
Open access to the Proceedings of the
27th USENIX Security Symposium

is sponsored by USENIX.

Charm: Facilitating Dynamic Analysis
of Device Drivers of Mobile Systems

Seyed Mohammadjavad Seyed Talebi and Hamid Tavakoli, UC Irvine;
Hang Zhang and Zheng Zhang, UC Riverside;

Ardalan Amiri Sani, UC Irvine; Zhiyun Qian, UC Riverside

https://www.usenix.org/conference/usenixsecurity18/presentation/talebi

This paper is included in the Proceedings of the
27th USENIX Security Symposium.

August 15–17, 2018 • Baltimore, MD, USA

ISBN 978-1-939133-04-5

Charm: Facilitating Dynamic Analysis of Device Drivers of Mobile Systems

Seyed Mohammadjavad Seyed Talebi?, Hamid Tavakoli?, Hang Zhang†, Zheng Zhang†,
Ardalan Amiri Sani?, Zhiyun Qian†

?UC Irvine, †UC Riverside

Abstract

Mobile systems, such as smartphones and tablets, incor-
porate a diverse set of I/O devices, such as camera, audio
devices, GPU, and sensors. This in turn results in a large
number of diverse and customized device drivers running
in the operating system kernel of mobile systems. These
device drivers contain various bugs and vulnerabilities,
making them a top target for kernel exploits [78]. Un-
fortunately, security analysts face important challenges
in analyzing these device drivers in order to find, under-
stand, and patch vulnerabilities. More specifically, us-
ing the state-of-the-art dynamic analysis techniques such
as interactive debugging, fuzzing, and record-and-replay
for analysis of these drivers is difficult, inefficient, or
even completely inaccessible depending on the analysis.

In this paper, we present Charm1, a system solution
that facilitates dynamic analysis of device drivers of mo-
bile systems. Charm’s key technique is remote device
driver execution, which enables the device driver to ex-
ecute in a virtual machine on a workstation. Charm
makes this possible by using the actual mobile system
only for servicing the low-level and infrequent I/O oper-
ations through a low-latency and customized USB chan-
nel. Charm does not require any specialized hardware
and is immediately available to analysts. We show that it
is feasible to apply Charm to various device drivers, in-
cluding camera, audio, GPU, and IMU sensor drivers,
in different mobile systems, including LG Nexus 5X,
Huawei Nexus 6P, and Samsung Galaxy S7. In an ex-
tensive evaluation, we show that Charm enhances the us-
ability of fuzzing of device drivers, enables record-and-
replay of driver’s execution, and facilitates detailed vul-
nerability analysis. Altogether, these capabilities have
enabled us to find 25 bugs in device drivers, analyze 3
existing ones, and even build an arbitrary-code-execution
kernel exploit using one of them.

1Charm is open sourced: https://trusslab.github.io/charm/

1 Introduction

Today, mobile systems, such as smartphones and tablets,
incorporate a diverse set of I/O devices, e.g., camera, dis-
play, sensors, accelerators such as GPU, and various net-
work devices. These I/O devices are the main driving
force for product differentiation in a competitive market.
It is reported that there are more than a thousand Android
device manufacturers and more than 24,000 distinct An-
droid devices seen just in 2015 [1]. Therefore, one smart-
phone vendor might use a powerful camera so that its
smartphone would stand out in this market, while another
might be the first to incorporate a fingerprint scanner.

Such diversity has an important implication for the
operating system of mobile systems: a large number
of highly diverse and customized device drivers are re-
quired to power the corresponding set of distinct I/O de-
vices. Device drivers run in the kernel of the operating
system and are known to be the source of many serious
vulnerabilities such as root vulnerabilities [78]. There-
fore, security analysts invest significant effort to find,
analyze, and patch the vulnerabilities in them. Unfor-
tunately, they face important deficiencies in doing so.
More specifically, performing dynamic analysis on de-
vice drivers in mobile systems is difficult, inefficient,
or even impossible depending on the analysis. For ex-
ample, some dynamic analyses, including introspect-
ing the driver and kernel state with a debugger (such
as GDB) and record-and-replay, requires the driver to
run within a controlled environment, e.g., a virtual ma-
chine. Unfortunately, doing so for device drivers run-
ning in the kernel of mobile systems is impossible. As
another example, a kernel fuzzer, such as kAFL [65] or
Google Syzkaller [7], can be used to find various types
of bugs in the operating system kernel including device
drivers. Unfortunately, fuzzing the device drivers in mo-
bile systems encounters various disadvantages. First, us-
ing kAFL requires running the driver in an x86-based vir-
tual machine, which is not possible for mobile drivers.

USENIX Association 27th USENIX Security Symposium 291

Virtual machine
Device

driver(s)
of mobile
system

Low-level I/O
operations

Figure 1: Charm enables a security analyst to run a mo-
bile I/O device driver in a virtual machine and inspect it
using various dynamic analysis techniques.

Second, using Syzkaller directly on mobile systems is
challenging due to (i) lack of support for latest fuzzing
features, such as new kernel sanitizers [9–12] and (ii)
lack of access to the system’s console without using a
specialized adapter [8].

In this paper, we present Charm, a system designed
to facilitate dynamic analysis of device drivers of mobile
systems in order to find and investigate the vulnerabili-
ties in them. Our key contribution in Charm that makes
this possible is a system solution for the execution of
mobile I/O device drivers within a virtual machine on
a different physical machine, e.g., a workstation. Such
a capability overcomes the aforementioned deficiencies.
That is, since the device driver executes within a vir-
tual machine, it enables the analyst to use various dy-
namic analyses including manual interactive debugging,
record-and-replay, and enhanced fuzzing.

Executing a mobile system’s device driver within a
workstation virtual machine is normally impossible since
the driver requires access to the exact hardware of the
I/O device in the mobile system. We solve this prob-
lem using a technique called remote device driver exe-
cution. With this technique, the device driver’s attempts
to interact with its I/O device are intercepted in the vir-
tual machine by the hypervisor and routed to the actual
mobile system over a customized low-latency USB chan-
nel. In this technique, while the actual mobile system is
needed for the execution of the infrequent low-level I/O
operations, the device driver runs fully within a virtual
machine and hence can be analyzed. Figure 1 shows the
high-level idea behind Charm.

Remote device driver execution raises two important
challenges, which we address in this paper. First, inter-
actions of a device driver with its corresponding I/O de-
vice are time-sensitive. Hence the added latency of com-
munications between the workstation and mobile system
can easily result in various time-out problems in the I/O
device or driver, as our own experience with our ear-
lier Charm prototypes demonstrated. We address this
challenge with a customized USB channel. Quite im-
portantly, our solution does not require any customized
hardware for the connection to the mobile system. It

leverages the commonly available USB interface and
hence makes our solution immediately available to se-
curity analysts.

Second, in addition to interacting with the I/O de-
vice’s hardware, a device driver interacts with several
other modules in the operating system kernel including a
bus driver, the power management module, and the clock
management module. These modules, which we refer to
as “resident modules”, cannot be moved to the virtual
machine since they are needed in the mobile system for
the usage of the USB channel. We address this challenge
with a Remote Procedure Call (RPC) interface for the re-
mote driver to interact with these modules in the mobile
system. We build our RPC solution at the boundary of
common Linux APIs. Therefore, different device drivers
of different mobile systems can use the same RPC inter-
face, reducing the engineering effort to apply Charm to
new device drivers.

We implement Charm’s prototype using an Intel Xeon-
based workstation and three smartphones: LG Nexus
5X, Huawei Nexus 6P, and Samsung Galaxy S7. We
implement remote device driver execution for two de-
vice drivers in Nexus 5X, namely the camera and audio
drivers, for the GPU device driver in Nexus 6P, and for
Inertial Measurement Unit (IMU) sensor driver in Sam-
sung Galaxy S7. Altogether, these drivers encompass
129,000 LoC. We choose four distinct device driver from
three vendors to demonstrate the ability of Charm to sup-
port a diverse set of device drivers in various mobile sys-
tems. We have released the source code of Charm as well
as the kernel images configured for the supported drivers.
The former enables security analysts to support new de-
vice drivers, while the latter enables them to immediately
apply different dynamic analysis techniques to the set of
device drivers that Charm already supports.

Our current prototype of Charm only supports open
source device drivers. Fortunately, kernel source code
(including drivers) is often available for Android devices.
In practice, the kernel is often released by vendors soon
after launch, e.g., in the case of Samsung Galaxy S9
and S9+ [19]. Moreover, kernels released by the ven-
dors are integrated into custom Android projects (such
as LineageOS, which supports 200 devices at the time
of this writing [18]), providing bootable Android im-
ages. These projects also provide instructions to unlock
the bootloader on supported devices in order to deploy
these images. Therefore, we believe that Charm is useful
for many (if not most) Android devices. However, there
are still a large number of closed source device drivers,
which Charm cannot currently support. Therefore, as
part of our future work, we plan to support closed source
drivers in Charm too (§8).

Using extensive evaluation, we demonstrate the fol-
lowing. First, we show that it is feasible to add support

292 27th USENIX Security Symposium USENIX Association

for new device drivers in Charm in a reasonable amount
of time. Second, we show that despite the overhead of
remote device driver execution, Charm’s performance is
on par with actual mobile systems. More specifically, we
show that a fuzzer can execute about the same number
of fuzzing programs in Charm and hence achieve similar
code coverage in the driver. Third, we show that Charm
enables us to find 25 bugs in drivers including 14 previ-
ously unknown bugs (several of which we have already
reported) and two bugs detected by a kernel sanitizer not
available on the corresponding mobile system’s kernel.
Fourth, we show that we can record and replay the ex-
ecution of the device driver, which, among others, can
help easily recreate a bug without needing the mobile
system’s hardware. Finally, we show that it is feasible
to use a debugger, i.e., GDB, to analyze various vulner-
abilities in these drivers. Using this ability, we have an-
alyzed three publicly reported vulnerabilities and man-
aged to build an arbitrary-code-execution kernel exploit
using one of them.

2 Motivation

Our efforts to build Charm is motivated by our previous
struggles to analyze the device drivers of mobile systems
in order to find and understand vulnerabilities in them. In
this section, we discuss three important dynamic analysis
techniques: manual interactive debugging, record-and-
replay, and fuzzing. We discuss the current challenges in
applying them to device drivers of mobile systems and
briefly mention how Charm overcomes these challenges.

