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Abstract

Memory-corruption attacks have been subject to exten-
sive research in the latest decades. Researchers demon-
strated sophisticated attack techniques, such as (just-in-
time/blind) return-oriented programming and counterfeit
object-oriented programming, which enable the attacker
to execute arbitrary code and data-oriented attacks that
are commonly used for privilege escalation. At the same
time, the research community proposed a number of ef-
fective defense techniques. In particular, control-flow
integrity (CFI), code-pointer integrity (CPI), and fine-
grained code randomization are effective mitigation tech-
niques against code-reuse attacks. All of these tech-
niques require strong memory isolation. For example,
CFI’s shadow stack, CPI’s safe-region, and the random-
ization secret must be protected from adversaries able to
perform arbitrary read-write accesses.
In this paper we propose IMIX, a lightweight, in-
process memory isolation extension for the Intel-based
x86 CPUs. Our solution extends the x86 ISA with a
new memory-access permission to mark memory pages
as security sensitive. These memory pages can then only
be accessed with a newly introduced instruction. Unlike
previous work, IMIX is not tailored towards a specific
defense (technique) but can be leveraged as a primitive to
protect the data of a wide variety of memory-corruption
defenses. We provide a proof of concept of IMIX us-
ing Intel’s Simulation and Analysis Engine. We extend
Clang/LLVM to include our new instruction, and en-
hance CPI by protecting CPI’s safe region using IMIX.

1 Introduction

Memory-corruption attacks have been a major threat
against modern software for multiple decades. Attack-
ers leverage memory-corruption vulnerabilities to per-
form multiple malicious activities including taking con-
trol of systems and exfiltrating information. Memory-

corruption attacks can be roughly divided into the cat-
egories code-injection [3], code-reuse [50, 52, 54], and
data-only attacks [12, 28, 29]. While code-injection at-
tacks introduce new malicious code into the vulnerable
program, code-reuse attacks reuse the existing code in
an unintended way. Data-only attacks in turn aim to in-
fluence the program behavior by modifying crucial data
variables, e.g., used in branching conditions.
Defenses against memory-corruption typically reduce
the attack surface by preventing the adversary from cor-
rupting part of the application’s memory which is essen-
tial for a successful attack. Prominent examples include:
W⊕X [44, 48] which prevents data from being executed,
and hence, code-injection attacks; Control Flow Integrity
(CFI) [1] and Code-Pointer Integrity (CPI) [38] which
protect code pointers to prevent code-reuse attacks; and
Data Flow Integrity (DFI) [2, 10] mitigating data-only
attacks by restricting data access.
Some of these defenses can be implemented efficiently
using mechanisms that reside entirely outside the un-
derlying application process. For instance, the kernel
configures W⊕X and the hardware enforces it. Hence,
the adversary cannot tamper with this defense mecha-
nism when exploiting a memory-corruption vulnerabil-
ity in the application. However, using an external mech-
anism is not always feasible in practice due to high per-
formance overhead. For instance, CFI requires run-time
checks and a shadow stack [1, 9, 18], which is updated
every time a function is invoked or returns. CPI requires
run-time checks and a safe region, which contains meta-
data about the program’s variables. The required code for
these defenses can be efficiently protected when marked
as read-only, just like the application code. However,
as of today no architectural solution exists that protects
the data region of these defenses from unintended/ma-
licious accesses. This data cannot be stored outside of
the process, e.g., in kernel memory, because accessing it
would impose an impractical performance overhead due
to the time needed for a context switch. Hence, to pre-
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vent the adversary from accessing the data some form
of in-process memory isolation is needed, i.e., a mech-
anism ensuring access only by the defense code while
denying access by the potentially vulnerable application
code. However, devising a memory isolation scheme for
current x86 processors is challenging.

Memory Isolation Approaches. A variety of mem-
ory isolation solutions have been proposed or deployed
both in software and/or hardware. Software solutions
use either access instrumentation [8, 61], or data hid-
ing [6, 38]. Instrumentation-based memory isolation in-
serts run-time checks before every memory access in the
untrusted code in order to prevent accesses to the pro-
tected region. However, it imposes a substantial perfor-
mance overhead, for instance, code instrumented using
Software Fault Isolation (SFI) incurs an overhead up to
43% [51]. Data hiding schemes typically allocate data at
secret random addresses. Modern processors have suffi-
ciently large virtual memory space (140 TB) to prevent
brute-force attacks. The randomized base address must
be kept secret and is usually stored in a CPU register.
However, ensuring that this secret is not leaked to the ad-
versary is challenging, especially if the program is very
complex. For instance, compilers sometimes save regis-
ters to the stack in order to make room for intermediate
results from some computation. This is known as regis-
ter spilling and can leak the randomization secret [14].
Moreover, even a large address space can successfully
be brute-forced as it was shown on an implementation
of CPI [22, 24]. Thus, current in-process memory iso-
lation either compromises performance or offers limited
security.
Memory protection based on hardware extensions is an-
other approach to achieve in-process isolation. For in-
stance, Intel has recently announced Control-flow En-
forcement Technology [33] and Memory Protection
Keys [34] (already available on other architectures, e.g.
memory domains on ARM32 [4]). However, these tech-
nologies either provide hardware support limited to a
specific mitigation, or cause unnecessary performance
overhead. We will discuss those technologies in a more
detailed way in Section 8.

Goals and Contributions. In this paper we present
IMIX, which enables lightweight in-process memory
isolation for memory-corruption defenses that target the
x86 architecture. IMIX enables isolated pages. Marked
with a special flag, isolated pages can only be accessed
using a single new instruction we introduce, called
smov. Just like defenses like W⊕X protect the code of
run-time defenses from unintended modifications, IMIX
protects the data of those defenses from unintended ac-
cess. In contrast to other recently proposed hardware-

based approaches we provide an agnostic ISA extension
that can be leveraged by a variety of defenses against
code-reuse attacks to increase performance and security.
To summarize, our main contributions are:

• Hardware primitive to isolate data memory. We
propose IMIX, a novel instruction set architecture
(ISA) extension to provide effective and efficient in-
process isolation that is fundamental for the security
of memory-corruption defenses (metadata protec-
tion). Therefore, IMIX introduces a new memory-
access permission to protect the isolated pages,
which prevents regular load and store instructions
from accessing this memory. Instead, the code part
of defense mechanisms needs to use our newly in-
troduced smov instruction to access the protected
data.

