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Abstract

The use of hidden communication methods by malware
families skyrocketed in the last two years. Ransomware
like Locky, Cerber or CryLocker, but also banking tro-
jans like Zberp or ZeusVM, use image files to hide their
tracks. Additionally, malware employed for targeted at-
tacks has been using similar techniques for many years.
The DuQu and Hammertoss families, for instance, use
the popular JPEG file format to clandestinely exchange
messages. Using these techniques, they easily bypass
systems designed to protect sensitive networks against
them. In this paper, we show that these methods result
in structural changes to the respective files. Thus, in-
fections with these malware families can be detected by
identifying image files with an unusual structure. We de-
veloped a structural anomaly detection approach that is
based on this insight. In our evaluation, SAD THUG
achieves a mean true positive ratio of 99.24% for JPEG
files using 10 different embedding methods while main-
taining a mean true negative ratio of 99.323%. For PNG
files, the latter number drops slightly to 98.88% but the
mean true positive ratio improves to 99.318%. We only
rely on the fact that these methods change the structure
of their cover file. Thus, as we show in this paper, our ap-
proach is not limited to detecting a particular set of mal-
ware information hiding methods but can detect virtually
any method that changes the structure of a container file.

1 Introduction

Malware infections are, and remain, a constant threat to
computer users worldwide. For the second quarter of
2016, Microsoft reports that 21.2% of the systems that
are running their Windows operating and are configured
to share encounters with the company encountered mal-
ware at least once, up from 14.8% in the year before.1

Victims of malware may be private individuals, or small
businesses that e.g. lose money or files due to infec-

tions with a banking trojan or ransomware. Or they may
be large corporations, public institutions like the Na-
tional Health Service in the United Kingdom, which was
severely affected by the WannaCry ransomware, or even
political entities such as the Democratic National Com-
mittee (DNC) in the United States, which was attacked
by the group associated with the Hammertoss malware
[23, 9].

Practically all malware uses the Internet to establish
a command and control (C&C) channel with its au-
thors. For instance, banking trojans upload credentials
harvested from the infected machine. Similarly, mal-
ware used in targeted attacks exfiltrates passwords, doc-
uments, or other sensitive information or retrieves new
commands from its operator. Network operators on the
other hand seek to detect or prevent malware communi-
cations to protect their systems. Application level gate-
ways are important tools to these ends. However, in a
recent study Gugelmann et al. [27] were able to bypass
all three tested systems simply by base64 encoding data.
With respect to attempts to establish a covert channel,
which includes the methods discussed in this paper, they
point out that no product even claims to be able to detect
them.

Consequently, the use of steganography, the science
of hiding even the fact that communicating is taking
place, by malware has surged in the last two years
[52, 38, 39, 20, 53]. More particularly, malware used
in targeted attacks like DuQu [14], Hammertoss [23] or
Tropic Trooper [8] has been hiding data in image files for
many years. General purpose malware like the ZeusVM
[59] and Zberp [2] banking trojans followed suit. How-
ever, most of the recent surge in the use of steganogra-
phy may be attributed to exploit kits. These kits bundle
attacks against common web browsers and are leased to
other malware authors to help them distribute their soft-
ware [25, 41].

Significant resources were invested in research for de-
tecting steganography exploiting compressed image data
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[48, 11, 12, 21]. However, most malware families, in-
cluding those used in targeted attacks, sidestep these ef-
forts by hiding their data not in the image data itself but
in the container file that is used to deliver it. Until now,
only Stegdetect [48] implements methods that can de-
tect specific attacks of this kind. However, it is limited
to JPEG files and can effectively only detect variations of
one particular method. Also, when we employed Stegde-
tect to analyze a realistic data set, it caused a significant
number of false positives, rendering it unfit for practical
use.

In this paper we introduce SAD THUG, or Struc-
tual Anomaly Detection for Transmissions of High-value
information Using Graphics, a machine-learning based
anomaly detection approach to uncover malware that
modifies the structure of image files. While technically
our approach can be used with any structured file format,
for this work we focused on the two image file formats
which are most widely used on the Internet and also most
frequently exploited by malware, JPEG and PNG. For
both formats, SAD THUG achieves exceptional accu-
racy. We also show that it can detect both known and un-
known methods, so long as they cause significant anoma-
lies in the structure of the image files they use as a cover
medium.

Our contributions to the state of the art are as follows:

• In contrast to previous work for detecting struc-
tural anomalies in JPEG files, our approach uses a
learned model and achieves near perfect results for
a wide range of information hiding methods.

• Our approach is not limited to a particular file for-
mat and is the only approach with the demonstrated
capability of detecting structural anomalies in PNG
files.

• SAD THUG achieves a very low false positive ratio
for JPEG files and a low ratio for PNG files.

• Our findings are backed by an comprehensive eval-
uation using 270,000 JPEG files and 33,000 PNG
files along with additional files used by live mal-
ware.

The remainder of this paper is organized as follows.
First, we briefly define the usage scenario for our ap-
proach. Then in section 3, we describe the JPEG and
PNG file formats, methods for structural information
hiding, and how they are abused by a wide range of mal-
ware families. We then introduce a small set of pre-
viously unpublished structural embedding methods that
complement the methods currently used by malware.
With this background, we introduce our detection ap-
proach in section 5, and describe our evaluation and re-
sults in section 6. Before contrasting our approach with

previous work in the field (section 8), we briefly describe
its inherent limitations. Finally, we draw our conclusions
and show avenues for future work in section 9.

2 Threat Model

Companies and organizations, in particular those that
handle sensitive data, use network separation to contain
the effect of malware infections and other attacks. On
the other hand, fully disconnected, or air-gapped, net-
works are often not an option. In these cases, most orga-
nizations only allow communications to take place using
email or HTTP through a proxy server. Here, the proxy
server doubles as an application level gateway (ALG)
that only allows communication to take place that ad-
heres to the HTTP standard.

However, malware authors adapted to these precau-
tions. Instead of attacking systems directly, they use
email and HTTP to attack their victims. Spear fishing
email is often and effectively used in targeted attacks
[10, 55, 28, 17], and additionally, exploit kits [25, 41]
or collections of attacks against web browsers and their
plugins gained significant popularity as a tool for infect-
ing end user systems. Finally, practically all malware
families use the HTTP(S) protocol for their C&C com-
munications, allowing them to simply use their victim’s
HTTP proxy servers.

Hence, organizations started adopting more advanced
ALGs, often referred to as web application firewalls
(WAFs). WAFs implement ancillary security features
like payload signatures to prevent malicious communica-
tions through them. Additionally, many ALGs execute a
man-in-the-middle attack against TLS/SSL connections
to prevent unwanted communication from taking place
under a simple layer of off-the-shelf cryptography. How-
ever, malware authors once again adjusted to the new sit-
uation by more elaborately hiding their communications.
Since they still almost exclusively use the HTTP proto-
col, WAFs remain in the right place to detect or prevent
their communications. Yet they are increasingly unable
to do so. A study covering three commercial WAFs [27]
showed that none of them was able to detect the exfil-
tration of sensitive data once that data was base64 en-
coded. The authors also pointed out that they were not
aware of any product that claims to be able to detect ad-
vanced techniques like establishing a covert channel us-
ing messages hidden in image files. Our work provides
an important cornerstone for closing this gap.

Figure 1 depicts the simplified structure of a partially
segmented network. On the left side of the figure, client
systems reside in a protected network – including a com-
promised system, as indicated by a warning sign. The
systems in this network have no direct access to untrusted
networks but they may communicate with an email and
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Protected Network Demilitarized Zone Untrusted Networks

Figure 1: Schematics of a partially segmented network. Icons: Tango Project.

