
Open access to the Proceedings of the
27th USENIX Security Symposium

is sponsored by USENIX.

Enabling Refinable Cross-Host Attack Investigation
with Efficient Data Flow Tagging and Tracking

Yang Ji, Sangho Lee, Mattia Fazzini, Joey Allen, Evan Downing, Taesoo Kim,
Alessandro Orso, and Wenke Lee, Georgia Institute of Technology

https://www.usenix.org/conference/usenixsecurity18/presentation/jia-yang

This paper is included in the Proceedings of the
27th USENIX Security Symposium.

August 15–17, 2018 • Baltimore, MD, USA

978-1-939133-04-5

Enabling Refinable Cross-Host Attack Investigation with
Efficient Data Flow Tagging and Tracking

Yang Ji, Sangho Lee, Mattia Fazzini, Joey Allen, Evan Downing,
Taesoo Kim, Alessandro Orso and Wenke Lee

Georgia Institute of Technology

Abstract
Investigating attacks across multiple hosts is challeng-

ing. The true dependencies between security-sensitive
files, network endpoints, or memory objects from dif-
ferent hosts can be easily concealed by dependency ex-
plosion or undefined program behavior (e.g., memory
corruption). Dynamic information flow tracking (DIFT)
is a potential solution to this problem, but, existing DIFT
techniques only track information flow within a single
host and lack an efficient mechanism to maintain and
synchronize the data flow tags globally across multiple
hosts.

In this paper, we propose RTAG, an efficient data flow
tagging and tracking mechanism that enables practical
cross-host attack investigations. RTAG is based on three
novel techniques. First, by using a record-and-replay tech-
nique, it decouples the dependencies between different
data flow tags from the analysis, enabling lazy synchro-
nization between independent and parallel DIFT instances
of different hosts. Second, it takes advantage of system-
call-level provenance information to calculate and allocate
the optimal tag map in terms of memory consumption.
Third, it embeds tag information into network packets to
track cross-host data flows with less than 0.05% network
bandwidth overhead. Evaluation results show that RTAG
is able to recover the true data flows of realistic cross-host
attack scenarios. Performance wise, RTAG reduces the
memory consumption of DIFT-based analysis by up to
90% and decreases the overall analysis time by 60%–90%
compared with previous investigation systems.

1 Introduction

Advanced attacks tend to involve multiple hosts to conceal
real attackers and attack methods by using command-and-
control (C&C) channels or proxy servers. For example,
in the Operation Aurora [22] attack, a compromised vic-
tim’s machine connected to a C&C server that resided in

the stolen customers’ account, and exfiltrated proprietary
source code from the source code repositories. Gibler
and Beddome demonstrated GitPwnd [32], an attack that
takes advantage of the git [11] synchronization mech-
anism to exfiltrate victim’s private data through a public
git server. Unlike common data exfiltration attacks that
only involve a victim host, GitPwnd leverages two hosts
(victim’s host and public git server) to complete the
exfiltration.

Unfortunately, existing attack investigation systems,
also known as provenance systems, are inadequate to
figure out the true origin and impact of cross-host at-
tacks. Many provenance analysis systems (such as
[19, 35, 45]) are designed to monitor the system-call-level
or instruction-level events within each host while ignoring
cross-host interactions. In contrast, network provenance
systems [64, 68, 69] focus on the interaction between mul-
tiple hosts, but, because they lack detailed system-level
information, their analysis could result in a dependency
explosion problem [35, 42]. To fully understand the steps
and end-to-end information flow of a cross-host attack,
it is necessary to collect accurate flow information from
individual hosts and correctly associate them to figure out
the real dependency.

Extending existing provenance systems to investigate
cross-host attacks is challenging because problems of
accuracy, performance, or both can be worse with mul-
tiple hosts. Although collecting coarse-grained prove-
nance information (e.g., system-call-level information)
introduces negligible performance overhead, it cannot
accurately track dependency explosion and undefined pro-
gram behaviors (e.g., memory corruption) even within a
single host. That is, if we associate the coarse-grained
provenance information from different hosts using another
vague link (e.g., network session [64, 68, 69]), the result
will contain too many false dependencies. Fine-grained
provenance information, (e.g., instruction-level informa-
tion from dynamic information flow tracking (DIFT)), is
free from such accuracy problems. However, it demands

USENIX Association 27th USENIX Security Symposium 1705

many additional computations and consumes huge mem-
ory, which will increase according to the number of hosts.
More seriously, existing cross-host DIFT mechanisms
piggyback metadata (i.e., tags) on network packets and
associate them during runtime [50, 67], which is another
source of huge performance degradation.

To perform efficient and accurate information flow anal-
ysis in the investigation of cross-host attacks, we propose
a record-and-replay-based data flow tagging and tracking
system, called RTAG. Performing cross-host information
flow analysis using a record-and-replay approach intro-
duces new challenges that cannot be easily addressed
using existing solutions [25, 35, 50, 67]: that is, long
analysis time and huge memory consumption. First, the
communication between different hosts (e.g., through
socket communication) introduces information flows that
require additional information and procedure for proper
analysis. Namely, the DIFT analysis requires transfer of
the analysis data (i.e., tags) between the hosts in a syn-
chronized manner. Existing record-and-replay solutions
have to serialize the communication between hosts to
transfer tags because no synchronization mechanism is
implemented, leading to longer than necessary analysis
time. Second, because a number of processes can run on
multiple hosts under analysis, the memory requirement
for DIFT instances could become tremendous, especially
when multiple processes on different hosts interact with
each other.

To overcome these two challenges, RTAG decouples
the tag dependency (i.e., information flow between hosts)
from the analysis with tag overlay and tag switch tech-
niques (§6), and enables DIFT to be independent of any
order imposed by the communication. This new approach
enables the DIFT analysis to happen for multiple pro-
cesses on multiple hosts in parallel leading to a more
efficient analysis. Also, RTAG reduces the memory con-
sumption of the DIFT analysis by carefully designing the
tag map data structure that tracks the association between
tags and associated values. Evaluation results show sig-
nificant improvement both in analysis time, decreased by
60%–90%, and memory costs, reduced by up to 90%,
with realistic cross-host attack scenarios including GitP-
wnd and SQL injection.

This paper makes the following contributions:

• A tagging system that supports refinable cross-
host investigation. RTAG solves “tag dependency
coupling,” a key challenge in using refinable investi-
gation systems for cross-host attack scenarios. RTAG
decouples the tag dependency from the analysis
which spares the error-prone orchestrating effort on
replayed DIFTs and enables DIFT to be performed
independently and in parallel.

• DIFT runtime optimization. RTAG improves the
runtime performance of doing DIFT tasks at replay
time in terms of both time and memory. By per-
forming DIFT tasks in parallel, RTAG reduces the
analysis time by over 60% in our experiments. By
allocating an optimal tag size for DIFT based on
system-call-level reachability analysis, RTAG also
reduces the memory consumption of DIFT by up to
90% compared with previous DIFT engines.

The rest of paper is organized as follows: §2 describes
the background of the techniques that supported RTAG’s
realization. §3, §4, and §5 present the challenges, an
overview and the threat model of RTAG; §6 presents the
design of RTAG; More specifically, §6.1 describes the data
structure of RTAG, §6.3 explains how RTAG facilitates the
independent DIFT; §6.4 describes how RTAG conducts
tag switch for DIFT, and §6.6 presents the tag association
module and how RTAG tracks the traffic of IPC. §7 gives
implementation details and the complexity. §8 presents
the results of evaluation. §9 summarizes related work,
and §10 concludes this paper.

2 Background
RTAG utilizes concepts from a variety of research ar-
eas. This section provides an overview of these concepts
needed to understand our system.

2.1 Execution Logging
Attack investigation systems most often rely on logged
information to perform their analyses. Different systems
use different levels of granularity when logging infor-
mation for their analyses (e.g., system-call level versus
instruction level) as the cost of collecting this informa-
tion changes based on the selected granularity level. A
first category of systems [6, 8, 19, 45] collects informa-
tion at a high-level of granularity (e.g., system-call level)
and generally have low runtime overhead. However, the
information collected at this level of granularity might
affect the accuracy of their analyses as it does not always
provide all of the execution details. A second category of
systems improves accuracy by analyzing program execu-
tions at the instruction level [24, 44, 66]. These systems
provide very accurate results in their analyses. However,
they introduce a runtime overhead that is not suitable
for production software. Finally, a third category of sys-
tems [25, 35] combines the benefits of systems from the
previous two categories using record and replay. These
systems perform high-level logging/analysis while record-
ing the execution of programs and perform low-level log-
ging/analysis in a replayed execution of the programs.
More specifically, RAIN [35] logs system call informa-
tion about user-level processes using a kernel instrumen-
tation approach. The system then analyzes instructions in
a replayed execution of the processes.

1706 27th USENIX Security Symposium USENIX Association

2.2 Record and Replay

Record and replay is a technique that aims to store infor-
mation about the execution of a software system (record
phase) and use the stored information to re-execute the
software in such a way that it follows the same execu-
tion path and also reconstructs the program states as the
original execution (replay phase). Record and replay tech-
niques can be grouped under different categories based
on the layer of the system in which they perform the
record-and-replay task. Some techniques perform record
and replay by instrumenting the execution of programs
at the user level [9, 33, 51, 58, 59]. These techniques are
efficient in their replay phase as they can directly focus on
the recorded information for the specific program. How-
ever, these techniques either require program source or
binary code for instrumentation or have additional space
requirements when recording executions of communicat-
ing programs (especially through the file system) as the
recorded information is stored multiple times. The second
category of techniques performs record and replay by ob-
serving the behavior of the operating system. Techniques
do so by either monitoring the operating system through
a hypervisor [20, 23, 56] or emulation [27]. These tech-
niques are efficient in storing the information about dif-
ferent executing programs. However, they usually need
to replay every program recorded even when only one
program is of interest for attack investigation. Finally,
a third category of techniques uses an hybrid approach.
This category records information at the operating system
level and replays the execution leveraging user-level in-
strumentation [25, 35] (e.g., by hooking libc library) for
multi-thread applications. More specifically, Arnold [25]
and RAIN [35] reside inside the kernel of operating sys-
tem and record the non-deterministic inputs of executing
programs. The replay task is achieved by combining ker-
nel instrumentation with user-level instrumentation so
that replay of a single program is possible.

