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Abstract

FANCI is a novel system for detecting infections with
domain generation algorithm (DGA) based malware by
monitoring non-existent domain (NXD) responses in
DNS traffic. It relies on machine-learning based classifi-
cation of NXDs (i.e., domain names included in negative
DNS responses), into DGA-related and benign NXDs.
The features for classification are extracted exclusively
from the individual NXD that is to be classified. We eval-
uate the system on malicious data generated by 59 DGAs
from the DGArchive, data recorded in a large university’s
campus network, and data recorded on the internal net-
work of a large company. We show that the system yields
a very high classification accuracy at a low false positive
rate, generalizes very well, and is able to identify previ-
ously unknown DGAs.

1 Introduction

Modern botnets rely on domain generation algo-
rithms (DGAs) for establishing a connection with their
command & control (C2) server instead of using fixed
domain names or fixed IP addresses [14} 2]. According
to DGArchiveE], to date more than 72 different DGAs are
known and the number is expected to further increase
[14] as DGAs significantly improve a botnet’s resistance
against takedown. A DGA generates a set of malicious
algorithmically-generated domains (mAGDs) serving as
potential rendezvous domains with a C2 server. The bots
subsequently query the domain name system (DNS) for
the IP addresses of these domains. The amount of do-
mains generated per day varies between 1 and 10,000
depending on the DGA [14]]. The botmaster registers a
few of these mAGDs. If these are queried by the bots,
the bots obtain a valid IP address for their C2 server. All
of the many other queries of the bots will result in non-
existent domain (NXD) responses.

'https://dgarchive.caad.fkie.fraunhofer.de/

In the past, monitoring DNS traffic (successfully re-
solving and/or non-resolving) has been used as primary
or additional source of information in detecting mali-
cious activity in a network (e.g., [2, 16, (1819, 4]). Some
of these approaches have concentrated on identifying C2
servers, others have focused on identifying infected de-
vices or detecting malicious domains in general. These
prior approaches, however, all require the correlation
of information extracted from groups of DNS queries
and/or responses and thus typically require extensive
tracking. In addition, many of these prior approaches
are based on clustering, which involves manual labelling
of the identified clusters. While these prior works show
promising detection capabilities, little information on the
efficiency of the detection process in terms of time and
memory requirements is reported.

This work presents FANCI: Feature-based Auto-
mated NXDomain Classification and Intelligence, a
novel system for detecting infections with DGA-based
malware by monitoring NXD responses. FANCI’s
classification module uses an machine learning (ML)-
classifier (random forests (RFs) or support vector ma-
chines (SVMs)) to separate NXDs into benign non-
existent domains (bNXDs) and mAGDs. This classifier
uses a small number of language-independent features
that can efficiently be extracted from the domain names
included in NXD responses alone. Other contextual in-
formation extracted from the full NXD response that car-
ried the domain name, from other related DNS responses,
or from any other source are not required.

We extensively evaluate FANCI’s classification mod-
ule on malicious data obtained from DGArchive [[14] and
data recorded in the campus network of RWTH Aachen
Universityﬂ and in the internal network of the Siemens
AP The evaluation shows that FANCI is able to de-
tect unknown DGAs with a detection accuracy of over
99% at a very low false positive rate. Unlike prior work,

“https://www.rwth-aachen.de
3https://www.siemens.com

USENIX Association

27th USENIX Security Symposium 1165


https://dgarchive.caad.fkie.fraunhofer.de/
https://www.rwth-aachen.de
https://www.siemens.com

we also show that FANCI generalizes very well, that is,
it maintains its detection quality even when applied to
data recorded in a network different from the one it was
trained in. Applying FANCI, we were able to identify ten
DGAs not included in the DGArchive at the time of writ-
ing. We reckon that at least four of them were completely
unknown, while the others most likely result from un-
known seeds or are variations of known DGAs. Finally,
our system is very efficient with respect to both training
(5.66 min on 92,102 samples) and prediction (0.0025 s
per sample) such that it is even able to perform on-the-
fly detection in large networks without sampling.
FANCT’s lightweight feature design and its generaliz-
ability allows for versatile application scenarios, includ-
ing the use of its classification as a service, and its use in
large-scale networks as well as on home-grade hardware.

2 Preliminaries

In this section, we provide a brief overview on the types
of mAGDs different DGAs generate and categorize dif-
ferent types of domain names that occur in NXD re-
sponses due to benign causes. This is followed by an
overview of the supervised learning classifiers we use in
this work. Note that throughout this work, we always use
NXD response to refer to the entire UDPE] packet contain-
ing the DNS response. In contrast, we refer to NXD as
the bare domain name included in such a response.

2.1 Domain Names in NXD Responses

In order to highlight the diversity in the generation
schemes used by different DGAs, [Figure T]illustrates ex-
ample mAGDs of six different DGAs. Where mAGDs
generated by Kraken, Corebot, and Torpig look com-
pletely random, the mAGDs of Matsnu are concatena-
tions of genuine English words. mAGDs of Volatile-
Cedar are all permutations of the same base domain
name and Dyre generates mAGDs of equal length that
consist of a 3 character prefix followed by a hash-like
string.

In addition to NXDs generated by DGAs (i.e.,
mAGDs), there are mainly three groups of benign
non-existent domains (bNXDs) originating from typ-
ing errors, misconfigurations, and misuse, respectively,
where misconfiguration and misuse belong to the group
of benign algorithmically-generated domains (bAGDs).
bAGDs are, like mAGDs, generated algorithmically but
originate from benign software and only have benign
purposes. Typing error bNXDs are caused by humans
misspelling existing domain names. Misconfiguration

4in rare cases TCP is used

bknllsnbfzqr.net
cdzogoexis . tv
hdozpcy .com

3lgrupwdivsfm2w4kng2iha.ddns. net
ojyvips6klsngpy .in
af5fmb78sbunodc.ws

(a) Kraken (b) Corebot

salt —amount—pattern.com getadobeflashplayer.net
company—depend . com egtadobeflashplayer . net
btkindasaladmw .com etadobgeflashplayer . net

(c) Matsnu (d) VolatileCedar
rbtgebf . biz keal74638023becce522blae8f6caadf80. to
qaskebf.com 18743f7debd036e5de923bbd70a191d009 . in
qaskebf.biz ma4dbf2b2ef5bb0d01a065198fab552b25 . hk

(e) Torpig (f) Dyre

Figure 1: Ilustration of mAGDs of six different DGAs.

wfnfhde

kaqoeizerbo

ahxurofbdughh .rwth—aachen .de
pphrncxkxe.itsec.rwth—aachen.de

univresity .edu
iieee .org
mcirosfot.com
adobe .comm

(a) Typing error (b) Google Chrome

brn001ba99bbcd9 . matha.rwth—aachen . de
cache—cdn. kalaydo .com

fileserverfb6 .fb6.rwth—aachen.de
de—swyx —2.fraba.local

(c) Misconfiguration

Figure 2: Illustration of typical bNXDs from the network
of RWTH Aachen University.

bAGDs are caused by devices or software trying to re-
solve domain names that do not exist (anymore) due to
configuration errors or bugs. Misuse bAGDs are typi-
cally caused by software using DNS for non-intended
purposes. For example, anti-virus software performing
signature checks [17] or Google Chrome, which uses
random domain names to probe its DNS environment

and detect DNS hijacking attempts [19]. shows
example bNXDs for each of the three categories.

2.2 Supervised Learning Classifier

In our work, we focus on supervised learning classifiers,
more specifically on random forests (RFs) and support
vector machines (SVMs) using the two labels benign and
malicious. The labels are known for training purposes.

An RF is an ensemble of multiple decision trees (DTs)
introduced to overcome limitations of a single DT. Pre-
dicting the label of an unknown sample using an RF is
performed by a majority vote of all DTs in the forest.
RFs were originally introduced in [[10] and later on re-
fined, for example, in [} |6]].

An SVM computes a hyperplane during training to

1166 27th USENIX Security Symposium

USENIX Association



separate the training data according to their label. Then,
unknown data can be predicted by determining the loca-
tion of an observed sample in relation to this hyperplane.
SVMs were introduced by Vapnik [7].

3 Features

In this section, we describe the 21 features used by
FANCI to classify NXDs into bNXDs and mAGDs.
We divide the presented features into three categories:
structural features, linguistic features, and statistical fea-
tures. We focus on features that are computationally
lightweight w.r.t. their extraction, do neither require pre-
computations, nor a priori knowledge, and are indepen-
dent of a specific natural language.

Our feature design is naturally inspired by the features
used in related work [14, 12, [16]. However, we focus on
features that can be extracted from an individual domain
name. In particular, we get rid of all features used in pre-
vious work that require additional contextual information
without loss of (in fact rather increasing) accuracy (see

[Section 6).

3.1 Definitions and Notation

Throughout the rest of this paper we use the notations
detailed in the following.