• Proof-of-concept implementation. We provide a
fully-fledged proof of concept of IMIX. In partic-
ular, we leverage Intel’s Simulation and Analysis
Engine [11] to extend the x86 ISA with our new
memory protection, and to add the smov instruc-
tion. Further, we extend the Linux kernel to support
our ISA extension and the LLVM compiler infras-
tructure to provide primitives for allocation of pro-
tected memory, and access to the former. Finally,
we demonstrate how defenses against memory-
corruption attacks benefit from using IMIX by port-
ing code-pointer integrity (CPI) [38] to leverage
IMIX to isolate its safe-region.

• Thorough evaluation. We evaluate the perfor-
mance by comparing our IMIX-enabled port of CPI
to the original x86-64 variant. Further, we compare
our solution to Intel’s Memory Protection Keys and
Intel’s Memory Protection Extensions [34] over-
head for CPI.

2 Background

In this section we provide the necessary technical back-
ground which is necessary for understanding the remain-
der of this paper. We first provide a brief summary of
memory corruption attacks and defenses, and then ex-
plain memory protection on the x86 architecture.

2.1 Memory Corruption
C and C++ are popular programming languages due
to their flexibility and efficiency. However, their re-
quirement for manual memory management places a
burden on developers, and mistakes easily result in
memory-corruption vulnerabilities which enable attack-
ers to change the behavior of a vulnerable application
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during run time. For example, a missing bounds check
during the access of a buffer can lead to a buffer over-
flow, which enables the attacker to manipulate adjacent
memory values. With a write primitive in hand the at-
tacker can achieve different levels of control of the tar-
get, such as changing data flows within the application,
or hijacking the control flow. When conducting a data-
flow attack [28, 29], the attacker manipulates data point-
ers and variables that are used in conditional statements
to disclose secrets like cryptographic keys. In contrast,
during a control-flow hijacking attack, the attacker over-
writes code pointers, which are later used as a target ad-
dress of an indirect branch, to change control flow to
execute injected code [3] or to conduct a code-reuse at-
tack [50, 52, 54].
There exist different approaches to mitigate these at-
tacks, however, they all have in common that they are
part of the same execution context as the vulnerable ap-
plication, and often make a tradeoff between practicality
and security.
For example, combining SoftBounds [46] and CETS [47]
guarantees memory safety for applications written in
C, and hence, prevent the exploitation of memory-
corruption vulnerabilities in the first place. Unfortu-
nately, these guarantees come with an impractical per-
formance overhead of more than 100%. To limit the per-
formance impact, other mitigation techniques focus on
mitigating certain attack techniques. To mitigate control-
flow hijacking attacks, these techniques prevent the cor-
ruption of code pointers [38], verify code pointers before
they are used [1], or ensure that the values of valid code
pointers are different for each execution [16].
Another common aspect of every memory-corruption
mitigation technique is that they reduce the attack sur-
face of a potentially vulnerable application to the miti-
gation itself. In other words, if the attacker is able to
manipulate the mitigation or memory on which the mit-
igation depends, she can undermine the security of the
mitigation. The protection mitigation’s memory is hard
because it is part of the memory which the attacker can
potentially access.
Next, we provide a short overview memory protection
techniques, which are available on the x86 architecture,
that can be leveraged to protect the application’s and mit-
igation’s memory.

2.2 Memory Isolation

The x86 architecture offers different mechanisms to en-
force memory protection. Segmentation and paging are
the most well-known ones. However, recently, Intel and
AMD proposed a number of additional features to protect
and isolate memory. As we argue in Section 8, IMIX
is most likely to be adapted for Intel-based x86 CPUs,

hence, we focus in this section on memory protection
features that are implemented or will be implemented
for Intel-based x86 CPUs. Note that in most cases AMD
provides a similar feature using different naming conven-
tion. Finally, we shortly discuss software-based memory
isolation.

Traditional Memory Isolation. Segmentation and
paging build a layer of indirection for memory accesses
that can be configured by the operating system, and the
CPU enforces access control while resolving the indirec-
tion.
Segmentation is a legacy feature that allows developers
to define segments that consists of a start address, size,
and an access permission. However, on modern 64-bit
systems access permissions are no longer enforced. Nev-
ertheless, many mitigations [6, 18, 38, 41] leverage seg-
mentation to implement information hiding by allocating
their data TCB at a random address, and ensure that it is
only accessed through segmentation.
On modern systems, paging creates an indirection that
maps virtual memory to physical memory. The map-
ping is configured by the operating system through a data
structure known as page tables, which contain the trans-
lation information and a variety of access permissions.
The paging permission system enables the operating sys-
tem to assign memory to either itself or to the user mode.
To isolate different processes from each other, the oper-
ating system ensures that each process uses its own page
table. Due to legacy reasons, paging does not differen-
tiate between the read and execute permission, which is
why modern systems feature the “non-executable” per-
mission. Further, paging allows to mark memory as
(non-)writable.

New Memory Protection Features. Recently intro-
duced or proposed features that enable memory isola-
tion on x86 are Extended Page Tables (EPT), Mem-
ory Protection Extensions (MPX), Software Guard Ex-
tensions (SGX), Memory Protection Keys (MPK) and
Control-flow Enforcement Technology (CET). We pro-
vide a comparison in Section 9.
The EPT facilitate memory virtualization and are con-
ceptually the same as regular page tables, except that
they are configured by the hypervisor, and allow to set the
read/write/execute permission individually. Hence, pre-
vious work leveraged the EPT to implement execute-only
memory [16, 58, 63]. MPX implements bounds check-
ing in hardware. Therefore, it provides new instructions
to configure a lower and upper bound for a pointer to a
buffer. Then, before a pointer is dereferenced, the de-
veloper can leverage another MPX instruction to quickly
check whether this address points into the buffers bound-
aries. SGX allows to create enclaves within a process
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that are completely isolated from the rest of the system
at the cost of high overhead when switching the execu-
tion to the code within an enclave. MPK introduces a
new register, which contains a protection key, and en-
ables programmers to tag memory (the tag is stored in
the page table) such that it can only be accessed if the
protection key register contains a specific key. MPK can
be utilized to implement in-process isolation by tagging
the security critical data and loading the corresponding
key only when executing a benign access, and deleting it
after the access succeeded. Intel’s hardware support for
CFI, CET, provides similar memory isolation the shadow
stack as IMIX for security critical data in general. It in-
troduces a new access permission for the shadow stack,
and special instructions to access it. Unfortunately, CET
is tailored towards CFI and cannot be easily repurposed
for other mitigations.

