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Abstract
Android apps having access to private information

may be legitimate, depending on whether the app pro-
vides users enough semantics to justify the access. Ex-
isting works analyzing app semantics are coarse-grained,
staying on the app-level. That is, they can only identify
whether an app, as a whole, should request a certain per-
mission, but cannot answer whether a specific app behav-
ior under certain runtime context, such as an information
flow, is correctly justified.

To address this issue, we propose FlowCog, an auto-
mated, flow-level system to extract flow-specific seman-
tics and correlate such semantics with given information
flows. Particularly, FlowCog statically finds all the An-
droid views that are related to the given flow via control
or data dependencies, and then extracts semantics, such
as texts and images, from these views and associated lay-
outs. Next, FlowCog adopts a natural language process-
ing (NLP) approach to infer whether the extracted se-
mantics are correlated with the given flow.

FlowCog is open-source and available at https:
//github.com/SocietyMaster/FlowCog. Our
evaluation shows that FlowCog can achieve a precision
of 90.1% and a recall of 93.1%.

1 Introduction
Android apps, due to the nature of their functionali-

ties, often have access to users’ private information. For
example, a weather app may request a user’s location to
provide customized weather services; a call app may ob-
tain or import a user’s phone book to ease the dialing.
While these examples provide legitimate usages of pri-
vate information, some apps may also misuse such infor-
mation, such as stealing users’ call history without their
knowledge.

That said, an app needs to justify an access to users’
private information with sufficient semantics available to
users. For example, a weather app will clearly state that
it provides local weather condition so that a user will un-

derstand its access to location information. In fact, exist-
ing researches have already started to study the seman-
tics of an app’s behaviors. For example, many past re-
searches, such as CHABADA [19], Whyper [27] and Au-
toCog [28], tried to correlate an app’s description, such
as these in Google Play, with the permissions that the app
asks for.

However, existing approaches [19, 27, 28, 37] are
coarse-grained, staying on the app level. They can iden-
tify whether an app should have access to a certain piece
of private information, but cannot justify whether the ac-
cess should happen under certain context. For example,
an app may have two data flows1 [12,15,18,22,24,33] ac-
cessing private information, one providing a customized
service with user’s knowledge, e.g., a pop-up window,
but the other hiding secretly in background and send-
ing information to the Internet without user’s knowledge.
Apparently, the former is legitimate with sufficient se-
mantics, which we call positive in the paper, but the later
is not, hence defined as negative.

In this paper, we propose an automated, flow-level sys-
tem, called FlowCog, to extract and analyze semantics
for each information flow of an Android app. FlowCog
is fine-grained, because it extracts flow-specific seman-
tics called context, e.g., information in a registration in-
terface and a pop-up window, and correlates the context
with the information flow. While intuitively simple, the
challenge of FlowCog lies in how to extract such con-
text, i.e., FlowCog needs to establish a relationship be-
tween semantics embedded deeply in an app with each
information flow.

The key insight of FlowCog is that flow contexts are
embedded in these Android GUIs, such as views, which
have direct control over the flow. For example, if the
information flow is that an Android app sends a phone
number to the Internet after the user clicks a submit but-
ton, such as the running example shown in Section 2, the

1We use the following two terminologies, “information flow” and
“data flow”, interchangeably in this paper.
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Figure 1: Registration Interface of S3 World Phone App

flow context will be in the view that has the submit but-
ton. Particularly, FlowCog performs static analysis that
connects UI views, such as button and checkbox, of An-
droid apps with given information flows via control and
data dependencies. Then, FlowCog extracts flow con-
texts, e.g., texts and images, embedded in UI views via a
mostly static approach with an optional dynamic compo-
nent.

Once flow contexts are extracted, FlowCog distills
texts from images via image recognition, and then an-
alyzes texts including these extracted from images using
an NLP module. Lastly, FlowCog adopts two classifiers
to determine the correlation between flow contexts and
the flow. A high correlation indicates that the flow is pos-
itive, i.e., the Android app provides sufficient semantics
for the flow, and a low correlation means not.

We have implemented a prototype of FlowCog. Our
evaluation on the prototype against 2,342 flows extracted
by FlowDroid [12] shows that FlowCog has an over-
all precision of 90.1% and a recall of 93.1%. We also
show that flow contexts can provide more justifications,
i.e., 10% more in terms of accuracy, than app-level se-
mantics alone. FlowCog is open source and available
at the following repository: https://github.com/
SocietyMaster/FlowCog.

2 Overview
In this section, we give an overview of FlowCog via a

running example, called S3 World Phone app (called S3
app for short), which allows users to make phone calls
world-wide. The S3 app sends a user-provided phone
number to its own server after the user sees a registration
page shown in Figure 1 and presses the “Submit” button.
This flow, from the phone number to the Internet, is pos-
itive, because the app provides sufficient semantics, such
as keywords “Phone Number” and “mobile number”, so
that the app user can acknowledge and authorize the flow.

What FlowCog does is to extract contexts for each in-
formation flow found by existing static or dynamic anal-
ysis and classify the flow as either positive or negative

based on the extracted contexts. Specifically, such pro-
cess, shown in Figure 2, can be broken down into four
steps: (i) finding information flows of an Android App,
(ii) finding special statements called activation event and
guarding condition via control dependency and associ-
ated views (called view dependency) for each informa-
tion flow, (iii) finding and extracting contexts, e.g., texts
and images, from the aforementioned two special state-
ments via data dependency, and (iv) determining the cor-
relation between the flow and the contexts via Natural
Language Processing (NLP) technique. Note that in the
third step, FlowCog can optionally rely on a dynamic
analysis that instruments the target app, performs UI ex-
ercise, and outputs key values of certain variables.

Now we use our running example to illustrate how
the four-step process works. First, FlowCog will rely
on existing approaches, such as FlowDroid, to find in-
formation flows of the Android app. The phone num-
ber leak of the S3 app, shown in Figure 3, starts from
TelephonyManager.getLine1Number(), i.e., the source,
in Block 1, and flows to Htt pClient.execute(), i.e, the
sink, in Block 4. Details are as follows. The phone
number is first stored in an EditText et_regist_phone
(Block 1), read by the getText method (Block 2), and
then loaded by S3ServerApi.per f ormRegistration as a
parameter (Block 3). Then, the S3ServerApi.postData
method reads the phone number and sends it to the Inter-
net via Htt pClient.execute, i.e., the sink (Block 4). All
statements are marked in Figure 3 via circled numbers in
sequence following the information flow.

Second, FlowCog finds two special statements, called
activation event and guarding condition, which are re-
lated to the information flow via control and view de-
pendency and can be used to extract flow contexts. The
S3 app contains examples of both special statements.
Block 5 shows an example of activation event, because
the per f ormRegistration method in Block 6 is activated
by an onClick event. The second statement in Block 2
shows an example of guarding condition, because this
statement prevents the phone number leak if the condi-
tion is unsatisfied. In this example, the statement only
allows the phone number leak if the inputted password is
strong enough to pass the complexity test.

Particularly, here is how FlowCog finds both acti-
vation events and guarding conditions for the S3 app.
FlowCog finds that the per f ormRegistration method in
Block 6, an activation event, is connected with Block 2,
a block in the target data flow, via control dependency.
Then, FlowCog finds additional special statement, e.g.,
another activation event in Block 5, based on correspond-
ing views, e.g., Button bt_regist_submit, associated with
the found activation event, e.g., per f ormRegistration—
such process is defined as view dependency in this paper.
Following both control and view dependency, FlowCog
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Figure 2: FlowCog Architecture

1. LoginActivity.onCreate

$4 = getLine1Number()
et_passwd = findViewById(…)
et_regist_phone.setText($4) 
et_username.addTextChangedListener(
  new RegistrationTextChangedWatcher())

source

6. LoginActivity.performRegistration

$r2=new registrationAsyncTask()
$r2.execute()2.RegistrationAsyncTask.doInBackground

$2 = et_passwd.getText();
if(!isStrongPasswd($2)) return ;
S3ServerApi.performRegistration(
  et_regist_phone.getText())

3. S3ServerApi.performRegistration

$r3 := @parameter1    //phone number
addAdditionalParametersToPost($r3, …)
S3ServerApi.postData($r3, …)

4. S3ServerApi.postData
$r3 := @parameter0    //phone number 
HttpClient.execute($r3) sink

5. s3_login.xml (LoginActivity’s Layout)

<Button android:id="@id/bt_regist_submit" 
android:onClick="performRegistration"/>

7. RegistrationTextChangedWatcher.
afterTextChanged

if(et_username.getText().length()==0)
  bt_regist_submit.setEnabled(false)
else 
  bt_regist_submit.setEnabled(true)

guarding condition stmt

activation event stmt

Data dependency      :
Control dependency  :
View dependency      :

1

2

3

4

5

6
7

Figure 3: Simplified Code Blocks of S3 World Phone
App

can also find guarding conditions, such as the i f state-
ment in Block 2 and Block 7.

