
Open access to the Proceedings of the
27th USENIX Security Symposium

is sponsored by USENIX.

When Does Machine Learning FAIL? Generalized
Transferability for Evasion and Poisoning Attacks

Octavian Suciu, Radu Marginean, Yigitcan Kaya, Hal Daume III,
and Tudor Dumitras, University of Maryland

https://www.usenix.org/conference/usenixsecurity18/presentation/suciu

This paper is included in the Proceedings of the
27th USENIX Security Symposium.

August 15–17, 2018 • Baltimore, MD, USA

978-1-939133-04-5

When Does Machine Learning FAIL? Generalized Transferability for
Evasion and Poisoning Attacks

Octavian Suciu Radu Mărginean Yiğitcan Kaya Hal Daumé III
Tudor Dumitras,

University of Maryland, College Park

Abstract
Recent results suggest that attacks against supervised

machine learning systems are quite effective, while de-
fenses are easily bypassed by new attacks. However,
the specifications for machine learning systems currently
lack precise adversary definitions, and the existing at-
tacks make diverse, potentially unrealistic assumptions
about the strength of the adversary who launches them.
We propose the FAIL attacker model, which describes
the adversary’s knowledge and control along four dimen-
sions. Our model allows us to consider a wide range of
weaker adversaries who have limited control and incom-
plete knowledge of the features, learning algorithms and
training instances utilized.

To evaluate the utility of the FAIL model, we consider
the problem of conducting targeted poisoning attacks in
a realistic setting: the crafted poison samples must have
clean labels, must be individually and collectively incon-
spicuous, and must exhibit a generalized form of trans-
ferability, defined by the FAIL model. By taking these
constraints into account, we design StingRay, a targeted
poisoning attack that is practical against 4 machine learn-
ing applications, which use 3 different learning algo-
rithms, and can bypass 2 existing defenses. Conversely,
we show that a prior evasion attack is less effective under
generalized transferability. Such attack evaluations, un-
der the FAIL adversary model, may also suggest promis-
ing directions for future defenses.

1 Introduction

Machine learning (ML) systems are widely deployed
in safety-critical domains that carry incentives for po-
tential adversaries, such as finance [14], medicine [18],
the justice system [31], cybersecurity [1], or self-driving
cars [6]. An ML classifier automatically learns classifi-
cation models using labeled observations (samples) from
a training set, without requiring predetermined rules for

mapping inputs to labels. It can then apply these mod-
els to predict labels for new samples in a testing set. An
adversary knows some or all of the ML system’s param-
eters and uses this knowledge to craft training or testing
samples that manipulate the decisions of the ML system
according to the adversary’s goal—for example, to avoid
being sentenced by an ML-enhanced judge.

Recent work has focused primarily on evasion at-
tacks [4, 44, 17, 50, 35, 9], which can induce a targeted
misclassification on a specific sample. As illustrated in
Figures 1a and 1b, these test time attacks work by mu-
tating the target sample to push it across the model’s de-
cision boundary, without altering the training process or
the decision boundary itself. They are not applicable in
situations where the adversary does not control the tar-
get sample—for example, when she aims to influence a
malware detector to block a benign app developed by a
competitor. Prior research has also shown the feasibility
of targeted poisoning attacks [34, 32]. As illustrated in
Figure 1c, these attacks usually blend crafted instances
into the training set to push the model’s boundary toward
the target. In consequence, they enable misclassifications
for instances that the adversary cannot modify.

These attacks appear to be very effective, and the
defenses proposed against them are often bypassed in
follow-on work [8]. However, to understand the actual
security threat introduced by them, we must model the
capabilities and limitations of realistic adversaries. Eval-
uating poisoning and evasion attacks under assumptions
that overestimate the capabilities of the adversary would
lead to an inaccurate picture of the security threat posed
to real-world applications. For example, test time attacks
often assume white-box access to the victim classifier
[9]. As most security-critical ML systems use propri-
etary models [1], these attacks might not reflect actual
capabilities of a potential adversary. Black-box attacks
consider weaker adversaries, but they often make rigid
assumptions about the adversary’s knowledge when in-
vestigating the transferability of an attack. Transferabil-

USENIX Association 27th USENIX Security Symposium 1299

Training Instances Pristine Decision Boundary

Target

(a)

Testing Instances

Adversarial Example

(b)

Poisoning Instances

Poisoned Decision Boundary

(c)

Testing Instances

(d)

Figure 1: Targeted attacks against machine learning classifiers. (a) The pristine classifier would correctly classify the target. (b) An evasion attack
would modify the target to cross the decision boundary. (c) Correctly labeled poisoning instances change the learned decision boundary. (d) At
testing time, the target is misclassified but other instances are correctly classified.

ity is a property of attack samples crafted locally, on
a surrogate model that reflects the adversary’s limited
knowledge, allowing them to remain successful against
the target model. Specifically, black-box attacks often
investigate transferability in the case where the local and
target models use different training algorithms [36]. In
contrast, ML systems used in the security industry often
resort to feature secrecy (rather than algorithmic secrecy)
to protect themselves against attacks, e.g. by incorporat-
ing undisclosed features for malware detection [10].

In this paper, we make a first step towards modeling
realistic adversaries who aim to conduct attacks against
ML systems. To this end, we propose the FAIL model,
a general framework for the analysis of ML attacks in
settings with a variable amount of adversarial knowledge
and control over the victim, along four tunable dimen-
sions: Features, Algorithms, Instances, and Leverage.
By preventing any implicit assumptions about the adver-
sarial capabilities, the model is able to accurately high-
light the success rate of a wide range of attacks in realis-
tic scenarios and forms a common ground for modeling
adversaries. Furthermore, the FAIL framework general-
izes the transferability of attacks by providing a multidi-
mensional basis for surrogate models. This provides in-
sights into the constraints of realistic adversaries, which
could be explored in future research on defenses against
these attacks. For example, our evaluation suggests that
crafting transferable samples with an existing evasion at-
tack is more challenging than previously believed.

To evaluate the utility of the FAIL model, we con-
sider the problem of conducting targeted poisoning at-
tacks in a realistic setting. Specifically, we impose four
constraints on the adversary. First, the poison samples
must have clean labels, as the adversary can inject them
into the training set of the model under attack but can-
not determine how they are labeled. Second, the samples
must be individually inconspicuous, i.e. to be very sim-
ilar to the existing training instances in order to prevent
an easy detection, while collectively pushing the model’s
boundary toward a target instance. Third, the samples
myst be collectively inconspicuous by bounding the col-

lateral damage on the victim (Figure 1d). Finally, the
poison samples must exhibit a generalized form of trans-
ferability, as the adversary tests the samples on a surro-
gate model, trained with partial knowledge along multi-
ple dimensions, defined by the FAIL model.

By taking into account the goals, capabilities, and lim-
itations of realistic adversaries, we also design StingRay,
a targeted poisoning attack that can be applied in a broad
range of settings 1. Moreover, the StingRay attack is
model agnostic: we describe concrete implementations
against 4 ML systems, which use 3 different classifi-
cation algorithms (convolutional neural network, linear
SVM, and random forest). The instances crafted are able
to bypass three anti-poisoning defenses, including one
that we adapted to account for targeted attacks. By sub-
jecting StingRay to the FAIL analysis, we obtain insights
into the transferability of targeted poison samples, and
we highlight promising directions for investigating de-
fenses against this threat.

In summary, this paper makes three contributions:

• We introduce the FAIL model, a general frame-
work for modeling realistic adversaries and evalu-
ating their impact. The model generalizes the trans-
ferability of attacks against ML systems, across var-
ious levels of adversarial knowledge and control.
We show that a previous black-box evasion attack
is less effective under generalized transferability.

• We propose StingRay, a targeted poisoning at-
tack that overcomes the limitations of prior attacks.
StingRay is effective against 4 real-world classifica-
tion tasks, even when launched by a range of weaker
adversaries within the FAIL model. The attack also
bypasses two existing anti-poisoning defenses.

• We systematically explore realistic adversarial sce-
narios and the effect of partial adversary knowledge
and control on the resilience of ML models against
a test-time attack and a training-time attack. Our

1Our implementation code could be found at https://

github.com/sdsatumd

1300 27th USENIX Security Symposium USENIX Association

https://github.com/sdsatumd
https://github.com/sdsatumd

results provide insights into the transferability of at-
tacks across the FAIL dimensions and highlight po-
tential directions for investigating defenses against
these attacks.

This paper is organized as follows. In Section 2 we
formalize the problem and our threat model. In Section 3
we introduce the FAIL attacker model. In Section 4 we
describe the StingRay attack and its implementation. We
present our experimental results in Section 5, review the
related work in Section 6, and discuss the implications in
Section 7.

2 Problem Statement

Lack of a unifying threat model to capture the dimen-
sions of adversarial knowledge caused existing work to
diverge in terms of adversary specifications. Prior work
defined adversaries with inconsistent capabilities. For
example, in [36] a black-box adversary possesses knowl-
edge of the full feature representations, whereas its coun-
terpart in [50] only assumes access to the raw data (i.e.
before feature extraction).

Compared to existing white-box or black-box models,
in reality, things tend to be more nuanced. A commercial
ML-based malware detector [1] can rely on a publicly
known architecture with proprietary data collected from
end hosts, and a mixture of known features (e.g. system
calls of a binary), and undisclosed features (e.g. reputa-
tion scores of the binary). Existing adversary definitions
are too rigid and cannot account for realistic adversaries
against such applications. In this paper, we ask how can
we systematically model adversaries based on realistic
assumptions about their capabilities?

Some of the recent evasion attacks [28, 36] investigate
the transferability property of their solutions. Proven
transferability increases the strength of an attack as it
allows adversaries with limited knowledge or access to
the victim system to craft effective instances. Further-
more, transferability hinders defense strategies as it ren-
ders secrecy ineffective. However, existing work gener-
ally investigates transferability under single dimensions
(e.g. limiting the adversarial knowledge about the vic-
tim algorithm). This weak notion of transferability lim-
its the understanding of actual attack capabilities on real
systems and fails to shed light on potential avenues for
defenses. This paper aims to provide a means to de-
fine and evaluate a more general transferability, across a
wide range of adversary models. The generalized view of
threat models highlights limitations of existing training-
time attacks. Existing attacks [51, 29, 20] often assume
full control over the training process of victim classi-
fiers and have similar shortcomings to white-box attacks.
Those that do not assume full control generally omit im-

portant adversarial considerations.Targeted poisoning at-
tacks [34, 32, 11] require control of the labeling process.
However, an attacker is often unable to determine the la-
bels assigned to the poison samples in the training set
—consider a case where a malware creator may provide
a poison sample for the training set of an ML-based mal-
ware detector, but its malicious/benign label will be as-
signed by the engineers who train the detector. These
attacks risk being detected by existing defenses as they
might craft samples that stand out from the rest of the
training set. Moreover, they also risk causing collateral
damage to the classifier; for example, in Figure 1c the at-
tack can trigger the misclassification of additional sam-
ples from the target’s true class if the boundary is not
molded to include only the target. Such collateral dam-
age reduces the trust in the classifier’s predictions, and
thus the potential impact of the attack. Therefore, we aim
to observe whether an attack could address these limita-
tions and discover how realistic is the targeted poisoning
threat?