HTTP proxy server residing in the organization’s demil-
itarized zone. These in turn have access to other, un-
trusted networks, e.g. the Internet. To communicate with
another system under the attacker’s control in those net-
works, again indicated by a warning sign, the attacker
has to exploit the servers in the demilitarized zone.

For the purposes of this paper, we define an attacker as
an entity that has control over two systems. One system
resides in a segmented network. The attacker wants to
establish a communication channel between this system
and another system outside that network that allows it to
transfer significant amounts of data between them. How-
ever, all communications have to traverse an uncompro-
mised ALG. The ALG, on the other hand, has to distin-
guish between benign and malicious data exchanged be-
tween systems inside and outside a given network with
no advance knowledge on which particular systems or
data may be malicious or not.

We are aware of 40 malware families, including four
proof-of-concepts, that use various techniques to hide
their C&C communications. 34 families exploit im-
ages for this purpose. There are two facts supporting
this choice, in particular with regard to WWW traffic.
First, compressed images primarily consist of high en-
tropy data that is difficult to distinguish from encrypted
data. Second, viewing a single web page usually re-
quires downloading dozens, sometimes well above one
hundred, image files. Hence, attackers can hide their
communications among a large volume of benign data
transfers.

The malware families exploiting images can further be
subdivided into two evenly sized groups. The first half
hides their messages in the image data – the detection
of which has been covered by an extensive number of
research papers. The second half however exploits the
structure of the corresponding file – an approach that has
received little to no attention so far despite being used
by high profile malware like DuQu [14] or Hammertoss
[23]. Therefore, our work focuses on the detection of

methods falling into the second category.

3 Background

In this section, we first briefly introduce the file formats
most widely exploited by malware for hiding their com-
munications, JPEG and PNG. We then summarize the
fundamental structural embedding methods before point-
ing out how different malware families implement these
approaches in practice.

3.1 JPEG File Structure

The JPEG File Interchange Format (JFIF) [31] and Ex-
changeable Image File Format (Exif) [19] are both con-
tainers for JPEG compressed image data. Unless we
specifically need to explain a detail with respect to one
of these formats, we will simply refer to a “JPEG file”,
assuming that the data is stored in either one of them.
For simplicity, and like most decoders for JPEG files,
for the remainder of this paper we do not distinguish be-
tween the segments of the container format and those that
syntactically belong to the JPEG compressed data except
that we introduce them in separate sections below.

3.1.1 JPEG Container Formats

Both JFIF and Exif files borrow from the JPEG data for-
mat they are designed to contain. They consist of a se-
ries of segments, each starting with a two byte “marker”
code. The code indicates the type of a given segment and
is sometimes followed by a two byte length field. Both
files begin with a “start of image” (SOI) marker, and an
“end of image” marker indicates the end of the image
data.

There are 16 codes that indicate an application-
specific or “APPn” segment follows where n is a num-
ber between 0 and 15. These segments start with a zero-
terminated ASCII string to identify the nature of their
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content. Somewhat contradictory to the marker’s desig-
nation, the JFIF standard requires that the SOI marker
is followed by an “APP0” marker with identifier “JFIF”
that contains mandatory meta data. Similarly, Exif files
start with an “APP1: Exif” segment that also contains
meta data on the image. In contrast to the JFIF stan-
dard, Exif does discuss the possibility of encountering
additional data behind the end of image marker, and rec-
ommends that such data should be ignored.

3.1.2 JPEG Data Format

The JPEG compression algorithms’s [30] core depends
on the block-wise transformation of an input image’s
color channels into frequency components. It achieves
its lossy data reduction by dividing the respective coeffi-
cients using a quantization table, allowing users or their
applications to choose a trade off between the quality and
file size achieved. The resulting data is stored in seg-
ments, each of which starts with a two byte marker indi-
cating the segment’s type. Most but not all of these seg-
ments also include a two byte length field, limiting their
size to 65,535 bytes. Furthermore, most segments con-
tain or consist of a header indicating how the following
data should be interpreted. While some obvious restric-
tions exist, e.g. quantization tables must occur before the
encoded image data that refers to them, the JPEG stan-
dard is generally permissive with respect to the order of
segments.

3.2 PNG File Structure

The Portable Network Graphics (PNG) standard was
written partly due to the realization that the earlier
Graphics Interchange Format (GIF) standard relied on
a patented compression algorithm. It provides lossless
compression for bitmap images with a 24 bit color space
and optional alpha channel. PNG files start with a fixed
header followed by a variable number of segments and
end with an “IEND” segment. Each segment starts with
a four byte payload length field followed by four ASCII
letters indicating its type, the optional payload and finally
a checksum. The case of each letter in the type identifier
indicates some properties of the segment, e.g. an upper
case first letter indicates that the segment is “critical” and
the decoder must be able to interpret it. Technically, the
standard only mandates that the file header is followed
by an “IHDR”, which has a fixed structure and indicates
the dimensions and other basic properties of the image,
and the closing “IEND” segment.

3.3 Structural Embedding Methods

In this section, we briefly describe the basic methods for
hiding data exploiting the structure of container file for-
mats. As we will see below, the methods actively used
by current malware are variations of these approaches.
Figure 2 shows a generic structured container file format
without hidden data as well as with data embedded using
the three methods described below.
Append This approach simply appends the stegano-
graphic payload at the end of the cover file. Thus, the
structure of the cover file remains intact but it is followed
by additional data.
Byte Stuffing File containers often allow the length of
a segment to be specified even if it is already implied by
the segment’s type or header. While the resulting files are
not strictly standard-compliant, most parsers only read
the expected data from the segment and ignore the addi-
tional bytes that follow. Therefore, attackers may expect
that their file is accepted as legitimate by most decoders.
Segment Injection Finally, container file formats like
JPEG and PNG permit the addition of segments that are
not used in the decoding process. For instance, comment
segments allow storing data for informational purposes,
e.g. to indicate which program was used to modify the
file, but have no influence on the decoded data. Hence,
attackers can add such segments without risk of losing
compatibility and with little risk of discovery.

3.4 Structural Embedding Methods Used
by Malware

In this section, we briefly introduce the structural em-
bedding methods used by eleven live malware families,
grouped by the file format they exploit. For reference, we
included their basic properties on the left half of table 1
in section 6.

3.4.1 JPEG-based Methods

Cerber The Cerber malware [5] transfers a malware bi-
nary by appending it to a JPEG file. Before appending
the file, it is encrypted by simply XORing the binary with
a single constant byte.
DuQu, DuQu 2.0 The DuQu malware [15, 14] exe-
cutable contains a simple JPEG file. To exfiltrate screen-
shots and process lists gathered from the infected system,
it bzips and encrypts the data using the AES cipher. The
encrypted data is then appended to the JPEG file and sent
to the C&C server.
Hammertoss [23] uses the append method to deliver
configurations and commands to infected systems. Here,
the attackers use a JPEG file of their liking and then ap-
pend the RC4-encrypted message to the end of that file.
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File Header Meta-Data
Decoder Info

File Footer

(a) Without embedding

File Header Meta-Data
Decoder Info

File Footer
Appended Data

(b) Append

File Header Meta-Data
Decoder Info

File Footer

Stuffed Data

(c) Byte Stuffing

File Header Meta-Data
Decoder Info

File Footer
Comment Injected Data

(d) Segment Injection

Figure 2: Examples for a structured container file without and with data embedded using different methods.

