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Abstract

Multimedia protocol tunneling enables the creation of

covert channels by modulating data into the input of pop-

ular multimedia applications such as Skype. To be effec-

tive, protocol tunneling must be unobservable, i.e., an

adversary should not be able to distinguish the streams

that carry a covert channel from those that do not. How-

ever, existing multimedia protocol tunneling systems

have been evaluated using ad hoc methods, which casts

doubts on whether such systems are indeed secure, for

instance, for censorship-resistant communication.

In this paper, we conduct an experimental study of the

unobservability properties of three state of the art sys-

tems: Facet, CovertCast, and DeltaShaper. Our work

unveils that previous claims regarding the unobservabil-

ity of the covert channels produced by those tools were

flawed and that existing machine learning techniques,

namely those based on decision trees, can uncover the

vast majority of those channels while incurring in com-

paratively lower false positive rates. We also explore

the application of semi-supervised and unsupervised ma-

chine learning techniques. Our findings suggest that the

existence of manually labeled samples is a requirement

for the successful detection of covert channels.

1 Introduction

Multimedia protocol tunneling has emerged as a poten-

tially effective technique to create covert channels which

are difficult to identify. In a nutshell, this technique con-

sists of encoding covert data into the video (and / or

audio) channel of popular encrypted streaming applica-

tions such as Skype without requiring any changes to the

carrier application. Systems such as Facet [30], Covert-

Cast [34], and DeltaShaper [2] implement this technique,

and introduce different approaches for data modulation

that aim at raising the difficulty of an adversary to iden-

tify covert data transmissions.

An important property that all these systems strive to

achieve is unobservability. A covert channel is deemed

unobservable if an adversary that is able to scan any num-

ber of streams is not able to distinguish those that carry

a covert channel from those that do not [20, 23]. Thus,

an adversary aims at correctly detecting all streams that

carry covert channels, among a set of genuine streams,

as effectively as possible. In practice, a multimedia pro-

tocol tunneling system that provides a high degree of un-

observability prevents an adversary from flagging a large

fraction of covert flows (i.e., from attaining a high true

positive rate) while flagging a low amount of regular traf-

fic (i.e., while attaining a low false positive rate).

In spite of the efforts to build unobservable systems,

the methodology currently employed for their evaluation

raises concerns. To assess the unobservability of a sys-

tem such as Facet, experiments are mounted in order to

play regular traffic along with covert traffic, collect the

resulting traces, and employ similarity-based classifiers

(e.g., relying in the χ2 similarity function) to determine

whether covert traffic can be detected with a low num-

ber of false positives [30]. However, each system has

been evaluated with a different classifier, making results

hard to compare. Furthermore, those studies use just

one among the many machine learning (ML) techniques

available today. Yet, providing a common ground for as-

sessing the unobservability of multimedia protocol tun-

neling systems is a relevant problem which, nevertheless,

has been overlooked in the literature. Considering that

such systems emerged from the need to circumvent Inter-

net censorship, flawed systems may pose life-threatening

risks to end-users, e.g., journalists that report news in ex-

treme conditions may be prosecuted, imprisoned, or even

murdered if covert channels are detected.

To fill this gap, our goal is to systematically assess the

unobservability of existing systems against powerful ad-

versaries making use of traffic analysis techniques based

on ML. We aim at understanding which ML techniques

are better suited for the purpose of detecting covert chan-
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nels in multimedia streams and what are the limitations

of such techniques. In particular, we seek to explore ML

techniques which have yielded successful results when

applied in other domains (e.g., Tor hidden services fin-

gerprinting [22]), but have not yet been studied in the

context of covert traffic detection.

In this paper, we present the first experimental study of

the unobservability of covert channels produced by state-

of-the-art multimedia protocol tunneling systems. We

test three systems – Facet, CovertCast, and Deltashaper –

using the original code provided by their maintainers.

For our study, we take a systematic approach by in-

vestigating a spectrum of anomaly detection techniques,

ranging from supervised, to semi-supervised and unsu-

pervised, where for each category we explore different

classifiers, and investigate the trade-offs involved in the

ability to flag a large amount of covert channels while

minimizing false positives. From our study, we highlight

the following three main contributions.

First, our analysis reveals that some state-of-the-art

systems are flawed. In particular, CovertCast flows can

be detected with few false positives by an adversary, even

when resorting to existing similarity-based classifiers.

While the remaining systems exhibit different degrees

of unobservability according to their parameterization,

we show that none of the currently employed similarity-

based classifiers can detect such channels without incur-

ring in large numbers of false positives. We also con-

clude that one of the existing similarity-based classi-

fiers – using χ2 distance – consistently outperforms all

others in the task of detecting covert channels.

Second, we show that ML techniques based on deci-

sion trees and some of their variants are extremely effec-

tive at detecting covert traffic with reduced false positive

rates. For example, an adversary employing XGBoost

would be able to flag 90% of all Facet traffic while er-

roneously flagging only 2% of legitimate connections.

Moreover, the performance of such techniques is very

high, meaning that the adversary is able to classify traf-

fic in a few seconds, with a relatively low number of

samples per training set, and taking a low memory foot-

print. Additionally, the use of decision tree-based tech-

niques allows us to understand which traffic features are

most important for detecting the functioning of particular

multimedia protocol tunneling systems. These findings

suggest that, apart from their performance, decision tree-

based techniques can provide meaningful insight into the

inner workings of these systems and we propose that they

should be used for assessing the unobservability of mul-

timedia protocol tunneling systems in the future.

Third, we explore alternative ML approaches for the

detection of covert channels when the adversary is as-

sumed to be partially or totally deprived of labeled data.

Our findings suggest that unsupervised learning tech-

niques provide no advantage for the classification of mul-

timedia protocol tunneling covert channels, while the ap-

plication of semi-supervised learning techniques yields a

significant fraction of false positives. However, we note

that the performance of semi-supervised techniques can

be significantly improved through the optimization of pa-

rameters or by providing algorithms with extra training

data. The study of semi-supervised anomaly detection

techniques with an ability to self-tune parameters can be

a promising future direction of research which would en-

able adversaries to detect covert traffic while avoiding

the burden of generating and manually label data.