Machine learning background. For our purpose, a
classifier (or hypothesis) is a function h ∶ X → Y that
maps instances to labels to perform classification. An
instance x ∈ X is an entity (e.g., a binary program) that
must receive a label y ∈ Y = {y0,y1, ...,ym} (e.g., reflect-
ing whether the binary is malicious). We represent an
instance as a vector x = (x1, . . . ,xn), where the features
reflect attributes of the artifact (e.g. APIs invoked by the
binary). A function D(x,x′) represents the distance in
the feature space between two instances x,x′ ∈ X . The
function h can be viewed as a separator between the mali-
cious and benign classes in the feature space X ; the plane
of separation between classes is called decision bound-
ary. The training set S ⊂ X includes instances that have
known labels YS ⊂ Y . The labels for instances in S are
assigned using an oracle — for a malware classifier, an
oracle could be an antivirus service such as VirusTotal,
whereas for an image classifier it might be a human anno-
tator. The testing set T ⊂ X includes instances for which
the labels are unknown to the learning algorithm.

Threat model. We focus on targeted poisoning attacks
against machine learning classifiers. In this setting, we
refer to the victim classifier as Alice, the owner of the
target instance as Bob, and the attacker as Mallory. Bob
and Mallory could also represent the same entity. Bob
possesses an instance t ∈ T with label yt , called the tar-
get, which will get classified by Alice. For example, Bob
develops a benign application, and he ensures it is not
flagged by an oracle antivirus such as VirusTotal. Bob’s
expectation is that Alice would not flag the instance ei-
ther. Indeed, the target would be correctly classified by
Alice after learning a hypothesis using a pristine training
set S∗ (i.e. h∗ = A(S∗),h∗(t) = yt). Mallory has partial

USENIX Association 27th USENIX Security Symposium 1301

knowledge of Alice’s classifier and read-only access to
the target’s feature representation, but they do not con-
trol either t or the natural label yt , which is assigned by
the oracle. Mallory pursues two goals. The first goal is
to introduce a targeted misclassification on the target by
deriving a training set S from S∗: h = A(S),h(t) = yd ,
where yd is Mallory’s desired label for t. On binary clas-
sification, this translates to causing a false positive (FP)
or false negative (FN). An example of FP would be a
benign email message that would be classified as spam,
while an FN might be a malicious sample that is not de-
tected. In a multiclass setting, Mallory causes the target
to be labeled as a class of choice. Mallory’s second goal
is to minimize the effect of the attack on Alice’s over-
all classification performance. To quantify this collat-
eral damage, we introduce the Performance Drop Ratio
(PDR), a metric that reflects the performance hit suffered
by a classifier after poisoning. This is defined as the ra-
tio between the performance of the poisoned classifier
and that of the pristine classifier: PDR = per f ormance(h)

per f ormance(h∗) .
The metric encodes the fact that for a low-error classifier,
Mallory could afford a smaller performance drop before
raising suspicions.

3 Modeling Realistic Adversaries

Knowledge and Capabilities. Realistic adversaries con-
ducting training time or testing time attacks are con-
strained by an imperfect knowledge about the model un-
der attack and by limited capabilities in crafting adver-
sarial samples. For an attack to be successful, samples
crafted under these conditions must transfer to the origi-
nal model. We formalize the adversary’s strength in the
FAIL attacker model, which describes the adversary’s
knowledge and capabilities along 4 dimensions:

• Feature knowledge R = {xi ∶ xi ∈ x, xi is readable}:
the subset of features known to the adversary.

• Algorithm knowledge A′: the learning algorithm
that the adversary uses to craft poison samples.

• Instance knowledge S′: the labeled training in-
stances available to the adversary.

• Leverage W = {xi ∶ xi ∈ x, xi is writable}: the subset
of features that the adversary can modify.

The F and A dimensions constrain the attacker’s under-
standing of the hypothesis space. Without knowing the
victim classifier A, the attacker would have to select an
alternative learning algorithm A′ and hope that the eva-
sion or poison samples crafted for models created by A′

transfer to models from A. Similarly, if some features

are unknown (i.e., partial feature knowledge), the model
used for crafting instances is an approximation of the
original classifier. For classifiers that learn a represen-
tation of the input features (such as neural networks),
limiting the F dimension results in a different, approx-
imate internal representation that will affect the success
rate of the attack. These limitations result in an inaccu-
rate assessment of the impact that the crafted instances
will have and affect the success rate of the attack. The
I dimension affects the accuracy of the adversary’s view
over the instance space. As S′ might be a subset or an
approximation of S∗, the poisoning and evasion sam-
ples might exploit gaps in the instance space that are
not present in the victim’s model. This, in turn, could
lead to an impact overestimation on the attacker side. Fi-
nally, the L dimension affects the adversary’s ability to
craft attack instances. The set of modifiable features re-
stricts the regions of the feature space where the crafted
instances could lie. For poisoning attacks, this places an
upper bound on the ability of samples to shift the deci-
sion boundary while for evasion it could affect their ef-
fectiveness. The read-only features can, in some cases,
cancel out the effect of the modified ones. An adversary
with partial leverage needs extra effort, e.g. to craft more
instances (for poisoning) or to attack more of the modi-
fiable features (for both poisoning and evasion).

Prior work has investigated transferability without
modeling a full range of realistic adversaries across the
FAIL dimensions. [36] focuses on the A dimension, and
proposes a transferable evasion attack across different
neural network architectures. Transferability of poison-
ing samples in [33] is partially evaluated on the I and
A dimensions. The evasion attack in [25] considers F,
A and I under a coarse granularity, but omits the L di-
mension. ML-based systems employed in the security
industry [21, 10, 45, 39, 12] often combine undisclosed
and known features to render attacks more difficult. In
this context, the systematic evaluation of transferability
along the F and L dimensions is still an open question.

Constraints. The attacker’s strategy is also influenced
by a set of constraints that drive the attack design and
implementation. While these are attack-dependent, we
broadly classify them into three categories: success, de-
fense, and budget constraints. Success constraints encode
the attacker’s goals and considerations that directly affect
the effectiveness of the attack, such as the assessment of
the target instance classification. Defense constraints re-
fer to the attack characteristics aimed to circumvent ex-
isting defenses (e.g. the post-attack performance drop
on the victim). Budget considerations address the limi-
tations in an attacker’s resources, such as the maximum
number of poisoning instances or, for evasion attacks, the
maximum number of queries to the victim model.

1302 27th USENIX Security Symposium USENIX Association

Implementing the FAIL dimensions. Performing em-
pirical evaluations within the FAIL model requires fur-
ther design choices that depend on the application do-
main and the attack surface of the system. To simulate
weaker adversaries systematically, we formulate a ques-
tionnaire to guide the design of experiments focusing on
each dimension of our model.

For the F dimension, we ask: What features could
be kept as a secret? Could the attacker access the ex-
act feature values? Feature subsets may not be publicly
available (e.g. derived using a proprietary malware anal-
ysis tool, such as dynamic analysis in a contained en-
vironment), or they might be directly defined from in-
stances not available to the attacker (e.g. low-frequency
word features). Similarly, the exact feature values could
be unknown (e.g. because of defensive feature squeez-
ing [49]). Feature secrecy does not, however, imply the
attacker’s inability to modify them through an indirect
process [25] or extract surrogate ones.

The questions related to the A dimension are: Is the al-
gorithm class known? Is the training algorithm secret?
Are the classifier parameters secret? These questions de-
fine the spectrum for adversarial knowledge with respect
to the learning algorithm: black-box access, if the infor-
mation is public, gray-box, where the attacker has partial
information about the algorithm class or the ensemble ar-
chitecture, or white-box, for complete adversarial knowl-
edge.

The I dimension controls the overlap between the in-
stances available to the attacker and these used by the
victim. Thus, here we ask: Is the entire training set
known? Is the training set partially known? Are the in-
stances known to the attacker sufficient to train a robust
classifier? An application might use instances from the
public domain (e.g. a vulnerability exploit predictor) and
the attacker could leverage them to the full extent in or-
der to derive their attack strategy. However, some appli-
cations, such as a malware detector, might rely on private
or scarce instances that limit the attacker’s knowledge of
the instance space. The scarcity of these instances drives
the robustness of the attacker classifier which in turn de-
fines the perceived attack effectiveness. In some cases,
the attacker might not have access to any of the origi-
nal training instances, being forced to train a surrogate
classifier on independently collected samples [50, 29].

The L dimension encodes the practical capabilities of
the attacker when crafting attack samples. These are
tightly linked to the attack constraints. However, rather
than being preconditions, they act as degrees of freedom
on the attack. Here we ask: Which features are modifi-
able by the attacker? and What side effects do the modi-
fications have? For some applications, the attacker may
not be able to modify certain types of features, either be-
cause they do not control the generating process (e.g. an

Study F A I L
Test Time Attacks

Genetic Evasion[50] 3,3 3,3 3,7† 3,3
Black-box Evasion[37] 7,∅* 3,3 3,3 7,∅*

Model Stealing[46] 3,3 3,3 3,3 7,∅*
FGSM Evasion[17] 7,∅* 7,∅* ∅,∅ 7,∅*
Carlini’s Evasion[9] 7,∅* 3,3 ∅,∅ 7,∅*

Training Time Attacks
SVM Poisoning[5] 7,∅* 3,7† ∅,∅ 7,∅*
NN Poisoning[33] 3,7† 3,3 3,3 7,∅*
NN Backdoor[20]2

3,7† 3,3 3,7† 3,3
NN Trojan[29] 3,7 3, 3 3,3 3,3

Table 1: FAIL analysis of existing attacks. For each attack, we analyze
the adversary model and evaluation of the proposed technique. Each
cell contains the answers to our two questions, AQ1 and AQ2: yes (3),
omitted (7) and irrelevant (∅). We also flag implicit assumptions (*)
and a missing evaluation (†).

Study F A I L
Test Time Defenses

Distillation[38] 7,3 7,3 7,7 7,7
Feature Squeezing[49] 3,3 7,7 7,7 3,3

Training Time Defenses
RONI[34] 7,7 7,7 3,7 7,7

Certified Defense[42] 7,7 7,7 3,3 7,7

Table 2: FAIL analysis of existing defenses. We analyze a defense’s
approach to security: DQ1 (secrecy) and DQ2 (hardening). Each cell
contains the answers to the two questions: yes (3), and no (7).

exploit predictor that gathers features from multiple vul-
nerability databases) or when the modifications would
compromise the instance integrity (e.g. a watermark on
images that prevents the attacker from modifying certain
features). In cases of dependence among features, tar-
geting a specific set of features could have an indirect
effect on others (e.g. an attacker injecting tweets to mod-
ify word feature distributions also changes features based
on tweet counts).

3.1 Unifying Threat Model Assumptions

Discordant threat model definitions result in implicit as-
sumptions about adversarial limitations, some of which
might not be realistic. The FAIL model allows us to sys-
tematically reason about such assumptions. To demon-
strate its utility, we evaluate a body of existing studies by
means of answering two questions for each work.

2Gu et al.’s study investigates a scenario where the attacker per-
forms the training on behalf of the victim. Consequently, the attacker
has full access to the model architecture, parameters, training set and
feature representation. However, with the emergence of frameworks
such as [16], even in this threat model, it might be possible that the
attacker does not know the training set or the features.