Microcin The Microcin malware [16] retrieves JPEG
files that contain additional executable modules. While
it uses the append paradigm, it first adds the sequence
ABCD followed by a small header and finally the en-
crypted payload.
SyncCrypt Once the SyncCrypt ransomware’s [6] ini-
tial infection is successful, it downloads a JPEG file.
From the JPEG file, it extracts a ZIP file that, along with
an HTML and PNG image file, contains the malware’s
executable. The file is hidden simply by appending it to
a given cover file.
Tropic Trooper The Tropic Tropper malware [8] uses
the append approach in conjunction with a JPEG file to
deliver a malware binary to an infected system.
Zberp The Zberp malware is a hybrid built from the Car-
berp and ZeusVM banking trojans [2]. It uses ZeusVM’s
method described to transfer configurations, which we
describe below.
ZeusVM The ZeusVM banking trojan [51] uses a vari-
ation of the segment injection approach to hide the con-
figuration and web-inject data provided to the infected
systems. It injects a comment segment into a JPEG file
but sets the length header field for that segment to 16,144
regardless of the length of the actual payload.

3.4.2 PNG-based Methods

Brazilian EK An unnamed Brazilian exploit kit [37]
uses a simple yet effective method to deliver its payload
to the infected users. It appends an XOR-encrypted mal-
ware executable to an otherwise inconspicuous PNG file.
CryLocker The CryLocker ransomware [34] uses a
variation of the byte stuffing method. It creates a file
that consists of a PNG file header and the mandatory
IHDR segment only. However, it injects information on
the compromised system into the IHDR segment. While
the resulting file is not compliant with the PNG stan-
dard, CryLocker successfully used the imgur.com pic-
ture sharing platform for sending information to its cre-
ators.
DNSChanger The DNSChanger exploit kit [3] hides ad-
ditional modules used to attack home routers in a com-

ment segment injected into a PNG cover file.

3.4.3 Discussion

While most malware uses variations of the append
paradigm, we have seen a diverse set of approaches for
structurally hiding data in image files. In comparison to
image data-based approaches, these methods can be im-
plemented straightforwardly. However, there is a more
important while less obvious property of these methods
that makes them even more attractive. Image data-based
methods can only embed a limited number of bits be-
fore their manipulation becomes obvious and even when
that is acceptable, the total size of the image poses an in-
surmountable limit for them. Structural embeddings on
the other hand generally not only do not affect the ren-
dered image but also allow the transfer of messages of
arbitrary sizes. Even where some limits apply, e.g. the
maximum segment size when injecting a segment like
DNSChanger, this can easily be overcome by distributing
the message over several segments. Thus, in principle,
structural embedding methods could be used to exfiltrate
terabytes of data in a single file transfer.

4 Proposed Embedding Methods

In this section, we propose a small set of new embed-
ding methods that exploit the file structure of JPEG or
PNG files. We used the identify command from the
ImageMagick [29] suite to establish the fact that only the
pHYs Byte Stuffing method triggers a warning during the
decoding. Using a regular image viewer, we also verified
that none of these methods caused any visual changes to
the encoded images.

4.1 JPEG-based Methods

APP0 Byte Stuffing For this method, we exploit the
fact that the structure of the mandatory APP0: JFIF seg-
ment in JFIF files is well-defined. Since the segment’s
length is nevertheless indicated by a length field, we can
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simply append data after the original payload of the seg-
ment and then adjust the length field accordingly.

APP1: Comment Injection APP markers are de-
signed to be used for application specific data. Hence,
they start with a null-terminated ASCII string that indi-
cates the nature of the data in the segment and parsers are
supposed to ignore data they do not understand. Here, we
simply chose the APP1 marker with identifier Comment
because it should cause the least suspicion.

4.2 PNG-based Methods

pHYs Byte Stuffing The PNG standard contains a
number of optional segments that usually have no effect
on the decoded image. From these segments, we arbi-
trarily selected the pHYs segment, which indicates the
physical scale of the image. Since it has a fixed struc-
ture, we can apply the byte stuffing paradigm and simply
add additional data to an existing pHYs segment or inject
a stuffed segment when the cover file does not contain a
pHYs segment yet.

aaAa Injection The PNG standard uses a four ASCII
letter code to determine the type of a segment and several
other of its properties. A code starting with two lower
case letters is designated as ancillary, non-publicly reg-
istered. The third letter is supposed to always be upper
case and by using a lower case forth letter, we indicate
that the segment may be copied by a decoder that does
not recognize it. Besides these restrictions, we should
only make sure that our new segment type is not used by
any widely used application. For simplicity, we simply
chose aaAa, which satisfies all of these criteria.

5 The SAD THUG Approach

Our approach consists of two main phases, a training
phase for building a formal model and a classification
phase to check whether files correspond to that model.
Since this model is based on empirical data, it represents
how a given standard is implemented rather than how it
is specified.

To build our model or to classify files against it, we
first decompose each given file into a sequence of sym-
bols describing the file’s segments. This process is
sketched in section 5.1. We then describe how we model
the knowledge obtained during the training phase, which
is described in section 5.3. Finally, we describe how we
use the trained model to determine whether a given file
is anomalous with respect to our training data set or not.

5.1 File Decomposition

For both training and detection, we first decompose each
given file into a sequence s = s0, ...,sn−1 of segments.
Generally, such a sequence can be obtained trivially and
at negligible cost by sequentially parsing the file. Given
a file type T , ST refers to the set of all segments for that
type. Correspondingly, the alphabet ΣT includes all seg-
ment types that occur in files of that type. We use `(si)
to refer to the length of segment si.

While the length of a segment is clearly defined, i.e.
the count of bytes in the file until either the next seg-
ment or the end of the file is encountered, there is some
ambiguity with respect to the type of a segment. Most
segments start with a header or byte sequence that indi-
cates their type. Often, their payload starts with another
header that is needed to correctly interpret the segment’s
payload. Although the segment type is defined by the
outer header, the inner header may have significant im-
pact on how the segment is interpreted. Thus, we suggest
identifying subtypes based on these inner headers where
appropriate. These subtypes will be treated as fully sep-
arate types in all respects.

For instance, in section 3.1, we introduced the JPEG
file format’s APP segments. They use the same segment
type indicator but are supposed to start with a string indi-
cating the software using the given segment, i.e. the pur-
pose of a segment or even whether it should be ignored
completely by most decoders can only be determined by
interpreting this inner header. Hence, segments with dif-
ferent inner headers are written and read for different
purposes and should thus be assigned different subtypes.

Our prototype parses PNG or JPEG files. For both
file types, the length of a segment corresponds to the
length of the encoded segment in a given file, as ex-
plained above. When data is encountered following a
valid segment that cannot be decoded, it is stored as a
residual data segment encompassing all bytes up to the
end of the file. To determine the type of a segment in
a PNG file, our parser simply uses the segment names
described in section 3.2. However, when parsing JPEG
files, it introduces subtypes for various segment types as
illustrated for APP segments above.

Figure 3 a) shows a simplified decomposed Exif file.
In the figure, each segment corresponds to a box where a
smaller grey number on the bottom right of each box in-
dicates the length of the respective segment in the parsed
file. It starts with a start-of-image segment on the left,
followed by an APP1 marker and two quantization ta-
bles. They are followed by a large scan segment, which
contains the encoded image data. The file ends with an
end-of-image marker, as indicated on the right hand side
of fig. 3 a).
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SOI APP1 DQT0 DQT1 Scan EOI
2 50 69 69 247027 2

(a) A simplified, decomposed Exif file

ScanAPP0SOI EOIDQT0HEAD

(b) Automaton after learning a simplified JFIF file

ScanAPP0SOI EOIDQT0

DQT1APP1

HEAD

(c) The automaton from b) after learning a simplified Exif file

Figure 3: Simplified data structures used by SAD THUG.