2.3 Dynamic Information Flow Tracking

Dynamic information flow tracking (DIFT) is a technique
that analyzes the information flowing within the execution
of a program. This technique does so by: (1) marking
with tags the “interesting” values of a program, (2) prop-
agating tags by processing instructions, and (3) check-
ing tags associated with values at specific points of the
execution. There are several instantiations of this tech-
nique [24, 34, 37, 47, 55, 66]. These instantiations can
precisely determine whether two values of the program
are related to each other or not. However, because the
technique needs to perform additional operations for ev-
ery executed instruction, that action generally introduce
an overhead which makes it unsuitable in production.

wait wait wait

ssh-daemon
@10.10.10.1

Basic
Tagmap

(a) Serialized DIFTs following tag dependencies

(b) RTAG independent and parallel DIFTs

Tag Overlay

Serialized replay w/ DIFT

Independent & continuous
replay w/ DIFT

RTAG System

Set() Get()

1

2

3

4

5

6

7

Provenance Graph§6.1 §2.3
GTK GTV

GTK GTV

GTK GTV
V1

V2

ssh-client
@10.10.10.2

ssh-daemon
@10.10.10.1

ssh-client
@10.10.10.2

(Switch §6.4, Allocation §6.5, Association §6.6)

Time

Time

8

1
2 3

4 5
6 7

8

Figure 1: Comparison of the serialized DIFTs and RTAG paral-
lel DIFTs. We highlight the components of RTAG with dashed
circles. (a) shows the serialized DIFT for the ssh daemon on the
server and the ssh client on another host, both of which follow
the tag dependencies same as those were recorded. (b) depicts
that RTAG decouples the tag dependency from the replays of
processes by using the tag switch, allocation and association
techniques so that each process in the offline analysis can be
performed independently.

Arnold [25] and RAIN [35] make dynamic information
flow tracking feasible by moving the cost of the anal-
ysis away from the runtime using a record-and-replay
approach that performs DIFT only in the replayed ex-
ecution. RAIN [35] also improves the efficiency of the
analysis when considering an execution that involves mul-
tiple programs. RAIN [35] does so by: (1) maintaining a
provenance graph that captures the high-level relations be-
tween programs; (2) performing reachability analysis on
the provenance to discard executions that do not relate to
the security task under consideration and instead pinpoint-
ing the part of the execution where the data-dependency
confusion exists (i.e., memory overlaps, called interfer-
ence); (3) performing DIFT only for interferences by
replaying the execution and fast-forwarding to that part.

3 Motivating Example and Challenges

In section, we describe the challenges of performing re-
finable attack investigation across multiple hosts. We
first present a motivating attack example (GitPwnd [32])
involving multiple hosts in a data exfiltration; then, we
present what challenges we face with currently available
methods.

3.1 The GitPwnd Attack
GitPwnd uses a popular versioning control tool git to
perform malicious actions on a victim’s host and sync the

USENIX Association 27th USENIX Security Symposium 1707

git:ssh:0
GTK

git:ssh:1024

res:0:v1
GTV

res:0:v2

git push git pack

ssh
results

git commit

client-hook /etc/group

/etc/passwd

.ssh/id_rsa

sshd

Client

Server

git unpack

objects

server-hook

Attacker's host

scp 5.5.5.5:22

id_rsa

GTK

group
GTK

passwd
GTK

res:0:v1
GTK

res:0:v2

GTV

passwd
id_rsa

ssh:sshd:0
GTK GTV

ssh:sshd:1
git:ssh:0
git:ssh:1

obj:0
GTK GTV

ssh:sshd:0

5.5.5.5:0
GTK GTV

obj:5
obj:0

5.5.5.5:0

ssh:sshd:1obj:5

.ssh/id_rsa /etc/passwd

results

objects

5.5.5.5:22

read

read

readwrite

clone

clone

clone readpipe

recv

send

clone

clone

clone

read
send

Attacker's host

Server

Client

(b) Data Flow Overlay

(a) Provenance Graph & Tags

pipe

ssh:sshd:0
GTK GTV

ssh:sshd:1
git:ssh:0
git:ssh:1

ssh:sshd:0
GTK GTV

ssh:sshd:1
git:ssh:0

git:ssh:1024

write

clone

Versioning

Figure 2: Visualized Pruned Provenance Graph and Tags. (a) is the simplified provenance graph of the GitPwnd attack involving
three hosts, of which the git client and git server are monitored by RTAG. We use red rectangles to represent processes, blue
ovals for file objects, and pink ovals for out-of-scope remote host; we use directed edges to represent the data flows and parent-child
relations between processes. The tags with dashed circles are the IPC tags for pipe and socket communication. (b) is the result
of a backward query from the attacker’s host, the data flow overlay; it appears to be a tree, giving the data flow every step from the
exfiltrated private key and /etc/passwd (excluding /etc/group) to the attacker’s host, crossing three hosts.

result to an attacker’s controlled host via a git server.
Unlike conventional data exfiltration attacks, this attack
involves multiple hosts (i.e., a victim’s host and the git
server) to achieve the exfiltration. This attack evades
an existing network-level intrusion detection system, as
the victim’s host does not have a direct interaction with
any untrusted host (i.e., the attacker’s host). In addition,
this attack appears to be innocuous inside the developers’
network, as git operations are usually assumed to be
benign. We implement this attack using gitolite [12]
at the server side and git at the client side.

The starting point of the attack is a malicious mirror of
a popular git repository, which includes a hooking script
that clones a command-and-control (C&C) repository for
future communication. Whenever a developer (a vic-
tim host) happens to clone the malicious mirror, the git
client will automatically clone the C&C repository as well
due to the hooking script. The C&C repository includes
agent and payload, whose executions will be triggered
by a certain git operation (e.g., git commit) by the
developer. Their execution results are saved and synced to
the C&C repository. Note that the C&C repository shares
the privilege of the malicious mirror repository, so it also
is white-listed by the developer’s host. Whenever the
C&C repository receives the exploit results (stored into
objects), it shares the results with the attacker’s host

(via scp). More specifically, this git push involves
three processes. 1) The git first forks an ssh process,
handling the ssh session with the remote host, and then 2)
spawns another git pack process packing the related
objects of the push. 3) The pack process uses pipe to
transfer the packed data to the ssh process. The commu-
nication between the C&C repository and the attacker’s
host is invisible to the victim. We visualize an abbreviated
pruned provenance subgraph of the attack in Figure 2(a).
We will continue to use this attack as a running example
throughout the rest of the paper.

3.2 Challenges

Satisfying both the accuracy and the efficiency for cross-
host data flow tracking are challenging. Existing prove-
nance systems that support cross-host accurate data flow
capturing [50, 67] rely on performing DIFT at the runtime,
which naturally propagates the tags from the execution
of a program to another host without losing any tags and
their dependencies. Unfortunately, such systems suffer
from 10×–30× runtime overhead, making them impracti-
cal in production systems. Instead, to ensure both runtime
efficiency and accurate data flow tracking, refinable sys-
tems [25, 35] record the execution of every process in the
system, and selectively replay some of them related to

1708 27th USENIX Security Symposium USENIX Association

the attack with DIFT instrumentation. However, existing
refinable systems are subject to a tag-dependency chal-
lenge that requires the replay and DIFT of every process
to be performed in the same order as the recording if a
dependency exists in tags involved in different replayed
processes. The enforcement of the order requires the
DIFT tasks to wait for their upstream DIFTs to update the
tag values that they depend on. Although the record-and-
replay function can faithfully re-construct the program
states at replay time, it still takes non-trivial (and error-
prone) efforts to serialize and orchestrate the replays of
different processes to re-establish the dependencies for
tag propagation between different hosts.

The tag-dependency challenge becomes outstanding
when we aim to replay processes on multiple hosts to
investigate cross-host attacks. This is because the interac-
tive two-way communication (for the purpose of network
or application-level protocol) demands the replays to be
paused and waiting iteratively for enforcing the same tag
dependency as the recording, which further lengthens
the waiting time (i.e., analysis time consumption), and
increases the complexity of replay orchestration.

Let us look into one example of replay from the Gitp-
wnd attack [32] (detailed in §3.1) for the communication
between the client-side ssh and the server-side sshd in
Figure 1(a). At the server side, the replay of sshd needs
to be paused to wait for the replay of ssh-client at
the client side to fulfill the propagation results in the tag
map for the traffic. Furthermore, this traffic will be used
by sshd to respond to ssh as an ssh protocol response,
which means the replay of ssh needs to be paused and
wait for sshd as well.

This challenge is exacerbated when many parties are in-
volved in group communication. For example, to enforce
the tag dependencies for the operation of searching and
downloading a file from a peer-to-peer (P2P) file sharing
network (e.g., Gnutella [7]), we need to orchestrate the
replays of P2P clients on each node, in which case the
approach becomes infeasible particularly when we are
faced with hundreds or thousands of nodes. §8 shows the
DIFT time cost and compares it with RTAG in Table 1.

To systematically overcome the tag-dependency chal-
lenge, we propose RTAG that decouples the tag depen-
dencies from the replays by using symbolized tags with
optimal size for each independent DIFT. We show RTAG
effectively solves the challenge while significantly speed-
ing up DIFT tasks and reducing their memory consump-
tion.

4 Overview

We propose a tagging system, RTAG, that decouples the
tag dependency from the analysis (i.e., DIFT tasks), which

previously was inlined along with the program execu-
tion or its replayed DIFT, and enables DIFT to be in-
dependent of any required order—allowing performing
DIFT for different processes on multiple hosts in parallel.
Such independence spares the complex enforcement of
orders during the offline analysis. Note that our parallel
DIFT concerns inter-process (or host) DIFT, which is
orthogonal to the intra-process parallel DIFT techniques
in [46, 47, 55].

RTAG maintains a tagging overlay on top of a con-
ventional provenance graph, enabling independent and
accurate tag management. First, when DIFT is to be per-
formed, RTAG uses a tag switch technique to interchange
a global tag that is unique across hosts and a local tag that
is unique for a DIFT instance. Using a local tag for each
DIFT disentangles the coupling of tags shared by different
DIFT tasks. After the DIFT is complete, RTAG switches
the local symbol back to its original global tag. Second,
to ensure no tag as well as their propagation to other tags
is lost when the tag of a piece of data is updated more
than once, RTAG keeps track of each change (version)
of the data according to system-wide write operations.
Each data version has its own tag(s) and each version of
tag values can be correctly propagated to other pieces
of data. Figure 1(b) depicts how RTAG facilitates the
independent replay and DIFT for the cross-host ssh dae-
mon and client example with the tag overlay and a set of
techniques (i.e., tag switch, allocation, and association).

RTAG not only speeds up the analysis by enabling inde-
pendent DIFT, but also reduces the memory consumption
when DIFT is performed. We allocate local symbols of
each DIFT with the optimal symbol size that is sufficient
to represent the entropy of data involved in the memory
overlap (i.e., “interference”) in each DIFT (§6.5). For
tracking the data communication across hosts, RTAG ap-
plies a tag association method (§6.6) to map the data that
are sent from one host and the ones that are received at an-
other host at byte level, which facilitates the identification
of tag propagation across hosts.