Software-based Approaches. Software Fault Isola-
tion (SFI) [43, 51, 61] instruments every read, write, and
branch instruction to enable in-process isolation. How-
ever, this approach comes with a significant performance
overhead due to the additional instructions.
To summarize, none of the above listed memory protec-
tion features provides mitigation-agnostic security and
performance benefits at the same time.

3 Adversary Model

Throughout our work, we use the following standard
adversary model and assumptions, which are consistent
with prior work in this field of research [21, 38, 53, 54].

• Memory corruption. We assume the presence of a
memory-corruption vulnerability, which the adver-
sary can repeatedly exploit to read and write data
according to the memory access permissions.

• Sandboxed code execution. The adversary can ex-
ecute code in an isolated environment. However,
the executed code cannot interfere with the target
application by any means other than by using the
memory corruption vulnerability. In particular, this
means that the sandboxed code cannot execute the
smov instruction with controlled arguments. Arbi-
trary code execution is prevented by hardening the
target application with techniques such as CPI [38],
CFI [1], or code randomization [16]. However,
the attacker can target those defenses as well us-
ing the memory corruption vulnerability. We as-
sume memory-corruption mitigations cannot be by-
passed unless the attacker can corrupt the mitiga-
tion’s metadata.

Application
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Run-Time Defenses
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Figure 1: Overview of IMIX.

• Immutable code. The adversary cannot inject new
code or modify existing code, which would allow
her to execute the smov instruction with controlled
arguments. This is enforced by hardening the target
application with the W⊕X memory policy [44, 48].

4 IMIX

As we mentioned in Section 1, application developers
protect their applications ( 1 in Figure 1) using run-time
defenses 2 . Like for applications, the correct func-
tionality of defenses relies on the integrity of their code
and data. A number of existing run-time defenses, like
CPI and CFI, require to keep their data within the pro-
cess of the vulnerable application to avoid a high per-
formance overhead. Thus, the attacker may leverage
a memory-corruption vulnerability in the application to
bypass those defenses [21]. Traditionally, defense de-
velopers enforce the integrity of the (static) code using
W⊕X or execute-only memory, while the integrity of the
data relies on some form in-process memory isolation.
However, existing memory isolation techniques, namely
instrumentation and data hiding, force the defense de-
velopers to choose between high performance overheads
and compromised security. IMIX 3 provides an effi-
cient, secure, hardware-enforced in-process memory iso-
lation mechanism. Data belonging to run-time mitiga-
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tions is allocated in isolated pages, which are marked
with a special access permission. We introduce a new
dedicated instruction, smov 4 , to access this data, while
normal code belonging to the potentially vulnerable ap-
plication is denied access to the isolated pages.
In addition to the smov instruction and the associated
access permissions, IMIX includes a kernel extension 5
and compiler support 6 . The kernel extension enables
protected memory allocation by supporting the special
access permission. IMIX’s compiler integration enables
applications as well as run-time defenses to leverage our
memory isolation through high-level and low-level con-
structs for protected memory allocation and access. This
makes it easy to adopt IMIX without detailed knowledge
of IMIX’s implementation.
In the following, we explain the individual building
blocks of our IMIX framework in detail.

Hardware. For IMIX, we extend two of the CPU’s
main responsibilities, instruction processing and mem-
ory management. We add our smov instruction to the in-
struction set, reusing the logic of regular memory access
instructions, so that the smov instruction has the same
operand types of regular memory-accessing mov instruc-
tions, mov instructions without a memory operand do not
need to be handled. The memory access logic is modified
so that it will generate a fault if 1) an instruction other
than smov is used to access a page protected by IMIX,
or if 2) an smov instruction is used to access a normal
page. Access by normal instructions to normal memory,
and by smov instructions to protected memory, are per-
mitted. If we allowed smov to access normal memory,
attacks on metadata would be possible, e.g., the attacker
could overwrite a pointer to CPI’s metadata with an ad-
dress pointing to an attacker-controlled buffer in normal
memory. Our design ensures instructions intended to op-
erate on secure data cannot receive insecure input.

Kernel. An operating system kernel controls the user-
space execution environment and hardware devices. The
kernel manages virtual memory using page tables that
map the address of each page to the physical page frame
that contains it. Each page is described by a page table
entry, which also contains some metadata, including the
access permissions for that page. A user-space program
can request a change in its access permissions to a page
through a system call.
We extend the kernel to support an additional access per-
mission, which identifies all pages protected by IMIX.
This enables protected memory allocation not only for
statically compiled binaries, but also for code generated
at run time, which has been an attractive target for recent
attacks [23].

Compiler. A compiler makes platform functionality
available as high-level constructs to developers. Its main
objective is to transform source code to executables for
a particular platform. We extend the compiler on both
ends. First, IMIX provides two high-level primitives:
one for allocating protected memory and one for access-
ing it. These memory-protection primitives can either
be used to build mitigations, or to protect sensitive data
directly. IMIX provides optimized interfaces for both
use cases. Mitigations like CPI are implemented as an
LLVM optimization pass that works at the intermediate
representation (IR) level. IMIX provides IR primitives
to use for IR modification. For application developers,
IMIX provides source code annotations: variables with
our annotation will be allocated in protected memory,
and all accesses will be through the smov instruction.

5 Implementation

Figure 2 provides an overview of the components of
IMIX. Developers can build programs with IMIX, using
our extended Clang compiler 1 , which supports annota-
tions for variables that should be allocated in protected
memory and new IR instructions to access the protected
memory. We also modified its back end to support smov
instructions. Programs protected by IMIX mark isolated
pages using the system call mprotect with a special
flag 2 . Therefore, we extended the kernel’s existing
page-level memory protection functionality to support
this flag and mark isolated pages appropriately 4 . User-
space programs access normal memory using regular in-
structions, e.g., mov, while accesses to protected mem-
ory must be performed using the instruction smov 3 .
To support IMIX, the CPU must be modified to support
the smov instruction 5 and must perform the appropri-
ate checks when accessing memory 6 . In the following
we explain each component in detail.