5.2 Model
For each given file, we want to determine whether its
structure is reasonably close to the structure of benign
files observed during a training phase. We character-
ize the entirety of benign file structures as a formal lan-
guage. Thus, each decomposed image corresponds to a
sequence of symbols and our core problem is to deter-
mine whether a given sequence is a word in that lan-
guage. To achieve this, during the training phase we
build a discrete finite automaton that approximates this
language based on the training samples. In the classifi-
cation phase, we check whether a given decomposed file
corresponds to a word in the language described by that
automaton.

More formally, for each file type T we build a directed
graph GT = (V,v0,ΣT ,E,F,γ) with a set of vertices V , a
designated vertex v0, corresponding to the head of a file,
the alphabet of segment types ΣT for the given file type,
directed edges E between elements of V and a set of ver-
tices F corresponding to the last segments in the training
files. Additionally, γ maps an edge to its annotations.

In our automaton, an edge v→ v′ ∈ E indicates that
in the training data set, two segments corresponding to v
and v′, were observed at least once in that order. When
the segment corresponding to v′ has a fixed length, we
use the annotations to store how often this transition was
observed during training. For variable length segments
however, we store all observed lengths. This allows us
to derive a profile for the lengths expected in the context
defined by the given edge. In the classification phase, we
use these annotations to enforce additional constraints on
the inspected files.

5.3 Training Phase
To train our classifier, we build the model described

in section 5.2 that reflects the segments observed in the
training set, including their observed order and length.
Figure 4 shows the algorithm for building the respec-
tive automaton. It starts with a set of decomposed train-
ing files A and initializes an empty automaton GT =

Require: A {Set of decomposed training files}
σ : ST →V ′ {Returns vertex corresponding to given segment’s type}

V ←{v0} {Vertices}
E←{} {Edges}
F ← /0 {Final states}
γ : E→ N∗ {Annotations}
for s in A do

call train_with_file (s)
return (V,v0,Σ,E,F,γ) {Trained automaton with annotations}

method train_with_file (s)
v← v0 {Start with the HEAD state}
for si in s = s0, ...,sn−1 do

v′← σ(si)
V ←V ∪{v′} {Add vertex, if missing}
E← E ∪{(v,si)→ v′} {Add transition}
if `(si) is fixed then

γ(v,v′)← γ(v,v′)+1
else

γ(v,v′)← γ(v,v′)_ `(si)
v← v′

F = F ∪{v} {Add current state to final states}

Figure 4: Training algorithm

(V,v0,ΣT ,E,F,γ). Processing each image individually,
as described by method train_with_file, the automa-
ton is constructed and, once all files have been processed,
returned. The automaton can then be used in the classifi-
cation phase to classify previously unobserved files.

In each iteration of train_with_file, we start with
the predecessor variable v pointing to a virtual HEAD state
that represents the beginning of the file. For each ob-
served segment, we determine the corresponding vertex
v′ and add it to the set of vertices V in the automaton if
necessary. Also, we ensure that the automaton contains
an edge e ∈ E from v′s predecessor v to that vertex. Fi-
nally, we update the annotations γ(e) for that edge. If
the segment’s length is fixed, we increment the annota-
tion for that edge by one, assuming the annotations were
initialized to 0. For variable length segments, the anno-
tations were initialized to an empty tuple and we append
the observed length to the edge’s annotation. Finally, we
set v′ to be the next predecessor v and process the next
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Require: (V,v0,ΣT ,E,F,γ) {Trained automaton with annotations}
Require: α {Length sensitivity parameter}
Require: τ {Confirmation threshold}
Require: s {Decomposed image}

v← v0
for si in s = s0, ...,sn−1 do

v′← σ(si)
if not is_acceptable_transition(v,si,v′) then

return anomaly
v← v′

if not v ∈ F then
return anomaly

else
return normal

method is_acceptable_transition (v,si,v′)
if not (v→ v′) ∈ E then

return false
if `(si) is fixed then

if not γ(v,v′)≥ τ then
return false

else
C = {x‖x ∈ γ(v,v′)∧ (|x− `(si)| ≤ d`(si) ·αe}
if not |C| ≥ τ then

return false
return true

Figure 5: Classification algorithm

segment.

After all segments are processed, v contains the ver-
tex corresponding to the last processed segment. Hence,
we add this vertex to the set of legitimate final states F .
When this procedure has been completed for all individ-
ual files, we return the resulting automaton.

Figure 3 b) shows an automaton after training on a
simplified JFIF file while fig. 3 c) shows the same au-
tomaton after learning the simplified Exif file depicted in
fig. 3 a). Here, the added vertices and edges are high-
lighted in green and we omit lengths in b) and c). Both
files start with a fixed length SOI marker, so in the first
step, the annotation for the edge from the HEAD state
to the respective vertex is incremented. However, in the
Exif file, it is followed by an APP1 rather than an APP0
marker and the corresponding vertex and an edge to it
are added. The automaton already contains a vertex cor-
responding to the DQT0 segment following in the file
and hence we only need to add another edge to process
it. That segment however is followed by a previously
unobserved DQT1 segment. Thus, again a new vertex
and an edge from the DQT0 to the new DQT1 vertex
are added. From there, an edge to the existing Scan ver-
tex is added, reflecting the sequence of segments in the
Exif file. Since – like in the JFIF file the automaton was
trained with – the last segment is an EOI segment behind
the Scan segment, the respective final transition only up-
dates the automaton’s annotations.

5.4 Classification Phase

Once the finite-state automaton has been built using the
procedure described above, we enter the classification
phase. Here, we treat each file as a sequence of symbols
that are either accepted or rejected as words in a language
of legitimate files of that type. This process can be tuned
by adjusting the two parameters τ and α . τ is the num-
ber of times a transition has to have been observed dur-
ing training before we accept that transition in the clas-
sification phase. Obviously, with τ set to 1, we accept
any transition ever observed during the training phase.
As we increase τ , our classifier becomes more restrictive
but also more robust against coincidental anomalies in
the training data or deliberate attempts to manipulate it
during the training phase.

For transitions to a variable length segment si, we only
consider those observations that are within a reasonable
range from that segment’s length, determined by our pa-
rameter α . More specifically, we calculate the range by
taking the ceiling of multiplying α with the given seg-
ment’s length: dα · `(si)e. Figure 6 illustrates this con-
cept. It shows the absolute frequency of sizes for the
JPEG DC0 huffman table that lie between 0 and 100. A
green line indicates an observation of length 33. With
α set to 0.1, this corresponds to a range of 4, i.e. the
area highlighted in green in fig. 6. Our training data con-
tains many observations within this range, so we accept
the observation as legitimate. As another example, take
the red line at 70 in the figure. Its larger absolute value
results in a significantly larger range as well. However,
as the area highlighted in red shows, there are few ob-
servations in this range, so – depending on the configu-
ration – our approach will classify this observation as an
anomaly.

Figure 5 shows the full classification algorithm. It re-
quires a trained automaton, the two parameters τ and α

and finally a decomposed image as inputs. The result re-
turned is the classification for the given file which may
be “anomaly”, if the file is considered to be malicious, or
“normal” otherwise.

