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Abstract
Modern multi-tier web applications are composed of sev-
eral dynamic features, which make their vulnerability
analysis challenging from a purely static analysis per-
spective. We describe an approach that overcomes the
challenges posed by the dynamic nature of web applica-
tions. Our approach combines dynamic analysis that is
guided by static analysis techniques in order to automat-
ically identify vulnerabilities and build working exploits.
Our approach is implemented and evaluated in NAVEX, a
tool that can scale the process of automatic vulnerability
analysis and exploit generation to large applications and
to multiple classes of vulnerabilities. In our experiments,
we were able to use NAVEX over a codebase of 3.2 mil-
lion lines of PHP code, and construct 204 exploits in the
code that was analyzed.

1 Introduction
Modern web applications are typically designed as multi-
tier applications (i.e., client, server, and database). They
include many dynamic features, which generate content
”on the fly” based on user interaction and other inputs.
Such dynamism helps the usability as well as the respon-
siveness of the application to the user. These features,
however, increase the complexity of web applications
and raise the difficulty bar of analyzing their security.

Currently, several approaches exist for analyzing the
security of modern web applications such as [9, 15, 18,
29]. These approaches use a series of analysis techniques
to identify vulnerabilities such as SQL Injection (SQLI)
and Cross-Site Scripting (XSS). However, a drawback
of these approaches is that they generate false alarms,
therefore require manual efforts to check whether each
one of the reported vulnerabilities is indeed exploitable.

Other approaches take a further step and try to include
methods for automatically verifying that vulnerabilities
are true by generating concrete exploits [7, 25, 27, 32].
However, these approaches use largely static analysis
methods. While static analysis methods can provide

good coverage of an application, they often sacrifice pre-
cision due to technical challenges related to handling
complex program artifacts, which is one of the main rea-
sons for generating false positives. In particular, static
analysis is challenging in the context of the dynamic fea-
tures of web applications, where content (e.g., forms,
links, JavaScript code) is often generated on the fly, and
the code is executed at different tiers, whose effects are
difficult to model statically.

In this paper, our main contribution is a precise ap-
proach for vulnerability analysis of multi-tier web appli-
cations with dynamic features. Rather than following a
strictly static analysis strategy, our approach combines
dynamic analysis of web applications with static analy-
sis to automatically identify vulnerabilities and generate
concrete exploits as proof of those vulnerabilities. The
combination of dynamic and static analysis provides sev-
eral benefits. First, the dynamic execution component
greatly reduces the complexity faced by the static anal-
ysis by revealing run-time artifacts, which do not need
to be modeled statically. On the other hand, the static
analysis component guides its dynamic counterpart in
maximizing the coverage of the application by analyzing
application paths and providing inputs to exercise those
paths. Second, our approach scales to very large applica-
tions (e.g., 965K LOC), surpassing significantly the state
of the art. The main reason for the increased scalability is
the ability of the dynamic execution component to reduce
the complexity faced by the static analysis component.

An additional goal of our approach is that of enabling
automatic exploit generation for different classes of vul-
nerabilities with minimal analysis setup overhead. To
achieve this goal, our approach was designed with sev-
eral analysis templates and an attack dictionary that is
used to instantiate each template. There exist other static
approaches that try to achieve such generality for identi-
fying vulnerabilities [9, 15]. However, our approach ex-
tends [9] by (a) applying precise dynamic analysis tech-
niques and (b) automatically generating exploits for the
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identified vulnerabilities.
Our approach is implemented in a tool called NAVEX.

NAVEX’s operations are divided into two steps. In the
first step, we create a model of the behavior of individual
modules of a web application using symbolic execution.
To address the scalability challenge, we prioritize only
those modules that contain potentially vulnerable sinks
where an attacker ‘may’ be successful in injecting mali-
cious values or in exploiting other types of vulnerabili-
ties, and analyze them further in the successive search.

In the second step, we construct the actual exploits.
This requires modeling the whole application and dis-
covering a sequence of HTTP requests that take an appli-
cation to execute a vulnerable sink. To address the scala-
bility challenge in this phase, we perform dynamic anal-
ysis of a deployed application and use a web crawler and
a concolic executioner on the server-side to uncover pos-
sible HTTP navigation paths that may lead the attacker
to the vulnerable sink. To maximize the coverage of the
code during dynamic analysis, the crawler and concolic
executioner are aided by a constraint solver, which gen-
erates the (exploit) sequence of HTTP inputs.

Our contributions in NAVEX include an exploit gen-
eration framework that can easily scale to large appli-
cations and many classes of vulnerabilities and a novel
method that combines dynamic execution and static
analysis to address scalability issues affecting previous
works, mainly due to the dynamic features of web appli-
cations.

We evaluate NAVEX on 26 applications having a total
of 3.2M SLOC and 22.7K PHP files. NAVEX was able to
analyze the applications and generated 204 exploits, in
little under 6.5 hours. Of these exploits, 195 are related
to SQLI and XSS, while 9 are related to logic vulnera-
bilities, such as Execution After Redirect (EAR) vulner-
abilities. We note that NAVEX is the first reported work
in the literature to construct exploits for EAR vulnerabil-
ities.

This paper is organized as follows. Section 2 discusses
a running example to highlight challenges and provides
an overview of NAVEX, Architectural and algorithmic
details of NAVEX are discussed in Section 3. Section
4 contains details about the implementation, Section 5
describes the evaluation of NAVEX, and Section 6 dis-
cusses the related work. Finally, Section 7 contains the
conclusions.

2 Challenges and Approach Overview
In this section, we use a running example to highlight
the challenges addressed in this paper. We then present
an overview of NAVEX.

2.1 Running Example
Listings 1-3 present a simple book borrowing web ap-

plication, which will be used throughout this paper to

illustrate our approach. Books can be selected through
the web form in selectBooks.php module (lines 23-38
in Listing 1). SelectBooks.php validates some of the
user input using JavaScript (lines 31-36). The user in-
put is further validated and sanitized by server-side code
(lines 4-12). Next, the module queries the database to
check the book availability (line 17). Based on the query
results, $ SESSION[’ISBN’] is initialized and an HTTP
link to hold.php is printed on the browser.

1 <?php
2 if(!isset($_SESSION[’username’]))
3 header( "Location: index.php" );
4 if (isset($_POST[’book_name’]))
5 $book_name =

mysql_real_escap_string($_POST[’book_name’]);
//sanitization

6 else
7 $book_name ="";
8 if (isset($_POST[’edition’]))
9 $edition = (int)$_POST[’edition’]; //user input is

sanitized
10 else
11 error();
12 if (isset($_POST[’publisher’]) &&

strlen($_POST[’publisher’])<=35)
13 $publisher = str_replace(""", "\"", $_POST[’publisher’]);
14 else
15 error();
16 $action = $_GET[’action’])
17 $isbn= mysql_query( "SELECT isbn FROM BOOK_TABLE WHERE

book_name=’$book_name’ AND edition = ’$edition’ AND
publisher=’$publisher’"); //vulnerable sink to SQLI

18 if (mysql_num_rows( $isbn ) == 1 ){
19 $_SESSION[’ISBN’] = $isbn;
20 echo "<a href=’".BASE_URL."hold.php’> Hold the

Book</a>";
21 }
22 ?>//client-side code starts
23 <html><body><form method="post" action="<?php echo

$_SERVER[’PHP_SELF’]."?action=borrow"?>"
onsubmit="validate()">

24 <select name=’book_name’> //drop-down list
25 <option value="Intro to CS by author1">Intro to

CS</option>
26 <option value="Intro to Math by author2">Intro to

Math</option>..
27 </select>
28 <input type=’text’ name=’publisher’>
29 <input type=’text’ name=’edition’>
30 </form>
31 <script type="text/javascript">
32 function validate() { //validates form upon submission
33 var edition = document.getElementsByName("edition");
34 if(edition.value <= 0)
35 return false; // do not submit the form
36 return true; //submit the form
37 }
38 </script></body></html>

Listing 1: selectBooks.php, find books to borrow.