A domain name d is a sequence of characters from an
alphabet X. It consists of a sequence of subdomains sep-
arated by dots: d =s,. ... .s2.51, where s;,i € {1,...,n}
denotes the i-th subdomain of d. Note that the permit-
ted alphabet X in legitimate domain names depends on
local registration authorities. Theoretically, almost all
Unicode characters are permissible [13].

A valid top level domain (TLD) is a TLD that is part
of the official list of TLDs maintained by the Internet
Assigned Numbers Authority (IANA), for example, org,
com, eu, and edu [3]. Currently, 1,547 valid TLDs are
listed in the root zone [11]].

A public suffix is a suffix under which domains are
publicly registrable. This includes valid TLDs as well
as suffixes, such as dyndns. org or co.uk. The Mozilla
Foundation maintains a list of more than 11,000 valid
public sufﬁxef] 18]

A feature is defined as a function .Fof a sample d,
where .% (d) denotes the extracted feature. % (d) can ei-
ther be a single scalar or a vector of scalars. Concatenat-
ing all extracted features results in the feature vector of d.
In the following sections, some of our features (marked
by *) ignore separating dots and some (marked by 1) ig-
nore valid public suffixes. Features ignoring both oper-
ate on a string referred to as dot-free public-suffix-free

Shttps://publicsuffix.org

# Feature Output  Z#(d)) F(da)
1 Domain Name Length integer 19 34
2 ¥ Number of Subdomains integer 2 2
3 ¥ Subdomain Length Mean rational 7.5 25
4 Has www Prefix binary 0 0
5 Has Valid TLD binary 1 1
6 ¥  Contains Single-Character  binary 0 0
Subdomain
7 Is Exclusive Prefix Repeti-  binary 0 0
tion
8 i Contains TLD as Subdo-  binary 0 0
main
9 ¥ Ratio of Digit-Exclusive  rational 0.0 0.0
Subdomains
10 T Ratio of Hexadecimal-  rational 0.0 0.0
Exclusive Subdomains
11 *f  Underscore Ratio rational 0.0 0.0
12 ¥ Contains IP Address binary 0 0
Table 1:  Illustration of 12 structural features

evaluated on the example domains d; and
d>, where di = bnxd.rwth-aachen.de and
d» = dekhlher76avyOqnelivijwdl.ddns.net.
Some features (marked by *) ignore separating dots and
some (marked by ) ignore valid public suffixes.

domain and denoted by dgs¢. Consider for example the
domain name d =itsec.rwth-aachen.de that yields
dgjsy = itsecrwth-aachen.

Note that we ignore separating dots in some of our fea-
tures, because the number of subdomains feature already
reflects the number of subdomains of a domain name and
the dots as such do not provide any additional informa-
tion. We ignore public suffixes in some features as they
are not algorithmically generated. Although a DGA may
vary the public suffix among its mAGDs, it is only able
to choose from the official pool of available public suf-
fixes as otherwise the resulting domain names would not
be resolvable on the public Internet. As benign domain
names have to select public suffixes from the exact same
pool of officially available public suffixes, a public suffix
offers no valuable additional information to distinguish
mAGDs from bNXDs.

3.2 Structural Features

The first feature category focuses on structural prop-
erties of a domain name. gives an overview
of our structural features including an example evalua-
tion on the domain names d; =bnxd.rwth-aachen.de
and dr =dekhlher76avyOqnelivijwdl.ddns.net,
where d is benign and d; is a known mAGD.

In the following, we discuss the non-self-explanatory
structural features #7, #9, #10, and #12 in more detail.

(#7) Is Exclusive Prefix Repetition. This is a bi-
nary feature, which is 1 if and only if the do-
main consists of a single character sequence w that
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# Feature Output  Z(d,) F(do)
13 ¥ Contains Digits binary 0 1
14 *F Vowel Ratio rational 0.21 0.3
15 *f  Digit Ratio rational 0.0 0.2
16 *f  Alphabet Cardinality integer 12 18
17 *#f  Ratio of Repeated Charac-  rational 0.25 0.33
ters

18 #F Ratio of Consecutive Conso- rational 0.67 0.36
nants

19 *F Ratio of Consecutive Digits rational 0.0 0.08

Table 2: Overview of 7 linguistic features applied on the
example domains d; and d5.

is repeated at least twice. For example, for the
domain name rwth-aachen.derwth-aachen.de this
feature evaluates to 1, but for the domain name
rwthrwth-aachen.de it evaluates to 0.

(#9) Ratio of Digit-Exclusive Subdomains. This fea-
ture is computed as the ration of the number of
subdomains consisting exclusively of digits to the
overall number of subdomains. It ignores public
suffixes.  Consider for example the domain name
123.itsec.rwth-aachen.de resulting in 1/3 as it has
3 subdomains (the public suffix de is excluded), where
one of them consists of digits exclusively.

(#10) Ratio of Hexadecimal-Exclusive Subdomains.
This feature is defined analogously to feature (#9) Ratio
of Digit-Exclusive Subdomains.

(#12) Contains IP Address. This is a binary feature,
which is 1 if and only if the domain contains an IP ad-
dress, where IP address refers to common notations of
IPv4 and IPv6 addresses including dots.

3.3 Linguistic Features

To extend our feature set we focus on linguistic charac-
teristics of domain names in the following. These fea-
tures are used to capture deviations from common lin-
guistic patterns of domain names. [lable 2| presents an
overview of all 7 linguistic features. In the following, we
discuss the non-self-explanatory linguistic features #17,
#18, and #19 in detail.

(#17) Ratio of Repeated Characters. The repeated
character ratio is computed on the dgr and is de-
fined as the number of characters occurring more
than once in dyr divided by the alphabet cardinality
(#16). Considering the example domain name d =
bnxd.rwth-aachen.de this feature evaluates to 3/12,
where repeating characters in dy ¢ are n, h, and a.

# Feature Output F(dy)  F(d)
20 *F N-Gram Dist. vector
1-Gram  d; (0.43,1,1.25,1,2,1,1.25)
1-Gram  d, (0.59,1,1.39,1,3,1,2)
21 *t  Entropy rational 3.64 4.05

Table 3: Overview of 2 statistical features evaluated on
the example domains d; and d,.

(#18) Ratio of Consecutive Consonants. This fea-
ture sums up the lengths of disjunct sequences of con-
sonants > 2 and divides the sum by the length of
dgsr. For example, considering the domain name d =
bnxd.rwth-aachen.de results in (8 42)/15 = 0.67,
where dg;; = bnxdrwth-aachen and the consecutive
disjunct consonant sequences are: bnxdrwth and ch.

(#19) Ratio of Consecutive Digits. This feature is de-
fined analogously to feature (#18) Ratio of Consecutive
Consonants.

3.4 Statistical Features

The two statistical features used by FANCI are shown in
Both are explained in detail in the following.

(#20) N-Gram Frequency Distribution [2]. An n-
gram of domain name d is a multi set of all
(also non-disjunct) character sequences e, e € dyf,
with |e] = n.  f" denotes the frequency distri-
bution of the corresponding n-gram. The n-gram
frequency distribution feature is defined as g, =
(Fa G(fn)ﬂmin(fn)?max(fn)’fnvfél‘zsvf(;l]S)’ where F
is the arithmetic mean of f,, o(f") the corresponding
standard deviation, min(f") the minimum, max(f") the
maximum, f” the median, J0.25 the lower quartile, and
1475 the upper quartile. exemplarily illustrates
the evaluation of this feature for 1-grams on the domains
d; and d>. FANCI uses g1,g2,g3 as feature #20 which
results in a vector of 21 output values overall.

(#21) Entropy [14, 2]. The entropy (according to
Shannon) is defined considering the 1-gram frequency
distribution f! of d: —Yeedyy, Pe - 10g2(pe), where pe is
the relative frequency of character ¢ according to f'.

[ble 3| shows example evaluations for the domains d; and
dp.

4 FANCI

In this section, we present Feature-based Automated
NXDomain Classification and Intelligence (FANCI).

1168 27th USENIX Security Symposium

USENIX Association



FANCI is a lightweight system for classifying arbitrary
NXDs into benign and DGA-related solely based on do-
main names. It consists of three modules: training,
classification, and intelligence. provides an
overview of FANCTI’s architecture, of required inputs, of
outputs, and of the way FANCI processes data internally.
The three modules and potential application scenarios
are described in more detail in the following.

4.1 Training Module

As FANCI is based on supervised learning classifiers, it
requires training with labeled data. The training module
implements training of classifiers and requires the input
of labeled mAGDs and bNXDs (see upper left in
[ure 3). We obtain labeled mAGDs for training purposes
from DGArchive. Assuming FANCI operates in a cam-
pus or business network, bNXDs can for example be ob-
tained from the network’s DNS resolver. To obtain an
as clean as possible set of bNXDs for training, we filter
them in a cleaning step against all known mAGDs from
DGArchive [14]. After the cleaning step, feature extrac-
tion is performed for each of the inputs as described in

The output of the training module is a trained model,
ready to be used for classification of unknown NXDs in
the classification module.