Third, FlowCog finds and extracts contexts, e.g., texts
and images, starting from activation events and guarding
conditions via data and view dependency. From Block
5, i.e., the activation event, FlowCog directly finds the
Submit Button and the surrounding texts, i.e., “Submit",
via view dependency. From the second statement in
Block 2, FlowCog performs a data flow analysis upon
$2 and finds et_passwd, a text field, the surrounding
texts, “Password”. From the guarding condition in Block
7, FlowCog finds the user name field. In all scenarios,
FlowCog will find surrounding texts, such as “Tips: Reg-
ister with mobile number ...”.

Lastly, FlowCog determines the correlation between
the found flow contexts and the target flow. Specif-
ically, FlowCog processes the texts, e.g., “Submit”
and “Tips: Register with mobile number ...”, removes
stop words, and converts the words into a vector us-
ing an NLP module. At the same time, FlowCog
processes API documents related to the sink and
source, i.e., TelephonyManager.getLine1Number() and
Htt pClient.execute with the same method into a vector.
Then, FlowCog feeds both vectors into two types of clas-
sifiers, one learning-based and the other learning-free,
combines the outputs using linear regression, and calcu-
lates an overall score. In this example, the score is high,
thus the flow being considered as positive, because “Tips:

1 LoginActivity.onCreate(...)
2 registrationAsyncTask.doInBackground()
3 S3ServerApi.performRegistration(...,

et_regist_phone.getText())
4 S3ServerApi.postData($r3, ...)

Figure 4: Call Path for the Data Flow in Figure 3

Register with mobile number ...” is related to the source
and “Submit” related to the sink.

3 Design
In this section, we present the details of each com-

ponent of FlowCog’s architecture in Figure 2. Informa-
tion flow analysis, i.e., step (i) in Figure 2, is skipped,
because we just use existing ones, such as FlowDroid.
We first present the special statement discovery engine
in Section 3.1, which finds both activation events and
guarding statements, and view dependency explorer in
Section 3.2. Then, we show how to extract semantics
from views and other places in Section 3.3 and corre-
late extracted semantics, i.e., flow contexts, with flows
in Section 3.4. Lastly, we introduce an optional dynamic
analysis component in Section 3.5.

3.1 Special Statement Discovery Engine

Special statement discovery engine finds activation
events and guarding conditions given a data flow. The
reason of finding these two special statements is that they
have direct control over the given data flow: Activation
events decide whether to trigger the data flow and guard-
ing conditions determines whether the source flows to a
sink or other places. That is, semantics associated with
these two special statements will influence users’ deci-
sion and perception on the data flow. For example, the
activation event in Block 5 of Figure 3 is a submit but-
ton, which directly controls the phone number leak and
gives users semantics. Next let us discuss these two spe-
cial statements separately.

3.1.1 Activation Event

Intuitively, an activation event, e.g, the onCreate and
per f ormRegistration methods of the LoginActivity class
in our running example (Figure 3), is a callback method
that initiates a given flow. In other words, the flow hap-
pens only after the activation event is invoked. Now, we
give a formal definition of an activation event.
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Definition 1. (Activation Event) Given a data flow, we
define an event callback pe as an activation event if
there exists a path pe···pk in the call graph of the tar-
get app where pk is a statement in the flow’s call path
(psrc···pk···psink). Note that a call path of a given data
flow is defined as all the caller statements, in the calling
sequence, of methods containing each statement in the
data flow.

Now let us discuss how FlowCog finds all the ac-
tivation events. First, FlowCog extracts all the regis-
tered, possible event callback methods and stores them
into a list, called reg_call_lst. Take UI events for ex-
ample. FlowCog extracts callback methods from both
codes and layout files. Specifically, FlowCog parses the
app’s codes to identify all those event listener registra-
tion statement (e.g., setOnClickListener(...)) and then
gets the callbacks by extracting the name of argument
class. Then, FlowCog parses the layout files and saves
the values of those event attributes (e.g., onClick at-
tribute). Similarly, FlowCog finds lifecycle event call-
backs by looking at subclasses of corresponding lifecycle
related classes, such as Activity, and finding overridden
lifecycle callbacks, such as onCreate.

Then, FlowCog generates call paths for a given data
flow, e.g., the call path in Figure 4 for the data flow in
Figure 3, and performs Algorithm 1 to find its activa-
tion events. Particularly, FlowCog first reverses the call
path for easy processing (Line 3), and then goes through
every statement in the call path to see whether it is in
the reg_call_lst (Line 4–10). If so, FlowCog adds the
statement in the result set (Line 6); if not and the state-
ment is the first in the method compared with others in
the call path, FlowCog adds the parent of this statement
in a queue for further processing. Note that FlowCog
only adds the first statement because other statements
will share the same parent with the first. Next, FlowCog
goes through every added statements in the queue (Line
11–21) until the queue is empty. For each statement
in the queue, FlowCog determines whether it is in the
reg_call_lst (Line 13–14). If so, FlowCog adds the state-
ment in the result set; if not and the statement is unvisited
before (Line 15), FlowCog goes backward through the
call graph and puts its parent in the queue (Line 16–18).

3.1.2 Guarding Condition

Intuitively, a guarding condition of a given data flow
is a conditional statement, e.g., i f statement, which may
affect the execution of the data flow. For example, if one
branch of an i f statement allows the data flow but an-
other terminates the flow, we consider such i f statement
as guarding condition—both i f statements in Blocks 2
and 7 in Figure 3 are such examples. We now formally
define guarding condition in Definition 2.

Algorithm 1 The Algorithm of Finding Flow’s Activa-
tion Event Statements
Input: Data Flow’s Call Path: callPath

Call Graph: callGraph
Set findActivationEvent(callPath, callGraph):
1: rs = createNewStmtSet()
2: queue = createNewStmtQueue()
3: reverse(callPath)
4: for stmt in callPath do
5: if isInvokeStmt(stmt) and isInReg_Call_List(stmt) then
6: rs.add(stmt)
7: else if isFirstStmt(stmt) then
8: queue.add(parent)
9: end if

10: end for
11: while !queue.isEmpty() do
12: stmt = queue.pull()
13: if isInvokeStmt(stmt) and isInReg_Call_List(stmt) then
14: rs.add(stmt)
15: else if !isVisited(stmt) then
16: method = getMethodO f Stmt(stmt)
17: for parent in callGraph.getCallerStmtsO f (method) do
18: queue.add(parent)
19: end for
20: end if
21: end while
22: return rs

Definition 2. (Guarding Condition) Given a data flow
nsource···nk···nsink, for any nk, we define a conditional
statement ce—at least one branch of which does not con-
tain nk—as a guarding condition if either of the following
is satisfied:

(1) ce and nk are in the same basic block, or connected
in the interprocedural Control Flow Graph (iCFG);

(2) ce controls the activation events of the data flow
via view dependency, i.e., ce and the activation event are
in the same view.

Based on the definition, there are naturally two phases
to find all guarding condition statements. In the first
phase, FlowCog identifies guarding conditions that are
directly connected with the data flow in the iCFG; and
then, in the second phase, FlowCog identifies guarding
conditions that are connected with the data flow’s activa-
tion events.