We note that we synthesize a limited number of legiti-

mate and covert traffic samples in laboratory settings for

creating our datasets. While this is a common approach

for generating datasets for the type of unobservability as-

sessment we conduct in this paper, it is possible that ad-

versaries possessing a privileged position in the network

can build a more accurate representation of traffic.

The remainder of our paper is organized as follows.

Section 2 presents the methodology of our study. Sec-

tion 3 presents the main findings of our study regarding

the comparison of similarity-based classifiers. Section 4

presents the results obtained when assessing unobserv-

ability resorting to decision tree-based classifiers. Sec-

tion 5 presents our first insights on using semi-supervised

and unsupervised anomaly detection techniques for the

identification of covert traffic. In Section 6, we discuss

obtained results and we present the related work in Sec-

tion 7. Lastly, we conclude our work in Section 8.

2 Methodology

This section introduces the systems we analyzed, our ad-

versary model, and the experimental setup of our study.

2.1 Systems Under Analysis

Below, we describe three state-of-the-art approaches at

multimedia protocol tunneling which serve as a basis for

our study. We selected these systems because all of them

encode data into video streams, and their code is pub-

licly available for open testing. We note that although

these systems have been conceived for the purpose of

censorship circumvention, in practice, they may be used

for other purposes, such as concealing criminal activity.

Facet [30] allows clients to watch arbitrary videos by re-

placing the audio and video feeds of Skype videocalls.

To watch a video, clients contact a Facet server by send-

ing it a message containing the desired video URL. Af-

terwards, the Facet server downloads the requested video

and feeds its content to microphone and camera emu-

lators. Then, the server places a videocall to the client
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transmitting the selected video and audio instead. Thus,

clients are not required to install any software in order to

use the system. For approximating the traffic patterns of

regular videocalls, Facet re-samples the audio frequency

and overlays the desired video in a fraction of each frame

while the remaining frame area is filled up by a video

resembling a typical videocall. Decreasing the area oc-

cupied by the concealed video translates into increased

resistance against traffic analysis.

CovertCast [34] scrapes and modulates the content of

web pages into images which are distributed via live-

streaming platforms such as YouTube. Multiple clients

can consume the data being transmitted in a particular

live stream simultaneously. CovertCast modulates web

content by encoding it into colored matrix images. A

colored matrix is parameterized by a cell size (adjacent

pixels with a given color), the number of bits encoded

in each cell (represented with a color), and the rate at

which a matrix containing new data is loaded. Clients

scrape and demodulate the images served through the

live stream extracting the desired web content.

DeltaShaper [2] differentiates itself from the previous

systems in that it allows for tunneling arbitrary TCP/IP

traffic. This is achieved by modulating covert data into

images which are transmitted through a bi-directional

Skype videocall. DeltaShaper follows a similar data en-

coding mechanism to that of CovertCast. However, and

similarly to Facet, a colored matrix is overlayed in a frac-

tion of the call screen, on top of a typical chat video run-

ning in the background. This overlay, named payload

frame, can be carefully parameterized to provide differ-

ent levels of resistance against traffic analysis. On call

start, DeltaShaper undergoes a calibration phase for ad-

justing its encoding parameters according to the current

network conditions in order to preserve unobservability.

2.2 Adversary Model

To study the unobservability properties of the aforemen-

tioned systems, we emulate a state-level adversary which

will attempt to detect the traffic of multimedia protocol

tunneling tools while resorting to different anomaly de-

tection techniques. The providers of encrypted multi-

media applications which are used as carriers for covert

channels are not assumed to collude with the adversary.

Thus, the adversary cannot simply demand application

providers to decipher and disclose raw multimedia con-

tent which could be easily screened for the presence of

covert data. The adversary is also assumed to be unable

to control the software installed in the computers of end-

users. However, domestic ISPs are assumed to cooperate

with the adversary, enabling it to monitor, store and in-

spect all traffic flows crossing its borders.

An adversary faces an inherent trade-off between the

ability to correctly detect a large amount of covert chan-

nels and to erroneously flag legitimate flows. Flagging

legitimate flows as covert channels is something that the

adversary wants to avoid in most practical settings. For

example, a censor that aims at blocking flows containing

covert channels may not be willing to block large frac-

tions of legitimate calls, that are used daily by companies

and business, as these calls may be key for the economy

of the censor’s regime [17]. Also, law-enforcement agen-

cies may not be willing to risk to falsely flag legitimate

actions of citizens as criminal activity.

2.3 Performance Metrics

In face of the previous observations, when comparing the

different techniques we mainly use the following met-

rics: true positive rate, false positive rate, accuracy, and

the area under the ROC curve. The True Positive Rate

(TPR) measures the fraction of positive samples that are

correctly identified as such, while the False Positive Rate

(FPR) measures the proportion of negative samples erro-

neously classified as positive. Thus, adversaries will at-

tempt to obtain a high TPR and a low FPR when perform-

ing covert traffic classification. Accuracy captures the

fraction of correct labels output by the classifier among

all predictions, and can be used as a summary of the

classification performance since high accuracy implies

a high true positive rate and a low false positive rate.

The ROC curve plots the TPR against the FPR for the

different possible cutout points for classifiers possessing

adjustable internal thresholds. The area under the ROC

curve (ROC AUC) [16] summarizes this trade-off. While

a classifier outputting a random guess has an AUC=0.5,

a perfect classifier would achieve an AUC=1, where the

optimal point on the ROC curve is FPR=0 and TPR=1.

2.4 Experimental Setup

For conducting our study, we were required to analyze a

number of network traces produced by the systems de-

scribed in Section 2.1. For our testbed, we used two 64-

bit Ubuntu 14.04.5 LTS virtual machines (VMs) provi-

sioned with a 2.40GHz Intel Core2 Duo CPU and 8GB

of RAM configured in a LAN setting. We used the

v4l2loopback camera emulator and the pulseaudio sound

server to feed video and audio to the carrier multimedia

applications. The prototypes of the considered systems

were obtained from their respective websites [3, 29, 33].