5 Threat Model and Assumptions

In this section, we discuss our threat model and assump-
tions. The goal of our work is to provide a system for
refinable cross-host attack investigation through DIFT.
This work is under a threat model in which an adver-
sary has a chance to gain remote access to a network of
hosts, and will attempt to exfiltrate sensitive data from
the hosts or to propagate misinformation (i.e., manipu-
late data) across the hosts. Our trusted computing base
(TCB) consists of the kernel in which RTAG is running,
and the storage and network infrastructure used by RTAG
to analyze the information collected from the hosts under

USENIX Association 27th USENIX Security Symposium 1709

analysis. Our TCB surface is similar to the one assumed
by other studies [19, 35, 45, 48].

We make the following assumptions. First, attacks will
happen only after RTAG is initiated (for collecting the
information about attacks from the beginning to the end).
Note that partial information about attacks can still be
collected even if this assumption is not in place. Second,
attacks relying on hardware trojans and side/covert chan-
nels are outside the scope of this paper. Although RTAG
does not yet consider these attacks, we believe a record-
and-replay approach has the potential to detect similar
attacks as presented in related work [21, 65]. Third, we
assume that although an attacker could compromise the
OS or RTAG itself, the analysis for previous executions
is still reliable. That is, we assume the attacker cannot
tamper with the data collected and stored from program
executions of the past. This can be realized by leveraging
secure logging mechanisms [18, 68] or by managing the
provenance data in a remote analysis server. Finally, we
assume that the attacker cannot propagate misinformation
by changing the payload of network packets while they
are being transferred between two hosts (i.e., there is no
man-in-the-middle attack).

6 Tagging System

We present the design of RTAG tagging system in this
section. First, we describe the design of the tag overlay
and how it represents and tracks the data provenance in
the cross-host scope §6.1. Second, in §6.2, we recall
the reachability analysis from RAIN [35] and how it is
extended for the cross-host case and benefits the tag al-
location. Third, we explain how RTAG decouples the tag
dependencies from the replays (§6.3), and the tag switch
technique (§6.4). Fourth, we explain how we optimize
the local tag size in pursuit of memory cost reduction in
the DIFT. Fifth, we describe how to associate tags in the
cross-host communication §6.6. Finally, we present the
investigation query interface in §6.7.

6.1 Representing Data Flow and Causality
To track the data flow between files and network flow
across different hosts, we build the model of tags as an
overlay graph on top of an existing provenance graph
(such as RAIN [35]). Within the overlay graph, RTAG as-
sociates globally unique tags with interesting files to track
their origin and flows at byte-level granuality. The tags
allow RTAG to trace back to the origin of a file including
from a remote host and to track the impacts of a file in
the forward direction even to a remote host. With this
capability, RTAG extends the coverage of the refinable at-
tack investigation [35] to multiple hosts. The provenance
graph is still necessary to track the data flows: 1) from

a process to a file; 2) from a process to another process;
and 3) from a file to a process. An edge indicates an event
between two nodes (e.g., a system call such as one that a
process node reads from a file node).

In the overlay tag graph, each byte of a file corresponds
to a tag key, which uniquely identifies this byte. Each tag
key is associated with a vector of origin value for this key
(i.e., this byte). By recursively retrieving the value of a
key, one obtains all of the upstream origins starting from
this byte of data in a tree shape extending to the ones at a
remote host. Reversely, by recursively retrieving the tag
key of a value, the analyst is able to find all the impacts
in a tree shape including the ones at a remote host (see
Figure 2(b) as an example).

As we log the system-wide executions, RTAG needs
to uniquely identify each byte of data in the file sys-
tem on each host as a “global tag.” For this require-
ment, RTAG uses a physical hardware address (i.e.,
mac address) to identify a host, identifiers such as
inode, dev, crtime to identify a file, and an offset
value to indicate the byte-level offset in the file. For exam-
ple, the physical hardware address (i.e., mac address) is
48 bits long. The inode, dev, crtime are 64 bits,
32 bits, and 32 bits consecutively. The offset is 32-bits
long, which supports a file as large as 4GB. Thus, in total,
the size of a global tag can be 208 bits.

6.2 Cross-host Reachability Analysis

RTAG follows the design of reachability analysis in
RAIN [35], and extends it to cope with the cross-host sce-
narios. Given a starting point(s), RTAG prunes the original
system-wide provenance graph to extract a subgraph re-
lated to the designated attack investigation that contains
the causal relations between processes and file/network
flow. RTAG relies on the coarse-level data flows in this
subgraph to maintain the tag overlay while performing
tag switch and optimal allocation. The reachability anal-
ysis first follows the time-based data flow to understand
the potential processes involved in the attack. Next, it
captures the memory overlap of file or network inputs/out-
puts inside each process and labels them as “interference,”
to be resolved by DIFT. With accurate interference infor-
mation, the replay and DIFT are fast forwarded to the
beginning of the interference (e.g., a read syscall) and
early terminated at the end (e.g., a write syscall).

For the network communication crossing different
hosts, RTAG links the data flow from one host to another
by identifying and monitoring the socket session. As
we present in §6.6, RTAG tracks the session by match-
ing the IP and port pairing between two hosts. RTAG
further tracks the data transfer at byte level via socket
communication for both TCP and UDP protocols, which
enables the extension of tag propagation across hosts.

1710 27th USENIX Security Symposium USENIX Association

Unlike the runtime DIFT system, RTAG has the compre-
hensive knowledge of source and sink from the recorded
file/network IO system-call trace, thus is able to allocate
an optimal size of tag for each individual DIFT task. We
show in §6.5 that this optimization significantly reduces
the memory consumption of DIFT tasks. In addition, to
avoid losing any intermediate tag updates to the same
resource performed by different processes, RTAG partic-
ularly monitors the “overwrite” operations to the same
offset of a file and tracks this versioning info, so it accu-
rately knows which version of the tag should be used in
the propagation.

6.3 Decoupling Tag Dependency

As a refinable provenance system, RTAG aims to per-
form DIFT at the offline replay time without adding high
overhead to the runtime of the program. The replay recon-
structs the same program status as the recording time by
enforcing the recorded non-determinism to the replay of
process execution. The non-determinism includes the file,
network, and IPC inputs which are saved and maintained
with a B-tree [25]. Such enforcement enables the program
to be faithfully replay-able at process level.

To extend this approach to capture the end-to-end data
flow across multiple hosts, we need to figure out how to
coordinate replay programs on different hosts to track
tag dependencies between them. One possible method
is decoupling tag dependencies from each replay of the
process, so it can be performed independently with no
dependency on other replays. We achieve the decoupling
by using local (i.e., symbolized) tags for each DIFT. Such
symbolization needs to distinguish the change of a tag be-
fore and after the write operation on it, and synchronize
the change to other related tags as well. In other words,
RTAG needs to track the dynamic change of origin(s) of
each tag after each IO operation (i.e., multiple versions
of the tag are tracked).

Let us illustrate with the data exfiltration in the Gitp-
wnd attack example in Figure 2(a). The client-hook
daemon keeps reading data from different files (e.g.,
/etc/passwd, id_rsa) and saves them into a
results file which is recycled over a period of time.
Meanwhile the git pack application copies from the
results file whenever the victim does git commit
operation, and shares data with ssh via the pipe IPC,
which will be shipped off the host. To correctly differ-
entiate the two data flows, id_rsa→results→pipe
and /etc/passwd→results→pipe, RTAG needs
to maintain two versions of the tags for results.
The DIFT on client-hook stores the origin of
results.v1 to be id_rsa, and the origin of
results.v2 to be /etc/passwd (circled with red
dash line), while the DIFT on git pack is able to

discriminate the source of the IPC traffic git:ssh at
offset 0 from results.v1 and further from id_rsa,
and the source of the IPC traffic at offset 1024 from
results.v2 and further from /etc/passwd. Most
importantly, now the client-hook and git pack
DIFT tasks can be performed independently without los-
ing intermediate tag values because of the overwriting on
results.

To facilitate the versioning, we append a 32-bit “ver-
sion” field to indicate the version of the data in the file
with regards to the file IO operation. According to the
sequential system-call trace, the version is incremented
at every event in which there is a write operation against
this certain byte (e.g., write(), writev()). In the
case of memory mapped file operation (e.g., mmap()),
the version is incremented at the mmap() if the prot
argument is set to be PROT_WRITE. The version field is
only used when this tag is included in the data interfer-
ence determined by the reachability analysis. We assign
32 bits for this field that can pinpoint a file IO syscall in
around 500 days based on our desktop experiment.

6.4 Switching Global and Local Tags

The entropy of the global tag defined in §6.1 is sufficient
enough to identify a byte of a file at a certain version
across multiple hosts. However, using the global tag for
each DIFT task is a waste of memory because each DIFT
task of RTAG only covers a process group such that a local
tag ensuring process-group-level uniqueness is enough.
Thus, for each DIFT task, we use a different tag size based
on the entropy of its source symbols. RTAG switches the
tags from global to local before doing DIFT, and switches
them back when the DIFT is done. The tag for DIFT is
local because it only needs to uniquely identify every byte
of the source in the current in-process DIFT, rather than
identify a single byte of data across multiple hosts.

Further, the number of sources in each DIFT depends
on the reachability analysis result, which is usually largely
reduced by data pruning. In other words, the local tag
size depends on the interference situation. Therefore, the
entropy for the local tag is much lower than the global tag.
For example, if the program reads only 10 bytes from a
file marked as a source in DIFT, in fact as low as four bits
are sufficient to represent each of these bytes. Compared
against the global tag size (i.e., 208 bits §6.1), the switch
brings 52× reduction in tag size (in practice, the reduction
can be as large as 26× capped by the compiler-enforced
byte-level granuality, which we discuss in detail in §7).
Moreover, the tag size affects not only the symbols for the
source and sink, but also all the intermediate memory lo-
cations and registers because the tags are copied, unioned,
or updated along with the execution of each instruction ac-
cording to the propagation policy of DIFT. Therefore, the

USENIX Association 27th USENIX Security Symposium 1711

Figure 3: Memory cost for tags in DIFT. The left (a) shows
the size of each tag given different numbers of symbols used in
DIFT. The right (b) depicts the tagmap sizes based on different
sizes of memories being allocated with tags when 256 symbols
are used in the DIFT. RTAG local, global, DataTracker, and
Dytan tags are compared.

tag size literally affects the memory cost of the whole tag
map and tag switching significantly reduces the overall
memory cost of DIFT.