Algorithm 2 shows the first phase in which FlowCog
iterates all the statements in the data flow reversely.
During each iteration, FlowCog extracts two consec-
utive statements, prevStmt and curStmt. If these
two statements are in the same method, FlowCog
searches the guarding condition statements, stmt, from
those statements, such that there exists a path P =
prevStmt...stmt...curStmt in the method’s control flow
graph (Line 9–10). If these two statements are from dif-
ferent methods, but prevStmt is the caller of curStmt’s
method, FlowCog search the guarding condition state-
ments from those statements in curStmt’s method that
can reach stmt (Line 11–12). If none of the following
are satisfied, i.e., the method of curStmt is a callback
method, FlowCog searches the statements that can reach
curStmt in the program’s inter-procedure control flow
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Algorithm 2 The Algorithm of Finding Guarding Con-
dition
Input:

Flow Data Path: path
Interprocedure Control Flow Graph: iCfg

Set findGuardingCondition(path, graph):
1: rs = createNewStmtSet()
2: for (i = path.size()−1; i >= 0; i–) do
3: if i == 0 then
4: f indGCHel per(path.get(0),null, iC f g,rs)
5: else
6: prevStmt = path.get(i−1)
7: curStmt = path.get(i)
8: method = getMethodO f Stmt(curStmt)
9: if f romSameMethod(prevStmt,curStmt) then

10: f indGCHel per(curStmt, prevStmt, iC f g,rs)
11: else if isInvokeStmt(prevStmt) and

method == getInvokedMethod(prevStmt) then
12: f indGCHel per(curStmt,method.getFirstStmt(), iC f g,rs)
13: else
14: f indGCHel per(curStmt,null, iC f g,rs)
15: end if
16: end if
17: end for
18: return rs

graph (Line 13–14).
We then discuss the search algorithm mentioned in

previous paragraph in Algorithm 3. Specifically, the al-
gorithm starts from a target node, i.e., the curStmt in
Algorithm 2, and conducts a reverse breadth-first search
(Line 16–18) in the iCFG to find conditional statement.
For each found condition statement, the algorithm addi-
tionally checks whether this statement has a child node
that cannot reach the target node (Line 9–14). If there
exists such child, the conditional statement is a guarding
condition.

Next, FlowCog finds all the conditional statements
that control activation events of the given data flow
in the second phase. Specifically, FlowCog finds all
the view objects that registered the activation events
and then searches for the following control statements
in the found views: (i) View.setEnabled(boolean),
(ii) View.setClickable(boolean), (iii)
View.setVisibility(boolean), and (iv)
View.setLongClickable(boolean). FlowCog again
performs Algorithm 2 starting from all the found control
statements to identify additional guarding conditions.
Consider our running example in Figure 3 again. The
method LoginActivity.performRegistration(...) is an
activation event, and FlowCog finds corresponding
guarding conditions related to the activation event by
identifying the view, i.e., Button bt_login_submit, and
then performs Algorithm 2 upon setEnabled in the
view’s code at Block 7 of Figure 3.

3.2 View Dependency Explorer

After FlowCog finds two special statements for a given
data flow, it finds Android views related to the data flow
so as to extract semantics. We call such relationship
between views and the data flow as view dependency.

Algorithm 3 The Algorithm of Finding Guarding Con-
dition Helper Method
Input:

Target Statement: target
End Statement: endStmt
Interprocedure Control Flow Graph: iCfg
Guarding Condition Result Set: rs

void findGCHelper(target, endStmt, iCfg, rs):
1: queue = createNewStmtQueue()
2: queue.add(target)
3: while !queue.isEmpty() do
4: stmt = queue.poll()
5: if stmt == endStmt then
6: continue
7: else if !isVisited(stmt) then
8: if isConditionStmt(stmt) then
9: for child in iC f g.getSuccessors(stmt) do

10: if !canReachStmt(child, target) then
11: rs.add(stmt)
12: break
13: end if
14: end for
15: end if
16: for parent in iC f g.getPredecessors(stmt) do
17: queue.add(parent)
18: end for
19: end if
20: end while

Specifically, view dependency can be classified into the
following three categories.

• Data flow related. A view can be dependent on the
given data flow directly. For example, if the source of
the data flow is obtained from a view (e.g., EditText),
such dependency exists.

• Activation event related. If an activation event of the
given data flow belongs to a view, e.g., registered as a
event handler, we consider such dependency exists.

• Guarding condition related. If a view’s attribute values
(e.g., EditText.getText() or CheckBox.isChecked())
could change the conditional result in guarding con-
ditions of the given data flow, we consider such de-
pendency exists.

The view dependency problem can be formalized into
another data flow analysis. The sources in this analysis
are all the possible views, and the sinks are the afore-
mentioned three scenarios, i.e., the given data flow, its
activation events, and its guarding conditions. Now, let
us explain in details how FlowCog obtains these sources
and sinks.

First, FlowCog obtains all the sources by going
through all the view definitions, either static or dynamic.
FlowCog parses layout files that statically define views
and treats all the findViewById(...) and inflate(...) invoke
statements related to these views as source. In addition,
FlowCog adopts a manually created list about all possi-
ble View classes from the Android documentation and
finds all the new statements that create an object with
these classes—these statements are treated as source as
well.
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Second, FlowCog obtains all the sinks based on the
aforementioned dependency categories. Statements in
the given data flow and guarding conditions are added
directly to the sink list. Then, FlowCog searches through
the entire program for all activation events’ registration
statements, e.g., setOnClickListener corresponding to
onClick, and adds these registrations to the sink list. Note
that an activation event may be defined in layout files—
in such case, the data flow analysis is simplified to a di-
rection association of the activation event and the view
defined in the layout file.

3.3 Semantics Extraction

The next step of FlowCog is to extract semantics, e.g.,
flow contexts, from views that has a dependency with a
given data flow. Besides depended views, we find that
semantics could also exist in the app’s description on
Google Play and other views in the same visible layouts.
We now discuss how to extract such semantics.

3.3.1 Semantics Extraction from App Description

An app’s description, available in Google Play for
crawling, is what a user sees even before using the
app—this is also what existing approaches use to extract
app semantics [19, 27, 28, 37]. Apart from descriptions
in Google Play, if an app is provided without any de-
scriptions, e.g., malicious apps collected by security re-
searchers, FlowCog will treat texts from the app’s string
resource file as a substitute of descriptions.

3.3.2 Flow Context Extraction from Views

There are two types of flow contexts: those from views
that have dependencies with a given data flow, and those
from other Views in the same Layout of the Depended
View. Let us discuss these two separately.

First, semantics exist in views that have dependencies
with a given data flow, thus directly affecting the flow’s
execution. For example, in Figure 3, the Button view will
control the program in deciding whether to send out the
phone number, and its text, i.e., the “submit” word, is the
semantics about sending behavior. For another example,
an “alert” Dialog view asking for user’s permission for
sharing her location decides whether the location is sent
to the server, and provides semantics in its text to users.

The semantics extraction for such views has two
steps. (i) FlowCog resolves the identifiers of such views.
Specifically, FlowCog resolves the value of findView-
ById(...) and inflate(...)’s argument both statically via
searching the definition of the parameter backward in the
iCFG and dynamically via an optional dynamic analysis
in Section 3.5. Note that based on our evaluation, 97.6%
of values can be resolved statically. (ii) FlowCog extracts
semantics related to the views. Specifically, FlowCog
finds all the invoke statements with their base object as
the view, and the invoked method as one of the following

<init>(...) (the constructor method’s name in Jimple),
setTitle(...) and setTexts(...). Then, FlowCog resolves the
parameter value of the aforementioned methods follow-
ing the same way as it does for the view’s identifier in
previous step. Again, in most cases, i.e., 94%, such val-
ues can be resolved statically; otherwise, FlowCog relies
on the optional dynamic analysis to resolve values.

Second, besides the depended view, semantics from
other adjacent views in the same layout may also be
flow contexts, because a user-visible screen may con-
tain multiple views from the same layout. “Tip: Reg-
ister with your mobile number” in Figure 1 is such an
example. Such semantics extraction has three steps. (i)
FlowCog resolves the layout that the depended view lo-
cates at. Specifically, FlowCog looks at the second pa-
rameter of setContentView() method in which the first
parameter is the target depended view. (ii) FlowCog finds
other views inside the same layout by looking at other
f indViewById() and in f late() calls as well as all new
statements that create dynamic views. (iii) FlowCog ex-
tracts semantics from other views just as what it does for
the target depended view.

3.3.3 Flow Context from View’s Layout

Besides views, the layout file of the view having de-
pendency with the given data flow may also contain other
resources, such as texts and images, which could provide
semantics. We divide the resource types into four cate-
gories: (i) texts, (ii) text images, (iii) images without any
texts, e.g., email and phone icons, and (iv) non-image
fragments, e.g., maps. Now let us discuss how to extract
semantics from each category.

First, for text resource, FlowCog extracts the values of
android:text and android:hint attributes in the layout file.
If the value is not a string but an identifier of other re-
sources (e.g., string/msg), FlowCog further analyzes the
corresponding resource files to resolve the string value
and finds the string value of such identifier.

Second, for image resource, FlowCog extracts an-
droid:background attribute in the layout file. Addition-
ally, FlowCog also extracts the android:src attribute of
all image views, e.g., ImageButton. All the images are
first fed into Optical Character Recognition (OCR) en-
gine to extract obvious texts.