5.1 CPU Extension
As we mentioned in Section 4, every isolated page needs
to be marked with a special flag. The CPU already has
a data structure to store information about every page,
which is called a Page Table Entry (PTE). In addition to
the physical address of every virtual page, a PTE stores
other metadata about the page, including permissions
like writable and executable. Those flags are checked by
the Memory Management Unit (MMU) to prevent unin-
tended accesses. To implement our proof of concept, we
mapped the IMIX protection flag to an ignored bit in the
PTE; specifically, we chose bit 52, as it is the first bit not
reserved, and is normally ignored by the MMU [31].
To enforce hardware protection, the CPU needs to be up-
dated to enforce our access policy: non-smov can only
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Figure 2: Overview of IMIX.

access regular pages, while smov can only access iso-
lated pages. In other cases, the CPU must generate a
fault ( 7 in Figure 2). The implementation of this logic
requires the modification of the x86-64 ISA, which is
challenging without source code access. Thus, we used a
hardware simulator to show the feasibility of our design.
Next, we describe how we extend x86-64 with the help of
Intel’s SAE, and then discuss the necessary modification
to real hardware.

Simulated Hardware. We use Wind River Sim-
ics [64], a full system simulator, in order to simulate a
complete computer which supports IMIX. Yet, Simics
alone is too slow to boot the Linux kernel and test our
kernel extension. Therefore we use the complementary
Intel Simulation and Analysis Engine (SAE) add-on by
Chachmon et al. [11]. Below we will refer to the system
composed by Simics and SAE as simply SAE. SAE sup-
ports emulating an x86 system running a full operating
system with its processes, while allowing various archi-
tectural instrumentations, including the CPU, the mem-
ory, and related hardware such as the memory manage-
ment unit (MMU). This is done using extensions, called
ztools, that may be loaded and unloaded at any time dur-
ing emulation. They are implemented as shared libraries
written in C/C++.
To instrument a simulated system, ztools registers call-
backs for specific hooks either at initialization time or
dynamically. First, we make sure that our ztool is initial-
ized by registering a callback for the initialization hook.
Then, we register a callback that is executed when an
instruction is added to the CPU’s instruction cache. If
either a mov or smov instruction that accesses memory
is found, we register an instruction replacement callback.
Our registered callback handler can replace the instruc-

tion (using a provided C function), or execute the orig-
inal instruction. In this handler, we implement IMIX’s
access logic. First, we check the protection flag of the
memory accessed by the instruction. To identify pro-
tected memory, we look up the related PTE by combining
the virtual address and the base address of the page table
hierarchy linked from the CR3 register. Our ztool then
checks the IMIX page flag we introduced in the PTE.
If a regular instruction attempts to access regular mem-
ory, we execute the original instruction to avoid instruc-
tion cache changes. For smov instructions attempting
to access an isolated page, we first remove the instruc-
tion from the instruction cache, and then execute our
ztool implementation of this instruction. In the remain-
ing cases, namely smov attempting to access regular
memory, and regular instructions attempting to access
isolated pages, we raise a fault.

Real Hardware. Adding IMIX support to a real CPU
would require extending the CPU’s instruction decoder
to make it aware of our smov instruction. smov re-
quires the same logic as the regular mov instruction, so
the existing implementation could be reused. Moreover,
we need to modify the MMU to perform the necessary
checks. Analogously to W⊕X, we check the flag in
the page table entry (PTE) belonging to the virtual ad-
dress, and either permit or deny memory access. Modern
MMUs are divided into three major components: logic
for memory protection and segmentation, the translation
lookaside buffer (TLB) which caches virtual to physical
address mappings, and page-walk logic in case of a cache
miss [49]. Our extension only modifies the first compo-
nent to implement the access policy based on the current
CPU instruction. Other components do not need to be
modified, as we are using an otherwise ignored bit in the
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PTEs. In Section 8 we discuss the feasibility of our pro-
posed modification.

5.2 Operating System Extension

Access restrictions to the isolated pages are enforced by
the hardware, without any involvement from the kernel.
However, the isolated pages need to be marked as such
in the PTEs, which are located in kernel memory. To
support this, we modified a recent version of the Linux
kernel. Specifically, we modified the default kernel for
the Ubuntu 16.04 LTS distribution which is 4.10 at the
time of writing. Similarly to W⊕X, we use page permis-
sions to represent this information. Processes can request
the kernel to mark a page as an isolated page by using
the existing mprotect system call, which is already
used to manage the existing memory access permis-
sions: PROT_READ, PROT_WRITE, and PROT_EXEC.
For IMIX, we add a dedicated PROT_IMIX boolean
flag. The implementation of mprotect sets permis-
sion bits in the PTE according to the supplied protection
modes. Note that once a page is marked as PROT_IMIX
the only way to remove this flag from a page is by un-
mapping it first which will also set the memory to zero.

5.3 Compiler Extension

To provide C/C++ support for IMIX, we modify the
LLVM compiler framework [40]. We chose LLVM over
GCC because the majority of memory-corruption de-
fenses leverage LLVM [16, 57, 66]. We modified the
most recent version of LLVM (version 5.0) and ported
our changes to LLVM 3.3 which is used by CPI [38].
Our modification mainly concerns the intermediate rep-
resentation (IR) to provide access to the smov instruc-
tion to mitigations like CPI [38], and the x86 backend to
emit the instruction. Further, we introduced an attribute
that can be used to protect a single variable by allocat-
ing it in an isolated page, e.g., to protect a cryptographic
secret. Next, we explain each modification in detail.

IR Extension. Run-time defenses are usually imple-
mented as LLVM optimization passes that interact with
and modify LLVM’s intermediate representation. In or-
der to allow those defenses to generate smov instruc-
tions, we extended the IR instructions set. The IR pro-
vides two memory accessors, specifically load and store,
which represent respectively a load instruction from the
memory to a temporary register, and a store instruction
from a temporary register to the memory. Hence, we
created two corresponding IMIX instructions: sload and
sstore, which defense developers can use as a drop-in re-
placement for their regular counterparts.

