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Abstract

Simple path tracing tools such as traceroute allow
malicious users to infer network topologies remotely and
use that knowledge to craft advanced denial-of-service
(DoS) attacks such as Link-Flooding Attacks (LFAs).
Yet, despite the risk, most network operators still allow
path tracing as it is an essential network debugging tool.

In this paper, we present NetHide, a network topol-
ogy obfuscation framework that mitigates LFAs while
preserving the practicality of path tracing tools. The key
idea behind NetHide is to formulate network obfuscation
as a multi-objective optimization problem that allows for
a flexible tradeoff between security (encoded as hard
constraints) and usability (encoded as soft constraints).
While solving this problem exactly is hard, we show that
NetHide can obfuscate topologies at scale by only con-
sidering a subset of the candidate solutions and without
reducing obfuscation quality. In practice, NetHide obfus-
cates the topology by intercepting and modifying path
tracing probes directly in the data plane. We show that
this process can be done at line-rate, in a stateless fash-
ion, by leveraging the latest generation of programmable
network devices.

We fully implemented NetHide and evaluated it on re-
alistic topologies. Our results show that NetHide is able
to obfuscate large topologies (> 150 nodes) while pre-
serving near-perfect debugging capabilities. In particu-
lar, we show that operators can still precisely trace back
> 90% of link failures despite obfuscation.

1 Introduction

Botnet-driven Distributed Denial-of-Service (DDoS) at-
tacks constitute one of today’s major Internet threats [1,
2, 5, 10]. Such attacks can be divided in two categories
depending on whether they target end-hosts and services
(volume-based attacks) or the network infrastructure it-
self (link-flooding attacks, LFAs).

Volume-based attacks are the simplest and work by
sending massive amounts of data to selected targets. Re-
cent examples include the 1.2 Tbps DDoS attack against
Dyn’s DNS service [6] in October 2016 and the 1.35
Tbps DDoS attack against GitHub in February 2018 [8].
While impressive, these attacks can be mitigated today
by diverting the incoming traffic through large CDN in-
frastructures [23]. As an illustration, CloudFlare’s infras-
tructure can now mitigate volume-based attacks reaching
Terabits per second [18].

Link-flooding attacks (LFAs) [26, 38] are more so-
phisticated and work by having a botnet generate low-
rate flows between pairs of bots or towards public ser-
vices such that all of these flows cross a given set of
network links or nodes, degrading (or even preventing)
the connectivity for all services using them. LFAs are
much harder to detect as: (i) traffic volumes are rela-
tively small (10 Gbps or 40 Gbps attacks are enough to
kill most Internet links [31]); and (ii) attack flows are
indistinguishable from legitimate traffic. Representative
examples include the Spamhaus attack which flooded se-
lected Internet eXchange Point (IXP) links in Europe and
Asia [4, 7, 12].

Unlike volume-based attacks, performing an LFA re-
quires the attacker to know the topology and the forward-
ing behavior of the targeted network. Without this knowl-
edge, an attacker can only “guess” which flows share
a common link, considerably reducing the attack’s effi-
ciency. As an illustration, our simulations indicate that
congesting an arbitrary link without knowing the topol-
ogy requires 5 times more flows, while congesting a spe-
cific link is order of magnitudes more difficult.

Nowadays, attackers can easily acquire topology
knowledge by running path tracing tools such as
traceroute [17]. In fact, previous studies have
shown that entire topologies can be precisely mapped
with traceroute provided enough vantage points are
used [37], a requirement easily met by using large-scale
measurement platforms (e.g., RIPE Atlas [16]).
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Existing works Existing LFA countermeasures either
work reactively or proactively. Reactive measures dy-
namically adapt how traffic is being forwarded [25,
33] or have networks collaborating to detect malicious
flows [31]. Proactive measures work by obfuscating the
network topology so as to prevent attackers from dis-
covering potential targets [28, 39, 40]. The problem with
reactive countermeasures is the relative lack of incen-
tives to deploy them: collaborative detection is only use-
ful with a significant amount of participating networks,
while dynamic traffic adaptation conflicts with traffic en-
gineering objectives. In contrast, proactive approaches
can protect each network individually without impact-
ing normal traffic forwarding. Yet, they considerably
lower the usefulness of path tracing tools [28,39] such as
traceroute which is the prevalent tool for debugging
networks [24,27,37]. Further, they also provide poor ob-
fuscation which can be easily broken with a small num-
ber of brute-force attacks [39, 40].

Problem statement Given the limitations of existing
techniques, a fundamental question remains open: is it
possible to obfuscate a network topology so as to mit-
igate attackers from performing link flooding attacks
while, at the same time, preserving the usefulness of path
tracing tools?

Key challenges Answering this question is challenging
for at least three reasons:

1. The topology must be obfuscated with respect to any
possible attacker location: attackers can be located
anywhere and their tracing traffic is often indistin-
guishable from legitimate user requests.

2. The obfuscation logic should not be invertible and
should scale to large topologies.

3. The obfuscation logic needs to be able to intercept
and modify tracing traffic at line-rate. To preserve
the troubleshooting-ability of network operators, trac-
ing traffic should still flow across the correct physical
links such that, for example, link failures in the phys-
ical topology are visible in the obfuscated one.

NetHide We present NetHide, a novel network obfus-
cation approach which addresses the above challenges.
NetHide consists of two main components: (i) a usability-
preserving and scalable obfuscation algorithm; and (ii) a
runtime system, which modifies tracing traffic directly in
the data plane.

The key technical insight behind NetHide is to formu-
late the network obfuscation task as a multi-objective op-
timization problem that allows for a flexible trade-off be-
tween security (encoded as hard constraints) and usabil-
ity (soft constraints). We introduce two metrics to quan-
tify the usability of an obfuscated topology: accuracy

and utility. Intuitively, the accuracy measures the sim-
ilarity between the path along which a flow is routed in
the physical topology with the path that NetHide presents
in the virtual topology. The utility captures how physi-
cal events (e.g., link failures or congestion) in the phys-
ical topology are represented in the virtual topology. To
scale, we show that considering only a few randomly se-
lected candidate topologies, and optimizing over those,
is enough to find secure solutions with near-optimal ac-
curacy and utility.

We fully implemented NetHide and evaluated it on re-
alistic topologies. We show that NetHide is able to obfus-
cate large topologies (> 150 nodes) with marginal impact
on usability. In fact, we show in a case study that NetHide
allows to precisely detect the vast majority (> 90%) of
link failures. We also show that NetHide is useful when
partially deployed: 40 % of programmable devices allow
to protect up to 60 % of the flows.

Contributions Our main contributions are:

• A novel formulation of the network obfuscation prob-
lem in a way that preserves the usefulness of existing
debugging tools (§3).

• An encoding of the obfuscation task as a linear op-
timization problem together with a random sampling
technique to ensure scalability (§4).

• An end-to-end implementation of our approach, in-
cluding an online packet modification runtime (§5).

• An evaluation of NetHide on representative network
topologies. We show that NetHide can obfuscate
topologies of large networks in a reasonable amount
of time. The obfuscation has little impact on benign
users and mitigates realistic attacker strategies (§6).

2 Model

We now present our network and attacker models and
formulate the precise problem we address.

2.1 Network model
We consider layer 3 (IP) networks operated by a single
authority, such as an Internet service provider or an en-
terprise. Traffic at this layer is routed according to the
destination IP address. We assume that routing is deter-
ministic, meaning that the traffic is sent along a single
path between each pair of nodes. While this assumption
does not hold for networks relying on probabilistic load-
balancing mechanisms (e.g., ECMP [15]), it makes our
attacker more powerful as all paths are assumed to be
persistent and therefore easier to learn.