2.1 Manual Interactive Debugging
Security analysts often use a debugger, such as the infa-
mous GDB, to analyze a vulnerability or a reported ex-
ploit. A debugger enables the analyst to put breakpoints
in the code, investigate the content of memory when and
where needed, and put watchpoints on important data
structures to detect attempts to modify them. Unfor-
tunately, performing these debugging actions on device
drivers is typically infeasible as they run in the kernel of
the mobile system’s operating system. Kernel debugger,
KGDB, tries to address this challenge by providing sup-
port for interactive debugging for the operating system
kernel. However, using KGDB for the kernel of mobile
systems is either infeasible, is difficult to use, or requires
a specialized adapter. More specifically, KGDB requires
console access, which can be made available through the
UART hardware. Unfortunately, some mobile systems
do not have the UART hardware, and hence do not sup-
port KGDB. Moreover, some other systems, e.g., some
Xperia smartphones, have the UART hardware, but ac-
cessing it requires opening up the system, finding the

UART pins, and soldering connections [14], which is a
difficult and error-prone task. Finally, some systems have
the UART hardware and connect it to the audio jack for
easy access, e.g., Nexus devices [20]. Console access in
this case is relatively easier but still requires a specialized
adapter cable [15].

Charm solves this problem. It enables the security an-
alysts to analyze the device driver since the driver runs
within a virtual machine. To demonstrate this point, we
have used GDB to analyze 3 vulnerabilities in Nexus
5X camera driver (reported on Android Security Bul-
letins [2]). Moreover, we have also used GDB to help
construct an exploit that can gain arbitrary code execu-
tion in the kernel using one of these vulnerabilities.

2.2 Record-and-Replay
Record-and-replay is an invaluable tool for analyzing the
behavior of a program, including device drivers. It en-
ables an analyst to record the execution of the device
driver and replay it when needed. Imagine that a cer-
tain run of a device driver results in a crash (e.g., when
being fuzzed). Recreating the crash might not be trivial
since it might depend on a race condition that is trig-
gered in a certain interleaving of driver execution and
incoming interrupts from the I/O device. However, if the
execution is recorded, it can be simply replayed and an-
alyzed (e.g., with GDB). What is extremely useful about
this technique is that the replay of the driver does not
even require having access to the actual mobile system.
Therefore, anyone with access to a virtual machine can
replay the device driver execution and analyze it.

While any virtual machine record-and-replay can be
used in Charm, we have implemented our own solution.
It records all the interactions of the driver with the remote
I/O device in the hypervisor and then replays them when
needed.

2.3 Fuzzing
Fuzzing is a dynamic analysis technique that attempts to
find bugs in a software module under test by providing
various inputs to the module. In case of device drivers,
the input to the driver is through system calls, such as
ioctl and read system calls. While fuzzing is an ef-
fective technique to find bugs in software, it often suffers
from low code coverage when inputs are randomly se-
lected. Therefore, to increase coverage, feedback-guided
fuzzing techniques collect execution information and use
that to guide the input generation process. One such
fuzzing tool is kAFL [65], which uses the hypervisor to
collect execution information of the virtual machine by
leveraging the Intel Processor Tracer (PT) hardware. Us-
ing kAFL to fuzz the device drivers of mobile systems

USENIX Association 27th USENIX Security Symposium 293

is currently impossible because most of the commodity
mobile devices use ARM processors, which do not have
the Intel PT hardware. Moreover, hypervisor support is
not enabled on these systems. However, by running the
driver in a virtual machine in an x86 machine, Charm
enables the use of kAFL.

Another such fuzzing tool, which is capable of fuzzing
kernel-based device drivers, is Syzkaller [7], recently re-
leased by Google. Syzkaller uses a compiler-based cov-
erage information collector, i.e., KCOV [4], and use that
to guide its input generation. Since the coverage infor-
mation collector is inserted into the kernel using the com-
piler, it is possible to use Syzkaller to directly fuzz the
device driver running inside a mobile system. Yet, using
Syzkaller with Charm provides three important advan-
tages. First, Syzkaller can benefit from other dynamic
analysis techniques only available for virtual machines.
Specifically, record-and-replay can facilitate the analysis
of the bugs triggered by Syzkaller, as discussed earlier.

Second, it is easier to leverage new kernel sanitizers
of Syzkaller in a virtual machine compared to a mo-
bile system. Kernel sanitizers instrument the kernel at
compile time to allow Syzkaller to find non-crash bugs
by monitoring the execution of the kernel. Examples
are KASAN [9], which finds use-after-free and out-of-
bounds memory bugs, KTSAN [11], which detects data
races, KMSAN [10], which detects the use of uninitial-
ized memory, and KUBSAN [12], which detects unde-
fined behavior. Unfortunately, these sanitizers are not of-
ten supported in the kernel of mobile systems. To the best
of our knowledge, only the Google Pixel smartphone’s
kernel supports KASAN [16]. In contrast, in Charm,
one can simply choose a virtual machine kernel with sup-
port for these sanitizers. For example, we show that we
can easily use KASAN in Charm by simply porting our
drivers to a KASAN-enabled virtual machine kernel.

Finally, Syzkaller can more effectively capture and an-
alyze crash bugs when fuzzing a virtual machine com-
pared to a mobile system. Syzkaller reads the kernel logs
of the operating system through its “console”. It needs
the kernel logs at the moment of the crash to capture the
dump stack. The console of the virtual machine is reli-
ably available by the hypervisor at the time of a crash.
On the other hand, getting the console messages from a
mobile system at the time of the crash is more challeng-
ing and requires a specialized adapter [8], which is not
available to all analysts and is not easy to use. Indeed,
kernel developers are familiar with the difficulty of hav-
ing to use a serial cable on a desktop or laptop to get
the last-second console messages from a crashing ker-
nel in order to be able to debug the crash. Getting the
console logs from a crashing mobile system is as chal-
lenging, if not more. When such debugging hardware
is not available, one can try to read the kernel messages

through the Android Debug Bridge (ADB) interface, the
main interface used over USB for communication to An-
droid mobile systems. Unfortunately, the interface can-
not deliver the kernel crash logs since the ADB daemon
on the phone crashes as well. One can attempt to read
the crash logs after the mobile system reboots, but crash
logs are not always available after reboot since a crash
might corrupt the kernel, hindering its ability to flush the
console to storage. These challenges are also confirmed
by the Syzkaller’s developers: “Android Serial Cable or
Suzy-Q device to capture console output is preferable but
optional. Syzkaller can work with normal USB cable as
well, but that can be somewhat unreliable and turn lots of
crashes into lost connection to test machine crashes with
no additional info” [8]. Running the device driver in a
virtual machine significantly alleviates this problem.

In our prototype, we use Syzkaller as one of the anal-
ysis tools used on top of Charm. We choose Syzkaller in
order to be able to compare its performance with that of
fuzzing directly on mobile systems. However, note that
Charm can also support a fuzzer such as kAFL, which is
impossible to use directly on a mobile system.

3 Overview

Our goal in this work is to facilitate the application of ex-
isting dynamic analysis techniques to mobile I/O device
drivers.

3.1 Straw-man Approaches

Before describing our solution, we discuss two straw-
man approaches that attempt to run a device driver inside
a virtual machine. The first approach is to try to run the
device driver in an existing virtual machine in a worksta-
tion (without the solutions presented by Charm). Unfor-
tunately, this approach does not work out of the box since
the driver requires access to the I/O device hardware in
the mobile system. As a result, at boot time, the driver
will not get initialized by the kernel since the kernel does
not see the I/O device. If forced (e.g., by forcing the call
to initialize the driver), the driver will immediately throw
an error (since it will not be able to interact with the I/O
device hardware), potentially resulting in a kernel panic
in the virtual machine.

In this case, one might wonder whether we can emu-
late the I/O device hardware for the virtual machine in
software. Unfotunately, doing so requires prohibitive en-
gineering effort due to the diversity of I/O devices in mo-
bile systems today.

The second approach is to run the device driver in
a virtual machine in the mobile system and use the di-
rect device assignment technique [21,24,43,53,54] (also

294 27th USENIX Security Symposium USENIX Association

known as device passthrough) to enable the virtual ma-
chine to access the underlying I/O device. This approach
suffers from two important limitations. First, exist-
ing implementations of direct device assignment mainly
support PCI devices common in x86 workstations, but
not I/O devices of mobile systems. Second, running a
hardware-based virtual machine within commodity mo-
bile systems is impossible. While many mobile systems
today incorporate ARM processor with hardware virtual-
ization support, the hypervisor mode is disabled on these
devices to prevent its use by rootkits. This leaves us with
the option of software-based virtualization, which suffers
from poor performance.

3.2 Charm’s Approach

We present Charm, a system solution to facilitate the
dynamic analysis of device drivers of mobile systems.
Charm decouples the execution of the device driver from
the mobile system hardware. That is, it enables the de-
vice driver to run in a virtual machine on a different phys-
ical machine, i.e., a workstation.

As mentioned earlier, a device driver needs access to
its I/O device for correct execution. Our key idea to
achieve this in Charm is to reuse the physical I/O devices
through remote device driver execution. That is, we con-
nect the physical mobile system directly to the worksta-
tion with a USB cable. The device driver executes fully
in the workstation and only the infrequent low-level I/O
operations are forwarded and executed on the physical
mobile system.

In Charm, the latency of remoting the low-level I/O
operations to the mobile system is of critical importance.
High latency would result in various time-out problems
in the device driver or I/O device. First, device drivers
often wait for a bounded period of time for a response
from the I/O device. In case the response comes later
than expected, the device driver triggers a time-out error.
Second, the I/O device might require timely reads and
writes to registers. For example, after the device triggers
an interrupt, it might require the driver to clear the inter-
rupt (by writing to a register) in a short period of time. If
not, the device might re-trigger the interrupt, potentially
repeatedly.

In Charm, we leverage an x86 virtual machine in the
workstation to execute the device driver. Given that mo-
bile systems use ARM processors, one might wonder
why we do not use an ARM virtual machine. Indeed, in
our first prototype of Charm, we used a QEMU ARM vir-
tual machine with ARM-to-x86 instruction interpretation
on our x86-based workstation and implemented Charm
fully in QEMU. Unfortunately, the overhead of instruc-
tion interpretation slowed the execution down to a point
that our device drivers triggered various time-out errors.

This made us realize that native execution is needed to
meet the device driver’s latency requirements, and hence
we used a hardware-virtualized x86 virtual machine and
reimplemented Charm in KVM.

Note that it is possible to use an ARM workstation in
order to have native ARM execution for the Charm’s vir-
tual machine. However, while x86 workstations are eas-
ily available, ARM workstations are not yet common-
place. Therefore, we did not adopt this approach since
we want Charm to be available to security analysts im-
mediately.