Due to the deprecation of Skype v4.3 and the incompati-

bility of v4l2loopback with the latest Skype v8.x desk-

top version, we have resorted to Skype for Web. For

gathering the traffic samples generated by each system,

we captured the network packets produced by the carrier
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multimedia streams for a duration of 60 seconds after a

given covert channel has been established. The method-

ology we followed for gathering traffic samples has been

commonly used in the literature since it allows for the

analysis of the unobservability properties of covert chan-

nels while executing in steady-state. Next, we describe

the methodology we followed for generating our covert

and legitimate traffic datasets.

Facet: For building our covert video dataset, we col-

lected 1000 YouTube videos from the YouTube-curated

Top Shared and Liked playlist. The legitimate Skype

video dataset consists of 1000 recorded live chat videos

available on YouTube. We adapted the Facet prototype to

sample three types of Facet transmissions, corresponding

to scaling the covert videos on top of legitimate videos by

a factor of 50%, 25% and 12.5% – the available proto-

type represents a proof-of-concept only capable of a (un-

morphed) 100% scaling. Then, we gathered 1000 traf-

fic samples for each scaling factor by combining a pair

of legitimate and covert videos while following the au-

dio and video morphing techniques detailed in Facet’s

original description. To emulate legitimate Skype calls,

we streamed the media comprising our legitimate Skype

video dataset. The resolution of the camera emulator was

set to 320x240. For gathering traffic samples, we used

each of the available VMs as a Skype peer.

CovertCast: For building our legitimate live-streaming

dataset, we crawled 200 live-streams included in the Live

YouTube-curated list. Then, we generated 200 Covert-

Cast live-streams by broadcasting several news websites

already included in the available CovertCast prototype.

The server component, responsible for scraping web-

sites, was executed in one of our VMs and streamed mod-

ulated video frames to YouTube. We used a Windows

laptop running Google Chrome as a CovertCast client.

Each video was streamed with a 1280x720 resolution.

DeltaShaper: We emulated 300 legitimate bi-directional

Skype calls by streaming a subset of our legitimate Skype

video dataset. We gathered DeltaShaper traffic samples

by establishing a DeltaShaper connection between the

Skype endpoints installed in both VMs. We gathered

data for two DeltaShaper configurations, found to pro-

vide traffic analysis resistance guarantees, and which re-

spected the tuple (payload frame area, cell size, num-

ber of bits, framerate). These were comprised by the

〈320×240,8×8,6,1〉 and 〈160×120,4×4,6,1〉 tuples.

Each video was streamed in a 640x480 resolution.

3 Similarity-based Classification

For the purpose of unobservability assessment, multiple

similarity functions have been used to feed similarity-

based classifiers. This section details the rationale be-

hind each of these functions and how they have been

used for the construction of similarity-based classifiers

and applied to different multimedia protocol tunneling

systems. Then, we conduct a comparative analysis of the

performance of each of these classifiers.

3.1 Currently Used Similarity Functions

Next, we introduce the three similarity-based classifiers

which have been previously used for evaluating the un-

observability of Facet, CovertCast, and DeltaShaper.

In similarity-based classification [10], labeling is per-

formed by taking into account the pairwise-similarities

between the test sample and a set of labeled training sam-

ples (or a representative model based on these). In the

context of traffic analysis, similarity scores are often ob-

tained from the comparison of the frequency distribution

of packet lengths or inter-arrival times of traffic samples.

Pearson’s Chi-squared Test (χ2) [40] tells us whether

the distributions of two categorical variables differ sig-

nificantly from each other, by comparing the observed

and expected frequencies of each category. The χ2 test is

used in a classifier adapted for distinguishing Facet traf-

fic [30, 51]. The classifier starts by building two mod-

els for legitimate and Facet traffic, respectively, using la-

beled samples. These models are based upon a selec-

tion of the bi-gram distribution of packet lengths, where

bi-grams expected to hurt classification performance are

identified and discarded. Test samples are compared to

each of the models using the χ2 test. A simpler version of

this classifier labels a sample according to the minimum

distance obtained when compared against each model. A

more sophisticated version of the classifier labels sam-

ples according to whether the ratio between the distance

to each model surpasses a threshold. An adversary can

adjust this threshold for balancing the expected true pos-

itive and false positive rates of the classifier.

Kullback-Leibler Divergence (KL) [28] is a measure of

relative entropy between two target distributions which is

obtained by computing the information lost when trying

to approximate one distribution with the other. The KL

divergence is used for building a classifier for Covert-

Cast traffic. The classifier aims at distinguishing a set of

YouTube videos carrying modulated data from a set of

regular YouTube videos through the comparison of the

quantized frequency distribution of packet lengths. For

each sample in a given set, the classifier computes its KL

divergence from every other member in the same set and

every member in the other set. Then, the classifier com-

putes a success metric, corresponding to the number of

times the KL divergence between a member of one set is

more similar to another member of the same set, divided

by the total KL divergences that were computed.
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of unobservability. This can be inferred from the consis-

tently higher accuracy values provided by χ2.

2. χ2 produces large false positive rates when clas-

sifying Facet and DeltaShaper traffic. Figure 1 de-

picts the ROC curve of the χ2 and EMD classifiers

when detecting Facet and DeltaShaper traffic. Figure 1a

shows that for correctly identifying 90% of all Facet

traffic (TPR=90%), with s=50%, an adversary would

tag 45% of legitimate connections (45% FPR) as covert

traffic, while employing the χ2 classifier. For iden-

tifying 90% of all DeltaShaper 〈320 × 240,8 × 8,6,1〉
traffic, the adversary would face an FPR=51%. Thus,

even the deployment of the best performing similarity-

based classifier results in a large number of misclassifi-

cations for legitimate traffic. Misclassifications are fur-

ther aggravated should an adversary resort to the EMD

classifier. Figure 1 confirms that χ2 performs only

fairly in distinguishing covert channels (e.g., AUC=0.83

for Facet s=50%, AUC=0.74 for DeltaShaper 〈320 ×
240,8×8,6,1〉). We do not show a ROC curve for KL as

the classifier is not adjustable by an internal threshold.