Third, FlowCog also adopts Google Image to analyze
the topics of images extracted in previous step. Specif-
ically, FlowCog stores each image as a URL, uploads
the URL to Google Image’s server, and uses a head-
less browser to obtain a result returned by Google. Note
that because Google Image restricts the number of up-
loaded image from each IP address for a given interval,
FlowCog only uploads images when the OCR engine
cannot extract texts from the image.

Lastly, for non-image fragments, FlowCog re-
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Figure 5: Flow and Semantics Inference in FlowCog

lies on a manual-curated list to extract seman-
tics. Take Google Map for example. We specify
two pairs of fragment name and semantics, (e.g.,
<com.google.android.gms.maps.SupportMapFragment,
map>, <com.google.android.maps.MapView, map>
) to represent a map object in the list, so that when
FlowCog finds this fragment in a layout file or related
code, a “map” semantics will be added.

3.4 Flow and Semantics Correlation Inference

In this section, we give an overview about how
FlowCog infers the correlation between a given data flow
and the extracted semantics. Because we do not claim
any contributions in this component, we leave the de-
tailed design in the Appendix. Figure 5 illustrates an
overview of the design of this inference engine, which
takes the flow and the text-based semantics as input
and outputs whether these two are correlated. Specifi-
cally, in this part, FlowCog extracts the documents as-
sociated with the flow’s APIs (e.g., getLine1Number()
and HT T PClient.execute()), and feeds the documents
as well as previously extracted text-based semantics—
with translation to English language if necessary—into
an NLP module. The NLP module cleans the raw texts
by converting them into a list of action-resource pairs
(e.g., <“synched”, “cloud”>) using an NLP parser. Af-
ter that, resource filter will filter those less-informative
pairs generated from API doc and feed all the remain-
ing ones into two classifiers, one learning-based and the
other learning-free, and FlowCog will calculate a score
based on the results from these two classifiers using lo-
gistic regression. We now discuss these two classifiers.

On one hand, the learning-based classifier vectorizes
action-resource pairs into a numeric feature using bag-
of-words [10] and TF-IDF [7]. Each element in the fea-
ture vector indicates the importance of a word or action-
resource pair in identifying the target data flow. Then,
two machine learning (ML) modules, namely gradient
boosting and linear SVM, will take the feature vector
as input for both training and prediction. Note that we
choose these two ML modules because they preform the
best among all the classifiers that we evaluated. The pre-

diction results including confidence scores from these
two ML modules are combined by another logistic re-
gression module.

On the other hand, the learning-free classifier, i.e.,
the similarity one, measures the similarity between the
action-resource pair lists from the flow’s API documents
and the extracted text-based semantics. Specifically,
FlowCog converts both lists into a vector representa-
tion of words, called word embedding. (Word embed-
ding can represent words in a continuous vector space,
where semantically similar words will be mapped to
nearby points.) Then, FlowCog transforms each action-
resource pair in both lists to a vector through Word2Vec
model [26], one of the most popular predictive model
for learning word embedding from raw texts. Lastly,
FlowCog calculates a similarity score between two lists
from the flow’s API documents and the extracted text-
based semantics to represent the correlation between the
given data flow and the extracted texts.

3.5 Optional Dynamic Analysis

FlowCog supports an optional dynamic analysis mod-
ule to perform a dynamic value analysis and output cer-
tain strings and view IDs that cannot be resolved stati-
cally. Based on our observation, only 5.3% statements
belong to such category. The dynamic analysis works in
three steps.

First, the dynamic analysis instruments Android app
by identifying all the text-setting statements and print-
ing the values their parameters as well as the target
text-setting statement’s location immediately before each
text-setting statement. The text-setting statements that
we currently instrumented are listed as follows: setTi-
tle(...), setText(...), setMessage(...), setPositiveButton(...),
setNegativeButton(...) and setButton(...).

Second, we adopt a customized version of AppsPlay-
ground [29] to install the app on emulator and automat-
ically explore the app dynamically. In particular, our
customized AppsPlayground adopts an image processing
approach to identify clickable elements and sends event
signals to increase the exploring coverage. Each app is
set to be explored for at most 20 mins.

Lastly, during the dynamic app exploration, when any
text-setting statement is encountered, its string argument
value as well as the statement’s location will be printed
out. After execution, these logs will be extracted and
stored in a NoSql database. The key for each record is the
app’s name and the statement’s location, while the value
include the texts associated with the corresponding state-
ments’ arguments. During static analysis, if FlowCog
encounters a string argument whose value cannot be re-
solved, it will lookup the database built in dynamic anal-
ysis.
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Table 1: Lines of Code (LoC) of Different Components
of FlowCog

Component Language LoC

Flow-related Semantics Extraction Java ∼12,000
Classifiers Python ∼3,000
Dynamic Analysis Python, Java ∼1,000
Misc Python ∼500

Total Java, Python ∼16,500

4 Implementation
Now we discuss the implementation of FlowCog in

this section. FlowCog involves ∼16,500 Lines of Code
(LoC) in total, excluding any third-party libraries, such
as FlowDroid, Soot, and Stanford parser. A detailed
breakdown of each component can be found in Ta-
ble 1. The semantics extraction part, such as finding
views, activation events and guarding conditions, con-
tains ∼12,000 LoC, the part about correlating seman-
tics and flows, i.e., multiple classifiers, contains ∼3,000
LoC, our dynamic analysis∼1,000 and others∼500. We
then discuss details of each component.

First, as discussed, we adopt FlowDroid, a precise and
efficient Java-implemented static analysis system, to dis-
cover all information flows. All analysis steps operate
on Jimple intermediate representation (IR) [32], a typed
3-address IR suitable for optimization and easy to un-
derstand. FlowCog uses Soot framework [23] to trans-
form an app into Jimple codes, a widely used Java opti-
mization framework. In text extraction engine, FlowCog
also needs to run data flow analysis to find flow’s related
views. Such data flow analysis component is also based
on the taint analysis framework provided by FlowDroid.

Second, we implement a crawler using Beautiful-
Soup [1] to crawl API documents for methods associ-
ated with each flow. Then we use Stanford Parser Wrap-
per [4], a Python wrapper of Stanford Parser, to cleanse
these raw texts, transform them into a set of valid none-
verb pairs, serving as the inputs for classifiers. Be-
fore feeding texts into classifier, we use mtranslate pack-
age [2], a Python wrapper of Google Translate API, to
translate non-English texts into English. For learning-
based classifier, FlowCog uses Python’s Scikit-learn li-
brary [6], which integrates all the machine learning mod-
ules we have used in our implementation and evalua-
tion. As for the similarity classifier, FlowCog chooses
Word2Vec, a popular computationally-efficient predic-
tive model for learning word embeddings.

Lastly, we use apktool [8] to decompile Android apk
files. Then we write Python scripts to parse the XML re-
source files extracted from decompiled apk files. To ex-
tract texts from image, we adopt pytesseract package [5],
a Python wrapper for google’s Tesseract-OCR, one of
the most popular open-source OCR tools. For dynamic

analysis, we write a Soot-based Java program in ∼400
lines of codes to automatically instrument apps and then
manage and customize AppsPlayGround [29] with∼600
lines of Python codes to dynamically explore the instru-
mented apps.

5 Evaluation
In this section, we evaluate FlowCog by answering the

following four research questions.

• RQ1: How accurate is FlowCog in identifying posi-
tive and negative flows, i.e., correlating Android app’s
semantics and each flow?

• RQ2: How much does flow contexts, e.g., semantics in
apps’ GUI, improve the overall accuracy of FlowCog?

• RQ3: How does FlowCog’s classification algorithm
compare with other alternative, naïve approaches?

• RQ4: How effective is FlowCog in extracting flow
contexts?

5.1 Experiment Setup, Dataset and Ground Truth

We run all the experiments on a Ubuntu 14.04 server
with Intel Xeon 2.8G, 16 cores CPU and 32G memory.
The overall dataset contains 6,000 benign and malicious
apps. All the 4,500 benign apps are randomly crawled
from Google Play and 1,500 malicious ones are ran-
domly selected from Drebin dataset [11, 25]. FlowDroid
with its default setting, i.e., flow- and context-sensitive,
is used as the existing static analysis tool to extract in-
formation flows—we run FlowDroid on each app for 20
mins and then terminate it if no results are outputted. In
the end, 1,299 benign apps terminate successfully, and
361 of them generate 1,043 flows; 586 malicious apps
terminate successfully, and 255 of them generate 1,299
flows. The sizes of apps range from 16.9KB to 51.9MB.