To deploy NetHide, we assume that some of the routers
are programmable in a way that allows them to: (i) match
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Botnet Public servers

Figure 1: Link Flooding Attacks (LFAs) work by routing
many legitimate low-volume flows over the same set of
physical links in order to cause congestion. LFAs assume
that the attacker can discover the network topology, usu-
ally using traceroute-like tracing.

on arbitrary IP Time-to-Live (TTL) values; (ii) change
the source and destination addresses of packets (e.g.,
UDP packets for traceroute) depending on the orig-
inal destination address and the TTL; and (iii) restore the
original source and destination addresses when replies
(e.g., ICMP packets) to modified packets arrive. Our im-
plementation uses the P4 programming language [14],
which fulfills the above criteria. Yet, NetHide could also
be implemented on top of existing router firmware.

2.2 Attacker model
We assume an attacker who controls a set of hosts (e.g.,
a botnet) that can inject traffic in the network. The at-
tacker’s goal is to perform a Link Flooding Attack (LFA)
such as Coremelt [38] or Crossfire [26]. The objective
of these attacks is to isolate a network segment by con-
gesting one or more links. The attacker aims to congest
links by creating low-volume flows from many differ-
ent sources (bots) to many destinations (public servers
or other bots) such that all these flows cross the targeted
links (illustrated in Fig. 1). An attacker’s budget limits
the number of flows she can run and we quantify the at-
tacker’s strength based on her budget. Because the addi-
tional traffic is low-volume, it is hard to separate it from
legitimate (also low-volume) traffic. This makes detect-
ing and mitigating LFA attacks a hard problem [41].

To mount an efficient and stealthy LFA, the attacker
must know enough (source, destination) pairs that com-
municate via the targeted link(s). Otherwise, she would
have to create so many flows that she no longer re-
mains efficient. Similarly to [26, 38], we assume the
attacker has no prior knowledge of the network topol-
ogy. However, the attacker can learn the network topol-
ogy using traceroute-like tracing techniques [17].
traceroute works by sending a series of packets
(probes) to the destination with increasing TTL values.
In response to these probes, each router along the path to
the destination sends an ICMP time exceeded message.
More specifically, traceroute leverages the fact that

Network components
(Nodes) N ⊆ N = {n1, . . . ,nN}
(Links) L ⊆ N×N
(Forwarding tree) Tn = (N,Ln), tree rooted at n
(Forwarding trees) T =

⋃
n∈N Tn

(Flows) F ⊆ N×N

Network topologies
(Physical) P = (N,L,T )
(Virtual) V = (N′,L′,T ′)

N ⊆ N′

Metrics
(Flows per link) f (T, l) = {(s,d) ∈ F | l ∈ Td}
(Flow density) fd(T, l) = | f (T, l)|
(Capacity) c : L→ N
(Accuracy) acc : ((s,d) ,P,V ) 7→ [0,1]
(Utility) util : ((s,d) ,P,V ) 7→ [0,1]

Figure 2: NetHide notation and metrics

TTL values are decremented by one at each router, and
that the first router to see a TTL value of 0 sends a re-
sponse to the source of the probe. For example, a packet
with TTL value of 3 sent from A to B will cause the third
router along the path from A to B to send an ICMP time
exceeded message to A. By aggregating paths between
many host pairs, it is possible to determine the topol-
ogy and the forwarding behavior of the network [37].
We remark that in addition to revealing forwarding paths,
traceroute-like probes also disclose the Round-Trip
Time (RTT), i.e., the time difference between the mo-
ment a probe is sent and the corresponding ICMP time
exceeded message is received, which can be used as a
side-channel to gain intuition about the feasibility of a
(potentially obfuscated) path returned by traceroute.

Finally, we assume that the attacker knows everything
about the deployed protection mechanisms in the net-
work (including the ones presented in this paper) except
their secret inputs and random decisions following Ker-
ckhoff’s principle [34].

2.3 Notation

We depict our notation and definitions in Fig. 2. We
model a network topology as a graph with nodes N ⊆N ,
where N is the set of all possible nodes, and links
L ⊆ N×N. A node in the graph corresponds to a router
in the network and a link corresponds to an (undirected)
connection between two routers. NetHide allows to ex-
tend a topology with virtual nodes, i.e., nodes v∈N \N.

Given a node n, we use a tree Tn = (N,Ln) rooted at n
to model how packets are forwarded to n. We refer to this
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tree as a forwarding tree. For simplicity, we write l ∈ Tn
to denote that the link l is contained in the forwarding
tree Tn, i.e., Tn = (N,Ln) with l ∈ Ln. We use T to denote
the set of all forwarding trees.

A flow (s,d) ∈ F is a pair of a source node s and des-
tination node d. Note that the budget of the strongest at-
tacker is given by the total number |F | of possible flows.
We use Ts→d to refer to the path from source node s to
destination node d according to the forwarding tree Td .
In the style of [26], we define the flow density fd for a
link l ∈ L as the number of flows that are routed via this
link (in any direction). The maximum flow density that
a link can handle without congestion is denoted by the
link’s capacity c. A topology (N,L,T ) is secure if the
flow density for any link in the topology does not exceed
its capacity, i.e., ∀l ∈ L : fd(T, l) ≤ c(l). Note that no at-
tacker (with any budget) can attack a secure topology as
all links have enough capacity to handle the total number
of flows from all the (source, destination) pairs in F .

2.4 Problem statement

We address the following network obfuscation problem:
Given a physical topology P, the goal is to compute an
obfuscated (virtual) topology V such that V is secure and
is as similar as possible to P. In other words, the goal
is to deceive the attacker with a virtual topology V . For
the similarity between the physical topology P and the
obfuscated topology V , we refer to §3 where we present
metrics which represent the accuracy of paths reported
by traceroute and the utility of link failures in P be-
ing closely represented in V .

We remark on a few important points. First, if P is se-
cure, then the obfuscation problem should return P since
we require that V is as similar as possible to P. Second,
for any network and any attacker, the problem has a triv-
ial solution since we can always come up with a network
that has an exclusive routing path for each (source, desti-
nation) pair. However, for non-trivial notions of similar-
ity, it is challenging to discover an obfuscated network V
that similar to P.

3 NetHide

We now illustrate how NetHide can compute a secure and
yet usable (i.e., “debuggable”) obfuscated topology on a
simple example depicted in Fig. 3. Specifically, we con-
sider the task of obfuscating a network with 6 routers:
A, . . . ,F in which the core link (C,D) acts as bottleneck
and is therefore a potential target for an LFA.

Inputs NetHide takes four inputs: (i) the physical net-
work topology graph; (ii) a specification of the forward-
ing behavior (a forwarding tree for each destination ac-

cording to the physical topology and incorporating po-
tential link weights); (iii) the capacity c of each link (how
many flows can cross each link before congesting it);
along with (iv) the set of attack flows F to protect against.
If the position of the attacker(s) is not known (the de-
fault), we define F to be the set of all possible flows be-
tween all (source,destination) pairs.

Given these inputs, NetHide produces an obfuscated
virtual topology V which: (i) prevents the attacker(s)
from determining a set of flows to congest any link; while
(ii) still allowing non-malicious users to perform network
diagnosis. A key insight behind NetHide is to formulate
this task as a multi-objective optimization problem that
allows for a flexible tradeoff between security (encoded
as hard constraints) and usability (encoded as soft con-
straints) of the virtual topology. The key challenge here
is that the number of obfuscated topologies grows expo-
nentially with the network size, making simple exhaus-
tive solutions unusable. To scale, NetHide only considers
a subset of candidate solutions amongst which it selects
a usable one. Perhaps surprisingly, we show that this pro-
cess leads to desirable solutions.