Like in the training algorithm, decomposed files are
processed segment by segment. As sketched above,
the main task is to identify whether individual transi-
tions occurred in the training phase – taking into account
our parameters τ and α . This is handled by method
is_acceptable_transition in fig. 5. Here, we first
check whether a transition exists from the previous ver-
tex to a vertex that represents the current segment. If that
segment has not been observed during the training phase
or not been observed to follow the previous segment, the
check fails and we consider the file to be anomalous.
Otherwise, we verify whether the transition’s annotations
satisfy the constraints imposed by our parameters τ and
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Figure 6: The length of JPEG huffman table segments in bytes (excerpt).

α . If the segment’s size is fixed, we check whether the
stored observation count reaches or exceeds the desired
threshold τ . For variable length segments, we first de-
termine the observed lengths that were within dα · `(si)e
bytes from si’s length `(si). We then check whether they
exceed our threshold τ and reject the image, if that is not
the case. Given that all observed transitions were suc-
cessfully validated, we only need to check whether the
vertex corresponding to the last segment is also a final
state in our trained automaton. If and only if that is the
case, we accept the image as normal with respect to our
training set.

6 Evaluation

We evaluated our approach using a large body of JPEG
and PNG files with embeddings from ten different mal-
ware families. The respective data sets are derived from
a total of 270,000 JPEG and 33,000 PNG files down-
loaded from popular websites. The same data set is also
used for training and to determine our approach’s false
positive ratio. Given the design of our experiment and
the size of our data sets, we believe that the results pre-
sented here closely resemble those achieved in a real en-
vironment.

In this section, we thus first describe the general de-
sign of our experiment, before discussing the details of
our data sets. Section 6.3 describes how we obtained a
meaningful configuration for our approach. We then pro-
vide an overview to Stegdetect, which we use as a bench-
mark. Finally, in section 6.5, we describe the results of
our evaluation for both approaches.

6.1 Experiment Design
We conduct a ten-fold cross-validation on a large data
set of 270,000 JPEG and 33,000 PNG files, downloaded
from the Internet as described in section 6.2.1, to verify

the accuracy and effectiveness of our approach. In each
iteration, we use nine tenths of each data set as training
data. The remaining data is further subdivided to con-
struct realistic data sets using a diverse set of embedding
methods. We use them – along with additional data sets
– as test sets for our evaluation.

As a consistent measure for the quality of the detec-
tion, we use the true classification ratio. This metric
can be applied on both files without and with a stegano-
graphic payload. For the former files, it corresponds to
the fraction of the files that were classified as benign.
Files that contain an embedding, on the other hand, must
be classified as malicious to contribute to the respective
true classification ratio. Thus, a value of 1 indicates a
perfect result for the given data set while a value of 0
shows that the approach is not at all able to correctly clas-
sify items in the respective subgroup.

6.2 Data Sets
6.2.1 Base Data Set

We obtained a large data set closely resembling a set of
images retrieved by average users browsing the Internet.
To do so, we determined the top 25 websites according
to Alexa [7] but after replacing semantic duplicates with
a single domain name. For instance, google.co.in,
google.co.jp and google.com all redirect to the same
website, based on your assumed locality and were thus
were replaced by a single instance of google.com in
our list. We then recursively crawled this pruned list but
stopped the recursion once a non-image resource was re-
trieved from a third-party domain. Many professionally
operated websites serve static resources under a differ-
ent domain name and thus without this exemption many
images that were part of a website would not be loaded
by our simulated Internet user. Through this process,
we obtained a total of 271,968 JPEG and 33,651 PNG
files. We removed randomly selected files from these sets
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to trim them to 270,000 JPEG and 33,000 PNG files.
This facilitates creating evenly-sized groups from them,
as discussed below. Note that our unbiased crawling re-
turned more than 8 times as many JPEG than PNG files,
reflecting the popularity of the two file formats.

Since we obtained these files from third parties, we
cannot completely rule out the possibility that they do
in fact contain hidden messages. However, the sites
we crawled are professionally run by respectable oper-
ators, so we assume that they do not deliberately provide
malicious image files. On the other hand, the sites we
crawled may allow users to upload content or reference
user-uploaded content on third party websites and some
users may decide to abuse their functionality to upload
files with steganographic content. Since we are crawling
popular websites with a large user base only, it is safe to
assume that only a diminishing fraction of users – if any
– engage in such activities. In turn, if our base data set
does contain images with steganographic content, their
quantity will be negligible. Weighing this against the in-
evitable lack of diversity in a self-assembled data set and
consequentially the remoteness of such a data set from
a live deployment, we opted for the approach described
above.

Further analysis of the data set nevertheless revealed
some interesting details. For instance, 15,005 files or
5.56%, of the JPEG files and 777 or 2.35% of the PNG
files contain data behind their EOI or IEND segment.
4,484 JPEG files have 3 or less residual bytes behind
their EOI marker, i.e. they are unlikely to carry any hid-
den message. In the PNG partition, only 56 files fall
into that category. For both formats, the lion’s share of
the remaining files with four or more appended bytes is
made up by twitter.com. It accounts for 9,527 of the
10,521 JPEG and 475 of the 721 respective PNG files.
In a manually inspected sample, these files contained the
space character (0x20) appended up to 455,942 times.
The only reasonable explanation for this phenomenon is
a programming error. qq.com accounts for most of the
remaining files, i.e. 887 JPEG and 126 PNG files. Here,
the files contain 46 additional bytes each, primarily a 32
letter hexadecimal ASCII string. Since this corresponds
to the length of an MD5 hash, we assume that the data
serves as a kind of watermark.

We acknowledge that these observations may be con-
sidered anomalies and that the respective files could be
removed from the data set on that grounds. However,
we left them in the data set for two reasons. First, with
respect to SAD THUG, the presence of these files may
decrease but not increase its detection performance, i.e.
we avoid a potential unfair advantage for SAD THUG
in our evaluation. Second, the files are part of an un-
biased snapshot of files provided on the Internet. Re-
moving them would conceal a challenge that a detection

method would face in practice.
In our evaluation, we use the base data set for two

purposes. First, it serves as a training set for our ap-
proach. Second, we use it to create sets of files that con-
tain messages embedded with one of a total of 12 meth-
ods (for reasons explained below, this figure does not in-
clude CryLocker’s and DuQu’s methods).

6.2.2 Payload Data Sets

Malpedia is a curated collection of live malware sam-
ples and analysis [46]. After removing signatures, notes
and script-based samples from the collection, we ob-
tained a data set that contains a total of 4,558 malicious
files.
ZeusVM Configuration The ZeusVM malware uses
JPEG files to transfer two pieces of configuration to in-
fected machines. The first part consists primarily of a
list of URLs that are used for command and control. We
discuss the other part, web-injects, below. To create this
data set, we extracted and parsed the content from 24 live
configurations for ZeusVM. From these configurations,
we determined the smallest and largest number of values
as well as all unique values for each option. To gener-
ate new configurations that closely resemble the original
ones, we chose a random count between the minimum
and maximum number of values observed for each given
option and then added random values from the pool of
observed values for that option.
ZeusVM Web-Inject ZeusVM’s configuration contains
templates that determine which and how websites visited
by an infected machine should be modified. To generate
the respective data set, we relied on the configurations
parsed as described in the previous paragraph. Likewise,
we determined how many web-injects were provided in
the live configurations and chose a random sample from
the given web-injects with a size ranging between those
numbers.
Web Exploits target web browsers using malicious
JavaScript, HTML or other code. To simulate an at-
tack that hides this kind of data, we randomly selected
files from a collection of 2,543 malicious JavaScript files
[43].
CryLocker Payload The CryLocker ransomware [34]
exploits the imgur.com website to upload information
about each infected system. From the scarce informa-
tion available on that payload, we inferred the format and
chose reasonable values for its variables.
DuQu Payload The DuQu malware uses steganography
to exfiltrate data from infected machines. According to
Symantec [1], its logger creates a screenshot and process
list every 30 seconds which will eventually be uploaded
to a C&C server. To create a realistic data set, we set
up a Windows virtual machine to automatically create
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Figure 7: The size distributions of the payloads used in our evaluation (grouped by maximum size in bytes).

a screenshot and store a process list every 30 seconds.
By running a series of office tutorials from YouTube in
fullscreen mode on that machine, we ensured that the
screenshots are similar to those of a system being used
for regular office tasks. We then selected random in-
tervals with a duration of at least 30 minutes, and con-
catenated the screenshots and process lists generated in a
randomly selected time frame with that length. To create
the final DuQu payload, we compressed the data using
the bzip2 algorithm and encrypted it using the AES ci-
pher.

