to again. While we can preserve obliviousness during a
compelled access search, access to the file after the search
will inform the adversary if they are monitoring the cloud
store. This appears to be unavoidable without resorting
to, e.g., oblivious RAM [53], and even then the volume
of accesses would leak some information.

Operating system leakage. BurnBox is designed to
limit leakage from persistent storage following device
restart in the compelled access threat model. While we
have formally evaluated the security of BurnBox with
respect to its cryptographic state, a complete picture of
BurnBox usage includes the underlying operating system
and interacting applications; both can access sensitive
data and write to persistent storage. These other vectors
of leakage have long been identified as a challenge for
systems with similar goals to BurnBox, e.g., in deniable
file systems [24].

Such concerns include: recently used file lists; indexes
for OS wide search; application screen shots used for
transitions1; file contents from BurnBox memory being
paged to disk; text inputs stored either in keyboard buffers
or predictive typing mechanisms; byproducts of rendering
and displaying files to the user; and the volume and timing
of disk operations.

Some of these issues can be handled by configuration
or user action. Disabling OS-wide search and indexing
for BurnBox directories prevents file names and contents
from being stored in those indexes. To guard against leak-
age from memory being paged to disk, BurnBox uses
memory locked pages where available. Users can avoid
leaving applications with access to sensitive data open,
which reduces the risk of leakage on suspend or resume.
These approaches are somewhat unsatisfying because they
require user-specific actions or at least OS-wide configura-
tion changes (that perhaps can be handled by an installer).

BurnBox is necessary, but not sufficient, to fully protect
against these issues and must be part of a larger ecosystem
of techniques to achieve complete security. Applications
need to take steps to prevent leakage. In some cases, as in
our prototype, it may be as simple as running the applica-
tion within a container with access only to a temporary file
system that is erased on application exit. At the operating
system level, special virtualization techniques [26], pur-

1Many operating systems use screen shots of the user interface when
resuming either suspended applications or the OS itself.

USENIX Association 27th USENIX Security Symposium 457

pose built file systems [11], and write-only ORAM [59]
can address many leakage issues.

Delete timing. A particular issue related to operating
system leakage is revelation of timing and volume of disk
accesses to forensics tools. In addition to hiding whether a
file’s status is revoked or deleted, BurnBox targets hiding
when the status changed (deletion/revocation timing pri-
vacy). To this end, it stores all cryptographic material in
two monolithic files. As a result an adversary examining
timestamps learns the time of the last operation in Burn-
Box but nothing about the timing or volume of preceding
operations or what they were.

However, the file system itself, or even the underlying
physical storage medium, may leak more granular infor-
mation. A journaling file system might, for example, leak
when an individual entry in the erasable index was last
touched. While we have carefully designed BurnBox to
ensure this reveals no addition information, it does by
necessity reveal when the file’s status changed. Even if
such fine grained information is not available, a flurry
of file system activity, regardless of if it can be directly
associated BurnBox, might suggest a user was revoking
or deleting files immediately prior to a search, raising
suspicion.

Even should such operating-system leakage reveal tim-
ing, BurnBox may provide value in terms of delete timing
privacy for attackers who do not conduct low level disk
forensics. We note that if one ignores the secondary goal
of delete/revocation timing privacy, one could modify
BurnBox to have the erasable index client state outsourced
to cloud storage. Then Delete and Revoke operations
would involve interactions with the cloud (revealing tim-
ing trivially), but this would arguably simplify the design.

Deleting files from the cloud. A final limitation is that
BurnBox, as described, never requests the cloud storage
service to delete files. This is necessary to provide dele-
tion/revocation obliviousness. However, at some juncture
it will be necessary to free up storage space and this may
enable a compelled-access adversary to at that point iden-
tify that a user previously revoked files. A user might
therefore do such deletions well after the compelled ac-
cess search, but since it leaks information to the adversary
its timing should be considered carefully.

9 Related Work

A variety of works have looked at related problems sur-
rounding compelled access, secure erasure, and encrypted
cloud storage.

