
Open access to the Proceedings of the 
27th USENIX Security Symposium 

is sponsored by USENIX.

Return Of Bleichenbacher’s Oracle Threat (ROBOT)
Hanno Böck, unaffiliated; Juraj Somorovsky, Ruhr University Bochum, Hackmanit GmbH; 

Craig Young, Tripwire VERT

https://www.usenix.org/conference/usenixsecurity18/presentation/bock

This paper is included in the Proceedings of the 
27th USENIX Security Symposium.

August 15–17, 2018 • Baltimore, MD, USA

ISBN 978-1-939133-04-5



Return Of Bleichenbacher’s Oracle Threat (ROBOT)
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Abstract
In 1998 Bleichenbacher presented an adaptive chosen-
ciphertext attack on the RSA PKCS #1 v1.5 padding
scheme. The attack exploits the availability of a server
which responds with different messages based on the ci-
phertext validity. This server is used as an oracle and
allows the attacker to decrypt RSA ciphertexts. Given
the importance of this attack, countermeasures were de-
fined in TLS and other cryptographic standards using
RSA PKCS #1 v1.5.

We perform the first large-scale evaluation of Ble-
ichenbacher’s RSA vulnerability. We show that this vul-
nerability is still very prevalent in the Internet and af-
fected almost a third of the top 100 domains in the Alexa
Top 1 Million list, including Facebook and Paypal.

We identified vulnerable products from nine differ-
ent vendors and open source projects, among them F5,
Citrix, Radware, Palo Alto Networks, IBM, and Cisco.
These implementations provide novel side-channels for
constructing Bleichenbacher oracles: TCP resets, TCP
timeouts, or duplicated alert messages. In order to
prove the importance of this attack, we have demon-
strated practical exploitation by signing a message with
the private key of facebook.com’s HTTPS certificate.
Finally, we discuss countermeasures against Bleichen-
bacher attacks in TLS and recommend to deprecate the
RSA encryption key exchange in TLS and the RSA
PKCS #1 v1.5 standard.

1 Introduction

In 1998 Daniel Bleichenbacher published an adaptive
chosen-ciphertext attack on RSA PKCS #1 v1.5 encryp-
tion as used in SSL [11]. In his attack the attacker uses
a vulnerable server as an oracle and queries it with suc-
cessively modified ciphertexts. The oracle answers each
query with true or false according to the validity of the
ciphertext. This allows the attacker to decrypt arbitrary

ciphertext without access to the private key by using Ble-
ichenbacher’s algorithm for exploiting the PKCS #1 v1.5
format.

Instead of upgrading to RSA-OAEP [29], TLS design-
ers decided to use RSA PKCS #1 v1.5 in further TLS
versions and apply specific countermeasures [2, 17, 34].
These countermeasures prescribe that servers must al-
ways respond with generic alert messages. The in-
tention is to prevent the attack by making it impossi-
ble to distinguish valid from invalid ciphertexts. Im-
proper implementation of Bleichenbacher attack coun-
termeasures can have severe consequences and can en-
danger further protocols or protocol versions. For ex-
ample, Jager, Schwenk, and Somorovsky showed that
the mere existence of a vulnerable implementation can
be used cross-protocol to attack modern protocols like
QUIC and TLS 1.3 that do not support RSA encryp-
tion based key exchanges [23]. Aviram et al. published
DROWN, a protocol-level variant of Bleichenbacher’s
attack on SSLv2 [6].

Due to the high relevance of this attack, the evaluation
of countermeasures applied in TLS libraries is of high
importance. There were several researchers concentrat-
ing on the evaluation of Bleichenbacher attacks in the
context of TLS. However, these evaluations mostly con-
centrated on the evaluation of the attacks in open source
TLS implementations. Meyer et al. showed that some
modern TLS stacks are vulnerable to variations of Ble-
ichenbacher’s attack [28]. For example, the Java TLS
implementation was vulnerable due to handling of en-
coding errors and other implementations were demon-
strated as vulnerable through time based oracles. In 2015
Somorovsky discovered that MatrixSSL was vulnerable
as well [36].

While Bleichenbacher attacks have been found on
multiple occasions and in many variations, we are not
aware of any recent research trying to identify vulner-
able TLS implementations in the wild. Given the fact
that most of the open source implementations are secure
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according to the latest evaluations [28, 36], one would
think that such an evaluation would not reveal many new
vulnerable implementations. But this is not the case.
We developed a systematic scanning tool that allowed
us to identify multiple vulnerable TLS hosts. Many of
the findings are interesting from the research perspec-
tive since they uncover different server behaviors or show
new side-channels which were specifically triggered by
changing TLS protocol flows or observing TCP connec-
tion state. These behaviors are of particular importance
for the analyses of different vulnerabilities relying on
server responses, for example, padding oracle [37] or in-
valid curve attacks [24].

Contributions. Our work makes the following contri-
butions:

• We performed the first large-scale analysis of Ble-
ichenbacher’s attack and identified vulnerabilities in
high profile servers from F5, Citrix, Radware, Palo
Alto Networks, IBM, and Cisco, as well as in the
open source implementations Bouncy Castle, Er-
lang, and WolfSSL.

• We present new techniques to construct Bleichen-
bacher oracles which are of particular interest for
developing related attacks. These involve changing
TLS protocol flows or observing TCP connection
states.

• We implemented a proof of concept attack that al-
lowed us to sign a message with the private key of
Facebook’s web page certificate.

• Finally, we discuss the countermeasures proposed
in TLS 1.2 [34] and whether it is feasible to depre-
cate RSA encryption based key exchanges.

Responsible disclosure and ethical considerations.
In collaboration with affected web site owners we re-
sponsibly disclosed our findings to vulnerable ven-
dors. We collaborated with them on mitigations and re-
evaluated the patches with our scripts. Several vendors
and web site owners awarded us with bug bounties.

To raise the awareness of these attacks, we also col-
laborated with different TLS evaluation tool developers.
The Bleichenbacher vulnerability check was afterwards
included in SSL Labs and testssl.sh.

As a result of a successful attack, the attacker is able to
obtain the decrypted RSA ciphertext or sign an arbitrary
message with server’s private key. Therefore, by per-
forming our proof of concept attacks we were not able
to reconstruct the RSA private key. We performed our
attacks with dummy data and never attempted to decrypt
real user traffic. Since the complete attack requires tens
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Figure 1: TLS-RSA handshake.

of thousands of queries, we performed it only against
servers with a large user base such as Facebook.

2 TLS-RSA key exchange

Bleichenbacher’s attack is applicable to the TLS-RSA
key exchange. This key exchange is used in all ci-
pher suites having names starting with TLS RSA (e.g.
TLS RSA WITH AES 128 CBC SHA). The message flow
of an RSA key exchange as implemented in TLS [34]
is illustrated in Figure 1.

The TLS handshake is initiated by a TLS client with a
ClientHello message. This message contains informa-
tion about the TLS version and a list of supported cipher
suites. If the server shares cipher and protocol support
with the client, it responds with a ServerHello message
indicating the selected cipher suite and other connection
parameters. The server continues by sending its certifi-
cate in the Certificate message and signals the end of
transmission with the ServerHelloDone message. The
client then sends a ClientKeyExchange message con-
taining a premaster secret that was RSA encrypted us-
ing the key included in the server’s certificate. All fur-
ther connection keys are derived from this premaster se-
cret. The handshake concludes with both parties sending
the ChangeCipherSpec and Finished messages. The
ChangeCipherSpec indicates that the peer will send
further messages protected with the negotiated crypto-
graphic keys and algorithms. The Finished message
authenticates the exchanged protocol messages.