LLVM IR instructions are implemented as C++ classes
and therefore supports inheritance. We implemented our
IR instructions to as subclasses of their regular counter-
parts in order to reuse the existing translation functional-
ity from LLVM IR to machine code, called lowering in
LLVM parlance.
To allocate memory in the isolated pages, we imple-
mented an LLVM function that can be called from an
optimization pass, which allocates memory at page gran-
ularity using malloc and immediately sets the IMIX
permission using mprotect. A reference to the allo-
cated memory is returned so that IMIX IR instructions
can access the protected memory.

Attribute Support. Data-only attacks are hard to mit-
igate in practice. To give developers an efficient way to
protect sensitive data like cryptographic keys at source
code level, we added a IMIX attribute which can be used
to annotate C/C++ variables which should be allocated
in isolated pages. All instructions accessing those anno-
tated variables will use the IMIX IR instructions instead
of the regular ones. LLVM’s annotate attribute allows
arbitrary annotations to be defined, so we only needed to
provide the logic needed to process our attribute. We
implemented this as an LLVM optimization pass that re-
places regular variable allocations with indexed slots in
a IMIX protected safe region (one per compilation mod-
ule), and changes all accessors accordingly.

Modifications to x86 Back End. In the back end, we
added code needed to process sload and sstore instruc-
tions. In LLVM, the process of lowering IR instructions
to machine code is two-staged. First, the FastEmit mech-
anism is used. It consists of transformation rules explic-
itly coded in C++ that are too complex to be processed
using regular expressions. These are mainly platform-
specific optimizations and workarounds. The mechanism
can be used to either generate machine code directly, or
to assign a rule that should be applied in the next stage.
In the second stage, LLVM applies rule-based lower-
ing using pattern matching. The IR instruction and its
operands are matched against string patterns in LLVM’s
TableGen definitions, which define rules to lower the IR
to the platform-specific machine code. We modified both
stages of the lowering process, similarly to how load and
store are handled.

5.4 Case Study: CPI
To evaluate the impact of our lightweight memory
isolation technique to the performance, we ported Code-
Pointer Integrity (CPI) by Kuznetsov et al. [38] to use
IMIX. CPI uses a safe region in memory to guarantee
integrity of code pointers and prevent code-reuse attacks.
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All code pointers, pointers to pointers, and so on, are
moved to the safe region, so that memory corruption
vulnerabilities cannot be exploited to overwrite them.
Return addresses are protected using a shadow stack.
In contrast to its x86-32 implementation that leverages
segmentation, CPI relies on hiding for x86-64 to protect
the safe region. CPI places the safe region at a random
address and stores this address in a segment, which
is selected using the segment register %gs. During
compilation, CPI’s optimization pass moves every code
pointer and additional metadata about bounds to the safe
region. In order to access the safe region, CPI provides
accessors that use mov instructions with a %gs segment
override, which access the safe region using %gs as the
base address and an offset. These accessors are provided
by a compiler runtime extension which is linked late in
compilation process. Evans et al. show that this CPI
implementation is vulnerable, since the location of the
safe region can be brute-forced [22].

We replaced data hiding with IMIX as the memory iso-
lation technique used to prevent unintended accesses to
CPI’s safe region (including the shadow stack). First, we
changed CPI’s memory allocation function to not only
allocate the safe region, but also set the IMIX protec-
tion flag. Second, we modified the compiler runtime,
which provides access to the safe region, to make use of
our smov instruction. Specifically, we changed the safe
region functions to access memory directly via smov
instructions instead of using register-offset addressing.
This increases security of CPI dramatically. Since IMIX
provides deterministic protection of the safe region, we
do not need to prevent spilling of the safe region base ad-
dress (stored in %gs), which IMIX makes CPI leakage
resilient. Thus, knowing or brute-forcing the memory lo-
cation brings no benefit any more, and prevents attacks
like “Missing the Point(er)” by Evans et al. [22].

6 Security Analysis

The main objective of IMIX is to provide in-process
memory isolation for data in order to make it accessi-
ble only by trusted code. Hence, the goal of an attacker
is to access the isolated data. As IMIX is a hardware ex-
tension, an attacker cannot directly bypass it, i.e., use a
regular memory access instruction to access the isolated
memory. Thus, the attacker relies on creating or reusing
trusted code, or manipulating the data flow to pass mali-
cious values to the trusted code, or access to the configu-
ration interface of IMIX.

Attacks on Trusted Code. As mentioned in our adver-
sary model, IMIX assumes mitigations preventing the

attacker from injecting new code [3], or reusing existing
code [7, 50, 52, 54]. This prevents attackers from inject-
ing smov instructions that are able to access the isolated
data, or reusing trusted code with unchecked arguments,
or exploiting unaligned instructions. This assumption is
fulfilled by existing mitigations: the strict enforcement of
W⊕X [44, 48] prevents the attacker from marking data
as code, or changing existing code. Mitigations, such as
Control-flow Integrity (CFI) [1, 45, 59] and Code-Pointer
Integrity (CPI) [38] prevent the attacker from reusing
trusted code.

Attacks on Data Flow. In general, attacks on the data
flow [12, 19, 23, 28, 29] are hard to prevent since it would
require the ability to distinguish between benign and ma-
licious input data, which generally depends on the con-
text. Therefore, the trusted code must either ensure that
its input data originates from isolated pages protected by
IMIX, or sanitize the data before using it. The former
can be ensured by using the smov instruction to access
the input data as IMIX’s design ensures that the smov
instruction cannot access unprotected memory. The lat-
ter heavily depends on the ability of the defense devel-
oper to correctly block inputs that would allow the at-
tacker to manipulate the data within the protected mem-
ory in a malicious way: IMIX merely provides a primi-
tive to isolate security critical data. Hence, if the devel-
oper fails to sanitize the input data in the trusted code, the
code is vulnerable to data-flow attacks independently of
whether it leverages IMIX or not. In practice, however,
sanitizing inputs correctly requires limited complexity,
e.g., in the case of a shadow stack [18] or CPI’s safe re-
gion [38].