Hold.php (Listing 2) performs additional checks and,
if they are satisfied, an HTTP link guides the user
to the next step (line 7). When the link is clicked
the superglobal $ GET[’step’] is set and the module
checkout.php is therefore included by hold.php and
executed. Checkout.php completes the borrowing pro-
cess by providing a link (line 19) to the user for confir-
mation. The link sets two superglobals ($ GET[’step’]

and $ GET[’msg’]), which will be checked by the mod-
ule (line 6). Finally, a confirmation function (line 13) is

378    27th USENIX Security Symposium USENIX Association



called to notify the user that the book was successfully
reserved.

1 <?php
2 if(!isset($_SESSION[’username’])) {
3 header( "Location: index.php" );
4 exit();
5 }
6 if (isset($_SESSION[’ISBN’])){
7 echo "<a href=’".BASE_URL."hold.php?step=checkout’>

Checkout</a>";
8 if (isset($_GET[’step’]) && $_GET[’step’] == "checkout")
9 include_once( "checkout.php");

10 }
11 ?>

Listing 2: hold.php, hold books for pickup.

1 <?php
2 if(!isset($_SESSION[’username’])) {
3 header( "Location: index.php" );
4 exit();
5 }
6 if (isset($_GET[’msg’]) && isset($_SESSION[’ISBN’])){
7 $sql = "SELECT name FROM USERS WHERE

username=’$_SESSION[’username’]’" ;
8 $result = mysql_query($sql);
9 $name = $db->sql_fetchrow($result);

10 $msg = $_GET[’msg’];
11 confirm($name, $msg);
12 }
13 function confirm($name, $msg){
14 if (isset($name) && isset($msg) )
15 echo $name. " you are ".$msg; // XSS vulnerability
16 }
17 ?> //client-side code starts
18 <html><body>
19 <a href="hold.php?step=checkout&msg=done">DONE</a>
20 </body></html>

Listing 3: checkout.php, checkout functionality.

The example contains sensitive sinks that are vul-
nerable to injection and logic attacks. For example,
the query in listing 1 (line 17) is vulnerable to SQLI
through the variable $publisher, which is not prop-
erly sanitized before reaching the sink. In particular, the
str replace function (line 13) does a poor job of san-
itizing $publisher, since an SQLI attack not involving
double quotes may still be used. Additionally, the echo

call in Listing 3 is vulnerable to XSS as the user input
$msg is not sanitized. Finally, the sink at Listing 1 line 3
is vulnerable to an Execution After Redirect (EAR) logic
attack because the execution after the header call (redi-
rects the execution to another PHP module) does not halt
since there is no call to an execution termination function
afterward. Consequently, the following statements will
be executed regardless of the check at line 2. The prob-
lem is further exacerbated by the fact that those state-
ments contain a vulnerable SQL query. An attacker may
thus be able to run a SQLI exploit without needing to log
in first.

2.2 Challenges
As illustrated by the example, typical web applications

have client-side logic that consists of forms, links, and
JavaScript code, which may be dynamically generated

by the server-side code, as well as a complex server-
side logic that frequently interacts with the client-side
and with the database backend. Therefore, building an
exploit generation framework that uncovers a wide range
of different types of exploits for dynamic web applica-
tions is non-trivial. Specifically, we identify the follow-
ing challenges:
Sink reachability. In web applications, some tasks/-
functionalities require a series of steps, and there are de-
pendencies that exist between these tasks. These steps
are usually accomplished using different modules where
the state of the application, maintained through the use
of global constructs (e.g., $ GET[] in PHP), is updated
to reflect the completion/failure of a step. If a sensi-
tive sink is located deep in these interrelated modules,
the challenge is to automatically generate an exploit that
navigates through the complex dependencies among ap-
plication modules while satisfying constraints required at
each junction in the navigation. For instance, a success-
ful exploit for the vulnerable echo in Listing 3, must con-
sider navigation and constraint satisfaction through the
modules selectBooks.php, hold.php, index.php

(not shown in the example), and checkout.php.
More broadly, we must take into account several fac-

tors. First, data flow paths from sources to sensitive
sinks must be identified. Next, possible data sanitiza-
tions along those paths must be analyzed. However, san-
itizations are available in many flavors, including built-
in sanitizations (e.g., htmlspecialchars()), implicit
sanitizations (e.g., cast operators as shown in the run-
ning example), custom sanitizations (e.g., custom use of
str replace()), and sanitizations induced by database
constraints (e.g., NOT NULL constraints). The practical
challenge here is to precisely identify when such sani-
tizations are sufficiently robust to eliminate all possible
risks.
Dynamic features. An automatic exploit generation ap-
proach that is entirely based on static aspects of a web
application is prone to miss certain real exploits. As
mentioned before, modern web applications often con-
tain features that are revealed only when the application
is executed. These features often include dynamically
generated forms and links that may drive the navigation
of the application to vulnerable sinks. Unless the ap-
plication is deployed and executed, it is challenging for
a static analysis approach to infer such artifacts, which
may contain useful constraints for exploit paths. For in-
stance, line 23 of Listing 1, where the action of the
form is set by the result of running the embedded PHP
code. To precisely infer the value of that action, a static
analyzer has to be able to handle the PHP semantics of
that code portion. Other situations (not shown in the ex-
ample) include dynamically generated content including
JavaScript generated content. It is, therefore, necessary
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to incorporate dynamic analysis as part of the exploit
generation framework to make these runtime artifacts ex-
plicit. An additional challenge with dynamic execution
is maximizing the coverage of an application.
Scalability. Generating executable exploits that span
multiple modules and traverse execution paths inside
each module for large and complex modern web applica-
tions is challenging. Constructing exploits requires an-
alyzing the application as a whole, including its client-
side, server-side and database backend. To deal with this
challenge, the exploit generation approach must be de-
signed with careful considerations for pruning unfeasi-
ble exploit paths. To demonstrate the need for a scal-
able approach, let’s consider our running example. For
this simple application, to construct an exploit for the
vulnerable sink in Listing 3, we have to process a to-
tal of 44 execution paths in the 3 modules (i.e., 32
paths in selectBooks.php, 4 in hold.php, and 8 in
checkout.php) to find candidate exploitable paths to
the sink.

Another scalability challenge we need to tackle is
related to the goal of generating exploits for multiple
classes of vulnerabilities. To address this challenge,
we need to support abstraction and analysis of multi-
ple classes of vulnerabilities efficiently, as to generate as
many different types of exploits as possible.

2.3 Approach Overview
Our goal is to build a precise, scalable, and efficient

exploit generation framework that takes into account the
dynamic features of web applications and the naviga-
tional complexities that stem from dependencies among
the client-side, server-side and database backend.

Our approach is implemented in a system called
NAVEX, as shown in Figure 1. To address the scala-
bility challenges, our approach is divided into two steps:
(I) vulnerable sink identification and (II) concrete exploit
generation.

Given the application source code, the first step iden-
tifies vulnerable sinks in the application and the corre-
sponding modules. This phase analyzes each module
separately and is crucial for prioritizing only those mod-
ules that have vulnerabilities; thus significantly reduc-
ing the search space and contributing to scalability. To
address the sink reachability challenge, NAVEX builds a
precise representation of the semantics of built-in saniti-
zation routines. In addition, for custom sanitizations, it
builds a model using symbolic constraints. These con-
straints are used by a constraint solver, which determines
if the sanitizations are sufficiently robust.