3.3 Potential Concerns

There are two potential concerns with Charm’s design.
Fortunately, as we will report in our evaluation, we have
managed to show that Charm overcomes both concerns.
The first concern is potentially poor performance. Re-
moting I/O operations can significantly slow down the
execution of the device driver. This can result in in-
correct behavior due to time-outs. Even if there are no
time-outs, it can slow down the dynamic analysis’ exe-
cution, e.g., fuzzing time. In this paper, we show that
by leveraging native execution of an x86 processor and
a customized low-latency USB channel, we can not only
eliminate time-outs but also achieve performance on par
with the execution of the analysis running directly on the
mobile system.

The second concern is that the disparity between the
ARM Instruction Set Architecture (ISA) used in mobile
systems vs. the x86 ISA used in the virtual machine may
result in incorrect device driver behavior, which can af-
fect the analysis, e.g., false positives in bugs detected by
a fuzzer. Fortunately, as we will show, that is not the
case. For example, we have not yet encountered a con-
firmed false positive bug detected by Charm. Moreover,
we have verified that several Proof-of-Concept codes
(PoC’s) publicly reported for a device driver are also
effective in Charm. The reason behind this is that de-
vice drivers are written almost fully in C and they suffer
from bugs in the source code, which are effective regard-
less of the ISA that they are compiled to. We do, how-
ever, note that “compiler bugs”, e.g., undefined behavior
bugs [70], can show different behavior in the mobile sys-
tem vs. Charm. This is because a compiler bug present
in a C x86 compiler might not be present in a C ARM
compiler, and vice versa. Therefore, Charm might result
in false compiler bug reports (although we have not yet
come across one) . However, note that bugs due to un-
defined behavior are not necessarily false positives since
they happen due to the driver code wrongly relying on
an undefined behavior of the language. Finally, Charm
might result in false negatives for ARM compiler bugs
as well.

USENIX Association 27th USENIX Security Symposium 295

I/O device

User space

Kernel

Device driver
(including the bus driver,

when applicable)

Mobile system

Resident modules:
Power mgr., clock

mgr., pin control, etc.

OS

Resident
hardware

(a)

USB
channel

User space

Kernel

User space

Kernel

Device driver
(including the bus driver,

when applicable)

Workstation Mobile system

Stub

Hypervisor

Virtual machine OS OS

I/O device

Resident modules:
Power mgr., clock

mgr., pin control, etc.

Resident
hardware

Stub

(b)

Figure 2: (a) Device driver execution in a mobile system. (b) Remote device driver execution in Charm.

4 Remote Device Driver Execution

The key enabling technique in Charm is the remote exe-
cution of mobile I/O device drivers. In this technique, we
run the device driver in a virtual machine in the worksta-
tion. We then intercept the low-level interactions of the
driver with the hardware interface of the I/O device and
route them to the actual mobile system through a USB
channel. Similarly, interrupts from the I/O device in the
mobile system are routed to the device driver in the vir-
tual machine. Figure 2 illustrates this technique. We will
next elaborate on the solution’s details.

4.1 Device and Device Driver Interactions
The remote device driver technique requires us to ex-
ecute the device driver in a different physical machine
from the one hosting the I/O device. At first glance, this
sounds like an impossible task. The device driver inter-
acts very closely with the underlying hardware in the mo-
bile system. Therefore, this raises the question: is remote
execution of a device driver even possible? We answer
this question positively in this paper. To achieve this, a
stub module in the workstation’s hypervisor communi-
cates with a stub module in the mobile system to support
the device driver’s interactions with its hardware. These
interactions are three-fold: accesses to the registers of
the I/O device, interrupts, and Direct Memory Access
(DMA). Charm currently supports the first two. We will
demonstrate that these two are enough to port and exe-
cute many device drivers remotely. In §8, we will discuss
how we plan to support DMA in the future.

Register accesses. Using the hypervisor in the work-
station, we intercept the accesses of the device driver to
its registers. Upon a register write, we forward the value
to be written to the stub in the mobile system. Upon a
register read, we send a read request to the stub module,

receive the response, and return it to the device driver in
the virtual machine.

Interrupts. The stub module in the mobile system
registers an interrupt handler on behalf of the remote
driver. Whenever the corresponding I/O device in the
mobile system triggers an interrupt, the mobile stub for-
wards the interrupt to the stub in the workstation, which
then injects it into the virtual machine for the device
driver to handle.

4.2 Device Driver Initialization
For the device driver to get initialized in the kernel of
the virtual machine, the kernel must detect the corre-
sponding I/O device in the system. Therefore, for a re-
mote device driver to get initialized in the virtual ma-
chine, we must enable the kernel of the virtual machine
to “detect” the corresponding I/O device as being con-
nected to the virtual machine. ARM and x86 machines
use different approach for I/O device detection. In an
ARM machine, a device tree is used, which is a software
manifest containing the list of hardware components in
the system. In this machine, the kernel parses the de-
vice tree at boot time and initializes the corresponding
device drivers. In an x86 machine, hardware detection
is mainly used through the Advanced Configuration and
Power Interface (ACPI). In an x86 virtual machine, the
ACPI interface is emulated by the hypervisor.

The first solution that we considered was to add a
remote I/O device to the hypervisor’s ACPI emulation
layer so that the virtual machine kernel can detect it.
However, this solution would require significant engi-
neering effort to translate the device tree entries into
ACPI devices. Therefore, we take a different approach.
We have the x86 kernel parse and use device trees as
well. That is, we first allow the kernel to finish its ACPI-
based device detection. After that, the kernel parses the

296 27th USENIX Security Symposium USENIX Association

device tree to detect the remote I/O devices. This signifi-
cantly reduces the engineering effort. To support the ini-
tialization of a new device driver, we only need to copy
the device tree entries corresponding to the I/O device of
interest from the device tree of the mobile system to that
of the virtual machine.

4.3 Low-Latency USB Channel

We use USB for connecting the mobile system to the
workstation as USB is the most commonly used connec-
tion for mobile systems. USB provides adequate band-
width for our use cases. For example, the USB 3.0 stan-
dard (used in modern mobile systems) can handle up to
5 Gbps.

In Charm, in addition to bandwidth, the latency of the
channel between the workstation and the mobile system
is of utmost importance. High latency can result in time-
out problems in both the I/O device and the device driver.
In our initial prototypes of Charm, we experienced vari-
ous time-out problems in the device driver and I/O device
due to high latency of our initial channel implementa-
tion. In this prototype, we used a TCP-based socket over
the ADB interface. However, our measurements showed
that this connection introduces a large delay (about one
to two milliseconds for a round trip). This latency is due
to several user space/kernel crossings both in the virtual
machine and mobile system. To address this problem,
we implement a low-level and customized USB chan-
nel for Charm. In this channel, we create a USB gad-
get interface [13] for Charm and attach five endpoints to
this interface. Two endpoints are used for bidirectional
communication for register accesses. Two endpoints are
used for bidirectional communication for RPC calls (ex-
plained in §4.4). And the last endpoint is used for uni-
directional communication for interrupts (from the mo-
bile system to the workstation). Both in the mobile sys-
tem and in the workstation, our stub modules read and
write to these endpoints directly in the kernel (the host
operating system kernel in the case of the workstation)
hence avoiding costly user/kernel crossings. Therefore,
this channel eliminates all user space/kernel crossings,
significantly reducing the latency.

To further minimize the latency of communication
over this channel, we perform an optimization: write
batching. That is, we batch consecutive register writes
by simply sending the write request over the USB chan-
nel and receiving the acknowledgment asynchronously,
hence removing the wait-for-ack latency between these
consecutive writes.

4.4 Dependencies

A device driver does not merely interact with the I/O
device hardware interface. It often interacts with other
kernel modules in the mobile system. We use two solu-
tions for resolving these dependencies. First, if a kernel
module is not needed on the mobile system itself, we
move that module to the workstation virtual machine as
well. The more modules that are moved to the virtual
machine, the better we can analyze the device driver be-
havior. Consider fuzzing as an example. Fuzzing the
device driver in the virtual machine will manage to also
find bugs in these other modules if they are moved to
the virtual machine. An example of a dependent mod-
ule that we move the virtual machine is the bus driver.
Many I/O devices are connected to the main system bus
in the System-on-a-Chip (SoC) via a peripheral bus. In
this case, the device driver does not directly interact with
its own I/O device. Instead, it uses the bus driver API.

Second, if a module is needed on the mobile system,
we keep the module in the mobile system and implement
a Remote Procedure Call (RPC) interface for the driver
in the virtual machine to communicate with it. We have
identified the minimal set of kernel modules that can-
not be moved to the virtual machine. We refer to these
modules as “resident modules”. These modules (which
include power and clock management system, pin con-
troller hardware, and GPIO) are in charge of hardware
components that are needed to boot the mobile system
and configure the USB interface. We refer to these hard-
ware components as “resident hardware”. Figure 2b il-
lustrates this design.

Note that we implement Charm’s RPC interface at the
boundary of generic kernel APIs. More specifically, we
use the generic kernel power management, clock man-
agement, pin controller, and GPIO API for RPC. This
allows for the portability of the RPC interface. That
is, since the kernel of all Android-based mobile systems
leverage mostly the same API (although different ker-
nel versions might have slightly different API), Charm’s
RPC implementation can be simply ported, requiring
minimal engineering effort.

4.5 Porting a Device Driver to Charm

Supporting a new driver in Charm requires porting the
driver to Charm. At its core, this is similar to porting a
driver from one Linux kernel to another, e.g., porting a
driver to a different Linux kernel version or to the kernel
used in a different platform. Device driver developers
are familiar with this task. Therefore, we believe that
porting a driver to Charm will be a routine task for driver
developers. Moreover, we show, through our evaluation,
that non-driver developers should also be able to perform

USENIX Association 27th USENIX Security Symposium 297

the port as long as they have some knowledge about ker-
nel programming, which we believe is a requirement for
security analysts working on kernel vulnerabilities.

Porting a device driver to run in Charm requires the
following steps. The first step is to add the device driver
to the kernel of the virtual machine in Charm. This re-
quires copying the device driver source files to the kernel
source tree and compiling them. Moreover, if the de-
vice driver has movable dependencies, e.g., a bus driver,
the dependent modules must be similarly moved to the
virtual machine kernel. One might face two challenges
here. The first challenge is that the virtual machine ker-
nel might have different core Linux API compared to the
kernel of the mobile system. To solve this challenge, it is
best to use a virtual machine kernel as close in version to
the kernel of the mobile system as possible. This might
not fully solve the incompatibilities. Hence, for the left-
over issues, small changes to the driver might be needed.
We have faced very few such cases in practice. For ex-
ample, when porting the Nexus 6P GPU driver, we no-
ticed that the Linux memory shrinker API in the virtual
machine kernel is slightly different than that of the smart-
phone. We addressed this by mainly modifying one func-
tion implementation. The second challenge is potential
incompatibilities due to the virtual machine kernel being
compiled for x86 rather than ARM. This is due to the po-
tential use of architecture-specific constants and API in
the driver. To solve these, it is best to support the ARM
constants and API in the x86-specific part of the Linux
kernel instead of modifying the driver. We have faced a
couple of such cases. For example, Linux x86 support
does not provide the kmap atomic flush unused()

API, which is supported in ARM and hence used in some
drivers. Therefore, this function needs to be added and
implemented in Charm.