3 Bleichenbacher’s attack

Bleichenbacher’s attack on SSL relies on two ingredi-
ents. The first is the malleability of RSA which allows
anybody with an RSA public key to multiply encrypted
plaintexts. The second is the tolerant nature of the RSA
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PKCS #1 v1.5 padding format that allows an attacker to
create valid messages with a high probability.

We assume (N,e) to be an RSA public key, where N
has byte-length ` (|N| = `), with corresponding secret
key d = 1/e mod φ(N). || denotes byte concatenation.

3.1 RSA PKCS #1 v1.5
RSA PKCS #1 v1.5 describes how to generate a random-
ized padding string PS for a message k before encrypting
it with RSA [25]:

1. The encryptor generates a random padding string
PS, where |PS| > 8, |PS| = `− 3−|k|, and 0x00 6∈
{PS1, . . . ,PS|PS|}.

2. It computes the message block as follows: m =
00||02||PS||00||k.

3. Finally, it computes the ciphertext as c=me mod N.

The decryption process reverts these steps in an obvi-
ous way. The decryptor uses its private key to perform
RSA decryption, checks the PKCS #1 v1.5 padding, and
extracts message k.

3.2 Attack intuition
Bleichenbacher’s attack allows an attacker to recover the
encrypted plaintext m from the ciphertext c. For the at-
tack execution, the attacker uses an oracle that decrypts
c and responds with 1 if the plaintext starts with 0x0002

or 0 otherwise:

O(c) =

{
1 if m = cd mod N starts with 0x0002

0 otherwise.

Such an oracle can be constructed from a server decrypt-
ing RSA PKCS #1 v1.5 ciphertexts.

Bleichenbacher’s algorithm is based on the malleabil-
ity of the RSA encryption scheme. In general, this prop-
erty allows an attacker to use an integer value s and per-
form plaintext multiplications:

c′ = (c · se) mod N = (ms)e mod N,

Now assume a PKCS #1 v1.5 conforming message
c = me mod N. The attacker starts with a small value
s. He iteratively increments s, computes c′, and queries
the oracle. Once the oracle responds with 1, he learns
that

2B≤ ms− rN < 3B,

for some computed r, where B = 28(`−2). This allows
him to reduce the set of possible solutions. By iteratively
choosing new s, querying the oracle, and computing new
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ClientHello 
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Certificate

ServerHelloDone
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ChangeCipherSpec
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Alert
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Figure 2: A vulnerable server would respond with differ-
ent alert messages based on the PKCS #1 v1.5 validity.
To mitigate the attack it is important that the server al-
ways responds with the same alert message and does not
provide any information about the PKCS #1 v1.5 valid-
ity.

r values, the attacker reduces the possible solutions m,
until only one is left or the interval is small enough to ac-
commodate a brute force search. We refer to the original
paper for more details [11].

3.3 Countermeasures

In general the attack is always applicable if the attacker is
able to distinguish valid from invalid RSA PKCS #1 v1.5
ciphertexts. To mitigate the attack, the TLS standard has
defined the following countermeasure. Once the server
receives a ClientKeyExchange message, it proceeds as
follows (see Figure 2). It generates a random premaster
secret and attempts to decrypt the ciphertext located in
the ClientKeyExchange message. If the ciphertext was
valid, it proceeds with the decrypted premaster secret.
Otherwise, it proceeds with the random value. Since the
attacker does not know the premaster secret value, he is
not able to compute a valid Finished message. There-
fore, the client Finished message is always responded
with an alert message and the attacker cannot determine
PKCS #1 v1.5 validity. See Section 9.1 for more details.

3.4 Attack performance and oracle types

In his original publication Bleichenbacher estimated that
it takes about one million queries to decrypt an arbi-
trary ciphertext. Therefore, the attack was also named
“million message attack”. The attack performance varies
however depending on the “strength” of the provided or-
acle. In general, the attack algorithm finds a new inter-
val with every new valid oracle response. This happens
if the decrypted ciphertext starts with 0x0002. The or-
acle is considered “weaker” if it responds with a nega-
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tive response for some decrypted ciphertexts which start
with 0x0002. In this scenario, the new interval is not
found and the attacker needs to issue more queries. This
can happen, for example, if the implementation strictly
checks the PKCS #1 v1.5 format which prescribes that
the first 8 bytes following 0x0002 are non-zero, or if
the implementation strictly checks the length of the un-
padded key.

Bardou et al. improved the original attack and ana-
lyzed the impact of different implementations on the at-
tack performance [7]. For example, the improved Ble-
ichenbacher attack algorithm needs about 10,000 queries
on average when using the “strongest” oracle. On the
other hand, it needs about 18,000,000 queries using the
“weakest” oracle.

For simplicity, in our paper we just assume two oracle
types: weak and strong. The strong oracle allows one
to decrypt arbitrary ciphertext in less than one million
queries on average. Such an oracle can be provided by
an implementation which returns true if the decrypted ci-
phertext starts with 0x0002 and contains a 0x00 at any
position. The weak oracle results in an attack with sev-
eral millions of queries and can be provided by an imple-
mentation which checks whether the 0x00 byte is located
on the correct position. We use the original Bleichen-
bacher algorithm [11].

3.5 Creating a signature with Bleichen-
bacher’s attack

In most of the studies, Bleichenbacher’s attack is referred
to as a decryption attack. A lesser noted point is that the
attack allows one to perform arbitrary RSA private key
operations. Given access to an oracle, the attacker is not
only able to decrypt ciphertexts but also to sign arbitrary
messages with server’s private RSA key.

In order to create a signature with the server’s private
key, the attacker first uses a proper hash function and en-
coding to process the message. For example, when creat-
ing a PKCS #1 v1.5 signature for message M, the encoded
result will have the following format [29]:

EM = 0x0001 ‖ 0xFF...FF ‖ 0x00 ‖
ASN.1(hash(M))

hash() denotes a cryptographic hash function. The out-
put of the hash function has to be encoded using ASN.1.
The attacker then sets EM as an input into the Bleichen-
bacher algorithm. In a sense, he uses the to be signed
message as if it were an eavesdropped ciphertext. The
end result of this operation is a valid signature for M.

It is also important to mention that creating a signa-
ture is typically more time consuming than decrypting a
PKCS #1 v1.5 ciphertext. The reason is that an attacker
with a PKCS #1 v1.5 ciphertext can already assume that

the first message is PKCS #1 v1.5 conforming. This al-
lows him to skip the very first step from the original al-
gorithm [11]. On the other hand, by decrypting a ran-
dom ciphertext or creating a signature, the attacker can-
not assume the first query is PKCS #1 v1.5 conforming.
To make this first message PKCS #1 v1.5 conforming,
the attacker has to apply a blinding step [11]. Since this
step requires many oracle requests, creating a signature
is much more time consuming and is only practical if a
strong oracle is available.

4 Scanning methodology

The challenge of our research was to perform an ef-
fective scan using as few requests as possible, but al-
lowing us to trigger all known vulnerabilities and po-
tentially find new ones. For this purpose we closely
modeled our first scanner after the techniques in Ble-
ichenbacher’s original publication [11] and the follow-
ing research results [26, 7, 28]. This scanner performed
a basic TLS-RSA handshake (see Figure 1) containing
differently formatted PKCS #1 v1.5 messages located
in ClientKeyExchange. With this approach, we were
able to identify our first vulnerable TLS implementa-
tions. Further analysis was conducted to identify pos-
sible false positives before reporting the behavior to ven-
dors and site operators. This manual analysis allowed us
to find new issues and extend further TLS scans which
we applied to the Alexa Top 1 Million list.