Pre-selecting a set of secure candidate topologies
NetHide first computes a random set of obfuscated
topologies. In addition to enabling NetHide to scale, this
random selection also acts as a secret which makes it sig-
nificantly harder to invert the obfuscation algorithm.

NetHide obfuscates network topologies along two di-
mensions: (i) it modifies the topology graph (i.e., it adds
or removes links); and (ii) it modifies the forwarding be-
havior (i.e., how flows are routed along the graph). For
instance, in Fig. 3, the two shown candidate solutions
V1 and V2 both contain two virtual links used to “route”
flows from A to E and from B to F .

Selecting a usable obfuscated topology While there ex-
ist many secure candidate topologies, they differ in terms
of usability, i.e., their perceived usefulness for benign
users. In NetHide, we capture the usability of a virtual
topology in terms of its accuracy and utility.

The accuracy measures the logical similarity of the
paths reported when using traceroute against the
original and against the obfuscated topology. Intuitively,
a virtual topology with high accuracy enables network
operators to diagnose routing issues such as sub-optimal
routing. Conversely, tracing highly inaccurate topologies
is likely to report bogus information such as traffic jump-
ing between geographically distant points for no appar-
ent reason. As illustration, V2 is more accurate than V1 in
Fig. 3 as the reported paths have more links and routers
in common with the physical topology.

The utility metric measures the physical similarity be-
tween the paths actually taken by the tracing packets in
the physical and the virtual topology. Intuitively, utility
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Input Topology obfuscation (§4)

Physical topology

A

B

E

FC D

Topology deployment (§5)

using programmable network devices

Virtual topology

A

B

E

FC D

dst TTL actions

E 2 TTL=3, 

dst=D

Random sample of

candidate solutions

Select topology with maximal accuracy and utility (V
2
)

bottleneck

link (C,D)

Accuracy

compare ( , )

compare ( , ) 

= 2 common

= 2 common

Utility for failure of link (D,E)________

observe failure (A,E)

observe no failure P

O

Accuracy

compare ( , )

compare ( , )

= 3 common

= 3 common

Utility for failure of link (D,E)________

observe failure (D,E)

observe no failure P

P

… … …

dst TTL actions

A 3 TTL=4

… … …

dst TTL actions

F 3 TTL=4

… … …

dst TTL actions

B 3 TTL=4

… … …

c(C,D) < fd(C,D)

▪ Physical topology

▪ Routing behavior

▪ Set of flows

▪ Capacity of each link

Input:

virtual link

V
1

V
2

Figure 3: NetHide operates in two steps: (i) computing a secure and usable virtual topology; and (ii) deploying the
obfuscated topology in the physical network.

captures how well events such as link failures or conges-
tion in the physical topology are observable in the virtual
topology. For instance, we illustrate that V2 has a higher
utility than V1 in Fig. 3 by considering the failure of the
link (D,E). Indeed, a non-malicious user would observe
the failure of (D,E) (which is not obfuscated) when trac-
ing V2 while it would observe the failure of link (A,E)
instead of (D,E) when tracing V1.

Given V1, V2 and the fact that V2 has higher accuracy
and utility, NetHide deploys V2.

Deploying the obfuscated topology NetHide obfuscates
the topology at runtime by modifying tracing packets
(i.e., IP packets whose TTL expires somewhere in the
network). NetHide intercepts and processes such packets
without impact on the network performance, directly in
the data plane, by leveraging programmable network de-
vices. Specifically, NetHide intercepts and possibly alters
tracing packets at the edge of the network before send-
ing them to the pretended destination in the physical net-
work. That way, NetHide ensures that tracing packets tra-
verse the corresponding physical links, and preserves the
utility of traceroute-like tools. Observe that any al-
teration of tracing packets is reverted before they leave
the network, which makes NetHide transparent. In con-
trast, simpler approaches which answer to tracing pack-
ets at the network edge or from a central controller (e.g.,
[28, 39]) render network debugging tools unusable.

Consider again Fig. 3 (right). If router A receives a
packet towards E with TTL=2, this packet needs to ex-
pire at router D according to the virtual topology. Since
the link between A and D does not exist physically, the
packet needs to be sent to D via C, and it would thus ex-

pire at C. To prevent this and to ensure that the packet
expires at D, NetHide increases the TTL by 1. Observe
that, in addition to ensure the utility (see above), making
the intended router answer to the probe also ensures that
the measured round trip times are realistic (cf. §5).

4 Generating secure topologies

In this section, we first explain how to phrase the task of
obfuscating a network topology as an optimization prob-
lem. We then present our implementation which consists
of roughly 2000 lines of Python code and uses the Gurobi
ILP solver [9].

4.1 Optimization problem
Given a topology P = (N,L,T ), a set of flows F , and
capacities c, the network obfuscation problem is to gen-
erate a virtual topology V = (N′,L′,T ′) such that: (i) V
is secure; and (ii) the accuracy and utility metrics are
jointly maximized; we define these metrics shortly.

NetHide generates V by modifying P in three ways:
(i) NetHide can add virtual nodes to the topology graph
that do not exist in P; (ii) NetHide adds virtual links to
connect physical or virtual nodes in V ; and (iii) NetHide
can modify the forwarding trees for all nodes in V .

We show the constraints that encode the security and
the objective function that captures the closeness in terms
of accuracy and utility in Fig. 4 and explain them below.

Security constraints The main constraint is the security
(C1) imposed on V . This being a hard constraint (as op-
posed to be part of the objective function) means that if
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Objective function
max

V
∑
f∈F

(
wacc ·acc( f ,P,V )+wutil ·util( f ,P,V )

)
where wacc ∈ [0,1], wutil ∈ [0,1], wacc +wutil = 1

Hard Constraints
(Security) ∀l ∈ L′ : fd(V, l)≤ c(l) (C1)
(Complete) n ∈ N⇒ n ∈ N′ (C2)
(Reach) ∀n ∈ N′ : |{Tn|Tn ∈ T ′}|= 1 (C3)

∀T ∈ T ′ : ∀l ∈ T : l ∈ L′ (C4)
(n,n′) ∈ L′⇒{n,n′} ∈ N′ (C5)

Figure 4: NetHide optimization problem. NetHide finds a
virtual topology that is secure and has maximum accu-
racy compared with the physical topology.

NetHide finds a virtual topology V , then V is secure with
respect to the attacker model and the capacities.

To ensure that the virtual topology V is valid, NetHide
incorporates additional constraints capturing that: (C2)
all physical nodes in N are also contained in the virtual
topology with nodes N′; (C3) there is exactly one vir-
tual forwarding tree for each node; and (C4-5) links and
nodes in the virtual forwarding trees are contained in N′.

Objective function The objective of NetHide is to find a
virtual topology that maximizes the overall accuracy (cf.
§4.2) and utility (cf. §4.3). As shown in Fig. 4, we define
the overall accuracy and utility as a weighted sum of the
accuracy and utility values of all flows in the network.