6.5 Optimal Local Tag Allocation
The runtime cost of DIFT is high, both in time and stor-
age. DIFT usually takes 10×–30× longer than the original
execution because its instrumentation adds additional tag
update operations to each executed instruction. Recent
studies [34, 47] alleviate this issue by decoupling the in-
strumentation efforts from the runtime of the program.
However, the storage footprint of tag map, the data struc-
ture used by DIFT to maintain the tag propagation status,
can still be very high particularly when there are multiple
(or many) sources.

The cost of tag map in DIFT depends on its sup-
ported type of tags and purpose. DIFT engines such as
Taintcheck [49], Taintgrind [16], and ShadowReplica [34]
use a basic binary tag model for DIFT, which assigns a
boolean “tainted” or “not tainted” for each source of DIFT.
It is able to tell whether the tainted data is propagated to
the sink, which can be used to alarm sensitive data leak-
age or control-flow hijacking. However, this model is
not flexible enough for the goal of RTAG, where the data
dependency confusion it aims to resolve involves multiple
sources.

Dytan [24] and DataTracker [61] provide a customiz-
able model for the data sources and sinks. It allows the
allocation of multiple tags to each addressable byte of
data at the source or sink. The tag model used by such
systems is flexible, but the tag map used to maintain the
status of the taint propagation is “over-flexible” thus huge,
which inhibits the deployment of such a system in many
resource restrained cases. As these systems assume to

be running at the runtime of a program, where no knowl-
edge of the data at the source or sink is known prior, they
usually assign a fixed size for each tag such that they
are confident it is safely big enough. For example, Data-
Tracker [61] uses 32 bits to identify an inbound file, and
another 32 bits to identify the offset of the data (totally
64 bits). The size is sufficient for identifying every byte
in a normal desktop. Dytan [24] represents whether one
source is tainted or not as one bit and stores all the bits
in a bit vector as the tag. Thus the size of each tag is
linear to the number of sources, which can be huge in
the case of a high number of sources. Note that the tag
map not only stores the tags for the source and sink, but
all the intermediate memory locations and registers as
well. Since most implementations of DIFT maintain the
tag map in memory to pursue faster instrumentation, such
high use of memory has a possibility to cause the DIFT
to crash before it is complete. This problem is elevated
when the scope of investigation extends to multiple hosts
since the workload of DIFT increases in proportion.

In contrast to the previous works that perform DIFT
at the program runtime, RTAG is a record-replay based
system in which the knowledge of data source and sink
is known to us when we perform DIFT at replay time. In
other words, we know which (bytes of) data need to be in-
volved in the DIFT. Thus, we can adjust the tag size based
on the entropy of the data dependency confusion, rather
than use a fixed-size tag. Figure 3 compares the memory
cost for tag map in different DIFT engines: (a) shows that
the local tag of RTAG grows in logarithm while others are
either linear or constant; (b) presents the total tag map
size under different sizes of memories that are tainted (i.e.,
allocated with tags) where the memory cost introduced
by RTAG is the lowest (by significant difference). Before
DIFT, RTAG computes the optimal local tag needed to
mark the source and substitute the global tag for the local
one when a source is loaded to the memory space of the
process (e.g., via read() syscall). While performing
DIFT, RTAG allocates the tags for intermediate locations
lazily when a memory location or register becomes tainted
with some tag. When the propagation arrives at a sink
(e.g., via a write() syscall), RTAG replaces the local
tag with the original global one, and updates the tag value
of the sink. We observe significant memory cost reduc-
tion by applying this optimal tag allocation method (see
§8.2.1).

6.6 Tag Association

In order to track the data flow between different hosts,
we additionally hook the socket handling of the operating
kernel to enable the cross-host tagging. Prior studies
adopt an “out-of-band” method to track the data flow
communication (e.g., [38, 50]). Though this method is

1712 27th USENIX Security Symposium USENIX Association

more straightforward when identifying and managing the
tags across hosts, it requires additional bookkeeping that
incurs both complexity and overhead to the hosts. In
contrast, we propose an “in-band” method to track the
data flow among hosts, which particularly fits the system-
level reachability analysis as well as the DIFT.

We design the cross-host tagging method based on the
characteristics of the socket protocols. Our current tag-
ging scheme supports the two major types of protocols
(i.e., TCP [54] and UDP [53]). For TCP, as the data stream
delivery is guaranteed between the two hosts, we rely on
the order of bytes in the TCP session between source and
destination to identify the data flow at byte level, which
can be uniquely identified using a pair of IP addresses
and port numbers. Such tracking silently links the out-
bound traffic from the source host with the inbound traffic
at the destination host, which does not incur additional
traffic. Note that although TCP regulates the data stream
order, the sender or receiver may run different numbers
of system calls in sending and receiving the data. For ex-
ample, the sender may perform five writev() system
calls to send 10,000 bytes of data (2,000 bytes each call),
while the receiver may conduct 10 read() calls (1,000
bytes each call) to retrieve the complete data. This is why
counting sent or received bytes is necessary, instead of
counting the number of system calls.

In the case of UDP, since the data delivery is not guaran-
teed, some UDP packets could be lost during transmission.
So we cannot rely on the order of transferred bytes be-
cause the destination host has no knowledge of which
data are supposed to arrive and which have been lost. To
support UDP, we embed a small “cross-host” tag at each
send related system call by the source host, and parse the
tag at receive related system calls by the destination
host. The tag is inserted into the beginning of the data-
gram as a part of the user datagram before the checksum
is calculated. If the datagram is transferred successfully,
RTAG knows a certain length of data goes from the source
to the destination. If the destination host finds the re-
ceived datagram is broken, or totally lost, it will discard
this datagram, hence RTAG is also aware of the loss and
erases this inbound data from the reachability analysis
and DIFT. As we will show in §8, the communication cost
for TCP case is 0, while the cost for UDP is also marginal
in the benchmark measurement.

The cross-host tag represents the byte-level data in
the socket communication between two processes across
hosts. Each tag key represents the data traffic in one
socket session using the source and destination process
credentials, plus the offset that indicates the data at
byte level. For the uniqueness of session, we use the
process identifier (pid) and the process creation time
(start_time in the task structure) to identify each
process. The tag values represent the origin of the tag

key, which is determined by the DIFT and updated to the
global tag map. The cross-host tags are also switched
away before DIFT is performed and restored afterward.
For the hosts on which RTAG does not run, we treat them
as a black box, and identify them using the IP address
and port number. The IP and port are retrieved from the
socket structure inside the kernel.
Handling IPC. RTAG tracks the data transfer of IPC
communication between two processes as well. For
the IPC that uses system call as a controlling interface
(e.g., pipe, and System V IPC: message queues,
semaphores), RTAG hooks these system calls to track
the data being transferred. When a process uses pipe to
send data to the child process, RTAG monitors the read
and write system calls to track the transferred data in
bytes. During reachability analysis, we create tag keys
to label every byte sent from the parent to the child. The
tag values are fulfilled by DIFT. For example, in Figure 2,
although the git pack and ssh processes have IPC de-
pendency, RTAG is able to perform the replay and DIFT
independently on them since RTAG caches the inbound
data reads from the pipe and feeds them back during the
replay. Also, by tracking the inode associated with the
file descriptors (rather than tracking pipe, dup(2)
and child inheritance relationships), we identify the data
transmitted via the pipe at byte level and the processes
at its two ends. RTAG implicitly tracks the IPC based
on shared memory. Instead of trapping the replay of a
process for each read from a shared memory, RTAG re-
plays the processes having shared memory as a group as
RAIN [35] and Arnold [25] do, so that the tag propagation
of this shared memory is performed within the process’
memory locations. No separate tag allocation is needed
for these processes.

6.7 Query Results
The query result will be returned after all the tag values of
the interfering data are updated. The result represents the
data causalities of involved objects in a tree structure. For
example, in Figure 2, a backward query on the attacker’s
controlled host 5.5.5.5:22 will return the tree-shape
data flow overlay depicted in Figure 2(b), consisting of
all the segments of the flow from the key to all of its
upstream origins. Also, a forward query returns every
segment of the data flow from the queried tag key to all
of its impact(s). It relies on a reversed map where the
tag key and value are swapped to locate the downstream
impact from a file. For example, a forward query on the
private key id_rsa on the client side returns a flow:
id_rsa→results.v1→objects→5.5.5.5:22.
A point-to-point query gives the detailed data flow be-
tween two nodes in the provenance graph by performing
a forward and backward query on these two nodes, then
computing the intersection of the two resulting trees.

USENIX Association 27th USENIX Security Symposium 1713

7 Implementation

The implementation of RTAG is based on a single-host re-
finable information flow tracking system RAIN [35], with
extended development of the tagging system. Specifi-
cally, our implementation adds 830 lines of C code to
the Linux kernel for the tag association module, 2,500
lines of C++ code to the DIFT engine for the tag switch
mechanism, 1,100 lines of C++ code for the maintenance
of tags, 900 lines of C++ code for the query handler, and
500 lines of Python code for the reachability analysis for
tag allocation. Currently, RTAG runs on both the 32-bit
and 64-bit Ubuntu 12.04 LTS. Accordingly, our DIFT en-
gine supports both x86 and x86_64 architectures, which
is based on libdft [37] and its extended x86_64 version
from [43]. We use a graph database Neo4j [10] for stor-
ing and analyzing coarse-level provenance graphs, and a
relational database PostgreSQL [3] for global tags with
multiple indexing on host (i.e., MAC address) and file
credentials (i.e., inode, dev, crtime). Particularly,
we supplement the tag data structure §6.4 and how we
track socket session §6.6 with implementation details in
the following.

Tag Data Structure. In the current implementation,
RTAG maintains local tags for individual bytes. RTAG
uses C++’s vector as the multi-tag container for one
memory location or register and uses sorting and bi-
nary search in the case of insert operation. vector
has storage efficiency, although its insertion overhead is
higher than that of the set data structure, which was
used by DataTracker [61]. We make this choice based on
x86 instruction statistics [4] that show the most popularly
used instructions are mov, push, and pop of which the
propagation policy copies the tag(s), while instructions
that involve insertion, such as add and and, are much
less frequent. Our evaluation affirms this choice that the
time overhead for single DIFT is similar between RTAG
and previous work [61].

Tracking Socket Session. The implementation of
tracking the socket communication session refers to the
socket structure inside the kernel for IP and port of the
host and the peer. If the type of socket is SOCK_STREAM
(i.e., TCP), we use a counter counting the total num-
ber of bytes sent or received by tracking the return
value of send or write system calls. If the type is
SOCK_DGRAM (i.e., UDP), our implementation embeds
a four-byte incrementing sequence number within the
same peer IP and port number at the beginning of the
payload buffer inside an in-kernel function sendmsg
rather than the system call functions such as send and
recv to avoid affecting the interface to the user program
as well as the checksum computation. At the receiver
side, we strip the sequence number in the recvmsg after

the checksum verification and present the original pay-
load to the program. As shown in §8.2.3, the hooking at
this level incurs almost no overhead in either bandwidth
or socket handling time. It also avoids the complicated
fragmentation procedure at the lower level.