In the following sections we give an overview of our fi-
nal scanning methodology. If possible we highlight gen-
eral recommendations, which are of importance for per-
forming related vulnerability scans.

4.1 Differently formatted PKCS #1 v1.5
messages

To trigger different server behaviors, our
ClientKeyExchange messages contained differ-
ently formatted PKCS #1 v1.5 messages. For their
description, consider the following notation. ‖ denotes
byte concatenation, version represents two TLS ver-
sion bytes, rnd[x] denotes a non-zero random string of
length x, and pad() denotes a function which generates
a non-zero padding string whose inclusion fills the
message to achieve the RSA key length.

Given the performance prerequisites for our scan, we
carefully selected five PKCS #1 v1.5 vectors based on
the previous research on Bleichenbacher attacks [11, 7,
28, 36]. Every message should trigger a different vulner-
ability:

1. Correctly formatted TLS message. This mes-
sage contains a correctly formatted PKCS #1 v1.5
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padding with 0x00 at a correct position and correct
TLS version located in the premaster secret:

M1 = 0x0002 ‖ pad() ‖ 0x00 ‖
version ‖ rnd[46]

M1 should simulate an attacker who correctly
guessed the PKCS #1 v1.5 padding as well as TLS
version. Even though this case is hard to trigger
(because of a low probability of constructing such a
message), it is needed to evaluate the server correct-
ness.

2. Incorrect PKCS #1 v1.5 padding. This message
starts with incorrect PKCS #1 v1.5 padding bytes:

M2 = 0x4117 ‖ pad()

The invalid first byte in the PKCS #1 v1.5 padding
should trigger an invalid server behavior as de-
scribed, for example, in the original paper [11].

3. 0x00 at wrong position. This message contains a
correct PKCS #1 v1.5 format, but has 0x00 at a
wrong position so that the unpadded premaster se-
cret will have an invalid length:

M3 = 0x0002 ‖ pad() ‖ 0x0011

Many implementations assume that the unpadded
value has a correct length. If the unpadded is shorter
or longer, it could trigger a buffer overflow or spe-
cific internal exceptions, and lead to a different
server behavior. For example, Meyer et al. showed
that such a message resulted in different TLS alerts
in JSSE (Java Secure Socket Extension) [28].

4. Missing 0x00. This message starts with 0x0002 but
misses the 0x00 byte:

M4 = 0x0002 ‖ pad()

The PKCS #1 v1.5 standard prescribes that the de-
crypted message always contains a 0x00 byte. If
this byte is missing, the PKCS #1 v1.5 implemen-
tation cannot unpad the encrypted value, which can
again result in a different server behavior.

5. Wrong TLS version. This message contains an in-
valid TLS version in the premaster secret:

M5 = 0x0002 ‖ pad() ‖ 0x00 ‖
0x0202 ‖ rnd[46]

M5 should trigger an invalid behavior as described
by Klı́ma, Pokorný and Rosa [26]. A practical ex-
ample of such behavior was recently found in Ma-
trixSSL [36]. The vulnerable MatrixSSL version re-
sponded these types of messages with an illegal pa-
rameter alert. Other messages were responded with
a decryption error.

A server behaves correctly if it responds with the same
alert message to any of the above messages. Otherwise, it
is vulnerable to Bleichenbacher’s attack. As described in
Section 3.4, we say that the oracle is weak if the attacker
can only identify valid messages starting with 0x0002

with a validly padded PKCS #1 v1.5 message with the
0x00 byte at the correct position (i.e., message M1 or M5).
This is because of a low probability of triggering such a
case during the attack. Otherwise, if the server allows
the attacker to identify messages with, for example, mes-
sage M3 or M4, the server provides a strong oracle and the
attack can be practically exploited.

4.2 Different TLS protocol flows

We observed that several implementations responded dif-
ferently based on the constructed TLS protocol flow.
More specifically, we observed differences on some
servers when processing a ClientKeyExchange mes-
sage sent by itself versus when it was sent in conjunction
with ChangeCipherSpec and Finished. We will re-
fer to sending ClientKeyExchange alone as ”shortened
message flow” in the rest of the paper.

The primary example of this is F5 BIG-IP. Under cer-
tain configurations, when this device received an invalid
ClientKeyExchange without further messages, it im-
mediately aborted the handshake and closed the connec-
tion. Otherwise, when processing properly formatted
ClientKeyExchange, the device waited for subsequent
ChangeCipherSpec and Finished messages.

Our scans also confirmed that it is insufficient to con-
sider only TLS alert numbers or timing as a suitable side-
channel. It is also necessary to monitor connection state
and timeout issues.

4.3 Cipher suites

Our initial tool implementation was trying to connect
with a single AES-CBC cipher suite. During our scans
we observed some servers with a limited set of cipher
suites which, for example, only supported AES-GCM ci-
pher suites. We therefore changed our tool to offer addi-
tional cipher suites by default. This increased the number
of detected vulnerable servers.

In addition to new vulnerable servers, additional ci-
pher suites allowed us to observe an interesting be-
havior. In some cases, the responses to various
ClientKeyExchange messages varied depending on the
used symmetric ciphers. For example, one of our target
servers reset the TCP connection after accepting a valid
PKCS #1 v1.5 formatted message when using AES-CBC
cipher suites. When using AES-GCM cipher suites, the
server responded with a TLS alert 51 (decrypt error).
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Invalid PKCS #1 v1.5 messages always led to a connec-
tion timeout, independently of the used cipher suite.

4.4 Monitoring different server responses
According to the TLS standard [34], servers receiving
invalid ClientKeyExchange messages should continue
the TLS handshake and always respond with an identical
TLS alert. In our analyses, we observed several servers
which always responded with identical TLS alerts. Some
however returned an extra TLS alert when processing an
invalid ClientKeyExchange.

In a server scan it is therefore important to not only
monitor the last received TLS alert but also the content
and count of received messages and socket behavior.

4.5 More variations
During our research we discovered that with slight vari-
ations like changing the cipher suite or using the short-
ened TLS message flow we were able to discover more
vulnerable servers. A more exhaustive scan may reveal
more vulnerable implementations. However, there is a
very large number of potential variations to try. For ex-
ample, one could try to connect with exotic cipher suites
(like Camellia), extensions or new variations of message
flows.

With our scan tool we attempted to find all vulnera-
bilities we are aware of while at the same time avoiding
excessively long scans.

4.6 Performing a server scan
In summary, our server evaluation is primarily differen-
tiated from other published techniques we are familiar
with [11, 28, 36] in that we consider connection state as
a side-channel signal and that we test with a non-standard
message flow. Furthermore, we can detect duplicated
alert messages and we enforce usage of different cipher
suites to trigger invalid behavior. See Figure 3.