4.2 Accuracy metric
The accuracy metric is a function that maps two paths
for a given flow to a value v ∈ [0,1]. In our case, this
value captures the similarity between a path Ts→d in P
for a given flow (s,d) and the (virtual) path T ′s→d for the
same flow (s,d) in V . Formally, given a flow (s,d), the
accuracy is defined as:

acc((s,d),P,V ) = 1−
LD(Ts→d ,T ′s→d)

|Ts→d |+
∣∣T ′s→d

∣∣
Where LD(Ts→d ,T ′s→d) is Levenshtein distance [32]

and |Ts→d | denotes the length of the path from s to d.
The overall accuracy of a topology (as referred to in

§6) is defined as the average accuracy over all flows in F :

Aavg(P,V ) = avg(s,d)∈F acc((s,d),P,V )

We point out that the accuracy metric in NetHide can
also be computed by any other function to precisely rep-
resent the network operator’s needs.

Input: Flow (s,d) ∈ F ,
physical topology P = (N,L,T ),
virtual topology V = (N′,L′,T ′)

Output: utility u ∈ [0,1]

for n ∈ T ′s→d do
C← Ts→n∩T ′s→d [0 : n] // common links

un← 1
2

(
|C|
|Ts→n| +

|C|
|T ′s→d [0:n]|

)
// utility

u← 1
|T ′s→d|

∑n∈T ′s→d
un // average

Algorithm 1: Utility metric. It incorporates the likeli-
hood that a failure in the physical topology P is visible
in the virtual topology V and that a failure in V actually
exists in P. Note that we treat Ts→d as a set of links.

4.3 Utility metric
While the accuracy measures the similarity between the
physical and virtual paths for a given flow, the utility
measures the representation of physical events, such as
link failures. For our implementation, we design the util-
ity metric such that it computes the probability that a link
failure in the physical path is observed in the virtual path
and the probability that a failure reported in the virtual
path is indeed occurring in the physical path.

Algorithm 1 describes the computation of our utility
metric for a given flow (s,d). In the algorithm, given a
virtual path T ′s→d = s→ n1 → ·· · → nk → d, we write
T ′s→d [0 : ni] to denote the prefix path s→ n1→ ··· → ni.
NetHide computes the overall utility by taking the aver-
age utility computed over all flows:

Uavg = avg(s,d)∈F util((s,d),P,V )

As with accuracy, a network operator is free to imple-
ment a custom utility metric.

In most cases, the accuracy and utility are strongly
linked together (we show this in §6). However, as illus-
trated in Fig. 5, there exist cases where the accuracy is
high and the utility low or vice-versa.

(a) high accuracy, low utility

physical path virtual path

paths of tracing packets

(b) low accuracy, high utility

Figure 5: High accuracy does not always imply high util-
ity (and vice-versa). In Fig. 5a, the physical and virtual
paths are similar but the tracing packets do not cross the
physical links. In Fig. 5b, the physical and virtual paths
are dissimilar but the tracing packets do cross the physi-
cal links.
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4.4 Scalability
To obfuscate topologies with maximal accuracy and util-
ity, a naive approach would consider all possible changes
to P, which is infeasible even for small topologies.

NetHide significantly reduces the number of candidate
solutions in order to ensure reasonable runtime while
providing close-to-optimal accuracy and utility. The key
insight is that NetHide pre-computes a set of forward-
ing trees for each node and later computes V as the opti-
mal combination of them. Thanks to the reduction from
modeling individual links or paths to forwarding trees,
NetHide only considers valid combinations of paths (i.e.,
paths that form a tree rooted at n, ∀n ∈ N′).

For computing the forwarding trees, NetHide builds a
complete graph G with all nodes from V , that is G =
(V,E) where V = N′ and E = N′×N′, and assigns each
edge the same weight w(e) = 1 ∀e ∈ E. Then, NetHide
uses Dijkstra’s algorithm [21] to compute forwarding
trees towards each node n ∈ N′. That is, a set of paths
where the paths form a tree which is rooted at n. This is
repeated until the specified number of forwarding trees
per node is obtained while the weights are randomly cho-
sen w(e)∼ Uniform(1,10) for each iteration.

As NetHide pre-computes a fixed number of forward-
ing trees per node, the ILP solver later only needs to find
an optimal combination of O(|N′|) forwarding trees in-

stead of O(|N′|2) links and O(|N′||N
′|) forwarding trees.

We point out that the reduction from individual links
or paths to forwarding trees and the small number of con-
sidered forwarding trees does not affect the security of V
as security is a hard constraint and thus, NetHide never
produces a topology that is insecure. In fact, the small
number of considered forwarding trees actually makes
NetHide more secure because it makes it harder to deter-
mine P even for a powerful brute-force attacker that can
run NetHide with every possible input.

4.5 Security
We now discuss the security provided by NetHide. We
consider two distinct attacker strategies: (i) reconstruct-
ing the physical topology P from the virtual topology V ;
and (ii) choosing an attack based on the observed virtual
topology V (without explicitly reconstructing P). We de-
scribe the two strategies below.

Reconstructing the physical topology If the attacker
can reconstruct P, then she can check if P is insecure
and select a link and a set of flows that congests that
link. Reconstructing the physical topology is mitigated
in two ways. First, the attacker cannot reconstruct P with
certainty by simply observing the virtual topology V .
NetHide’s obfuscation function maps any physical topol-
ogy that is secure to itself (i.e., to P). The obfusca-

tion function is therefore not injective, which entails that
NetHide guarantees opacity [35], a well-known security
property stipulating that the attacker does not know the
secret P.

Given that the attacker cannot reconstruct P with cer-
tainty, she may attempt to make an educated guess based
on the observed V and her knowledge about NetHide’s
obfuscation function. Concretely, the attacker may per-
form exact Bayesian inference to discover the most likely
topology T that was given as input to the obfuscation
function. Exact inference is, however, highly non-trivial
as NetHide’s obfuscation function relies on a complex
set of constraints. As an alternative, the attacker may at-
tempt to approximately discover a topology T that was
likely provided as input to NetHide. Estimating the like-
lihood that a topology T could produce V is, however,
expensive because NetHide’s obfuscation is highly ran-
domized. That is, the estimation step would require a
large number of samples, obtained by running T using
the obfuscation function.

Choosing an attack In principle, even if the attacker
cannot reconstruct P, she may still attempt to attack the
network by selecting a set of flows and checking if these
cause congestion or not. As a base case for this strategy,
the attacker may randomly pick a set of flows. A more
advanced attacker would leverage her knowledge about
the observed topology to select the set of flows such that
the likelihood of a successful attack is maximized.

In our evaluation, we consider three concrete strate-
gies: (i) random, where the attacker selects the set
of flows uniformly at random, (ii) bottleneck+random,
where the attacker selects a link with the highest flow
density and selects additional flows uniformly at ran-
dom from the remaining set of flows, and (iii) bottle-
neck+closeness, where the attacker selects a link with
the highest flow density and selects additional flows
based on their distance to the link. Our results show that
NetHide can mitigate these attacks even for powerful at-
tackers (which can run many flows) and weak physical
topologies (with small link capacities) while still pro-
viding high accuracy and utility (cf. §6.7). For exam-
ple, NetHide provides 90% accuracy and 72% utility
while limiting the probability of success to 1% for an at-
tacker which can run twice the required number of flows
and follows the bottleneck+random strategy in a physical
topology where 20% of the links are insecure.

Finally, we remark that while our results indicate that
NetHide successfully mitigates advanced attackers, pro-
viding a formal probabilistic guarantee on the success of
the attacker is an interesting and challenging open prob-
lem. As part of our future work, we plan to formalize a
class of attackers, which would allow us to formulate and
prove a formal guarantee on that class.
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5 NetHide topology deployment

In this section, we describe how NetHide deploys the vir-
tual topology V on top of the physical topology P. For
this, we first state the challenges NetHide needs to ad-
dress. Then, we provide insights on the programming
language and the architecture using which we imple-
mented NetHide and describe the packet processing soft-
ware as well as the controller in detail. In addition, we
explain the design choices that make NetHide partially
deployable and we discuss the impact of changes in the
physical topology to the virtual topology.