SyncCrypt Payload The SyncCrypt ransomware uses
JPEG files to transfer a hidden ZIP file. In that ZIP file
however, it hides the malware’s main executable along
with an HTML and a PNG file. Hence, to simulate that
payload, we randomly chose a PNG file from the respec-
tive base data set, an HTML file from the Web Exploits
set and a random malware binary from Malpedia and
stored them in a ZIP file.

Discussion In this section, we briefly introduced the
payload data sets used. Figure 7 shows the distribution
of the size in bytes of the messages drawn from these
data sets for our evaluation. Since the data sets cover a
large variety, we grouped them by the size of the largest
message in them, starting with the smallest data sets in
the top left and ending with the largest on the bottom
right. To provide a point of reference, a dotted hori-
zontal line indicates the maximum density in the next

plane. The plane on the top left shows the CryLocker
and ZeusVM Configuration data sets, which only con-
tain messages up to about one kilobyte and are clearly
concentrated on about 200 or 700 bytes. The complete
ZeusVM payload, including the malware’s configuration
and web-injects, evenly spreads from close to zero to 250
KB. Most of the files from the Web Exploits data set are
very small, however the largest message drawn from this
set almost reaches 2 MB, as we can see in the same plane.
The SyncCrypt Payload consists, among others of a ran-
dom malware sample drawn from the Malpedia data set
and thus closely resembles the latter data set’s size dis-
tribution, as seen in the bottom left plane. Finally, the
DuQu Payload data set’s size distribution ranges from
just above 700 KB to 141.92 MB.

6.2.3 Additional Considerations for Data Sets

ZeusVM/Zberp The Zberp banking trojan is based
on the ZeusVM malware and inherited its embedding
method. Hence, for our evaluation we do not distinguish
between the two. However, we use two different data sets
to establish our approach’s efficacy with respect to their
method. First, we obtained a set of 24 JPEG files contain-
ing live configurations which were extracted from dumps
of ZeusVM control panels. We denote this data set as
ZeusVM. Second, we used the leaked KINS builder2 for
the ZeusVM malware to embed configurations from our
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Cerber XOR
DuQu, DuQu 2.0 AES
Hammertoss RC4
Microcin XOR
SyncCrypt None
Tropic Trooper XOR
ZeusVM, Zberp* XOR
APP0 Byte Stuffing None
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APP1: Comment Injection None

Brazilian EK XOR
CryLocker None
DNSChanger None
aaAa Injection None

P
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ed

pHYs Byte Stuffing None

Table 1: Evaluation data sets; names in italics correspond to the methods proposed in section 4. The payload for the
ZeusVM, Zberp* data set is constructed by combining two payload data sets.

payload data set into randomly selected JPEG files from
the base data set. Since the builder would fail for JPEG
files that did not end with an EOI marker, we excluded
those files from the selection process. The respective
data set is called ZeusVM, Zberp* below.
DuQu The DuQu malware uses a static JPEG file stored
inside its executable to exfiltrate data. Since this file does
not depend on the input, we created a data set indepen-
dent from our base data set. Using our DuQu payload
data set and the JPEG file used by DuQu, the 1000 files in
that set provide a very realistic approximation of DuQu’s
C&C traffic.
CryLocker The method used by the CryLocker ran-
somware effectively creates a PNG file header without
any image data. Thus, it does not depend on any input
and – like DuQu – we created and use an independent
data set of 1000 files for our evaluation.

6.2.4 Grouping

To perform our evaluation, we partitioned the files in our
base data sets into ten evenly-sized groups. We then fur-
ther subdivided each JPEG group into nine subgroups
while we divided the PNG groups into five subgroups
each. As explained in section 6.1, for each step in our
cross-validation, we used nine of the ten groups as train-
ing data. The subgroups in the remaining group serve as
a test set for our classifier. Here, the files in one subgroup
would remain unchanged, i.e. without any malicious em-
bedding, to allow us to establish the false positive ratio.
In the remaining subgroups, we embedded messages in
accordance with table 1 and section 6.2.3. Note that the

CryLocker, DuQu, and ZeusVM data sets do not depend
on our base data set and are thus not included in these
numbers.

6.3 Parameterization
In section 5.4 we introduced two parameters, α and τ that
allow tuning the precision and recall of our approach. To
determine a reasonable configuration, we executed a sys-
tematic grid-based parameter evaluation using ten values
for each parameter and chose the parameter set that max-
imized our approach’s weighted mean true classification
ratio. We doubled the weight for the data set without any
embedding to introduce a slight preference for a lower
false positive ratio.

For τ , we can choose any positive integer, so we opted
for the first ten possible values, i.e. 1 through 10, to
determine whether there exists a local optimum in this
range. α can take any positive real value. However, we
argue that very large values for α would make the ap-
proach overly permissive. E.g. with a value of 1, all
lengths from 0 up to twice the given length would support
the legitimacy of the observed file. Hence, an attacker
could simply create a very large segment and be sure
that it would be supported by the model, if it appeared
in the correct order. Thus, we select 0.5 as a reasonable
upper bound for α . From this starting point, we chose
10 evenly distributed values, i.e. set α to 0.05, 0.1 etc.
up to and including 0.5. Following this methodology, for
JPEG files the most restrictive configuration τ = 10 and
α = 0.05 scored best. For PNG files we chose the con-
figuration τ = 2 and α = 0.1.
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6.4 Stegdetect: Append and Invisible Se-
crets

Provos and Honeyman published several papers on the
topic of hiding messages in JPEG files and detecting
such embeddings, which we briefly discuss in section 8.
While their work focussed on detecting hidden messages
in image data, the reference implementation of their
Stegdetect [48] tool also contains two methods called
append and invisible secrets. The first method checks
whether a file contains at least 4 additional bytes behind
the end of the image data. The invisible secrets method
on the other hand checks whether a comment segment
starts with an integer reflecting the length of the follow-
ing payload. We disabled all other detection methods to
avoid triggering unnecessary false positives. However,
their implementation was unable to parse a significant
fraction of the files in the test sets. We include the frac-
tion that could not be handled as error in our comparison
to allow our readers to account for these files.

6.5 Results

The left plot in fig. 8 indicates the detection perfor-
mance of both SAD THUG, indicated by green boxes,
and Stegdetect for JPEG files. Only SAD THUG is able
to process PNG files and thus the right hand side of fig. 8
shows results solely for our approach. For Stegdetect, we
show the true classification ratio using blue boxes and the
error ratio, as explained in section 6.4, in red. Given that
all values are close to either 0 or 1, we split the graph into
an upper and a lower part. The upper part contains the
upper 6% range while the lower part contains the lower
6% range, respectively. There were no observations in
between these intervals.