The second step is to configure the driver to run in the
virtual machine given that the actual I/O device hardware
is not present. To do this, the device tree entries corre-
sponding to the I/O device hardware must be moved from
the mobile system’s device tree to that of the virtual ma-
chine (as discussed in §4.2). In doing so, dependent de-
vice tree entries, such as the bus entry, must be moved
too.

The third step is to configure Charm to remote the I/O
operations of the driver to the corresponding mobile sys-
tem. This includes determining the physical addresses of
register pages of the corresponding I/O device (easily de-
termined using the device tree of the mobile system) as
well as setting up the required RPC interfaces for interac-
tions with modules in the mobile system. The latter can
be time-consuming. Fortunately, it is a one-time effort
since the RPC interface is built on top of generic Linux
API shared across all Linux-based mobile systems (as
mentioned in §4.4). Hence, many of the RPC interfaces

Mobile System I/O Device Device
driver LoC

LG Nexus 5X Camera 65,000
LG Nexus 5X Audio 30,000
Huawei Nexus 6P GPU 31,000

Samsung Galaxy S7
IMU Sensors
(accelerometer, compass,
gyroscope)

3,000

Table 1: Device drivers currently supported in Charm.

can simply be reused.
The last step is to configure the mobile system to han-

dle the remoted operations. This needs to be done in
two sub-steps. First, Charm’s stub needs to be ported
to the kernel of the mobile system. This step is trivial
and requires adding a kernel module and configuring the
USB interface to work with the module. Second, the de-
vice drivers that are ported to the virtual machine must
be disabled in the mobile system (since we cannot have
two device drivers managing the same I/O device). This
is easily done by disabling the device driver in the kernel
build process. Alternatively, one can remove the corre-
sponding device tree entries of the I/O device from the
mobile system’s device tree.

5 Implementation & Prototype

We have ported 4 device drivers to Charm: the camera
and audio device drivers of LG Nexus 5X, the GPU de-
vice driver of Huawei Nexus 6P, and the IMU sensor
driver of Samsung Galaxy S7. Table 1 provides more de-
tails about these drivers. It shows that these drivers, alto-
gether, constitute 129,000 LoC. We extract these drivers
from LineageOS sources for each of the phones. The
Linux kernel versions of the operating system for Nexus
5X, Nexus 6P, and Galaxy S7 are 3.10.73, 3.10.73, and
3.18.14. We port these drivers to a virtual machine run-
ning Android Goldfish operating system with Linux ker-
nel version 3.18.94.

As mentioned in §4.1, we do not currently support
DMA operations. DMA is often used for data movement
between CPU and I/O devices. Therefore, the lack of
DMA support does not mostly affect the behavior of the
driver; it only affect the data of I/O device (e.g., a cap-
tured camera frame). However, this is not always the
case, and DMA can be used for programming the I/O de-
vice as well. One device driver that does so is the GPU
driver. It uses DMA to program the GPU’s command
streamer with commands to execute. We cannot cur-
rently support this part of the GPU driver, and we hence
disable the programming of the command streamer in the
driver. Regardless, we show in §6.2 and §6.4 that we can
still effectively fuzz the device driver and even find bugs.

We use a workstation in our prototype consist-

298 27th USENIX Security Symposium USENIX Association

ing of two 18-core Xeon E5-2697 V4 processors (on
a dual-socket SeaMicro MBD-X10DRG-Q-B mother-
board) with 132 GB of memory and 4 TB of hard disk
space. We install and use Ubuntu 16.04.3 in the work-
station with Linux kernel version 4.10.0-28.32. To sup-
port the remoting of I/O operations, we have modified
the QEMU/KVM hypervisor (QEMU in Android emula-
tor 2.4, which we use in our prototype). Note that while
we use a Xeon-based machine in our prototype, we be-
lieve that a desktop/laptop-grade processor can be used
as well, although we have not yet tested such a setup.
This is because, as we will show in §6.2, the virtual ma-
chine does not need a lot of resources to achieve good
performance for the device driver. A virtual machine
with 6 cores and 2 GB of memory is adequate.

We write device driver templates for Syzkaller. A tem-
plate provides domain knowledge for the fuzzer about
the structure of the system calls supported by the driver.
Our experience with Syzkaller is that without the tem-
plates, the fuzzer is not able to reach deep code within
the driver. We use these templates for all our experi-
ments with Syzkaller in §6. Alternatively, one can use
an automated tool for template generation, such as DI-
FUZE [36].

We faced a challenge in supporting interrupts. That is,
the x86-based interrupt controllers supported in the vir-
tual machine only supports up to 24 interrupt line num-
bers. The ARM interrupt controller, on the other hand,
supports interrupt line numbers as large as 987. Hence,
we extended the number of supported interrupt line num-
bers in our virtual machine to 128 and implemented an
interrupt line number translation in the hypervisor.

6 Evaluation

We answer the following questions in this section: (i)
Is it feasible to support various device drivers of dif-
ferent mobile systems in Charm? (ii) Does remote de-
vice driver execution affect the performance of the de-
vice driver? (iii) Is Charm’s record-and-replay effective?
(iv) Can Charm be effectively used for finding bugs in
device drivers? Does using an x86 machine (vs. ARM)
result in false positives? and (v) Can manual debugging
of a device driver, enabled by Charm, enable the secu-
rity analyst to understand a vulnerability and/or build an
exploit?

6.1 Feasibility
It is important that Charm supports diverse device drivers
in different mobile systems. We evaluate how long it
takes one to port a new driver to Charm. To do this,
we report the time it took one of the authors to port the
GPU driver of Nexus 6P and the IMU sensor driver of

Samsung Galaxy S7. This author ported these drivers
to Charm after the implementation of Charm was almost
complete, hence he could mainly focus on the port itself.

The port of these two drivers was mainly performed
by a different author from the author who ported the first
two drivers (i.e., camera and audio drivers of Nexus 5X).
Therefore, this author had to learn about the port process
in addition to performing the port. These two new drivers
are each on a different smartphone compared to Nexus
5X used for camera and audio drivers. Therefore, the
port of these drivers required adding Charm’s component
to these smartphones’ kernels as well.

It took the author less than one week to port the GPU
driver and, after that, about 2 days to port the sensor
driver. This author is familiar with kernel programming
and device drivers. We believe that this is the profile of a
security analyst who works on device drivers.

6.2 Performance

Charm adds noticeable latency to every remoted opera-
tion (i.e., register accesses, interrupts, and interactions
with the resident modules as discussed in §4.4). There-
fore, one might wonder if Charm impacts the perfor-
mance of the device driver significantly.

To evaluate the performance of the device driver, we
perform two experiments. In the first experiment, we use
the Syzkaller fuzzing framework. That is, we configure
Syzkaller to fuzz the driver by issuing a large number of
syscalls to the camera driver of Nexus 5X both directly
in the mobile system and in Charm. Syzkaller operates
by creating “programs”, which are ensembles of a set
of syscalls for the driver, and then executing these pro-
grams. We run Syzkaller for one hour in each experiment
and measure the number of executed programs as well as
the code coverage.

Figure 3a shows the results for the number of executed
fuzzer programs per minute. We show the results for 4
setups: LVM, MVM, HVM, and Phone. The first three
setups (standing for Light-weight VM, Medium-weigh
VM, and Heavy-weight VM) represent fuzzing the de-
vice driver in Charm while the last one represents fuzzing
the device driver directly on the Nexus 5X smartphone.
LVM is a virtual machine with 1 core and 1 GB of mem-
ory. MVM is a virtual machine with 6 cores and about
2 GB of memory (similar to the specs of the Nexus 5X).
HVM is a virtual machine with 16 cores and 16 GB of
memory. Moreover, we configure Syzkaller to launch
as many fuzzer processes (one of the configuration op-
tions of the framework that controls the degree of con-
currency) as the number of cores. The results show that
MVM achieves the best performance amongst the virtual
machine setups. It outperforms the LVM due to avail-
ability of more resources needed for execution of fuzzing

USENIX Association 27th USENIX Security Symposium 299

 0

 200

 400

 600

 800

 1000

 1200

 1400

LVM MVM HVM Phone

#
 f

u
zz

er
 p

ro
g

ra
m

s
/

fu
zz

 t
im

e
(m

in
)

(a)

 0

 20

 40

 60

 80

 100

 120

 140

LVM MVM HVM Phone

C
o

v
er

ag
e

(#
 b

as
ic

 b
lo

ck
s)

 /
 f

u
zz

 t
im

e
(m

in
)

Camera driver

Rest of the kernel

(b)

Figure 3: (a) Execution speed of the fuzzer. (b) Coverage
of the fuzzer.

programs. It also slightly outperforms the HVM. We be-
lieve that this is due to the high level of concurrency in
the HVM experiment, which negatively impacts the per-
formance. Finally, the results also show that MVM and
HVM slightly outperform the phone’s performance. This
result is important: it shows that Charm’s remote device
driver execution does not negatively impact the perfor-
mance of the driver and hence the driver can be used for
various analysis purposes.

Figure 3b also shows the code coverage of the fuzzing
experiments. It shows the coverage for the camera de-
vice driver and the rest of the kernel. The results show
that Charm achieves similar code coverage in the driver
compared to fuzzing directly on the smartphone. Note
that the results show that the coverage in the rest of the
kernel is different in Charm and in the smartphone. This
is because the kernel in these two setups are different.
While they are close in version, one is for x86 and one is
for ARM and hence the coverage in the rest of the kernel
cannot be directly compared in these setups.

In the second experiment, we choose a benchmark
that significantly stresses Charm: the initialization of
the camera driver in Nexus 5X. This initialization phase,
among others, reads a large amount of data from an
EEPROM chip used to store camera filters and causes
many remote I/O operations (about 8800). We measure
the driver’s initialization time on the smartphone and in
MVM to be 555 ms and 1760 ms, respectively. This
shows that I/O-heavy benchmarks can slow down the
performance of the driver in Charm. Yet, we do not antic-
ipate this to be the case for many dynamic analysis tools
that we target for Charm, including fuzzing (as seen pre-
viously).

6.3 Record-and-Replay

We demonstrate the feasibility of record-and-replay in
Charm. As mentioned in §2.2, we implement a simple
record-and-replay solution for Charm. It only records
and replays the interactions of the device drivers and the
I/O device (including register accesses and interrupts).
Replaying register accesses is simple: a write access is
simply ignored while a read access receives a value from
the recorded log. Replaying interrupts is done by inject-
ing the interrupt after observing all the preceding register
accesses. Our simple record-and-replay implementation
does not support concurrent execution of threads within
the driver.