Note that we realize that some limitations of Flow-
Droid, such as low termination ratio and lack of inter-
component analysis, may have impacts on the final re-
sults. We did try to run FlowDroid for a longer time,
such as four hours on a small set of unfinished apps—
it turns out that FlowDroid cannot finish analyzing these
apps either. We would like to emphasize that because the
flows found by FlowDroid contain all possible pairs of
sources and sinks, we believe that we have already tested
FlowCog on varieties of flows. In addition, FlowCog can
be combined with any other static or dynamic analysis
tools outputting information flows. Because FlowDroid
is the most popular and open-source static analysis tool,
we rely on FlowDroid in our evaluation.

Next, we present how to obtain the ground truth for
the dataset. We ask three graduate students to manually
annotate each flow of Android apps as either positive,
i.e., the app provides enough semantics for the flow, or
negative, i.e., the app does not provide enough seman-
tics. The details of the manual annotation work as fol-

1676    27th USENIX Security Symposium USENIX Association



Table 2: Manually-annotated Ground Truth and Overall Performance of FlowCog against the Ground Truth
App Type # of # of Apps # of Total # of Positive # of Negative TP TN FP FN Precision Recall Accuracy

Apps with Flows Flows Flows Flows

Benign App 1,299 361 1,043 688 355 352 197 38 18 90.3% 95.1% 90.7%
Malicious App 586 255 1,299 675 624 312 259 35 31 89.9% 91.0% 89.6%
Overall 1,885 616 2,342 1,363 979 664 456 73 49 90.1% 93.1% 90.2%

lows. Each student is provided with information flows,
Android apps, and app descriptions. We instruct the stu-
dent to install Android apps, look at app descriptions and
each information flow in the context of the app, and then
infer whether the information flow as positive or negative
based on their own knowledge.

The final ground truth results are determined by a ma-
jority vote of three students. In practice, all the 2,342
flows are unanimously annotated by the three students,
which indicates that people have very few discrepancies
in understanding semantics. In total, they have spent
around 150 hours to annotate all these flows. Now let
us describe the ground truth results in Table 2. Among
the 1,043 flows from benign apps, 688 of them are pos-
itive and 355 are negative. As for the 1,299 flows from
malicious apps, 675 are annotated as positive and 624
are negative. We randomly select half of the apps and
use flows from these apps (650 positive flows and 450
negative flows) as training set and the remaining 1,242
flows as testing set.

5.2 RQ1: Precision, Recall and Accuracy

In this research question, we measure FlowCog’s true
positives (TP), true negatives (TN), false positives (FP)
and false negatives (FN) based on our manually anno-
tated ground truth. From TP, TN, FP and FN, we further
calculate the precision, recall and accuracy. Precision
is defined as T P/(T P+FP), recall as (T P/(T P+FN),
and accuracy as (T P+T N)/(T P+T N +FP+FN).

Table 2 illustrates the evaluation results of FlowCog in
accuracy. The overall precision, recall and accuracy are
90.1%, 93.1% and 90.2% respectively. FlowCog’s accu-
racy, i.e., 90.7%, on benign apps is slightly higher than
one on malicious apps, i.e., 89.6%. The major reason
is that malicious apps have higher false negative. Our
manual analysis shows that many of those are caused by
inefficient training set.

We further break down the overall accuracy of
FlowCog based on the used permissions, e.g., Location
and SMS, and then calculate each permission category’s
accuracy. Specifically, each flow is categorized based on
its source and sink’s permissions respectively. Take a
flow flow “getLongitude(...) -> sendTextMessage(...)” as
example. This flow is counted in both Location and SMS
permission categories. Note that many permissions, e.g.,
Audio and Camera, are not present in our evaluation
dataset.

Table 3 shows the detailed break-down results of ac-
curacy based on permissions. Top six rows show source
permissions, and bottom two rows sink permissions.
There are two things worth noticing here. First, the gen-
eral trend excluding some exceptions noted below is that
the larger training data FlowCog has, the better accuracy
results we can get for FlowCog. In the source permission
categories, “Credential” has the highest accuracy while
“Calendar” the lowest. In the sink permission categories,
the accuracy number in “Internet” category is higher than
the one in “SMS”. Second, flows that have different se-
mantics presentations have a lower accuracy than these
that do not. Take flows with a “Location” permission for
example. Such flows can be interpreted in many different
ways, such as “map”, “location”, and “local weather”.
Hence the accuracy for “Location” is lower than that for
“Phone Number”, which is usually represented in literal.

5.3 RQ2: Effectiveness of Flow Contexts

In this subsection, we show that flow contexts can
improve FlowCog’s accuracy in classifying positive and
negative flows. Particularly, we compare FlowCog with
approaches that takes (i) only apps’ descriptions, (ii) only
flow contexts, (iii) apps’ description and all the flow’s
contexts, and (iv) apps’ description and the context for
only the target flow (i.e., FlowCog). The purpose is to
show that contexts for the target flow can provide more
information in correlating the flow with app’s semantics,
but other flow’s contexts will have a negative impact.

The right four columns in Table 4 show our evalua-
tion results. The accuracy for FlowCog is the highest
among all other possibilities. The results show that flow
contexts provide more information than the app descrip-
tions, and at the same time app descriptions provide a
background for flow contexts—therefore, the combina-
tion of these two provides a good result for FlowCog.
At the same time, the results also show that other flows’
contexts may provide negative impacts on the overall ac-
curacy. Specifically, the false positive is very high when
we include other flows’ contexts, because such contexts
may be unrelated to the target flow.

5.4 RQ3: Comparison with Alternative Classifica-
tion Approaches

In this subsection, we would like to justify why we
make such a choice in designing FlowCog. Specifically,
we want to compare the followings: (i) learning-based
model vs. learning-free model vs. the hybrid model
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Table 3: Flow Classification Accuracy by Permissions
Permission Number TP TN FP FN Precision Recall F-1 Score Accuracy

Location 173 64 73 16 20 80% 76.2% 0.78 79.2%
Contact 132 48 57 14 13 77.4% 78.7% 0.78 79.5%
Credential 443 320 106 15 2 95.5% 99.4% 0.97 96.2%
Calendar 12 3 5 1 3 75% 50% 0.60 66.7%
Device/Card ID 373 161 180 22 10 88.0% 94.2% 0.91 91.4%
Phone Number 103 66 31 5 1 93.0% 98.5% 0.96 94.2%

Internet 1,009 606 319 52 32 92.1% 95.0% 0.94 91.7%
SMS 233 58 137 21 17 73.4% 77.3% 0.75 83.7%

Table 4: Comparison of FlowCog with other techniques
Variations Keyword Simple

NLP
Similarity
Model

Learning
Model

Learning Model
(Small training set)

Descriptions
Only

Flow Con-
texts Only

All Se-
mantics

FlowCog

Accuracy 73.5% 80.9% 79.3% 88.3% 65.5% 81.0% 82.5% 82.2% 90.2%

combining learning-based and learning-free, (ii) gradi-
ent boosting (GB) plus linear support vector machine
(SVM) vs. other learning models, and (iii) NLP-based
vs. keyword-based.

First, we would like to justify why FlowCog adopts a
hybrid model that combines learning based and learning-
free approaches. Table 4 shows the results of comparing
the learning-free, learning-based, learning-based with a
small training set, and hybrid (i.e., FlowCog). A pure
learning-free approach, i.e., the similarity model in Ta-
ble 4, has a bad overall accuracy, i.e., 79.3%, and that is
why we need a learning-based approach. The overall ac-
curacy of a learning-based approach is high, i.e., 88.3%,
but such approach performs badly when the training set,
e.g., these flows that leaking out Calendar via SMS, is
small. Specifically, the accuracy, as shown in Table 4, is
only 65.5% for such Calendar-to-SMS flows. Therefore,
we choose a hybrid approach for the design of FlowCog
in the end.

Second, we would like to justify the two learning algo-
rithms, i.e., Gradient Boosting (GB) and linear Support
Vector Machine (SVM), used in FlowCog’s learning-
based approach. Specifically, we compare many dif-
ferent machine learning algorithms, including Logistic
Regress (LR), Decision Tree (DT), Naïve Bayes (NB),
linear Support Vector Machine (SVM) and Gradient
Boosting (GB).