3. CovertCast fails to provide unobservability. The

results in Table 1 show that the χ2 classifier can cor-

rectly identify all of CovertCast streams while incurring

only in a 2% false positive rate. Additionally, the num-

bers show that the remaining classifiers can correctly

identify >96.5% of CovertCast streams, albeit incurring

in a larger false positive rate (e.g., EMD: TPR=0.965,

FPR=0.305). We conjecture two explanations that may

justify the differences beween our results and those pub-

lished in the original CovertCast paper. Firstly, our re-

sults may stem from the use of a dataset which is one

order of magnitude larger than the one used for Covert-

Cast evaluation. This increased dataset may more ac-

curately represent the patterns generated by legitimate

YouTube streams’ traffic and reveal CovertCast activ-

ity. Secondly, implementation changes in YouTube may

have impacted the unobservability properties provided

by hardcoded data modulation parameters, which may

in turn be no longer adequate to ensure unobservability.

4 Decision Tree-based Classification

In this section, we depart from the use of similarity-based

classifiers for detecting the presence of covert traffic. As

it is unpractical to explore all possible machine learning

algorithms, we focus our experiments in a subset of al-

gorithms based on decision trees. We have chosen these

algorithms due to their ability of handling data in a non-

linear fashion, their ability to perform feature selection,

and the ease of interpretation of the resulting models.

Our results show that this approach is highly effective

at detecting covert traffic in the systems under study.

4.1 Selected Classifiers

We present a description of the decision-tree based algo-

rithms we have chosen for conducting our experiments:

Decision Trees [41] build a model in the form of a tree

structure, where each tree node is either a decision or

leaf node, representing a branch or a label, respectively.

Decision nodes split the current branch by an attribute.

A splitting attribute is commonly chosen according to its

expected information gain, i.e. the expected reduction in

entropy caused by choosing the attribute for a split. The

importance of each particular attribute can be assessed

by analyzing the tree structure, where nodes closer to the

root have a higher importance than those down the tree.

Despite its simple interpretation, decision trees can result

in complex models unable to generalize well or can build

unstable models due to the presence of large numbers

of correlated features. A popular way to mitigate such

disadvantages is to use decision tree ensembles.

Random Forests [6] are an ensemble learning method,

where a label is predicted by performing a majority vote

over the output of multiple decisions trees. To prevent

overfitting, Random Forests introduce variance in the

model through bootstrap aggregation, i.e. each tree is

trained using a random sample (with replacement) of the

training set. Additionally, Random Forests select ran-

dom attributes of the feature set when building each tree,

a technique named feature bagging. One method for as-

sessing the importance of an attribute is to average its

information gain across all trees in the ensemble.

eXtreme Gradient Boosting (XGBoost) [9] is another

technique for building a model based on an ensemble of

decision trees; it relies on a technique known as gradient

tree boosting. XGBoost starts by building a shallow de-

cision tree (i.e., a weak learner). In each step, XGBoost

creates a new tree which optimizes the predictions per-

formed by trees in earlier stages. XGBoost benefits from

a regularized model formalization to control overfitting.

The importance of individual attributes can be computed

in a similar fashion to that of Random Forests. We find

the use of XGBoost to be promising among a large pool

of classification algorithms. In fact, XGBoost has played

a central role on multiple winning solutions for recent

data mining competitions, spawning multiple domains,

such as the KDD Cup 2016 [12, 44]

The next sections detail our experiments for evaluat-

ing the unobservability of Facet and DeltaShaper with

the decision tree-based classifiers enumerated above. In

our experiments we have used two distinct sets of fea-

tures: summary statistics and quantized packet lengths.

We omit a discussion over CovertCast, as we have found

that all of these techniques can identify its covert traffic

with a negligible false positive rate.
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3. Facet covert channels can be spotted by looking for

packets with a length comprehended between 115-195

bytes. Figure 4b not only shows that the most important

bin corresponds to that by the packets which length is

close to 150, but also that the top 10 features are domi-

nated by packets which lengths are in the range of 115 to

195 bytes. This result concurs with our previous obser-

vation, where the most important percentiles of packet

lengths focused packets with a mean length between 137

and 200 bytes. This observation is also true when de-

tecting Facet s={12.5%,25%} traffic. This finding sug-

gests that the major factor leading to the distinguishing of

Facet traffic concerns the packets carrying audio, which

are typically located in the range between 100 and 200

bytes [37]. Additionally, we can observe that some of the

least important features included in the top 20 for identi-

fying Facet s = 50% flows include packets with a length

between 945-985 bytes. This result hints that larger ar-

eas dedicated to video payload translate into packet-level

modifications in a higher range of the feature space. Ad-

ditionally, XGBoost ranks only 175 out of 300 features

with a non-zero importance score, suggesting that only

approximately half of the quantized packet length bins

contribute for the discrimination of Facet traffic.

4. DeltaShaper covert channels can be spotted by

looking for packets with a length between 85-100 and

1105-1205 bytes. Figure 4d shows that the two most

important features for identifying DeltaShaper 〈320 ×
240,8× 8,6,1〉 traffic correspond to the packets which

size is close to 100 bytes (flowing in both directions).

The top 20 features are dominated by packet length bins

in the range from 85-100 and 1105-1205 bytes, suggest-

ing that DeltaShaper data modulation markedly affects

two distinct regions of the feature space. The region in-

cluding larger packets roughly overlaps the mean length

of the packets included in the most important percentiles

of our analysis of summary statistics. Considering that

DeltaShaper’s covert data embedding procedure specifi-

cally targets the video layer of Skype calls, this finding

suggests that such modulation largely affects larger pack-

ets of the connection. When classifying DeltaShaper

〈320 × 240,8 × 8,6,1〉 traffic, XGBoost ranks 253 out

of 600 features with a non-zero importance score.