To demonstrate the effectiveness of Charm’s record-
and-replay, we record the execution of a PoC (related to
bug #2 discussed in §6.4). We are then able to success-
fully replay the execution of the PoC and its interactions
with the device driver without requiring a mobile system.
Such a replay capability is significant help to understand-
ing this bug.

We also evaluate the overhead of recording and the ex-
ecution speed of the replay. For this purpose, we record
the initialization phase of the camera device driver in
Nexus 5X and successfully replay it without needing a
Nexus 5X smartphone. We measure the recorded initial-
ization and the replayed initialization to take 1843 ms
and 344 ms, respectively. As mentioned in the previous
section, the normal initialization of this driver in Charm
takes 1760 ms. The results show that (i) recording does
not add significant overhead to Charm’s execution and
(ii) the replay is much faster than the normal execution
(indeed, the replay is even faster than the initialization
time on the smartphone itself, which is 555 ms). The lat-
ter finding is important: replay accelerates the analysis,
e.g., for that of a PoC.

6.4 Bug Finding

We investigate whether Charm can be used to effectively
find bugs in device drivers. We use Syzkaller for this
purpose and fuzz the drivers supported in Charm. One
key question that we would like to answer is whether us-
ing an x86 virtual machine for a mobile I/O device driver
would result in a large number of false positives, which
can make the fuzzing more difficult for the analyst as s/he
will have to filter out these false positives manually.

Table 2 shows the list of 25 bugs that we have found
in the camera and GPU drivers (we did not find any
bugs in the other drivers). The table also shows that we
confirmed the correctness of these bugs through various
methods (i.e., developing a PoC, checking against the lat-
est driver commits, and manual inspection). We use PoC
development and manual inspection to confirm the bugs

300 27th USENIX Security Symposium USENIX Association

that we detect in the latest version of the drivers (many
of which we have reported). However, in addition to the
latest version of the drivers, we also fuzz slightly older
versions of them (i.e., not the latest publicly available
commit of the driver). This allows us to check the bugs
detected by Syzkaller against the latest patches and con-
firm their validity. We label the bugs confirmed using this
method as LC in Table 2. More specifically, by looking
at the latest version of the driver, we can find a patch for
the bug, which confirms its validity. We find the correct
patch using its commit message as well as the location in
the code to which the patch is applied to.

We also port the camera driver to a KASAN-enabled
virtual machine for fuzzing with this sanitizer. KASAN
detected one out-of-bounds bug and one use-after-free
bug in the camera driver (bug #1 and bug #13 in Table 2).
This shows an advantage of Charm. Not only it facilitates
fuzzing, it enables newer features of the fuzzer that is not
currently supported in the kernel of the mobile system.

Our analysis showed that these bugs belong to 7 cate-
gories: one unaligned access to I/O device registers, 19
NULL pointer dereferences, one invalid pointer derefer-
ence, one use-after-free, one out-of-bounds access, one
divide-by-zero, and one explicit BUG() statement in the
driver.

Fuzzing with Charm uncovered 14 previously un-
known bugs. We have managed to develop PoCs for
many of these bugs and reported nine of them to kernel
developers already. The developers have acknowledged
our reports, assigned a P2-level severity [6] to them, and
are analyzing several of them at the time of this writing.
They have already closed our reports for two of the bugs
for which we did not have a PoC (bugs #13 and #22) and
for one that they believe is not a security bug (bug #2).

Note that 3 of our PoCs do not trigger the same bug
in the mobile system itself. We investigated the reasons
behind this. For bug #14, the PoC rely on some prior
device driver’s system calls not being issued. On the mo-
bile system, the user space camera service issues these
system calls at boot time hence preventing the bug to be
triggered afterwards. In Charm, however, we do not ex-
ecute the user space camera service, allowing us to find
the bug. We leave this to the user of the system to decide
whether s/he wants to initialize the user space camera
service in Charm, in which case such bugs would not be
triggered by the fuzzer. We also studied a similar issue
for bugs #23 and #24, which are also triggered in Charm
(but not in the mobile system) for a similar reason.

We believe that these results demonstrate that Charm
can be used to effectively find correct bugs in device
drivers through fuzzing. However, note that false posi-
tives are possible either as a result of x86 compiler bugs
or an incomplete driver port. For example, as mentioned
in §5, we have not supported the DMA functionalities of

Device
driver

Bug type Confirmed?
(How?)

1 Camera
Out-of-bounds memory access in
msm actuator parse i2c params
(Detected by KASAN)

Yes (LC)

2 Camera
Unaligned reg access in
msm isp send hw cmd() (Reported
to kernel developers)

Yes (PoC)

3 Camera
NULL ptr deref. in
msm actuator subdev ioctl()

Yes (PoC,
LC)

4 Camera NULL ptr deref. in msm flash init()
Yes (PoC,
LC)

5 Camera
NULL ptr deref. in
msm actuator parse i2c param()

Yes (LC)

6 Camera
NULL ptr deref. in
msm vfe44 get irq mask()

Yes (LC)

7 Camera NULL ptr deref. in msm csid irq() Yes (LC)
8 Camera Invalid ptr deref. in cpp close node() Yes (LC)

9 Camera
NULL ptr deref. in
msm ispif io dump reg()

Yes (LC)

10 Camera
NULL ptr deref. in
msm vfe44 process halt irq()

Yes (LC)

11 Camera NULL ptr deref. in msm csiphy irq() Yes (LC)
12 Camera NULL ptr deref. in msm csid probe() Yes (LC)

13 Camera

Use-after-free in
msm isp cfg axi stream (Detected by
KASAN) (Reported to kernel
developers)

Yes (MI)

14 Camera
NULL ptr deref. in
msm private ioctl() (Reported to
kernel developers)

Yes (PoC)

15 Camera
NULL ptr deref. in
msm ispif io dump reg() (Reported
to kernel developers)

Yes (PoC)

16 Camera
NULL ptr deref. in
msm vfe44 axi reload wm()
(Reported to kernel developers)

Yes (PoC)

17 Camera
NULL ptr deref. in
msm vfe44 axi ub() (Reported to
kernel developers)

Yes (PoC)

18 Camera
NULL ptr deref. in
msm vfe44 stats cfg ub() (Reported
to kernel developers)

Yes (PoC)

19 Camera
NULL ptr deref. in
msm vfe44 reset hardware()
(Reported to kernel developers)

Yes (PoC)

20 Camera
NULL ptr deref. in
msm vfe44 stats clear wm irq mask()
(Reported to kernel developers)

Yes (PoC)

21 Camera
NULL ptr deref. in
msm vfe44 reg update() (Reported
to kernel developers)

Yes (PoC)

22 Camera
Divide-by-zero in
msm isp calculate bandwidth()
(Reported to kernel developers)

Yes (MI)

23 GPU
NULL ptr deref. in
kgsl cmdbatch create()

Yes (PoC)

24 GPU
NULL ptr deref. in
kgsl cmdbatch destroy()

Yes (PoC)

25 GPU
kernel BUG() triggered in
adreno drawctxt detach()

Yes(MI)

Table 2: Bugs we found in device drivers through fuzzing
with Charm. MI and LC refer to confirming the bug by
Manual Inspection and by checking the driver’s Latest
Commits, respectively.

USENIX Association 27th USENIX Security Symposium 301

/* in msm_csid_cmd(): */
1 for (i = 0; i < csid_params.lut_params.num_cid; i++) {

...
2 if (copy_from_user(vc_cfg, (void *)

csid_params.lut_params.vc_cfg[i], sizeof(struct
msm_camera_csid_vc_cfg))) {
...

3 for (i--; i >= 0; i--)
4 kfree(csid_params.lut_params.vc_cfg[i]);
5 rc = -EFAULT;
6 break;
7 }
8 csid_params.lut_params.vc_cfg[i] = vc_cfg;
9 }

...
10 rc = msm_csid_config(csid_dev, &csid_params);

/* in msm_csid_cid_lut(): */
...

11 if (csid_lut_params->vc_cfg[i]->cid >=
csid_lut_params->num_cid ||
csid_lut_params->vc_cfg[i]->cid < 0) {
...

12 }

1 int16_t step_index = 0;
2 uint16_t step_boundary = 0;

...
3 for (; step_index <= step_boundary; step_index++) {

...
4 if (cur_code < max_code_size)
5 a_ctrl->step_position_table[step_index] = cur_code;

...
6 }

(b) Vulnerable code snippet of CVE-2016-2501

1 int i = stream_cfg_cmd->stream_src;
2 if (i >= VFE_AXI_SRC_MAX) {

...
3 return -EINVAL;
4 }

...
5 memset(&axi_data->stream_info[i], 0, sizeof(struct

msm_vfe_axi_stream));
...

6 axi_data->stream_info[i].session_id =
stream_cfg_cmd->session_id;

7 axi_data->stream_info[i].stream_id =
stream_cfg_cmd->stream_id;

(a) Vulnerable code snippet of CVE-2016-3903 (c) Vulnerable code snippet of CVE-2016-2061

Figure 4: Vulnerable code snippets.

the GPU driver. This can result in false positives. In ad-
dition, false negative bugs are possible either for ARM
compiler bugs or due to execution in a virtual machine,
which might affect some characteristics of driver execu-
tion, such as timing. As a result, there might be real bugs
(e.g., timing sensitive bugs), which we did not find using
Charm.

6.5 Analyzing Vulnerabilities with GDB
Charm enables us to use GDB to analyze vulnerabilities
in device drivers. To demonstrate this, we have analyzed
three publicly reported vulnerabilities in the Nexus 5X
camera driver: CVE-2016-2501, CVE-2016-3903, and
CVE-2016-2061. We leverage the available PoCs in our
analysis. The PoCs crash the kernel using the reported
vulnerability. We use the kernel crash dump to iden-
tify the crash site. We then insert a breakpoint before
the crash site in a GDB session to investigate the root
cause of the crash. Since we compile the driver and ker-
nel with debugging information, GDB can also display
source lines, making the debugging much easier.

CVE-2016-3903. The vulnerable code is shown
in Figure 4a. The crash site is at line 11 (in function
msm csid cid lut()). At a first glance, this appears
to be an out-of-bounds access bug, but our investiga-
tion (described next) showed that this is a use-after-free
bug. We performed our investigation as follows. By us-
ing a watchpoint, we find that the index variable i at the
crash site is always within a normal range (and not neg-
ative). We then try to inspect other pointer values at the

crash site with GDB and finally identify that vc cfg[i]

holds an invalid address. To trace the origin of the array
vc cfg, we utilize watchpoints to trace its parent struc-
ture csid lut params and finally locate another func-
tion, msm csid cmd, which is responsible for initializ-
ing the structure. By single-stepping through the initial-
ization code, we find that if an error occurs during the
vc cfg initialization at line 2, it will be freed at line 4
and then the initialization loop will terminate at line 6.
However, the function call at line 10 will continue to use
the csid params structure regardless of its vc cfg sub-
field having been freed, thus causing a use-after-free vul-
nerability.