Secure deletion. The problem of secure deletion for
files has been explored extensively in various contexts [25,
28, 56]. These works can be divided into two distinct

approaches, data overwriting [36, 69] and cryptographic
erasure [16, 22, 57]. Data overwriting is not applicable to
a corrupted cloud storage provider who stores snapshots.
Cryptographic erasure alone doesn’t provide temporary
revocation. Neither approach directly solves the issue of
metadata needed to locate files (in our case file names).

History independence. A line of work has examined
history independent data structures [31,47,48] and (local)
file systems [11]. As we discussion in Section 3, however,
these techniques do not work when confronted with adver-
saries who can forensically recover fine grained past file
system state, rather they ensure only that the current state
is independent of its history. While the use of a history-
independent file system for local storage [11] could be
used to augment BurnBox to improve its ability to hide
access patterns (during a forensic analysis), it does not
alone suffice for the compelled access scenario as it does
not protect cloud data or provide for self-revocation.

Decoy-based approaches. Several works target trick-
ing adversaries via decoy content, revealed by providing
a fake password. Deniable encryption [18, 20, 61] targets
public key encrypted messages which can later be opened
to some decoy message. Gasti et al. [29] use deniable
public-key encryption to build a cloud-backed file sys-
tem These approaches do not hide file names or provide
for self-revocation, and they require choosing a decoy
message at file creation time.

Honey encryption [35, 37, 38] targets ensuring decryp-
tion under wrong passwords results in decoy plaintexts,
but only works for a priori known distributions of plain-
text data, making it unsuitable for general use. We target
CAS-secure encryption for arbitrary data.

Deniable file systems [9, 29, 34, 52, 55], also known as
steganographic file systems [9], support a hidden volume
that is concealed from the adversary and a decoy volume
that is unlocked via a fake password. Deniable file sys-
tems require users either to a priori compartmentalize
their life into a deniable and non-deniable partition or
to create and maintain plausible “dummy” data for the
decoy volume while conducting everything in the hidden
volume. In contrast, we require users simply excise what
they want to hide when compelled access is likely.

At a higher level, all decoy-based systems require the
user to lie to the authority and intentionally reveal the
wrong password (or cryptographic secret). In addition
to requiring the user to actively not comply, lying may
have legal implications in some cases. Our approach
is different and does not depend on prearranged decoy
content or lying.

Capture-resilient devices. A series of works [42, 43]
investigated capture-resilient devices, where one uses a
remote server to help encrypt data on the device so that if
the device is captured, offline dictionary attacks against

458 27th USENIX Security Symposium USENIX Association

user passwords does not suffice to break security. These
settings, and similar, assume the user does not disclose
their password, thus making it insufficient for the com-
pelled access threat model we target here.

10 Conclusion

In this paper we explored the setting of compelled ac-
cess, where physically present authorities force a user to
disclose secrets in order to allow a search of their digi-
tal devices. We introduced the notion of self-revocable
encryption, in which the user can, ahead of a potential
search (e.g., before crossing a national border), revoke
their ability to access sensitive data. We explored this
approach in the context of encrypted cloud storage appli-
cations, showing that one can hide not only file contents
but also whether and which files were revoked.

We detailed a new cryptographic security notion, called
compelled access security, to capture the level of access
pattern leakage a scheme admits. We introduced a scheme
for which we can formally analyze compelled access secu-
rity relative to a reasonable leakage regime. Interestingly,
the analysis requires non-committing encryption.

We report on an initial prototype of the resulting tool,
called BurnBox. While it has various limitations due
primarily to operating system and application leakage,
BurnBox provides a foundation for realizing client de-
vices that resist compelled access searches.

Acknowledgments

This work was supported in part by Nirvan Tyagi’s NSF
Graduate Research Fellowship, NSF grants 1558500,
1514163, and 1330308, and a generous gift from Mi-
crosoft.

References
[1] Android keystore system. https://developer.android.

com/training/articles/keystore.html.

[2] Intel Software Guard Extensions (Intel SGX). https://

software.intel.com/en-us/sgx.