5.1 Challenges

In the following, we explain the major challenges which
need to be addressed by the design and the implemen-
tation of the NetHide topology deployment in order to
provide high security, accuracy, utility and performance.

Reflecting physical events in virtual topology Main-
taining the usefulness of network tracing and debugging
tools is a major requirement for any network obfuscation
scheme to be practical. As we explained in the previous
sections, NetHide ensures that tracing V returns mean-
ingful information by maximizing the utility metric. As
a consequence, NetHide must assure that the data plane
is acting in a way that corresponds to the utility metric.

The key idea to ensure high utility in NetHide is that
the tracing packets are sent through the physical network
as opposed to being answered at the edge or by a central
controller. Answering to tracing packets from a single
point is impractical as events in P (such as link failures)
would not be visible.

Timing-based fingerprinting of devices Besides the IP
address of each node in a path, tracing tools allow to de-
termine the round trip time (RTT) between the source
and each node in the path. This can potentially be used
to identify obfuscated parts of a path.

While packets forwarding is usually done in hard-
ware without noticeable delay, answering to an expired
(TTL=0) IP packet involves the router control plane
and causes a noticeable delay. Actually, our experiments
show that the time it takes for a router to answer to an
expired packet not only varies greatly, but is also char-
acteristic for the device, making it possible to identify a
device based on the distribution of its processing time.

NetHide makes RTT measurements realistic by ensur-
ing that a packet that is supposedly answered by node
n is effectively answered by n. As such, n will process
the packet as any other packet with an expired TTL irre-
spective of whether or not obfuscation is in place and the
measured RTT is the RTT between the source host and n.

Packet manipulations at line rate To avoid tamper-
ing with network performance, NetHide needs to parse
and modify network packets at line-rate. In particular, it
needs manipulate the TTL field in IP headers as well as
the IP source and destination addresses. Since changing
these fields leads to a changed checksum in the IP header,
NetHide also needs to re-compute checksums.

While there are many architectures and devices where
the NetHide runtime can operate, we decided to imple-
ment it in P4, which we introduce in the next section.

5.2 NetHide and P4

P4 [20] is a domain-specific programming language that
allows programming the data plane of a network. It is de-
signed to be both protocol- and target-independent mean-
ing that it can process existing protocols (e.g., IP or UDP)
as well as developer-defined protocols. P4 programs can
be compiled to various targets (e.g., routers or switches)
and executed in different hardware (e.g., CPUs, FPGAs
or ASICs). Software targets (e.g., [13]) provide an envi-
ronment to develop and test P4 programs while hardware
targets (such as [3]) can run P4 programs at line rate.

A P4 program is composed of a parser, which parses
a packet and extracts header data according to speci-
fied protocols, a set of match+action tables and a control
program that specifies how these tables are applied to a
packet before the (potentially modified) packet is sent to
the output port. Besides table lookups, P4 also supports
a limited set of operations such as simple arithmetic op-
erations or computing hash functions and checksums.

For our implementation, we use P4_14 [14] and lever-
age P4’s customizable header format to rewrite tracing
packets at line rate without requiring to keep state (per
packet, flow or host) at the devices.

5.3 Architecture

NetHide features a controller to translate V to configu-
rations for programmable network devices, and a packet
processing software that is running on network devices
and modifies packets according to these configurations.

The device configuration is described as a set of
match+action table entries that are queried upon arrival
of a packet (Fig. 6). The entries are installed when V
is deployed the first time and when it changes. At other
times, NetHide devices act autonomously.

We describe the packet processing software as well as
the controller in the following two sections.
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5.4 Packet processing software

The packet processing software is running in the data
plane of a network device and typically performs tasks
such as routing table lookups and forwarding packets to
an outgoing interface. For NetHide, we extend it with
functionality to modify packets such that the behavior
for a network user is consistent with V . In the following
paragraphs, we explain the processing shown in Fig. 6.

Identifying potential tracing packets Upon receiving a
new packet, a NetHide device first checks whether it is a
response to a packet that was modified by NetHide (cf.
below). If not, it checks whether the packet’s virtual path
is different from the physical path and it thus needs to
be modified. Even though we often use traceroute
packets as examples, NetHide does not need to distin-
guish between traceroute (or other tracing traffic)
and productive network traffic. Instead, it purely relies
on the TTL value, the source and destination of a packet
and—if needed—it obfuscates traffic of all applications.

Encoding the virtual topology If a packet needs to be
modified, NetHide queries the match+action table which
returns the required changes for the packet. Changes can
include modifications of the destination address and/or
the TTL value. If the packet’s TTL is high enough that
it can cross the egress router, NetHide does not need to
modify addresses. However, if the virtual path for this
packet has a different length than the physical path, the
TTL needs to be incremented or decremented by the dif-
ference of the virtual and the physical path length.

If the packet has a low TTL value which will expire be-
fore the packet reaches its destination, NetHide needs to
ensure that the packet expires at the correct node with re-
spect to V . For this, NetHide modifies the destination ad-
dress of the packet such that it is sent to the node that has
to answer according to V . In addition, it sets the source
address to the address of the NetHide device that han-
dles the packet. Therefore, the modified packet is sent

to the responding router and the answer comes back to
the NetHide device. At this point, NetHide needs to re-
store the original source and destination addresses of the
packet and forward the reply to the sender.

Rewriting tracing packets at line rate The devices that
we use to deploy NetHide are able to modify network
traffic at line rate without impacting latency and through-
put. As described above, NetHide sometimes needs to
modify the TTL value in production traffic (which does
not impact latency or delay and is already done by routers
today) and it needs to send tracing packets to different
routers (which has an impact on the observed RTT; but
only for tracing packets whose TTL expires before reach-
ing the destination).

Rewriting tracing packets statelessly A naive way to
be able to reconstruct the original source and destina-
tion addresses of a packet is to cache them in the de-
vice (which bears similarities with the operating mode
of a NAT device—but the state would need to be main-
tained on a per-packet basis). Since this would quickly
exceed the limited memory that is typically available in
programmable network devices, NetHide follows a bet-
ter strategy: instead of maintaining the state information
in the device, it encodes it into the packets. More pre-
cisely, NetHide adds an additional header to the packet
which contains the original (layer 2 and 3) source and
destination addresses, the original TTL value as well as
a signature (a hash value containing the additional header
combined with a device-specific secret value) (cf. Fig. 7).
This meta header is placed on top of the layer 3 payload
and is thus contained in ICMP time exceeded replies.

Preventing packet injections Coming back to the first
check when a packet arrives: if it contains a meta header
and the signature is valid (i.e., corresponds to the device),
NetHide restores the original source and destination ad-
dresses of the packet and removes the meta header before
sending it to the outgoing interface.
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5.5 NetHide controller
Below, we explain the key concepts of the NetHide
controller which generates the configurations mentioned
above.

Configuring the topology Being based on P4 de-
vices, configuration entries are represented as entries in
match+action tables which are queried by the packet pro-
cessing program. NetHide’s configuration entries are of
the following form:

(destination,TTL) 7→
(virtual destination IP,hops to virtual destination)

where the virtual destination IP can be unspecified if
only the length of a path needs to be modified. P4 ta-
bles can match on IP addresses with prefixes, meaning
that only one entry per prefix (e.g., 1.2.3.0/24) is
required. For example, the entry "(1.2.3.0/24,1) 7→
(11.22.33.44,5)" means that if the device sees
a packet to 1.2.3.4 (or any other IP address
in 1.2.3.0/24) with TTL=1, it will send it to
11.22.33.44 and change the TTL-value to 5.