CVE-2016-2501. The vulnerable code is shown in
Figure 4b. The crash site is at line 5. When the break-
point at the crash site is triggered, we can infer that it
is likely an out-of-bounds array access. Next, we set
a watchpoint for the index variable step index, trac-
ing its value change. Indeed, its value is negative when
the crash occurs. Upon a closer look, as a loop index,
it is compared against step boundary at line 3, which
is a 16-bit register holding the value of 0xffff. How-
ever, step index is a signed integer and can take neg-
ative values before it reaches 0xffff to terminate the
loop (note that the comparison is unsigned). Therefore,
when it is used as array index at line 5, out-of-bounds
access occurs. In the end, we also set a watchpoint for
step boundary and find that its value comes from a
function argument passed from user space, which is un-
trusted.

CVE-2016-2061. The vulnerable code is shown in

302 27th USENIX Security Symposium USENIX Association

Figure 4c. A first glance at the crash site suggests a pos-
sibility that memset() at line 5 zeroes an invalid mem-
ory region, which causes the kernel crash. Indeed, by in-
specting the various variable values involved in the crash
at the crash site, we find that i takes a negative value as
an array index, leading to an out-of-bounds access. To
fully understand why i can be negative, we trace it back
with the help of watchpoints and find that the value of i
comes from a user controlled parameter (line 1). Besides,
the sanity check at line 2 cannot filter the negative i, un-
fortunately. We then find out that this is a critical vul-
nerability. This is because starting from line 6, the right
side of the assignment statements is also controlled by
a parameter stream cfg cmd originated in user space.
Together with the user controlled index variable i, this
vulnerability becomes an ideal target for privilege esca-
lation, which we show we can achieve next.

6.6 Building a Driver Exploit using GDB

Our analysis in the previous subsection show that CVE-
2016-2061 can be potentially used for a full compromise
of the kernel given that it can perform write operations
at unintended locations. To further demonstrate the ca-
pabilities of Charm, we use GDB on the driver code and
attempt to develop an exploit against it.

The first step is to check if the “vulnerable object”
(struct vfe device, where the out-of-bounds write
occurs) is a kernel heap or stack object. With GDB, we
are able to confirm that it is allocated using kzalloc(),
indicating that it is a heap object. To gain the ability
of arbitrary code execution from heap-related vulnera-
bilities, we attempt heap feng shui [40, 55], which is a
technique to arrange the heap layout in a deterministic
fashion to facilitate the write operation. However, this
vulnerability only allows a very limited form of write.
First of all, it cannot write to absolute addresses (only
relative addresses to the base of an object). Secondly,
when it writes, 480 bytes are written continuously (most
are 0s due to the memset() at line 5), with only a few
fields controlled by the attacker. Such a large memory
footprint can destroy the integrity of data stored nearby
and cause a kernel crash.

To address the first problem, we borrow the heap feng
shui idea from the exploit of CVE-2017-7308 [5] to pre-
cisely co-locate the “vulnerable object” with one or more
“target objects” (where one of their function pointer
fields is the target for overwriting). To verify the feasi-
bility of this approach, we use GDB to track the location
of the vulnerable object. It turns out that the object is
allocated in the beginning when the kernel boots, as part
of the driver initialization procedure. In addition, its ad-
dress changes from boot to boot, making it difficult to
predict. When we attempt to allocate target objects (e.g.,

struct sock), their addresses shown by GDB are never
close to the vulnerable object, due to the fact that they are
allocated much later after the kernel boots completely.
This means that the strategy of precisely co-locating the
objects is not feasible. However, from GDB, we do no-
tice that the address ranges of the vulnerable object and
target objects more or less stay the same. This means that
we can potentially spray a large number of target objects
and try to arrange the target objects to be at a desired
offset from the vulnerable object.

To address the second problem, where a 480-byte
overwrite may crash the kernel unintentionally, it is nec-
essary to know the size of the target object and how likely
they will align with the vulnerable object. As it turns
out, the vulnerable object is always at the start of a page.
After exhausting the slab caches, we know that target
objects (we use struct inet sock which has a size
of 896 bytes) are allocated in blocks whose addresses
are aligned to be multiples of 4 pages. This allows us
to calculate the desired offset at which the write should
occur, where the sk destruct function pointer can be
overwritten. As a proof-of-concept, we use GDB to en-
sure that the target objects can indeed fall in the desired
address range. By calling close() on the socket from
user space, we can indeed cause the kernel to jump to
any arbitrary location to execute code. Otherwise, we
can simply spray enough objects and hope that the write
will probabilistically succeed. Alternatively, we need a
kernel arbitrary read vulnerability (similar to what Melt-
down [52] provides) so that the attack can be determinis-
tic.

Still, we need to make sure that the 480-byte over-
write does not crash the kernel. After all, the function
pointer is towards the end of the struct inet sock ob-
ject, and the 480-byte overwrite will corrupt the next ob-
ject adjacent to it. Fortunately, since we know struct

inet sock objects are allocated sequentially from low
addresses to high addresses in a block, we can simply it-
erate the close() on each and every socket from user
space and stop as soon as we notice a redirection of the
control flow, ensuring that no one will touch the cor-
rupted object.

7 Related Work

7.1 Remote I/O Access
The closest to our work are Avatar [77] and SURRO-
GATES [50], solutions for dynamic analysis of binary
firmware in embedded devices, such as a hard disk boot-
loader, a wireless sensor node, and a mobile phone base-
band chip. Since performing analysis in embedded de-
vices is difficult, they execute the firmware in an emula-
tor and forward the low-level memory accesses (includ-

USENIX Association 27th USENIX Security Symposium 303

ing I/O operation) to the embedded device. The remoting
boundary in these solutions is similar to the boundary
used in Charm. However, they focus on very different
software and hardware. More specifically, they focus on
binary firmware of embedded devices whereas Charm fo-
cuses on open source device drivers of mobile systems.
Moreover, the connections to the embedded devices are
low-bandwidth UART or JTAG interfaces in Avatar and
a custom FPGA bridge in SURROGATES. In contrast,
Charm uses a USB interface. This, in turn, results in dif-
ferent underlying techniques used in these systems. First,
in its full separation mode, Avatar forwards all memory
accesses to the embedded device, unlike Charm that ports
the device driver fully to the virtual machine and only
forwards I/O accesses. This results in poor performance
in Avatar unlike Charm, which achieves performance on
par with that of native mobile execution. To optimize,
Avatar uses heuristics to perform some memory access
locally. It also executes some or all of the firmware code
directly on the embedded device. In contrast, Charm runs
all the device driver code in the virtual machine. And
for performance optimizations, it devises a custom low-
latency USB channel and leverages the native execution
speed of x86 processors. SURROGATES, on the other
hand, tries to overcome the performance bottleneck in
Avatar using a custom FPGA bridge that connects the
host machine’s PCI Express interface to the embedded
device under test. In contrast, Charm does not require
custom hardware. These technical differences also make
these solutions useful for different analysis techniques.
For example, Charm can fuzz the device driver fully in a
virtual machine.

Other forms of remote I/O exists for mobile sys-
tems as well, such as Rio [22] and M+ [60]. The
main difference between Charm and these systems is
the boundary at which I/O operations are remoted. Rio
uses the device file boundary and M+ uses the Android
binder IPC boundary. In contrast, Charm uses the low-
level software-hardware boundary. Therefore, Charm
uniquely enables the remote execution of the device
driver. In both Rio and M+, the device driver remains
in the machine containing the I/O device.

Code offload has been an important topic in mobile
computing research [35,38,44,45] in an effort to improve
performance and reduce energy consumption. The idea
is to offload heavy computation to a server to reduce the
load on the mobile system itself. In Charm, in contrast,
we “offload” the I/O operations from the workstation to
real mobile systems.

7.2 Analysis of System Software

Over the years, many static and dynamic analysis so-
lutions have been invented for a wide range of appli-

cations such as safety, reliability, and security. In re-
cent years, popular analysis techniques include taint
tracking [34, 41, 59, 76], symbolic and concolic execu-
tion [27, 28, 30, 31, 39, 73], unpacking and reverse engi-
neering [47, 49, 74, 79], malware sandboxing [3, 25, 71],
and fuzzing [29, 42, 69, 72].

Many of these analysis frameworks are built on top
of the virtualization technology and can support full-
system analysis, including the low-level code such as
kernel and device drivers [33, 34, 59, 75, 76]. For in-
stance, Panorama [76] and DroidScope [75] can analyze
the entire Windows and Android operating systems, re-
spectively. Aftersight [33] uses virtual machine replay
to feed recorded logs from a production system to a test-
ing system in real time where more expensive analysis
is run. kAFL is a hardware-based feedback-driven ker-
nel fuzzer [65]. It uses the Intel Processor Tracer (PT) to
collect execution traces in the hypervisor and use that to
guide the fuzzer. Digtool is a kernel vulnerability detec-
tion solution based on a customized hypervisor, which
can monitor various events in the kernel such as memory
allocation and thread scheduling. Keil et al. fuzz wire-
less device drivers in a QEMU virtual machine [48]. To
enable the driver to run in a virtual machine, they emu-
late the wireless interface hardware in software. Dovga-
lyuk et al. perform reverse debugging of device drivers
in a QEMU virtual machine. They use GDB as well
as record-and-replay in their debugging. Unfortunately,
none of these solutions can be applied to device drivers of
mobile systems. They can only support system software
running within a virtual machine, e.g., device drivers for
emulated and virtualized I/O devices (including direct
device assignment for PCI-based I/O devices). Charm
addresses this problem and is complementary to all of
these solutions. In other words, Charm enables all of
these dynamic analysis solutions to be applied to device
drivers of mobile systems as well.

Fuzzing is an effective dynamic analysis technique,
which can be applied to the operating system kernel and
device drivers as well. Peach Fuzzer fuzzes the device
drivers by running a fuzzer in a separate physical ma-
chine than the one with the I/O device [17]. While su-
perior to running the fuzzer and driver in the same ma-
chine, their approach suffers from similar challenges that
Syzkaller suffers from when fuzzing a mobile system di-
rectly (§2.3). Charm solves these problems by making it
possible to run the device driver in a virtual machine.