The most important features for detecting DeltaShaper

〈160×120,4×4,6,1〉 traffic largely overlap the two fea-

ture set regions already reported. However, we verify

that the region including larger packet lengths was sig-

nificantly expanded, including bins representing packets

with a size within the range of 885-1200 bytes.

4.5 Alternative Dataset Evaluation

We have constructed and handled our dataset by follow-

ing the same methodology adopted by previous works

under study. However, this methodology may raise a

few concerns. In particular, the covert streams (positive

class) have been produced using the available legitimate

videos (negative class), which may introduce some form

of correlation among classes. Furthermore, this method-

ology generates a 1:1 ratio of positive to negative classes,

which may be unrealistic if covert streams are a minority

among the traffic found in the wild. Thus, one may won-

der how accurate is our classifier if: i) the positive class is

no longer correlated with the negative class during test-

ing; ii) the positive-to-negative sample ratio is low during

testing. To validate the effectiveness of our approach, we

performed two additional experiments.

First, we performed an experiment which removed the

correlations between the positive and negative classes.

We split our legitimate traffic dataset in half, using only

one half as legitimate samples. Then, for creating our

covert video dataset, we selected those covert videos

which embed modulated data in the legitimate videos

out of our reduced legitimate traffic dataset. We then

used XGBoost to build a model through 10-fold cross-

validation. To prevent the fitting of results to a particular

choice of the initial legitimate samples, we repeated the

process 10 times while randomly choosing such samples.

Second, we performed an experiment where we keep

the positive-to-negative sample ratio low during testing.

We split our data in training / testing sets in a 70 / 30 pro-

portion, and where we kept the training set ratio as 1:1,

and keep the positive to negative ratio of the testing set

to 1:100. To prevent the fitting of results to a particular

split of the data, we randomly choose each set 10 times.

The results of our additional experiments suggest that

possible correlations among training and testing data, as

well as sample ratios, do not limit the accuracy of our

approach. For our first experiment, XGBoost obtained an

AUC=0.94 for DeltaShaper 〈320×240,8×8,6,1〉 traffic

(only 0.01 less than the results reported in Section 4.3),

and an AUC=0.99 for traffic pertaining to Facet s=50%

configuration. As for the second experiment, XGBoost

was able to correctly identify 90% of Facet s=50% traffic

with an FPR of only 2%, while it was able to identify

90% of DeltaShaper 〈320× 240,8× 8,6,1〉 traffic with

an FPR of 18% (only 4% larger).

4.6 Practical Considerations

This section details several practical considerations

which may be useful to an adversary considering the

use of decision tree classifiers for the detection of covert

channels. The following results reflect processing time in

a VM configuration akin to that described in Section 2.4.

Feature extraction. The extraction of quantized packet

length bins from a 60 second Facet network trace

amounts to an average of 0.33s per sample. Generat-

178    27th USENIX Security Symposium USENIX Association



System Feature Set Memory (kB) Storage (kB)

Facet Summary Statistics (ST) 1.3 1.8

Packet Lengths (PL) 2.4 1.0

DeltaShaper Summary Statistics (ST) 1.3 1.9

Packet Lengths (PL) 4.8 2.0

Table 2: Memory and storage requirements for a single

Facet record using different feature sets. We report stor-

age requirements for holding data in raw ASCII text.

System Classifier Model Building (s) Prediction (µs)

Facet Decision Tree 0.27 40

Random Forest 1.45 15000

XGBoost 0.41 180

DeltaShaper Decision Tree 0.13 90

Random Forest 0.86 16000

XGBoost 0.38 350

Table 3: Model building time and time for individual

predictions for Facet s=50% and DeltaShaper 〈320 ×
240,8 × 8,6,1〉 traffic, using quantized packet lengths

(PL). Model building time is the average of 10 folds.

ing summary statistics describing the same type of traffic

flow amounts to an average of 0.44s per sample. This

result indicates that an adversary can quickly generate

feature vectors for conducting subsequent classification.

Memory and storage requirements. Table 2 depicts the

memory and storage requirements for holding a single

Facet or DeltaShaper sample. In our Python implemen-

tation, a NumPy [47] array storing the quantized packet

lengths describing a Facet sample (300 attributes) occu-

pies 2.4kB of memory per sample. In comparison, an

array containing the bi-grams required by the χ2 classi-

fier occupy a total of 45kB per sample. The numbers in

Table 2 suggest that an adversary can efficiently store and

process large datasets. As an example, storing 1 million

Facet quantized packet lengths feature vectors in a raw

ASCII text file would only occupy approximately 1GB

of disk space. Storing summary statistics in raw ASCII

text would occupy nearly twofold the space due to the

characters required to represent floating-point precision.

Model building and classification speed. Table 3 de-

picts the average training time of our classifiers, as well

as the average time to output a prediction. Building a De-

cision Tree - PL for identifying Facet traffic takes an av-

erage of 0.27s. For an ensemble composed of 100 trees,

Random Forest - PL and XGBoost – PL models are built

in 1.45s and 0.41s, respectively. Moreover, the average

classification time for an individual sample is 180µs for

XGBoost – PL. XGBoost is not only more accurate but

also trains faster and exhibits a faster classification speed

than Random Forest. This relation is also present when

classifying DeltaShaper traffic. These results stress the

System 1s 5s 10s 30s 60s

Facet 0.81 0.92 0.96 0.99 0.99

DeltaShaper 0.75 0.88 0.93 0.95 0.95

Table 4: AUC of XGBoost – PL when classifying Facet

s=50% and DeltaShaper 〈320×240,8×8,6,1〉 traffic for

varying traffic collection time windows.

fact that an adversary would benefit from using XGBoost

to detect multimedia protocol tunneling covert channels.