4.2 Classification Module

The classification module classifies arbitrary NXDs into
mAGDs and bNXDs based on a model it receives from
the training module (see middle part of [Figure 3). The
classification module operates on an NXD, that is, on an
individual domain name as input submitted for classifi-
cation either by an intelligence module (see
or by any other source as indicated with a dashed arrow
in The output of the classification module is a
label for the submitted NXD that can take either of the
two values benign or malicious.

To perform the classification, first, feature extraction is
performed on the input NXD as described in
Afterwards, the actual classification is performed (cur-
rently either by RFs or by SVMs) on the extracted feature
vector using the previously trained model. The classifi-
cation module can either be used standalone or in com-
bination with the intelligence module.

4.3 Intelligence Module

The intelligence module’s task is to supply intelligence
based on classification results, in particular, find infected
devices and identify new DGAs or unknown seeds. As
opposed to the classification module, which only takes

the NXD itself as input, the intelligence module addi-
tionally takes the source and destination IP address and
the timestamp of each NXD response as input in order to
be able to map a malicious label as classification result
back to the device that initiated the query.

In a first preprocessing step this module extracts the
domain name and the aforementioned meta data from an
NXD response. It uses the classification module to deter-
mine the label of the corresponding NXD and stores the
results including the meta data in a database. To handle
and improve results, postprocessing is performed, which
can be divided into filtering and transformation.

Filtering is performed to further reduce false positives
(FPs) and is carried out by filtering all positives against
two whitelists. An NXD is removed from the positives
list if it ends with a domain name present in one of the
whitelists.

The first whitelist is of global nature and always ap-
plicable. It consists of the top X Alexa domainﬂ where
the exact amount X to use in this step is configurable.
Whitelisting the top Alexa domains is based on the com-
monly made assumption that criminals are not able to
host command & control (C2) servers under the most
popular domains [4} [1]. To avoid whitelisting domain
names such as dyndns.org, we exclude all domains
from this list under which domains are publicly regis-
trable according to Mozilla’s list of public suffixes [8].

The second whitelist is of local nature. It considers
domains occurring with high frequency in the network
FANCI operates in. This list is fully configurable and we
provide examples for two networks in the evaluation part
of this paper (see [Section 5.2.4).

After filtering, transformations are applied on the re-
sults to generate different views on this data and facil-
itate the analysis of the results. These transformations
primary include the grouping of all positives by TLD
or second-level domain, the grouping of NXDs by IP
address of the requesting device, and the grouping by
timestamps. Additionally, string-based searching and fil-
tering of NXDs can be performed. Now, the data is well-
prepared for a manual review and a conclusive interpre-
tation.

4.4 Usage Scenarios

FANCI is a versatile and flexible system and is applicable
in a variety of different scenarios. We mainly differenti-
ate between two major use cases. The first case considers
the usage of FANCI with all of its three modules at a sin-
gle operation site, while the second case takes advantage
of FANCTI’s modular design and considers a distributed
use of FANCI.

Shttps://www.alexa.com/
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Figure 3: Abstract illustration of the architecture and operation of FANCI.

Local. This deployment scenario is typical for corpo-
rate or campus-grade networks, where FANCI can be
used locally as a fully-featured system. Networks of this
size usually have a centralized DNS infrastructure which
eases the deployment of FANCI, in particular the acquisi-
tion of bNXDs to train the classifier and also subsequent
real-time detection using NXD responses. In such a de-
ployment the previously trained model is used to label
NXDs and to provide insights about infected devices to
network administrators and incident handlers.

In some networks (e.g., in a typical university net-
work) DNS traffic of devices can be monitored in a
way such that IP addresses of querying devices are vis-
ible. In this case, FANCI’s intelligence module is able
to map mAGDs detected in NXD responses to infected
devices that queried them. The detection of an infected
device may trigger a monitoring of the successfully re-
solved DNS traffic originating from these devices. Us-
ing FANCT’s classification module trained on success-
fully resolved domains (see[Section 3.3) then enables the
detection of successfully resolving mAGDs and the iden-
tification of C2 servers allowing for blacklisting of cor-
responding IP addresses. Note that starting with moni-
toring the NXD responses only, has the advantage that
much less traffic needs to be handled in this step than if
we would monitor the full DNS traffic. As a DGA typi-
cally generates many more mAGDs that result in NXD
responses than mAGDs that resolve, monitoring NXD
responses is the most promising way to find infected de-
vices. The chance an infected device is able to contact its
C2 server before it has queried a non-resolving mAGD
seem very slim.

In less permissive networks (e.g., in large corporate
networks) DNS traffic may not allow for a direct map-
ping to devices, for example, because of a hierarchi-
cal DNS infrastructure, where central DNS servers only
communicate with subordinate domain controllers. In
this case, the identification of infected devices is less
straight forward but could to some extend be managed
with the help of sinkholing mAGDs detected by FANCI.

FANCI could also be integrated into existing monitor-
ing software and can significantly add value to its de-
tection capabilities by providing directly utilizable threat
intelligence. Domains that were classified as mAGDs by
FANCI can be considered to be high-confidence indica-
tors of compromise (IOCs). Thus, FANCI can trigger
and support a variety of subsequent measures. This may
include proxy log and DNS log analysis, for example to
retrospectively detect further infections and to sinkhole
or blacklist identified C2 domains. Furthermore, the uti-
lization of detected mAGDs on host-based agents or net-
work edge devices like routers or firewalls is possible to
find further infected devices and disrupt C2 traffic at the
same time.

Outsourced. FANCI generalizes well to unknown en-
vironments, which means that some parts can be out-
sourced. In particular, it is possible to perform training
with data obtained from a certain campus-grade network
and use the resulting model to perform detection in other
networks. This enables the use of FANCI in networks,
where it is hard to perform training. For example, this
can be small networks (e.g., those of small businesses),
where it takes too long to get the necessary amount of
data for training or this can be networks, where it is a
non-trivial task to obtain a clean set of bNXDs for super-
vised learning (e.g., ISP networks).

Furthermore, FANCI’s classification module can be
used as a service, for example, accessible via an API
or a web service useable by security software or security
researchers. Note that in this case, only the domain name
in question would have to be submitted to the server. The
entirety of labeled mAGDs could also further be shared
using various mechanisms, for example, as a threat intel-
ligence feed, which can again be integrated into existing
protection efforts of large and medium-sized companies.
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5 Evaluation

In this section, we present an extensive evaluation of
FANCT’s classification module. We compare SVMs and
RFs to find the best performing classifier setup for de-
tecting mAGDs and show that RFs slightly outperform
SVMs in this use case. We show that FANCI’s clas-
sification module generalizes well to unknown network
environments and present a real world application test,
whereby we are able to report new DGAs. Finally, we
evaluated how well FANCTI’s classification module is
able to detect resolving mAGDs in full DNS traffic. Be-
fore presenting our results in detail, we first describe our
evaluation procedure, including a description of the data
sets our evaluation is based on.

5.1 Data Sets

As FANCTI’s classification module relies on supervised
learning classifiers, we require labeled data sets for train-
ing and evaluation. Furthermore, as classification is per-
formed on domain names only, we only require sets of
labeled unique domain names to evaluate classification
performance. The three data sources we use are the
RWTH Aachen University campus network, the internal
network of Siemens AG and the DGA Archive [14].

RWTH Aachen University. The central DNS resolver
of RWTH Aachen University serves as first source for
bNXD responses, which includes a variety of academic
institutes, eduroanﬂ several administrative networks,
student residences, and the University hospital of RWTH
Aachen. The campus network is additionally intercon-
nected with the University of Applied Science Aachen,
and the Research Center Jiilich [15]]. Due to enforce-
ment, a vast majority of devices uses the network’s cen-
tral DNS resolvers. Our bNXD data set is a continu-
ous one-month recording of NXD responses recorded at
the central DNS resolver. We recorded 31 days overall,
more precisely from 22 May 2017 until 21 June 2017. In
this one-month period, we recorded pcap files of NXD
responses with a size of 98.9 GB containing approxi-
mately 700 million NXD responses, that is, on average
we recorded 3.2 GB or 22.6 million NXD responses per
day. In total, this data set comprises 35.8 million unique
NXDs.

Siemens. As a second source for bNXDs we obtained
data from the DNS infrastructure of Siemens. Note that
we only obtained NXDs and not full NXD responses
as this is entirely sufficient for FANCI’s classification

7Education Roaming—WLAN infrastructure for students and em-
ployees, https://eduroam.org

module. This data originates from several central DNS
servers of Siemens AG and covers three regions: Europe,
Asia, and the USA. This broad and international cover-
age guarantees diverse data from different entities and
devices. We obtained data of a two-month period from
September and October 2017 (i.e., 61 days) comprising
31.2 million unique NXDs overall.