The second step is responsible for generating concrete
exploits. The main problem in automatically generating
concrete exploits is that of identifying application-wide
navigation paths that, starting from public-facing pages,
drive the execution to the vulnerable sinks identified in
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Figure 1: The architecture of NAVEX.

the first step through a series of HTTP requests. The
output of the dynamic execution is a Navigation Graph
that represents the navigation structure of the web appli-
cation. Finally, for every module containing a vulnera-
ble sink, as identified in the first step, NAVEX uses this
navigation graph to find the paths from public modules
to that module along which the exploit can be executed.
The dynamic features challenge is addressed in NAVEX
by combining dynamic analysis and symbolic execution
of applications. To maximize the coverage of an applica-
tion, NAVEX repeats the dynamic execution many times,
each time with different inputs generated by a constraint
solver in a way that maximizes path coverage in the ap-
plication. At each execution, NAVEX collects the infor-
mation necessary to derive the application’s navigation
structure.

3 Architecture and Algorithms
3.1 Vulnerable Sink Identification

To identify the vulnerable sinks, NAVEX analyses each
module separately. An implicit goal of this step is to
exclude from the following step those modules that do
not contain vulnerable sinks. In particular, as depicted
in Figure 2, NAVEX first builds a graph model of each
module’s code, then it discovers the paths that contain
data flows between sources and sinks. Finally, it uses
symbolic execution to generate a model of the execution
as a formula and constraint solving to determine which
of those paths are potentially exploitable. Each of these
components is described next.

3.1.1 Attack Dictionary

To address the challenge of discovering multiple classes
of vulnerabilities, NAVEX was designed to be easily ex-
tensible to a wide range of vulnerabilities, such as SQLI,
XSS as well as logic vulnerabilities such as EAR [18]
and command injection. A key observation is that sev-
eral types of vulnerabilities are essentially similar. For
instance, SQLI and XSS both depend on the flow of ma-
licious data from sources to sinks and injection of ma-
licious data in those sinks. The main difference is the
nature of the sink and the attack payload. This similar-
ity, in turn, can be leveraged to build analysis templates
that can be instantiated with minimal changes to discover
different classes of vulnerabilities. To this end, NAVEX
builds an Attack Dictionary, which is used to instantiate
analysis templates targeting each class of vulnerability.
In particular, it contains attack specifications, as follows:
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Sinks. These are instructions that execute the malicious
content of an attack. For instance, echo and print PHP
functions are sinks for XSS attacks.
Sanitizations. These include an extensive list of PHP
sanitizations, including built-in sanitization functions
and operators, which may implicitly sanitize an input
(e.g., cast operators). While extensive, this list is not
exhaustive, and therefore it may miss functions. How-
ever, the semantics of known custom sanitization func-
tions (e.g., str replace) are captured by NAVEX using
constraint solving.
Traversal Type. It specifies the type of traversal that
is needed on the graph (the graph representation will be
described shortly). We currently support forward and
backward traversals between sources and sinks. Specifi-
cally, injection vulnerabilities typically need a backward
traversal, while vulnerabilities such as EAR need a for-
ward one.
Attack Strings. The attack strings are specifications of
the possible (malicious) values that can appear at a sink.
While not exhaustive, the list of attack strings used by
NAVEX is very extensive. It contains 45 attack patterns
collected from cheat sheets (e.g., [6]), and security re-
ports.

Currently, the attack dictionary contains entries for
SQLI, XSS, file inclusion, command injection, code ex-
ecution, and EAR.

3.1.2 Graph Construction

This step builds a graph model to represent the possi-
ble execution paths, which are later symbolically exe-
cuted, in a PHP module. Specifically, our graph model
is based on Code Property Graphs (CPGs) [9,33], which
combine abstract syntax trees (AST), control flow graphs
(CFG), call graph, and data dependence graphs (DDG)
under a unique representation to discover vulnerabilities,
which are modeled as graph queries. In particular, given
a source and a sink instruction, CPGs can be used to find
data dependency paths between their variables.

However, our final goal is not merely that of finding
vulnerable paths but also that of generating concrete ex-
ploits. To this end, we extend CPGs with sanitization and
database constraint tags. These tags are attributes added
to the CPGs and are used to prune out a large number of

potentially unexploitable paths and indirectly addressing
the challenge of path explosion.
Sanitization Tags. A sanitization tag stores information
about the sanitization status of each variable in a node, if
any. The possible values of the tag are unsan-X, san-X
where X represents the specific vulnerability. For in-
stance, san-sql and unsan-sql represent presence (or
non-presence) of SQLI sanitization, respectively.

The values of the sanitization tags are inferred and
added to the graph during its construction. In particular,
as a node is added to the CPG, the corresponding node’s
AST is analyzed to detect eventual sanitizations. This
analysis is guided by the sanitizations patterns contained
in the attack dictionary for each type of vulnerability.
When a match among the sanitization patterns is found
for a variable in a node, the corresponding san-X value
is set for that variable. Note, we add sanitization tags
that resolve the sanitization status of different types of
PHP statements such as assignment, cast, binary, unary
statements, built-in functions, etc.

To demonstrate how NAVEX assigns sanitization tags,
let us consider the statement at line 9 in Listing 1.
NAVEX starts by inspecting the AST of $edition =

(int)$ POST[’edition’] to assign an appropriate tag
to $ POST[’edition’] first. Then, it propagates the san-
itization status to $edition. In this case, the assigned
tag to $ POST[’edition’] is san-all because the cast to
integer operator sanitizes it for all vulnerabilities in our
attack dictionary. Consequently, the variable $edition

will have the same value in its sanitization tag.
Database Constraint Tags. Databases may often en-
force additional constraints on the data that flow to the
database tables. For instance, the columns of a database
table may implicitly sanitize certain inputs, based on the
column’s data type (e.g., enum or integer). We enhance
code property graphs to capture database constraints. In
particular, for each web application, NAVEX parses its
schema to collect table names, their columns names, data
types, and value constraints (e.g., NOT NULL).

During the CPG construction, NAVEX adds a tag
called DB to the root node of each application. This tag
contains the collected information from the schema, and
it is utilized later during the graph traversal and exploit
generation (Sections 3.1.3 and 3.1.4).
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3.1.3 Graph Traversal

The goal of this step is to discover vulnerable paths from
sources to sensitive sinks by inspecting the enhanced
CPG.
Backward Traversal. An example of a backward traver-
sal for discovering vulnerable paths for injection vulner-
abilities is shown in Algorithm 1.

The algorithm starts by searching the graph for calls
to sensitive sinks specified in the attack dictionary (line
4). For each node representing a sink, it follows back-
ward the data dependency edges for all variables used
in that sink using the function AnalyzeNode (line 8).
This function calls FollowBackwardDDEdge (line 18)
to find all data dependency paths from a sink node to
either a source or a function argument (if the sink is
inside a function). If a path ends at a function argu-
ment, AnalyzeNode is called recursively over the nodes
representing the call sites of that function (line 15).
The function FollowBackwardDDEdge identifies intra-
procedural paths between sources and sinks and uses the
sanitization and DB tags to eliminate sanitized paths. Fi-
nally, getPathsTo (line 24) finds all traversed and un-
sanitized paths in the graph leading to source nodes.

As an example, consider the vulnerable sink echo to
XSS (line 15) in Listing 3. Starting from this sink, the
algorithm follows all data dependency edges backwards
while checking the sanitization tags of $name and $msg.
Since they are both unsanitized, NAVEX stores the intra-
procedural paths of the variables and follows the data de-
pendency edges in the caller function until it reaches the
source of $msg (line 10). Note, $name is not a user input
(holds values from the database) and therefore the algo-
rithm only returns the inter-paths of $msg as vulnerable
paths to XSS.

The FilterSanNodes function uses the sanitization
and DB tags to prune out unpromising paths for exploit
generation. In particular, DB tags are utilized during
the search for SQLI vulnerability. For each write query,
NAVEX parses the query using a SQL parser to find nec-
essary information such as table and columns names.
Then, it matches the extracted information with the DB
tag to derive constraints from the columns data types and
value constraints (Fdb). These constraints are used in
conjunction with the path constraints (Fpath) in the next
step (Section 3.1.4).
Forward Traversal. As another example, to detect EAR
vulnerabilities, NAVEX performs a forward graph traver-
sal from sources to sinks where the sources are redirec-
tion instructions (e.g., header) and the sinks are termi-
nation instructions (e.g., die). In particular, we distin-
guish between two types of EAR vulnerabilities, namely
benign where the code between sources and sinks does
not contain sensitive operations (e.g., SQL queries) and
malicious EAR where that code contains them [18].