Table 5 shows the comparison results of different al-
gorithms. The accuracies of efficient algorithms, such
as LR, DT and NB, are all bad, i.e., below 80%. SVM
and GB perform better with 81% and 84% respectively,
but are still not satisfying. Therefore, we evaluated com-
binations of different algorithms in Rows 6–10 of Ta-
ble 5. Among all the combinations that we evaluated, the
combination of GB and SVM achieves the best results
(93.1%). Note that one takeaway here is that classical
efficient classification algorithms, e.g., LR, DT and NB,
do not work well for our problem.

Lastly, we want to justify why we want to use NLP-

Table 5: Accuracy of Different Learning Algorithms
Algorithm Precision Recall Accuracy

Logistic Regression (LR) 84.2% 84.3% 81.9%
Decision Tree (DT) 73.8% 84.3% 73.8%
Naive Bayes (NB) 84.3% 83.3% 81.4%
Support Vector Machine (SVM) 86.8% 86.1% 84.5%
Gradient Boosting (GB) 84.2% 91.7% 85.3%
LR + DT 82.0% 84.5% 84.5%
LR + NB 84.5% 81.1% 80.6%
DT + SVM 85.3% 88.9% 86.0%
GB + NB 84.5% 88.9% 84.5%

GB + SVM 90.1% 93.1% 90.2%

based approach rather than a simple keyword-based one.
Specifically, we implemented a keyword-based approach
and compare it with FlowCog. Here is how the keyword-
based approach, which measures the correlation between
extracted semantics and target data flows, works. We
manually generate 10 keywords for each category listed
in Table 3. Each flow corresponds to two categories and
thus has 20 keywords. Then, for each keyword, we get a
list of synonyms using a Python library PyDictionary [3].
Next, we search each flow’s keywords and their syn-
onyms in their flow-related texts and descriptions. If we
can find three matches, we will consider this flow as pos-
itive; otherwise negative.

Apart from the simple keyword-based approach, we
also introduce a keyword-based approach with some sim-
ple NLP components. Specifically, we do not use key-
word’s synonyms, but parse the flow-related texts and
descriptions using Stanford Parser [14]. We keep nouns
and verbs as they usually contain a sentence’s most in-
formation, do word stemming on remaining words, and
discard the duplicate ones. Next, we compute the sim-
ilarity score of this word list and the keyword list, us-
ing the Word2Vec similarity model discussed in Sec-
tion A.4, and then make a classification decision based
on the score.

We evaluate the keyword-based, keyword plus sim-
ple NLP, and FlowCog using the same testing set. The
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Table 6: Accuracy in Extracting Flow-related Texts
App Type # of Flows # of

Manually-
found Text
Blocks

# of Text
Blocks
Found by
FlowCog

Accuracy

Benign 27 288 273 94.5%
Malicious 41 337 331 98.3%

keyword-based approach performs the worst, only with
73.5% accuracy. The keyword-plus-simple-NLP ap-
proach is better than the pure keyword-based, achiev-
ing 80.9%. Note that this is also better than our simi-
larity classifier alone with 79.3% accuracy. We do not
adopt any keyword-based approaches in FlowCog be-
cause many manual works are involved and we want a
fully automated approach.

5.5 RQ4: Effectiveness of Contexts Extraction

In this experiment, we study the accuracy of FlowCog
in extracting flow contexts. Here is how we obtain the
ground truth. We manually inspect 68 flows, i.e., these
from ten benign apps in Google Play and ten malicious
apps in Drebin dataset. In particular, we first instrument
FlowDroid to display the detailed information of each
flow, including the data path and call path, so that we
know how to trigger the information flow. Then, we in-
stall and play with each app directly to trigger the in-
formation flow and record all the semantics that we see
during the triggering process. Next, we decompile the
apps using apktool [8] to find the classes that each state-
ments in call path resides and map the semantics that we
see to the corresponding text blocks or non-text items in
the apps. These text or non-text resources are the ground
truth used in this subsection.

Now let us look at the results. Table 6 shows
FlowCog’s accuracy in extracting text-related contexts.
In particular, FlowCog can extract 94.5% of flow-related
texts from benign apps, and 98.3% of flow-related texts
from malicious apps. We do not find any false posi-
tives, i.e., texts extracted by FlowCog are all related to
the views.

Here are two reasons that FlowCog fails to extract
some of the texts. First, three of the failed scenarios
are caused by encoding issues of our implementation:
some texts can be correctly rendered during our dynamic
evaluation, but turn out to be garbled when extracted by
FlowCog. Note that this is a minor implementation is-
sue in converting texts in different encodings. FlowCog
does support multiple languages: before feeding texts
to classifiers, if any texts are not recognized as English,
FlowCog will use a Python library called mtranslate [2]
to translate them into English.

Second, the remaining 18 texts that FlowCog fails to
extract are caused by the limitations of static value anal-
ysis: completely solving value analysis is still a funda-

Table 7: Accuracy in Extracting Flow-related Non-text
Informative Elements

Type # of Items # of Items Accuracy
in Total solved by FlowCog

Image with Texts 30 27 90.0%
Image without Texts 23 23 100%
Non-image Views 2 2 100%

mental challenges suffered by all static analysis tools.
FlowCog adopts a bunch of heuristic rules to try our best
to resolve those non-constant string values, but there are
still 7 cases that we cannot resolve. Moreover, we also
find 11 dynamic texts: the texts are dynamically loaded
and cannot be found in the app’s package. Static analysis
cannot solve dynamically-loaded texts and the dynamic
analysis tool that we use, i.e., AppsPlayground, does not
trigger this specific code branch. Fortunately, most of
dynamic texts have default values, which can be discov-
ered by FlowCog and are usually sufficiently informa-
tive. For example, one gaming app will display various
promotion texts during loading. Its default string value is
“Now loading”, which is sufficient to let user know that
the app is using Internet.

Next, Table 7 shows the accuracy of FlowCog in ex-
tracting information from informative non-text items: (i)
images with texts, (ii) images without texts, such as mail
icons, and (iii) non-image fragments, such as ads and
maps. FlowCog can successfully extract 27 out of 30
texts embedded in images through OCR tool. The rest
three images’ texts are extracted as garbled texts. As for
non-text images, there are 23 such images are informa-
tive to users. Google Images can successfully extract all
of their semantic meanings.

For non-image views, we have seen many ad frag-
ments, but we do not consider them as informative. Some
ad library will send user’s location to Internet for user
targeting. However, we believe most users do not ex-
pect such location-leaking activities and thus we classify
such flows as negative, unless other informative texts are
given. We also see two map fragments in this experi-
ment, which FlowCog can recognize.

6 Case Study
In this section, we perform a case study on a variety of

data flows in different types of apps and discuss whether
the app provides enough semantics for the flow, i.e. clas-
sified as positive or negative by FlowCog.

• Positive and negative flows in the same app. Due
Date Calculator, shown in Figure 6a, is an app that al-
lows a mother or mother-to-be to calculate her due date
of an incoming baby. This app contains two flows,
both from the database to the Internet. One flow is
sending the email address of the user to the Internet,
and the other is sending URLs in another database to
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(a) Due Date Calculator
– Mobile Mom

(b) Home of Ocarina (c) Digital Clock Disc
(d) SMS Irrirate (e) Merry Christmas

Figure 6: Screenshots of Different Apps in the Case Study

the Internet. FlowCog classifies the former as posi-
tive as flow contexts like “Send” and “Email Address”
are available to the user, but the latter as negative due
to lack of flow contexts. In fact, our manual inspection
reveals that the database belongs to a third party library
called Urban Airship, which is used to deliver third-
party ads. The app user has no knowledge of such in-
formation leak. Note that existing app-level semantics
correlation tools will not be able to differentiate such
two flows, because they will ask for the same permis-
sions.

• A positive flow but not mentioned in the app de-
scription. Home of Ocarina, shown in Figure 6b, is
an official app of a company. This app contains a flow
that leaks out users’ geo-location. Interestingly, the
app description only introduces some background in-
formation of the company, i.e., nothing related to geo-
location. This flow is positive because the app allows
a user to navigate to the Ocarina headquarter when she
clicks the “Map” Button in the app. FlowCog can suc-
cessfully extract flow contexts, such as “location of
Home of Ocarina” and a Google map fragment, thus
classifying the flow as positive. Note that this example
is an good illustration of why we need flow contexts in
addition to app descriptions.