[3] Storing keys in the secure enclave. https://developer.

apple.com/documentation/security/certificate_

key_and_trust_services/keys/storing_keys_in_the_

secure_enclave.

[4] Truecrypt. http://truecrypt.sourceforge.net/, 2014.

[5] Cbp releases updated border search of electronic de-
vice directive and fy17 statistics. https://www.

cbp.gov/newsroom/national-media-release/

cbp-releases-updated-border, 1 2018.

[6] Crypto++ library. https://www.cryptopp.com/, 2018.

[7] Ibm software tpm. http://ibmswtpm.sourceforge.net/,
2018.

[8] Libfuse: Filesystem in userspace. https://github.com/

libfuse/libfuse, 2018.

[9] ANDERSON, R. J., NEEDHAM, R. M., AND SHAMIR, A. The
steganographic file system. In Information Hiding, Second Inter-
national Workshop, Portland, Oregon, USA, April 14-17, 1998,
Proceedings (1998), pp. 73–82.

[10] ASSANGE, J., DREYFUS, S., AND WEINMANN, R. Rubberhose,
1997. https://web.archive.org/web/20100915130330/

http://iq.org/~proff/rubberhose.org/.

[11] BAJAJ, S., AND SION, R. HIFS: history independence for file
systems. In ACM Conference on Computer and Communications
Security (2013), ACM, pp. 1285–1296.

[12] BARBOSA, M., AND FARSHIM, P. Indifferentiable authenticated
encryption. In Advances in Cryptology – CRYPTO 2018 (2018).

[13] BELLARE, M., AND O’NEILL, A. Semantically-secure functional
encryption: Possibility results, impossibility results and the quest
for a general definition. In Cryptology and Network Security - 12th
International Conference, CANS 2013, Paraty, Brazil, November
20-22. 2013. Proceedings (2013), pp. 218–234.

[14] BELLARE, M., AND ROGAWAY, P. Random oracles are practi-
cal: A paradigm for designing efficient protocols. In CCS ’93,
Proceedings of the 1st ACM Conference on Computer and Com-
munications Security, Fairfax, Virginia, USA, November 3-5, 1993.
(1993), pp. 62–73.

[15] BONEH, D., LEWI, K., AND WU, D. J. Constraining pseudoran-
dom functions privately. IACR Cryptology ePrint Archive 2015
(2015), 1167.

[16] BONEH, D., AND LIPTON, R. J. A revocable backup system. In
Proceedings of the 6th USENIX Security Symposium, San Jose,
CA, USA, July 22-25, 1996 (1996).

[17] BURGE, C., AND CHIN, J. Twelve days in Xinjiang: How China’s
surveillance state overwhelms daily life. https://www.wsj.

com/articles/twelve-days-in-xinjiang, Dec 2017.

[18] CANETTI, R., DWORK, C., NAOR, M., AND OSTROVSKY, R.
Deniable encryption. In CRYPTO (1997), vol. 1294 of Lecture
Notes in Computer Science, Springer, pp. 90–104.

[19] CANETTI, R., FEIGE, U., GOLDREICH, O., AND NAOR, M.
Adaptively secure multi-party computation. In Proceedings of
the Twenty-Eighth Annual ACM Symposium on the Theory of
Computing, Philadelphia, Pennsylvania, USA, May 22-24, 1996
(1996), pp. 639–648.

[20] CARO, A. D., IOVINO, V., AND O’NEILL, A. Deniable
functional encryption. In Public Key Cryptography (1) (2016),
vol. 9614 of Lecture Notes in Computer Science, Springer, pp. 196–
222.

[21] CASH, D., JAEGER, J., JARECKI, S., JUTLA, C. S., KRAWCZYK,
H., ROSU, M., AND STEINER, M. Dynamic searchable encryp-
tion in very-large databases: Data structures and implementation.
In 21st Annual Network and Distributed System Security Sympo-
sium, NDSS 2014, San Diego, California, USA, February 23-26,
2014 (2014).