Algorithm 1 Injection Vulnerability Path Discovery

1: Input: sources,sinks
2: output: VulnerablePaths
3:
4: sinkNodes = FINDSINKNODE(sinks)
5: for all sn ∈ sinkNodes do
6: VulnerablePaths = ANALYZENODE(sn)
7: return VulnerablePaths
8: function ANALYZENODE(node)
9: VulnerablePaths← []

10: paths = FOLLOWBACKWARDDDEDGE(sn)
11: for all path ∈ paths do
12: if path has a source then
13: VulnerablePaths← path
14: else
15: callPaths = ANALYZENODE(callNode)
16: VulnerablePaths← path+ callPaths
17: return VulnerablePaths
18: function FOLLOWBACKWARDDDEDGE(node)
19: Intra Paths← []
20: while node is not a source ∧ node is not a func. argu-

ment do
21: IncNodes = GETINCOMINGDDNODE(node)
22: UnsanNodes = FILTERSANNODES(IncNodes)
23: node← unsanNodes
24: Intra Paths = GETPATHSTO(node)
25: return Intra Paths

The output of this step is a set of paths that are poten-
tially vulnerable. This set of paths is sent in input to the
next step.

3.1.4 Exploit String Generation

The last step of the static analysis is the generation of
exploit strings over the vulnerable paths discovered dur-
ing graph traversal. In this step, each vulnerable path
is modeled as a logical formula Fpath. In addition, the
constraints derived from the DB tags Fdb are added to
the formula. It is next augmented with additional con-
straints over the variables at the sinks Fattack, which rep-
resent values that can lead to an attack. These values are
retrieved from the Attack Dictionary based on the type of
vulnerability under consideration.

The augmented formula (i.e., Fpath ∧Fdb ∧Fattack) is
next sent to a solver, which provides a solution (if it ex-
ists) over the values of the input variables, that is an ex-
ploit string. This solution contains the values of the in-
put variables, which, after the path and sanitizations ex-
ecutions, cause the attack string to appear at the sink.
However, even if a solution exists, the related exploit
is not necessarily feasible. To determine its feasibility,
NAVEX needs to uncover the sequence of HTTP requests
that must be sent to the application to execute the attack
described by the exploit strings. This step is exposed in
the rest of this section.
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3.2 Concrete Exploit Generation
To generate the concrete exploits, NAVEX executes

several steps as depicted in Figure 3. First, a dynamic ex-
ecution step creates a navigation graph that captures the
possible sequences in which application modules can be
executed. Next, the navigation graph is used to discover
execution paths to only those modules that contain the
vulnerable sinks uncovered by the vulnerable sink iden-
tification step. Finally, the final exploits are generated.
We describe each of these steps next.

3.2.1 Dynamic Execution

This step is responsible for building an application-wide
navigation graph, which represents possible sequences of
module executions together with associated constraints.

Previous research [7] has recognized the importance
of building such a graph. However, a key difference with
that work is the approach in which the graph is gener-
ated. In particular, the approach of [7] uses static analy-
sis to discover links and forms and does not deal with the
dynamic features of web applications, whose semantics
are challenging to be captured statically.

In contrast, NAVEX uses a dynamic execution ap-
proach. It executes the web application through a crawler
so that a significant portion of those dynamic features be-
come concrete and do not need to be symbolically eval-
uated. However, a common challenge when performing
the dynamic analysis is maximizing the coverage of the
application. To address this challenge, NAVEX uses con-
straint solving and concolic execution to generate a large
number of form inputs that aid the crawler in maximizing
the coverage of the application.
Crawler. The crawler is responsible for uncovering the
navigation structure of the applications. For each ap-
plication, the crawler is initiated with a seed URL and
whenever necessary, valid login credentials. While most
applications have two types of roles (administrator and
regular user), to maximize the crawling coverage, the
crawler does the authentication for each role-type in the
application. Starting from the seed URL, the crawler
extracts HTML links, forms, and JavaScript code. The
links are stored and used as the next URLs to crawl. For
form submissions, the crawler needs to construct values
that comply with the form restrictions (e.g., length of in-
put) and satisfy eventual JavaScript validations. Having
a mechanism that automatically generates valid form in-
puts greatly improves the crawling coverage of web ap-
plications since web forms are common constructs that
influence the navigation structure.

To address this problem, our crawler extracts the
forms’ input fields, buttons, and action and method at-
tributes (i.e., GET or POST) using an HTML parser and
generates a set of constraints over the form values im-
plied by the form attributes. In addition, to deal with

JavaScript code that validates form inputs, the crawler
leverages the techniques used in [12]. Specifically, the
JavaScript code is extracted and analyzed using concrete-
symbolic execution. The code is first executed concretely
and when the execution reaches a conditional statement
that has symbolic variables, the execution forks. Then,
the execution resumes concretely. After the execution
stops for all the forks, a set of constraints that repre-
sent each execution path that returns true is generated.
NAVEX combines the form HTML constraints Fhtml and
the JavaScript constraints Fjs to produce the final form
constraints Ff orm. As an example, the constraints for the
form in our running example (Listing 1) are:
Fhtml: (book name=="Intro to CS by author1" ∨
book name=="Intro to Math by author2")

Fjs: edition > 0

Ff orm: Fhtml ∧Fjs

Finally, the formula f f orm is sent to the solver
to find a solution. NAVEX uses the solver so-
lution, form method, and action fields to is-
sue a new HTTP request to the application
(i.e., http:.../selectBooks.php?action=borrow

POST[book name=Intro to CS by author1,

edition=2]).
Addressing Server-side Constraints. Server-side code
often introduces additional constraints on the values of
the input variables, which can influence the navigation
structure of an application. Most commonly, these in-
clude constraints over the values submitted via forms.
For instance, in Listing 1, the server-side code intro-
duces an additional check over the string length of
$publisher, which is not present in the JavaScript val-
idation.

Typically, when the server constraints are satisfied, the
execution proceeds and the state of the application is
changed, while in the opposite case, the application re-
jects the form inputs and the state of the application does
not change. Therefore, to maximize the coverage of the
application, the crawler must be able to generate form
inputs that are accepted by the application.

While automatically generating form inputs that are
rejected is easier, generating inputs that are accepted is
more challenging. To deal with this challenge, we uti-
lize an execution-tracing engine on the server-side code.
NAVEX uses the produced trace information to determine
whether a request is successful by checking if the appli-
cation is (i) changing its state (i.e., creating a new ses-
sion, setting a new variable and superglobal values, etc.)
and (ii) performing sensitive operations such as querying
the database.

When a request is not successful, NAVEX utilizes the
trace information to perform a concolic execution. In
particular, it first retrieves the executed statements in-
cluding the conditional statements. Then, the collected
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Figure 3: Concrete Exploit Generation (Step II) Components.

conditional statements are transformed automatically to
solver specifications and negated to uncover new execu-
tion paths. The newly created specifications are then sent
to the solver to generate new form inputs. This process is
continuously repeated until the form submission is suc-
cessful. As an example, the above inference constructs
the following constraints that yield to a successful form
submission
(book name=="intro to CS by author1" ∨
book name=="intro to Math by author2") ∧
length(publisher)<=35 ∧ edition >0

Finally, for each accepted form, NAVEX stores the full
HTTP request that led to the successful submission.