USENIX Association 27th USENIX Security Symposium 1303

To categorize existing attacks, we first inspect a threat
model and ask: AQ1–Are bounds for attacker limitations
specified along the dimension?. The possible answers
are: yes, omitted and irrelevant. For instance, the threat
model in Carlini et al.’s evasion attack [9] specifies that
the adversary requires complete knowledge of the model
and its parameters, thus the answer is yes for the A di-
mension. In contrast, the analysis on the I dimension
is irrelevant because the attack does not require access
to the victim training set. However, the study does not
discuss feature knowledge, therefore we mark the F di-
mension as omitted.

Our second question is: AQ2–Is the proposed tech-
nique evaluated along the dimension?. This question
becomes irrelevant if the threat model specifications are
omitted or irrelevant. For example, Carlini et al. evalu-
ated transferability of their attack when the attacker does
not know the target model parameters. This corresponds
to the attacker algorithm knowledge, therefore the an-
swer is yes for the A dimension.

Applying the FAIL model reveals implicit assump-
tions in existing attacks. An implicit assumption exists if
the attack limitations are not specified along a dimension.
Furthermore, even with explicit assumptions, some stud-
ies do not evaluate all relevant dimensions. We present
these findings about previous attacks within the FAIL
model in Table 1.

When looking at existing defenses through the FAIL
model, we aim to observe how they achieve security: ei-
ther by hiding information or limiting the attacker ca-
pabilities. For defenses that involve creating knowledge
asymmetry between attackers and the defenders, i.e. se-
crecy, we ask: DQ1–Is the dimension employed as a
mechanism for secrecy?. For example, feature squeez-
ing [49] employs feature reduction techniques unknown
to the attacker; therefore the answer is yes for the F di-
mension.

In order to identify hardening dimensions, which at-
tempt to limit the attack capabilities, we ask: DQ2–Is
the dimension employed as a mechanism for hardening?.
For instance, the distillation defense [38] against evasion
modifies the neural network weights to make the attack
more difficult; therefore the answer is yes for the A di-
mension.

These defenses may come with inaccurate assessments
for the adversarial capabilities and implicit assumptions.
For example, distillation limits adversaries along the
F and A dimensions but employing a different attack
strategy could bypass it [9]. On poisoning attacks, the
RONI [34] defense assumes training set secrecy, but does
not evaluate the threat posed by attackers with sufficient
knowledge along the other dimensions. As our results
will demonstrate, this implicit assumption allows attack-
ers to bypass the defense while remaining within the se-

crecy bounds.
The results for the evaluated defenses are found in Ta-

ble 2. The detailed evaluation process for each of these
studies can be found in our technical report [43].

4 The StingRay Attack

Reasoning about implicit and explicit assumptions in
prior defenses allows us to design algorithms which ex-
ploit their weaknesses. In this section, we introduce
StingRay, one such attack that achieves targeted poison-
ing while preserving overall classification performance.
StingRay is a general framework for crafting poison sam-
ples.

At a high level, our attack builds a set of poison in-
stances by starting from base instances that are close to
the target in the feature space but are labeled as the de-
sired target label yd , as illustrated in the example from
Figure 2. Here, the adversary has created a malicious
Android app t, which includes suspicious features (e.g.
the WRITE_CONTACTS permission on the left side of the
figure), and wishes to prevent a malware detector from
flagging this app. The adversary, therefore, selects a be-
nign app xb as a base instance. To craft each poison in-
stance, StingRay alters a subset of a base instance’s fea-
tures so that they resemble those of the target. As shown
on the right side of Figure 2, these are not necessarily
the most suspicious features, so that the crafted instance
will likely be considered benign. Finally, StingRay fil-
ters crafted instances based on their negative impact on
instances from S′, ensuring that their individual effect
on the target classification performance is negligible.
The sample crafting procedure is repeated until there
are enough instances to trigger the misclassification of
t. Algorithm 1 shows the pseudocode of the attack’s two
general-purpose procedures .

We describe concrete implementations of our attack
against four existing applications: an image recognition
system, an Android malware detector, a Twitter-based
exploit predictor, and a data breach predictor. We re-
implement the systems that are not publicly available,
using the original classification algorithms and the origi-
nal training sets to reproduce those systems as closely as
possible. In total, our applications utilize three classifi-
cation algorithms—convolutional neural network, linear
SVM, and random forest—that have distinct character-
istics. This spectrum illustrates the first challenge for
our attack: identifying and encapsulating the application-
specific steps in StingRay, to adopt a modular design
with broad applicability. Making poisoning attacks prac-
tical raises additional challenges. For example, a naı̈ve
approach would be to inject the target with the desired
label into the training set: h(t) = yd (S.I). However, this
is impractical because the adversary, under our threat

1304 27th USENIX Security Symposium USENIX Association

Algorithm 1 The StingRay attack.

1: procedure STINGRAY(S′,YS′ , t,yt ,yd)
2: I =∅
3: h = A′(S′)
4: repeat
5: xb = GETBASEINSTANCE(S′,YS′ , t,yt ,yd)
6: xc = CRAFTINSTANCE(xb, t)
7: if GETNEGATIVEIMPACT(S′,xc) < τNI then
8: I = I∪{xc}
9: h = A′(S′∪ I)

10: until (∣I∣ > Nmin and h(t) = yd) or ∣I∣ > Nmax
11: PDR = GETPDR(S′,YS′ , I,yd)
12: if h(t) ≠ yd or PDR < τPDR then
13: return ∅
14: return I
15: procedure GETBASEINSTANCE(S′,YS′ , t,yt ,yd)
16: for xb,yb in SHUFFLE(S′,YS′) do
17: if D(t,xb) < τD and yb = yd then
18: return xb

model, does not control the labeling function. There-
fore, GETBASEINSTANCE works by selecting instances
xb that already have the desired label and are close to the
target in the feature space (S.II).

A more sophisticated approach would mutate these
samples and use poison instances to push the model
boundary toward the target’s class [32]. However, these
instances might resemble the target class too much, and
they might not receive the desired label from the oracle
or even get flagged by an outlier detector. In CRAFTIN-
STANCE, we apply tiny perturbations to the instances
(D.III) and by checking the negative impact NI of crafted
poisoning instances on the classifier (D.IV) we ensure
they remain individually inconspicuous.

Mutating these instances with respect to the target [34]
(as illustrated in Figure 1c) may still reduce the overall
performance of the classifier (e.g. by causing the mis-
classification of additional samples similar to the target).
We overcome this via GETPDR by checking the perfor-
mance drop of the attack samples (S.V), therefore ensur-
ing that they remain collectively inconspicuous.

Even so, the StingRay attack adds robustness to the
poison instances by crafting more instances than neces-
sary, to overcome sampling-based defenses (D.VI). Nev-
ertheless, the attack has a sampling budget that dictates
the allowable number of crafted instances (B.VII). A de-
tailed description of StingRay is found in Appendix A.

Attack Constraints. The attack presented above has a
series of constraints that shape its effectiveness. Rea-
soning about them allows us to adapt StingRay to the
specific restrictions on each application. These span all
three categories identified in Section 3: Success(S.), De-

fense(D.) and Budget(B.):

S.I h(t) = yd : the desired class label for target

S.II D(t,xb) < τD: the inter-instance distance metric

D.III s̄ = 1
∣I∣ ∑

xc∈I
s(xc, t), where s(⋅, ⋅) is a similarity met-

ric: crafting target resemblance

D.IV NI < τNI : negative impact of poisoning instances

S.V PDR < τPDR: the perceived performance drop

D.VI ∣I∣ ≥ Nmin: the minimum number of poison in-
stances

B.VII ∣I∣ ≤ Nmax: maximum number of poisoning in-
stances

The perceived success of the attacker goals (S.I and
S.V) dictate whether the attack is triggered. If the PDR
is large, the attack might become indiscriminate and the
risk of degrading the overall classifier’s performance is
high. The actual PDR could only be computed in the
white-box setting. For scenarios with partial knowledge,
it is approximated through the perceived PDR on the
available classifier.

The impact of crafted instances is influenced by the
distance metric and the feature space used to measure
instance similarity (S.II). For applications that learn fea-
ture representations (e.g. neural nets), the similarity of
learned features might be a better choice for minimizing
the crafting effort.

The set of features that are actively modified by the at-
tacker in the crafted instances (D.III) defines the target
resemblance for the attacker, which imposes a trade-off
between their inconspicuousness and the effectiveness of
the sample. If this quantity is small, the crafted instances
are less likely to be perceived as outliers, but a larger
number of them is required to trigger the attack. A higher
resemblance could also cause the oracle to assign crafted
instances a different label than the one desired by the at-
tacker.

The loss difference of a classifier trained with and
without a crafted instance (D.IV) approximates the neg-
ative impact of that instance on the classifier. It may be
easy for an attacker to craft instances with a high nega-
tive impact, but these instances may also be easy to detect
using existing defenses.

In practice, the cost of injecting instances in the train-
ing set can be high (e.g. controlling a network of bots in
order to send fake tweets) so the attacker aims to min-
imize the number of poison instances (D.VI) used in
the attack. The adversary might also discard crafted in-
stances that do not have the desired impact on the ML

USENIX Association 27th USENIX Security Symposium 1305

model. Additionally, some poison instances might be fil-
tered before being ingested by the victim classifier. How-
ever, if the number of crafted instances falls below a
threshold Nmin, the attack will not succeed. The max-
imum number of instances that can be crafted (B.VII)
influences the outcome of the attack. If the attacker is un-
able to find sufficient poison samples after crafting Nmax
instances, they might conclude that the large fraction of
poison instances in the training set would trigger suspi-
cions or that they depleted the crafting budget.

Delivering Poisoning Instances. The mechanism
through which poisoning instances are delivered to the
victim classifier is dictated by the application character-
istics and the adversarial knowledge. In the most general
scenario, the attacker injects the crafted instances along-
side existing ones, expecting that the victim classifier
will be trained on them. For applications where models
are updated over time or trained in mini-batches (such
as an image classifier based on neural networks), the at-
tacker only requires control over a subset of such batches
and might choose to deliver poison instances through
them. In cases where the attacker is unable to create new
instances (such as a vulnerability exploit predictor), they
will rely on modifying the features of existing ones by
poisoning the feature extraction process. The applica-
tions we use to showcase StingRay highlight these sce-
narios and different attack design considerations.

4.1 Bypassing Anti-Poisoning Defenses

In this section, we discuss three defenses against poison-
ing attacks and how StingRay exploits their limitations.

The Micromodels defense was proposed for cleaning
training data for network intrusion detectors [13]. The
defense trains classifiers on non-overlapping epochs of
the training set (micromodels) and evaluates them on the
training set. By using a majority voting of the micro-
models, training instances are marked as either safe or
suspicious. Intuition is that attacks have relatively low
duration and they could only affect a few micromodels. It
also relies on the availability of accurate instance times-
tamps.

Reject on Negative Impact (RONI) was proposed
against spam filter poisoning attacks [3]. It measures the
incremental effect of each individual suspicious training
instance and discards the ones with a relatively signifi-
cant negative impact on the overall performance. RONI
sets a threshold by observing the average negative impact
of each instance in the training set and flags an instance
when its performance impact exceeds the threshold. This
threshold determines RONI’s ultimate effectiveness and
ability to identify poisoning samples. The defense also
requires a sizable clean set for testing instances. We

adapted RONI to a more realistic scenario, assuming no
clean holdout set, implementing an iterative variant, as
suggested in [41], that incrementally decreases the al-
lowed performance degradation threshold. To the best of
our knowledge, this version has not been implemented
and evaluated before. However, RONI remains compu-
tationally inefficient as the number of trained classifiers
scales linearly with the training set.