[22] CRESCENZO, G. D., FERGUSON, N., IMPAGLIAZZO, R., AND
JAKOBSSON, M. How to forget a secret. In STACS 99, 16th Annual
Symposium on Theoretical Aspects of Computer Science, Trier,
Germany, March 4-6, 1999, Proceedings (1999), pp. 500–509.

[23] CURTMOLA, R., GARAY, J. A., KAMARA, S., AND OSTROVSKY,
R. Searchable symmetric encryption: improved definitions and
efficient constructions. In ACM Conference on Computer and
Communications Security (2006), ACM, pp. 79–88.

[24] CZESKIS, A., HILAIRE, D. J. S., KOSCHER, K., GRIBBLE,
S. D., KOHNO, T., AND SCHNEIER, B. Defeating encrypted
and deniable file systems: Truecrypt v5.1a and the case of the

USENIX Association 27th USENIX Security Symposium 459

https://developer.android.com/training/articles/keystore.html
https://developer.android.com/training/articles/keystore.html
https://software.intel.com/en-us/sgx
https://software.intel.com/en-us/sgx
https://developer.apple.com/documentation/security/certificate_key_and_trust_services/keys/storing_keys_in_the_secure_enclave
https://developer.apple.com/documentation/security/certificate_key_and_trust_services/keys/storing_keys_in_the_secure_enclave
https://developer.apple.com/documentation/security/certificate_key_and_trust_services/keys/storing_keys_in_the_secure_enclave
https://developer.apple.com/documentation/security/certificate_key_and_trust_services/keys/storing_keys_in_the_secure_enclave
http://truecrypt.sourceforge.net/
https://www.cbp.gov/newsroom/national-media-release/cbp-releases-updated-border-search-electronic-device-directive-and
https://www.cbp.gov/newsroom/national-media-release/cbp-releases-updated-border-search-electronic-device-directive-and
https://www.cbp.gov/newsroom/national-media-release/cbp-releases-updated-border-search-electronic-device-directive-and
https://www.cryptopp.com/
http://ibmswtpm.sourceforge.net/
https://github.com/libfuse/libfuse
https://github.com/libfuse/libfuse
https://web.archive.org/web/20100915130330/http://iq.org/~proff/rubberhose.org/
https://web.archive.org/web/20100915130330/http://iq.org/~proff/rubberhose.org/
https://www.wsj.com/articles/twelve-days-in-xinjiang
https://www.wsj.com/articles/twelve-days-in-xinjiang

tattling OS and applications. In 3rd USENIX Workshop on Hot
Topics in Security, HotSec’08, San Jose, CA, USA, July 29, 2008,
Proceedings (2008).

[25] DIESBURG, S. M., AND WANG, A. A. A survey of confidential
data storage and deletion methods. ACM Comput. Surv. 43, 1
(2010), 2:1–2:37.

[26] DUNN, A. M., LEE, M. Z., JANA, S., KIM, S., SILBERSTEIN,
M., XU, Y., SHMATIKOV, V., AND WITCHEL, E. Eternal sun-
shine of the spotless machine: Protecting privacy with ephemeral
channels. In 10th USENIX Symposium on Operating Systems
Design and Implementation, OSDI 2012, Hollywood, CA, USA,
October 8-10, 2012 (2012), pp. 61–75.

[27] FOX-BREWSTER, T. Feds have found a way to search locked
phones of 100 trump protestors. https://www.forbes.com/

sites/thomasbrewster/2017/03/23/.

[28] GARFINKEL, S. L., AND SHELAT, A. Remembrance of data
passed: A study of disk sanitization practices. IEEE Security &
Privacy 1, 1 (2003), 17–27.

[29] GASTI, P., ATENIESE, G., AND BLANTON, M. Deniable cloud
storage: sharing files via public-key deniability. In Proceedings of
the 9th annual ACM workshop on Privacy in the electronic society
(2010), ACM, pp. 31–42.

[30] GOLDREICH, O., GOLDWASSER, S., AND MICALI, S. How to
construct random functions. J. ACM 33, 4 (1986), 792–807.