• A negative flow in a benign app. Digital Clock
Disc Widget (pl.thalion.mobile.holo.digitalclock) in
Figure 6c is a benign app with a negative flow. Specif-
ically, the app leaks out users’ geo-location as well as
the device ID to the Internet in an onCreate lifecycle
callback. The app’s description only shows how to add
this clock widget to users’ home screen, and the GUI
of the app is about the clock only. That is, although
the app sends out users’ geo-location and device ID,
no flow contexts are provided in the app. FlowCog
marks this flow as negative because FlowCog only ex-

tracts “Set Alarm”, “Text clock on Widget”, “Change
Color Theme”, “–:–”, “ON”, “OFF” and “Designed by
Thalion” from the app for the flow. None of the afore-
mentioned texts are related to geo-location or device
ID, and thus FlowCog cannot correlate the flow with
the texts.

• A positive flow in a malicious app. SMS Irritate,
shown in Figure 6d, is a malicious app from Drebin
dataset [11, 25] with a positive flow leaking out user-
specified information via short message. The purpose
of this app is to send a large amount of user-specified
messages to a designated phone number repeated and
“irritate” the recipient. Although this is a malicious
app, the flow is positive because the user of the app
will understand that the app is used to send out mes-
sages. FlowCog will also mark the specific flow as
positive, because FlowCog can successfully extract
all the aforementioned texts, such as “Send to” and
“Number of SMS to flood”.

• A negative flow in a malicious app. Merry Christmas
is another malicious app from Drebin dataset, which
sends out users’ information without their knowledge.
Specifically, this app is a trojan, which pretends to be a
gaming app, but hijacks the user’s phone and leaks out
confidential data while the user is playing the game.
Figure 6e shows the interface of the trojan app. This
malicious app has many information flows, includ-
ing sending users’ phone number, contacts, sim serial
number and device ID to the Internet. FlowCog mark
all the information flows in this app as negative, be-
cause no semantics are provided to justify these flows.
Specifically, FlowCog successfully finds that all these
flows are triggered by an onCreate() callback of an ac-
tivity in the app and then extract semantics, which only
include gaming tips, such as “Move the box to the tar-
get empty position ...”, and app control information,
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such as “Are you sure you would like to exit?”.

7 Discussions
First, we discuss the value analysis performed in

FlowCog. We are aware that value analysis is a tradition-
ally hard problem and cannot be solved solely by static
analysis. FlowCog is able to resolve most, i.e., 95%, val-
ues for view IDs and strings, because these values are
mostly static and pre-defined in Android apps. Even if
they are defined dynamically in a rare case, FlowCog
also relies on an optional dynamic analysis component
to resolve the values.

Second, we discuss how clickjacking attacks, or in
general UI redress attacks, influence our results. Sim-
ply put, these attacks are out of scope of the paper—all
the information flows have already been given permis-
sions in Android apps and thus the apps do not need a UI
redress attack to fool the user to click something. More
importantly, because FlowCog only identifies views that
are related to a specific flow, other invisible views above
or below are skipped by FlowCog and not considered in
the semantics extraction stage.

Lastly, we talk about native code or JavaScript code in
Android apps. FlowDroid does not support such non-
Java code and thus FlowCog cannot deal with infor-
mation flows related to native code or WebView-based
JavaScript code either. We believe that FlowCog can be
integrated with any future work that considers non-Java
code, because semantics of Android apps are mostly pro-
vided in Java code.

8 Related Work
We discuss related works that apply either program-

ming analysis or natural language processing on Android
apps.

First, many works aim to detect information flows of
Android apps [12, 15, 24, 30, 33]. FlowDroid [12] is a
static precise taint analysis systems based on Soot frame-
work. It is context-, flow-, field- and object-sensitive
while still very efficient: FlowDroid transforms taint
analysis’s information flow problem into an IFDS prob-
lem, and then uses an efficient IFDS solver to find the
solution. FlowDroid does not support inter-component
analysis. To address this limitation, static analysis sys-
tems Amandroid [33], DroidSafe [18] and IccTA [24]
are proposed to provide Android inter-component taint
analysis. In addition to static analysis, dynamic analy-
sis systems are also proposed to detect Android infor-
mation flows. TaintDroid [15] conducts taint analysis
dynamically by proposing a customized Android frame-
work. Uranine [30], on the other hand, detects informa-
tion leakage by instrumenting app without modifying the
operating system. EdgeMiner [13] is an approach that
detects implicit control flow transitions in the Android

framework but does not analyze Android apps directly.
None of these works attempt to infer whether an Android
app provides sufficient semantics for information flows.
That said, FlowCog can work with any such systems to
determine whether enough semantics is provided.

Second, Android app’s execution context is an impor-
tant indicator to analyze app’s behaviors. Several works
are proposed to detect malicious Android apps based on
execution contexts. AppContex [34] finds the contexts
related to a set of suspicious actions, and then classi-
fies the app as benign or malicious according to these
actions as well as their corresponding behaviors. Sim-
ilarly, TriggerScope [17] identifies narrow conditional
statements, called triggers, and infers possible suspicious
actions based on these triggers. DroidSift [36] classi-
fies Android malware using weighted contextual API de-
pendency graphs. As a comparison, FlowCog goes be-
yond app’s execution contexts, i.e., activation events and
guarding conditions, to find Android views and extract
semantics related to these views.

Third, NLP techniques are also used in Android pri-
vacy. WHYPER [27] is the first work that aims to bridge
the gap between semantics and behaviors of Android
apps by using NLP techniques. Specifically, it extracts
semantics from app’s descriptions and API documents,
and then determines whether the descriptions justify the
usage of certain permissions. Another research work,
AutoCog [28], tried to solve a similar problem with NLP
on descriptions but used a learning-based approach us-
ing Android app’s descriptions but not API documents.
CHABADA [19] also extracts semantics from an app’s
descriptions, and then determines whether the app’s API
usages are consistent with the extracted semantics. Zim-
meck et al. [37] propose another NLP system that ex-
tracts the semantics from app’s privacy requirements and
predicts whether an app is compliant with its privacy re-
quirement. Apart from Android, NLP techniques have
also been used in IoT devices to study privacy correla-
tions [31]. AsDroid [20] correlates the stealthy behaviors
of Android apps, such as a malware, with app’s descrip-
tions. DescribeMe [35] generates security-centric de-
scriptions for Android Apps. As a comparison, FlowCog
is the first system that analyze the correlation between in-
formation flows and the semantics—FlowCog faces ad-
ditional challenges such as extracting flow-specific se-
mantics.

9 Conclusion
Prior works correlating app behaviors and semantics

are coarse-grained, i.e., on the app-level, which can-
not provide insights for fine-grained information flow.
Specifically, prior works cannot differentiate two flows,
one with sufficient semantics provided in the GUI, i.e.,
available to the app users, and the other hiding secretly
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in the background.
In this paper, we propose an automatic, flow-

level semantics extraction and inference system, called
FlowCog. Given an information flow, FlowCog can ex-
tract all the related semantics, such as texts and images,
in the app via a mostly static approach with an optional
dynamic component. Then, FlowCog adopts natural lan-
guage processing (NLP) techniques to infer whether the
app provide sufficient semantics for users to understand
the privacy risks, i.e., the information flow. We imple-
ment an open-source version of FlowCog with ∼16,500
lines of code available at https://github.com/
SocietyMaster/FlowCog. Our evaluation results
show that FlowCog can achieve a precision of 90.1% and
a recall of 93.1%.
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A Context and Flow Correlation
A.1 NLP Module

FlowCog’s NLP Module has four steps: preprocess-
ing, parsing, grammar analysis, and post-processing.
The first step separates raw texts into a list of sentences
or phrases, and removes useless symbols; the second
parses each sentence or phrase into a so-called grammar
hierarchical tree by Stanford parser; the third converts
each sentence or phrase to a list of action-resource pairs;
and the last one processes the generated action-resource
pairs. Here are the details.

First, FlowCog’s NLP module preprocesses all the raw
input texts by annotating special nouns, such as email,
abbreviation, IP address and ellipsis, by regular expres-
sions. Then, the NLP module splits the input texts into
sentences or phrases by special characters, such as “."
and “:". (A full list of such characters is also used by
existing work [9].)

Second, FlowCog adopts Stanford Parser [21] to pro-
cess each sentence or phrase produced in previous step
into a grammar hierarchical tree by extracting Stanford-
typed dependencies, or for short typed dependencies, and
Part of Speech (POS) tags of the sentence or phrase.
Let us use a real-world sentence seen commonly in An-
droid apps as an example. The sentence, indicating that
the user’s contacts are sent to the cloud for backup, is
that “Your contacts are being synced with cloud.” The
Stanford Parser breaks down the sentence into multiple
triples, each of which contains the name of the relation,
the governor and the dependent, and outputs a grammar
hierarchical tree.

