
This paper is included in the Proceedings of the
26th USENIX Security Symposium
August 16–18, 2017 • Vancouver, BC, Canada

ISBN 978-1-931971-40-9

Open access to the Proceedings of the
26th USENIX Security Symposium

is sponsored by USENIX

Dead Store Elimination (Still) Considered Harmful
Zhaomo Yang and Brian Johannesmeyer, University of California, San Diego;
Anders Trier Olesen, Aalborg University; Sorin Lerner and Kirill Levchenko,

University of California, San Diego

https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/yang

Dead Store Elimination (Still) Considered Harmful

Zhaomo Yang1 Brian Johannesmeyer1 Anders Trier Olesen2 Sorin Lerner1 Kirill Levchenko1

1 UC San Diego 2 Aalborg University

Abstract
Dead store elimination is a widely used compiler op-
timization that reduces code size and improves perfor-
mance. However, it can also remove seemingly useless
memory writes that the programmer intended to clear
sensitive data after its last use. Security-savvy develop-
ers have long been aware of this phenomenon and have
devised ways to prevent the compiler from eliminating
these data scrubbing operations.

In this paper, we survey the set of techniques found
in the wild that are intended to prevent data-scrubbing
operations from being removed during dead store elim-
ination. We evaluated the effectiveness and availabil-
ity of each technique and found that some fail to pro-
tect data-scrubbing writes. We also examined eleven
open source security projects to determine whether their
specific memory scrubbing function was effective and
whether it was used consistently. We found four of the
eleven projects using flawed scrubbing techniques that
may fail to scrub sensitive data and an additional four
projects not using their scrubbing function consistently.
We address the problem of dead store elimination remov-
ing scrubbing operations with a compiler-based approach
by adding a new option to an LLVM-based compiler
that retains scrubbing operations. We also synthesized
existing techniques to develop a best-of-breed scrubbing
function and are making it available to developers.

1 Introduction
Concerns over memory disclosure vulnerabilities in C
and C++ programs have long led security application
developers to explicitly scrub sensitive data from mem-
ory. A typical case might look like the following:

char * password = malloc(PASSWORD_SIZE);

// ... read and check password

memset(password, 0, PASSWORD_SIZE);

free(password);

The memset is intended to clear the sensitive password
buffer after its last use so that a memory disclosure vul-
nerability could not reveal the password. Unfortunately,
compilers perform an optimization—called dead store
elimination (DSE)—that removes stores that have no
effect on the program result, either because the stored
value is overwritten or because it is never read again.
In this case, because the buffer is passed to free after

being cleared, the compiler determines that the memory
scrubbing memset has no effect and eliminates it.

Removing buffer scrubbing code is an example of
what D’Silva et al. [30] call a “correctness-security gap.”
From the perspective of the C standard, removing the
memset above is allowed because the contents of un-
reachable memory are not considered part of the seman-
tics of the C program. However, leaving sensitive data in
memory increases the damage posed by memory disclo-
sure vulnerabilities and direct attacks on physical mem-
ory. This leaves gap between what the standard considers
correct and what a security developer might deem cor-
rect. Unfortunately, the C language does not provide a
guaranteed way to achieve what the developer intends,
and attempts to add a memory scrubbing function to the
C standard library have not seen mainstream adoption.
Security-conscious developers have been left to devise
their own means to keep the compiler from optimizing
away their scrubbing functions, and this has led to a pro-
liferation of “secure memset” implementations of vary-
ing quality.

The aim of this paper is to understand the current state
of the dead store elimination problem and developers’
attempts to circumvent it. We begin with a survey of ex-
isting techniques used to scrub memory found in open
source security projects. Among more than half a dozen
techniques, we found that several are flawed and that
none are both universally available and effective. Next,
using a specially instrumented version of the Clang com-
piler, we analyzed eleven high-profile security projects to
determine whether their implementation of a scrubbing
function is effective and whether it is used consistently
within the project. We found that only three of the eleven
projects did so.

To aid the current state of affairs, we developed a
single best-of-breed scrubbing function that combines
the effective techniques we found in our survey. We
have shared our implementation with developers of the
projects we surveyed that lacked a reliable scrubbing
function and have made it available to the public. While
not a perfect solution, we believe ours combines the best
techniques available today and offers developers a ready-
to-use solution for their own projects.