The oracle detection of our scanner works by
first downloading a target server’s certificate and us-
ing it to encrypt five ClientKeyExchange messages
(M1,...M5). Each value is then sent as part of a stan-
dard handshake with a hardcoded Finished value. If
the response was not the same for each test case, the
target is presumed to be vulnerable. If the responses
are identical, the server is retested using the same
ClientKeyExchange but with an abbreviated message
flow that omits ChangeCipherSpec and Finished. The
responses are again compared and if any differences are
spotted, the target is presumed to be vulnerable. In order
to minimize false positive results due to network con-
ditions or unreliable servers, all servers presumed to be
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Figure 3: Our final scan considered different cipher
suites, connection state, TLS alerts, and shortened pro-
tocol flow. The PKCS #1 v1.5 messages were selected
precisely based on previous research [11, 7, 36].

vulnerable are retested to confirm the oracle prior to re-
porting the target as vulnerable. This is especially impor-
tant when detecting timeout based oracles.

When testing with the shortened message flow, we
found it necessary to set an appropriate socket timeout
for the network path between scanner and target. Tests
can be performed faster with shorter timeouts but it can
come at the cost of inconsistent behavior when deal-
ing with slower hosts or network latency. In our test-
ing, 5 seconds proved to be a reliable socket timeout for
scanning over the Internet without exceeding handshake
timeouts. In some environments, it may also be desirable
to increase the socket timeout but setting it too high will
lead to unreliable results.

5 Vulnerable implementations

The following sections present our findings and detailed
behaviors of vulnerable implementations. The results
are summarized in Table 1. For each vulnerable im-
plementation the table provides information about dif-
ferent server responses triggered by valid and invalid
ClientKeyExchange messages, the TLS protocol flow
(full / shortened), the oracle type (strong / weak), and a
CVE ID.

5.1 Facebook
During our first scans, we discovered that the main Face-
book host – www.facebook.com – was vulnerable. The
server responded with a TLS alert 20 (bad record mac)
to an error in the padded premaster secret. An error in
the PKCS #1 v1.5 prefix or in the padding resulted in an
immediate TCP reset. We could observe a similar behav-
ior on multiple other hosts belonging to Facebook like
instagram.com and fbcdn.com.
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Implementation Server response TLS flow Oracle Reference / ID

Valid message Invalid message

Facebook
1st vulnerability 20 47 full strong -

2nd vulnerability 20 TCP FIN shortened strong -

F5
Variant 1 TCP timeout 40 shortened strong CVE-2017-6168

Variant 2 One alert (40) Two alerts (40) full strong CVE-2017-6168

Variant 3 TCP timeout 40 shortened weak CVE-2017-6168

Variant 4 One alert (40) Two alerts (40) full weak CVE-2017-6168

Variant 5 20 80 full strong CVE-2017-6168

Citrix Netscaler
with CBC cipher suites Connection reset TCP timeout full strong CVE-2017-17382

with GCM cipher suites 51 TCP timeout full strong CVE-2017-17382

Radware
Radware Alteon 51 TCP reset full strong CVE-2017-17427

Cisco
Cisco ACE 20 47 full strong CVE-2017-17428

Cisco ASA TCP timeout TCP reset full weak CVE-2017-12373

Erlang
Erlang version 19 and 20 10 51 full strong CVE-2017-1000385

Erlang version 18 20 51 full strong CVE-2017-1000385

Palo Alto Networks
PAN-OS One alert (40) Two Alerts (40) full weak CVE-2017-17841

IBM
IBM Domino 20 47 full weak (unfixed)

IBM WebSphere MQ ? ? ? ? CVE-2018-1388

WolfSSL
WolfSSL prior to 3.12.2 TCP timeout Alert 0 shortened weak CVE-2017-13099

Bouncy Castle
Bouncy Castle 1.58 ChangeCipherSpec 80 shortened weak CVE-2017-13098

Table 1: Overview of vulnerable implementations and affected servers found in our research. TLS alerts are
referenced by their numbers: 10 (unexpected message) 20 (bad record mac), 40 (handshake failure), 47
(illegal parameter), 51 (decrypt error), and 80 (internal error).

We created a proof of concept signature using this or-
acle and sent it to Facebook along with an explanation of
the problem. Facebook deployed patches within a week
to close the oracle. The signature can be found in Ap-
pendix A. However, after further testing with different
message flows we found that the fix was not completely
effective at preventing us from distinguishing between
error types. If the ChangeCipherSpec and Finished

were withheld, the server would wait for these mes-
sages only if the ClientKeyExchange decrypted prop-
erly. Certain padding errors on the other hand would trig-
ger a TCP FIN from the server. Facebook also fixed this
behavior within a week of being notified. We extended
our scan tool to consider this changed strategy.

Facebook informed us that they use a patched version

of OpenSSL for the affected hosts and that the bug was in
one of their custom patches. We thus believe this partic-
ular variant of the vulnerability does not affect any hosts
not owned by Facebook.

We have furthermore discovered other vulnerable
hosts belonging to Facebook that behaved in a different
way. These were running TLS stacks by F5 and Erlang.
To our knowledge all vulnerable hosts owned by Face-
book have been patched.

5.2 F5

Based on Facebook’s encouraging responses to the first
reports, we continued scanning their infrastructure and
found yet another vulnerable behavior. This time, the
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vulnerable behavior was observed on a server related to
corporate mail which identified with a server banner indi-
cating BIG-IP. Further scans uncovered similar behavior
on other domains whose owners confirmed the devices
as being from F5. Over the course of the research we
discovered that F5 products could exhibit a variety of
oracles depending on the specific product and configu-
ration. Most commonly, F5 products would respond to
malformed ClientKeyExchange with a TLS alert 40
(handshake failure) but allow connections to time-
out if the decryption was successful. Close analysis of
F5 TLS stacks also revealed that some product configu-
rations would send an extra TLS alert depending on the
error type.

Overall, we discovered five different variations of be-
havior on F5 hosts. Some of these variations are weak
oracles. These weak oracles still allow attacks, but they
take significantly more oracle queries. With the strong
variants of the F5 oracle we were again able to create
proof of concept signatures.

We informed F5 and they issued a security advisory
on November 17th [18]. They released patches for all
supported products that were affected. CVE-2017-6168
was assigned.

5.3 Citrix
By contacting web page owners we learned that many of
the implementations we identified as vulnerable were run
by Citrix Netscaler devices. The Netscaler vulnerability
is behaving slightly different depending on whether the
connection uses a CBC or a GCM cipher suite.

For this vulnerability the signal for a malformed de-
cryption block is a timeout. This makes practical attacks
more challenging, as one needs to send a lot of messages
and detect timeouts. It likely requires parallelizing the
attack.

CVE-2017-17382 was assigned to this vulnerability.
Citrix has published an advisory and updates for affected
devices [15].

5.4 Radware
We discovered that the server used by Radware’s web
page – radware.com – was vulnerable. Messages not
starting with 0x0002 were answered with a TCP re-
set. Other messages were answered with a TLS alert 51
(decrypt error). We discovered the same issue on a
host that we knew was served by a Radware Alteon de-
vice due to previous research.

We informed Radware about the issue and they re-
leased a fix with the Alteon firmware versions 30.2.9.0,
30.5.7.0 and 31.0.4.0 [32]. CVE-2017-17427 was as-
signed to this vulnerability.

5.5 Cisco ACE
We found that Cisco ACE load balancers were
vulnerable. Different error types were answered
with either TLS alert 20 (bad record mac) or 47
(illegal parameter).

Cisco stopped selling and supporting ACE devices in
2013 [13]. They informed us that they will not issue a fix
for this flaw. CVE-2017-17428 was assigned. Based on
our scans we assume that despite being out of support for
several years ACE devices are still in widespread use.