3.2.2 Navigation Graph

The Navigation Graph produced by the dynamic exe-
cution step represents the applications’ navigation be-
havior. It is a directed graph G = (N,E) where each
node n ∈ N represents an HTTP request and each edge
e = (ni,n j) ∈ E represents a navigation from ni to n j,
which can be of type link or form. In particular, for ev-
ery edge e = (ni,n j) ∈ E ni represents the page from
which the request was originated. Each node in the
graph has the following properties id, URL, role, and
form params for nodes representing an HTTP request
generated by a form submission. The id property stores
a unique identifier of the node, the URL property is the
URL in the HTTP request, which is composed of the
module name and HTTP parameters of the request, and
the role property holds the login credentials used as in-
put to the crawler as illustrated in Figure 4. It is impor-
tant to note that the navigation graph can contain multiple
nodes associated with the same PHP module. In partic-
ular, if a PHP module can accept different combinations
of input variables, each such combination is represented
by a corresponding node in the NG.

A partial instance of an NG, related to our running ex-
ample is shown in Figure 4. As an example, one possi-
ble form submission, with form input values generated
by the solver, is represented by the edge between nodes
2 and 3, while the other edges represent link naviga-
tion. Note that hold.php is associated with two different
nodes (id-s 5 and 6), each having a different combination
of input variables (i.e., HTTP parameters). This repre-
sentation will be crucial in the next step when exploring
paths to the exploitable modules.

3.2.3 Final Exploit Generation

To generate the final concrete exploits, NAVEX utilizes
the NG along with the vulnerable sinks identified by the
techniques introduced in Section 3.1. One challenge that
NAVEX must solve in this step is that of combining the
results produced by the step of vulnerable sink identifica-
tion with the Navigation Graph. In particular, when mod-
ules containing vulnerable sinks are included by other
modules using PHP inclusion, the former does not ap-
pear in the NG, because there is no explicit navigation to
them. For instance, the module checkout.php does not
appear in the NG in Figure 4. To execute these vulner-
able modules, the execution must invoke the including
modules.

To address this issue, NAVEX executes a preprocess-
ing inclusion resolution step, which creates an inclusion
map that stores the file inclusion relationships. The map
is constructed by performing a traversal that searches the
enhanced CPG for nodes that represent calls to file inclu-
sion PHP functions (e.g., require, include, etc).

Once the inclusion resolution step is completed,
NAVEX uses the NG and the produced inclusion map to
search paths on the NG from public modules to the ex-
ploitable modules (or their including parents). It is im-
portant to note that the previous identification of vulner-
able sinks that ‘may’ be exploitable greatly reduces the
cost of such search and increases the likelihood of find-
ing executable exploits.

The search method is summarized in Algorithm
2. The first input to the search is the set of pairs
{(module,exploit)} from Step I of NAVEX. Module rep-
resents the vulnerable module, and exploit represents the
assignments of malicious values to inputs generated by
the solver. The next input is the InclusionMap and
the SeedURLs, which represent the publicly accessible
modules. For each vulnerable module, using the inclu-
sion map and the parameters in the exploit, the algo-
rithm first finds possible destination nodes, which will
be the targets of the graph search (line 5). These nodes
(DestURLs) represent either the vulnerable module or its
parents (if a parent PHP module includes the vulnerable
module). GetDestURLs returns only those nodes of the
NG, whose parameter names match the parameter names
appearing in the corresponding exploit. The func-
tion ExpSearch first identifies the nodes whose URL
matches one of the SeedURLs (i.e., matches the URL
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Figure 4: The navigation graph (NG) of our running example.

Algorithm 2 Generating Concrete Exploits

1: Input: ModulesAndExploits =
{(module,exploit)}, InclusionMap,SeedURLs

2: output: Concrete exploits for VulnModule
3:
4: for all vm ∈ModulesAndExploits do
5: DestURLs = GETDESTURLS(vm, InclusionMap)
6: Exploit = EXPSEARCH(SeedURLs,DestURLs,vm)
7: AllExploits← Exploit
8: return AllExploits
9:

10: function EXPSEARCH(SeedURLs, DestURLs, vm)
11: SrcNodes = FINDSRCNODES(SeedURLs)
12: for all sn ∈ SrcNodes do
13: paths = GETPATHSTO(sn,DestURLs)
14: for all path ∈ paths do
15: exploit = REPLACEVULNPARAMS(path,vm)
16: ConcreteExploits← exploit
17: return ConcreteExploits

property) (line 11). The traversal then explores the NG
for each of the retrieved SrcNodes to find paths between
the source node and the DestURLs (line 13). Finally, for
each found path, it replaces the values of the HTTP pa-
rameters in the last edge with the malicious values gen-
erated by the solver.

Applying the algorithm to our run-
ning example, yields to considering
http://localhost/App/selectBooks.php as a
SeedURL, and the node with id 6 in Figure 4 as
DestURL, because that node matches the vulnerable
module, whose corresponding (XSS) exploit contains an
assignment of a malicious value to the HTTP variable
msg. Since the exploit string for msg is <script>

alert("XSS");</script> (generated by the solver
and stored in exploit), GetPathsTo explores the
following navigation paths between the SeedURL and
DestURL: (1) nodes of [id=2, id=3, id=4, id=5] and (2)
nodes of [id=2, id=3, id=4, id=5, id=6]. However, it
returns only the first navigation path because the URL
of node 5 does not contain the HTTP parameter msg.
Finally, ReplaceVulnParams function replaces the
value of the msg with the malicious value of the exploit.
As a result, NAVEX generates the following set of HTTP
requests as a concrete exploit for the vulnerable sink
(line 15) at Listing 3:
1. http://localhost/App/index.php

2. http://localhost/App/selectBooks.php with

POST params:[book name=intro to CS by

author1, edition=2,publisher=aaaaaaa]

3. http://localhost/App/selectBooks.php?action

=borrow

4. http://localhost/App/hold.php

5. http://localhost/App/hold.php?step=checkout

6. http://localhost/App/hold.php?step=checkout

&msg=<script>alert(”XSS”);</script>
As can be noted, as a result of our dynamic execution

and of the navigation graph design where nodes repre-
sent HTTP requests, the challenging problem of finding
sequences of HTTP requests that execute an exploit is
transformed into a simple graph search problem, which
is efficient.

4 Implementation
The implementation of NAVEX is based on several exist-
ing tools, most of which were extended to deal with our
problem. For Step I of our approach, the PHP extension
[9] of code property graphs [33] was enhanced with addi-
tional tags to enable precise taint tracking and database
constraints reasoning. The enhanced CPG is then im-
ported to the Neo4j [4] graph database, an open source
graph platform to create and query graph databases. The
graph traversals, such as algorithm 1, are written in
Gremlin [1]. Neo4j and Gremlin are also used in Step
II to build and search the navigation graph.

For constraints solving, we leveraged Z3 solver [17]
and its extension Z3-str [35]. In particular, when graph
traversals report a vulnerable path to a sink, NAVEX an-
alyzes the returned path and its nodes. Based on each
node type, a Three-Address Code (TAC) formula that
represents the node is created automatically. The TAC
Formula consists of right operand (rightOp), operator,
and left operand (leftOp), node type, and unique node
id. Then, NAVEX starts analyzing each TAC formula ac-
cording to its type. Based of the operator, leftOp, and
rightOp, NAVEX generates: (1) appropriate Z3 variable
declarations, (2) a set of assertions that replicate the se-
mantics of the PHP operator in Z3 specification, and (3)
an assertion that assigns appropriate attack strings from
our attack dictionary to each sink variable in the formula.
NAVEX supports assignment, unary, binary, conditional,
built-in function, and cast statement types. The TAC for-
mula analysis and Z3 translation engine code are approx-
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imately 3600 Java LOC.
For Step II, we extended crawler4j [2] by adding sup-

port for collecting forms and JavaScript code, extract-
ing constraints from the forms, and generating Z3 asser-
tions. To deal with JavaScript, we used an extension of
the Narcissus JavaScript engine [3], which adds the abil-
ity to evaluate JavaScript code symbolically. Then, con-
straints extracted from JavaScript related to form inputs
are transformed and combined with the form constraints
and solved by Z3.