We also developed a scrubbing aware C compiler
based on Clang. Our compiler protects scrubbing oper-

USENIX Association 26th USENIX Security Symposium 1025

ations by inhibiting dead store elimination in case where
a store operation may have been intended as a scrubbing
operation by the developer. Our solution does not com-
pletely disable DSE, minimizing the performance impact
of our mechanism. Our performance evaluation shows
that our modified compiler introduces virtually no per-
formance penalty.

In total, our contributions are as follows:

v We survey scrubbing techniques currently found in
the wild, scoring each in terms of its availabil-
ity and reliability. In particular, we identify several
flawed techniques, which we reported to developers
of projects relying on them. We also report on the per-
formance of each technique, where we found an order
of magnitude difference between the best and worst
performing techniques.

v We present a case study of eleven security projects
that have implemented their own scrubbing function.
We found that no two projects’ scrubbing functions
use the same set of techniques. We also identify com-
mon pitfalls encountered in real projects.

v We develop and make publicly available a best-of-
breed scrubbing function that combines the most reli-
able techniques found in use today.

v We develop a scrubbing-safe dead store elimination
optimization pass that protects memory writes in-
tended to scrub sensitive data from being eliminated.
Our mechanism has negligible performance overhead
and can be used without any source code changes.

The rest of the paper is organized as follows. Section 2
provides background for the rest of the paper and de-
scribes the related work. Section 3 surveys the existing
techniques that are used to implement reliable scrubbing
functions and then Section 4 evaluates their performance.
Section 5 examines the reliability and usage of scrub-
bing functions of eleven popular open source applica-
tions. Section 6 describes our secure_memzero imple-
mentation. Section 7 describes our secure DSE imple-
mentation and evaluates its performance. Section 8 dis-
cusses our results. Section 9 concludes the paper.

2 Background and Related Work
D’Silva et al. [30] use the term correctness-security gap
to describe the gap between the traditional notion of
compiler correctness and the correctness notion that a
security-conscious developers might have. They found
instances of a correctness-security gap in several opti-
mizations, including dead store elimination, function in-
lining, code motion, common subexpression elimination,
and strength reduction.

Lu et al. [32] investigate an instance of this gap in
which the compiler introduces padding bytes in data
structures to improve performance. These padding bytes

may remain uninitialized and thus leak data if sent to the
outside world. By looking for such data leakage, they
found previously undiscovered bugs in the Linux and
Android kernels. Wang et al. [38] explore another in-
stance of the correctness-security gap: compilers some-
times remove code that has undefined behavior that, in
some cases, includes security checks. They developed a
static checker called STACK that identifies such code in
C/C++ programs and they used it to uncover 160 new
bugs in commonly deployed systems.

Our work examines how developers handle the
correctness-security gap introduced by aggressive dead
store elimination. While the soundness and security of
dead store elimination has been studied formally [28, 31,
29], the aim of our work is to study the phenomenon em-
pirically.

Bug reports are littered with reports of DSE negatively
affecting program security, as far back as 2002 from Bug
8537 in GCC titled “Optimizer Removes Code Neces-
sary for Security” [3], to January 2016 when OpenSSH
patched CVE-2016-0777, which allowed a malicious
server to read private SSH keys by combining a memory
disclosure vulnerability with errant memset and bzero

memory scrubs [10]; or February 2016 when OpenSSL
changed its memory scrubbing technique after discussion
in Issue 445 [22]; or Bug 751 in OpenVPN from October
2016 about secret data scrubs being optimized away [26].

Despite developers’ awareness of such problems, there
is no uniformly-used solution. The CERT C Secure Cod-
ing Standard [37] recommends SecureZeroMemory as
a Windows solution, memset_s as a C11 solution, and
the volatile data pointer technique as a C99 solution. Un-
fortunately, each of these solutions has problems. The
Windows solution is not cross-platform. For the rec-
ommended C11 memset_s solution, to the best of our
knowledge, there is no standard-compliant implemen-
tation. Furthermore, while the CERT solution for C99
solution may prevent most compilers from removing
scrubbing operations, the standard does not guarantee
its correctness [36]. Furthermore, another common tech-
nique, using a volatile function pointer, is not guaran-
teed to work according to the standard because although
the standard requires compilers to access the function
pointer, it does not require them to make a call via that
pointer [35].