Target-aware RONI (tRONI) builds on the observation
that RONI fails to mitigate targeted attacks [34] because
the poison instances might not individually cause a sig-
nificant performance drop. We propose a targeted variant
which leverages prior knowledge about a test-time mis-
classification to determine training instances that might
have caused it. While RONI estimates the negative im-
pact of an instance on a holdout set, tRONI considers
their effect on the target classification alone. Therefore
tRONI is only capable of identifying instances that dis-
tort the target classification significantly. A detailed de-
scription of this defense is available in the technical re-
port [43].

All these defenses aim to increase adversarial costs by
forcing attackers to craft instances that result in a small
loss difference (Cost D.IV). Therefore, they implicitly
assume that poisoning instances stand out from the rest,
and they negatively affect the victim classifier. However,
attacks such as StingRay could exploit this assumption
to evade detection by crafting a small number of incon-
spicuous poison samples.

4.2 Attack Implementation

We implement StingRay against four applications with
distinct characteristics, each highlighting realistic con-
straints for the attacker. We omit certain technical details
for space considerations, encouraging interested readers
to consult the technical report [43].

Image classification. We first poison a neural-network
(NN) based application for image classification, often
used for demonstrating evasion attacks in the prior work.
The input instances are images and the labels correspond
to objects that are depicted in the image (e.g. airplane,
dog, ship). We evaluate StingRay on our own implemen-
tation for CIFAR-10 [24]. 10,000 instances (1/6 of the
data set) are used for validation and testing. In this sce-
nario, the attacker has an image t with true label yt (e.g.
a dog) and wishes to trick the model into classifying it as
a specific class yd (e.g. a cat).

We implement a neural network architecture that
achieves a performance comparable to other studies [38,
9], obtaining a validation accuracy of 78%. Once the
network is trained on the benign inputs, we proceed to
poison the classifier. We generate and group poison in-

1306 27th USENIX Security Symposium USENIX Association

stances into batches alongside benign inputs. We define
γ ∈ [0,1] to be the mixing parameter which controls the
number of poison instances in a batch. In our experi-
ments we varied γ over {0.125,0.5,1.0} (i.e. 4, 16, and
32 instances of the batch are poison) and selected the
value that provided the best attack success rate, keeping
it fixed across successive updates. We then update3 the
previously trained network using these batches until ei-
ther the attack is perceived as successful or we exceed
the number of available poisoning instances, dictated by
the cut-off threshold of Nmax. It is worth noting that if the
learning rate is high and the batch contains too many poi-
son instances, the attack could become indiscriminate.
Conversely, too few crafted instances would not succeed
in changing the target prediction, so the attacker needs to
control more batches.

The main insight that motivates our method for gen-
erating adversarial samples is that there exist inputs to a
network x1,x2 whose distance in pixel space ∣∣x1−x2∣∣
is much smaller than their distance in deep feature space
∣∣Hi(x1)−Hi(x2)∣∣, where Hi(x) is the value of the ith

hidden layer’s activation for the input x. This insight is
motivated by the very existence of test-time adversarial
examples, where inputs to the classifier are very similar
in pixel space, but are successfully misclassified by the
neural network [4, 44, 17, 50, 37, 9]. Our attack consists
of selecting base instances that are close to the target t
in deep feature space, but are labeled by the oracle as
the attacker’s desired label yd . CRAFTINSTANCE cre-
ates poison images such that the distance to the target t
in deep feature space is minimized and the resulting ad-
versarial image is within τD distance in pixel space to t.
Recent observations suggest that features in the deeper
layers of neural networks are not transferable [52]. This
suggests that the selection of the layer index i in the ob-
jective function offers a trade-off between attack trans-
ferability and the magnitude of perturbations in crafted
images (Cost D.III). In our experiments we choose Hi to
be the third convolutional layer.

We pick 100 target instances uniformly distributed
across the class labels. The desired label yd is the one
closest to the true label yt from the attacker’s classifier
point of view (i.e. it is the second best guess of the clas-
sifier). We set the cut-off threshold Nmax = 64, equivalent
to two mini-batches of 32 examples. The perturbation is
upper-bounded at τD < 3.5% resulting in a target resem-
blance s̄ < 110 pixels.

Android malware detection. The Drebin Android mal-
ware detector [2] uses a linear SVM classifier to predict
if an application is malicious or benign. The Drebin
data set consists of 123,453 Android apps, including

3 The update is performed on the entire network (i.e. all layers are
updated).

target: t (malicious)
api_call::setWifiEnabled
permission::WRITE_CONTACTS
permission::ACCESS_WIFI_STATE
permission::READ_CONTACTS

…

poison: xc (benign)
intent::LAUNCHER
intent::MAIN
permission::ACCESS_WIFI_STATE
activity::MainActivity
permission::READ_CONTACTS

…

Legend: Features tagged as suspicious by VT
Features copied from t to xc

Figure 2: The sample crafting process illustrated for the Drebin An-
droid malware detector. Suspicious features are emphasized in Virus-
Total reports using an opaque internal process, but the attacker is not
constrained to copying them.

5,560 malware samples. These were labeled using 10
AV engines on VirusTotal [48], considering apps with
at least two detections as malicious. The feature space
has 545,333 dimensions. We use stratified sampling and
split the data set into 60%-40% folds training and test-
ing respectively, aiming to mimic the original classi-
fier. Our implementation achieves 94% F1 on the test-
ing set. The features are extracted from the application
archives (APKs) using two techniques. First, from the
AndroidManifest XML file, which contains meta infor-
mation about the app, the authors extract the permission
requested, the application components and the registered
system callbacks. Second, after disassembling the dex
file, which contains the app bytecode, the system ex-
tracts suspicious Android framework calls, actual per-
mission usage and hardcoded URLs. The features are
represented as bit vectors, where each index specifies
whether the application contains a feature. The adver-
sary aims to misclassify an Android app t. Although the
problems of inducing a targeted false positive (FP) and a
targeted false negative (FN) are analogous from the per-
spective of our definitions, in practice the adversary is
likely more interested in targeted FNs, so we focus on
this case in our experiments. We evaluate this attack by
selecting target instances from the testing set that would
be correctly labeled as malicious by the classifier. We
then craft instances by adding active features (permis-
sions, API calls, URL requests) from the target to exist-
ing benign instances, as illustrated in Figure 2. Each of
the crafted apps will have a subset of the features of t,
to remain individually inconspicuous. The poisoning in-
stances are mixed with the pristine ones and used to train
the victim classifier from scratch.

We craft 1,717 attacks to test the attack on the Drebin
classifier. We use a cutoff threshold Nmax = 425, which
corresponds to 0.5% of the training set. The base in-
stances are selected using the Manhattan distance D = l1
and each poisoning instance has a target resemblance of
s̄ = 10 features and a negative impact τNI < 50%.

Twitter-based exploit prediction. In [40], the authors
present a system, based on a linear SVM, that predicts

USENIX Association 27th USENIX Security Symposium 1307

which vulnerabilities are going to be exploited using
features extracted from Twitter and public vulnerability
databases. For each vulnerability, the predictor extracts
word-based features (e.g. the number of tweets contain-
ing the word code), Twitter statistics (e.g. number of
distinct users that tweeted about it), and domain-specific
features for the vulnerability (e.g. CVSS score). The data
set contains 4,140 instances out of which 268 are labeled
as positive (a proof-of-concept exploit is publicly avail-
able). The classifier uses 72 features from 4 categories:
CVSS Score, Vulnerability Database, Twitter traffic and
Twitter word features. Due to the class imbalance, we
use stratified samples of 60%–40% of the data set for
training and testing respectively, obtaining a 40% testing
F1.

The targeted attack selects a set I of vulnerabilities
that are similar to t (e.g. same product or vulnerability
category), have no known exploits, and gathered fewer
tweets. It then proceeds to post crafted tweets about
these vulnerabilities that include terms normally found
in the tweets about the target vulnerability. In this man-
ner, the classifier gradually learns that these terms in-
dicate vulnerabilities that are not exploited. However,
the attacker’s leverage is limited since the features ex-
tracted from sources other than Twitter are not under the
attacker’s control.

We simulate 1,932 attacks setting Nmax = 20 and se-
lecting the CVEs to be poisoned using the Euclidean dis-
tance D = l2 with τNI < 50%.

Data breach prediction. The fourth application we an-
alyze is a data breach predictor proposed in [30]. The
system attempts to predict whether an organization is
going to suffer a data breach, by using a random for-
est classifier. The features used in classification in-
clude indications of bad IT hygiene (e.g. misconfig-
ured DNS servers) and malicious activity reports (e.g.
blacklisting of IP addresses belonging to the organiza-
tion). These features are absolute values (i.e. organi-
zation size), as well as time series based statistics (e.g.
duration of attacks). The Data Breach Investigations Re-
ports (DBIR) [47] provides the ground truth. The classi-
fier uses 2,292 instances with 382 positive-labeled exam-
ples. The 74 existing features are extracted from exter-
nally observable network misconfiguration symptoms as
well as blacklisting information about hosts in an organi-
zation’s network. A similar technique is used to compute
the FICO Enterprise Security Score [15]. We use strat-
ified sampling to build a training set containing 50% of
the corpus and use the rest for testing and choosing tar-
gets for the attacks. The classifier achieves a 60% F1
score on the testing set.

In this case, the adversary plans to hack an organi-
zation t, but wants to avoid triggering an incident pre-

diction despite the eventual blacklisting of the organiza-
tion’s IPs. In our simulation, we choose t from within
organizations that were reported in DBIR and were not
used at training time, being correctly classified at test-
ing. The adversary chooses a set I of organizations that
do not appear in the DBIR and modifies their feature rep-
resentation. The attacker has limited leverage and is only
able to influence time series based features indirectly, by
injecting information in various blacklists.

We generate 2,002 attacks under two scenarios: the
attacker has compromised a blacklist and is able to in-
fluence the features of many organizations, or the at-
tacker has infiltrated a few organizations and it uses them
to modify their reputation on all the blacklists. We set
Nmax = 50 and the instances to be poisoned are selected
using the Euclidean distance D = l2 with τNI < 50%.

4.3 Practical Considerations

Running time of StingRay. The main computa-
tional expenses of StingRay are: crafting the instances in
CRAFTINSTANCE, computing the distances to the target
in GETBASEINSTANCE, and measuring the negative im-
pact of the crafted instances in GETNEGATIVEIMPACT.

CRAFTINSTANCE depends on the crafting strategy
and its complexity in searching for features to perturb.
For the image classifier, we adapt an existing evasion at-
tack, showing that we could reduce the computational
cost by finding adversarial examples on hidden layers in-
stead of the output layer. For all other applications we
evaluated, the choice of features is determined in con-
stant time.

The GETBASEINSTANCE procedure computes inter-
instance distances once per attack, and it is linear in
terms of the attackers training set size for a particular la-
bel. For larger data sets the distance computation could
be approximated (e.g. using a low-rank approximation).