Attacks on Configuration. A common way to bypass
mitigations is to disable them. For example, to bypass
W⊕X, real-world exploits leverage code-reuse attacks to
invoke a system call to mark a data buffer as code before
executing it.
There are two ways for an attacker to re-configure IMIX:
1) leveraging the interface of the operating system to
change memory permissions, or 2) manipulating page ta-
ble entries.
For the first case, we assume that the attacker is able
to manipulate the arguments of a benign system call to
change memory permissions (mprotect() on Linux).
Our design of IMIX’s operating system support prevents
the attacker from re-mapping protected memory to un-
protected memory. Further, before IMIX memory is un-
mapped, the kernel sets the memory to zero to avoid any
form of information disclosure attacks. Similarly, the
kernel initializes memory, which is re-mapped as IMIX
memory, with zeros to prevent the attacker from initializ-
ing memory with malicious values, mapping it as IMIX
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Figure 3: Performance overhead of CPI with segmentation-based memory hiding, and with IMIX.

memory, and then passing it to trusted code. Therefore,
the developer must be aware that the attacker is poten-
tially able to pass a pointer into a zero-filled page as an
input value to trusted code.
For the second case, we assume that the attacker is able
to exploit a memory-corruption vulnerability in the ker-
nel. While the focus of this paper is on how user-mode
defenses can leverage IMIX, our design allows kernel-
based defenses to leverage IMIX as well. Hence, to mit-
igate data-only attacks against the page table [19] exist-
ing defenses [17, 25] can leverage IMIX to ensure that
only trusted code can access the page tables.

7 Performance Evaluation

To evaluate the performance of our approach, we ported
the original implementation of CPI by Kuznetsov et
al. [38] to leverage IMIX to isolate the safe region
and applied it to the SPEC CPU2006 benchmark suite.
Specifically, we executed all C/C++ benchmarks with the
reference workload to measure the performance over-
heads. The SPEC CPU2006 benchmarking suite is com-
prised of CPU-intensive benchmarks that frequently ac-
cess memory, and hence, are well suited to evaluate
our instrumentation. We performed our evaluation us-
ing Ubuntu 14.04 LTS with Linux Kernel version 3.19.0
on an Intel Core i7-6700 CPU in 64-bit mode running at
3.40 GHz with dynamic voltage and frequency scaling
disabled, and 32 GB RAM.

Baseline. First, we measured the performance impact
of the original CPI implementation, which we obtained
from the project website [39]. Despite efforts, we were
unable to execute the CPI-instrumented version of perl-
bench and povray. Using the geometric mean of posi-
tive overheads, we measured a performance overhead of

4.24% (arithmetic mean of 9.05%, Kuznetsov et al. [38]
measured an average performance overhead of 8.4%).
We measured a maximum overhead of 61.49% (gcc),
while a maximum of 44.2% (for omnetpp) was reported
in the original paper.

CPI with IMIX. Next, we evaluated the performance
overhead of IMIX. As hardware emulation turned out to
be too slow for executing the SPEC CPU2006 bench-
marking tests, we instead evaluated IMIX by replac-
ing smov instructions with mov instructions that access
memory directly. We argue that this reflects the actual
costs for smov instructions, because the IMIX permis-
sion check is part of the paging permission check.

During our performance evaluation we made the inter-
esting observation that our IMIX instrumentation comes
with a higher overhead than the baseline. In total,
we measured a performance overhead of 14.70% for
IMIX, which is an increase of 1.94% in comparison
to segmentation-based CPI. In addition, we observed a
maximum overhead of 73.27%, compared to a maximum
of 61.49% for segmentation-based CPI.

We further investigated this counter-intuitive result.
First, we verified with the help of a custom micro-
benchmarks that the access time to a memory buffer
through a segment register is consistently faster than
just dereferencing a general purpose register. Interest-
ingly, it makes no difference whether the base address
of the segment is set to 0 or the base address of the
buffer. Second, we found that the faster access through
segment registers is, at least partially, related to the L2
hardware prefetcher: when we disable it, memory ac-
cesses through a general purpose register are faster than
segment-based accesses (difference in geometric mean is
0.47% in SPEC CPU2006).
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Technique Policy-based Isolation Hardware Enforced Fast Interleaved Access Fails Safe

SFI 3 5 3 5

Segmentation only for x86-32 3 3 3

Memory Hiding 5 5 3 5

Paging / EPT only single-threaded applications 3 5 3

Intel MPK 3 3 3 3

Intel SGX 3 3 5 3

Intel MPX 3 3 3 5

Intel CET only for Shadow Stack 3 3 3

SMOV 3 3 3 3

Table 1: Comparison of memory-isolation techniques. Legend: Policy-based Isolation means that the memory protec-
tion itself cannot be bypassed with an arbitrary memory read-write primitive. Hardware Enforced is self-explanatory.
Fast Interleaved Access refers to the ability to alternately access protected and unprotected memory without additional
performance impact. Fails Safe means that regular (un-instrumented) memory instructions cannot access the protected
memory.

CPI with IMIX (Segment-based Addressing). Sim-
ilarly to a regular mov instruction, the IMIX instruc-
tion allows to access memory through a segment regis-
ter. Unsurprisingly, by adjusting our IMIX-based CPI
instrumentation to use segment register-based addressing
we achieve 0% overhead over CPI. We further compare
IMIX to other memory protection approaches, namely
Intel MPK and Intel MPX, in Section 9.

8 Discussion

On the Feasibility of Our ISA Extension. One of the
main values of any defense in the field of system security
is practicality. Therefore, it comes with no surprise that
existing research often sacrifices security in favor of per-
formance [45, 53, 67], and retrofit existing hardware fea-
tures [6, 16, 18, 41, 58, 63] instead of introducing more
suitable ones. The reason is that in practice it is unlikely
that hardware vendors are going to change their hardware
design and risk compatibility issues with legacy software
in order to strengthen the security and increase the per-
formance of a specific mitigation.
However, we argue that this does not apply to IMIX
for two reasons: 1) IMIX enables strong and ef-
ficient in-process isolation of data which is an in-
evitable requirement of many memory-corruption de-
fenses. 2) IMIX can be implemented by slightly mod-
ifying Intel’s proposal, Control-flow Enforcement Tech-
nology (CET) [33].
As we discussed in Section 2, memory-corruption de-
fenses often reduce the attack surface from potentially
the whole application’s memory to the memory that is
used by the defense itself. With IMIX we provide a
strong and efficient hardware primitive to enforce the

protection of this data which is mitigation-agnostic. By
providing a primitive, which is essential to memory-
corruption defenses, rather than implementing a specific
defense in hardware [33], vendors avoid the risk of a later
bypass [50].
We believe that IMIX can be adopted in real world with
comparatively low additional effort. With CET [33]
Intel provides a specialization of IMIX. Similar to
IMIX, CET requires modifications to the TLB, semantic
changes to the page table, and the introduction of new in-
structions. Contrary to IMIX, CET’s hardware extension
is tailored to isolate the shadow stack of a CFI implemen-
tation [45]. As expected, generalizing CET’s shadow
stack to support arbitrary memory accesses still allows
implementation of an isolated shadow stack [18].