We also observed that the host cisco.com and sev-
eral of its subdomains are vulnerable to Bleichenbacher
attacks in the exact same way as the vulnerable ACE de-
vices. Although Cisco did not reveal to us what products
are used for these domains, our belief is that they are
likely running out of support ACE devices within their
network infrastructure.

All cipher suites supported by these devices use the
RSA encryption key exchange [14], making it impossi-
ble to mitigate this vulnerability by disabling it. Users of
Cisco ACE devices that need TLS support therefore can-
not run these devices with a secure TLS configuration.

5.6 Erlang
We tested multiple TLS stacks in free and open source
software to find further reasons for the vulnerabili-
ties detected in our scans. We discovered that the
TLS implementation in the Erlang programming lan-
guage answered to different RSA decryption errors
with different TLS alerts. Messages that did not
start with 0x0002 were answered with a TLS alert 51
(decrypt error), other errors were answered with a
TLS alert 10 (unexpected message).

Independently of that, we discovered several hosts
used by WhatsApp (owned by Facebook) that were vul-
nerable in a similar way except that they answered with
TLS alert 20 (bad record mac) rather than 51 in re-
sponse to certain padding errors. We later learned from
Facebook that these hosts were also operated using Er-
lang. Our assessment that these differences were due to
different versions of Erlang was later confirmed by the
Erlang developers. Their tests found that versions 19 and
20 answered with TLS alert 10/51 while version 18 an-
swered with TLS alert 20/51 as observed on the What-
sApp domain.

The Erlang developers released fixes in the ver-
sions 18.3.4.7 [3], 19.3.6.4 [4] and 20.1.7 [5].
CVE-2017-1000385 was assigned for this bug.

5.7 Bouncy Castle
We shared our test tool with CERT/CC and they shared
it with developers of various TLS implementations. We
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learned that the Java TLS implementation of Bouncy
Castle was vulnerable to a variant of ROBOT. Sending
a ClientKeyExchange where the zero terminator of the
padding was not at the right position led to a TLS alert 80
(internal error). Other errors made the server send a
ChangeCipherSpec message.

The vulnerability only appears if Bouncy Cas-
tle is using the JCE API in Java for crypto-
graphic operations. Bouncy Castle offers an old
API (org.bouncycastle.crypto.tls) and a new API
(org.bouncycastle.tls). The vulnerability appears only if
the new API is used in combination with the JCE API.
The old API does not support the JCE API.

Bouncy Castle plans to fix this vulnerability in version
1.59. CVE-2017-13098 was assigned.

5.8 WolfSSL
WolfSSL is a TLS stack for embedded devices. With the
shortened message flow, we got a timeout for a correctly
formatted message and errors for all messages that had
any flaw in their structure (wrong PKCS #1 v1.5 prefix,
zeros in the non-zero padding, missing padding zero ter-
minator).

This only gives a weak oracle and attacks would take
very long. However, it should still be considered a secu-
rity flaw. WolfSSL developers fixed this issue in version
3.13.0 [20]. CVE-2017-13099 has been assigned to this
flaw.

5.9 Old vulnerabilities in MatrixSSL and
JSSE

We are aware of two already known vulnerabilities in
TLS stacks that have been discovered in recent years.
Meyer et al. [28] have identified a vulnerability in Java
/ JSSE (CVE-2012-5081) that affects Oracle Java SE
7 Update 7 and earlier, 6 Update 35 and earlier, 5.0
Update 36 and earlier, and 1.4.2 38 (CVE-2012-5081).
Somorovsky [36] has identified a vulnerability in Ma-
trixSSL before 3.8.3 (CVE-2016-6883).

We found a small number of vulnerable hosts that we
assume are these vulnerabilities, indicating that individu-
als or organizations still use unpatched versions of JSSE
and MatrixSSL. In particular, one embedded device ven-
dor was identified as using an older release of MatrixSSL
in the latest firmware of some products.

5.10 Further vulnerabilities
We have identified a weak oracle in IBM Lotus Domino,
distinguishable by TLS alerts 20 (bad record mac) and
47 (illegal parameter). We have initially not dis-
closed this as IBM has not fixed this yet, after our ini-

tial disclosure it was independently discovered by oth-
ers.1 IBM released a security advisory for WebSphere
MQ [21]. Due to the lack of communication from IBM
we have no further information, but we believe this is a
separate vulnerability.

We also learned after our disclosure that de-
vices from Palo Alto Networks were vulnerable
(CVE-2017-17841). A fix for PAN-OS is available in
versions 7.1.5 and 8.0.7 [30].

Furthermore, we have identified vulnerable servers
whose behavior we could not link to a specific imple-
mentation. It is often challenging to find out what prod-
ucts are used on hosts on the public Internet. Attempts to
ask the operators usually remain unanswered and many
products do not expose product or version information
via the appropriate HTTP headers. The “Server” header
is unreliable, as in many cases load balancers or secu-
rity appliances are terminating TLS connections while
the header information is generated by the HTTP server
itself. The “X-Forwarded-For” header that is supposed to
be used by such products is hardly used, as many devel-
opers of security appliances think that this information
should be hidden.

Based on our findings we must assume that more vul-
nerable products exist. If we learn about them we will
also add them to our web page.2

6 Statistics about affected hosts

We performed several scans over the Alexa Top 1 Million
list for vulnerable hosts. We incrementally improved our
scan strategy while at the same time informing affected
web pages and vendors who started to patch their servers.
Therefore there was no single point in time where we
were able to identify all vulnerabilities. We want to stress
that all our numbers should be considered rough esti-
mates, as they are both over- and undercounting vulner-
abilities.

We believe that two scans we performed on November
11th and November 12th give us the closest estimate for
the number of vulnerable servers before our research. We
did scans for all domains in the Alexa Top 1 Million both
with and without a www prefix on HTTPS / port 443. It
is very common that the hosts with and without www
prefix are served by different TLS stacks.

We already had the shortened message flow. Apart
from Facebook, none of the affected vendors had started
shipping fixes at this point. Of particular importance is
that this was prior to the availability of updated software
for F5 appliances.

1https://twitter.com/drwetter/status/

943785632672907264
2https://robotattack.org/
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However these scans did not test with varied cipher
suites and therefore missed some vulnerable hosts which
do not present with vulnerable behavior when a CBC
cipher is negotiated. These scans were also made after
Facebook had already started deploying fixes among its
infrastructure. Furthermore our scan tool did not yet con-
tain a test to identify the JSSE issue (CVE-2012-5081).

While our scan tool attempts to minimize inaccuracies
by validating vulnerable responses, we have observed
that certain non-deterministic behavior can still be falsely
identified as vulnerable.

According to these scans 22,854 hosts (2.3 %) were
vulnerable among the www hosts. 17,463 hosts (1.7 %)
were vulnerable among the non-www hosts. If we com-
bine the results 27,965 hosts (2.8 %) were vulnerable on
either the www or the non-www host. We assume that
the reason for this low number of vulnerabilities overall
is the correct mitigation implementation in OpenSSL, the
most widely used TLS library.

Among the top 100 domains according to Alexa 27
(thus 27 %) were vulnerable if we combine our best scan
result with previous scans of hosts that were already fixed
at that point. This indicates that among high profile hosts
the number of vulnerable systems is higher. The reason
is a common usage of F5 products in high profile servers.