[31] GOODRICH, M. T., KORNAROPOULOS, E. M., MITZEN-
MACHER, M., AND TAMASSIA, R. More practical and secure
history-independent hash tables. In ESORICS (2) (2016), vol. 9879
of Lecture Notes in Computer Science, Springer, pp. 20–38.

[32] GRUBBS, P., MCPHERSON, R., NAVEED, M., RISTENPART, T.,
AND SHMATIKOV, V. Breaking web applications built on top
of encrypted data. In Proceedings of the 2016 ACM SIGSAC
Conference on Computer and Communications Security, Vienna,
Austria, October 24-28, 2016 (2016), pp. 1353–1364.

[33] GRUBBS, P., SEKNIQI, K., BINDSCHAEDLER, V., NAVEED,
M., AND RISTENPART, T. Leakage-abuse attacks against order-
revealing encryption. In 2017 IEEE Symposium on Security and
Privacy, SP 2017, San Jose, CA, USA, May 22-26, 2017 (2017),
pp. 655–672.

[34] HAN, J., PAN, M., GAO, D., AND PANG, H. A multi-user
steganographic file system on untrusted shared storage. In Pro-
ceedings of the 26th Annual Computer Security Applications Con-
ference (2010), ACM, pp. 317–326.

[35] JAEGER, J., RISTENPART, T., AND TANG, Q. Honey encryption
beyond message recovery security. In Advances in Cryptology -
EUROCRYPT 2016 - 35th Annual International Conference on
the Theory and Applications of Cryptographic Techniques, Vienna,
Austria, May 8-12, 2016, Proceedings, Part I (2016), M. Fis-
chlin and J. Coron, Eds., vol. 9665 of Lecture Notes in Computer
Science, Springer, pp. 758–788.

[36] JOUKOV, N., AND ZADOK, E. Adding secure deletion to your
favorite file system. In 3rd International IEEE Security in Stor-
age Workshop (SISW 2005), December 13, 2005, San Francisco,
California, USA (2005), pp. 63–70.

[37] JUELS, A., AND RISTENPART, T. Honey encryption: Encryption
beyond the brute-force barrier. IEEE Security & Privacy 12, 4
(2014), 59–62.

[38] JUELS, A., AND RISTENPART, T. Honey encryption: Security
beyond the brute-force bound. In Advances in Cryptology - EURO-
CRYPT 2014 - 33rd Annual International Conference on the The-
ory and Applications of Cryptographic Techniques, Copenhagen,
Denmark, May 11-15, 2014. Proceedings (2014), pp. 293–310.

[39] KING, R. FBI, NSA said to be secretly mining data from
nine U.S. tech giants. http://www.zdnet.com/article/

fbi-nsa-said-to-be-secretly-mining-data.

[40] LABS, P. Filecoin: A decentralized storage network, 14 Aug.
2017.

[41] LANDLEY, R. ramfs, rootfs and initramfs. https:

//www.kernel.org/doc/Documentation/filesystems/

ramfs-rootfs-initramfs.txt, 2018.

[42] MACKENZIE, P. D., AND REITER, M. K. Delegation of crypto-
graphic servers for capture-resilient devices. In ACM Conference
on Computer and Communications Security (2001), ACM, pp. 10–
19.

[43] MACKENZIE, P. D., AND REITER, M. K. Networked crypto-
graphic devices resilient to capture. Int. J. Inf. Sec. 2, 1 (2003),
1–20.

[44] MAIDSAFE.NET. MaidSafe.net announces project SAFE to the
community (v1.4), 14 Apr. 2014.

[45] MAURER, U., RENNER, R., AND HOLENSTEIN, C. Indiffer-
entiability, impossibility results on reductions, and applications
to the random oracle methodology. In Theory of cryptography
conference (2004), Springer, pp. 21–39.

[46] MCDONALD, A. D., AND KUHN, M. G. StegFS: A stegano-
graphic file system for linux. In International Workshop on Infor-
mation Hiding (1999), Springer, pp. 463–477.