8 Evaluation

Our evaluation addresses the following questions:
• How well does RTAG handle the data flow queries

(forward, backward, and point-to-point) for cross-
host attack investigations? (§8.1)

• How well does RTAG improve the efficiency of DIFT-
based analysis in terms of time and memory con-
sumption? (§8.2.1)

• How much overhead does RTAG cause to system
runtime including the network bandwidth? (§8.2.2,
§8.2.3) What is the storage footprint of running
RTAG? (§8.2.4)

Settings. We run RTAG based on the Ubuntu 12.04
64-bit LTS with 4-core Intel Xeon CPU, 4GB RAM and
1TB SSD hard drive on a virtual machine using KVM [14]
for the target hosts where system-wide executions are
recorded. On the analysis host, we use a machine with
8-core Intel Xeon CPU W3565, 192 GB RAM, and 2TB
SSD hard drive installed with Ubuntu 12.04 64-bits for
handling the query and performing DIFT tasks in parallel.
We use NFS [15] to share the log data between the target
and the analysis host.

8.1 Security Applications
Table 1 summarizes the statistics in every stage of pro-
cessing a query for an attack investigation: the original
provenance graph covering all the hosts, the pruned graph
where the unrelated causalities are filtered out by the
reachability analysis, and the data flow overlay where the
tags store the origins of each byte of data involved in the
query. Table 2 also summarizes how long each of the
queries took and their memory consumption.

8.1.1 GitPwnd

We first present how RTAG handles the queries on the
Gitpwnd example (described in §3.1). To handle a query,
we replay the involved processes independently based on
reachability analysis results while performing DIFT on
the interfering parts. We run RTAG on both client and
server hosts involved in this attack, while treating the
attacker-controlled host as a black box. We perform three
queries: a forward query asking for where the leaked
/etc/passwd goes to, a backward query inquiring the
sources of data flow that reaches the attacker’s controlled
host, and a point-to-point query aiming to particular data

1714 27th USENIX Security Symposium USENIX Association

Items Prov Graph Pruned Graph DF Overlay Accuracy
Attack Query Node Edge Node Edge Tags C-Tags

FW: /etc/passwd
8.3K 109K

39 557 28,960 10,700 100%
GitPwnd BW: attacker host 55 1,661 32,660 18,032 100%

PP: results - objects 22 418 23,193 7,317 100%

FW: exploit html
5.3K 89K

33 711 6,799 882 100%
SQLi-1 BW: payroll record 29 683 8,257 882 100%

PP: html - db file 27 490 3,197 882 100%

SQLi-2 FW: db file 5.2K 87K 80 2,251 510,466 420,121 100%
BW: dump file 72 1,997 530,004 420,121 100%

CSRF FW: exploit html 2.8K 34K 89 2,379 9,224 1,766 100%
BW: salary record 97 2,270 7,700 1,766 100%

FW: exploit html
2.9K 24K

71 1,145 432,845 420,755 100%
XSS BW: attacker host 63 863 435,716 420,700 100%

PP: html - a-host 55 782 421,106 420,700 100%

P2P BW: mp4@12th node 13K 730K 74 240K 759,302 630,228 100%
FW: mp4@1st node 182 490K 3,088,102 2,532,920 100%

Table 1: Statistics in terms of the effectiveness and performance of cross-host attack investigation. Prov Graph are the original
graph containing the system-wide executions of every process. Pruned Graph are the subgraph where nodes and edges that are
unrelated to the attack are pruned out; DF Overlay are results from the RTAG tagging system; Tags gives the number of generated
tag entries; C-Tags gives the number of tags of which the key and value(s) are Cross-host (i.e., from different hosts); Accuracy
shows the percentage of how many data flows are matched with the ground truth.

flow paths between the results file on the client side
and the objects file on the server side. In Table 1,
we show the statistics of using RTAG in every step. Par-
ticularly, we show the number of tags RTAG creates at
the tag overlay. In the forward query, RTAG generates
28,960 tag entries totally, 10,700 of which are cross-host
ones meaning the tag key and value are from different
hosts. We compare the query result with ground truth of
the attack and RTAG achieves 100% accuracy in every
query. We also evaluate the performance improvement
for DIFT, summarized in Table 2. In general, thanks to
the parallelizing of DIFT tasks, RTAG reduces the time
cost by more than 70% in most cases.

8.1.2 Web-based Attacks

We also use a set of web-based attacks to evaluate the ef-
fectiveness of RTAG in tracking the data flow between the
server (e.g., a web server Apache), and the client (e.g., a
browser Firefox). The web app facilitates the checking
and updating of employees’ personal financial informa-
tion. The employees typically manage their bank account
number and routing number via the web app. The attacks
include two SQL injections, one cross-site request forgery
(CSRF), and one cross-site scripting (XSS). We set up
RTAG on both server and client. We run an Apache
server with SQLite as its database. At the client, we
load exploit pages with either a data transfer tool Curl
or the Firefox browser. For each attack, we perform
three types of queries and compare the query results with
the ground truth.

Items DIFT Perf

Attack Query Tasks Mem(MB) Time(s) TReduc%

FW 10 497 95 87%
GitPwnd BW 27 912 113 86%

PP 8 322 79 72%

FW 14 2,513 342 70%
SQLi-1 BW 11 2,336 339 64%

PP 9 1,997 309 76%

SQLi-2 FW 41 7,655 695 83%
BW 39 6,804 677 82%

CSRF FW 33 6,537 499 78%
BW 49 7,122 504 84%

FW 26 4,850 687 77%
XSS BW 28 5,391 705 77%

PP 19 4,107 677 72%

P2P BW 12 6,371 201 92%
FW 12 9,855 236 91%

Table 2: DIFT performance using RTAG. Tasks stands for the
number of processes that are replayed with DIFT; Memory
gives the sum of virtual memory cost for each task; Time gives
the time duration RTAG spends to perform the DIFT tasks in
parallel; TReduc% shows the reduction rate from the time of
performing the same DIFT tasks serially.

SQL injections. The exploit takes advantage of a vulner-
ability at the server’s SQL parsing filter to execute illegal
query statements that steal or tamper the server database.
The first attack (SQLi-1) injects an entry of user profile to
the database. The added profile is further used by another

USENIX Association 27th USENIX Security Symposium 1715

financial program to generate payroll records. The ana-
lyst performs a forward query from the loaded html file
with the exploit, and RTAG returns the data flows from
the file at the client to the data in the payroll records. The
second attack (SQLi-2) steals data entries in the database
from the user and exploits a vulnerability in Firefox to
dump the entries to a file. With a backward query from the
dump file at the user side, RTAG pinpoints the segments
of the database file that has been exfiltrated.

Cross-site request forgery. The exploit uses a vulner-
ability of the server that miscalculates the CSRF chal-
lenge response to submit a form impersonating the user.
The form updates the profile contents (e.g., account num-
ber), and later the tampered profile is accessed by several
other programs that process the user’s payroll information.
RTAG helps determine the data flow between the user’s
loaded file and one of the payroll record that is considered
to have been tampered.

Cross-site scripting. The reflection-based cross-
scripting relies on dependency of an html element to user
input to append a script that reads the sensitive data from
the DOM tree of a page, packs some of the data, and sends
an email to the attacker’s external host. After the investi-
gation determines the attacker’s host to be malicious, it
makes a backward query from that host and finds the data
exfiltration from the user’s loaded page, as well as from
a certain offset of the database storage file at the server.
Notably, the resulting overlay shows the route of some
tags tracing back first to the server side (i.e., Apache),
then further back to the client side browser and the ex-
ploit html file, which recovers the reflection nature of the
attack.

8.1.3 Attacks Involving Memory Corruptions

To evaluate RTAG for the cases when the attacker exploits
memory corruptions, we additionally modified the Git-
Pwnd attack §3.1 by compiling the ssh daemon with
earlier versions containing memory-based vulnerabilities:
one integer overflow based on CVE-2001-0144 and one
buffer overflow based on CVE-2002-0640. For the integer
overflow, we patched the ssh client side code to exploit
the vulnerability [1] and remotely executed scp com-
mand at the server to copy files to the attacker’s controlled
host. For the buffer overflow, we crafted a malicious re-
sponse for the OpenSSH (v3.0) challenge-response mech-
anism and remotely executed commands [2]. We note that
memory-corruption-based attacks usually involve unde-
fined behavior of the program that violates the assumption
of many previous investigation systems using source or
binary semantics (e.g., [34, 42, 47]). However, RTAG suc-
cessfully reconstructs the program state of the overflow
for the DIFT to recover the fine-grained data flow.

8.1.4 File Spreading in Peer-to-Peer Network

We also run RTAG to track the data flows in a malicious-
file-spreading incident on top of a P2P network, which
is regarded an increasing threat in the decentralized file
sharing, according to a report by BitSight Insight [5].
This allows us to demonstrate RTAG’s ability to handle a
complex cross-host data-flow analysis involving multiple
parties, which is infeasible with existing approaches. We
use Gtk-Gnutella [7](v1.1.13) to set up a P2P network
in a local network of 12 nodes with RTAG running on
them. We perform two operations. First, we have two
nodes online; one node shares a malicious audio mp4 file,
and another node searches for the file, discovers it and
downloads it. Later, we shutdown the first node and let a
third node download the file from the second node. We
performed this type of single-hop relay iteratively until
five nodes have this file. Second, we use these five nodes
as “seeds” and let the remaining nodes search, discover,
and download the file. During this process, we intention-
ally shutdown parts of the nodes to introduce “resume”
procedures. Finally, we perform a backward query from
the audio file at the last node to search for the origin of the
file, and a forward query from the first node to uncover
how the file spread across the network with fine-grained-
level data flows. RTAG returns the results with 100%
accuracy. Particularly, the result also shows the data flow
between each pair of nodes for each iteration of the file
sharing procedure. The statistics of this experiment are
summarized in Table 1.

8.2 Performance

8.2.1 DIFT Runtime Performance

We compare the memory consumption and execution time
of RTAG with previous DIFT systems. For the memory
efficiency, we evaluated two state-of-the-art DIFT en-
gines that provide multi-color symbols, Dytan [24] and
DataTracker [61]. Table 3 shows the peak memory con-
sumption of the tag map for various DIFT tasks we used
in evaluating the security application in §8.1. The peak
memory consumption is useful as it indicates the required
resource for a certain type of DIFT. Notably, all the tag
sizes for representing the DIFT symbols determined by
reachability analysis are within three bytes (i.e., up to
16,777,216 symbols), with a majority being two bytes
(i.e., up to 65,536 symbols). This means the data prun-
ing and reachability analysis effectively narrow down the
scope of the DIFT symbols and pinpoint the exact bytes
of data that causes the data confusion for DIFT to resolve.
The savings from the tag map consumption of RTAG is
between 70% and 95%. The effect of improvement on
the general memory consumption varies across different
programs in terms of their own memory usage.