The long recording periods for both benign data
sets guarantee a representative data set including dif-
ferent times of the day, different days of the week, and
working and non-working days. To clean our benign
data sets as far as possible we checked our benign
data against DGArchive [14] and removed all known
mAGDs.

DGArchive. To obtain sets of known mAGDs we used
the DGArchive [[14]. mAGDs in DGArchive are com-
puted by using reimplementations of reverse engineered
DGAs and by using corresponding known seeds. Hence,
DGArchive serves as an extremely reliable source for a
malicious data set. Our data set comprises all data avail-
able from DGArchive at the time of writing. We were
able to obtain mAGD data for 1,344 days, ranging from
12 February 2014 until 30 January 2018. In total, this set
contains 72 different DGAs. As our selected ML algo-
rithms at least need a set size of a few hundred NXDs to
perform well, we decided to reduce the set by eliminat-
ing all DGAs with less than 250 unique mAGDs. This
results in 59 remaining DGAs. For our malicious data
set we consider unique mAGDs of these DGAs exclu-
sively. This comprises 49,738,973 unique mAGDs in to-
tal. Across these DGAs, the number of unique mAGDs
is between 251 and 13,488,000.

5.2 Classification Accuracy

In this section, we first determine the best perform-
ing classifier or ensemble of classifiers for detecting
mAGDs. Next, we present several experiments, each to
prove a certain capability of FANCI’s classification mod-
ule. This includes the ability to detect unknown seeds
and unknown DGAs as well as showing that FANCI’s
classification module generalizes very well.

5.2.1 Experimental Setup

Due to the considerable size of our data set, we per-
formed random sampling to generate sets for our eval-
uations. Each data set is composed of as many bNXDs
as mAGDs, and is created by performing fresh uniform
random sampling for each single set from our benign
data sets. Depending on the corresponding experiment,
the malicious data is either drawn uniformly at random
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from the unique mAGDs of all DGAs or from the unique
mAGDs of a single DGA. For sets considering all DGAs,
we strive a uniform representation of all DGAs as far as
possible. The size of a set here denotes the number of
samples in total, that is, the sum of bNXDs and mAGDs.

Depending on the experiment we perform either a
5-fold cross validation (CV) or a leave-one-group-out
(LOGO) CV. In a 5-fold CV the data set is divided into
5 equally sized folds using 4 for training and 1 for pre-
diction. Each fold is used exactly once for prediction.
Resulting statistical metrics are averaged over all 5 runs.
An LOGO CV is in its basic procedure similar to a k-fold
CV, but instead of building k random folds, the folds are
defined regarding a predefined grouping, for example, by
seeds or DGAs.

We determined the optimal parameter settings for the
ML algorithms for two different scenarios with the help
of extensive grid searches on data sets independent of
the ones used for evaluation. The first scenario considers
single-DGA detection, (i.e., one classifier targeting one
specific DGA), where the second targets multi-DGA de-
tection (i.e., one classifier trained to detect all DGASs).
We fixed the resulting parameters and used them in all
subsequent evaluation scenarios including the one done
in the wild. For an excerpt of the results of the grid
searches see

All computations were carried out on the RWTH Com-
pute Cluste

In all experiments, we consider accuracy (ACC) as pri-
mary metric to characterize a classifier’s performance de-
fined as ACC = |TP|+ |TN|/|population|, where |TP| is
the amount of true positives and |TN| the amount of true
negatives. This means that ACC indicates the fraction
of correctly predicted samples. However, for each ex-
periment we additionally present statistics of the follow-
ing four metrics: true positive rate (TPR), true negative
rate (TNR), false negative rate (FNR), and false positive
rate (FPR). For each metric we consider the arithmetic
mean X, the standard deviation &, the minimum Xx,,;,, the
median X, and the maximum X;;,,.

5.2.2 Classifier Selection

In this section, the presented experiments reflect the pro-
cedure to select the best performing classifiers for a real-
world application. For the following experiments we
consider benign data from RWTH Aachen exclusively.
We performed each experiment for SVMs and RFs. As it
is our goal to find the best performing classifier and RFs
perform marginally better than SVMs in most scenarios,
we present results for RFs in the following in detail. Re-

sults for SVMs can be found in

$https://doc.itc.rwth-aachen.de/display/CC

ACC TPR TNR FNR FPR

X 0.99936  0.99989  0.99883 0.00011  0.00117

o 0.00190  0.00050  0.00351 0.00050  0.00351
Xmin 0.98600  0.99400  0.97267 0.00000  0.00000
x 0.99988 1.00000  0.99978 0.00000  0.00022
Xmax 1.00000 1.00000 1.00000 0.00600  0.02733

Table 4: Results for classifying bNXDs and mAGDs of
single DGAs with RFs. In total, 295 sets of 59 DGAs
were considered each evaluated by 5 repetitions of a 5-
fold CV.

Single DGAs. The first experiment covers the detec-
tion of a certain single DGA using a dedicated classifier.
We considered all 59 DGAs and created 5 different sets
per DGA of a maximum set size of 100,000 following
the procedure presented in This means
that each data set always contains an equal number of
mAGDs and bNXDs. Depending on the DGA less than
50,000 unique mAGDs may be available. In these cases
the set size is adjusted accordingly. In summary, this
yields 295 sets of a maximum size of 100,000. For each
set we performed 5-fold CVs, which we repeated 5 times
with fresh, random folds.

[Table 4] presents a statistical description of an RF’s ca-
pabilities in the detection of single DGAs. The mean
ACC is 0.99936 with a small standard deviation of
0.00190. The minimal ACC of 0.98600 is reached in the
detection of Bobax, which is the only outlier. RFs de-
tect 6 out of 59 DGAs (Bamital, Blackhole, Dyre, Sisron,
Tofsee, and UD2) with 100 percent ACC.

Unknown Seeds. In this experiment, we focus on eval-
uating the detection of mAGDs generated by a DGA with
anew seed, where the model is trained with mAGDs gen-
erated by the same DGA using known seeds.

To evaluate this scenario we perform an LOGO CV,
that is, we perform training with mAGDs of all but one
seed of a certain single DGA, perform prediction on the
skipped one, and repeat this procedure for each seed and
DGA. Again, we use data sets with a maximum size of
100,000 and use 5 distinct sets per DGA. We consider
all DGAs with at least two known seeds, which yields
30 DGAs with 550 seeds overall. In total, this results
in 5-550 = 2750 iterations for all available seeds and
DGAs.

A statistical summary of the evaluation results for this
experiment for RFs is depicted in The mean of
the ACC is 0.95319 showing a notable standard deviation
of 0.12499. ACC values are between 0.49900 and 1.0,
where 75 percent of all measures show a higher ACC
than 0.98193. As only 6 DGAs are related to an ACC
lower than 98 percent, the wide range of the ACC can be
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ACC TPR TNR FNR FPR ACC TPR TNR FNR FPR

X 0.95319  0.90689  0.99947 0.09330  0.00053 X 0.98073  0.96389  0.99756 0.02424  0.00244

o 0.12499  0.25005  0.00075 0.25059  0.00075 o 0.00034  0.00065  0.00015 0.00072  0.00015
Xmin 0.49900  0.00000  0.99570 0.00000  0.00000 Xmin 097972  0.96182  0.99726 0.02339  0.00221
X 0.99965  0.99991 0.99960 0.00011 0.00040 x 0.98078  0.96397  0.99759 0.02416  0.00241
Xmax 1.00000  1.00000  1.00000 1.00000  0.00430 Xmax 098119  0.96468  0.99779 0.02649  0.00274

Table 5: Results for LOGO CV for mAGDs of single
DGAs grouped by seed using RFs. In total, 150 sets of
30 DGAs were considered.

ACC TPR TNR FNR FPR

X 0.99759  0.99764  0.99753 0.00236  0.00247

c 0.00009  0.00013  0.00012 0.00013  0.00012
Xpmin 0.99745  0.99739  0.99733 0.00217  0.00228
X 0.99758  0.99762  0.99752 0.00238  0.00248
Xmax 0.99776  0.99783  0.99772 0.00261  0.00267

Table 6: Results for detecting mAGDs with RFs of arbi-
trary mixed DGAs using 5 repetitions of 5-fold CV for
each set. In total, 20 sets were considered.

explained by outliers.

This experiment is the only experiment, where SVMs
perform slightly better than RFs. SVMs achieve a mean
ACC of 0.98315 with a much smaller standard deviation
of 0.06166, but with a similar wide range from 0.49850
to 1.0. Detailed results of this experiments for SVMs are
presented in SVMs are also affected by the
same outliers (i.e., the same DGAs cause problems) as
RFs. In contrast to RFs, SVMs do not consistently miss
all new seeds of these certain DGAs and hence yield a
slightly higher ACC in the mean.