Generalization ability of the classifiers. A classifier

with good generalization ability is able to perform cor-

rect predictions for previously unseen data. Albeit the

AUC obtained by our decision tree-based classifiers sug-

gests that these can generalize well, we further assess

their classification performance when training data is

severely limited. We split our data in two 10 / 90 train-

ing and testing sets, and report the mean AUC obtained

by the classifier after repeating this process 10 times

while randomly choosing the samples making part of

each set. In this setting, when classifying Facet s=50%,

XGBoost - PL attains an AUC=0.98, only 0.01 short of

that obtained after 10x cross-validation. For DeltaShaper

〈160× 120,4× 4,6,1〉 traffic, XGBoost - PL attains an

AUC 0.1 smaller than their 10x cross-validation counter-

part. These results suggest that an adversary can build ac-

curate decision tree-based classifiers for detecting covert

traffic while resorting to a small sample of data.

Impact of network traces collection time. Table 4 de-

picts the AUC obtained by XGBoost – PL when detect-

ing different types of covert traffic for varying time-spans

of traffic flows collection. Results show that capturing

traffic by 30s is enough for attaining the same classifi-

cation performance achieved in our initial experiments,

which admitted 60s traffic captures. The numbers in Ta-

ble 4 also show that classification performance decreases

monotonically for traffic collections fewer than 30s, sug-

gesting that the inspection of at least 30s of video traffic

provides the adversary with sufficient data for identifying

covert traffic flows with low false positives.

5 Beyond Supervised Anomaly Detection

While decision tree-based classifiers show promising re-

sults for the detection of multimedia protocol tunneling

covert channels, they require the adversary to obtain a la-

beled dataset, including both legitimate and covert traf-

fic. This usually requires the adversary to have a unlim-

ited access to a particular multimedia protocol tunneling

tool with which it may generate covert traffic samples.

However, even if an adversary, for instance a censor,

would have an expedite access to these tools [19], it is

interesting to understand if detection is possible without
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this knowledge. Note that covert channels may also be

used by organized criminals that can succeed in delaying

the dissemination of such tools. Secondly, albeit the ad-

versary is assumed to possess a given tool, it is expected

to spend a non-negligible time in synthesizing covert data

samples for building a model. Overcoming such chal-

lenges opens a timeframe where the covert traffic gener-

ated by a given system would remain undetected.

This section explores alternative approaches at covert

traffic detection in the absence of a fully labeled dataset.

5.1 Selected Anomaly Detection Methods

This section starts by describing several anomaly detec-

tion techniques which could be of interest for an adver-

sary aiming at detecting covert traffic when it is deprived

of labeled anomalies. First, we describe OCSVMs and

autoencoders, two well-known approaches for anomaly

detection, which are based on representational models

of legitimate data and thus disregard the need of labeled

anomaly data [50]. Then, we explore Isolation Forest, a

competitive approach at unsupervised anomaly detection

which does not require labeled data [4, 8, 26].

One-class SVMs [45] define a decision boundary be-

tween normal samples and anomalies by fitting a func-

tion around normal samples during training. OCSVMs

attempt to find the maximal margin hyperplane which

separates the normal data from the origin, which is

treated as the single member of a second class. If data

cannot be easily separated by a linear function, OCSVMs

project the original feature space into a new feature space

through the use of kernel functions, introducing non-

linearity in the model. New data samples falling outside

the decision boundary are considered anomalies.

Autoencoders [32] are a type of artificial neural

networks which can approximate the identity function

through a compressed representation of its inputs, forc-

ing the algorithm to learn underlying structures in data.

The ability to reconstruct inputs allows us to have a gen-

erative model of the training data. An autoencoder can

be repurposed for anomaly detection by comparing the

reconstruction error of training inputs with normal and

anomalous data, where the latter is assumed to be larger.

Isolation Forest [31] performs outlier detection by

isolating anomalous samples. To isolate a sample, the

algorithm starts by selecting a random feature and se-

lects a split between its minimum and maximum values.

This process continues recursively until the considered

sample is isolated. Recursive partitioning is represented

by a tree, where the number of partitions required to iso-

late a sample corresponds to the length of the path tra-

versed from the root node to a leaf. The Isolation Forest

is built by combining a number of isolation trees split on

different attributes. Anomalies are expected to exhibit a

smaller average path length than that of normal samples.

Hyperparameters. The classification performance of

the above algorithms depends upon the choice of hy-

perparameters, i.e., parameters whose value must be set

prior to the execution of the algorithm. The optimal-

ity of such parameters is intrinsically dependent on the

dataset and tipically requires cross-validation with la-

beled anomalous data [56]. However, we are interested

in assessing the average classification performance that

an adversary would be able to achieve using such algo-

rithms – albeit the adversary would be unable to find the

optimal hyperparameter configuration for an algorithm,

sub-optimal parameterizations may still provide the ad-

versary with accurate traffic classifiers. To this end, we

conduct a search over a space of parameters for the above

algorithms and collect the maximum and average AUC

obtained when classifying Facet and DeltaShaper traffic.

For OCSVM, we perform a grid search on the space of

ν and γ . We also build a shallow autoencoder containing

one hidden layer between the input and its compressed

representation, and between the compressed representa-

tion and the output layer. We conduct a grid search over

the number of units populating each of these layers. As

for Isolation Forest, we conduct a search over the number

of trees composing the ensemble, as well as the number

of samples for training each individual tree.

Experimental settings. For OCSVM and autoencoder,

we use 90% of all labeled legitimate samples to learn

the models. The remaining 10% legitimate samples are

combined with 10% of a given covert traffic configura-

tion’s samples for creating a balanced testing set. For

evaluating the model’s performance, we compare each

label output by the model with the ground truth. To pre-

vent the fitting of results to a particular split of the data,

we repeat this process 10 times while randomly choosing

the samples making part of the training / testing sets. For

Isolation Forest, we create balanced training and testing

sets in a 90 / 10 proportion. The model’s performance is

evaluated following the same above procedure.