To generate server-side execution traces, we leveraged
Xdebug [5], an open source debugger for PHP code.
Note that Xdebug, like any debugging tool, imposes per-
formance issues such as HTTP responses delays due to
trace generation. Therefore, to maintain acceptable per-
formance, NAVEX invokes Xdebug and analyzes traces
on demand.

Broadly, the techniques implemented in NAVEX can
be used to generate exploits for non-PHP web applica-
tions. At an implementation level, NAVEX is applicable
to other server-side languages if the target source code is
represented as CPGs, models of the target language fea-
tures (i.e., built-in functions, operators, etc.) as solver
specifications are available, and suitable server-side exe-
cution tracing tool is used.

NAVEX is an open-source software available at
https://github.com/aalhuz/navex

5 Evaluation
Dataset. We evaluated NAVEX on 26 real-world PHP ap-
plications with a combined codebase of 3.2M SLOC and
22.7K PHP files as shown in Table 1. Our criteria for se-
lecting the applications include: (i) evaluation on the lat-
est versions of popular, complex and large PHP applica-
tions such as Joomla, HotCRP, and WordPress, and
(ii) comparison of NAVEX on the same test applica-
tions used by state-of-the-art work in exploit genera-
tion (e.g., Chainsaw [7]) and vulnerability analysis (e.g.,
RIPS [15], [16]).
Setup. NAVEX was deployed on Ubuntu 12.04 LTS
VM with 2-cores of 2.4GHz each and 40GB RAM. We
first generated the enhanced CPG and used it to find ex-
ploitable paths for all the 26 applications. Then, we de-
ployed the applications that have exploitable paths. The
deployment process includes: installing each application
on a server, creating login credentials for each role, and
populating the application database with initial data by
navigating the application and submitting forms when
necessary. We take a snapshot of each application’s
database and use it after each crawling to restore the orig-
inal state of the database. Note that due to specific de-
ployment instructions for each application, we could not
leverage automation to include more applications to eval-
uate. Given ample time for manual deployment, NAVEX

Application (version) PHP Files PHP SLOC
myBloggie (2.1.4) 56 9090
Scarf Beta 19 978
DNscript 60 1322
WeBid (0.5.4) 300 65302
Eve (1.0) 8 905
SchoolMate (1.5.4) 63 15375
geccbblite (0.1) 11 323
FAQforge (1.3.2) 17 1676
WebChess (0.9) 29 5219
WordPress (4.7.4) 699 181257
HotCRP (2.100) 145 57717
HotCRP (2.60) 43 14870
Zen-Cart (1.5.5) 1010 109896
OpenConf (6.71) 134 21108
osCommerce (2.3.4) 684 63613
osCommerce (2.3.3) 541 49378
Drupal (8.3.2) 8626 585094
Gallery (3.0.9) 510 39218
Joomla (3.7.0) 2764 302701
LimeSurvey (3.1.1) 3217 965164
Collabtive (3.1) 836 172564
Elgg (2.3.5) 3201 215870
CPG (1.5.46) 359 305245
MediaWiki (1.30.0) 3680 537913
phpBB (2.0.23) 74 29164
phpBB (3.0.11) 387 158756

Table 1: Subject applications of our evaluation.

AST, CFG, PDG, and sanitization and DB tags generation 1hr 25m
Graph database size 4.15 GiB
Total # nodes 24,418,552
Total # edges 56,060,195

Table 2: Statistics on the enhanced CPG generation.

can be used to analyze and generate exploits for hundreds
or thousands of applications.
Summary of results. NAVEX constructed a total of 204
exploits, of which 195 are on injection, and 9 are on logic
vulnerabilities. The sanitization-tags-enhanced CPG re-
duced false positives (FPs) by 87% on average. The in-
clusion of client-side code analysis for building the navi-
gation graph enhanced the precision of exploit generation
by 54% on average. On the evaluation set, NAVEX was
able to drill down as deep as 6 HTTP requests to stitch
together exploits.
Enhanced code property graph statistics. For all the
applications under test, Table 2 shows the enhanced CPG
construction time and size. Note, the enhanced graph
represents the source code of all the 26 applications un-
der test, indicating the low runtime overhead of NAVEX.

Navigation graph statistics. Table 3 summarizes the
total time to generate concrete exploits in Step II of
NAVEX. The application list in the table represents the
applications for which NAVEX found exploitable paths.
Therefore, if an application did not have any exploitable
path, NAVEX will not model its navigation behavior. The
number of roles reflects the number of all account types
(privileges) for each application. The NG has approxi-
mately 59K nodes and 1M edges.

5.1 Exploits
SQLI Exploits. NAVEX examined calls to
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Application
Total Crawling, Forms Spec.
Generation, Solving Time
& NG Building Time

# of
Roles

myBloggie 2m 2
SchoolMate 0 5
WebChess 1m 36sec 2
Eve 1m 5sec 1
geccbblite 57sec 1
Scarf 1m 44sec 2
FAQforge 47sec 1
WeBid 9m 29sec 2
DNscript 51sec 1
phpBB2 2m 14sec 2
HotCRP (2.60) 30m 13sec 4
osCommerce (2.3.3) 2hr 6m 32sec 2
CPG 24m 40sec 2
MediaWiki 15m 30sec 1
LimeSurvey 46sec 2
osCommerce (2.3.4) 2hr 19m 1sec 2
OpenConf 2m 1sec 2
Gallery3 5m 51sec 2
Collabtive 24m 2sec 3
Total time 6hr 27m 18sec
Graph database size 104.44 MiB

Table 3: Statistics on the Navigation graph generation.

mssql query, mysql query, mysqli query,
and sqlite query as sinks for SQLI vulnerability.
It reported a total of 155 SQLI exploitable sinks with
a running time of 37m and 45sec. From these, it
generated 105 concrete SQLI exploits in 7m and 76sec
as summarized in Table 4.

NAVEX generated SQLI exploits for all applications
that have SQLI exploitable sinks (seeds) except for
SchoolMate. In SchoolMate, the crawler recovered
only three HTTP requests. This application has 5 differ-
ent roles, and for each role, our crawler was able to log
in successfully. However, each time the crawler sends
an HTTP request after the login, the application redi-
rects the execution to the login page, which means that
the application does not properly maintain user sessions.
Therefore, the crawler did not proceed, and the cover-
age was low. This faulty application was chosen in our
evaluation mainly to compare the results of NAVEX with
other related work that included it in their test applica-
tions. The reported exploitable sinks, nevertheless, are
confirmed to be true positives (TPs).
Selected SQLI Exploit. One of the applications
for which NAVEX generated a large number of SQLI
exploits is WeBid. Listing 4 shows an exploitable sink
located in the user interface. An authenticated user can
check other users’ messages (line 3), consequently, the
messages will be flagged as read (line 6). The generated
exploit for both sinks is in Listing 5.

1 $messageid = $_GET[’id’]; //no sanitization
2 //1st vul. query
3 $sql = "SELECT * FROM ’".$DBPrefix."messages’ WHERE

’id’=’$messageid’";
4 ....
5 //2nd vul. query
6 $sql = "UPDATE ’".$DBPrefix."messages’ SET ’read’=’1’ WHERE

’id’=’$messageid’";

Listing 4: Simplified code for SQLI vulnerability in WeBid.

Application SQLI Exp.
Sinks

TPs FPs SQLI Exploits
myBloggie 22 22 0 22
Scarf 0 0 0 0
DNscript 1 1 0 1
WeBid 40 40 0 40
Eve 5 5 0 5
SchoolMate 50 50 0 0
geccbblite 4 4 0 4
FAQforge 14 14 0 14
WebChess 13 13 0 13
osCommerce (2.3.3) 1 1 0 1
phpBB (2.0.23) 5 5 0 5
Total 155 155 0 105

Table 4: Summary of the generated SQLI exploitable sinks
and exploits.