3 Existing Approaches
Until recently, the C standard did not provide a way to
ensure that a memset is not removed, leaving developers
who wanted to clear sensitive memory were left to
devise their own techniques. We surveyed
security-related open source projects to determine what
techniques developers were using to clear memory, and
in this section we present the results of our survey. For

1026 26th USENIX Security Symposium USENIX Association

each technique, we describe how it is intended to work,
its availability on different platforms, and its
effectiveness at ensuring that sensitive data is scrubbed.
We rate the effectiveness of a technique on a three-level
scale:

� Effective. Guaranteed to work (barring flaws in
implementation).

� Effective in practice. Works with all
compilation options and on all the compilers we
tested (GCC, Clang, and MSVC), but is not
guaranteed in principle.

� Flawed. Fails in at least one configuration.

In Section 4 we also compare the performance of a
subset of the surveyed techniques.

The scrubbing techniques we found can be divided
into four groups based on how they attempt to force
memory to be cleared:

� Rely on the platform. Use a function offered
by the operating system or a library that
guarantees memory will be cleared.

� Disable optimization. Disable the optimization
that removes the scrubbing operation.

� Hide semantics. Hide the semantics of the
clearing operation, preventing the compiler from
recognizing it as a dead store.

� Force write. Directly force the compiler to
write to memory.

In the remainder of this section, we describe and discuss
each technique in detail.

3.1 Platform-Supplied Functions
The easiest way to ensure that memory is scrubbed
is to call a function that guarantees that memory will
be scrubbed. These deus ex machina techniques rely
on a platform-provided function that guarantees the de-
sired behavior and lift the burden of fighting the op-
timizer from the developers’ shoulders. Unfortunately,
these techniques are not universally available, forcing de-
velopers to come up with backup solutions.

3.1.1 Windows SecureZeroMemory
On Windows, SecureZeroMemory is designed to be a
reliable scrubbing function even in the presence of opti-
mizations. This is achieved by the support from the Mi-
crosoft Visual Studio compiler, which never optimizes
out a call to SecureZeroMemory. Unfortunately, this
function is only available on Windows.
Used in: Kerberos’s zap, Libsodium’s sodium_mem-

zero, Tor’s memwipe.
Availability: Windows platforms.
Effectiveness: Effective.

3.1.2 OpenBSD explicit_bzero
Similarly OpenBSD provides explicit_bzero, a
optimization-resistant analogue of the BSD bzero func-
tion. The explicit_bzero function has been available
in OpenBSD since version 5.5 and FreeBSD since ver-
sion 11. Under the hood, explicit_bzero simply calls
bzero, however, because explicit_bzero is defined
in the C standard library shipped with the operating sys-
tem and not in the compilation unit of the program using
it, the compiler is not aware of this and does not elimi-
nate the call to explicit_bzero. As discussed in Sec-
tion 3.3.1, this way of keeping the compiler in the dark
only works if definition and use remain separate through
compilation and linking. This is the case with OpenBSD
and FreeBSD, which dynamically link to the C library at
runtime.
Used in: Libsodium’s sodium_memzero, Tor’s mem-

wipe, OpenSSH’s explicit_bzero.
Availability: FreeBSD and OpenBSD.
Effectiveness: Effective (when libc is a shared library).

3.1.3 C11 memset_s
Annex K of the C standard (ISO/IEC 9899-2011) intro-
duced the memset_s function, declared as

errno_t memset_s(void* s, rsize_t smax,

int c, rsize_t n);

Similar to memset, the memset_s function sets a num-
ber of the bytes starting at address s to the byte value c.
The number of bytes written is the lesser of smax or n.
By analogy to strncpy, the intention of having two size
arguments is prevent a buffer overflow when n is an un-
trusted user-supplied argument; setting smax to the size
allocated for s guarantees that the buffer will not be over-
flowed. More importantly, the standard requires that the
function actually write to memory, regardless of whether
or not the written values are read.

The use of two size arguments, while consistent stylis-
tically with other _s functions, has drawbacks. It differs
from the familiar memset function which takes one size
argument. The use of two arguments means that a devel-
oper can’t use memset_s as a drop-in replacement for
memset. It may also lead to incorrect usage, for exam-
ple, by setting smax or n to 0, and thus, while preventing
a buffer overflow, would fail to clear the buffer as in-
tended.