Our results reflect the use of the feature set based on

the frequency distribution of packet lengths, with K = 5,

as it was the one found to provide the highest AUC.

5.2 Main Findings

Table 5 depicts the maximum and average AUC obtained

when identifying Facet and DeltaShaper traffic when

using OCSVM, our autoencoder, and Isolation Forest.

Next, we present our main findings.

1. OCSVMs possess a limited capability for cor-

rectly identifying covert traffic. This finding is sup-

ported by the fact that OCSVM attains an average
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Multimedia Protocol Tunneling System
OCSVM Autoencoder Isolation Forest

Max AUC Avg AUC Max AUC Avg AUC Max AUC Avg AUC

Facet (s=50%) 0.631 0.576 0.702 0.638 0.561 0.551

Facet (s=25%) 0.629 0.580 0.700 0.650 0.528 0.519

Facet (s=12.5%) 0.639 0.584 0.706 0.647 0.536 0.520

DeltaShaper 〈320×240,8×8,6,1〉 0.567 0.531 0.662 0.574 0.580 0.557

DeltaShaper 〈160×120,4×4,6,1〉 0.548 0.518 0.576 0.544 0.553 0.532

Table 5: Maximum and average AUC of OCSVM, Autoencoder and Isolation Forest when classifying Facet and
DeltaShaper traffic. Search (min, max, step): OCSVM (ν(0.1, 1, +0.1), γ(0.01, 1, +0.01)); Autoencoder (hidden layers(4,512,*2), com-

pressed representation(4,512,*2), learning rate[0.001,0.01], epochs[1000]); Isolation Forest (n trees(50,200,*2), n samples(64,512,*2))

AUC between 0.576 and 0.584 when detecting Facet

traffic, and between 0.518 and 0.531 when detecting

DeltaShaper traffic. Moreover, OCSVM achieves a max-

imum AUC=0.639 when classifying Facet s=12.5% traf-

fic. This suggests that OCSVM achieves a poor classifi-

cation performance, even after a search for optimal hy-

perparameters. Thus, from an adversary’s point of view,

a semi-supervised model based on OCSVMs shows little

promise for performing the triage of covert traffic.

2. Autoencoders show promising results for the iden-

tification of covert traffic. The numbers in Table 5

show that our autoencoder achieves, in average, a higher

or comparable AUC than the maximum AUC obtained

by OCSVM when classifying Facet or DeltaShaper traf-

fic. The choice of parameters for our autoencoder ben-

efits its maximum AUC. For instance, a better parame-

terization of the autoencoder translates into a maximum

AUC=0.662 when classifying DeltaShaper traffic, ap-

proximately 0.1 higher than the average reported value

for the same configuration. While an adversary making

use of a classifier which exhibits an AUC=0.662 would

sustain a large amount of false positives when attempt-

ing to detect covert traffic, we note that the obtained re-

sults have a wide margin of improvement. In particular,

we use a rather shallow autoencoder structure for inves-

tigating the classification performance of this algorithm.

For instance, it is possible that autoencoders with more

sophisticated structures [55] may drive further improve-

ments in classification accuracy.

3. An adversary has no advantage in using Isolation

Forest for detecting covert traffic. The results in Ta-

ble 5 show that the prediction output of Isolation For-

est is close to random guessing when attempting to iden-

tify covert traffic. For Facet traffic, Isolation Forest ob-

tains an average AUC between 0.519 and 0.551 across

all steganography factors. When classifying DeltaShaper

traffic, the average AUC sits on 0.532 and 0.557 for dif-

ferent encoding configurations. A closer observation of

the confusion matrix reveals that Isolation Forest labels

few traffic samples as anomalies. Informally, this obser-

vation suggests that anomalies are able to conceal their

presence in the dataset in such a way that the number of

partitions required to isolate them is similar to the num-

ber of partitions needed to isolate legitimate samples.

6 Discussion

We now discuss several relevant findings from our study.

Multimedia protocol tunneling. The outcomes of the

experimental study conducted in Section 4 unveil that

the unobservability claims of existing multimedia proto-

col tunneling systems were flawed. However, it is worth

noticing that the vulnerability of such systems to super-

vised ML techniques, particularly decision tree-based al-

gorithms, does not imply that multimedia protocol tun-

neling, as an approach, is fundamentally inviable. Our

findings suggest that correctly detecting covert chan-

nels built with conservative data modulation schemes

(e.g., DeltaShaper 〈160×120,4×4,6,1〉) while sustain-

ing low FPR still represents a challenge for adversaries.

Additionally, we provide fine-grained details about the

network behavior of currently deployed multimedia pro-

tocol tunneling tools which may be used for the construc-

tion of more robust implementations.

Legitimate traffic dataset. Adversaries face the non-

trivial challenge of building a dataset which faithfully

represents legitimate traffic. A naı̈ve solution for build-

ing such a dataset would be for an adversary to take

advantage of its privileged position in the network and

collect all data originated by a given multimedia proto-

col. However, the very existence of multimedia protocol

tunneling tools makes it hard for an adversary to know,

before-hand, which data samples correspond either to le-

gitimate or covert traffic. It is possible that covert data

samples pollute the legitimate traffic model and bias the

decisions of a classifier trained in such data [55]. A dif-

ferent alternative is the typical approach followed in the

literature (and in our work), where datasets are synthe-
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sized by transmitting the media expected to be sent in

such channels. However, such an approximation may fail

to capture the underlying distribution of data in the wild.

7 Related Work

Freewave [25] was the first system designed to embed

covert data in multimedia protocols through the modula-

tion of audio signals sent through VoIP streams. How-

ever, a simple statistical analysis of traffic patterns con-

ducted by Geddes et al. [20] showed that FreeWave could

be trivially detected by an adversary. Recent multimedia

protocol tunneling systems such as Facet [30], Covert-

Cast [34], and DeltaShaper [2] introduced new tech-

niques for modulating data while striving to preserve the

unobservability of the generated covert channels.