9 Related Work

In the following, we discuss techniques that may be used
to protect memory against unintended access. Table 1
provides an overview of characteristics of these tech-
niques. We explain each of its aspects in detail, and com-
pare them to IMIX.

Software-based Memory Protection. Software-fault
isolation techniques (SFI) [51, 61] allow to create a sep-
arate protected memory region. SFI is implemented by
instrumenting every memory-access instruction such that
the address is masked before the respective instruction is
executed. This ensures that the instrumented instruction
can only access the designated memory segment, how-
ever, this instrumentation also has a significant perfor-
mance impact. Though SFI instruments every load/store
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instruction, invalid memory accesses cannot be detected,
but are instead masked to point to unprotected mem-
ory [37]. ISboxing [20] leverages instruction prefixes of
x86-64 to implicitly mask load and store operations. The
instruction prefix determines whether a memory-access
instruction uses a 32-bit (default case) or 64-bit address.
By ensuring that untrusted code can only use 32-bit ad-
dresses to access memory, protected data can be stored
in memory that can only be addressed with 64-bit ad-
dresses. Yet, this reduces the available address space sig-
nificantly, and allows linked libraries to access protected
memory.
Another way of protecting data against malicious modifi-
cations is to enforce data-flow integrity (DFI) [2, 10, 55].
DFI creates a data-flow graph by means of static anal-
ysis, which is enforced during run time by instrument-
ing memory-access instructions. However, the perfor-
mance overhead of DFI, which e.g. is on average 7% for
WIT [2], prevents it from being used to safeguard pro-
tection secrets of code-reuse mitigations, since it would
further increase the mitigation’s performance overhead.
IMIX can be used for both protecting sensitive data (like
DFI does) and enabling efficient protection of safe re-
gions for control-flow hijacking mitigations.

Retrofitting Existing Memory Protection. Segmen-
tation is a legacy memory-isolation feature on x86-
32 that allows to split the memory into isolated seg-
ments [61, 65]. For memory accesses, the current privi-
lege level is checked against the segment’s required priv-
ilege level directly in hardware. On x86-64 segmenta-
tion registers still exist but access control is no longer
enforced [37]. On the surface, re-enforcing legacy seg-
mentation seems to be an attractive solution, however,
IMIX is easier to implement from a hardware perspec-
tive: segmentation requires arithmetic operations, IMIX
only one check. Moreover, IMIX provides higher flex-
ibility: protected memory does not need to consist of
one contiguous memory region. As segmentation reg-
isters are rarely used by regular applications any more,
they are often used to store base addresses for memory
hiding [6, 38, 41]. Indeed, segmentation-based memory
hiding comes with no performance overhead, however,
unlike IMIX, it does not provide real in-process isolation
and is vulnerable to memory-disclosure attacks [22, 26].
Paging can also be used as well to provide in-process iso-
lation by removing read/write permissions from a page
when executing untrusted code [5]. However, regu-
larly switching between trusted and untrusted code is ex-
pensive because of 1) two added mprotect() system
calls, and 2) the following invalidation of TLB entries
for each of them [60]. Further, this technique is vulnera-
ble to race-condition attacks, i.e., the attacker can access
the protected data from a second thread that runs concur-

rently to the trusted code. IMIX avoids both disadvan-
tages.
A more recent feature introduced with Intel VT-x is Ex-
tended Page Tables (EPT) [32] to implement hardware-
assisted memory virtualization. EPT provide another
layer of indirection for memory accesses that is con-
trolled by the hypervisor but is otherwise conceptually
the same as regular paging. Additionally, VT-x intro-
duces an instruction, vmfunc, that enables fast switches
between EPT mappings. Hence, to isolate memory, the
hypervisor maintains two EPT mappings [16] (regular
and protected memory) and trusted code invokes the
vmfunc instruction instead of mprotect()). How-
ever, this approach suffers from the same disadvantages
as the previous approach which relies on regular paging.

Proposed Memory Isolation Mechanisms. There are
already several academic proposals for memory isola-
tion. HDFI [56] is a fine-grained data isolation mecha-
nism that uses MMU tagging for RISC-V. However, due
to the need of an additional tag table, HDFI needs two
accesses per memory operation. Thus, HDFI leverages
additional hardware units (like a cache) to lower the per-
formance impact. Still, HDFI relies on complex static
analysis for data-flow integrity which does not meet the
requirements for modern JIT-compiled code. IMIX sup-
ports JIT compilation by building on existing function-
ality like mprotect, furthermore, IMIX does not need
any additional static analysis.
CHERI [62] extends a RISC architecture with fine-
grained memory isolation using a set of ISA extensions.
For this, two compartments are introduced, however,
switching costs are comparably high (620 cycles over-
head). In addition, CHERI also relies on intensive static
analysis unsuitable for JIT code.
ILDI [13] is another data isolation approach, but
for ARM. It leverages existing ARM features
(Privileged Access Never, PAN) to create
a safe region for sensitive kernel memory, isolated from
potential kernel exploits. By explicitly granting Load
and Store Unprivileged (LSU) instructions
access to sensitive data, regular accesses (possibly
attacker controlled) are no longer allowed to access the
safe region. However, ILDI imposes a high performance
overhead on the kernel (35.3%). IMIX proposes a gen-
eral approach that can be leveraged by both kernel-space
and user-space mitigations.