While memset_s seems like the ideal solution, it’s
implementation has been slow. There may be several
reasons for this. First, memset_s is not required by the
standard. It is part of the optional Appendix K. C11
treats all the function in the Annex K as a unit. That
is, if a C library wants to implement the Annex K in a
standard-conforming fashion, it has to implement all
of the functions defined in this annex. At the time of

USENIX Association 26th USENIX Security Symposium 1027

this writing, memset_s is not provided by the GNU C
Library nor by the FreeBSD, OpenBSD, or NetBSD
standard libraries. It’s poor adoption and perceived flaws
have led to calls for its removal from the standard [33].
Used in: Libsodium’s sodium_memzero, Tor’s
memwipe, OpenSSH’s explicit_bzero, CERT’s
Windows-compliant solution [37].
Availability: No mainstream support.
Effectiveness: Effective.

3.2 Disabling Optimization
Since the dead store elimination problem is caused by
compiler optimization, it is possible to prevent scrubbing
stores from being eliminated by disabling compiler op-
timization. Dead store elimination is enabled (on GCC
and Clang) at optimization level -O1, so code compiled
with no optimization would retain the scrubbing writes.
However, disabling optimization completely can signifi-
cantly degrade performance, and is eschewed by devel-
opers. Alternatively, some compilers allow optimizations
to be enabled individually, so, in principle, a program
could be compiled with all optimizations except dead
store elimination enabled. However, some optimization
passes work better when dead stores have already been
eliminated. Also, specifying the whole list of optimiza-
tion passes instead of a simple optimization level like O2
is cumbersome.

Many compilers, including Microsoft Visual C, GCC
and Clang, provide built-in versions of some C library
functions, including memset. During compilation, the
compiler replaces calls to the C library function with its
built-in equivalent to improve performance. In at least
one case we found, developers attempted to preserve
scrubbing stores by disabling the built-in memset in-
trinsic using the -fno-builtin-memset flag. Unfortu-
nately, while this may disable the promotion of standard
C library functions to intrinsics, it does not prevent the
compiler from understanding the semantics of memset.
Furthermore, as we found during our performance mea-
surements (Section 4), the -fno-builtin-memset flag
does not not prevent the developer from calling the
intrinsic directly, triggering dead store elimination. In
particular, starting with glibc 2.3.4 on Linux, defining
_FORTIFY_SOURCE to be an integer greater than 0 en-
ables additional compile-time bounds checks in common
functions like memset. In this case, if the checks succeed,
the inline definition of memset simply calls the built-in
memset. As a result, the -fno-builtin-memset option
did not protect scrubbing stores from dead store elimina-
tion.
Used in: We are not aware of any programs using this
technique.
Availability: Widely available.
Effectiveness: Flawed (not working when newer versions

of glibc and GCC are used and optimization level is O2
or O3).

3.3 Hiding Semantics
Several scrubbing techniques attempt to hide the seman-
tics of the scrubbing operation from the compiler. The
thinking goes, if the compiler doesn’t recognize that an
operation is clearing memory, it will not remove it.

3.3.1 Separate Compilation
The simplest way to hide the semantics of a scrubbing
operation from the compiler is to implement the scrub-
bing operation (e.g. by simply calling memset) in a sep-
arate compilation unit. When this scrubbing function is
called in a different compilation unit than the defining
one, the compiler cannot remove any calls to the scrub-
bing function because the compiler does not know that
it is equivalent to memset. Unfortunately, this technique
is not reliable when link-time optimization (LTO) is en-
abled, which can merge all the compilation units into
one, giving the compiler a global view of the whole pro-
gram. The compiler can then recognize that the scrub-
bing function is effectively a memset, and remove dead
calls to it. Thus, to ensure this technique works, the de-
veloper needs to make sure that she has the control over
how the program is compiled.