Modifying packets distributedly NetHide selects one
programmable device per flow which then handles all of
the flow’s packets. This device must be located before the
first spoofed node, i.e., the first node in the virtual path
that is different from the physical path.

While there is always one distinct device in charge of
handling a certain flow, the same device is assigned to
many different flows. To balance the load across devices,
NetHide chooses one of the eligible devices at random
(this does not impact the obfuscation). For more redun-
dancy, multiple devices could be assigned to each flow.

Changing the topology on-the-fly Thanks to the sep-
aration between the packet processing software and the
configuration table entries, V can be changed on-the-fly
without interrupting the network.

5.6 Partial deployment
As deploying a system that needs to run on all devices is
difficult, we design NetHide such that it can fully protect
a network while being deployed on only a few devices.
The key enabler for this is that NetHide only needs to
modify packets at most at one point for each flow.

NetHide can obfuscate all traffic as soon as it has
crossed at least one NetHide device. In the best case, in
which NetHide is deployed at the network edge, it can
protect the entire network. In the evaluation (§6), we
show that even for the average case in which the NetHide
devices are placed at random positions, a few devices are
enough to protect a large share of the flows.

Abilene Switch US Carrier

Nodes 11 42 158
Links 14 63 189
Max. flow density 35 390 11301
Avg. flow density 19 89 1587

Table 1: We evaluate NetHide based on three realistic
topologies of different size.

5.7 Dealing with topology changes
NetHide sends tracing packets through P such that they
expire at the correct node according to V . Changes in P
can impact NetHide in two ways:

1. When links are added to P or the routing behavior
changes: some flows may no longer traverse the de-
vice that was selected to obfuscate them. This can be
addressed by installing configuration entries in multi-
ple devices (which results in a trade-off between re-
source requirements and redundancy). Since V is se-
cure in any case, there is no immediate need to react
to changes in P. However, to provide maximum accu-
racy and utility, NetHide can compute a new V ′ based
on P′ and deploy it without interrupting the network.

2. When links are removed from P: this results in link
failures in V and has no impact on the security of V . If
the links are permanently removed, NetHide can com-
pute and deploy a new virtual topology.

6 Evaluation

In this section, we show that NetHide: (i) obfuscates
topologies while maintaining high accuracy and utility
(§6.2, §6.3); (ii) computes obfuscated topologies in less
than one hour, even when considering large networks
(§6.4). Recall that this computation is done offline, once,
and does not impact network performance at runtime;
(iii) is resilient against timing attacks (§6.5); (iv) is ef-
fective even when partially deployed (§6.6); (v) mitigates
realistic attacks (§6.7); and (vi) has little impact on de-
bugging tools (§6.8).

6.1 Metrics and methodology

Metrics To be able to compare the results of our evalu-
ation with different topologies, we use the average flow
density reduction factor, which denotes the ratio between
the flow density in the physical topology P = (N,L,T )
and in the virtual topology V = (N′,L′,T ′):
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Figure 8: Accuracy and utility for different protection margins. NetHide achieves high accuracy (left plot) and utility
(middle) and does not change most of the paths at all (right plot) while reducing the flow density by more than 75 %.

FR = 1− avgl∈L′ fd(V, l)
avgl∈L fd(P, l)

The flow density denotes the number of flows that are
carried at each link (cf. §2.3). For example, FR = 0.2
means that the links in V carry 80% less flows than those
in P (on average). For the accuracy and utility of V , we
use Aavg and Uavg as defined in §4.

Datasets We consider three publicly available network
topologies from [11]: a small (Abilene, the former US
research network), a medium (Switch, the network con-
necting Swiss universities) and a large one (US Carrier, a
commercial network in the US). Table 1 lists key metrics
for the three topologies. For the forwarding behavior, we
assume that traffic in P is routed along the shortest path
or a randomly picked shortest path in case there are mul-
tiple shortest paths between two nodes.

Parameters We run all our experiments with the fol-
lowing parameters: All nodes in P can act as ingress and
egress for malicious traffic (which is the worst case when
an attacker is everywhere). We also assume that all links
have the same capacity. Since tracing packets need to be
answered by the correct node, NetHide only adds virtual
links but no nodes (i.e., N = N′). We consider 100 for-
warding trees per node. For the ILP solver, we specify a
maximum relative gap of 2 %, which means that the op-
timal results can be at most 2 % better than the reported
results (in terms of accuracy and utility, security is not
affected). We run NetHide at least 5 times with each con-
figuration and plot the average results.

6.2 Protection vs. accuracy and utility

In this experiment, we analyze the impact of the obfus-
cation on the accuracy and utility of V . For this, we run
NetHide for link capacities c (the maximum flow density)
varying between 10 % and 100 % of the maximum flow
density listed in Table 1.

Fig. 8 depicts the accuracy (left) and utility (center)
achieved by NetHide according to the flow density reduc-
tion factor. An ideal result is represented by a point in the
upper right corner translating to a topology that is both
highly obfuscated and provides high accuracy and utility.
As baseline, we include the results of a naive obfuscation
algorithm that computes V by adding links at random po-
sitions and routing traffic along a shortest path.

NetHide scores close to the optimal point especially
for large topologies. We observe that the random algo-
rithm can achieve high accuracy and utility (when adding
few links) or high protection (when adding many links)
but not both at the same time. Though, in a small area
(very high flow density reduction in a small topology),
the random algorithm can outperform NetHide. The rea-
son is that such a low flow density is only achievable in
an (almost) complete graph. While adding enough links
randomly will eventually result in a complete graph, the
small number of forwarding trees considered by NetHide
does not always contain enough links to build a complete
graph.

In Fig. 8 (right), we show the percentage of flows that
do not need to be modified (i.e., have 100% accuracy and
utility) depending on the flow density reduction factor.

Fig. 8 (right) illustrates that NetHide can obfuscate a
network without modifying most of its paths therefore
preserving the usability of tracing tools. In the medium
size topology, NetHide computes a virtual topology that
lowers the average flow density by more than 80 % while
keeping more than 80 % of the paths identical. This
is significantly better than the random baseline where
a flow density reduction by 80 % only preserves about
15 % of the paths. We observe that larger topologies gen-
erally exhibit better results than small ones. This is due
to the fact that in bigger topologies, a small modification
has less impact on average accuracy than in a small topol-
ogy while still providing high obfuscation. Conversely,
smaller topologies lead to worse results as a small num-
ber of changes can have a big impact.
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Figure 9: Accuracy, utility and runtime for different number of forwarding trees. Considering only a small number of
forwarding trees per node does not significantly decrease the accuracy and utility of NetHide but drastically decreases
the runtime. Thanks to this, NetHide can obfuscate large topologies (>150 nodes) in less than one hour.

6.3 Accuracy vs. utility

In Fig. 10, we analyze the impact of the accuracy weight
(wacc in Fig. 4) on the resulting accuracy and utility. We
specify the capacity of each link to 10 % of the maxi-
mum flow density listed in Table 1 and observe that wacc
has a relatively small impact for our accuracy and util-
ity metrics especially for large topologies. This confirms
that a topology with a high accuracy typically also has a
high utility. If the paths are similar (high accuracy), the
packets are routed via the same links (high utility), too.