Mixed DGAs. Next, we examine how well a single
classifier trained on some mAGDs of the known DGAs
is able to detect other mAGDs generated by one of these
known DGA:s.

We created 20 sets of a targeted size of 100,000 con-
taining an equal number of mAGDs of each of the 59
DGAs. For DGAs with a too small amount (i.e., less
than 50000/59 ~ 847) of unique mAGDs we included
all available mAGDs of such DGAs, which results in an
effective set size of 92,102. For each of these 20 sets we
performed 5 repetitions of a 5-fold CV.

In its trend, results for detecting mAGDs in sets con-
taining mAGDs of multiple DGAs are similar to the
detection of using dedicated classifiers for each sin-
gle DGAs as presented previously. illustrates
measurement results for RFs. The ACC’s mean is
0.99759 with a very small standard deviation of 0.00009.
Minimum and maximum ACC values are 0.99745 and
0.99776 respectively.

In summary, we state a single classifier trained with

Table 7: Results for LOGO CV for sets of mAGDs of
mixed DGAs grouped by DGA using RFs. In total, 20
sets were considered.

mAGDs of multiple DGAs achieves a very high and sta-
ble ACC in detecting arbitrary mAGDs.

Unknown DGAs. This experiment confirms capabili-
ties in detecting mAGDs of unknown DGAs. To verify
that our classifiers are able to generalize to mAGDs of
unknown DGAs we performed LOGO CV regarding a
grouping by DGA, that is, mAGDs of all but one DGA
are used for training and mAGDs of the left out DGA are
predicted. Sets considered in this experiment are equiva-
lent to sets from the previous experiment, that is, we con-
sider 20 sets with equal numbers of mAGDs per DGA.
This means that for each of the 20 sets we performed 59
iterations of training and prediction leaving one DGA out
at once.

[Table 7]depicts a statistical summary of results for RFs
in detecting mAGDs of unknown DGAs. The ACC is be-
tween 0.97972 and 0.98119 and the mean of the ACC is
0.98073 with a very small standard deviation of 0.00034.
RFs detect 55 out of 59 left out DGAs with an ACC
comparable to the previously presented experiment. We
conclude that we are able to detect mAGDs of unknown
DGA:s.

Classifier Selection. In real-world applications, we
aim at reliably detecting known DGAs as well as un-
known seeds and DGAs. Furthermore, we want to
achieve maximum classification accuracy. Hence, we
have to choose the best performing classifier or ensem-
ble of classifiers to achieve these goals. For this reason,
we additionally evaluated several logical combinations
of classifiers dedicated to single DGAs. In particular, we
tested several or and and combinations, threshold vot-
ing with different thresholds, majority voting, even with
combinations of RFs and SVMs. However, a single RF
classifier trained with all known DGAs outperforms any
of the above ensembles. That is why FANCI uses a single
RF classifier trained with mAGDs of all known DGAs.

5.2.3 Generalization

Up to now, we performed all experiments with test sets
containing bNXDs from RWTH Aachen University. In
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ACC TPR TNR FNR FPR ACC TPR TNR FNR FPR

X 0.99699  0.99815  0.99582 0.00185  0.00418 X 0.99534  0.99937  0.99132 0.00063  0.00868

o 0.00015  0.00018  0.00022 0.00018  0.00022 o 0.00018  0.00007  0.00034 0.00007  0.00034
Xmin 0.99681 0.99787  0.99540 0.00132  0.00372 Xmin 0.99511 0.99920  0.99083 0.00051 0.00799
X 0.99697  0.99812  0.99581 0.00188  0.00419 x 0.99530  0.99939  0.99125 0.00061 0.00875
Xmax 0.99730  0.99868  0.99628 0.00213  0.00460 Xmax 0.99565  0.99949  0.99201 0.00080  0.00917

Table 8: Results for classifying mAGDs of arbitrary
mixed DGAs and bNXD from Siemens applying 5 rep-
etitions of 5-fold CV for 20 sets each of size 100,000
using RFs.

this section, first, we show that FANCI performs with
the same quality when trained and deployed in a different
network. Second, we demonstrate that it is even possible
to perform training with data recorded in one network
and use the resulting classification model in another net-
work. This means that FANCI generalizes well to new
environments.

Mixed DGAs; Training and Prediction Siemens. To
illustrate FANCI’s detection capabilities are independent
of a certain network, we repeated the mixed DGA exper-
iment from but with sets generated with
bNXDs from the Siemens data set. This experiment
yields ACC values comparable to those obtained in the
same setting for RWTH data. The mean ACC is 0.99699
with a small standard deviation of 0.00015, where the
minimum is 0.99681 and the maximum is 0.99730.
illustrates the detailed detection performance when
using data from the Siemens network.

Next, we carry out two experiments proving that our
trained classifiers generalize well to unknown networks,
that is, we examine the scenario of training a classifier
using data from a certain network but use this classifier
somewhere else. To evaluate our loss in ACC when us-
ing a classifier trained in a foreign network we compare
the ACC to scenarios, in which we trained and predicted
using bNXDs from the same network.

Mixed DGAs, Training RWTH, Prediction Siemens
The first experiment considers training using bNXD
from RWTH Aachen and performs prediction on sets
composed with bNXDs from Siemens. The second ex-
periment is performed vice versa. These experiments are
based on the fact that mAGDs do not differ from network
to network, but only bNXDs may be different. For both
benign data sources we consider 20 data sets each gener-
ated as in the previous experiments. Each data set is used
for training once, where prediction is performed for each
of the 20 sets of the other bNXD source. This results in
20-20 = 400 passes for each of the two experiments.
presents results for considering sets contain-

Table 9: Classification accuracy for training on RWTH
Aachen data and prediction on Siemens data using RFs.

ACC TPR TNR FNR FPR

X 0.99785  0.99946  0.99624 0.00054  0.00376

c 0.00009  0.00006  0.00019 0.00006  0.00019
Xomin 0.99771  0.99936  0.99591 0.00048  0.00349
x 0.99784  0.99946  0.99622 0.00054  0.00378
Xmax 0.99800  0.99952  0.99651 0.00064  0.00409

Table 10: Classification accuracy for training on Siemens
data and prediction on RWTH Aachen data using RFs.

ing bNXDs from RWTH Aachen for training and sets
containing bNXDs from Siemens for prediction. The
mean ACC is 0.99534, with a small standard deviation of
0.00018. In comparison to performing training and pre-
diction on sets containing bNXDs from Siemens (see[Ta]
[ble ), the mean ACC is only marginally smaller, namely
0.00165 percentage points. This is explained by an in-
crease of FPs. However, the false negatives (FNs) even
decrease.

Mixed DGAs, Training Siemens, Prediction RWTH
shows results for considering sets containing
bNXDs from Siemens for training and bNXD data from
RWTH Aachen for prediction. In this experiment the
mean ACC is 0.99785, which is in comparison to the
RWTH-only (see experiment even marginally
larger, namely by 0.00026 percentage points. Although
the FPs increase slightly, the FNs decrease. This
confirms the trend from the previous experiment.

Again, we performed all experiments with SVMs and
RFs and RFs perform consistently better than SVMs. Re-
sults for SVMs can be found in[Appendix Al In summary,
the previous experiments show that FANCI is in general
independent of a certain network, generalizes well to un-
known environments, and even allows for outsourcing of
the actual classification.

5.2.4 Additional False Positive Reduction

As highlighted in [Section 4.3] FANCI performs a filter-
ing in the intelligence module to reduce FPs. To evaluate

the efficiency of our filtering approach we consider sets
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Initial Alexa Alexa Alexa + Local
nitial tOp X

red. by % rem. red. by % rem.
RWTH 102 0.08 6,517 7553 1,596
6 502 104 71.79 1,840 77.69 1,455
’ 100 86.49 881 89.88 660
si 102 031 11,395 4785 5961
ﬁ‘gg‘;s 104 752 10,571 5312 5359
’ 106 74.18 2,952 7774 2,544

Table 11: False positive reduction applied with and with-
out local specific whitelist, where the reduction is pre-
sented in percent (red. by %) and the remaining amount
of FPs (rem.) is additionally stated as absolute value.

of all unique FP bNXDs occurred during experiments
presented in the previous sections. As we use a local
specific whitelist in the second filtering step, we con-
sider two data sets, one for RWTH Aachen FP bNXDs
(6,522) and one for Siemens FP bNXDs (11,431). We
evaluated the global filtering step using the Alexa top
100, top 10,000, or top 1,000,000. The local spe-
cific filtering is performed with appropriate whitelists
for each of the networks. For the RWTH Aachen
University network, this list for example includes do-
mains, such as, rwth-aachen.de, sophosxl.net, and
fh-aachen.de. For the Siemens network, this list for
example contains: siemens.net, trendmicro.com,
mcafee.com, and bayer.com. These local specific
whitelists assume that there is no C2 server present in the
campus networks. Additionally, we assume that certain
companies, such as, Sophos, McAfee, and TrendMicro
do not host a C2 server.