In [57], Mendonça et al. fuzz the Wi-Fi interface card
driver. They perform the fuzzing directly on a Windows
Mobile Phone. In contrast, Charm enables the fuzzing
to be performed in a virtual machine in a workstation,
providing significant usability benefits.

DIFUZE automatically generates templates for
fuzzing the kernel device drivers directly on mobile sys-

304 27th USENIX Security Symposium USENIX Association

tems [36]. IMF improves input generation by inferring
a model for the system under test [46]. It learns the
model by inspecting how application use the APIs of
this system. Skyfire deploys data driven seed generation
to enable fuzzing deep parts of the code [67]. Charm
approach is orthogonal and it can benefit from DIFUZE,
IMF and Skyfire for template generation.

VUzzer boosts the fuzzing effectiveness using static
analysis [63]. It helps the fuzzer to spend most of its
time reaching deeper parts of the code. Bohme et al.
introduced a directed greybox fuzzing technique, which
encourages the fuzzer to trigger specified part of the
code [26]. VUzzer and directed greybox fuzzing can be
used alongside Charm to improve the code coverage.

Slowfuzz enables finding non-crash bugs [62]. Charm
can benefit from Slowfuzz since it generally broadens the
scope of the fuzzers’ use cases.

The diversity of device drivers and their direct inter-
actions with physical I/O devices create challenges for
dynamic analysis. Static analysis, therefore, has been
extensively used on device drivers [23, 32, 61]. Exam-
ples are symbolic execution solutions such as in Sym-
Drive [64], S2E [30, 31], and DDT [51] and taint and
pointer analyses such as in DR. CHECKER [56]. Static
analysis has the benefit of eliminating the need for the
presence of actual devices. However, static analysis tools
cannot uncover all the bugs and vulnerabilities in the
drivers. They can only detect those which the analyzer
explicitly checks for. Moreover, static analysis solutions
often suffer from large false positive rates due to impre-
cision.

Analysis of firmware running inside embedded de-
vices faces similar challenges stemming from diversity
as analysis of device drivers. Both static analysis [37]
and dynamic analysis [66, 77] solutions have been used
for firmware analysis as well. In contrast to this line of
work, Charm focuses on modern mobile systems.

7.3 Mobile Testing

Several mobile testing frameworks have recently
emerged. BareDroid analyzes Android apps directly on
mobile systems [58]. SPOKE analyzes the access con-
trol policies of Android by running test cases directly
on mobile systems [68]. The main motivation behind
this line of work is that the system software of mobile
systems are unique and device-specific and hence these
tests cannot be simply performed on virtual machines.
Our motivation is in line with these systems. However,
directly analyzing the device drivers in mobile systems
is challenging, as we extensively discussed in the paper.
Therefore, we enable these device driver to execute in a
virtual machine for enhanced analysis.

8 Limitations and Future Work

DMA. As mentioned in §4.1, Charm does not cur-
rently support DMA. We plan to support DMA by inte-
grating a Distributed Shared Memory (DSM) implemen-
tation into our prototype. The memory pages accessed
through DMA will be kept coherent by the DSM system.
However, we might need to insert explicit update oper-
ations in the driver for performance optimization and in
the mobile system’s kernel stub to notify the DSM sys-
tem of the completion of DMA.

Closed source (binary) drivers. Charm does not
currently support closed source (binary) device drivers.
We plan to support these device drivers in the future. To
do this, we plan to use ARM virtual machines (instead of
x86 virtual machines used in this paper). We will either
run this virtual machine in an ARM workstation or in an
x86 server with a ARM-to-x86 interpreter (note that we
will need to improve the performance of this interpreter
to overcome the limitations mentioned in §3.2).

Automatic device driver porting. As we showed
in our evaluations in §6.1, it takes time and engineering
effort to port a new driver to Charm. We plan to build
a framework for automatic porting of device drivers to
Charm. In this framework, the security analyst will only
need to provide the driver’s source code and the list of
resident modules. The framework will implement all re-
quired RPCs and port the driver to Charm automatically.

9 Conclusions

We presented Charm, a system solution for running de-
vice drivers of mobile systems in a virtual machine run-
ning in a workstation. Charm enables application of var-
ious existing dynamic analysis solutions, e.g., interactive
debugging, record-and-replay, and enhanced fuzzing to
these device drivers. Our extensive evaluation showed
that Charm can support various device drivers and mo-
bile systems (e.g., 4 drivers of 3 different smartphones in
our prototype), achieves decent performance, and is ef-
fective in enabling a security analyst to find, study, and
analyze driver vulnerabilities and even build exploits.

Acknowledgments

The work was supported by NSF Awards #1617481 and
#1617573. We thank the paper shepherd, Adwait Nad-
karni, and the reviewers for their insightful comments.

References
[1] ANDROID FRAGMENTATION VISUALIZED (AUGUST

2015). https://opensignal.com/legacy-assets/pdf/

reports/2015_08_fragmentation_report.pdf.

USENIX Association 27th USENIX Security Symposium 305

[2] Android Security Bulletins. https://source.android.com/

security/bulletin/.

[3] Anubis: Analyzing Unknown Binaries. http://anubis.

iseclab.org/.

[4] Code coverage tool for compiled programs (KCOV). https:

//github.com/SimonKagstrom/kcov.

[5] Exploiting the Linux kernel via packet sockets. https:

//googleprojectzero.blogspot.com/2017/05/

exploiting-linux-kernel-via-packet.html.

[6] Google Issue Tracker: Issues. https://developers.google.
com/issue-tracker/concepts/issues.

[7] Google Syzkaller: an unsupervised, coverage-guided Linux
system call fuzzer. https://opensource.google.com/

projects/syzkaller.

[8] Instruction for using the Syzkaller to fuzz an Android de-
vice. https://github.com/google/syzkaller/blob/

master/docs/linux/setup_linux-host_android-

device_arm64-kernel.md.

[9] The Kernel Address Sanitizer (KASAN). https://github.

com/google/kasan/wiki.

[10] The Kernel Memory Sanitizer (KMSAN). https://github.

com/google/kmsan/blob/master/README.md.

[11] The Kernel Thread Sanitizer (KTSAN). https://github.

com/google/ktsan/wiki.

[12] The Kernel Undefined Behavior Sanitizer (KUBSAN).
https://www.kernel.org/doc/html/v4.11/dev-

tools/ubsan.html.

[13] USB Gadget API for Linux. https://www.kernel.org/doc/
html/v4.13/driver-api/usb/gadget.html, 2004.

[14] Access UART ports of Xperia devices. https://developer.

sony.com/develop/open-devices/guides/access-

uart-ports, 2013.

[15] Building a Nexus 4 UART Debug Cable. https://www.optiv.
com/blog/building-a-nexus-4-uart-debug-cable,
2013.

[16] Building a Pixel kernel with KASAN+KCOV. https://

source.android.com/devices/tech/debug/kasan-kcov,
2017.

[17] Peach Fuzzer for Driver Fuzzing Whitepaper. https://

www.peach.tech/datasheets/driver-fuzzing/peach-

fuzzer-driver-fuzzing-whitepaper/, 2017.

[18] Devices supported by LineageOS. https://wiki.lineageos.
org/devices/, 2018.

[19] Samsung publishes kernel source code for Galaxy S9/S9+ Snap-
dragon and Exynos models. https://www.androidpolice.

com/2018/03/14/samsung-publishes-kernel-source-

code-galaxy-s9-s9-snapdragon-exynos-models/, 2018.

[20] Serial debugging. https://wiki.postmarketos.org/wiki/
Serial_debugging, 2018.

[21] ABRAMSON, D., JACKSON, J., MUTHRASANALLUR, S.,
NEIGER, G., REGNIER, G., SANKARAN, R., SCHOINAS, I.,
UHLIG, R., VEMBU, B., AND WIEGERT, J. Intel Virtualization
Technology for Directed I/O. Intel Technology Journal (2006).

[22] AMIRI SANI, A., BOOS, K., YUN, M., AND ZHONG, L. Rio:
A System Solution for Sharing I/O between Mobile Systems. In
Proc. ACM MobiSys (2014).

[23] BALL, T., BOUNIMOVA, E., COOK, B., LEVIN, V., LICHTEN-
BERG, J., MCGARVEY, C., ONDRUSEK, B., RAJAMANI, S. K.,
AND USTUNER, A. Thorough Static Analysis of Device Drivers.
In Proc. ACM EuroSys (2006).

[24] BEN-YEHUDA, M., DAY, M. D., DUBITZKY, Z., FACTOR, M.,
HAR’EL, N., GORDON, A., LIGUORI, A., WASSERMAN, O.,
AND YASSOUR, B. A. The Turtles Project: Design and Im-
plementation of Nested Virtualization. In Proc. USENIX OSDI
(2010).

[25] BLASING, T., BATYUK, L., SCHMIDT, A.-D., CAMTEPE, S.,
AND ALBAYRAK, S. An Android Application Sandbox Sys-
tem for Suspicious Software Detection. In Proc. IEEE Interna-
tional Conference on Malicious and Unwanted Software (Mal-
ware) (2010).

[26] BÖHME, M., PHAM, V.-T., NGUYEN, M.-D., AND ROY-
CHOUDHURY, A. Directed Greybox Fuzzing. In Proc. ACM CCS
(2017).

[27] CADAR, C., DUNBAR, D., AND ENGLER, D. KLEE: Unassisted
and Automatic Generation of High-coverage Tests for Complex
Systems Programs. In Proc. USENIX OSDI (2008).

[28] CHA, S. K., AVGERINOS, T., REBERT, A., AND BRUMLEY, D.
Unleashing Mayhem on Binary Code. In Proc. IEEE Symposium
on Security and Privacy (S&P) (2012).

[29] CHA, S. K., WOO, M., AND BRUMLEY, D. Program-Adaptive
Mutational Fuzzing. In Proc. IEEE Symposium on Security and
Privacy (S&P) (2015).

[30] CHIPOUNOV, V., KUZNETSOV, V., AND CANDEA, G. S2E: a
Platform for In-Vivo Multi-Path Analysis of Software Systems.
In Proc. ACM ASPLOS (2011).

[31] CHIPOUNOV, V., KUZNETSOV, V., AND CANDEA, G. The
S2E Platform: Design, Implementation, and Applications. ACM
Transactions on Computer Systems (TOCS) (2012).

[32] CHOU, A., YANG, J., CHELF, B., HALLEM, S., AND ENGLER,
D. An Empirical Study of Operating Systems Errors. In Proc.
ACM SOSP (2001).

[33] CHOW, J., GARFINKEL, T., AND CHEN, P. M. Decoupling
Dynamic Program Analysis from Execution in Virtual Environ-
ments. In USENIX Annual Technical Conference (2008).