In GETNEGATIVEIMPACT, we obtain a good approxi-
mation of the negative impact (NI) by training locally-
accurate classifiers on small instance subsets and per-
forming the impact test on batches of crafted instances.

Labeling poisoning instances. Our attacker model as-
sumes that the adversary does not control the oracle used
for labeling poisoning instances. Although the attacker
could craft poisoning instances that closely resemble the
target t to make them more powerful, they could be
flagged as outliers or the oracle could assign them a label
that is detrimental for the attack. It is therefore beneficial
to reason about the oracles specific to all applications and
the mechanisms used by StingRay to obtain the desired
labels.

For the image classifier, the most common oracle is
a consensus of human analysts. In an attempt to map

1308 27th USENIX Security Symposium USENIX Association

the effect of adversarial perturbations on human percep-
tion, the authors of [35] found through a user study that
the maximum fraction of perturbed pixels at which hu-
mans will correctly label an image is 14%. We, there-
fore, designed our experiments to remain within these
bounds. Specifically, we measure the pixel space per-
turbation as the l∞ distance and discard poison samples
with τD > 0.14 prior to adding them to I.

The Drebin classifier uses VirusTotal as the oracle.
In our experiments, the poison instances would need to
maintain the benign label. We systematically create over
19,000 Android applications that correspond to attack in-
stances and utilize VirusTotal, in the same way as Drebin
does, to label them. To modify selected features of the
Android apps, we reverse-engineer Drebin’s feature ex-
traction process to generate apps that would have the de-
sired feature representation. We generate these applica-
tions for the scenario where only the subset of features
extracted from the AndroidManifest are modifiable by
the attacker, similar to prior work [19]. In 89% of these
cases, the crafted apps bypassed detection, demonstrat-
ing the feasibility of our strategy in obtaining negatively
labeled instances. However, in our attack scenario, we
assume that the attacker is not consulting the oracle, re-
leasing all crafted instances as part of the attack.

For the exploit predictor, labeling is performed inde-
pendently of the feature representations of instances used
by the system. The adversary manipulates the public dis-
course around existing vulnerabilities, but the label exists
with respect to the availability of an exploit. Therefore
the attacker has more degrees of freedom in modifying
the features of instances in I, knowing that their desired
labels will be preserved.

In case of the data breach predictor, the attacker uti-
lizes organizations with no known breach and aims to
poison the blacklists that measure their hygiene, or hacks
them directly. In the first scenario, the attacker does not
require access to an organization’s networks, therefore
the label will remain intact. The second scenario would
be more challenging, as the adversary would require ex-
tra capabilities to ensure they remain stealthy while con-
ducting the attack.

5 Evaluation

We start by evaluating weaker evasion and poisoning ad-
versaries, within the FAIL model, on the image and mal-
ware classifiers (Section 5.1). Then, we evaluate the ef-
fectiveness of existing defenses against StingRay (Sec-
tion 5.2) and its applicability to a larger range of classi-
fiers. Our evaluation seeks to answer four research ques-
tions: How could we systematically evaluate the trans-
ferability of existing evasion attacks? What are the limi-
tations of realistic poisoning adversaries? When are tar-

geted poison samples transferable? Is StingRay effective
against multiple applications and defenses? We quantify
the effectiveness of the evasion attack using the percent-
age of successful attacks (SR), while for StingRay we
also measure the Performance Drop Ratio (PDR). We
measure the PDR on holdout testing sets by consider-
ing either the average accuracy, on applications with bal-
anced data sets, or the average F1 score (the harmonic
mean between precision and recall), which is more ap-
propriate for highly imbalanced data sets.

5.1 FAIL Analysis

In this section, we evaluate the image classifier and the
malware detector using the FAIL framework. The model
allows us to utilize both a state of the art evasion at-
tack as well as StingRay for the task. To control for ad-
ditional confounding factors when evaluating StingRay,
in this analysis we purposely omit the negative impact-
based pruning phase of the attack. We chose to imple-
ment the FAIL analysis on the two applications as they
do not present built-in leverage limitations and they have
distinct characteristics.

Evasion attack on the image classifier. The first at-
tack subjected to the FAIL analysis is JSMA [35], a
well-known targeted evasion attack Transferability of
this attack has previously been studied only for an ad-
versary with limited knowledge along the A and I di-
mensions [37]. We attempt to reuse an application con-
figuration similar in prior work, implementing our own
3-layer convolutional neural network architecture for the
MNIST handwritten digit data set [26]. The validation
accuracy of our model is 98.95%. In table 3, we present
the average results of our 11 experiments, each involving
100 attacks.

For each experiment, the table reports the ∆ variation
of the FAIL dimension investigated, two SR statistics:
perceived (as observed by the attacker on their classifier)
and potential (the effect on the victim if all attempts are
triggered by the attacker) as well as the mean perturba-
tion τ̄D introduced to the evasion instances.

Experiment #6 corresponds to the white-box adver-
sary, where we observe that the white-box attacker could
reach 80% SR.

Experiments #1–2 model the scenario in which the
attacker has limited Feature knowledge. Realistically,
these scenarios can simulate an evasion or poisoning at-
tack against a self-driving system, conducted without
knowing the vehicle’s camera angles—wide or narrow.
We simulate this by cropping a frame of 3 and 6 pix-
els from the images, decreasing the available features
by 32% and 62%, respectively. The attacker uses the
cropped images for training and testing the classifier, as

USENIX Association 27th USENIX Security Symposium 1309

∆ SR % τ̄D

1 32% 67/3 0.070
2 62% 86/7 0.054

3 shallow 99/10 0.035
4 narrow 82/20 0.027

5 35000 93/18 0.032
6 50000 80/80 0.026

7 45000 90/18 0.029
8 50000 96/19 0.034

9 18% 80/4 0.011
10 41% 80/34 0.022
11 62% 80/80 0.026

Table 3: JSMA on the image classifier

∆ SR % PDR Instances
FAIL:Unknown features

39% 87/63/67 0.93/0.96/0.96 8/4/10
66% 84/71/74 0.94/0.95/0.95 8/4/9

FAIL:Unknown algorithm
shallow 83/65/68 0.97/0.97/0.96 17/14/15
narrow 75/67/72 0.96/0.97/0.96 20/16/17

FAIL:Unavailable training set
35000 73/68/76 0.97/0.96/0.96 17/16/14
50000 78/70/74 0.97/0.97/0.97 18/16/15

FAIL:Unknown training set
45000 82/69/74 0.98/0.96/0.96 16/10/15
50000 70/62/68 0.95/0.96/0.96 17/8/17

FAIL:Read-only features
25% 80/70/72 0.97/0.97/0.97 19/16/15
50% 80/71/76 0.97/0.97/0.97 18/16/13
75% 83/78/79 0.97/0.97/0.96 16/16/12

Table 4: StingRay on the image classifier

∆ SR % PDR Instances

109066 79/3/5 0.99/0.99/1.00 73/50/53
327199 77/12/13 0.99/0.99/1.00 51/50/15

SGD 42/33/42 0.99/0.99/0.99 65/50/31
dSVM 38/35/48 0.99/0.99/0.99 78/50/61

8514 69/27/27 0.90/0.99/0.99 57/50/42
85148 50/50/50 0.99/0.99/0.99 77/50/61

8514 53/21/24 0.93/0.99/1.00 62/50/49
43865 36/29/39 1.04/0.99/0.99 100/50/87

851 73/12/13 0.67/0.99/1.00 50/50/10
8514 49/16/17 0.90/0.99/1.00 61/50/47
85148 32/32/32 0.99/0.99/0.99 79/50/57

Table 5: StingRay on the malware classifier

Tables 3, 4, 5: FAIL analysis of the two applications. For each JSMA experiment, we report the attack SR (perceived/potential), as well as the
mean perturbation τ̄D introduced to the evasion instances. For each StingRay experiment, we report the SR and PDR (perceived/actual/potential), as
well as statistics for the crafted instances on successful attacks (mean/median/standard deviation). ∆ represents the variation of the FAIL dimension
investigated.

well as for crafting instances. On the victim classifier,
the cropped part of the images is added back without al-
tering the perturbations.

With limited knowledge along this dimension (#1-2)
the perceived success remains high, but the actual SR
is very low. This suggests that the evasion attacks are
very sensitive in such scenarios, highlighting a potential
direction for future defenses.

We then model an attacker with limited Algorithm
knowledge, possessing a similar architecture, but with
smaller network capacity. For the shallow network (#3)
the attacker network has one less hidden layer; the nar-
row architecture (#4) has half of the original number of
neurons in the fully connected hidden layers. Here we
observe that the shallow architecture (#3) renders almost
all attacks as successful on the attacker. However, the
potential SR on the victim is higher for the narrow setup
(#4). This contradicts claims in prior work [37], which
state that the used architecture is not a factor for success.
Instance knowledge. In #5 we simulate a scenario in
which the attacker only knows 70% of the victim training
set, while #7-8 model an attacker with 80% of the train-
ing set available and an additional subset of instances
sampled from the same distribution.

These results might help us explain the contradiction
with prior work. Indeed, we observe that a robust at-
tacker classifier, trained on a sizable data set, reduces the
SR to 19%, suggesting that the attack success sharply
declines with fewer victim training instances available.
In contrast, in [37] the SR remains at over 80% because
of the non-random data-augmentation technique used to
build the attacker training set. As a result, the attacker
model is a closer approximation of the victim one, im-
pacting the analysis along the A dimension.

Experiments #9–11 model the case where the attacker
has limited Leverage and is unable to modify some
of the instance features. This could represent a region
where watermarks are added to images to check their in-
tegrity. We simulate it by considering a border in the im-
age from which the modified pixels would be discarded,
corresponding to the attacker being able modify to 18%,
41% and 62% of an image respectively. We observe a
significant drop in transferability, although #11 shows
that the SR is not reduced with leverage above a certain
threshold.

StingRay on the image classifier. We now evaluate the
poisoning attack described in 4.2 under the same scenar-
ios defined above. Table 4 summarizes our results. In
contrast to evasion, the table reports the SR, PDR, and
the number of poison instances needed. Here, besides
the perceived and potential statistics, we also report the
actual SR and PDR (as reflected on the victim when trig-
gering only the attacks perceived successful).

For limited Feature knowledge, we observe that the
perceived SR is over 84% but the actual success rate
drops significantly on the victim. However, the actual
SR for #2 is similar to the white-box attacker (#6), show-
ing that features derived from the exterior regions of an
image are less specific to an instance. This suggests that
although reducing feature knowledge decreases the ef-
fectiveness of StingRay, the specificity of some known
features may still enable successful attacks.

Along the A dimension, we observe that both archi-
tectures allow the attacker to accurately approximate the
deep space distance between instances. While the per-
ceived SR is overestimated, the actual SR of these attacks
is comparable to the white-box attack, showing that ar-

1310 27th USENIX Security Symposium USENIX Association

(a) Limited Feature knowledge. (b) Limited Leverage.