3.3.2 Weak Linkage
GCC and some compilers that mimic GCC allow
developers to define weak definitions. A weak defini-
tion of a symbol, indicated by the compiler attribute
__attribute__((weak)), is a tentative definition
that may be replaced by another definition at link
time. In fact, the OpenBSD explicit_bzero function
(Section 3.1.2) uses this technique also:

__attribute__((weak)) void

__explicit_bzero_hook(void *buf, size_t len) { }

void explicit_bzero(void *buf, size_t len) {

memset(buf, 0, len);

__explicit_bzero_hook(buf, len);

}

The compiler can not eliminate the call to
memset because an overriding definition of
__explicit_bzero_hook may access buf. This
way, even if explicit_bzero is used in the same com-
pilation unit where it is defined, the compiler will not
eliminate the scrubbing operation. Unfortunately, this
technique is also vulnerable to link-time optimization.
With link-time optimization enabled, the compiler-linker
can resolve the final definition of the weak symbol,
determine that it does nothing, and then eliminate the
dead store.
Used in: Libsodium’s sodium_memzero, libressl’s
explicit_bzero [14].

1028 26th USENIX Security Symposium USENIX Association

Availability: Available on GCC and Clang.
Effectiveness: Flawed (defeated by LTO).
3.3.3 Volatile Function Pointer
Another popular technique for hiding a scrubbing
operation from the compiler is to call the mem-
ory scrubbing function via a volatile function pointer.
OPENSSL_cleanse of OpenSSL 1.0.2, shown below, is
one implementation that uses this technique:

typedef void *(*memset_t)(void *,int,size_t);

static volatile memset_t memset_func = &memset;

void OPENSSL_cleanse(void *ptr, size_t len) {

memset_func(ptr, 0, len);

}

The C11 standard defines an object of volatile-qualified
type as follows:

An object that has volatile-qualified type may be
modified in ways unknown to the implementation
or have other unknown side effects. Therefore any
expression referring to such an object shall be eval-
uated strictly according to the rules of the abstract
machine, as described in 5.1.2.3. Furthermore, at ev-
ery sequence point the value last stored in the ob-
ject shall agree with that prescribed by the abstract
machine, except as modified by the unknown fac-
tors mentioned previously. What constitutes an ac-
cess to an object that has volatile-qualified type is
implementation-defined.

The effect of declaring memset_func as volatile means
that the compiler must read its value from memory each
time its used because the value may have changed. The
reasoning goes that because the compiler does not know
the value of memset_func at compile time, it can’t rec-
ognize the call to memset and eliminate it.

We have confirmed that this technique works on GCC,
Clang and Microsoft Visual C, and we deem it to be
effective. It is worth noting, however, that while the
standard requires the compiler to read the value of
memset_func from memory, it does not require it to call
memset if it can compute the same result by other means.
Therefore, a compiler would be in compliance if it in-
lined each call to OPENSSL_cleanse as:

memset_t tmp_fptr = memset_func;

if (tmp_fptr == &memset)

memset(ptr, 0, len);

else

tmp_fptr(ptr, 0, len);

If the memory pointed to by ptr is not read again, then
the direct call to memset, the semantics of which are
known, could be eliminated, removing the scrubbing op-
eration. We know of no compiler that does this and con-
sider such an optimization unlikely.
Used in: OpenSSL 1.0.2’s OPENSSL_cleanse (also

used in Tor and Bitcoin); OpenSSH’s explicit_bzero,
quarkslab’s memset_s [4].
Availability: Universally available.
Effectiveness: Effective in practice.

3.3.4 Assembly Implementation
Because optimizations often take place at compiler’s in-
termediate representation level, it is possible to hide the
semantics of a memory scrubbing operation by imple-
menting it in assembly language. In some cases, this may
also be done as a way to improve performance, how-
ever, our results indicate that the compiler’s built-in in-
trinsic memset performs as well as the assembly imple-
mentation we examined. So long as the compiler does
not perform assembly-level link-time optimization, this
technique is effective at ensuring scrubbing stores are
preserved.
Used in: OpenSSL’s OPENSSL_cleanse (also used by
Tor and Bitcoin); Crypto++’s SecureWipeBuffer.
Availability: Target-specific.
Effectiveness: Effective.

3.4 Forcing Memory Writes
The fourth set of techniques we found attempts to force
the compiler to include the store operation without hiding
its nature.