[34] CHOW, J., PFAFF, B., GARFINKEL, T., CHRISTOPHER, K.,
AND ROSENBLUM, M. Understanding Data Lifetime via Whole
System Simulation. In USENIX Security (2004).

[35] CHUN, B.-G., IHM, S., MANIATIS, P., NAIK, M., AND PATTI,
A. CloneCloud: Elastic Execution Between Mobile Device and
Cloud. In Proc. ACM EuroSys (2011).

[36] CORINA, J., MACHIRY, A., SALLS, C., SHOSHITAISHVILI, Y.,
HAO, S., KRUEGEL, C., AND VIGNA, G. DIFUZE: Interface
Aware Fuzzing for Kernel Drivers. In Proc. ACM CCS (2017).

[37] COSTIN, A., ZADDACH, J., FRANCILLON, A., BALZAROTTI,
D., AND ANTIPOLIS, S. A Large-Scale Analysis of the Security
of Embedded Firmwares. In Proc. USENIX Security Symposium
(2014).

[38] CUERVO, E., BALASUBRAMANIAN, A., CHO, D.-K., WOL-
MAN, A., SAROIU, S., CHANDRA, R., AND BAHL, P. MAUI:
Making Smartphones Last Longer with Code Offload. In Proc.
ACM MobiSys (2010).

[39] DAVIDSON, D., MOENCH, B., JHA, S., AND RISTENPART, T.
FIE on Firmware: Finding Vulnerabilities in Embedded Systems
Using Symbolic Execution. In Proc. USENIX Security (2013).

[40] DRAKE, J. J. Stagefright: An android exploitation case study.
In Proc. USENIX Workshop on Offensive Technologies (WOOT)
(2016).

[41] ENCK, W., GILBERT, P., CHUN, B.-G., COX, L. P., JUNG,
J., MCDANIEL, P., AND SHETH, A. N. TaintDroid: An
Information-flow Tracking System for Realtime Privacy Moni-
toring on Smartphones. In Proc. USENIX OSDI (2010).

306 27th USENIX Security Symposium USENIX Association

[42] GODEFROID, P., LEVIN, M. Y., AND MOLNAR, D. Automated
Whitebox Fuzz Testing. In Proc. Internet Society NDSS (2008).

[43] GORDON, A., AMIT, N., HAR’EL, N., BEN-YEHUDA, M.,
LANDAU, A., TSAFRIR, D., AND SCHUSTER, A. ELI: Bare-
Metal Performance for I/O Virtualization. In Proc. ACM ASPLOS
(2012).

[44] GORDON, M. S., HONG, D. K., CHEN, P. M., FLINN, J.,
MAHLKE, S., AND MAO, Z. M. Accelerating Mobile Appli-
cations Through Flip-Flop Replication. In Proc. ACM MobiSys
(2015).

[45] GORDON, M. S., JAMSHIDI, D. A., MAHLKE, S., MAO, Z. M.,
AND CHEN, X. COMET: Code Offload by Migrating Execution
Transparently. In Proc. USENIX OSDI (2012).

[46] HAN, H., AND CHA, S. K. IMF: Inferred Model-based Fuzzer.
In Proc. ACM CCS (2017).

[47] KANG, M. G., POOSANKAM, P., AND YIN, H. Renovo: A
Hidden Code Extractor for Packed Executables. In Proc. ACM
Workshop on Recurring Malcode (WORM) (2007).

[48] KEIL, S., AND KOLBITSCH, C. Stateful Fuzzing of Wireless
Device Drivers in an Emulated Environment. Black Hat Japan
(2007).

[49] KIRAT, D., AND VIGNA, G. MalGene: Automatic Extraction of
Malware Analysis Evasion Signature. In Proc. ACM CCS (2015).

[50] KOSCHER, K., KOHNO, T., AND MOLNAR, D. SURROGATES:
Enabling Near-Real-Time Dynamic Analyses of Embedded Sys-
tems. In Proc. USENIX Workshop on Offensive Technologies
(WOOT) (2015).

[51] KUZNETSOV, V., CHIPOUNOV, V., AND CANDEA, G. Test-
ing Closed-Source Binary Device Drivers with DDT. In Proc.
USENIX ATC (2010).

[52] LIPP, M., SCHWARZ, M., GRUSS, D., PRESCHER, T., HAAS,
W., MANGARD, S., KOCHER, P., GENKIN, D., YAROM, Y.,
AND HAMBURG, M. Meltdown. ArXiv e-prints (Jan. 2018).

[53] LIU, J., HUANG, W., ABALI, B., AND PANDA, D. K. High
Performance VMM-Bypass I/O in Virtual Machines. In Proc.
USENIX ATC (2006).

[54] LIU, M., LI, T., JIA, N., CURRID, A., AND TROY, V. Un-
derstanding the Virtualization “Tax” of Scale-out Pass-Through
GPUs in GaaS Clouds: An Empirical Study. In Proc. IEEE High
Performance Computer Architecture (HPCA) (2015).

[55] LIU, Z. E. Advanced Heap Manipulation in Windows 8. In Black
Hat Europe (2013).

[56] MACHIRY, A., SPENSKY, C., CORINA, J., STEPHENS, N.,
KRUEGEL, C., AND VIGNA, G. DR. CHECKER: A Soundy
Analysis for Linux Kernel Drivers. In Proc. USENIX Security
Symposium (2017).

[57] MENDONÇA, M., AND NEVES, N. Fuzzing Wi-Fi Drivers to
Locate Security Vulnerabilities. In Proc. IEEE European De-
pendable Computing Conference (EDCC) (2008).

[58] MUTTI, S., FRATANTONIO, Y., BIANCHI, A., INVERNIZZI, L.,
CORBETTA, J., KIRAT, D., KRUEGEL, C., AND VIGNA, G.
BareDroid: Large-Scale Analysis of Android Apps on Real De-
vices. In Proc. Annual Computer Security Applications Confer-
ence (ACSAC) (2015).

[59] NEWSOME, J. Dynamic Taint Analysis for Automatic Detection,
Analysis, and Signature Generation of Exploits on Commodity
Software. In Proc. Internet Society NDSS (2005).

[60] OH, S., YOO, H., JEONG, D. R., BUI, D. H., AND SHIN, I. Mo-
bile Plus: Multi-device Mobile Platform for Cross-device Func-
tionality Sharing. In Proc. ACM MobiSys (2017).

[61] PALIX, N., THOMAS, G., SAHA, S., CALVÈS, C., LAWALL, J.,
AND MULLER, G. Faults in Linux: Ten Years Later. In Proc.
ACM ASPLOS (2011).

[62] PETSIOS, T., ZHAO, J., KEROMYTIS, A. D., AND JANA, S.
SlowFuzz: Automated Domain-Independent Detection of Algo-
rithmic Complexity Vulnerabilities. In Proc. ACM CCS (2017).

[63] RAWAT, S., JAIN, V., KUMAR, A., AN CRISTIANO GIUFFRIDA,
L. C., AND BOS, H. VUzzer: Application-aware Evolutionary
Fuzzing. In Proc. Internet Society NDSS (2017).

[64] RENZELMANN, M. J., KADAV, A., AND SWIFT, M. M. Sym-
Drive: Testing Drivers without Devices. In Proc. USENIX OSDI
(2012).

[65] SCHUMILO, S., ASCHERMANN, C., GAWLIK, R., SCHINZEL,
S., AND HOLZ, T. kAFL: Hardware-Assisted Feedback Fuzzing
for OS Kernels. In Proc. USENIX Security Symposium (2017).

[66] SHOSHITAISHVILI, Y., WANG, R., HAUSER, C., KRUEGEL,
C., AND VIGNA, G. Firmalice - Automatic Detection of Au-
thentication Bypass Vulnerabilities in Binary Firmware. In Proc.
Internet Society NDSS (2015).

[67] WANG, J., CHEN, B., WEI, L., AND LIU, Y. Skyfire: Data-
Driven Seed Generation for Fuzzing. In Proc. IEEE Security and
Privacy (S&P) (2017).

[68] WANG, R., AZAB, A. M., ENCK, W., LI, N., NING, P., CHEN,
X., SHEN, W., AND CHENG, Y. SPOKE: Scalable Knowledge
Collection and Attack Surface Analysis of Access Control Policy
for Security Enhanced Android. In Proc. ACM ASIA CCS (2017).

[69] WANG, T., WEI, T., GU, G., AND ZOU, W. TaintScope: A
Checksum-Aware Directed Fuzzing Tool for Automatic Software
Vulnerability Detection. In Proc. IEEE Symposium on Security
and Privacy (S&P) (2010).

[70] WANG, X., ZELDOVICH, N., KAASHOEK, M. F., AND SOLAR-
LEZAMA, A. Towards Optimization-Safe Systems: Analyzing
the Impact of Undefined Behavior. In Proc. ACM SOSP (2013).

[71] WILLEMS, C., HOLZ, T., AND FREILING, F. Toward Auto-
mated Dynamic Malware Analysis Using CWSandbox. IEEE
Security Privacy (2007).

[72] WOO, M., CHA, S. K., GOTTLIEB, S., AND BRUMLEY, D.
Scheduling Black-box Mutational Fuzzing. In Proc. ACM CCS
(2013).

[73] YADEGARI, B., AND DEBRAY, S. Symbolic Execution of Ob-
fuscated Code. In Proc. ACM CCS (2015).

[74] YADEGARI, B., JOHANNESMEYER, B., WHITELY, B., AND
DEBRAY, S. A Generic Approach to Automatic Deobfuscation
of Executable Code. In Proc. IEEE Symposium on Security and
Privacy (S&P) (2015).

[75] YAN, L. K., AND YIN, H. DroidScope: Seamlessly Reconstruct-
ing the OS and Dalvik Semantic Views for Dynamic Android
Malware Analysis. In Proc. USENIX Security (2012).

[76] YIN, H., SONG, D., EGELE, M., KRUEGEL, C., AND KIRDA,
E. Panorama: Capturing System-wide Information Flow for Mal-
ware Detection and Analysis. In Proc. ACM CCS (2007).

[77] ZADDACH, J., BRUNO, L., FRANCILLON, A., AND
BALZAROTTI, D. Avatar: A framework to Support Dynamic
Security Analysis of Embedded Systems Firmwares. In Proc. In-
ternet Society NDSS (2014).

[78] ZHANG, H., SHE, D., AND QIAN, Z. Android Root and its
Providers: A double-Edged Sword. In Proc. ACM CCS (2015).

[79] ZHANG, Y., LUO, X., AND YIN, H. DexHunter: Toward Ex-
tracting Hidden Code from Packed Android Applications. In
Proc. European Symposium on Research in Computer Security
(ESORICS) (2015).

USENIX Association 27th USENIX Security Symposium 307