[47] MOLNAR, D., KOHNO, T., SASTRY, N., AND WAGNER, D. A.
Tamper-evident, history-independent, subliminal-free data struc-
tures on PROM storage-or-how to store ballots on a voting ma-
chine (extended abstract). In IEEE Symposium on Security and
Privacy (2006), IEEE Computer Society, pp. 365–370.

[48] NAOR, M., AND TEAGUE, V. Anti-persistence: History indepen-
dent data structures. IACR Cryptology ePrint Archive 2001 (2001),
36.

[49] NAVEED, M., KAMARA, S., AND WRIGHT, C. V. Inference at-
tacks on property-preserving encrypted databases. In Proceedings
of the 22nd ACM SIGSAC Conference on Computer and Commu-
nications Security, Denver, CO, USA, October 12-6, 2015 (2015),
pp. 644–655.

[50] NICHOLS, S. Dropbox: Oops, yeah, we didn’t ac-
tually delete all your files this bug kept them in the
cloud. https://www.theregister.co.uk/2017/01/24/

dropbox_brings_old_files_back_from_dead/, January
2017.

[51] NIELSEN, J. B. Separating random oracle proofs from complexity
theoretic proofs: The non-committing encryption case. In Annual
International Cryptology Conference (2002), Springer, pp. 111–
126.

[52] OLER, B., AND FRAY, I. E. Deniable file system–application of
deniable storage to protection of private keys. In 6th International
Conference on Computer Information Systems and Industrial Man-
agement Applications, CISIM 2007, Elk, Poland, June 28-30, 2007
(2007), pp. 225–229.

[53] OSTROVSKY, R. Software protection and simulation on oblivi-
ous RAMs. PhD thesis, Massachusetts Institute of Technology,
Cambridge, MA, USA, 1992.

[54] PANJWANI, S. Tackling adaptive corruptions in multicast encryp-
tion protocols. In Theory of Cryptography Conference (2007),
Springer, pp. 21–40.

[55] PETERS, T., GONDREE, M. A., AND PETERSON, Z. N. J. DEFY:
A deniable, encrypted file system for log-structured storage. In
22nd Annual Network and Distributed System Security Symposium,
NDSS 2015, San Diego, California, USA, February 8-11, 2015
(2015).

460 27th USENIX Security Symposium USENIX Association

https://www.forbes.com/sites/thomasbrewster/2017/03/23/
https://www.forbes.com/sites/thomasbrewster/2017/03/23/
http://www.zdnet.com/article/fbi-nsa-said-to-be-secretly-mining-data-from-nine-u-s-tech-giants/
http://www.zdnet.com/article/fbi-nsa-said-to-be-secretly-mining-data-from-nine-u-s-tech-giants/
https://www.kernel.org/doc/Documentation/filesystems/ramfs-rootfs-initramfs.txt
https://www.kernel.org/doc/Documentation/filesystems/ramfs-rootfs-initramfs.txt
https://www.kernel.org/doc/Documentation/filesystems/ramfs-rootfs-initramfs.txt
https://www.theregister.co.uk/2017/01/24/dropbox_brings_old_files_back_from_dead/
https://www.theregister.co.uk/2017/01/24/dropbox_brings_old_files_back_from_dead/

[56] REARDON, J., BASIN, D. A., AND CAPKUN, S. Sok: Secure data
deletion. In 2013 IEEE Symposium on Security and Privacy, SP
2013, Berkeley, CA, USA, May 19-22, 2013 (2013), pp. 301–315.

[57] REARDON, J., CAPKUN, S., AND BASIN, D. A. Data node
encrypted file system: Efficient secure deletion for flash memory.
In Proceedings of the 21th USENIX Security Symposium, Bellevue,
WA, USA, August 8-10, 2012 (2012), pp. 333–348.

[58] REARDON, J., RITZDORF, H., BASIN, D. A., AND CAPKUN, S.
Secure data deletion from persistent media. In 2013 ACM SIGSAC
Conference on Computer and Communications Security, CCS’13,
Berlin, Germany, November 4-8, 2013 (2013), pp. 271–284.