[Table 11| presents the results of applying both filter-
ing steps subsequently on these two sets of unique FP

bNXDs. It states the reduction of FPs in percent and the
amount of remaining FPs. For data from RWTH Aachen
we are able to reduce the FPs by 75.53 up to 89.88 per-
cent, which results in 1,596 or 660 remaining FPs respec-
tively. Considering the Siemens network, we reduce the
FPs at least by 47.85 percent resulting in 5,961 domains
and in the best case we reduce the FPs by 77.74 percent
yielding 2,544 domains left.

The results clearly show the efficiency of our subse-
quent FP filtering. Although FANCTI’s classification ac-
curacy is already outstanding, we are able to at least
halve the amount of FPs even when only considering the
Alexa top 100 as whitelist. In the best case we are even
able to reduce FPs to a tenth of the initial amount.

Now, that we have seen FANCI’s capabilities in detect-
ing mAGDs and proved efficiency of our false positive
reduction we present a real world application of FANCI
in the next section.

5.3 Real World

In this section, we present the application of FANCI in
the university network of RWTH Aachen.

Setup. For our real world application test of FANCI
we consider a fresh one-month recording from the cen-
tral DNS resolver of RWTH Aachen University compris-
ing 31 days, more precisely from 13 October 2017 until
12 November 2017, where the data amount is similar to
the recording from This means that FANCI
has to handle approximately 700 million NXD responses
in total, containing 35 million unique NXDs. FANCI is
used with a single RF classifier trained on a set of size
92,102 containing mAGDs of 59 different DGAs and
bNXD from RWTH Aachen network from the data set
described in The set contains bNXDs and
mAGDs in equal parts and equal many mAGDs of each
DGA. We applied FANCI by first using the classification
module on all NXD responses from the fresh recording
and then used the filtering capabilities of the intelligence
module for FP reduction using Alexa’s top 1,000,000.

Results. Applying these two steps we obtained 22,755
unique positive NXDs (~ 0.065%) that occur in 45,510
NXD responses (~ 0.0065%) in total. After a semi-
automatic examination of these remaining positives, we
are able to report 405 unknown mAGDs correspond-
ing to ten different groups either indicating an unknown
DGA (UD) or an unknown seed (US). To find groups
of unknown mAGDs we make use of the different views
provided via FANCT’s intelligence module as presented
in[Section 4.3] Note that unknown, here, means that the
found mAGDs neither are listed in DGArchive nor could
be found via other common sources at the time of writ-
ing. We will submit all findings to DGArchive.
shows representatives of each of the ten groups including
a label indicating if we reckon the group as UD, as US, or
if both seems possible. We carried out the labeling of the
groups with the help of DGArchive, domain knowledge,
and manual research.

By implication, we have seen at most 22,345 unique
FPs in our one-month, real-world test resulting in a
worst-case FPR of approximately 0.00064. As it is hard
to determine correct ground truth in a real-world applica-
tion, this FPR is only of limited significance. For state-
ments about the quality of FANCTI’s classification capa-
bilities, it is more promising to analyze the potential FPs
in more detail. The set of potential FPs is characterized
by a high diversity among the NXDs. shows
twelve potential FPs seen in our real-world evaluation.
They can be classified into two groups: human-generated
and machine-generated. Where human-generated NXDs
usually exhibit natural language patterns or are very sim-
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cxoriilg . host blwemxb . ga

dcveyroohhuz . host yinnic.gq
ktnotybgnqrjvkq. host fyrrzx .ml
ndptbhn . host fhvfbhq . tk
gbeweonxhzlflh. host ihrslrk .cf
zwchzomnkersegz . host xlajbu.cf
(a) UD1 (b) UD2

brn001ba9933850. net
brn001ba99falc7 . net
brw48e244240e9d . net
brwc0f8da79205c . net
brwc48e8fbdfalde . net

agng78sagdfdkjdtwalO8 .com
agng78sagdfdkjdtwal77 .com
agng78sagdfdkjdtwa225 .com
agng78sagdfdkjdtwa316 .com
agng78sagdfdkjdtwa948 .com

(c) UD3 (d) UD4
1917f71a77 . club
1a984212aa.club
21f949298a5 . club
129aala6f7 .space
1459f4a279 . space
1a984212aa.space

ageihehaioeoaiegj.es
rohgoruhgsorhugih.hu
siiifibiiegiiciib .in
iapghahpnpnapcipa . mobi
goiaegodbuebieibg .name
abvainvienvaiebai.info

(e) US1 Locky (H) US2 Infy

3fdqrbnum3fa2jl .3 tfrmn27i.com
c4xf33p7nrvo310h.23 bjj3a0.com
wpdcp7uymO. upl8xtxzouumzd .com
wlh8tjS5fxfh.n51ah7y227y —.com
xgs66mu—uig2u.cjswb3q4m45 .com

539aa5d47547 .com
646892 faf047 .com
52dd1bce8bl10. net
646892 faf010.net
853b3eb55b98 . net

(g) US3 PandaBanker (h) UDS or US4 of Redyms
afyonescortkizlar.xyz
ordubayanescort.xyz
kirikkalebayanescort.xyz
nigdebayanescort.xyz
bayanescortbandirma.xyz
bayanescortbilecik .xyz
afyonescortkizlar.xyz

getbeautifuljacked .xyz
evelynmiller.xyz
juicepress.xyz

quietbranch .xyz
tracyhernandez .xyz
webhostpremium . xyz
wertvollebrillanthobby . xyz

(i) UD6 or USS5 of GozNym (j) UD7 or US6 of GozNym
2nd Stage | Nymaim 2nd Stage | Nymaim

Figure 4: Illustration of unknown mAGDs.

ilar to existing domains, machine-generated NXDs tend
to be either of random nature or of technical origin. As-
signing an NXD to one of these classes is not always pos-
sible without additional information, for example con-
sider the potential FP NXD c.ssl-cd. com, which could
belong to each of the classes.

As there is no striking group of similar NXDs among
the set of potential FPs, this allows us to conclude that
FANCI makes no systematic classification errors under-
lining FANCT’s extraordinary classification performance.

As the network of RWTH Aachen is secured by busi-
ness security software and appliances using blacklists for
known mAGD:s, it is not surprising that we could find al-
most no known mAGD in our real-world test. To be pre-
cise, using DGArchive we were able to identify only 31
unique known mAGDs.

The application of FANCI in a month-month period
in the university network of RWTH Aachen strikingly

eisenbahn—kurirer . de
rwth—aachend . de

www. cibc—global . hk
hotmail .om

www. digitex —eu.com
infonews24 .org

fsztakqwdjfqsc.asa. at

isatap . host

ip38 —201—hypermedia. net . id
103—56—7—42—mebd . net
1979775309.rsc .cdn77 . org
host37 —252.swifthighspeed .com

(a) Human-Generated (b) Machine-Generated

Figure 5: Sample of potential FPs.

illustrates its detection capabilities in real world. Fur-
thermore, this test emphasizes FANCI's ability to detect
unknown mAGDs as well as known mAGDs. To fur-
ther support FANCI’s applicability in real, large-scale
networks we present a consideration of FANCI’s clas-
sification speed in the following.

5.4 Training and Classification Speed

This section presents a brief overview of training
and classification speeds to demonstrate FANCI’s real-
world applicability. All measurements were performed
single-threaded on a Dell OptiPlex 980 with Intel i7
870@2.93GHz CPU and 16GB RAM running Ubuntu
Linux 16.04. We performed training and classification
10 times for each of the mixed sets of size 92,102 used
for our evaluation in Feature extraction is
included in time measurement.

On average, this results in a training time of 339.71
seconds (5,66 minutes) for an RF.

An RF is able to classify 92,102 unknown samples
within 234.76 seconds. This means that on average per-
forming classification of a single unknown sample takes
0.0025 seconds for RFs including feature extraction.

Based on the measurements presented above FANCI is
able to perform classification for 400 packets per second
on a general purpose computer using a single thread. As
in the network of RWTH Aachen University as presented
in on average there are 164 NXD responses
per second with a maximum peak of 900 NXD responses
per second, we can state that FANCI is real-world appli-
cable and is even able to perform live detection in large
networks without sampling.

5.5 Successfully Resolved Domain Names

If a device is detected by FANCI to be infected with a bot
it will ultimately successfully query for the IP address of
its C2 server. If such a successful query can be detected
(e.g., by using FANCI on the successful queries of in-
fected devices after their identification), this reveals the
IP address of a C2 server for the botnet in question.