As indicated by fig. 8 a), the worst true negative ratio
SAD THUG achieved for JPEG files was 99.33% with
a maximum of 99.59% and mean 99.48%. Stegdetect
on the other hand achieved a mean true negative ratio of
95.45%. This is due to the fact that a surprisingly large
number of the JPEG files in our base data set contain data
appended behind their EOI marker, as discussed in sec-
tion 6.2.1. SAD THUG implicitly compensates for this,
resulting in a far better true negative ratio than Stegde-
tect. However, as a side effect, SAD THUG also accepts
some files that contain a message added using the ap-
pend paradigm. In section 9.2, we discuss how this can
be fixed easily. While we expected Stegdetect to classify
files with append-based embeddings perfectly, ranging
from Cerber to Tropic Trooper in fig. 8, it does not. How-
ever, the difference is explained by its failure to parse a
significant fraction of the files and is thus, on its own, not
indicative of a shortcoming of the method.

The picture changes once we consider the remaining

methods. Here, SAD THUG achieves a 100% true pos-
itive ratio while Stegdetect does not detect any ZeusVM
file and a parsing error triggers its only true positive for
the ZeusVM/Zberp* data set. As discussed above, the
files in the ZeusVM/Zberp(*) data sets always end with
an end-of-image marker and thus do not trigger Stegde-
tect’s heuristic. The APP0 and APP1: Comment data
sets on the other hand include any residual data that was
present in the files used to construct them. Hence, here
Stegdetect does not detect the actual embedding but the
residual data in the base data set. Thus, one could argue
that the 2.93% to 5.13% true positives it achieves are in
fact false positives.

On the right hand side of fig. 8, we see SAD
THUG’s detection results for the PNG data sets. We
are not aware of any other approach for classifying these
files and hence cannot provide a basis for comparison.
Here, SAD THUG correctly classifies all files across
all cross-validation steps for all except two data sets.
For the Brazilian EK’s method, which uses the append
paradigm, results are again distorted by residual data
present in the base data set. Here, up to 4.85% of the
files are incorrectly classified as benign with a mean true
classification ratio of 96.59%. At the same time, SAD
THUG achieves a mean true positive ratio of 98.88%.
There was no obvious pattern with respect to what files
caused the usually single digit count of false positives in
each group.

To summarize, SAD THUG achieves very high true
classification ratios for both JPEG and PNG files. It
classifies several data sets perfectly but is somewhat im-
peded with respect to append-based methods by the pres-
ence of a large number of files with residual data in our
training data. Here, the worst true classification ratios is
95.15% while the overall average ratios are 99.25% for
both JPEG and PNG files. Stegdetect on the other hand
scores well for append-based methods but fails to detect
methods relying on other paradigms. Additionally and in
contrast to SAD THUG, Stegdetect causes a large num-
ber of false positives, 5.26% on average.

7 Limitations

While our evaluation in section 6 shows that our ap-
proach is very effective with regard to detecting embed-
ded messages that change the structure of JPEG or PNG
files, it is not designed to detect embeddings in the en-
coded image data. Thus if an attacker chooses to embed
messages in the image data stored in a file, this fact can-
not be detected using our approach. A large number of
approaches exist that do attempt to detect such embed-
dings (cf. section 8). With respect to detecting structural
embeddings, SAD THUG significantly outperforms the
only previous method attempting to solve this problem.
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Figure 8: The classification performance of SAD THUG and two Stegdetect methods for JPEG files and SAD THUG’s
performance for the PNG format.

Similarly, our prototype could be evaded by using a
file type that it currently does not support. However,
there are several points that mitigate this limitation. First,
our approach is agnostic with respect to file types and
the prototype parser could simply be extended to parse
the structure of another file type. Second, an ALG may
expect to observe files of one type much less often than
others. As we pointed out in section 2, a web application
firewall (WAF) typically observes far more images than
HTML documents, since each HTML document usually
references dozens of image files. While PDF, DOC or
XLS files are often provided as downloads, they gener-
ally make up a much smaller fraction of a website’s con-
tent than HTML documents. Therefore, WAFs may refer
to more computationally expensive methods, like on-the-
fly conversion into image files, or even require user inter-
action before letting such files pass through them.

Like all supervised machine learning-based ap-
proaches, our approach’s effectiveness depends on the
training data set. A training data set that is not repre-
sentative for the benign data observed in the classifica-
tion phase may increase our approach’s false positive ra-
tio. For instance, some programs, e.g. image optimiz-
ers, write files with an unusual structure. If for a given
program of that kind no files were present in the train-
ing data, SAD THUG is likely – and rightfully so – to
classify their files as anomalies. However, due to SAD
THUG’s generalization properties, this can usually be re-
mediated by adding a small number of curated files from
that software to the training data.

Like all supervised machine learning-based ap-
proaches, SAD THUG is to some degree vulnerable to
poisoning attacks. If an attacker manages to inject a
large number of files into its target’s training data set, this
will have a predictable effect on the resulting automaton.
Thus, it could try to create transitions in the automaton
that would accept the structural anomalies created by its
approach. In section 9.2, we discuss several avenues for
future work that may mitigate this threat.

Finally, short of manipulating the target’s automaton,
an attacker could make informed guesses about it as well
as about the target’s parameterization to devise a strategy
to bypass SAD THUG. Generally, such a strategy would
allow an attacker to add a few bytes to each variable
length segment in a file, possibly at the cost of the file’s
compatibility with common decoders. i.e. even when an
attacker successfully implements a method that bypasses
SAD THUG, it will only be able to transfer a small num-
ber of bytes per file – compared against an arbitrary num-
ber of bytes with structural embedding in general.

8 Related Work

In this section, we provide a brief overview of related
work. We focus on three areas. First, we take a quick
look at legitimate use of steganography for censorship
circumvention. Second, we provide an overview of other
approaches for detecting malware or its communications
in settings similar to that sketched in section 2. Finally,
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we discuss other methods for detecting steganographic
message exchanges and their utility with respect to struc-
tural embedding methods. Other approaches that apply
similar machine learning methods for solving informa-
tion security challenges – Sivakorn’s HVLearn [54] or
Görnitz et al.’s work [24] just to name two – provide a
valuable background for this work. However, space con-
straints do not allow us to discuss them in due detail here.

Several systems have been proposed for bypassing
censorship systems that may act like an application level
gateway in our threat model. While SAD THUG was de-
signed to prevent unwanted communications from mal-
ware, the problems are obviously related. Approaches
designed to circumvent censorship could be employed
to bypass legitimate restrictions according to our threat
model while approaches like SAD THUG could be used
to detect attempts to circumvent censorship. Systems
like Burnett et al.’s Collage [18], Invernizzi et al.’s MIAB
[32] or Feamster et al.’s Infranet [22] use stegosystems
like Outguess [47] or HUGO [45] to hide messages in
JPEG image data. Thus, by their choice of cover me-
dia, they are not affected by SAD THUG. Mohajeri et
al.’s SkypeMorph [40] and Weinberg et al.’s StegoTorus
[57] replicate or hide data in voice-over-IP traffic – which
could not traverse a reasonably configured ALG in our
threat model. However, StegoTorus can also hide data
in HTTP headers and JavaScript, PDF or SWF files.
Since our prototype currently only supports JPEG and
PNG files, these methods are unaffected by SAD THUG.
However by adding appropriate parsers, it may be able to
detect StegoTorus’s data hiding methods. Finally, Wus-
trow et al.’s TapDance [58] requires that the attacker’s
system in the protected network is able to engage in a
TLS connection with a system outside that network. This
method is not applicable if the ALG conducts man-in-
the-middle attacks against TLS connections. If it does
not, SAD THUG would not be able to inspect the data
transfered and obfuscation on the payload level would
not be necessary anyway.