1716 27th USENIX Security Symposium USENIX Association

Programs #Symbols Peak TagMap Cost (MB) Reduc%
DataTracker Dytan RTAG

git-core 247 12 19 4.8 60 / 74
ssh 16,983 5.9 630 2.6 55 / 99
cli-hook 1,983 17 140 8.0 53 / 94
Curl 56,010 4.8 1,050 2.3 52 / 99
Firefox 4,091,773 155 NA 67.5 56 / NA
Apache 2,128,700 133 NA 41.7 68 / NA

Table 3: DIFT Tag Map Overhead in Practice. #Symbols de-
notes the number of symbols used in performing the DIFT task;
NA means the DIFT is not complete so the peak memory cost
is not available.

In our experiments, DIFT reduced total memory usage
10% to 50% when compared with DataTracker [61], and
by 30% to 90% compared with Dytan [24]. Since these
DIFT systems are designed with the scope of one host, in
order for proper comparison against previous DIFT sys-
tems, we only measured the cases where all the tags are
within one host. Note that this approach only compares
DIFT runtime performance side by side, but does not in-
dicate or suggest that RTAG can only handle single-host
cases. For evaluating the time efficiency in performing
DIFT tasks, we assign the same DIFT tasks to RTAG as
well as to the DIFT engine used by RAIN [35]. Since
RAIN [35] does not support cross-host investigation, we
use RAIN [35] to run the DIFT tasks, sequentially simulat-
ing the time consumption it needs to serialize the network
interaction and orchestrating the replays. We observe that
the parallel DIFT of RTAG takes 60%–90% less time than
RAIN [35] (Table 2).

Discussion. For the memory consumption, we find the
taint propagation is mainly composed of copy operations
such that the tag map is just updated with another value.
Combination operation for merging the tags of two loca-
tions is not frequent. Hence, though bit-vector (used in
[24]) ensures a constant length of tag for each location
even after combination, the benefit is not obvious. On the
contrary, its fixed size is linear to the number of symbols,
which causes out-of-memory crash when there are many
symbols to tag or (and) the many memory locations are
propagated during the execution. Using set eases the im-
plementation complexity as it natively supports the com-
bination operation with a good performance. However, it
incurs higher metadata cost (on x86 Linux, storing every
4-byte data in the set incurs over 14 bytes). For the time
consumption savings in RTAG, the total time consumption
depends on the longest DIFT task (e.g., Firefox ses-
sion). We are looking into integrating in-process parallel
DIFT techniques to RTAG that could further bring down
the time consumption.

Figure 4: Comparison of normalized runtime performance be-
tween RAIN [35] and RTAG with CPU bound benchmark SPEC
CPU2006. “GEOMEAN” gives the geometric mean of the per-
formance numbers.

Figure 5: Comparison of normalized runtime performance be-
tween RAIN [35] and RTAG with IO bound benchmarks.

8.2.2 Runtime Overhead

We measure the runtime overhead of RTAG using two sets
of benchmarks: the SPEC CPU2006 benchmark for CPU-
bound use cases and the IO-intensive benchmarks for IO
bound cases. The measurements are performed on two
systems, one without RTAG and one with RTAG enabled.
The result of SPEC benchmark is given in Figure 4 with
RAIN [35] as reference. The geometric mean of the run-
time overhead is 4.84%, which shows RTAG has similar
low runtime overhead to previous refinable systems. We
also measure the runtime overhead using IO-intensive ap-
plications to test the performance in IO bound cases. The
benchmark is composed of four scenarios: using scp to
upload a 500MB archive file, using wget downloading
a 2GB mov movie file, compiling LLVM 3.8, and using
Apache to serve an http service for file downloading.
The result of IO-intensive applications is shown in Fig-
ure 5. The overhead of all the items is at most 50%. We
reason that the cause of the higher overhead during file
downloading and compiling is because network and file
inputs are cached during the recording time.

USENIX Association 27th USENIX Security Symposium 1717

Protocol Setting Bandwidth% RTT%

TCP
Window: 128KB 0% +0.03%

256KB 0% +0.01%
512KB 0% +0.012%

UDP
Buffer: 512B -0.8% +0.02%

8KB -0.05% +0.01%
128KB -0.01% +0.012%

Table 4: Bandwidth impact of RTAG. The bandwidth and round-
trip-time (RTT) are measured with iperf3 benchmark using
different settings for TCP and UDP protocols.

8.2.3 Network Performance Impact

We use iperf3 [13] to test the bandwidth impact of ap-
plying RTAG to typical network protocol settings. For
TCP, we measure the bandwidth both with and without
having RTAG running at different window sizes. For UDP,
we set the buffer size to be similar with real applications
such as DNS (512B), RTP (128KB). We also measure the
performance impact in the term of the end-to-end round-
trip-time (RTT) for one datagram to be delivered to the
server and echoed back to the client. Both impacts are
negligible. The results are summarized in Table 4.

8.2.4 Storage Footprint

As a refinable system, RTAG has the storage overhead for
the non-deterministic logs that are used for faithful replay
of the recorded system-wide process executions. This en-
sures the completeness of retroactive analysis particularly
for the advanced low and slow attacks. The storage foot-
print varies according to the workload on each host and is
comparable with the upstream system RAIN [35]. Note
that only the input data are stored as non-determinism,
thus in the multi-host case, the traffic from a sender to
a receiver are only stored at the receiver side, avoiding
duplicated storage usage. In the use of RTAG, we ob-
serve around 2.5GB–4GB storage overhead per day for
a desktop used by a lab student (e.g., programming, web
browsing); and around 1.5GB storage overhead per day
for a server hosting gitolite used internally by five lab
students for version controlling on course projects.

9 Related Work

Dynamic Information Flow Tracking. Dynamic taint
analysis [24, 29, 37, 49, 62] is a well-known technique
for tracking information flow instruction by instruction at
the runtime of a program without relying on the semantic
of a program source or binary. DIFT is useful for policy
enforcement [49], malware analysis [66], and detecting
privacy leaks [29, 62]. To support intra-process tainting,

DIFT
Systems

Cross
Host

Inst
Time

Tag
Dep

Run
Over

DIFT
Over(T/M)

Dytan [24] × Runtime Inlined High High/High
DataTracker [61] × Runtime Inlined High High/High
Panorama [66] × Runtime Inlined High High/High
ShadowReplica [34] × Runtime Inlined High Low/High
Taintpipe [47] × Runtime Inlined High Low/High
Panda [27, 28] × Replay Inlined High High/High
Arnold [25] × Replay Inlined Low High/High
RAIN [35] × Replay Inlined Low High/High
Jetstream [55] × Replay Inlined Low Low/High
TaintExchange [67] ✓ Runtime Inlined High High/High
Cloudfence [50] ✓ Runtime Inlined High High/High
RTAG ✓ Replay Decoupled Low Low/Low

Table 5: Comparison of DIFT-based provenance systems.
“Cross Host” tells whether the system covers cross-host anal-
ysis; “Inst Time” represents when the instrumentation is per-
formed (i.e., runtime or replay); “Tag Dep” shows how the tag
dependency is handled; “Run Over” shows the runtime over-
head; “DIFT Over(T/M)” presents the overhead of performing
DIFT in terms of Time and Memory cost in which RTAG both
achieves reductions significantly.

Dytan [24] provides a customizable framework for multi-
color tags. DataTracker adapts standard taint tracking
to provide adequate taint marks for provenance tracking.
However, taint-tracking suffers from excessive perfor-
mance overhead (e.g., the overhead of one state-of-the-art
implementation, libdft [37] is six times as high as native
execution), which makes it difficult to use in a runtime
environment. To solve this problem, several approaches
have been proposed to decouple DIFT from the program
runtime [34, 46, 47, 55, 57]. For example, Taintpipe [47],
Straight-taint [46] and ShadowReplica [34] pre-compute
propagation models from the program source and use
them to speed up the DIFT at runtime. However, their
dependency on program source disables these systems to
analyze undefined behavior. In contrast to these DIFT sys-
tems, RTAG provides both efficient runtime (recording)
and the ability to reliably replay and perform DIFT on the
undefined behavior (e.g., memory corruptions) commonly
seen in recent attacks. Jetstream [55] records the nor-
mal runtime execution and defers tainting until replay by
splitting an application into several epochs. DTAM [30]
uses dynamic taint analysis to find the relevant program
inputs to its control flow and has a potential to reduce
the workload of a record-replay system. Similar to RTAG,
TaintExchange [67] and Cloudfence [50] provide multi-
host information-flow analysis at runtime, but incur sig-
nificant overhead (20× in some cases). We summarize
the comparisons between RTAG and previous DIFT-based
provenance systems in Table 5.
Provenance Capturing. Using data provenance [60] to
investigate advanced attacks, such at APTs, has become a
popular area of research [8, 31, 36, 39, 40, 42, 45, 48, 52].
For example, the Linux Audit System [8], Hi-Fi [52], and
PASS [48] capture system-level provenance with less than

1718 27th USENIX Security Symposium USENIX Association

10% overhead. Linux provenance modules (LPM) [19] al-
lows developers to develop customized provenance rules
to create Linux Security Modules and LSM-like modules.
SPADE [31] decouples the generation and collection of
provenance data to provide a distributed provenance plat-
form, and ProvThings [63] generates provenance data for
IoT devices. Unfortunately, these systems are restricted
to coarse-grained provenance, which generate many false
dependencies. To reduce false positives and logging sizes,
Protracer [45] improves BEEP [42] to switch between
unit-level tainting and provenance propagation. In con-
trast, MCI [40] determines fine-grained dependencies
ahead-of-time by inferring implicit dependencies using
LDX [39] and creating causal models. DataTracker [61]
leverages DIFT to provide fine-grained data, but incurs
significant overhead. Finally, RAIN [35] uses record and
replay to defer DIFT until replay, then uses reachability
analysis to refine the dependency graph before tainting.
However, none of these systems can provide fine-grained
cross-host provenance like RTAG because they have no
tag association mechanism to support cross-host DIFT.

Network Provenance. In addition to system-wide track-
ing, provenance at network level is a well-researched
area [64, 68, 69]. For example, ExSPAN [69] provides
a distributed data model for storing network provenance.
One challenge network provenance faces is that it obvi-
ously cannot detect most system-level causality on end
nodes. Technically, network provenance and RTAG are or-
thogonal to each other, so that we can use both approaches
together to further enhance attack detection.