Third, FlowCog converts the grammar hierarchical
tree into a list of action-resource pairs, i.e., preserv-
ing the verb phrase with governor-dependent relation-
ship from the Stanford parser. Specifically, FlowCog ex-
tracts all the noun phrases in the leaf nodes of the hier-
archical tree and records all the verb phrases from their
ancestors—the verb and the noun phrases form into an
action-resource pair. Note that if FlowCog finds posses-
sive node, e.g., “Your”, such node will also be included
in the resource; in addition, if FlowCog cannot find a
verb node, a “null” action will be used. For example,
from the “contacts” node, FlowCog will produce <null,
“Your contacts”>.

Lastly, after extracting all action-resource pairs as de-
scribed, FlowCog further processes the extracted pairs.
Particularly, FlowCog performs the following steps: (i)
removing stopwords without sufficient semantic infor-
mation, such as “are” and “the”, (ii) replacing names,
such as people and location, with general names by Stan-
ford Named Entity Recognizer [16], and (iii) normaliz-
ing and lemmatizing all words, e.g., converting all letters
to lowercase and plural subjects to singular. Consider our

prior example. FlowCog will finally generate the follow-
ing two action-resource pairs, <null, “your contact”>
and <“synced”, “cloud”>.

A.2 Resource Filter

Resource filter is a component that filters common,
non-informative words in the context of Android API
documents. Examples are like “Android" and “App", be-
cause they are universal in the context of Android APIs.
This is how resource filter works in detail. The re-
source filter groups action-resource pairs from Android
API documents based on the flow types, i.e., sources and
sinks, and then extracts all the resource phrases from the
pairs. If more than half of the groups contain the same re-
source phrase (excluding “null”), FlowCog will consider
this resource as non-informative and filter such action-
resource pairs. Note that we adopt such tactics because
if one resource appears in the API documents of more
than half flow types, the resource is considered ineffec-
tive in differentiating the semantics of flows and thus safe
to be filtered.

A.3 Learning-based Classifier

We now introduce the first category of classifiers,
i.e., the learning-based one. This classifier takes the
previously-generated two lists of action-resource pairs
as inputs, and outputs a result about whether they are
correlated. Specifically, there are three steps here. (i)
FlowCog converts action-resource pairs into numeric
feature vectors, called vectorization. (ii) FlowCog relies
on two machine learning models, namely support vector
machine (SVM) and gradient boosting (GB), to classify
the generated feature vector as a correlation score. (iii)
FlowCog uses logistic regression to calculate a combined
score.

First, FlowCog uses a variation of bag-of-words to
convert action-resource pairs to a text vector, and then
adopts term-frequency inverse document-frequency (TF-
IDF) model to convert the text vector into a numeric one.
Specifically, FlowCog adopts bag-of-words model that
considers the word order, i.e., each word and each action-
resource pair are all separate elements in the bag. For ex-
ample, if FlowCog sees two action-resource pairs, <find,
friend> and <remember, me>, the generated text vector
is <find, friend, remember, me, find friend, remember
me>. Then, FlowCog converts each element, or called
term, in the text vector to its TF-IDF value. The TF-
IDF value for for each element is calculated as shown in
Equation 1.

t f id f (t,d) = t f (t,d)∗ id f (t) =
1+N

1+d f (d, t)
(1)

where the parameter t refers to the target element, the pa-
rameter d refers to the text vector, t f is the element’s fre-
quency, i.e., the number of times a term occurs in a given
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word pair list, id f is the element’s inverse document-
frequency, N is the number of text lists in our training
set, and d f (dt) returns the number of text lists that con-
tain the target element t. After calculating the numeric
feature vector, FlowCog normalizes the vector using Eu-
clidean norm and converts the vector to a sparse one for
better accuracy and efficiency.

Second, FlowCog uses two classifiers, namely Gradi-
ent Boosting (GB) and Support Vector Machine (SVM),
to predict a correlation score based the numeric feature
vector outputted from the previous step. The adopted
GB defines differentiable loss function and uses gradi-
ent descent approach to minimize the loss function in
an iterative approach. in each iteration, FlowCog adds
a new decision tree so the loss function on overall model
will be decreased. The algorithm stops when the num-
ber of trees achieve a threshold, or the loss reaches an
acceptable level, or the loss can no longer be decreased.
Meanwhile, FlowCog adopts linear SVM in soft-margin
version, which allows some points to be misclassified but
each instance will impose a penalty to the target function.

Lastly, FlowCog relies on Linear Regression to com-
bine results from GB and SVM into a single result that
lies in between zero and one, where one means correlated
and zero not.

A.4 Similarity Classifier

In addition to the learning-based classifier, FlowCog
also has a learning-free classifier, called similarity clas-
sifier. Note that the terminology, learning-free, means
that FlowCog does not require any training data from
our dataset, i.e., anything from Android apps. Still, the
model used in this classifier, namely Word2Vec, needs
to be pre-trained from Wikipedia Corpus. Now let us
discuss the details about how we use Word2Vec and cal-
culate the similarity score.

First, we give some backgrounds about the word em-
bedding model used in Word2Vec, the state-of-the-art
and arguably the most popular predictive model to learn
word embedding from raw texts. Traditionally, natu-
ral language processing encodes each word as discrete
atomic symbols. For example, word “contact” is rep-
resented as “id171” and “connection” is represented
as “id28”. Such encoding scheme itself cannot pro-
vide information about the relationship between any two
words. Assuming another word “rocket” is represented
as “id211”, we cannot conclude that “contact” is more
related to “connection” than “rocket” based on their en-
codings. For comparison, word embedding encodes each
word as a vector (e.g., ~vcontact ) and semantically similar
words are mapped to nearby points in the continuous vec-
tor space. Therefore, we can calculate the similarity of
any two words on their word embedding representation
directly. For example, cosine function, which will be de-

fined later in this section, is frequently used as a mea-
sure of similarity, so cos(~vcontact ,~vconnection) larger than
cos(~vcontact ,~vrocket) means the word “contact” is more re-
lated to “connection” than “rocket” in the specific model.
Moreover, other operations on vector are also meaning-
ful. Intuitively, if word A is related to either word B or
word C, it is related to the word represented as~vB +~vC.

Second, we introduce how we use the Word2Vec
model trained from Wikipedia corpus. FlowCog converts
each action-resource pair to a vector via the vocabulary-
vector mapping provided by Word2Vec. Specifically,
FlowCog finds two vectors associated with action and
resource separately, and adds these two vectors together
as the final result. Note that there are two special scenar-
ios. A “null” action will map to an zero vector, and if
the resource contains more than one word, FlowCog will
find the vector for each word and add them together.

Third, FlowCog calculates the similarity score be-
tween two vector lists corresponding to Android API
documents and texts extracted by the Android app. In
particular, FlowCog adopt cosine similarity as defined in
Equation 2.

Similarity(Lista,Listb) =
M

∑
i=1

N

∑
j=1

wi j ·h(si j) · si j (2)

where M equals sizeo f (Lista), N equals sizeo f (Listb),
and si j is Similarity(~vi,~v j), the similarity score of two
vectors as defined in Equation 3.

si j = Similarity(~vi,~v j) = cos(~vi,~v j) =
~vi ·~v j

‖~vi‖ · ‖~v j‖
(3)

Lastly, FlowCog needs to normalize the calculated
similarity score, because the size of the vector list could
affect the score. Specifically, we define an activation
function h(x) in Equation 4 to filter certain unrelated vec-
tor pairs when their contribution is small, and an expo-
nentially decreasing weight function w(x) in Equation 5
to reduce the effect of long list. Here is the definition
of the activation function with an activation threshold as
threshold.

h(x) =
{

0, x < threshold
x, otherwise (4)

We also define a weight function in Equation 5 with
a decreasing factor as µ . The function assigns highest
weight to the most related vector pairs (i.e., whose vector
similarity scores are highest), second-highest weight to
the second-most related pairs, and so on. So the most
related texts contribute the most to the overall similarity
scores.

wi j = w(si j ·h(si j)) = µ
k ,(0 < µ < 1) (5)

where k is kth element in desc_sorted({x|si j ·
h(si j), iεM, jεN}). Note that both the activation
threshold and decreasing factor are obtained empirically
during our experiment. In practice, we choose 0.6 and
0.7 respectively for these two parameters.
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