Application XSS Exp. Sinks TPs FPs XSS exploits
myBloggie 2 2 0 2
Scarf 1 1 0 1
DNscript 1 1 0 1
WeBid 12 8 4 8
Eve 2 2 0 2
SchoolMate 11 11 0 0
FAQforge 7 7 0 7
WebChess 14 14 0 14
HotCRP (2.60) 5 5 0 5
osCommerce (2.3.4) 5 5 0 5
osCommerce (2.3.3) 46 45 1 42
CPG 11 11 0 0
MediaWiki 1 1 0 1
phpBB (2.0.23) 15 15 0 2
Total 133 128 5 90

Table 5: Summary of the generated XSS seeds and exploits.

1 http://localhost/WeBid/user_login.php
POST[username=user,password=pass,action=login]

2 http://localhost/WeBid/index.php
3 http://localhost/WeBid/user_menu.php
4 http://localhost/WeBid/yourmessages.php?id=1’ OR ’1’=’1

Listing 5: SQLI exploit generated for the sinks in Listing 4.

XSS Exploits. NAVEX examined calls to echo and
print PHP functions as sinks for XSS vulnerability. It
found a total of 133 XSS exploitable sinks, 5 of which
are false positives, in 1h and 49m. It successfully gener-
ated 90 XSS exploits for the 133 sinks in 40m and 12sec
as shown in Table 5. For all exploitable sinks, NAVEX
generated XSS exploits except for SchoolMate, due to
the reported problem.

Note, we consider an exploit a zero-day if the exploit
in an active application was not reported before and has
a significant effect, which is not the case for the vulnera-
bility in MediaWiki for instance.
Selected XSS Exploit. For osCommerce2.3.4, NAVEX
generated 5 XSS exploits. In the following, we demon-
strate one of these exploits, which illustrates the preci-
sion of our analysis in capturing the effect of custom
and built-in sanitization functions along different paths
to sinks.

Listing 6 shows the vulnerable sink (echo) where
user input $HTTP GET VARS[’page’] passes through
3 different functions and it is finally processed
by either htmlspecialchars or strtr PHP func-
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tions. NAVEX did not report the paths going through
htmlspecialchars as exploitable because it is a suf-
ficient XSS sanitization function. On the other hand, it
reported the paths that include strtr, which is not a
typical sanitization function for XSS, as vulnerable. In
this example, strtr replaces double quotes with &quot;
which is not sufficient to prevent XSS. NAVEX inferred
the semantics of this function (through its modeling of
many PHP functions as solver specifications) and used
the solver to find an XSS attack string that does not in-
clude double quotes from our XSS attack dictionary. Ad-
ditionally, to break out the outer single quotes, the attack
string should have a single quote (&#39; HTML entity)
encoded (%26%2339%3B).

As a result, the solver selected
%26%2339%3B-alert(1)-%26%2339%3B as a ma-
licious user input that satisfies the path constraints.
Listing 7 shows the exploit constructed automatically
for this vulnerability.

1 echo ’<tr .. onclick="document.location.href=\’’ .
tep_href_link(FILENAME, ’page=’ .
$HTTP_GET_VARS[’page’]) . ’\’">’;

2 //1st function
3 function tep_href_link($page = ’’, $parameters = ’’) {
4 if (tep_not_null($parameters))
5 $link .= $page . ’?’ . tep_output_string($parameters);

...}
6 //2nd function
7 function tep_output_string($string, $translate = false,

$protected = false) {
8 if ($protected == true)
9 return htmlspecialchars($string);

10 else
11 if ($translate == false)
12 return tep_parse_input_field_data($string, array(’"’ =>

’&quot;’));
13 ...}
14 //3rd function
15 function tep_parse_input_field_data($data, $parse) {
16 return strtr(trim($data), $parse);}

Listing 6: Simplified code for XSS vulnerability in
osCommerce 2.3.4.

1 http://localhost/oscommerce-2.3.4/catalog/admin/login.php
?action=process
POST[username=admin@test.com,password=pass]

2 http://localhost/oscommerce-2.3.4/catalog/admin/index.php
3 http://localhost/oscommerce-2.3.4/catalog/admin/reviews.php
4 http://localhost/oscommerce-2.3.4/catalog/admin/reviews.php

?page=%26%2339%3B-alert(1)-%26%2339%3B

Listing 7: An XSS exploit generated for Listing 6.

EAR Exploits. NAVEX examined a total of 246 calls
to header function (EAR source) in 17m and 17sec. It
found 19 benign EAR and 3 malicious EAR vulnerabili-
ties. It successfully generated 9 exploits for the 22 EAR
vulnerabilities combined as summarized in Table 6. Note
that in the case of EAR, an exploit is a sequence of HTTP
requests causes the code after the redirection function to
execute.
Code Execution Exploits. NAVEX examined all calls to

Application Benign
EAR Sinks

Malicious
EAR Sinks

FPs EAR
Exploits

myBloggie 7 0 0 0
WeBid 0 1 0 1
Eve 1 0 0 1
HotCRP (2.100) 1 0 0 1
HotCRP (2.60) 1 0 0 1
OpenConf 4 0 1 1
osCommerce (2.3.4) 0 1 0 1
osCommerce (2.3.3) 0 1 0 1
Gallery 2 0 0 0
Joomla 0 0 1 0
LimeSurvey 1 0 0 0
Collabtive 1 0 0 1
MediaWiki 1 0 1 1
Total 19 3 3 9

Table 6: Summary of the generated EAR seeds and exploits.

the PHP function eval, a total of 98 calls in our data
set, in 21m and 20sec. All the calls are not vulnerable,
and therefore, NAVEX did report any exploitable code
execution sinks, and no exploits were generated.
Command Injection Exploits. NAVEX examined
all calls to exec, expect popen, passthru,

pcntl exec, popen, proc open, shell exec,

system, mail, and backtick operator, a total of
350 calls, in 22m and 32sec. NAVEX did not find any
vulnerable sinks.
File Inclusion Exploits. NAVEX examined a total
of 8063 calls to include, include once, require,
and require once in 27m and 58sec. It marked 1 sink
as exploitable in WeBid. However, an exploit could not
be generated because the unsanitized file name (user in-
put) is prefixed and postfixed with some constant strings,
which cannot be overwritten by a malicious input.

5.2 Measurements
Performance and scalability. Figure 5 shows the per-
formance of NAVEX measured by the total time to find
exploitable sinks and to generate exploits per vulnerabil-
ity type. Note, for each vulnerability type, the blue bar
shows the total time of the analysis of Step I, for all ap-
plications under test. The orange bar, on the other hand,
records the total time spent by Step II, for the applica-
tions that have exploitable sinks.
Dynamic analysis coverage. We consider the number
of statically identified vulnerabilities by Step I as a
baseline to assess the coverage of Step II. NAVEX
successfully constructed 105 exploits for 155 SQLI
sinks, 90 exploits for 128 XSS sinks, and 9 exploits for
19 EAR vulnerabilities. Overall, the total coverage of
Step II is 68% in comparison with the total vulnerable
sinks for all applications.

Effect of sanitization tags on code property graphs.
Figure 6 shows the effect of enhancing the CPG with san-
itization and DB tags on the total number of vulnerable
sinks. The orange bar shows the total number of vulner-
able sinks with the enhancements, showing reductions in
false positives. Overall, the number of reported vulner-
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Vuln. Type Exp. Sinks Finding Time (Mnts.) Exploit Generation Time (Mnts.)
SQLI 37.75 8.27
XSS 109.27 40.20
File Inclusion 27.97 0.00
Command Injection 22.53 0.00
Code Execution 21.33 0.00
EAR 17.28 1.38
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Figure 5: Performance of NAVEX for each vulnerability type.
Note, zero values refer to the absence of exploits.
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Figure 6: The effect of sanitization-tag-enhanced CPG in re-
ducing false positives in vulnerable sink finding. For SQLI, the
numbers show the # of sinks using sanitization and DB proper-
ties.

able sinks for each vulnerability type is reduced, on an
average, by 87% due to enhancements implemented on
CPGs to significantly cut-down false positives.
Effect of client-side code analysis. One of the contri-
butions of our work is the precise handling of client-side
code during the NG construction. Forms are common
artifacts in modern web applications. In our dataset,
we counted the frequency of using forms to receive
data from users. We found out that the number of
unique forms in all applications ranges from 3 (as in
geccbblite) to 186 (as in WeBid) with an average of
45 form/application. Additionally, Figure 7 validates our
claim that in order to improve the coverage and conse-
quently generate more exploits in deployed applications,
we must support input generation and constraints extrac-
tion from forms and JavaScript code. It can be seen from
Figure 7 that NAVEX’s precision significantly increases.