Record Replay System. Deterministic record-and-
replay has been a well-researched area [17, 20, 26, 41,
56]. In addition to providing faithful replay, the cur-
rent state-of-the-art techniques allow instrumentation of
programs during the replay of execution [23, 25, 27].
Arnold [25] provides efficient runtime because it is a
kernel based solution and can efficiently record nonde-
terministic events. Aftersight [23] and PANDA [27] are
hypervisor-based solutions. Aftersite is based on VMware
hypervisor (record) and QEMU (replay) while PANDA
is purely based on QEMU. Similar to RAIN [35], RTAG
leverages Arnold to provide efficient recording perfor-
mance, however the goals and functionality of RTAG are
unique from to Arnold and could be implemented on other
systems.

10 Conclusion

When investigating information flow-based cross-host
attacks, analysts need to manually analyze the informa-
tion flow generated by the processes running on multiple
hosts. This is a time consuming, error prone, and chal-
lenging task, due to the high number of processes and

consequently flows involved. To help analysts in this task,
we propose RTAG, a system for accurate and efficient
information flow analysis that makes cross-host attack
investigation practical. We implemented and empirically
evaluated RTAG by using the system to analyze a set of
real-world attacks including GitPwnd, a state-of-the-art
cross-host data infiltration attack. The system was able
to provide accurate results while reducing memory con-
sumption by 90% and also reducing the time consumption
by 60-90% compared to related work. We have a plan to
release the source code of RTAG.

We foresee several directions for future work. First, we
plan to make hosts running RTAG interoperable with hosts
not running the system. To do so, we plan to embed tag
information in an optional field of the UDP header. Sec-
ond, we plan to identify information flow techniques that
are resilient to the fact that RTAG might not be running on
every host in a given network. Third, we plan to integrate
in-process parallel DIFT techniques to RTAG to further
optimize the analysis time. Fourth, we plan to reduce the
storage requirement for non-deterministic inputs. To do
so, we plan to investigate ways to optimize the storage
of similar executions across different hosts. Finally, we
plan to extend the queries supported by RTAG so that it is
possible to compare the information flow associated with
different executions of the same program. In this way, it
will be possible to pinpoint when and where a program
was compromised.

11 Acknowledgments

We thank the anonymous reviewers for their helpful
feedback. This research was supported in part by
NSF, under awards CNS-0831300, CNS-1017265, CCF-
1548856, CNS-1563848, CRI-1629851, CNS-1704701,
and CNS-1749711, ONR, under grants N000140911042,
N000141512162, N000141612710, and N000141712895,
DARPA TC (No. DARPA FA8650-15-C-7556), NRF-
2017R1A6A3A03002506, ETRI IITP/KEIT [2014-0-
00035], and gifts from Facebook, Mozilla, and Intel.

References
[1] Ssh 1.2.x - crc-32 compensation attack detector, Feb. 2001.

https://www.exploit-db.com/exploits/20617.

[2] Openssh 3.x - challenge-response buffer overflow, 2002. https:
//www.exploit-db.com/exploits/21578.

[3] Postgresql, Oct. 2014. https://www.postgresql.org.

[4] x86 machine code statistics, Oct. 2014. https://www.
strchr.com/x86_machine_code_statistics.

[5] Peer-to-peer peril: How peer-to-peer sharing impacts
vendor risk and security benchmarking, Dec. 2015.
https://info.bitsighttech.com/how-peer-
to-peer-file-sharing-impacts-vendor-risk-
security-benchmarking.

USENIX Association 27th USENIX Security Symposium 1719

https://www.exploit-db.com/exploits/20617
https://www.exploit-db.com/exploits/21578
https://www.exploit-db.com/exploits/21578
https://www.postgresql.org
https://www.strchr.com/x86_machine_code_statistics
https://www.strchr.com/x86_machine_code_statistics
https://info.bitsighttech.com/how-peer-to-peer-file-sharing-impacts-vendor-risk-security-benchmarking
https://info.bitsighttech.com/how-peer-to-peer-file-sharing-impacts-vendor-risk-security-benchmarking
https://info.bitsighttech.com/how-peer-to-peer-file-sharing-impacts-vendor-risk-security-benchmarking

[6] Event tracing for windows, Oct. 2017. https://docs.
microsoft.com/en-us/dotnet/framework/wcf/
samples/etw-tracing.

[7] Gtk-gnutella, Oct. 2017. http://gtk-gnutella.
sourceforge.net.

[8] Linux audit, Oct. 2017. https://linux.die.net/man/
8/auditd.

[9] Mozilla rr, Oct. 2017. http://rr-project.org.

[10] Neo4j graph database, Oct. 2017. http://neo4j.com.

[11] Git: a free and open source distributed version control system,
Feb. 2018. https://git-scm.com/.

[12] Gitolite, Feb. 2018. https://www.gitolite.com.

[13] iperf3, Feb. 2018. https://iperf.fr.

[14] Kernel-based virtual machine, Oct. 2018. https://www.
linux-kvm.org.

[15] Linux network file system, Oct. 2018. http://nfs.
sourceforge.net/.

[16] Taintgrind: a valgrind taint analysis tool, Feb. 2018. https:
//github.com/wmkhoo/taintgrind.

[17] BACON, D. F., AND GOLDSTEIN, S. C. Hardware-assisted
replay of multiprocessor programs. Santa Cruz, CA, 1991.

[18] BATES, A., BUTLER, K., HAEBERLEN, A., SHERR, M., AND
ZHOU, W. Let sdn be your eyes: Secure forensics in data center
networks. In 2014 NDSS Workshop on Security of Emerging
Network Technologies (SENT) (2014).

[19] BATES, A., TIAN, D. J., BUTLER, K. R., AND MOYER, T.
Trustworthy whole-system provenance for the Linux kernel. In
Proceedings of the 24th USENIX Security Symposium (Security)
(Washington, DC, Aug. 2015).

[20] BURTSEV, A., JOHNSON, D., HIBLER, M., EIDE, E., AND
REGEHR, J. Abstractions for practical virtual machine replay. In
Proceedings of the 12th ACM SIGPLAN/SIGOPS International
Conference on Virtual Execution Environments (Atlanta, GA,
2016).

[21] CHEN, A., MOORE, W. B., XIAO, H., HAEBERLEN, A., PHAN,
L. T. X., SHERR, M., AND ZHOU, W. Detecting covert tim-
ing channels with time-deterministic replay. In Proceedings of
the 11th USENIX Symposium on Operating Systems Design and
Implementation (OSDI) (Broomfield, Colorado, Oct. 2014).

[22] CHEN, P., DESMET, L., AND HUYGENS, C. A study on advanced
persistent threats. In IFIP International Conference on Communi-
cations and Multimedia Security (2014), Springer, pp. 63–72.

[23] CHOW, J., GARFINKEL, T., AND CHEN, P. M. Decoupling
dynamic program analysis from execution in virtual environments.
In Proceedings of the 2008 USENIX Annual Technical Conference
(ATC) (Boston, MA, June 2008).

[24] CLAUSE, J., LI, W., AND ORSO, A. Dytan: a generic dynamic
taint analysis framework. In Proceedings of the International
Symposium on Software Testing and Analysis (ISSTA) (London,
UK, July 2007).

[25] DEVECSERY, D., CHOW, M., DOU, X., FLINN, J., AND CHEN,
P. M. Eidetic systems. In Proceedings of the 11th USENIX
Symposium on Operating Systems Design and Implementation
(OSDI) (Broomfield, Colorado, Oct. 2014).

[26] DEVIETTI, J., LUCIA, B., CEZE, L., AND OSKIN, M. Dmp:
deterministic shared memory multiprocessing. In ACM SIGARCH
Computer Architecture News (New York, NY, 2009), ACM.

[27] DOLAN-GAVITT, B., HODOSH, J., HULIN, P., LEEK, T., AND
WHELAN, R. Repeatable reverse engineering with PANDA. In
Proceedings of the 5th Program Protection and Reverse Engineer-
ing Workshop (PPREW) (2015).

[28] DOLAN-GAVITT, B., LEEK, T., HODOSH, J., AND LEE, W. Tap-
pan zee (north) bridge: mining memory accesses for introspection.
In Proceedings of the 20th ACM Conference on Computer and
Communications Security (CCS) (Berlin, Germany, Oct. 2013).

[29] ENCK, W., GILBERT, P., CHUN, B.-G., COX, L. P., JUNG, J.,
MCDANIEL, P., AND SHETH, A. N. TaintDroid: An information-
flow tracking system for realtime privacy monitoring on smart-
phones. In Proceedings of the 9th USENIX Symposium on Op-
erating Systems Design and Implementation (OSDI) (Vancouver,
Canada, Oct. 2010).

[30] GANAI, M., LEE, D., AND GUPTA, A. Dtam: dynamic taint
analysis of multi-threaded programs for relevancy. In Proceedings
of the 20th ACM SIGSOFT Symposium on the Foundations of
Software Engineering (FSE) (Cary, NC, Nov. 2012).

[31] GEHANI, A., AND TARIQ, D. SPADE: support for provenance
auditing in distributed environments. In Proceedings of the 13th
International Middleware Conference (Middleware) (2012).

[32] GIBLER, C., AND BEDDOME, N. Gitpwnd, Oct. 2017. https:
//github.com/nccgroup/gitpwnd.

[33] GOMEZ, L., NEAMTIU, I., AZIM, T., AND MILLSTEIN, T. Reran:
Timing-and touch-sensitive record and replay for android. In
Software Engineering (ICSE), 2013 35th International Conference
on (2013).

[34] JEE, K., KEMERLIS, V. P., KEROMYTIS, A. D., AND PORTOKA-
LIDIS, G. ShadowReplica: efficient parallelization of dynamic
data flow tracking. In Proceedings of the 20th ACM Conference on
Computer and Communications Security (CCS) (Berlin, Germany,
Oct. 2013).

[35] JI, Y., LEE, S., DOWNING, E., WANG, W., FAZZINI, M., KIM,
T., ORSO, A., AND LEE, W. Rain: Refinable attack investi-
gation with on-demand inter-process information flow tracking.
In Proceedings of the 24rd ACM Conference on Computer and
Communications Security (CCS) (Dallas, Texas, Oct. 2017).

[36] JI, Y., LEE, S., AND LEE, W. RecProv: Towards provenance-
aware user space record and replay. In Proceedings of the 5th Inter-
national Provenance and Annotation Workshop (IPAW) (Mclean,
VA, 2016).