We therefore present a preliminary evaluation of how
well FANCI is able to separate mAGDs from success-
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ACC TPR TNR FNR FPR

X 0.94962 097387  0.92537 0.02613  0.07463

o 0.00071 0.00068  0.00108 0.00068  0.00108
Xmin 0.94809 097195  0.92328 0.02508  0.07251
x 0.94973  0.97382  0.92530 0.02618  0.07470
Xmax 0.95060  0.97492  0.92749 0.02805  0.07672

Table 12: Classification accuracy for 5-fold CV on
successfully resolved domains and mAGDs of arbitrary
DGAs using RFs.

fully resolving queries. In particular, we performed test
measurements using random forests and a setup similar
to the mixed DGA case presented in In-
stead of bNXDs we composed the data sets of successful
resolved domains from the Siemens network and known
mAGD:s of arbitrary DGAs. As in we per-
formed 5 repeated 5-fold CVs on 20 sets. Without fur-
ther optimizations or new features adapted for success-
fully resolved domains, we achieved a mean ACC of
0.94962 with a small standard deviation of 0.00071, a
minimum of 0.94809 and a maximum of 0.95060.
presents detailed results for this proof of concept
experiment using RFs. Results for SVMs can be found
in[Appendix A

Considering the fact that we only require to process
successfully resolved domains of single devices or small
groups of devices, the previously presented approach
is highly promising for performing identification of C2
servers.

6 Related Work

In the past, monitoring DNS traffic (successfully resolv-
ing and/or non-resolving) has been used as primary or
additional source of information in detecting malicious
activity in a network (e.g., [2| 16} [18| 9, 4]). Some of
these approaches have concentrated on identifying C2
servers (e.g., [18, [16])), others have focused on detect-
ing mAGDs (e.g., [2]), identifying infected devices (e.g.,
[9I]), or detecting malicious URLs in general (e.g., [4]).

The most striking difference between these prior ap-
proaches and FANCI is that they all require more or less
extensive tracking of DNS traffic, that is, they require a
correlation of information extracted from groups of DNS
queries and/or responses (e.g., for features extraction).
In contrast, the features that FANCI’s classification mod-
ule uses when predicting a particular NXD are extracted
from this NXD alone, such that FANCI does not require
any tracking. In addition, many of the prior approaches
are based on clustering, which indulges manual labelling
of the identified clusters. As opposed to this, FANCI
(like [4]) makes use of an ML-classifier.

Detecting mAGDs in successfully resolving DNS traf-
fic allows for identifying C2 servers (see Section [5.5] for
an initial evaluation of FANCI in this context). However,
monitoring only NXD responses has the advantage that
infections with bots can be detected with less delay and
while processing significantly less traffic as the vast ma-
jority of DGAs issue many more NXDs than registered
names.

While the prior works show promising detection ca-
pabilities on specific data sets, little information on their
generalizability and the efficiency of their detection pro-
cess in terms of time and memory requirements is re-
ported. FANCI is highly efficient with respect to both
prediction (0.0025s/sample) and training (5.66min on
92102 samples) and shows a high accuracy with low FPR
in very large scale realistic scenarios even when trained
on a different network.

A fair comparison between FANCI and the prior ap-
proaches with respect to detection accuracy and effi-
ciency is hard to achieve as they aim at slightly different
targets and use different data sets even if they do aim at
the same target. These data sets and the implementations
of the systems are not publicly available. In the follow-
ing, we nevertheless discuss the approaches most closely
related to FANCI in more detail.

Exposure. Bilge et al. [4] introduce a system called
Exposure that aims at detecting malicious domain names
in DNS traffic in general, that is, they do not focus on
mAGDs but also aim at detecting domain names used in
the context of phishing or in the context of hosting mali-
cious code. In contrast to FANCI, Exposure monitors full
DNS traffic and not only NXD responses. Additionally,
Exposure always requires access to more sensitive infor-
mation than FANCI (e.g., access patterns). Like FANCI,
Exposure is based on ML-classification and uses a small
set of carefully selected features. However, the features
are not only extracted from single domain names but also
include features extracted from correlating several DNS
queries or responses. The accuracy of Exposure lies in
a similar range as FANCI’s ACC (but targeting detect-
ing malicious domain names in general) and is evaluated
on real-world data as well. Due to requiring sensitive
and contextual information, Exposure is not as versa-
tile as FANCI especially when it comes to software-as-a-
service deployments.

Winning with DNS Failures. Yadav and Reddy [18]
were the first to consider the detection of botnets lever-
aging both DNS responses of successfully resolving do-
main names and NXD responses. They introduce a sys-
tem primarily targeting at the identification of IP ad-
dresses of C2 servers of DGA-based botnets. The system
is based on narrowing down a set of potentially malicious
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IP addresses by filtering. This filtering requires access to
the overall successfully resolving DNS traffic (in order
to count the number of domains that resolve to a given
IP address), NXD responses in the vicinity of successful
queries, as well as the entropy of failed and successful
DNS queries. The output of the filtering is a set of po-
tential C2 server IP addresses.

Pleidas. Antonakakis et al. [2] present a DGA detec-
tion and discovery system called Pleidas. The system is
able to discover new DGAs by means of clustering and to
detect known DGAs by means of a supervised learning
using a multi-class variant of alternating decision trees.
Applying their system in a large ISP environment over a
period of 15 months, they discovered twelve new DGAs,
where six of them are completely new and six are vari-
ants of previously known ones.

Pleidas uses a set of statistical and structural features,
where all features are extracted from groups of NXD re-
sponses originating from a single hostﬂ The statistical
features include entropy measures and n-grams over the
group of domain names. The structural features comprise
domain lengths, uniqueness and frequency distributions
of TLDs, and the number of subdomain levels present.

Pleidas’ classification accuracy is evaluated on labeled
data. The top 10,000 domains of Alexa serve as benign
class. The malicious data set consists of 60,000 NXD
responses generated by four DGAs, namely Bobax, Con-
ficker, Sinowal, and Murofet. For a group size of 5 NXD
responses of each host the TPR is in the range of 95 and
99 percent and the FPR is between 0.1 and 1.4 percent.
With 10 NXD responses per group, the accuracy slightly
increases. In this case, the TPR is in a range of 99 and
100 percent, where the FPR ranges between 0 and 0.2
percent.

As Pleidas requires tracking of DNS responses for fea-
ture extraction, we expect that it is much less efficient
than FANCI. The reported detection quality is similar to
FANCI but FANCI is evaluated on a more extensive data
set that uses far more DGAs and real world-benign traffic
instead of the top 10,000 domains of Alexa. The gener-
alizability of Pleidas is not evaluated.

Phoenix. Schiavoni et al. [16] present a DGA-based
botnet tracking and intelligence system called Phoenix.
In contrast to the previously presented Pleidas, Phoenix
focuses on intelligence operations instead of DGA de-
tection. This especially includes the tracking of C2 in-
frastructures of botnets regarding their IP address ranges.
However, Phoenix is also capable of labeling DNS traffic
as either DGA-related or benign.

9 As opposed to this, FANCI uses features extracted from individual
NXDs only.

They evaluated the classification performance of
Phoenix on 1,153,516 domains overall including
mAGDs of three different DGAs and bNXDs obtained
from a passive DNS. The evaluation yielded TPRs in
the range of 81.4 and 94.8 percent and is is thus signifi-
cantly lower than FANCI in with respect to mAGDs de-
tection. As the features used are less light-weight and
require tracking we expect Phoenix to be less efficient
than FANCI with respect to speed.

NetFlow. Grill et al. [9] present a different approach
for DGA-based malware detection, with the particular
goal of being applicable in large scale networks in a
privacy-preserving manner. Their system is based on
NetFlow data exclusively, that is, on an aggregation of
metadata of network packets exchanged between a com-
bination of a source IP and port and a destination IP ad-
dress and port. The exported metadata depends on the
particular implementation of NetFlow, but typically in-
cludes: IP addresses, time stamps, port numbers, byte
counters, and packet counters. Grill et al. use the stan-
dardized IPFIX NetFlow format [12]. They perform an
anomaly detection based on the assumption that normal
behaviour of a host is to request an IP address via DNS
for a certain domain name, followed by one or multi-
ple connections to this newly resolved IP address. They
assume that a DGA malware infected device is charac-
terized by regularly issuing DNS requests without subse-
quent connections to new IP addresses.

For their evaluation they performed three experiments
considering different types of hosts, network sizes, and
times of the day. They consider six different DGAs.
The ACC value is in the range of 88.77 and 99.89 per-
cent depending on the setup in question and thus lower
than FANCT’s accuracy. As NetFlow is based on exten-
sive tracking, it can be expected to be less efficient than
FANCI.