Figure 3: Example of original and crafted images. Images in the left
panel are crafted with 39% and 66% of features unknown. In the right
panel, the images are crafted with 100% and 50% leverage.

chitecture secrecy does not significantly increase the re-
silience against these attacks. The open-source neural
network architectures readily available for many of clas-
sification tasks would aid the adversary. Along the I di-
mension, in #5, the PDR is increased because the smaller
available training set size prevents them from training
a robust classifier. In the white-box attack #6 we ob-
serve that the perceived, actual and potential SRs are dif-
ferent. We determined that this discrepancy is caused
by documented nondeterminism in the implementation
framework. This affects the order in which instances
are processed, causing variance on the model parameters,
which in turns reflects on the effectiveness of poisoning
instances. Nevertheless, we observe that the potential
SR is higher in #5, even though the amount of available
information is larger in #6. This highlights the benefit of
a fine-grained analysis along all dimensions, since the
attack success rate may not be monotonic in terms of
knowledge levels.

Surprisingly, we observe that the actual SR for #8,
where the attacker has more training instances at their
disposal, is lower than for #7. This is likely caused by
the fact that, with a larger discrepancy between the train-
ing sets of the victim and the attacker classifier, the at-
tacker is more likely to select base instances that would
not be present in the victim training set. After poison-
ing the victim, the effect of crafted instances would not
be bootstrapped by the base instances, and the attacker
fails. The results suggest that the attack is sensitive to
the presence of specific pristine instances in the training
set, and variance in the model parameters could mitigate
the threat. However, determining which instances should
be kept secret is subject for future research.

Limited Leverage increases the actual SR beyond the
white-box attack. When discarding modified pixels, the
overall perturbation is reduced. Thus, it is more likely
that the poison samples will become collectively incon-
spicuous, increasing the attack effectiveness. Figure 3 il-
lustrates some images crafted by constrained adversaries.

The FAIL analysis results show that the perceived
PDR is generally an accurate representation of the ac-
tual value, making it easy for the adversary to assess the
instance inconspicuousness and indiscriminate damage
caused by the attack. The attacks transfer surprisingly
well from the attacker to the victim, and a significant

number of failed attacks would potentially be successful
if triggered on the victim. We observe that limited lever-
age allows the attacker to localize their strategy, crafting
attack instances that are even more successful than the
white-box attack.

StingRay on the malware classifier. In order to evalu-
ate StingRay in the FAIL setting on the malware classi-
fier, we trigger all 1,717 attacks described in 4.2 along 11
dimensions. Table 5 summarizes the results. Experiment
#6 corresponds to the white-box attacker.

Experiments #1–2 look at the case where Features are
unknown to the adversary. In this case, the surrogate
model used to craft poison instances includes only 20%
and 60% of the features respectively. Surprisingly, the
attack is highly ineffective. Although the attacker per-
ceives the attack as successful in some cases, the clas-
sifier trained on the available feature subspace is a very
inaccurate approximation of the original one, resulting
in an actual SR of at most 12%. These results echo
these from evasion, indicating that features secrecy might
prove a viable lead towards effective defenses. We also
investigate adversaries with various degrees of knowl-
edge about the classification Algorithm. Experiment #3
trains a linear model using the Stochastic Gradient De-
scent (SGD) algorithm, and in #4 (dSVM), the hyper-
parameters of the SVM classifier are not known by the
attacker. Compared with the original Drebin SVM clas-
sifier, the default setting in #4 uses a larger regulariza-
tion parameter. This suggests that regularization can help
mitigate the impact of individual poison instances, but
the adversary may nevertheless be successful by inject-
ing more crafted instances in the training set.

Instance knowledge. Experiments #5–6 look at a sce-
nario in which the known instances are subsets of S∗.
Unsurprisingly, the attack is more effective as more in-
stances from S∗ become available. The attacker’s in-
ability to train a robust surrogate classifier is reflected
through the large perceived PDR. For experiments #7–
8, victim training instances are not available to the at-
tacker, their classifier being trained on samples from the
same underlying distribution as S∗. Under these con-
straints, the adversary could only approximate the effect
of the attack on the targeted classifier. Additionally, the
training instances might be significantly different than
the base instances available to the adversary, canceling
the effect of crafted instances. The results show, as in
the case of the image classifier, that poison instances are
highly dependent on other instances present in the train-
ing set to bootstrap their effect on target misclassifica-
tion. We further look at the impact of limited Lever-
age on the attack effectiveness. Experiments #9–11 look
at various training set sizes for the case where only the
features extracted from AndroidManifest.xml are modifi-

USENIX Association 27th USENIX Security Symposium 1311

StingRay RONI tRONI MM
∣I∣/SR%/PDR Fix%/PDR

Images 16/70/0.97 -/- -/- -/-
Malware 77/50/0.99 0/0.98 15/0.98 -/-
Exploits 7/6/1.00 0/0.97 40/0.67 0/0.33
Breach 18/34/0.98 -/- 20/0.96 55/0.91

Table 6: Effectiveness of StingRay and of existing defenses against
it on all applications. Each attack cell reports the average number of
poison instances ∣I∣, the SR and actual PDR. Each defense cell reports
the percentage of fixed attacks and the PDR after applying it.

able. These features correspond to approximately 40%
of the 545,333 existing features. Once again, we observe
that the effectiveness of a constrained attacker is reduced.
This signals that a viable defense could be to extract fea-
tures from uncorrelated sources, which would limit the
leverage of such an attacker.

The FAIL analysis on the malware classifier reveals
that the actual drop in performance of the attacks is in-
significant on all dimensions, but the attack effectiveness
is generally decreased for weaker adversaries. However,
feature secrecy and limited leverage appear to have the
most significant effect on decreasing the success rate,
hinting that they might be a viable defense.

5.2 Effectiveness of StingRay

In this section we explore the effectiveness of StingRay
across all applications described in 4.2 and compare ex-
isting defense mechanisms in terms of their ability to pre-
vent the targeted mispredictions. Table 6 summarizes our
findings. Here we only consider the strongest (white-
box) adversary to determine upper bounds for the re-
silience against attacks, without assuming any degree of
secrecy.
Image classifier. We observe that the attack is success-
ful in 70% of the cases and yields an average PDR of
0.97, requiring an average of 16 instances. Upon further
analysis, we discovered that the performance drop is due
to other testing instances similar to the target being mis-
classified as yd . By tuning the attack parameters (e.g.
the layer used for comparing features or the degree of
allowed perturbation) to generate poison instances that
are more specific to the target, the performance drop on
the victim could be further reduced at the expense of
requiring more poisoning instances. Nevertheless, this
shows that neural nets define a fine-grained boundary be-
tween class-targeted and instance-targeted poisoning at-
tacks and that it is not straightforward to discover it, even
with complete adversarial knowledge.

None of the three poisoning defenses are applicable on
this task. RONI and tRONI require training over 50,000
classifiers for each level of inspected negative impact.

This is prohibitive for neural networks which are known
to be computationally intensive to train. Since we could
not determine reliable timestamps for the images in the
data set, MM was not applicable either.
Malware classifier. StingRay succeeds in half of the
cases and yields a negligible performance drop on the
victim. The attack being cut off by the crafting budget
on most failures (Cost B.VII) suggests that some targets
might be too ”far” from the class separator and that mov-
ing this separator becomes difficult. Nevertheless, un-
derstanding what causes this hardness remains an open
question.

On defenses, we observe that RONI often fails to
build correctly-predicting folds on Drebin and times out.
Hence, we investigate the defenses against only 97 suc-
cessful attacks for which RONI did not timeout. MM
rejects all training instances while RONI fails to detect
any attack instances. tRONI detects very few poison in-
stances, fixing only 15% of attacks, as they do not have a
large negative impact, individually, on the misclassifica-
tion of the target. None of these defenses are able to fix
a large fraction of the induced mispredictions.
Exploit predictor. While poisoning a small number of
instances, the attack has a very low success rate. This is
due to the fact that the non-Twitter features are not mod-
ifiable; if the data set does not contain other vulnerabili-
ties similar to the target (e.g. similar product or type), the
attack would need to poison more CVEs, reaching Nmax
before succeeding. The result, backed by our FAIL anal-
ysis of the other linear classifier in Section 5.1, highlights
the benefits of built-in leverage limitations in protecting
against such attacks.

MM correctly identifies the crafted instances but also
marks a large fraction of positively-labeled instances as
suspicious. Consequently, the PDR on the classifier is
severely affected. In instances where it does not timeout,
RONI fails to mark any instance. Interestingly, tRONI
marks a small fraction of attack instances which helps
correct 40% of the predictions but still hurting the PDR.
The partial success of tRONI is due to two factors: the
small number of instances used in the attack and the lim-
ited leverage for the attacker, which boosts the negative
impact of attack instances through resampling. We ob-
served that due to variance, the negative impact com-
puted by tRONI is larger than the one perceived by the
attacker for discovered instances. The adversary could
adapt by increasing the confidence level of the statistic
that reflects negative impact in the StingRay algorithm.
Data breach predictor: The attacks for this application
correspond to two scenarios, one with limited leverage
over the number of time series features. Indeed, the one
in which the attacker has limited leverage has an SR of
5%, while the other one has an SR of 63%. This cor-
roborates our observation of the impact of adversarial

1312 27th USENIX Security Symposium USENIX Association

leverage for the exploit prediction. RONI fails due to
consistent timeouts in training the random forest classi-
fier. tRONI fixes 20% of the attacks while decreasing the
PDR slightly. MM is a natural fit for the features based
on time series and is able to build more balanced voting
folds. The defense fixes 55% of mispredictions, at the
expense of lowering the PDR to 0.91.

Our results suggest that StingRay is practical against a
variety of classification tasks—even with limited degrees
of leverage. Existing defenses, where applicable, are eas-
ily bypassed by lowering the required negative impact of
crafted instances. However, the reduced attack success
rate on applications with limited leverage suggests new
directions for future defenses.

6 Related Work

Several studies proposed ways to model adversaries
against machine learning systems. [25] proposes FTC
—features, training set, and classifier, a model to de-
fine an attacker’s knowledge and capabilities in the case
of a practical evasion attack. Unlike the FTC model,
the FAIL model is evaluated on both test- and training-
time attacks, enables a fine-grained analysis of the di-
mensions and includes Leverage. These characteristics
allow us to better understand how the F and L dimen-
sions influence the attack success. Furthermore, [27, 7]
introduce game theoretical Stackelberg formulations for
the interaction between the adversary and the data miner
in the case of data manipulations. Adversarial limita-
tions are also discussed in [22]. Several attacks against
machine learning consider adversaries with varying de-
grees of knowledge, but they do not cover the whole
spectrum [4, 35, 37]. Recent studies investigate transfer-
ability, in attack scenarios with limited knowledge about
the target model [36, 28, 9]. The FAIL model unifies
these dimensions and can be used to model these capabil-
ities systematically across multiple attacks under realistic
assumptions about adversaries. Unlike game theoretical
approaches, FAIL does not assume perfect knowledge on
either the attacker or the defender. By defining a wider
spectrum of adversarial knowledge, FAIL generalizes the
notion of transferability.

Prior work introduced indiscriminate and targeted poi-
soning attacks. For indiscriminate poisoning, a spam-
mer can force a Bayesian filter to misclassify legitimate
emails by including a large number of dictionary words
in spam emails, causing the classifier to learn that all to-
kens are indicative of spam [3] An attacker can degrade
the performance of a Twitter-based exploit predictor by
posting fraudulent tweets that mimic most of the features
of informative posts [40]. One could also the damage
overall performance of an SVM classifier by injecting a
small volume of crafted attack points [5]. For targeted

poisoning, a spammer can trigger the filter against a spe-
cific legitimate email by crafting spam emails resembling
the target [34]. This was also studied in the healthcare
field, where an adversary can subvert the predictions for
a whole target class of patients by injecting fake patient
data that resembles the target class [32]. StingRay is a
model-agnostic targeted poisoning attack and works on
a broad range of applications. Unlike existing targeted
poisoning attacks, StingRay aims to bound indiscrimi-
nate damage to preserve the overall performance.