6.4 Search space reduction and runtime

In this experiment, we analyze the impact of the search
space reduction—in terms of the number of forwarding
trees per node—on the runtime of NetHide. As we ex-
plained in §4.4, NetHide considers only a small subset of
forwarding trees to improve scalability. We again specify
the capacity of each link to 10 % of the maximum flow
density listed in Table 1 and run NetHide for a varying
number of forwarding trees per node. The experiments
were run in a VirtualBox VM running Ubuntu 16.04 with
20 Intel Xeon E5 CPU cores and 90 GB of memory.

In Fig. 9, we show that a small number of forwarding
trees is enough to reach close-to-optimal results. While
the runtime increases exponentially with the number of
forwarding trees, the accuracy and utility do not notice-
ably improve above 100 forwarding trees per node.

The runtime of NetHide when considering 100 for-
warding trees per node is within one hour, even for large
topologies (Fig. 9). As the topology is computed offline
(cf. §5.7), such a running time is reasonable.

6.5 Path length

In this experiment, we analyze the difference between the
lengths of paths in P and V . Large differences between
the length of the physical path and the virtual path can

lead to unrealistic RTTs and leak information about the
obfuscation (e.g., if the RTT is significantly different for
two paths of the same length).

As the results in Fig. 11 show, virtual paths are shorter
than physical paths (the ratio is≤ 1)—intuitively because
removing a node from a path has a smaller impact on
our accuracy and utility metrics than adding one) and—
for the medium and large topology—the virtual paths are
less than 10 % shorter both on average and in the 10th

percentile for a flow density reduction of 80 %.
The resulting small differences in path lengths sup-

port our assumption that timing information mainly leaks
through the processing time at the last node and not
through the propagation time (§5) as long as all links
have roughly the same propagation delay.

6.6 Partial deployment

We now analyze the achievable protection if not all de-
vices at the network edge are programmable. In NetHide,
a flow can be obfuscated as long as it crosses a NetHide
device before the first spoofed node (the first node that
is different from the physical path). This is obviously the
case if all edge routers are equipped with NetHide. Yet,
as we show in Fig. 12, a small percentage of NetHide de-
vices (e.g., 40%) is enough to protect the majority (60%)
of flows even in the average case where the devices are
placed at random locations and all nodes are considered
as ingress and egress points of traffic (i.e., as edge nodes).

To obtain the results in Fig. 12, we set the maximum
flow density to 10 % of the maximum value in Table 1
and vary the percentage of programmable nodes in V be-
tween 0 and 100%. For each step, we compute the aver-
age amount of flows that can be protected for 100 differ-
ent samples of programmable devices.

The percentage of obfuscated flows in Fig. 12 is nor-
malized to only consider flows that need to be obfus-
cated. As we have shown in Fig. 8, the vast majority of
flows does not need to be obfuscated at all.
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Figure 13: Link failures
are correctly observed with
high probability (e.g., for
Switch: only 15 % of the
failures appear in less than
90 % of the paths.)

As an alternative approach to partial deployment,
NetHide can be extended to incorporate the number
and/or locations of NetHide devices as a constraint or as
an objective such as to compute virtual topologies that
can be deployed without new devices or with as few pro-
grammable devices as possible.

6.7 Security

As we explained in §4.5, inferring the exact physical in-
put topology from the virtual topology is difficult.

However, an attacker can try to attack V directly, with-
out trying to determine P. Such an attacker is limited by
the fact that she does not know P and by a maximum
number (budget) of flows that she can create. Therefore,
the key challenge for the attacker is to select the flows
such that they result in a successful attack on P.

Besides the attacker’s budget, her chances of success
also depend on the robustness of P: If P is weak (i.e., the
capacity of many links is exceeded), it either needs to
be obfuscated more or attacks are more likely to succeed.

In this experiment, we simulate three feasible strate-
gies for an attacker to select b flows:

• Random: Samples b flows uniformly at random from
the set of all flows F .

• Bottleneck+Random: Identifies the link with the high-
est flow density in V (a "bottleneck" link lb) and at-
tacks by initiating all the fd(lb) flows that cross this
link plus (b− fd(lb)) random additional flows.

• Bottleneck+Closeness: Identifies the link lb with the
highest flow density in V and attacks by initiating all
the fd(lb) flows that cross this link plus (b− fd(lb))
nearby flows (according to the metric in Algorithm 2).

An attack is successful if running the selected set of
flows in P exceeds any link’s capacity (not necessarily
the link that the attacker tried to attack).

In our simulations, we vary both the attacker’s budget
and the robustness of P (in terms of the link capacity).
We vary the capacity such that between 10 % and 100 %
of the links in P are secure (e.g., if 10 % of the links are
secure, an attacker could directly attack 90 % of the links
if there was no obfuscation). For each choice of the link
capacity c in P, we vary the number of flows that the
attacker can initiate between b = c+ 1 (just enough to
break a link) and b = 4× (c+1) (four times the number
of flows that the most efficient attacker would need).

To obtain the simulation results in Fig. 14 and
Fig. 15, we simulated 10k attempts (Random and Bottle-
neck+Random) and 1k attempts (Bottleneck+Closeness)
for each virtual topology from §6.2 and each combina-
tion of the link capacity and attacker budget.

In Fig. 14 we compare the Random attacker with Bot-
tleneck+Random and in Fig. 15 we compare Random
with Bottleneck+Closeness. In the first row of each fig-
ure, we plot how much obfuscation (i.e., in terms of the
flow density reduction factor) is required to make the at-
tacker successful in < 1% of her attempts. There, we ob-
serve that the Random attacker is (as expected) the least
powerful because it requires less obfuscation to defend
against it and that Bottleneck+Closeness is slightly more
powerful than Bottleneck+Random. Considering the set-
ting with the Abilene topology and the attacker with 2×
budget: Mitigating this attacker requires no obfuscation
when she follows the Random strategy, but 71% (Bot-
tleneck+Random) or 86% (Bottleneck+Closeness) flow
density reduction for the more sophisticated strategies.

The required flow density reduction naturally in-
creases as the attacker’s budget increases. In the right
column where the attacker can run four times the number
of required flows, even the Random attacker is successful
because she can run so many flows (or even all possible
flows in many cases) that it does not matter how the flows
are selected.
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Figure 14: Attack simulations comparing the Random attacker with Bottleneck+Random. The plots show the required
flow density reduction (FR) for making the attacker succeed with Pr < 1% (first row) and the obtained accuracy
and utility (second and third row) depending on the link capacity of the physical topology (measured as the percent-
age of secure links in the x-axis). For example, defending the Switch topology with only 60% secure links against
Bottleneck+Random with 2× budget maintains 80% accuracy.
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Figure 15: Attack simulations comparing the Random attacker with Bottleneck+Closeness. Bottleneck+Closeness is
slightly more powerful than Bottleneck+Random (Fig. 14), which results in more obfuscation that is required.
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Input: Virtual topology V = (N′,L′,T ′),
Flow (s,d) ∈ N′×N′,
Flow path T ′s→d
Bottleneck link (n1,n2) ∈ L′

Output: Preference p ∈ [0,1]

if (n1 ∈ T ′s→d)∧ (n2 ∈ T ′s→d) then
p← 1/| links between n1 and n2 in T ′s→d |

else if (n1 ∈ T ′s→d)∧ (n2 /∈ T ′s→d) then
na← node after n1 in T ′s→d
nb← node before n1 in T ′s→d
pa← length of path from n2 to na
pb← length of path from n2 to nb
p← 1/min(pa, pb)

else if (n1 /∈ T ′s→d)∧ (n2 ∈ T ′s→d) then
(see above with n1 and n2 flipped)

else
p← 0

Algorithm 2: Flow preference metric. Flows that con-
tain the bottleneck link or at least one of the endpoints
of the link are more promising to be useful in the attack.