Based on the exact vulnerability we can also estimate
affected vendors. We would like to stress that there’s
further potential for errors here, as it is possible that dif-
ferent vendors have the vulnerability in the same way
making it difficult to accurately distinguish between vul-
nerable products. If we combine these two scans 21,194
hosts were vulnerable to one of the F5 variants we have
seen. 5,856 hosts were vulnerable to the Citrix variant,
521 Cisco ACE, 336 Radware, 118 IBM, 6 MatrixSSL,
and 5 Erlang. We also identified three additional behav-
ior profiles which could not be attributed to any specific
vendor. These behaviors were found on 923, 793, and
763 hosts, respectively.

7 Proof of concept attack

We developed a proof of concept attack that allows de-
crypting and signing messages with the key of a vulner-
able server. The attack is implemented in Python 3. Our
proof of concept is based on Tibor Jager’s implementa-
tion of the Bleichenbacher algorithm.

The implementation uses the simple algorithm as de-
scribed by Bleichenbacher’s original work [11]. Our at-
tack thus does not use the optimized algorithms that have
been developed over the years [7]. We also did not paral-
lelize the attack, all connections and oracle queries hap-
pen sequentially. Despite these limitations we were still
able to practically perform the attack over the Internet
both for decryptions and for signatures.

Our code first scans the host for Bleichenbacher vul-
nerabilities. We try to detect a variety of signals given by
the server and automatically adapt our oracle to it.

For a successful attack we need many subsequent
connections to a server. Our attack code utilizes
TCP NODELAY flag and TCP Fast Open where available to
make these connections faster. This reduces latency and
connection overhead allowing for more oracle queries
per second.

We have published our proof of concept attack under
a free license (CC0).

8 Impact analysis

A vulnerable host allows an attacker to perform opera-
tions with the server’s private key. However, given that
the attack usually takes several tens of thousands of con-
nections it takes some time to perform. This has conse-
quences for the impact of the attack.

TLS supports different kinds of key exchanges with
RSA: Static RSA key exchanges where a secret value is
encrypted by the client and forward-secrecy enabled key
exchanges using Diffie Hellman or elliptic curve Diffie
Hellman where RSA is only used for signing. Mod-
ern configurations tend to favor the Elliptic Curve Diffie
Hellman key exchange. In a correct TLS implementa-
tion, it should not be possible for an attacker to force a
specific key exchange mechanism, however other bugs
may allow this.

If a static RSA key exchange is used, the attack has
devastating consequences. An attacker can passively
record traffic and later decrypt it with the Bleichenbacher
oracle. Servers that only support static RSA key ex-
changes are therefore at the highest risk. We observed
devices and configurations where this is the case, notably
the Cisco ACE load balancers and the host paypal.com.

In this section we describe general applications of Ble-
ichenbacher attacks to servers that do not support static
RSA key exchange.

8.1 Attacks when server and client do not
use RSA encryption

To attack a key exchange where RSA is only used for
signatures, the attacker faces a problem: He could imper-
sonate a server to a client, but in order to do this he has
to be able to perform an RSA signature operation during
the handshake. A TLS handshake usually takes less than
a second. An attacker can delay this up to a few sec-
onds, but not much more. Therefore, the attack needs to
happen really fast. Creating a signature with a Bleichen-
bacher attack takes longer than decrypting a ciphertext,
therefore this is particularly challenging.
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However, if the client still supports RSA encryption,
the attacker has another option: He can downgrade the
connection to an RSA key exchange. This has previ-
ously been described by Aviram et al. [6]. We believe
that in realistic scenarios it is possible to optimize the at-
tack enough to be able to perform this, particularly for
large targets that have a lot of servers. An attacker could
parallelize and distribute the attack over multiple servers
himself and attack multiple servers of the target. How-
ever, we have not practically tried to perform such an
attack.

8.2 Attack on old QUIC

The QUIC protocol allowed a special attack scenario.
Older versions of QUIC had the possibility to sign a
static X25519 key with RSA. This key could then be
used to run a server without the need of using the pri-
vate RSA key during the handshake. This scenario has
previously been discussed by Jager et al. [23] and in the
context of the DROWN attack by Aviram et al. [6]. In
response to the DROWN attack Google has first disabled
QUIC for non-Google hosts and later changed the QUIC
handshake to prevent this attack [12].

8.3 Cross-protocol and cross-server at-
tacks

It should be noted that with Bleichenbacher attacks
the attack target can be independent from the vulner-
able server as long as they share the same RSA key.
As shown by Aviram et al. [6] this has several prac-
tical implications. Let’s assume a web service un-
der www.example.com is served by a safe TLS stack
that is not vulnerable. This server can still be at-
tacked if the same RSA keys are used elsewhere by
a vulnerable stack. This is possible because an at-
tacker can use the oracle from the vulnerable server
to sign messages or decrypt static RSA key exchanges
with www.example.com. Impersonation attacks are
also possible against www.example.com provided there
is some vulnerable service using an HTTPS certificate
valid for www.example.com and the attacker is fast
enough. The most common scenario for this would
be if a *.example.com certificate is used on the vul-
nerable target. We have actually observed such an ex-
ample in the wild. The main WhatsApp web page –
www.whatsapp.com – was not vulnerable. Several sub-
domains of whatsapp.com were however vulnerable
and used a wildcard certificate that was also valid for
*.whatsapp.com. These servers provided very good
performance, thus we believe a parallelized attack would
have allowed impersonation of www.whatsapp.com.

Similar attack scenarios can be imagined if different
services share a certificate, a key, or have certificates that
are also valid for other services. For example, a vulnera-
ble e-mail server could allow attacks on HTTPS connec-
tions.

These scenarios show the risk of sharing keys between
different services or using certificates with an unneces-
sarily large scope. We believe it would be good crypto-
graphic practice to avoid these scenarios. Each service
should have its own certificates and certificates that are
valid for a large number of hosts - particularly wildcard
certificates – should be avoided. Also private keys should
not be shared between different certificates.

8.4 Attack on ACME revocation

Apart from attacks against TLS an attack may be pos-
sible if the private key of a TLS server is also used in
different contexts.

An example for this is the ACME protocol [8] for cer-
tificate issuance that is used by Let’s Encrypt. It allows
revoking certificates if one is able to sign a special revo-
cation message with the private key belonging to a cer-
tificate.

While this does not impact the security of TLS con-
nections, it allows causing problems for web page opera-
tors that may see unexpected certificate validation errors.

9 Discussion

9.1 Countermeasures in TLS 1.0, 1.1 and
1.2

Bleichenbacher’s original attack was published in 1998.
At that time SSL version 3 was the current version of the
SSL protocol. SSL version 3 was replaced with TLS ver-
sion 1.0 in 1999 and this was thus the first standard that
included countermeasures to Bleichenbacher’s attack.

TLS 1.0 [2] proposed that when receiving an incor-
rectly formatted RSA block an implementation should
generate a random value and proceed using this random
value as the premaster secret. This will subsequently lead
to a failure in the Finished message that should be in-
distinguishable from a correctly formatted RSA block for
an attacker.

TLS 1.0 did not define clearly what a server should
do if the ClientHello version in the premaster secret
is wrong. This allowed Klı́ma, Pokorný and Rosa to de-
velop a bad version oracle [26]. Also the countermea-
sures open up a timing variant of the Bleichenbacher or-
acle. Given that the random value is only created in case
of an incorrectly formatted message an attacker may be
able to measure the time it takes to call the random num-
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ber generator. In TLS 1.1 [17] it was attempted to con-
sider these attacks and adapt the countermeasures.