Recent Hardware Extensions. Recent Intel CPUs im-
plement a variety of new memory-protection features.
In particular, Memory Protection Extensions (MPX) and
Memory Protection Keys (MPK) can be retrofitted to en-
able in-process memory isolation. Nevertheless, as we
discuss in the following, they are not viable alternatives

USENIX Association 27th USENIX Security Symposium    93



Name CPI+Seg (%) CPI+IMIX (%) CPI+MPK (%) CPI+MPX (%)

400.perlbench - - - -
401.bzip2 0.13 0.44 0.19 132.36
403.gcc 61.49 65.73 2856.48 -
429.mcf -2.08 -4.89 -2.41 203.71
433.milc -0.63 -0.47 -0.45 -6.36
444.namd -0.10 0.66 -0.09 -8.60
445.gobmk 2.55 2.52 32.41 -
447.dealII -2.57 -3.37 - -
450.soplex -3.83 -2.96 -0.74 2.88
453.povray - - - -
456.hmmer -2.17 -2.54 -1.35 15.43
458.sjeng 1.43 1.36 1.39 56.81
462.libquantum -2.32 -2.16 -2.62 106.41
464.h264ref 2.04 4.67 536.02 46.87
470.lbm -2.04 -1.99 -1.94 -9.82
471.omnetpp 42.95 56.62 1444.02 -
473.astar 0.67 0.20 0.70 -1.29
482.sphinx3 -0.99 -0.32 5.52 -0.68
483.xalancbmk 59.23 73.27 1385.67 -

GeoMean 4.24 3.99 12.43 36.86

Table 2: Comparison of memory isolation techniques. CPI+Seg uses memory hiding to protect the safe region, for the
remaining the respective technique is used. Note that entries marked with “-” crashed with CPI applied.

to IMIX as both come with disadvantages that render
them impractical.
The main goal of MPX [31] is to provide hardware-
assisted bounds checking to avoid buffer overflows.
Therefore, the developer specifies bounds using ded-
icated registers (each contains a lower and an upper
bound) that can be checked by newly introduced instruc-
tions. MPX can be retrofitted to enforce memory isola-
tion by defining one bound that divides the address space
in two segments: a regular, and a protected region. Then,
bounds checks are inserted for every memory access in-
struction that is not allowed to access protected mem-
ory [37]. This has two main disadvantages. First, MPX
does not fail safe, i.e., not instrumented instructions (by
a third-party library, for example) can still access the
safe region. Second, instructions that are allowed to ac-
cess protected memory can still access unprotected mem-
ory. Hence, an attacker might be able to redirect mem-
ory accesses of trusted code to attacker-controlled mem-
ory. To avoid such attacks, additional instrumentation
of the trusted code is required, which significantly in-
creases the performance overhead, as depicted in Table 2.
Protecting CPI’s safe region with MPX using the open-
source implementation by Koning et al. [37] results in a
total performance overhead of 36.86% with a maximum
of 203.71% for mcf, which cannot be considered prac-
tical, especially since we were not able to execute the
benchmarks that show the highest overheads across all
techniques. In comparison, IMIX is secure by default,

and enforces strict isolation between protected and un-
protected memory without additional overhead.
Intel’s MPK is a feature to be available in upcoming In-
tel x86-64 processors [27, 34], already available on other
architectures like IA-64 [30], and ARM32 (called mem-
ory domains) [4]. Since IMIX and MPK implement a
similar idea, we also evaluated MPK based on the ap-
proximation given by Koning et al. [37] using the setup
we describe in Section 7.
As shown in Table 2, using MPK to protect the CPI safe
region results in a total performance overhead of 12.43%
with a maximum of 2856.48% for gcc. We identified
the additional instrumentation to switch between trusted
and untrusted code to be the root cause of the additional
overhead. This emphasizes the conceptual differences of
MPK and IMIX. MPK enables many distinct domains
to be present. Reducing these to two possible domains
allows IMIX to be leveraged by mitigations like CPI or
CFI that rely on frequent domain switches. In contrast,
MPK is useful if the application changes domains infre-
quently, i.e., for temporal memory isolation, or to isolate
different threads.
Encryption can also be used to protect memory. For
instance, Intel Total Memory Encryption [35] (Secure
Memory Encryption for AMD [36]) allows to encrypt the
whole memory transparently, protecting it from physical
analysis like cold-boot attacks, but not local memory cor-
ruption attacks [37]. Another encryption feature, AES-
NI [35], reduces overhead associated with encryption
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dramatically, which can be used to encrypt and decrypt
safe regions as needed. Even with hardware encryption
support, solutions like CCFI still induce a performance
overhead of up to 52% [42], and keeping the encryp-
tion key safe requires relying on unused registers and en-
suring that this key is never spilled to memory [14, 37].
IMIX is not prone to register spilling, since it does not
rely on a secret to protect memory.
Trusted Execution Environments like Intel SGX [15] of-
fer strong security guarantees through hardware support,
but require intensive effort to decouple code to be run in
the enclave. SGX can also be used for memory protec-
tion, but only at high performance costs due to overheads
for entering and exiting the enclave.

10 Conclusion

Mitigations against memory-corruption attacks for mod-
ern x86-based computer systems rely on in-process pro-
tection of their code and data. Unfortunately, neither cur-
rent nor planned memory-isolation features of the x86
architecture meet these requirements. As a consequence,
many mitigations rely on information hiding via seg-
mentation, on expensive software-based isolation, or on
retrofitting memory-isolation features that require com-
promises in the design of the mitigation.
With IMIX we design a mitigation-agnostic in-process
memory-isolation feature for data that targets the x86 ar-
chitecture. It provides memory-corruption defenses with
a well-suited isolation primitive to protect their data.
IMIX extends the x86 ISA with an additional memory
permission that can be configured through the page table,
and a new instruction that can only access memory pages
which are isolated through IMIX. We implement a fully-
fledged proof of concept of IMIX that leverages Intel’s
Simulation and Analysis Engine to extend the x86 ISA,
and we extend the Linux kernel and the LLVM compiler
framework to provide interfaces to IMIX. Further, we
enhance Code-pointer Integrity (CPI), an effective de-
fense against code-reuse attacks, using IMIX to protect
CPI’s safe region.
Our evaluation shows that defenses, like CPI, greatly
benefit from IMIX in terms of security without addi-
tional performance overhead. We argue that the adop-
tion of IMIX is possible by adjusting the design of In-
tel’s Control-flow Enforcement Technology (CET). Fi-
nally, IMIX provides a solution that can serve as a build-
ing block for forthcoming defenses to tackle challenging
problems, such as data-oriented attacks.
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