[37] KEMERLIS, V. P., PORTOKALIDIS, G., JEE, K., AND
KEROMYTIS, A. D. libdft: Practical dynamic data flow tracking
for commodity systems. In Proceedings of the 8th ACM SIG-
PLAN/SIGOPS International Conference on Virtual Execution
Environments (London, UK, 2012).

[38] KIM, T., CHANDRA, R., AND ZELDOVICH, N. Recovering from
intrusions in distributed systems with DARE. In Proceedings of
the 3rd Asia-Pacific Workshop on Systems (APSys) (Seoul, South
Korea, July 2012).

1720 27th USENIX Security Symposium USENIX Association

https://docs.microsoft.com/en-us/dotnet/framework/wcf/samples/etw-tracing
https://docs.microsoft.com/en-us/dotnet/framework/wcf/samples/etw-tracing
https://docs.microsoft.com/en-us/dotnet/framework/wcf/samples/etw-tracing
http://gtk-gnutella.sourceforge.net
http://gtk-gnutella.sourceforge.net
https://linux.die.net/man/8/auditd
https://linux.die.net/man/8/auditd
http://rr-project.org
http://neo4j.com
https://git-scm.com/
https://www.gitolite.com
https://iperf.fr
https://www.linux-kvm.org
https://www.linux-kvm.org
http://nfs.sourceforge.net/
http://nfs.sourceforge.net/
https://github.com/wmkhoo/taintgrind
https://github.com/wmkhoo/taintgrind
https://github.com/nccgroup/gitpwnd
https://github.com/nccgroup/gitpwnd

[39] KWON, Y., KIM, D., SUMNER, W. N., KIM, K., SALTAFOR-
MAGGIO, B., ZHANG, X., AND XU, D. LDX: Causality inference
by lightweight dual execution. In Proceedings of the 21st ACM
International Conference on Architectural Support for Program-
ming Languages and Operating Systems (ASPLOS) (Atlanta, GA,
Apr. 2016).

[40] KWON, Y., WANG, F., WANG, W., LEE, K. H., LEE, W.-C.,
MA, S., ZHANG, X., XU, D., JHA, S., CIOCARLIE, G., ET AL.
Mci: Modeling-based causality inference in audit logging for
attack investigation. In Proceedings of the 2018 Annual Network
and Distributed System Security Symposium (NDSS) (San Diego,
CA, Feb. 2018).

[41] LAADAN, O., VIENNOT, N., AND NIEH, J. Transparent,
lightweight application execution replay on commodity multi-
processor operating systems. In Proceedings of the ACM SIGMET-
RICS International Conference on Measurement and Modeling of
Computer Systems (2010), SIGMETRICS ’10.

[42] LEE, K. H., ZHANG, X., AND XU, D. High accuracy attack
provenance via binary-based execution partition. In Proceedings
of the 20th Annual Network and Distributed System Security Sym-
posium (NDSS) (San Diego, CA, Feb. 2013).

[43] LONG, F., SIDIROGLOU-DOUSKOS, S., AND RINARD, M. Auto-
matic runtime error repair and containment via recovery shepherd-
ing. In ACM SIGPLAN Notices (2014), vol. 49, ACM, pp. 227–
238.

[44] LUK, C.-K., COHN, R., MUTH, R., PATIL, H., KLAUSER, A.,
LOWNEY, G., WALLACE, S., REDDI, V. J., AND HAZELWOOD,
K. Pin: building customized program analysis tools with dynamic
instrumentation.

[45] MA, S., ZHANG, X., AND XU, D. ProTracer: towards practical
provenance tracing by alternating between logging and tainting. In
Proceedings of the 2016 Annual Network and Distributed System
Security Symposium (NDSS) (San Diego, CA, Feb. 2016).

[46] MING, J., WU, D., WANG, J., XIAO, G., AND LIU, P. Straight-
Taint: decoupled offline symbolic taint analysis. In Proceedings
of the 31st IEEE/ACM International Conference on Automated
Software Engineering (ASE) (Singapore, Sept. 2016).

[47] MING, J., WU, D., XIAO, G., WANG, J., AND LIU, P. TaintPipe:
pipelined symbolic taint analysis. In Proceedings of the 24th
USENIX Security Symposium (Security) (Washington, DC, Aug.
2015).

[48] MUNISWAMY-REDDY, K.-K., HOLLAND, D. A., BRAUN, U.,
AND SELTZER, M. Provenance-aware storage systems. In Pro-
ceedings of the 2006 USENIX Annual Technical Conference (ATC)
(Boston, MA, May–June 2006).

[49] NEWSOME, J., AND SONG, D. Dynamic taint analysis for auto-
matic detection, analysis, and signature generation of exploits on
commodity software. In Proceedings of the 12th Annual Network
and Distributed System Security Symposium (NDSS) (San Diego,
CA, Feb. 2005).

[50] PAPPAS, V., KEMERLIS, V. P., ZAVOU, A., POLYCHRONAKIS,
M., AND KEROMYTIS, A. D. Cloudfence: Data flow tracking as a
cloud service. In Proceedings of the 16th International Symposium
on Research in Attacks, Intrusions and Defenses (RAID) (Saint
Lucia, Oct. 2013).

[51] PATIL, H., PEREIRA, C., STALLCUP, M., LUECK, G., AND
COWNIE, J. PinPlay: A framework for deterministic replay and
reproducible analysis of parallel programs. In Proceedings of
the 8th Annual IEEE/ACM International Symposium on Code
Generation and Optimization (CGO) (2010).

[52] POHLY, D. J., MCLAUGHLIN, S., MCDANIEL, P., AND BUT-
LER, K. Hi-fi: collecting high-fidelity whole-system provenance.
In Proceedings of the Annual Computer Security Applications
Conference (ACSAC) (2012), pp. 259–268.

[53] POSTEL, J. User datagram protocol.

[54] POSTEL, J. Transmission control protocol.

[55] QUINN, A., DEVECSERY, D., CHEN, P. M., AND FLINN, J. Jet-
Stream: Cluster-scale parallelization of information flow queries.
In Proceedings of the 12th USENIX Symposium on Operating
Systems Design and Implementation (OSDI) (Savannah, GA, Nov.
2016).

[56] REN, S., TAN, L., LI, C., XIAO, Z., AND SONG, W. Samsara:
Efficient deterministic replay in multiprocessor environments with
hardware virtualization extensions. In Proceedings of the 2016
USENIX Annual Technical Conference (ATC) (Denver, CO, June
2016).

[57] RUWASE, O., GIBBONS, P. B., MOWRY, T. C., RAMACHAN-
DRAN, V., CHEN, S., KOZUCH, M., AND RYAN, M. Parallelizing
dynamic information flow tracking.

[58] SAITO, Y. Jockey: a user-space library for record-replay debug-
ging. In Proceedings of the sixth international symposium on
Automated analysis-driven debugging (2005).

[59] SEN, K., KALASAPUR, S., BRUTCH, T., AND GIBBS, S. Jalangi:
a selective record-replay and dynamic analysis framework for
javascript. In Proceedings of the 2013 9th Joint Meeting on Foun-
dations of Software Engineering (2013).

[60] SIMMHAN, Y. L., PLALE, B., AND GANNON, D. A survey of
data provenance in e-science. ACM Sigmod Record 34, 3 (June
2005), 31–36.

[61] STAMATOGIANNAKIS, M., GROTH, P., AND BOS, H. Looking
inside the black-box: capturing data provenance using dynamic in-
strumentation. In Proceedings of the 5th International Provenance
and Annotation Workshop (IPAW) (Cologne, Germany, 2014).

[62] SUN, M., WEI, T., AND LUI, J. Taintart: A practical multi-
level information-flow tracking system for android runtime. In
Proceedings of the 23rd ACM Conference on Computer and Com-
munications Security (CCS) (Vienna, Austria, Oct. 2016), ACM,
pp. 331–342.

[63] WANG, Q., HASSAN, W. U., BATES, A., AND GUNTER, C.
Fear and logging in the internet of things. In Proceedings of the
2018 Annual Network and Distributed System Security Symposium
(NDSS) (San Diego, CA, Feb. 2018).

[64] WU, Y., ZHAO, M., HAEBERLEN, A., ZHOU, W., AND LOO,
B. T. Diagnosing missing events in distributed systems with nega-
tive provenance. In ACM SIGCOMM Computer Communication
Review (Snowbird, Utah, USA, June 2014), vol. 44, pp. 383–394.

[65] YAN, M., SHALABI, Y., AND TORRELLAS, J. ReplayConfusion:
Detecting cache-based covert channel attacks using record and re-
play. In Proceedings of the 49th Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO) (Taipei, Taiwan, Oct.
2016).

[66] YIN, H., SONG, D., EGELE, M., KRUEGEL, C., AND KIRDA,
E. Panorama: capturing system-wide information flow for mal-
ware detection and analysis. In Proceedings of the 14th ACM
Conference on Computer and Communications Security (CCS)
(Alexandria, VA, Oct.–Nov. 2007).

USENIX Association 27th USENIX Security Symposium 1721

[67] ZAVOU, A., PORTOKALIDIS, G., AND KEROMYTIS, A. Taint-
exchange: a generic system for cross-process and cross-host taint
tracking. In Advances in Information and Computer Security
(2011), Springer, pp. 113–128.

[68] ZHOU, W., FEI, Q., NARAYAN, A., HAEBERLEN, A., LOO,
B. T., AND SHERR, M. Secure network provenance. In Proceed-

ings of the 23rd ACM Symposium on Operating Systems Principles
(SOSP) (Cascais, Portugal, Oct. 2011).

[69] ZHOU, W., SHERR, M., TAO, T., LI, X., LOO, B. T., AND MAO,
Y. Efficient querying and maintenance of network provenance at
internet-scale. In Proceedings of the 2010 ACM SIGMOD/PODS
Conference (Indianapolis, IN, June 2010), ACM, pp. 615–626.

1722 27th USENIX Security Symposium USENIX Association

	Introduction
	Background
	Execution Logging
	Record and Replay
	Dynamic Information Flow Tracking

	Motivating Example and Challenges
	The GitPwnd Attack
	Challenges

	Overview
	Threat Model and Assumptions
	Tagging System
	Representing Data Flow and Causality
	Cross-host Reachability Analysis
	Decoupling Tag Dependency
	Switching Global and Local Tags
	Optimal Local Tag Allocation
	Tag Association
	Query Results

	Implementation
	Evaluation
	Security Applications
	GitPwnd
	Web-based Attacks
	Attacks Involving Memory Corruptions
	File Spreading in Peer-to-Peer Network

	Performance
	DIFT Runtime Performance
	Runtime Overhead
	Network Performance Impact
	Storage Footprint

	Related Work
	Conclusion
	Acknowledgments