In TLS 1.2 [34] two potential algorithms are pro-
vided that implementers should follow to avoid Ble-
ichenbacher attacks. These two variations contain further
sub-variations, describing proposals for how to maintain
compatibility with broken old implementations. How-
ever these should only be applied if a version number
check is explicitly disabled. Furthermore TLS 1.2 states
that the first algorithm is recommended, as it has theoret-
ical advantages, referring again to the work of Klı́ma,
Pokorný and Rosa [26]. It is not clear why the TLS
designers decided to propose two different algorithms
while also claiming that one of them is preferable. This
needlessly increases the complexity even more.

The difference between the two algorithms in TLS 1.2
is the handling of wrong ClientHello versions. The
first algorithm proposes that servers fix ClientHello

version errors in the premaster secret and calculate the
Finished message with it. The second algorithm pro-
poses to always treat a wrong version number in the pre-
master secret as an error.

The TLS standards mention that the OAEP proto-
col provides better security against Bleichenbacher at-
tacks. It was always decided however to keep the old
PKCS #1 v1.5 standard for compatibility reasons.

To summarize, it can be seen that the designers of
the TLS protocol decided to counter Bleichenbacher at-
tacks by introducing increasingly complicated counter-
measures. With each new TLS version the chapter about
Bleichenbacher countermeasures got larger and more
complex. As our research shows, these countermeasures
often do not work in practice and many implementa-
tions remain vulnerable. In our opinion this shows that
it is a bad strategy to counter cryptographic attacks with
workarounds. The PKCS #1 v1.5 encoding should have
been deprecated after the discovery of Bleichenbacher’s
attack.

We would like to point out that something very simi-
lar happened in TLS in terms of symmetric encryption.
In 2002 Vaudenay demonstrated a potential padding ora-
cle attack against CBC in TLS [37]. Instead of removing
these problematic modes or redesigning them to be re-
silient against padding oracle attacks the TLS designers
decided to propose countermeasures. TLS 1.2 explicitly
mentions that these countermeasures still leave a timing
side-channel. AlFardan and Paterson were subsequently
able to show that this timing side-channel could be ex-
ploited [1].

9.2 Timing attacks

In this research we focused on Bleichenbacher vulnera-
bilities that can be performed without using timing at-

tacks. We therefore point out that hosts that show up as
safe in our scans are not necessarily safe from all varia-
tions of Bleichenbacher attacks. It is challenging to test
and perform timing attacks over the public Internet due to
random time differences based on network fluctuations.

Meyer et al. have described some timing-based Ble-
ichenbacher vulnerabilities [28]. Given the complexity
of the countermeasures in the TLS standard it is very
likely that yet unknown timing variants of Bleichen-
bacher vulnerabilities exist in many TLS stacks.

We learned from Adam Langley that various TLS im-
plementations may be vulnerable to timing attacks due
to the use of variable-size bignum implementations. In
OpenSSL the result of the RSA decryption is handled
with the internal BN (bignum) functions. If the de-
crypted value has one or several leading zeros the opera-
tion will be slightly faster. If an attacker is able to mea-
sure that timing signal he may be able to use this as an
oracle and perform an attack very similar to a Bleichen-
bacher attack. Other TLS libraries have similar issues.

The timing signal is very small and it is unclear
whether this would be exploitable in practice. However,
AlFardan and Paterson have shown in the Lucky Thir-
teen attack [1] that even very small timing side-channels
can be exploitable.

9.3 PKCS #1 v1.5 deprecation in TLS
TLS protocol designers reacted to Bleichenbacher’s re-
search and followup research by adding increasingly
complex workarounds. Our research shows that this
strategy has not worked. The workarounds are not im-
plemented correctly on a large number of hosts.

For the upcoming TLS 1.3 version the RSA encryption
key exchange has been deprecated early in the design
process [33]. However, as shown by Jager et al. this is
not sufficient, as attacks can be performed across proto-
col versions [23]. If we assume that countermeasures are
unlikely to be implemented correctly everywhere then
the only safe option is to fully disable support for RSA
encryption key exchanges.

This comes with some challenges. The alternatives to
the RSA key exchange are finite field Diffie Hellman and
Elliptic Curve Diffie Hellman key exchanges. There has
also been a push to deprecate finite field Diffie Hellman,
because clients cannot practically require safe parame-
ters from a server. The Chrome browser developers have
thus decided to disable support for finite field Diffie Hell-
man [10]. This leaves Elliptic Curve Diffie Hellman as
the only remaining option, however, deployment of those
ciphers has been delayed by patent concerns. Thus RSA
encryption based key exchanges have been considered as
a compatibility fallback to support old clients.

The deprecation of finite field Diffie Hellman is not
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necessarily a problem here. Bleichenbacher vulnerabil-
ities affect the server side of TLS. There is no added
risks if clients still support RSA encryption based key ex-
changes. Therefore server operators can disable RSA en-
cryption based key exchanges and support Elliptic Curve
Diffie Hellman exchanges for modern clients and finite
field Diffie Hellman for old clients.

Cloudflare informed us that on their hosts only around
one percent of client connections use an RSA encryption
key exchange. One of the authors of this paper operates
HTTPS servers and was able to disable RSA encryption
without any notable problems.

There is some indication that disabling RSA encryp-
tion on E-Mail servers is more problematic. We were
able to log TLS ciphers on a mail server operated by one
of this paper’s authors. We identified legitimate connec-
tions to IMAP and POP3 with an RSA key exchange. By
asking the affected users we learned that they all used the
“Mail” app that came preinstalled on old Android 4 or in
one case even Android 2 phones.

The algorithm choices on Android depend on
the app. On an Android 4.3 phone we were
able to observe that the Mail app connected via
TLS RSA WITH AES 128 CBC SHA. However using the
free K9Mail app a connection with an Elliptic Curve
Diffie Hellman key exchange was used. Therefore in or-
der to reduce the need to support the RSA encryption
based key exchange users can switch to alternative apps
that support more modern cryptographic algorithms.

Despite these challenges we believe that the risk of
incorrectly implemented countermeasures to Bleichen-
bacher attacks is so high that RSA encryption based key
exchanges should be deprecated. Considering the com-
patibility issues and risks we recommend that first sup-
port on the server side should be disabled. For HTTPS
servers we believe that this can be done today and will
only cause minor compatibility issues.

9.4 OAEP, PKCS #1 v1.5 for signatures
and PSS

RSA-OAEP is an alternative to the padding provided
by PKCS #1 v1.5 and provides better security for en-
crypted RSA. It is standardized in the newer PKCS #1
standards, the latest being version 2.2 [29]. However it
was never used for TLS and it is unlikely that this is go-
ing to change.

Independent of the padding mode RSA encryption
does not provide forward secrecy. Given the clear advan-
tage of ciphers with forward secrecy enabled we believe
the way forward is to use neither PKCS #1 v1.5 encryp-
tion nor RSA-OAEP in TLS. This is also the decision
that has been made for TLS 1.3 [33]. RSA-OAEP may
however be a better alternative for other protocols. We

would like to point out that OAEP is not fully resilient to
padding attacks, see Manger [27] and Meyer et al. [28]
for details.