On neural networks, [23] proposes a targeted poison-
ing attack that modifies training instances which have
a strong influence on the target loss. In [51], the
poisoning attack is a white-box indiscriminate attack
adapted from existing evasion work. Furthermore, [29]
and [20] introduce backdoor and trojan attacks where ad-
versaries cause the classifiers to misbehave when a trig-
ger is present in the input. The targeted poisoning at-
tack proposed in [11] requires the attacker to assign la-
bels to crafted instances. Unlike these attacks, StingRay
does not require white-box or query access the original
model. Our attack does not require control over the la-
beling function or modifications to the target instance.

7 Discussion

The vulnerability of ML systems to evasion and poi-
soning attacks leads to an arms race, where defenses
that seem promising are quickly thwarted by new at-
tacks [17, 37, 38, 9]. Previous defenses make implicit as-
sumptions about how the adversary’s capabilities should
be constrained to improve the system’s resilience to at-
tacks. The FAIL adversary model provides a framework
for exposing and systematizing these assumptions. For
example, the feature squeezing defense [49] constrains
the adversary along the A and F dimensions by modify-
ing the input features and adding an adversarial exam-
ple detector. Similarly, RONI constrains the adversary
along the I dimension by sanitizing the training data.
The ML-based systems employed in the security indus-
try [21, 10, 39, 12], often rely on undisclosed features
to render attacks more difficult, thus constraining the F
dimension. In Table 2 we highlight implicit and explicit
assumptions of previous defenses against poisoning and
evasion attacks.

Through our systematic exploration of the FAIL di-
mensions, we provide the first experimental comparison
of the importance of these dimensions for the adversary’s
goals, in the context of targeted poisoning and evasion at-
tacks. For a linear classifier, our results suggest that fea-
ture secrecy is the most promising direction for achieving
attack resilience. Additionally, reducing leverage can in-
crease the cost for the attacker. For a neural network
based image recognition system, our results suggest that

USENIX Association 27th USENIX Security Symposium 1313

StingRay’s samples are transferable across all dimen-
sions. Interestingly, limiting the leverage causes the at-
tacker to craft instances that are more potent in triggering
the attack. We also observed that secrecy of training in-
stances provides limited resilience.

Furthermore, we demonstrated that the FAIL adver-
sary model is applicable to targeted evasion attacks as
well. By systemically capturing an adversary’s knowl-
edge and capabilities, the FAIL model also defines a
more general notion of attack transferability. In addition
to investigating transferability under certain dimensions,
such as the A dimension in [9] or A and I dimensions
in [37], generalized transferability covers a broader range
of adversaries. At odds with the original findings in [37],
our results suggest a lack of generalized-transferability
for a state of the art evasion attack; while highlighting
feature secrecy as the most prominent factor in reduc-
ing the attack success rate. Future research may utilize
this framework as a vehicle for reasoning about the most
promising directions for defending against other attacks.

Our results also provide new insights for the broader
debate about the generalization capabilities of neural net-
works. While neural networks have dramatically re-
duced test-time errors for many applications, which sug-
gests they are capable of generalization (e.g. by learn-
ing meaningful features from the training data), recent
work [53] has shown that neural networks can also mem-
orize randomly-labeled training data (which lack mean-
ingful features). We provide a first step toward under-
standing the extent to which an adversary can exploit this
behavior through targeted poisoning attacks. Our results
are consistent with the hypothesis that an attack, such as
StingRay, can force selective memorization for a target
instance while preserving the generalization capabilities
of the model. We leave testing this hypothesis rigorously
for future work.

8 Conclusions

We introduce the FAIL model, a general framework for
evaluating realistic attacks against machine learning sys-
tems. We also propose StingRay, a targeted poisoning at-
tack designed to bypass existing defenses. We show that
our attack is practical for 4 classification tasks, which use
3 different classifiers. By exploring the FAIL dimen-
sions, we observe new transferability properties in ex-
isting targeted evasion attacks and highlight characteris-
tics that could provide resiliency against targeted poison-
ing. This exploration generalizes the prior work on attack
transferability and provides new results on the transfer-
ability of poison samples.

Acknowledgments We thank Ciprian Baetu, Jonathan
Katz, Daniel Marcu, Tom Goldstein, Michael Maynord,
Ali Shafahi, W. Ronny Huang, our shepherd, Patrick Mc-
Daniel and the anonymous reviewers for their feedback.
We also thank the Drebin authors for giving us access to
their data set and VirusTotal for access to their service.
This research was partially supported by the Department
of Defense and the Maryland Procurement Office (con-
tract H98230-14-C-0127).

References
[1] ALEXEY MALANOV 12 POSTS MALWARE EXPERT, ANTI-

MALWARE TECHNOLOGIES DEVELOPMENT, K. L. The mul-
tilayered security model in kaspersky lab products, Mar 2017.

[2] ARP, D., SPREITZENBARTH, M., HUBNER, M., GASCON, H.,
AND RIECK, K. Drebin: Effective and explainable detection of
android malware in your pocket. In NDSS (2014).

[3] BARRENO, M., NELSON, B., JOSEPH, A. D., AND TYGAR,
J. D. The security of machine learning. Machine Learning 81
(2010), 121–148.

[4] BIGGIO, B., CORONA, I., MAIORCA, D., NELSON, B.,
ŠRNDIĆ, N., LASKOV, P., GIACINTO, G., AND ROLI, F. Eva-
sion attacks against machine learning at test time. In Joint Euro-
pean Conference on Machine Learning and Knowledge Discov-
ery in Databases (2013), Springer, pp. 387–402.

[5] BIGGIO, B., NELSON, B., AND LASKOV, P. Poisoning attacks
against support vector machines. arXiv preprint arXiv:1206.6389
(2012).

[6] BOJARSKI, M., YERES, P., CHOROMANSKA, A., CHOROMAN-
SKI, K., FIRNER, B., JACKEL, L., AND MULLER, U. Explain-
ing how a deep neural network trained with end-to-end learning
steers a car. arXiv preprint arXiv:1704.07911 (2017).

[7] BRÜCKNER, M., AND SCHEFFER, T. Stackelberg games for
adversarial prediction problems. In Proceedings of the 17th ACM
SIGKDD international conference on Knowledge discovery and
data mining (2011), ACM, pp. 547–555.

[8] CARLINI, N., AND WAGNER, D. Adversarial examples are not
easily detected: Bypassing ten detection methods. In Proceedings
of the 10th ACM Workshop on Artificial Intelligence and Security
(2017), ACM, pp. 3–14.

[9] CARLINI, N., AND WAGNER, D. Towards evaluating the robust-
ness of neural networks. In Security and Privacy (SP), 2017 IEEE
Symposium on (2017), IEEE, pp. 39–57.

[10] CHAU, D. H. P., NACHENBERG, C., WILHELM, J., WRIGHT,
A., AND FALOUTSOS, C. Polonium : Tera-scale graph min-
ing for malware detection. In SIAM International Conference on
Data Mining (SDM) (Mesa, AZ, April 2011).

[11] CHEN, X., LIU, C., LI, B., LU, K., AND SONG, D. Targeted
Backdoor Attacks on Deep Learning Systems Using Data Poison-
ing. ArXiv e-prints (Dec. 2017).

[12] COLVIN, R. Stranger danger - introducing smartscreen
application reputation. http://blogs.msdn.com/b/ie/
archive/2010/10/13/stranger-danger-introducing-

smartscreen-application-reputation.aspx, Oct 2010.

[13] CRETU, G. F., STAVROU, A., LOCASTO, M. E., STOLFO, S. J.,
AND KEROMYTIS, A. D. Casting out demons: Sanitizing train-
ing data for anomaly sensors. In Security and Privacy, 2008. SP
2008. IEEE Symposium on (2008), IEEE, pp. 81–95.

1314 27th USENIX Security Symposium USENIX Association

http://blogs.msdn.com/b/ie/archive/2010/10/13/stranger-danger-introducing-smartscreen-application-reputation.aspx
http://blogs.msdn.com/b/ie/archive/2010/10/13/stranger-danger-introducing-smartscreen-application-reputation.aspx
http://blogs.msdn.com/b/ie/archive/2010/10/13/stranger-danger-introducing-smartscreen-application-reputation.aspx

[14] ERNST YOUNG LIMITED. The future of underwriting. http:

//www.ey.com/us/en/industries/financial-services/
insurance/ey-the-future-of-underwriting, 2015.

[15] FAIR ISAAC CORPORATION. FICO enterprise security score
gives long-term view of cyber risk exposure, November 2016.
ttp://www.fico.com/en/newsroom/fico-enterprise-
security-score-gives-long-term-view-of-cyber-

risk-exposure-10-27-2016.

[16] GILAD-BACHRACH, R., DOWLIN, N., LAINE, K., LAUTER,
K., NAEHRIG, M., AND WERNSING, J. Cryptonets: Applying
neural networks to encrypted data with high throughput and accu-
racy. In International Conference on Machine Learning (2016),
pp. 201–210.

[17] GOODFELLOW, I. J., SHLENS, J., AND SZEGEDY, C. Ex-
plaining and harnessing adversarial examples. arXiv preprint
arXiv:1412.6572 (2014).

[18] GOOGLE RESEARCH BLOG. Assisting pathologists
in detecting cancer with deep learning. https:

//research.googleblog.com/2017/03/assisting-
pathologists-in-detecting.html, Mar 2017.

[19] GROSSE, K., PAPERNOT, N., MANOHARAN, P., BACKES,
M., AND MCDANIEL, P. Adversarial perturbations against
deep neural networks for malware classification. arXiv preprint
arXiv:1606.04435 (2016).

[20] GU, T., DOLAN-GAVITT, B., AND GARG, S. Badnets: Identi-
fying vulnerabilities in the machine learning model supply chain.
arXiv preprint arXiv:1708.06733 (2017).

[21] HEARN, M. Abuse at scale. In RIPE 64 (Ljublijana, Slovenia,
Apr 2012). https://ripe64.ripe.net/archives/video/
25/.

[22] HUANG, L., JOSEPH, A. D., NELSON, B., RUBINSTEIN, B. I.,
AND TYGAR, J. Adversarial machine learning. In Proceedings
of the 4th ACM workshop on Security and artificial intelligence
(2011), ACM, pp. 43–58.

[23] KOH, P. W., AND LIANG, P. Understanding black-box predic-
tions via influence functions. arXiv preprint arXiv:1703.04730
(2017).

[24] KRIZHEVSKY, A., AND HINTON, G. Learning multiple layers
of features from tiny images. Citeseer (2009).

[25] LASKOV, P., ET AL. Practical evasion of a learning-based clas-
sifier: A case study. In Security and Privacy (SP), 2014 IEEE
Symposium on (2014), IEEE, pp. 197–211.

[26] LECUN, Y. The mnist database of handwritten digits.
http://yann.lecun.com/exdb/mnist/ (1998).