As noted earlier in the text, previous unobservabil-

ity assessments performed on state-of-the-art multimedia

protocol tunneling systems which rely on traffic classifi-

cation make use of similarity-based classifiers. To the

best of our knowledge, there is a limited body of work

employing other machine learning techniques for the de-

tection of covert channels in the Internet. Wang et al. [48]

have resorted to decision tree-based classifiers to identify

traffic flowing through Tor bridges. Their results have

shown that this approach was promising for the identifi-

cation of traffic obfuscated through domain fronting [18].

In our work, we perform the first systematic study of

the unobservability of state-of-the-art multimedia proto-

col tunneling systems and find that such techniques are

also effective for the detection of these covert channels.

Related to the problem of covert channel detection is

the problem of creating fingerprints for encrypted traf-

fic. Particularly, the fingerprinting of websites accessed

through Tor [11] is an important research topic [1, 22, 39,

42, 49]. Multiple works dwell on creating fingerprints

for encrypted traffic using different combinations of fea-

tures and classifiers, for instance, Schuster et al. [46]

have designed an attack which enables a passive observer

to fingerprint YouTube video streams. However, finger-

printing is fundamentally different from covert channel

detection: we do not aim to unequivocally fingerprint a

given media according to its traffic pattern, but to distin-

guish two broader classes of media which may or may

not carry covert data. It is unclear how fingerprinting

techniques can be adapted to our purpose.

In this paper we have focused on covert channels based

on multimedia protocol tunneling [2, 25, 30, 34], a pop-

ular approach at protocol tunneling. Other tunneling ap-

proaches have been attempted, including SWEET [57],

CloudTransport [7], Castle [21], and meek [18]. It is

worth mentioning that alternative approaches to build

covert channels have been attempted in the past, such as

protocol obfuscation [52]. However, obfuscation based

on randomizing traffic fails in the presence of protocol

whitelisting and is vulnerable to entropy analysis [48].

With protocol imitation, covert traffic is manipulated to

mimic the behavior of protocols allowed across a cen-

sor’s border [13, 14, 36]. Alas, the faithful imitation

of all behaviors of a protocol behavior is a complex un-

dertaking which lays protocol imitation systems prone to

multiple network attacks [20, 23].

Finally, we would like to stress that although censor-

ship circumvention is one of the main (and most noble)

uses of covert channels, this type of channels can serve

multiple purposes. Our work concentrates on covert

channel detection and not on censorship circumvention

per se. In fact, there are techniques to evade censorship,

such as refraction networking [5, 15, 24, 27, 53, 54],

which incorporates censorship resistance mechanisms in

the network, rather than at end-hosts, that do not depend

exclusively on the use of covert channels.

8 Conclusions

In this paper, we performed an extensive analysis over

the unobservability evaluation of multimedia protocol

tunneling systems. We proposed a novel method for as-

sessing the unobservability of these systems, based on

decision trees, which largely defies previous unobserv-

ability claims. Our work further explored the application

of semi-supervised and unsupervised anomaly detection

techniques in the same context. Our results indicate that

an adversary is required to possess labeled data for per-

forming an effective detection of covert channels.

9 Acknowledgments

This work was partially supported by national funds

through Instituto Superior Técnico, Universidade de Lis-
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A Appendix

Listing 1 indexes the feature set obtained from the calcu-

lation of aggregated statistics from our traffic samples.

Summary statistics:
1 - Total number of packets.
2 - Total number of packets - ingress.
3 - Total number of packets - egress.
4 - Total bytes transmitted.
5 - Total bytes transmitted - ingress.
6 - Total bytes transmitted - egress.

Global statistics:
7 - Mean of packet sizes.
8 - Std. deviation of packet sizes.
9 - Variance of packet sizes.
10 - Kurtosis of packet sizes.
11 - Skew of packet sizes.
12 - Maximum packet size.
13 - Minimum packet size.
14:22 - (10-90) percentile of packet sizes.

23 - Mean of packet times.
24 - Std. deviation of packet times.
25 - Variance of packet times.
26 - Kurtosis of packet times.
27 - Skew of packet times.
28 - Maximum packet times.
29 - Minimum packet times.
30:38 - (10-90) percentile of packet times.

Statistics for ingress/egress traffic:
39:70 - 7:38 computed over ingress traffic only.
71:102- 7:38 computed over egress traffic only.

Ingress Packet bursts statistics:
103 - Total number of bursts.
104 - Mean burst size.
105 - Std. deviation of burst sizes.
106 - Variance of burst sizes.
107 - Maximum burst size.
108 - Kurtosis of burst sizes.
109 - Skew of burst sizes.
110:118 - (10-90) percentile of burst sizes.

Ingress Bytes bursts statistics:
119 - Mean bytes transmitted across bursts.
120 - Std. deviation of bytes transmitted across bursts.
121 - Variation of bytes transmitted across bursts.
122 - Kurtosis of bytes transmitted across bursts.
123 - Skew of bytes transmitted across bursts.
124 - Maximum number of bytes in a burst.
125 - Minimum number of bytes in a burst.
126:134 - (10-90) percentile of bytes transmitted.

Egress Packet bursts statistics:
135 - Total number of bursts.
136 - Mean burst size.
137 - Std. deviation of burst sizes.
138 - Variance of burst sizes.
139 - Maximum burst size.
140 - Kurtosis of burst sizes.
141 - Skew of burst sizes.
142:150 - (10-90) percentile of burst sizes.

Egress Bytes bursts statistics:
151 - Mean bytes transmitted across bursts.
152 - Std. deviation of bytes transmitted across bursts.
153 - Variation of bytes transmitted across bursts.
154 - Kurtosis of bytes transmitted across bursts.
155 - Skew of bytes transmitted across bursts.
156 - Maximum number of bytes in a burst.
157 - Minimum number of bytes in a burst.
158:166 - (10-90) percentile of bytes transmitted.

Listing 1: Summary statistics considered as features.
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