[59] ROCHE, D. S., AVIV, A. J., CHOI, S. G., AND MAYBERRY,
T. Deterministic, stash-free write-only ORAM. In Proceedings
of the 2017 ACM SIGSAC Conference on Computer and Com-
munications Security, CCS 2017, Dallas, TX, USA, October 30 -
November 03, 2017 (2017), pp. 507–521.

[60] RUOTI, S., ANDERSEN, J., ZAPPALA, D., AND SEAMONS, K.
Why Johnny still, still can’t encrypt: Evaluating the usability of a
modern PGP client. arXiv preprint arXiv:1510.08555 (2015).

[61] SAHAI, A., AND WATERS, B. How to use indistinguishability
obfuscation: deniable encryption, and more. In Symposium on
Theory of Computing, STOC 2014, New York, NY, USA, May 31 -
June 03, 2014 (2014), pp. 475–484.

[62] SAVAGE, C., AND NIXON, R. Privacy complaints
mount over phone searches at U.S. border since 2011.
https://www.nytimes.com/2017/12/22/us/politics/

us-border-privacy-phone-searches.html, 12 2017.

[63] SHENG, S., BRODERICK, L., KORANDA, C. A., AND HYLAND,
J. J. Why Johnny still can‘t encrypt: Evaluating the usability of
email encryption software. In Symposium On Usable Privacy and
Security (2006), pp. 3–4.

[64] SHOUP, V. A proposal for an ISO standard for public key encryp-
tion. IACR Cryptology ePrint Archive 2001 (2001), 112.

[65] SKILLEN, A., AND MANNAN, M. Mobiflage: Deniable storage
encryption for mobile devices. IEEE Transactions on Dependable
and Secure Computing 11, 3 (2014), 224–237.

[66] SUMRALL, N., AND NOVOA, M. Trusted computing group (tcg)
and the tpm 1.2 specification. In Intel Developer Forum (2003),
vol. 32.

[67] TYAGI, N., MUGHEES, M. H., RISTENPART, T., AND MIERS,
I. Burnbox: Self-revocable encryption in a world of compelled
access. Cryptology ePrint Archive, Report 2018/638, 2018.
https://eprint.iacr.org/2018/638.

[68] VORICK, D., AND CHAMPINE, L. Sia: Simple decentralized
storage. https://sia.tech/sia.pdf, 29 Nov. 2014.

[69] WEI, M. Y. C., GRUPP, L. M., SPADA, F. E., AND SWANSON,
S. Reliably erasing data from flash-based solid state drives. In 9th
USENIX Conference on File and Storage Technologies, San Jose,
CA, USA, February 15-17, 2011 (2011), pp. 105–117.

[70] WHITTEN, A., AND TYGAR, J. D. Why Johnny can’t encrypt: A
usability evaluation of PGP 5.0. In USENIX Security Symposium
(1999), vol. 348.

[71] WILKINSON, S., BOSHEVSKI, T., BRANDOFF, J., PRESTWICH,
J., HALL, G., GERBES, P., HUTCHINS, P., POLLARD, C., AND
BUTERIN, V. Storj: A peer-to-peer cloud storage network (v2.0),
15 Dec. 2016.

[72] WOLCHOK, S., HOFMANN, O. S., HENINGER, N., FELTEN,
E. W., HALDERMAN, J. A., ROSSBACH, C. J., WATERS, B.,
AND WITCHEL, E. Defeating vanish with low-cost sybil attacks
against large dhts. In Proceedings of the Network and Distributed
System Security Symposium, NDSS 2010, San Diego, California,
USA, 28th February - 3rd March 2010 (2010).

USENIX Association 27th USENIX Security Symposium 461

https://www.nytimes.com/2017/12/22/us/politics/us-border-privacy-phone-searches.html
https://www.nytimes.com/2017/12/22/us/politics/us-border-privacy-phone-searches.html
https://eprint.iacr.org/2018/638
https://sia.tech/sia.pdf