[27] LIU, W., AND CHAWLA, S. A game theoretical model for ad-
versarial learning. In Data Mining Workshops, 2009. ICDMW’09.
IEEE International Conference on (2009), IEEE, pp. 25–30.

[28] LIU, Y., CHEN, X., LIU, C., AND SONG, D. Delving into
transferable adversarial examples and black-box attacks. arXiv
preprint arXiv:1611.02770 (2016).

[29] LIU, Y., MA, S., AAFER, Y., LEE, W.-C., ZHAI, J., WANG,
W., AND ZHANG, X. Trojaning attack on neural networks. Tech.
Rep. 17-002, Purdue University, 2017.

[30] LIU, Y., SARABI, A., ZHANG, J., NAGHIZADEH, P., KARIR,
M., BAILEY, M., AND LIU, M. Cloudy with a chance of breach:
Forecasting cyber security incidents. In 24th USENIX Security
Symposium (USENIX Security 15) (2015), pp. 1009–1024.

[31] MIT TECHNOLOGY REVIEW. How to upgrade judges with
machine learning. https://www.technologyreview.com/
s/603763/how-to-upgrade-judges-with-machine-

learning/, Mar 2017.

[32] MOZAFFARI-KERMANI, M., SUR-KOLAY, S., RAGHU-
NATHAN, A., AND JHA, N. K. Systematic poisoning attacks on
and defenses for machine learning in healthcare. IEEE journal of
biomedical and health informatics 19, 6 (2015), 1893–1905.

[33] MUÑOZ-GONZÁLEZ, L., BIGGIO, B., DEMONTIS, A., PAU-
DICE, A., WONGRASSAMEE, V., LUPU, E. C., AND ROLI,
F. Towards poisoning of deep learning algorithms with back-
gradient optimization. In Proceedings of the 10th ACM Workshop
on Artificial Intelligence and Security (2017), ACM, pp. 27–38.

[34] NELSON, B., BARRENO, M., CHI, F. J., JOSEPH, A. D., RU-
BINSTEIN, B. I. P., SAINI, U., SUTTON, C., TYGAR, J. D.,
AND XIA, K. Exploiting machine learning to subvert your spam
filter. In Proceedings of the 1st Usenix Workshop on Large-
Scale Exploits and Emergent Threats (Berkeley, CA, USA, 2008),
LEET’08, USENIX Association, pp. 7:1–7:9.

[35] PAPERNOT, N., MCDANIEL, P., JHA, S., FREDRIKSON, M.,
CELIK, Z. B., AND SWAMI, A. The limitations of deep learn-
ing in adversarial settings. In 2016 IEEE European Symposium
on Security and Privacy (EuroS&P) (2016), IEEE, pp. 372–
387.

[36] PAPERNOT, N., MCDANIEL, P. D., AND GOODFELLOW, I. J.
Transferability in machine learning: from phenomena to black-
box attacks using adversarial samples. CoRR abs/1605.07277
(2016).

[37] PAPERNOT, N., MCDANIEL, P. D., GOODFELLOW, I. J., JHA,
S., CELIK, Z. B., AND SWAMI, A. Practical black-box attacks
against deep learning systems using adversarial examples. In
ACM Asia Conference on Computer and Communications Secu-
rity (Abu Dhabi, UAE, 2017).

[38] PAPERNOT, N., MCDANIEL, P. D., WU, X., JHA, S., AND
SWAMI, A. Distillation as a defense to adversarial perturbations
against deep neural networks. In IEEE Symposium on Security
and Privacy (2016), IEEE Computer Society, pp. 582–597.

[39] RAJAB, M. A., BALLARD, L., LUTZ, N., MAVROMMATIS, P.,
AND PROVOS, N. CAMP: Content-agnostic malware protection.
In Network and Distributed System Security (NDSS) Symposium
(San Diego, CA, Feb 2013).

[40] SABOTTKE, C., SUCIU, O., AND DUMITRA, T. Vulnerability
disclosure in the age of social media: exploiting twitter for pre-
dicting real-world exploits. In 24th USENIX Security Symposium
(USENIX Security 15) (2015), pp. 1041–1056.

[41] SAINI, U. Machine learning in the presence of an adversary:
Attacking and defending the spambayes spam filter. Tech. rep.,
DTIC Document, 2008.

[42] STEINHARDT, J., KOH, P. W. W., AND LIANG, P. S. Certi-
fied defenses for data poisoning attacks. In Advances in Neural
Information Processing Systems (2017), pp. 3520–3532.

[43] SUCIU, O., MĂRGINEAN, R., KAYA, Y., DAUMÉ III, H., AND
DUMITRAŞ, T. When does machine learning fail? generalized
transferability for evasion and poisoning attacks. arXiv preprint
arXiv:1803.06975 (2018).

[44] SZEGEDY, C., ZAREMBA, W., SUTSKEVER, I., BRUNA, J.,
ERHAN, D., GOODFELLOW, I., AND FERGUS, R. Intriguing
properties of neural networks. arXiv preprint arXiv:1312.6199
(2013).

[45] TAMERSOY, A., ROUNDY, K., AND CHAU, D. H. Guilt by as-
sociation: large scale malware detection by mining file-relation
graphs. In KDD (2014).

[46] TRAMÈR, F., ZHANG, F., JUELS, A., REITER, M., AND RIS-
TENPART, T. Stealing machine learning models via prediction
APIs. In 25th USENIX Security Symposium (USENIX Security
16) (Austin, TX, Aug. 2016), USENIX Association.

USENIX Association 27th USENIX Security Symposium 1315

http://www.ey.com/us/en/industries/financial-services/insurance/ey-the-future-of-underwriting
http://www.ey.com/us/en/industries/financial-services/insurance/ey-the-future-of-underwriting
http://www.ey.com/us/en/industries/financial-services/insurance/ey-the-future-of-underwriting
ttp://www.fico.com/en/newsroom/fico-enterprise-security-score-gives-long-term-view-of-cyber-risk-exposure-10-27-2016
ttp://www.fico.com/en/newsroom/fico-enterprise-security-score-gives-long-term-view-of-cyber-risk-exposure-10-27-2016
ttp://www.fico.com/en/newsroom/fico-enterprise-security-score-gives-long-term-view-of-cyber-risk-exposure-10-27-2016
https://research.googleblog.com/2017/03/assisting-pathologists-in-detecting.html
https://research.googleblog.com/2017/03/assisting-pathologists-in-detecting.html
https://research.googleblog.com/2017/03/assisting-pathologists-in-detecting.html
https://ripe64.ripe.net/archives/video/25/
https://ripe64.ripe.net/archives/video/25/
https://www.technologyreview.com/s/603763/how-to-upgrade-judges-with-machine-learning/
https://www.technologyreview.com/s/603763/how-to-upgrade-judges-with-machine-learning/
https://www.technologyreview.com/s/603763/how-to-upgrade-judges-with-machine-learning/

[47] VERIZON. Data breach investigations reports (dbir), February
2012. http://www.verizonenterprise.com/DBIR/.

[48] VIRUSTOTAL. http://www.virustotal.com.

[49] XU, W., EVANS, D., AND QI, Y. Feature squeezing: Detect-
ing adversarial examples in deep neural networks. arXiv preprint
arXiv:1704.01155 (2017).

[50] XU, W., QI, Y., AND EVANS, D. Automatically evading classi-
fiers. In Proceedings of the 2016 Network and Distributed Sys-
tems Symposium (2016).

[51] YANG, C., WU, Q., LI, H., AND CHEN, Y. Generative poi-
soning attack method against neural networks. arXiv preprint
arXiv:1703.01340 (2017).

[52] YOSINSKI, J., CLUNE, J., BENGIO, Y., AND LIPSON, H. How
transferable are features in deep neural networks? In Advances
in neural information processing systems (2014), pp. 3320–3328.

[53] ZHANG, C., BENGIO, S., HARDT, M., RECHT, B., AND
VINYALS, O. Understanding deep learning requires rethinking
generalization. arXiv preprint arXiv:1611.03530 (2016).

Appendix
A The StingRay Attack

Algorithm 1 shows the pseudocode of StingRay’s two
general-purpose procedures. STINGRAY builds a set I
with at least Nmin and at most Nmax attack instances. In
the sample crafting loop, this procedure invokes GET-
BASEINSTANCE to select appropriate base instances for
the target. Each iteration of the loop crafts one poison
instance by invoking CRAFTINSTANCE, which modifies
the set of allowable features (according to FAIL’s L di-
mension) of the base instance. This procedure is specific
to each application. The other application-specific ele-
ments are the distance function D and the method for
injecting the poison in the training set: the crafted in-
stances may either replace or complement the base in-
stances, depending on the application domain. Next, we
describe the steps that overcome the main challenges of
targeted poisoning.

Application-specific instance modification. CRAFTIN-
STANCE crafts a poisoning instance by modifying the set
of allowable features of the base instance. The procedure
selects a random sample among these features, under the
constraint of the target resemblance budget. It then al-
ters these features to resemble those of the target. Each
crafted sample introduces only a small perturbation that
may not be sufficient to induce the target misclassifica-
tion; however, because different samples modify differ-
ent features, they collectively teach the classifier that the
features of t correspond to label yd . We discuss the im-
plementation details of this procedure for the four appli-
cations in Section 4.2.

Crafting individually inconspicuous samples. To en-
sure that the attack instances do not stand out from the

rest of the training set, GETBASEINSTANCE randomly
selects a base instance from S′, labeled with the desired
target class yd , that lies within τD distance from the tar-
get. By choosing base instances that are as close to the
target as possible, the adversary reduces the risk that the
crafted samples will become outliers in the training set.
The adversary can further reduce this risk by trading tar-
get resemblance (modifying fewer features in the crafted
samples) for the need to craft more poison samples (in-
creasing Nmin). The adversary then checks the negative
impact of the crafted instance on the training set sam-
ple S′. The crafted instance xc is discarded if it changes
the prediction on t above the attacker set threshold τNI or
added to the attack set otherwise. To validate that these
techniques result in individually inconspicuous samples,
we consider whether our crafted samples would be de-
tected by three anti-poisoning defenses, discussed in de-
tail in Section 4.1.

Crafting collectively inconspicuous samples. After the
crafting stage, GETPDR checks the perceived PDR on
the available classifier. The attack is considered success-
ful if both adversarial goals are achieved: changing the
prediction of the available classifier and not decreasing
the PDR below a desired threshold τPDR.

Guessing the labels of the crafted samples. By modi-
fying only a few features in crafted sample, CRAFTIN-
STANCE aims to preserve the label yd of the base in-
stance. While the adversary is unable to dictate how the
poison samples will be labeled, they might guess this la-
bel by consulting an oracle. We discuss the effectiveness
of this technique in Section 4.3.

1316 27th USENIX Security Symposium USENIX Association

http://www.verizonenterprise.com/DBIR/
http://www.virustotal.com

	Introduction
	Problem Statement
	Modeling Realistic Adversaries
	Unifying Threat Model Assumptions

	The StingRay Attack
	Bypassing Anti-Poisoning Defenses
	Attack Implementation
	Practical Considerations

	Evaluation
	FAIL Analysis
	Effectiveness of StingRay

	Related Work
	Discussion
	Conclusions
	The StingRay Attack