3.4.1 Complicated Computation
Several related techniques attempt to force the compiler
to overwrite sensitive data in memory by forcing the
compiler to carry out a computation. OPENSSL_cleanse
from OpenSSL prior to version 1.0.2 is one example:

unsigned char cleanse_ctr = 0;

void OPENSSL_cleanse(void *ptr, size_t len) {

unsigned char *p = ptr;

size_t loop = len, ctr = cleanse_ctr;

if (ptr == NULL) return;

while (loop--) {

*(p++) = (unsigned char)ctr;

ctr += (17 + ((size_t)p & 0xF));

}

p = memchr(ptr, (unsigned char)ctr, len);

if (p) ctr += (63 + (size_t)p);

cleanse_ctr = (unsigned char)ctr;

}

This function reads and writes the global variable
cleanse_ctr, which provides varying garbage data to
fill the memory to be cleared. Because accesses to the
global variable have a global impact on the program,
the compiler cannot determine that this function is use-
less without extensive interprocedural analysis. Since
such interprocedural analysis is expensive, the compiler
most likely does not perform it, thus it cannot figure

USENIX Association 26th USENIX Security Symposium 1029

out that OPENSSL_cleanse is actually a scrubbing func-
tion. However, this particular implementation is notori-
ously slow (see the performance numbers in Section 4).
OpenSSL gave up this technique in favor of the volatile
function pointer technique (Section 3.3.3) starting with
version 1.0.2.

Another way to scrub sensitive data is to simply rerun
the computation that accesses sensitive data again. This
is used in the musl libc [17] implementation of bcrypt,
which is a popular password hashing algorithm. musl’s
bcrypt implementation __crypt_blowfish calls the
hashing function BF_crypt twice: the first time it passes
the actual password to get the hash, the second time
it passes a test password. The second run serves two
purposes. First, it is a self-test of the hashing code.
__crypt_blowfish compares the result of the second
run with the hardcoded hash value in the function. If they
do not match, there is something wrong in the hashing
code. (In fact, the developers of musl libc found a bug
in GCC that manifested in their hashing code [11].) Sec-
ond, the second run of BF_crypt can also clear sensitive
data left on the stack or in registers by the first run. Since
the same function is called twice, the same registers will
be used, thus the sensitive data left in registers will be
cleared. Since the two calls to BF_crypt are in the same
scope and the stack pointer points to the same position
of the stack before the two calls, the sensitive data left
on the stack by the first run should be cleared by the sec-
ond run. The advantage of this solution is that it clears
sensitive data not only on the stack but also in registers.

While the complicated computation technique appears
effective in practice, there is no guarantee that a com-
piler will not someday see through the deception. This
technique, especially re-running the computation, has a
particularly negative performance impact.
Used in: OPENSSL_cleanse from OpenSSL 1.0.1 (also
used in Tor and Bitcoin), crypt_blowfish from musl
libc [17].
Availability: Universal.
Effectiveness: Effective in practice.

3.4.2 Volatile Data Pointer

Another way to force the compiler to perform a store
is to access a volatile-qualified type. As noted in Sec-
tion 3.3.3, the standard requires accesses to objects that
have volatile-qualified types to be performed explicitly.
If the memory to be scrubbed is a volatile object, the
compiler will be forced to preserve stores that would
otherwise be considered dead. Cryptography Coding
Standard’s Burn [9] is one of the implementations based
on this idea:

void burn(void *v, size_t n) {

volatile unsigned char *p =

(volatile unsigned char *)v;

while(n--) *p++ = 0;

}

In the function above, the memory to be scrubbed is writ-
ten via a pointer-to-volatile p in the while loop. We have
found that this technique is effective on GCC, Clang,
and Microsoft Visual C. Unfortunately, this behavior is
not guaranteed by the C11 standard: “What constitutes
an access to an object that has volatile-qualified type is
implementation-defined.” This means that, while access-
ing an object declared volatile is clearly an “access to an
object that has volatile-qualified type” (as in the case of
the function pointer that is a volatile object), accessing
a non-volatile object via pointer-to-volatile may or may
not be considered such an access.
Used in: sodium_memzero from Libsodium, in-

secure_memzero from Tarsnap, wipememory from
Libgcrypt, SecureWipeBuffer from the Crypto++
library, burn from Cryptography Coding Stan-
dard [9], David Wheeler’s guaranteed_memset [39],
ForceZero from wolfSSL [27], sudo_memset_s from
sudo [23], and CERT’s C99-compliant solution [37].
Availability: Universal.
Effectiveness: Effective in practice.