When using forward secrecy RSA can be used as a
signature algorithm. This is still the most common set-
ting in TLS, as alternatives like ECDSA have not seen
widespread adoption yet. RSA signature implementa-
tions do not suffer from Bleichenbacher’s attack from
1998, but the PKCS #1 v1.5 padding has another prob-
lem. In 2006, Bleichenbacher discovered a common im-
plementation flaw in the parsing of those signatures [19].
A variation of this attack, named BERserk, was indepen-
dently discovered by Delignat-Lavaud and Intel as affect-
ing the Mozilla NSS library in 2014 [35]. While these at-
tacks are completely independent of the RSA encryption
attack from 1998, they are a good reason to deprecate
PKCS #1 v1.5 both for encryption and for signatures.

RSA-PSS provides resilience against this attack and
is also standardized in the latest PKCS #1 v2.2 stan-
dard [29]. TLS 1.3 will use RSA-PSS for signatures [33].

9.5 Bleichenbacher attacks in other proto-
cols

In this research we focused on Bleichenbacher attacks
against TLS. However these attacks are not limited to
TLS. Jager et al. [22] have shown Bleichenbacher vulner-
abilities in XML encryption, Detering et al. have shown
vulnerabilities in JSON / JOSE [16] and Nestlerode has
discovered vulnerabilities in the Cryptographic Message
Syntax (CMS) code of OpenSSL [31].

All protocols that make use of PKCS #1 v1.5 en-
cryption and potentially allow an attacker to see error
messages are potential targets for Bleichenbacher at-
tacks. Our recommendation to deprecate PKCS #1 v1.5
is therefore not limited to TLS – it should be avoided in
other protocols as well.

9.6 Vendor responsibility
Perhaps the most surprising fact about our research is
that it was very straightforward. We took a very old and
widely known attack and were able to perform it with
very minor modifications on current implementations.
One might assume that vendors test their TLS stacks for
known vulnerabilities. However, as our research shows
in the case of Bleichenbacher attacks, several vendors
have not done this.

There were several warnings that indicated such prob-
lems. The work from Meyer et al. in 2014 has al-
ready shown some vulnerable modern-day implementa-
tions [28]. Jager et al. have warned about the risk of Ble-
ichenbacher attacks for TLS 1.3 [23], and were awarded
with the best paper award at the “TLS 1.3 Ready Or Not”
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(TRON) workshop [9]. Aviram et al. have used the idea
of Bleichenbacher’s attack to construct their DROWN at-
tack [6]. It is notable that none of these publications have
caused the affected vendors to test their product for such
vulnerabilities.

9.7 Vulnerability detection tools
Many existing TLS vulnerability testing tools did not
have tests for Bleichenbacher vulnerabilities in the past.
This is likely one reason why such an old vulnerability
is still so prevalent. To our knowledge TLS-Attacker3

and tlsfuzzer4 had tests for Bleichenbacher vulnerabili-
ties before our research started. However, both tools are
not yet optimized for usability and are likely only used
by a small audience. None of the existing tools we know
of had tests for the shortened message flow attacks.

We reached out to developers of several TLS test-
ing tools prior to this publication. The developers of
testssl.sh5 developed a test that is similar to our own test
tool. Kario implemented additional checks in tlsfuzzer.
The test in tlsfuzzer is different to our test as it also
checks for protocol violations that are not vulnerabili-
ties. A strict interpretation of the TLS standard demands
that all RSA decryption failures are answered with a TLS
alert 20 (bad record mac) after the Finished message.

Tripwire IP360 added detection6 for vulnerable F5 de-
vices in ASPL-753 which was released in coordination
with F5’s public advisory. Generic detection of Ble-
ichenbacher oracles will be released in coordination with
this publication. SSLLabs added detection for Bleichen-
bacher oracles in their development version with a test
similar to our own.7

Before our research, TLS-Attacker had implemented
a basic Bleichenbacher attack evaluation with full TLS
protocol flows. We extended this evaluation with short-
ened protocol flows with missing ChangeCipherSpec

and Finished messages, and implemented an oracle
detection based on TCP timeouts and duplicated TLS
alerts. These new features are available in TLS-Attacker
2.2.

We encourage developers of other TLS or security test
tools to include tests for Bleichenbacher attacks and for
other old vulnerabilities. We hope that better test tools
will detect any remaining vulnerable implementations
that we have not identified during our research.

We are offering the code of our own scan tool under a
CC0 (public domain) license. 8 This allows developers

3https://github.com/RUB-NDS/TLS-Attacker
4https://github.com/tomato42/tlsfuzzer
5http://testssl.sh/
6https://www.tripwire.com/state-of-security/vert/

return-bleichenbachers-oracle-threat-robot
7https://dev.ssllabs.com/
8https://github.com/robotattackorg/robot-detect

of other tools – both free and proprietary – to use our
code with no restrictions.

10 Summary and conclusion

We were able to identify nine vendors and open source
projects and a significant number of hosts that were vul-
nerable to minor variations of Bleichenbacher’s adaptive-
chosen ciphertext attack from 1998. The most notable
fact about this is how little effort it took us to do so. We
can therefore conclude that there is insufficient testing of
modern TLS implementations for old vulnerabilities.

The countermeasures in the TLS standard to Bleichen-
bacher’s attack are incredibly complicated and grew
more complex over time. It should be clear that this was
not a viable strategy to avoid these vulnerabilities.

The designers of TLS 1.3 have already decided to dep-
recate the RSA encryption key exchange. However, as
long as compatibility with RSA encryption cipher suites
is kept on older TLS versions these attacks remain a
problem. To make sure Bleichenbacher attacks are fi-
nally resolved we recommend to fully deprecate RSA
encryption based key exchanges in TLS. For HTTPS we
believe this can be done today.

We hope that our research will help to end the use of
PKCS #1 v1.5.
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A Generated signature for Facebook

We provide a signature that signs the following text:
We hacked Facebook with a Bleichenbacher

Oracle (JS/HB).

The text is PKCS #1 v1.5 encoded and signed with
the certificate with the certificate that was used on
www.facebook.com at the time of this research.

We provide example commands using curl, xxd and
openssl that will verify this signature. We download the
certificate from the crt.sh search engine in order to have
a stable URL. We could alternatively get it directly from
Facebook’s servers via TLS, but that would stop working
once the certificate expires and Facebook changes it.

This signature is using the format of OpenSSL’s
rsautl command. This command signs the raw input
message and does not use the hashing that is part of
PKCS #1 v1.5.

echo 799e43535a4da70980fada33d0fbf51ae60d32

c1115c87ab29b716b49ab0637733f92fc985f28

0fa569e41e2847b09e8d028c0c2a42ce5beeb64

0c101d5cf486cdffc5be116a2d5ba36e52f4195

498a78427982d50bb7d9d938ab905407565358b

1637d46fbb60a9f4f093fe58dbd2512cca70ce8

42e74da078550d84e6abc83ef2d7e72ec79d7cb

2014e7bd8debbd1e313188b63a2a6aec55de6f5

6ad49d32a1201f18082afe3b4edf02ad2a1bce2

f57104f387f3b8401c5a7a8336c80525b0b83ec

96589c367685205623d2dcdbe1466701dffc6e7

68fb8af1afdbe0a1a62654f3fd08175069b7b19

8c47195b630839c663321dc5ca39abfb45216db

7ef837 | xxd -r -p > sig

curl https://crt.sh/?d=F709E83727385F514321

D9B2A64E26B1A195751BBCAB16BE2F2F34EBB08

4F6A9|openssl x509 -noout -pubkey > pub

key.key

openssl rsautl -verify -pubin -inkey pubkey

.key -in sig
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