Additionally, we measured the maximum length of all
navigation paths leading to all exploitable sinks. For
SQLI and EAR exploits, we found that the maximum ex-
ploit length is 5 whereas for XSS is 6.

5.3 Comparison with Related Work
We compare the results of NAVEX with other related

works based on the following: (1) common subject appli-
cations (and same version numbers), (2) common vulner-
ability types, and (3) knowledge of how the results of the
related work are counted. Several related work met those
criteria such as CRAXweb [22], RIPS [15], [16], [31],
Ardilla [25], and Chainsaw [7]. However, since
Chainsaw [7], the most recent related work, provided
a detailed comparison between their work and [22], [31],
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Figure 7: The enhancement on exploit generation precision
due to client-side code analysis.

and [25], we compare NAVEX with Chainsaw, RIPS,
and [16].
Vulnerability detection. In Table 7, we compare RIPS,
Chainsaw, and [16] with NAVEX in terms of the to-
tal number of the reported SQLI and XSS vulnerabili-
ties. Compared to Chainsaw, NAVEX found the same
number of XSS and SQLI vulnerabilities in scarf and
Eve, nevertheless, it reported more vulnerable sinks for
myBloggie. In addition, NAVEX found 71 vulnerable
sinks in HotCRP, osCommerce, and phpBB because it
can handle object-oriented PHP code, which is not avail-
able in Chainsaw. Compared to RIPS, NAVEX found
19 more vulnerable sinks for phpBB, osCommerce, and
myBloggie. It missed 2 vulnerable sinks in HotCRP due
to missing edges in the code property graph that repre-
sent dynamic function calls.
Exploit generation. Since Chainsaw supports gen-
erating exploits for XSS and SQLI, we compare it to
NAVEX with respect to the total number of the gener-
ated SQLI and XSS exploits as well as some performance
measurements (see Table 8). NAVEX constructed 19
more exploits in WeBid, myBloggie, geccbblite,

WebChess, and FAQforge, and achieved the same for
Eve, scarf, and DNscript. For SchoolMate, NAVEX
did not generate exploits due to issues related to main-
taining users sessions (as discussed earlier). Since in
Chainsaw the exploit generation is done statically, it was
able to generate exploits for this application.

NAVEX significantly outperformed Chainsaw in
terms of efficiency. Chainsaw generated the exploits
in 112min while NAVEX took 25min and 2sec. In ad-
dition, we contrast the total time to build and search the
navigation graph in NAVEX (18m 26sec) with the total
time to construct and search the Refined Workflow Graph
(RWFG) (1day 13h 21m) in Chainsaw. This indicates
that the techniques used in NAVEX improved the exploit
generation efficiency without losing precision.

5.4 Limitations and Discussion
Unsupported features. Certain features of web applica-
tions are not yet supported and therefore limit our cover-
age. For example, forms that have inputs of type file
require the user to select and upload an actual file from
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Application RIPS [15] [16] Chainsaw [7] NAVEX
myBloggie 21 SQLI(5) 22 24
Scarf - SQLI(1) 1 1
Eve - - 7 7
HotCRP (2.60) 7 - - 5
osCommerce (2.3.3) 42 - - 46
phpBB (2.0.23) 8(SQLI) - - 20

Table 7: Comparison on the number of identified (SQLI+XSS)
vulnerable sinks.

Application Chainsaw [7] NAVEX
Eve 7 7
SchoolMate 54 0
WebChess 25 27
FAQforge 8 21
geccbblite 3 4
myBloggie 22 24
Scarf 1 1
DNscript 2 2
WeBid 47 48
Total exploit generation time 112m 25m 2sec
Total NG construction & solving time 1day 13h 21m 18m 26sec

Table 8: Comparison on the number of generated
(SQLI+XSS) exploits.

the local system. In a given test setting, this can be made
to work with our solver, but to make this work across all
platforms requires more engineering effort. Another is-
sue is of deriving TAC formulas from graph nodes auto-
matically. It is a challenging process that involves an-
alyzing each AST node and supporting different node
structures for each node type. For example, the left-hand
side of an assignment statement in PHP can be a sim-
ple variable, a constant, a function call, nested function
calls, etc. We have carefully considered these cases, and
NAVEX has the support for most such node types and
structures, yet there are a few instances still under de-
velopment. In our data set, NAVEX incorrectly flagged
only 5 sinks as XSS exploitable in osCommerce2.3.3

and WeBid. In PHP, statically handling dynamic calls to
functions is challenging. NAVEX utilizes CPGs, which
do not have full support for resolving dynamic function
calls. However, this did not have a big impact on the
results reported by NAVEX. For instance, there were 3
false positives reported for EAR vulnerability in Joomla,
OpenConf, and MediaWiki.

6 Related Work
Exploit generation for web applications. Exploit gen-
eration has seen a lot of interest in binary applica-
tion [8,14,21]. For web applications, the closest work to
NAVEX is Chainsaw [7], a system that uses purely static
analysis to build concrete exploits. NAVEX differs from
Chainsaw in 2 aspects: (i) it performs a combination of
dynamic and static analyses, which enables it to better
scale to large applications and to find more exploits, (ii)
it supports finding exploits for multiple classes of vulner-
abilities. Additional related works include Ardilla [25],
which uses concolic execution and taint tracking to con-
struct SQLI and XSS attack vectors; CRAXweb [22],
which employs concrete and symbolic execution sup-

ported by a constraint solver to generate SQLI and XSS
exploits. QED [27] generates first-order SQLI and XSS
attacks using static analysis and model checking for Java
web applications. [32] generates inputs that expose SQLI
vulnerabilities using concolic execution of PHP applica-
tions. EKHunter [19] combines static analysis and con-
straint solving to find exploits in for-crime web appli-
cations. WAPTEC [13] and NoTamper [12] generate
exploits for parameter-tampering vulnerabilities. These
works, however, are limited to single PHP modules and
do not consider whole-application paths.

Modeling with code property graphs. Yamaguchi et
al. [33] introduced the notion of CPGs for vulnerability
modeling and discovery in C programs. In a follow-up
work [9], they applied CPGs for vulnerability discovery
on PHP applications. While our work uses the flexibility
and efficiency that CPGs offer, our problem goes a step
further to generate actual executable exploits. As a con-
sequence, we enhance CPGs with additional attributes.

Vulnerability analysis. There is a large body of re-
search that studied server-side vulnerability detection.
Broadly, there are static analysis approaches (such as
[11, 15, 16, 18, 23, 24, 26, 29–31, 34]), dynamic analysis
approaches (e.g., [20, 28]), and hybrid approaches (such
as [10]). Although NAVEX employs some of these anal-
ysis techniques to find vulnerabilities, the aim of NAVEX
is different from these works as it constructs exploits for
the identified vulnerabilities. Our navigation modeling is
inspired by MiMoSA [11], which is a system that finds
data and workflow vulnerabilities by analyzing modules
of web applications. NAVEX advances the analysis by
combining static and dynamic analyses to construct con-
crete exploits for large web applications.

7 Conclusions

In this paper, we present NAVEX, an automatic exploit
generation system that takes into account the dynamic
features and the navigational complexities of modern
web applications. On our dataset, NAVEX constructed
a total of 204 exploits, of which 195 are on taint-style
vulnerabilities, and 9 are on logic vulnerabilities. We
demonstrated that NAVEX significantly outperforms
prior work on the precision, efficiency, and scalability of
exploit generation.
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