DGArchive. Plohmann et al. [14] presented an exten-
sive study of current DGAs. Their paper is based on the
collection and reverse engineering of DGA-based mal-
ware and provides detailed technical insights in the func-
tionality of modern DGAs divisible in three main con-
tributions: a taxonomy of DGAs, a database of DGAs
and corresponding mAGDs called DGArchive, and an
analysis of the landscape of registered mAGDs. While
Plohmann et al. do not implement an automated de-
tection, the DGArchive provides the means to blacklist
known mAGDs. Our work builds on DGArchive in two
ways: we use it to clean our benign traffic before training
and we use it as source for malicious mAGDs.
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7 Conclusion

In this work, we presented FANCI, a versatile system for
the detection of malicious DGA-related domain names
among arbitrary NXD DNS traffic based on supervised
learning classifiers. FANCI’s versatility is a result of
its lightweight and language independent feature design
relying exclusively on domain names for classification.
In our extensive evaluation, we verified FANCI’s highly
accurate and highly efficient detection capabilities of
mAGD:s in different experiments, including its general-
izability. In an one-month real-world application in a
large university network, we were able to discover ten
new DGA-related groups of mAGDs, where at least four
of them originate from brand new DGAs.

With its empirically proven detection capabilities and
a successful real-world test, FANCI can make a decisive
contribution to combating DGA-based botnets. FANCI
is able to provide valuable information to existing secu-
rity solutions and is able to contribute to a higher level
device and network security in a variety of environments.
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Results for SVMs

In this section, we present results for SVMs for the ex-
periments presented in [Section 5.2.2] [Section 5.2.3] and

Section 5.3
ACC TPR TNR FNR FPR
X 0.99930  0.99983  0.99878 0.00017  0.00122
o 0.00190  0.00103  0.00331 0.00103  0.00331
Xmin 098133  0.99188  0.96400 0.00000  0.00000
x 0.99971 1.00000  0.99942 0.00000  0.00058
Xmax 1.00000  1.00000 1.00000 0.00812  0.03600

Table 13: Results for classifying bNXDs and mAGDs of
single DGAs with SVMs. In total, 295 sets of 59 DGAs
were considered each evaluated by 5 repetitions of a 5-

fold

CVv.
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ACC TPR TNR FNR FPR ACC TPR TNR FNR FPR

X 0.98315  0.96713  0.99916 0.03139  0.00084 X 0.99180  0.99252  0.99108 0.00748  0.00892

o 0.06166  0.12291 0.00085 0.11956  0.00085 o 0.00026  0.00014  0.00047 0.00014  0.00047
Xmin 0.49850  0.00000  0.99564 0.00000  0.00000 Xmin 0.99133  0.99211 0.99016 0.00728  0.00793
X 0.99965 1.00000  0.99935 0.00000  0.00065 x 099185  0.99254  0.99112 0.00746  0.00888
Xmax 1.00000  1.00000  1.00000 1.00000  0.00436 Xmax 0.99240  0.99272  0.99207 0.00789  0.00984

Table 14: Results for LOGO CV for mAGDs of single
DGAs grouped by seed using SVMs. In total, 150 sets of
30 DGAs were considered.

ACC TPR TNR FNR FPR

X 0.99464  0.99148  0.99779 0.00852  0.00221

c 0.00017  0.00056  0.00037 0.00056  0.00037
Xomin 0.99430  0.99037  0.99721 0.00755  0.00146
X 0.99468  0.99156  0.99784 0.00844  0.00216
Xomax 0.99492  0.99245  0.99854 0.00963  0.00279

Table 15: Results for detecting mAGDs with SVMs of
arbitrary mixed DGAs using 5 repetitions of 5-fold CV
for each set. In total, 20 sets were considered.

ACC TPR TNR FNR FPR

X 0.97972 096195  0.99746 0.02635  0.00254

c 0.00041  0.00056  0.00040 0.00061  0.00040
Xomin 0.97894  0.96088  0.99672 0.02517  0.00161
X 0.97967  0.96207  0.99747 0.02622  0.00253
Ximax 0.98073  0.96304  0.99839 0.02751 0.00328

Table 16: Results for LOGO CV for sets of mAGDs of
mixed DGAs grouped by DGA using SVMs. In total, 20
sets were considered.

ACC TPR TNR FNR FPR

X 0.99394  0.99331 0.99456 0.00669  0.00544

o 0.00031 0.00070  0.00047 0.00070  0.00047
Xmin 0.99327  0.99135  0.99371 0.00575  0.00467
X 0.99402  0.99341  0.99451 0.00659  0.00549
Xmax 0.99436  0.99425  0.99533 0.00865  0.00629

Table 17: Results for classifying mAGDs of arbitrary
mixed DGAs and bNXD from Siemens applying 5 rep-
etitions of 5-fold CV for 20 sets each of size 100,000
using SVMs.

Table 18: Classification accuracy for training on RWTH
Aachen data and prediction on Siemens data using
SVMs.

ACC TPR TNR FNR FPR

X 0.99448  0.99412  0.99485 0.00588  0.00515

o 0.00017  0.00017  0.00033 0.00017  0.00033
Xmin 0.99419  0.99387  0.99432 0.00558  0.00441
x 0.99447  0.99415  0.99483 0.00585  0.00517
Xmax 0.99479  0.99442  0.99559 0.00613  0.00568

Table 19: Classification accuracy for training on Siemens
data and prediction on RWTH Aachen data using SVMs.

ACC TPR TNR FNR FPR

X 0.93683  0.98900  0.88465 0.01100  0.11535

o 0.00059  0.00049  0.00103 0.00049  0.00103
Xmin 0.93565  0.98807  0.88269 0.00990  0.11371
x 0.93689  0.98913  0.88470 0.01087  0.11530
Xmax 0.93778  0.99010  0.88629 0.01193  0.11731

Table 20: Classification accuracy for 5-fold CV on
successfully resolved domains and mAGDs of arbitrary
DGAs using SVMs.

B Grid Search Results

In this section, we present results for our grid search. To
reduce the number of grid searches that have to be per-
formed for the single-DGA detection, we only did one
grid search per DGA generation scheme as introduced in
the taxonomy by Plohmann et al. [14]. We performed all
grid searches on sets of size 20,000. To avoid overfitting
we performed grid searches on 6 independent sets for the
multi-DGA detection case. The final parameter selection
for multi-DGA detection is based on mathematical con-
straints of the respective ML algorithm and on domain
knowledge on the classification problem. The ML algo-
rithm parameters are named according to standard refer-
ences for SVMs [7]] and RFs [6].

For RFs we performed one grid search per data set as
follows. Parameter T is an integer drawn uniformly at
random from [10, 1000], where we considered 64 values
for T in total. As our feature vector is of length 44, F
is an integer selected from [2,44], where each possible
value is assigned to F. The impurity criterion i(N) is
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either Gini impurity or entropy impurity. This results in
64-43 .2 = 5504 5-fold CVs in total per data set.

For SVMs we performed one grid search per data set
as follows. After some initial tests we fixed the param-
eter range for C and 7y to [2719,23] and considered 80
values drawn logarithmically at random for both param-
eters. This results in 80 5-fold CVs for the linear kernel
and in 80% = 6400 5-fold CVs for the RBF kernel per
data set.

The following tables present the resulting best param-
eter choices according to the ACC.

Set # i(N) F T ACC
1 entropy 25 17 0.9981
2 Gini 10 33 0.9993
3 entropy 22 72 0.9983
4 Gini 7 161 0.9987
5 Gini 13 227 0.9984
6 Gini 31 785 0.9983

Final Gini 18 785 —

Table 21: Best parameter choices for independent data
sets of mixed DGAs for RFs. For the final selection i(N)
is selected by majority vote. F is the arithmetic mean.
For T the maximum is chosen.

Gen. Scheme DGA i(N) F T ACC
Arithmetic Corebot Gini 8 681 0.9999
Hash Dyre Gini 2 388 1.0
Wordlist Matsnu Gini 5 57 0.9999
Permutation VolatileCedar Gini 2 513 1.0

Table 22: Best parameter choices depending on the gen-
eration scheme of the DGA for RFs. The above parame-
ters are used among all experiments where single DGAs
are considered and are applied depending on the DGA’s
generation scheme.

Set # Kernel C Y ACC
1 RBF 2.9423 0.0198 0.9992
2 linear 0.1729 — 0.9982
3 RBF 1.7844 0.0102 0.9985
4 RBF 2.9423 0.0234 0.9982
5 RBF 4.8517 0.0073 0.9982
6 RBF 5.7317 0.0751 0.9979

Final RBF 0.9160 0.0198 —

Table 23: Best parameter choices for independent data
sets of mixed DGAs for SVMs. For the final selection
the kernel is selected by majority vote. C is selected as
median. 7 is chosen as the arithmetic mean. Both only
among the RBF results.

Gen. Scheme DGA Kernel C b4 ACC
Arithmetic Corebot linear  3.4669 — 0.9999
Hash Dyre linear  0.0052 — 1.0
Wordlist Matsnu linear  0.2289 — 0.9999
Permutation VolatileCedar RBF 0.0234 0.0327 1.0

Table 24: Best parameter choices depending on the type
of DGA for SVMs. The above parameters are used
among all experiments where single DGAs are consid-
ered and are applied depending on the DGA’s generation
scheme.
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