The second and third row in the plots show the ac-
curacy and utility that is preserved after obfuscating the
topology. We observe there, that especially the Abilene
and Switch topologies provide high accuracy and util-
ity even if less than 50% of the links in P are secure.
Comparing Fig. 14 and Fig. 15 shows that since mitigat-
ing Bottleneck+Closeness requires more obfuscation, the
achieved accuracy and utility is lower.

6.8 Case study: Link failure detection

We now show that NetHide preserves most of the use-
fulness of tracing tools by considering the problem of
identifying link failures in obfuscated topologies. For our
analysis, we use all three topologies and a flow density
reduction factor of 50 %. Then, we simulate the impact
of an individual failure for each link. That is, we analyze
how a failing physical link is represented in V .

Failing a link can have different effects in V : Ideally,
it is correctly observed, which means that the exact same
link failure appears in V . But since V contains links that
are not in P or vice-versa, a physical link failure can be
observed as multiple link failures or as the failing of an-
other virtual link.

In Fig. 13, we show that the vast majority of physi-
cal link failures is precisely reflected in the virtual topol-
ogy. That is, NetHide allows users to use prevalent de-
bugging tools to debug connectivity problems in the net-
work. These results are a major advantage compared to
competing approaches [28, 39] that do not send the trac-
ing packets through the actual network.

7 Frequently asked questions

Below, we provide answers to some frequently asked
questions and potential extensions of NetHide.

Can a topology be de-obfuscated by analyzing timing
information? In NetHide, each probing packet is an-
swered by the correct router and thus the processing time
at the last node is realistic. Though, the propagation time
can leak information in topologies where the propagation
delay of some links is significantly higher than of others.

However, extracting information from the propagation
time in geographically small networks is hard for three
reasons: (i) it is impossible to measure propagation time
separately. Instead, only the RTT is measurable; (ii) the
RTT includes the unknown return path; and (iii) NetHide
keeps path length differences are small. For topologies
exhibiting larger delays, NetHide can be extended to con-
sider link delays as an additional constraints.

The same arguments hold for analyzing queuing times
or other time measurements. Moreover, delays often vary
greatly in short time intervals, making it practically in-
feasible to perform enough simultaneous measurements.

Can a topology be de-obfuscated by analyzing link fail-
ures? Because some physical link failures are observed
as multiple concurrent link failures in the virtual topol-
ogy, an attacker can try to reconstruct the physical topol-
ogy by observing link failures over a long timespan.
However, this strategy is not promising for the following
reasons: (i) most of the link failures are directly repre-
sented in the virtual topology (cf. §6.8). Observing them
does not provide usable information for de-obfuscation;
and (ii) analyzing link failures over time requires perma-
nent tracing of the entire network between, which would
make the attacker visible and is against the idea of LFAs.

Is NetHide compatible with link access control or
VLANs? Not at the moment, but we can easily extend
our model to support them. The required changes are:
(i) link access control policies need to be part of the
NetHide’s input; (ii) the ILP needs additional constraints
to respect different VLANs (i.e., model forwarding trees
per VLAN); (iii) the output consists of VLAN-specific
paths; and (iv), the runtime additionally matches on the
VLAN ID and applies the appropriate actions.

Does NetHide support load-balancing? Not at the mo-
ment, but after the following extensions: (i) instead of an
exact path for each flow, we specify the expected load
that a flow adds to each link (e.g., using max-min fair al-
location as in [30]); (ii) the constraints regarding the flow
density now constrain the expected flow density; (iii) the
virtual topology can contain multiple parallel paths and
probabilities with which each path is taken; and (iv) the
runtime randomly selects one of the possible paths.
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How close to the optimal is the solution computed by
NetHide? Computing this distance is computationally
infeasible as it requires to exhaustively enumerate all
possible solutions (one of the cruxes behind NetHide se-
curity). Instead, we measure the distance between the vir-
tual and the physical topology (§6.2) and show that the
virtual topology is already very close (in terms of accu-
racy and utility) to the physical one. The optimal solution
would therefore only do slightly better, while being much
harder to compute.

Can NetHide be used with other metrics for computing
the flow density? At present, NetHide requires a static
metric such that the flow density can be computed before
obfuscating the topology. For simplicity, we assume that
the load which each flow imposes to the network is the
same and all links have the same capacity. However, this
assumption can easily be relaxed to allow specific loads
and capacities for each flow and link (therefore requiring
more knowledge or assumptions about the topology and
the expected traffic).

8 Related work

Existing works on detecting and preventing LFAs can be
broadly classified into reactive and proactive approaches.
Reactive approaches only become active once a po-
tential LFA is detected. As such, they do not prevent
LFAs and only aim to limit their impact after the fact.
CoDef [31] works on top of routing protocols and re-
quires routers to collaborate to re-route traffic upon con-
gestion. SPIFFY [25] temporarily increases the band-
width for certain flows at a congested link. Assuming
that benign hosts react differently than malicious ones,
SPIFFY can tell them apart. Liaskos et al. describe a sys-
tem [33] that continuously re-routes traffic such that it
becomes unlikely that a benign host is persistently com-
municating via a congested link. Malicious hosts on the
other hand are expected to adapt their behavior. Nyx [36]
addresses the problem of LFAs in the context of multi-
ple autonomous systems (ASes). It allows an AS to route
traffic from and to another AS along a path that is not
affected by an LFA.

On the other hand, proactive solutions—including
NetHide—aim at preventing LFAs from happening and
are typically based on obfuscation. HoneyNet [28] uses
software-defined networks to create a virtual network
topology to which it redirects traceroute packets.
While this hides the topology from an attacker, it also
makes traceroute unusable for benign purposes.
Trassare et al. implemented topology obfuscation as a
kernel module running on border routers [39]. The key
idea is to identify the most critical node in the network
and to find the ideal position to add an additional link that

minimizes the centrality of this node. The border router
replies to traceroute packets as if there was a link at
the determined position. However, adding a single link
has little impact on the security of a big network and even
if the procedure would be repeated, an attacker could de-
termine the virtual links with high probability. Further,
traceroute becomes unusable for benign users as the
replies come from the border router.

Linkbait [40] identifies potential target links of LFAs
and tries to hide them from attackers. Hiding a target link
is done by changing the routing of tracing packets from
bots in such a way that the target link does not appear in
the paths. As a prerequisite to only redirect traffic from
bots, Linkbait describes a machine learning-based detec-
tion scheme that runs at a central controller which needs
to analyze all traffic. Being based on re-routing of pack-
ets, Linkbait can only present paths that exist in the net-
work. Therefore, a topology that does not have enough
redundant paths cannot be protected. The paper does not
discuss issues with an attacker that is aware of the pro-
tection scheme and sends tracing traffic that is likely to
be misclassified and therefore not re-routed.

Other approaches that are related to LFAs but not par-
ticularly to our work are based on virtual networks [22],
require changes in protocols or support from routers and
end-hosts [19,29] or focus on the detection of LFAs [41].

9 Conclusion

We presented a new, usable approach for obfuscating
network topologies. The core idea is to phrase the ob-
fuscation task as a multi-objective optimization problem
where security requirements are encoded as hard con-
straints and usability ones as soft constraints using the
notions of accuracy and utility.

As a proof-of-concept, we built a system, called
NetHide, which relies on an ILP solver and effective
heuristics to compute compliant obfuscated topologies
and on programmable network devices to capture and
modify tracing traffic at line rate. Our evaluation on real-
istic topologies and simulated attacks shows that NetHide
can obfuscate large topologies with marginal impact on
usability, including in partial deployments.
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