3.4.3 Memory Barrier

Both GCC and Clang support a memory barrier ex-
pressed using an inline assembly statement. The clobber
argument "memory" tells the compiler that the inline
assembly statement may read or write memory that
is not specified in the input or output arguments [1].
This indicates to the compiler that the inline assembly
statement may access and modify memory, forcing it
to keep stores that might otherwise be considered dead.
GCC’s documentation indicates that the following inline
assembly should work as a memory barrier [1]:

__asm__ __volatile__("":::"memory")

Our testing shows the above barrier works with GCC,
and since Clang also supports the same syntax, one
would expect that the barrier above would also work
with Clang. In fact, it may remove a memset call before
such a barrier [6]. We found that Kerberos (more in
Section 5.2) uses this barrier to implement its scrubbing
function, which may be unreliable with Clang. A more
reliable way to define memory barrier is illustrated by
Linux’s memzero_explicit below:

1030 26th USENIX Security Symposium USENIX Association

#define barrier_data(ptr) \

__asm__ __volatile__("": :"r"(ptr) :"memory")

void memzero_explicit(void *s, size_t count) {

memset(s, 0, count);

barrier_data(s);

}

The difference is the "r"(ptr) argument, which
makes the pointer to the scrubbed memory visible to the
assembly code and prevents the scrubbing store from be-
ing eliminated.
Used in: zap from Kerberos, memzero_explicit from
Linux [16].
Availability: Clang and GCC.
Effectiveness: Effective in practice.

3.5 Discussion
Our survey of existing techniques indicates that there is
no single best technique for scrubbing sensitive data.
The most effective techniques are those where the in-
tegrity of scrubbing operation is guaranteed by the plat-
form. Unfortunately, this means that creating a scrubbing
function requires relying on platform-specific functions
rather than a standard C library or POSIX function.

Of the remaining techniques, we found that the volatile
data pointer, volatile function pointer, and compiler
memory barrier techniques are effective in practice with
the compilers we tested. The first two of these, relying
on the volatile storage type, can be used with any com-
piler but are not guaranteed by the standard. The memory
barrier technique is specific to GCC and Clang and its
effectiveness may change without notice as it has done
already.

4 Performance
When it comes to security-sensitive operations like data
scrubbing, performance is a secondary concern. Never-
theless, given two equally good choices, one would pre-
fer one that is more efficient. In this section, we present
our results of benchmarking the scrubbing techniques we
described above under Clang 3.9 and GCC 6.2. Our base-
line is the performance of ordinary memset, both the C li-
brary implementation and the built-in intrinsics in Clang
and GCC. The performance of the C library implementa-
tion represents the expected performance of non-inlined
platform-provided solutions (Section 3.1) and the sepa-
rate compilation (Section 3.3.1) and weak linkage (Sec-
tion 3.3.2) techniques without link-time optimization.
The performance of GCC and Clang intrinsics represents
the expected performance of inlined platform-provided
solutions (Section 3.1) as well as the memory barrier
technique (Section 3.4.3), assuming the scrubbing func-
tion is inlined. We also measured the performance of the
volatile function pointer technique (Section 3.3.3), the

volatile data pointer technique (Section 3.4.2), the cus-
tom assembly implementation of OpenSSL 1.1.0b (Sec-
tion 3.3.4), and the complicated computation technique
of OpenSSL prior to version 1.0.2 (Section 3.4.1).

4.1 Methodology
We compiled a unique executable for each technique and
block size on GCC 6.2 and Clang 3.9 with the -O2 op-
tion targeting the x86_64 platform. A scrubbing routine’s
performance is the median runtime over 16 program exe-
cutions, where each execution gives the median runtime
over 256 trials, and each trial gives the mean runtime of
256 scrubbing calls. Program executions for a given test
case were spaced out in order to eliminate any affects
caused by the OS scheduler interrupting a particular pro-
gram execution. We left the testing framework code un-
optimized. Scrubbing calls were followed by inline as-
sembly barriers to ensure that optimizations to scrubbing
routines did not affect benchmarking code. The bench-
marking code calls a generic scrub function, which then
calls the specific scrubbing routine to be tested; this code
is allowed to be optimized, so as a result the scrubbing
routine is typically inlined within the generic scrub func-
tion. The scrubbing function and scrubbed buffer size
are defined at compile time, so optimizations can be ex-
haustive. The time to iterate through a loop 256 times
containing a call to a no-op function and memory bar-
rier was subtracted from each trial in order to eliminate
time spent executing benchmarking code and the generic
scrub function call. The runtime for a scrubbing routine
was calculated with the rdtsc and rdtscp instructions
which read the time stamp counter, with the help of the
cpuid instruction which serializes the CPU and thus en-
sures that no other code is benchmarked [34]. Instruction
and data caches were warmed up by executing the bench-
marking code 4 times before results were recorded. Pro-
gram executions were tied to the same CPU core to en-
sure that consistent hardware was used across tests.