Switching to the position of the ALG in our threat
model, we first take a look at Bartos et al.’ approach
[13] which analyzes an HTTP proxy’s log files. While
the approach is very lightweight, in this domain, data in-
or exfiltration attacks using image files are practically in-
distinguishable from legitimate transfers and thus their
method cannot provide the utility of SAD THUG.

Similarly, Rahbarinia et al.’s Mastino approach [50],
Stringhini et al.’s Shady Paths method [56] and Kwon et
al.’s approach [35] use the observation that exploit kits
often send browsers through a chain of redirects before
delivering the actual exploit. However, this limits these
approach’s utility to the infection phase and even there
the redirects are not a technical necessity. More so, when
exploit code is extracted from an image file by an other-

wise inconspicuous JavaScript, a technique used by sev-
eral exploit kits, e.g. Angler [44], Astrum [4] or Sun-
down [36], the approaches are unlikely to detect the at-
tack. Finally, they cannot detect C&C interactions using
hidden messages in image files. The same holds for In-
vernizzi et al.’s Nazca approach [33] but simply for the
reason that they explicitly ignore media files like images.

SpyProxy, proposed by Moshchuk et al. [42], is lim-
ited to detecting successful exploitation attempts but not
impeded by the use of steganography in the process. To
the users in the network, it serves as a proxy but before
delivering unknown content to a client, it redirects the
respective URL to a farm of sandboxes and only if its
rendering does not trigger a sandbox violation, it is re-
layed to the user. Taylor et al. use a similar approach
but use honeyclients to impersonate the client request-
ing a conspicuous resource. Like all sandbox-based ap-
proaches, they are resource-intensive and also subject to
evasion techniques like busy-waits or fingerprinting. Gu
et al.’s BotMiner [26] is one of the few approaches that
may detect C&C communications after infection. How-
ever, not only does it heavily rely on other sensors but
also on observing communications with external hosts
that do not occur in our threat model. Similarly, Yu et
al.’s PSI approach [60] does not implement a detection
method of its own but provides a framework integrating
existing network-based detection methods, like the Bro
and Snort IDS or the Squid HTTP proxy. Thus, while
it cannot detect the attacks SAD THUG is designed to
detect, it could integrate our approach to provide com-
prehensive protection against them.

Finally, we want to take a brief look at approaches
for detecting network-based steganography using JPEG
files. Provos, partly in conjunction with Honeyman, pub-
lished a small series of papers on hiding messages in
JPEG files and detecting such embeddings [48, 47, 49].
Like the other methods discussed below, their methods
are concerned with the embedding in or detection of em-
beddings in the image data of these files. The Stegde-
tect tool described in [48] uses a small set of special-
ized χ2 tests on the DCT coefficient distribution of the
file in question to detect one of three embedding algo-
rithms. Additionally, as we pointed out in section 6, the
Stegdetect tool contains methods for detecting structural
embeddings like the ones we detect with SAD THUG.
While these methods were not covered by the respective
paper, we included them in our evaluation to determine
their effectiveness and provide a comparison for our own
method. Our evaluation in section 6 shows that Stegde-
tect performs well for embedding methods based on the
append paradigm but effectively fails to detect embed-
dings using other methods. Also, for JPEG files SAD
THUG scores a mean false positive ratio that is one or-
der of magnitude below that of Stegdetect.
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In another statistical approach to detecting informa-
tion hiding in DCT coefficients, Andriotis et al. [11] use
Benford’s law on the distribution of the DCT coefficients
to determine whether they carry a hidden message. Bar-
bier, Filiol and Mayoura’s method [12] on the other hand
uses a training set to derive the probability density for in-
dividual bits of the encoded coefficients. If a suspicious
file does not match these ratios, is is considered mali-
cious. The work by Cogranne, Denemark and Fridrich
[21] uses a roughly similar approach but employs ad-
vanced techniques to derive their empirical model and
test suspicious images against it. Despite their indis-
putable merit, these approaches do not solve the problem
at hand. Their methods are designed to detect anomalies
in the image data – which is disregarded by our approach
– and do not consider information hidden in the struc-
ture of image files. SAD THUG on the other hand has
demonstrated its ability to very reliably detect this kind
of embedding in the evaluation presented in section 6.

9 Conclusions and Future Work

9.1 Conclusions
In this paper, we presented SAD THUG, an approach for
detecting structural anomalies in image files caused by
hiding messages in them. It derives an abstract model
for the legitimate structure of container files from a train-
ing set and verifies whether newly observed files corre-
spond to that model to classify them as either benign or
malicious. SAD THUG achieved perfect classification
across all cross-validation data sets for eight methods and
scored well or very well for the remaining sets. Its mean
false positive ratio was just 0.68% for JPEG files and
1.12% for PNG files. Hence, in this paper we presented
a very effective solution to a problem faced by computer
users and administrators around the world today.

9.2 Future Work
Currently, our approach is limited to the most common
embedding methods that change the structure but not the
image data in JPEG and PNG files. Nevertheless, future
malware could rely on DCT coefficient-based steganog-
raphy in JPEG files and some malware has been ob-
served abusing PNG image data to hide its communica-
tion. Also, malware could use a combination of struc-
tural and coefficient-based embedding to minimize the
observable effect in each domain. Thus, our approach
should be integrated with an approach or approaches that
can detect embeddings in image data to provide compre-
hensive detection.

In section 6.5, we pointed out that a surprisingly large
fraction of image files referenced by popular websites

contain additional bytes behind their image data. This
had some effect on SAD THUG’s ability to detect em-
bedding methods with a similar effect on the cover file’s
structure. As highlighted by this observation – like for all
machine learning-based approaches – attackers could try
to influence our method’s ability to detect their attacks
by poisoning its training set.

There are several avenues that should be explored to
mitigate this threat. First and foremost, we could simply
remove residual data in the training data set as well as
in files delivered to systems. This would effectively pre-
vent the establishment of a covert channel using a large
fraction of the methods discussed in this paper. For the
remaining methods, SAD THUG scored perfectly. We
abstained from simulating this approach for our evalua-
tion because that would have completely voided Stegde-
tect’s detection.

Additionally, the training data could be hardened by
not including files from sites that allow users to up-
load images. Thus, attackers would have to compro-
mise each website they want upload data to. The ef-
fect of this approach could be even increased by using
a cross-validation approach. Here, a given website’s im-
ages would be verified against an automaton trained only
on other page’s files, i.e. an attacker would have to com-
promise even more websites based on the construction
of the training data set. Finally, instead of using abso-
lute counts to determine whether a transition has been
observed sufficiently often to include it in our model, we
could use weights that depend on the input data. These
weights could for instance be scaled to limit the influ-
ence that either individual files or sources have on SAD
THUG’s automaton. While SAD THUG is already sur-
prisingly robust against a skewed training set, we believe
that these methods would not only improve its reliability
with respect to classification in general but also render
it close to impossible to attack by poisoning its training
set.
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Notes
1Microsoft’s 22nd Security Intelligence Report provides data for

the first three months in 2017 separately while earlier reports aggregate
data for each quarter. Due to the unknown overlap between the under-
lying systems, the 22nd report cannot be used to identify a trend with
respect to the earlier reports.
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