The tests were done on an Intel Xeon E5-2430 v2 pro-
cessor with x86_64 architecture and a 32KB L1d cache,
32KB L1i cache, and 256K L2 cache running Ubuntu
14.04 with Linux kernel 3.13.0-100-generic.

4.2 Results
Figures 1 shows the results of our benchmarks. The left
plot (Figure 1a) shows the result of compiling each tech-
nique using Clang 3.9, the right plot (Figure 1b) shows
the result of compiling each technique using GCC 6.2.
In each plot, the x-axis shows the block size being ze-
roed and the y-axis the bytes written per cycle, computed
by dividing the number of cycles taken by the block
size. The heavy solid grey line shows the performance
of plain memset when it is not removed by the optimizer.
The fine solid black line is performance of plain memset

USENIX Association 26th USENIX Security Symposium 1031

plain memset plain memset with -fno-builtin-memset volatile fxn ptr custom assembly volatile data ptr complicated computation

22 23 24 25 26 27 28 29 210 211 212 213 214

Block size (bytes)

2-2

2-1

20

21

22

23

24

25

26

27

28

29

210

B
yt

e
s

w
ri

tt
e
n

 p
e
r

cy
cl

e

Clang 3.9

(a) Compiled with Clang 3.9.

22 23 24 25 26 27 28 29 210 211 212 213 214

Block size (bytes)

2-2

2-1

20

21

22

23

24

25

26

27

28

29

210

B
yt

e
s

w
ri

tt
e
n

 p
e
r

cy
cl

e

GCC 6.2

(b) Compiled with GCC 6.2.

Figure 1: Performance of various scrubbing implementations compiled at optimization level -O2. The x-axis shows the
block size being zeroed and the y-axis the bytes written per cycle, computed by dividing the number of cycles taken
by the block size.

when compiled with the -fno-builtin-memset op-
tion, which instructs the compiler not to use its own built-
in intrinsic memset instead of calling the C standard li-
brary implementation. The remaining dashed lines show
the performance of the volatile function pointer tech-
nique (red line), the custom assembly implementation
from OpenSSL (orange line), the volatile data pointer
technique (blue line), and the complicated computation
technique from OpenSSL (green line).
Large block sizes. At large block sizes, performance
is dominated by the efficiently of each implementation.
The largest determining factor of an implementation’s
efficiency is the size of its move instructions: “plain
memset” and “volatile function pointer” both jump to
libc’s memset, which performs a loop of movdqa instruc-
tions (24 bytes/instruction); “custom assembly” performs
a loop of movq instructions (23 bytes/instruction); and
“volatile data pointer” performs a loop of movb instruc-
tions (20 byte/instruction). Further, “complicated com-
putation” performs several unnecessary obfuscating in-
structions in order to trick the compiler. Its poor per-
formance reflects the numerous developers reports com-
plaining about its slow speed, for example Tor Ticket
#7419 titled “Choose a faster memwipe implementa-
tion” [2].

Additionally, implementations which align the block
pointer see improved efficiency. Libc’s memset is able
to perform movdqa instructions after it dqword-aligns its
pointer. “custom assembly” improves from 23 to 24 byte
block sizes because above that threshold it qword-aligns
its pointer in order to perform movq instructions.

Furthermore, at some point (≥ 29 bytes for Clang; ≥
214 bytes for GCC) the built-in memset defers to using

libc’s memset, hence it is identical to “volatile function
pointer” given large block sizes.
Small block sizes. At small block sizes, performance is
dominated by whether or not loop unrolling occurred.
The scrubbing routine is given the block size at compile-
time, so it is able to optimize accordingly. Thus, for
“plain memset”, move instructions are unrolled for sizes
≤ 28 bytes on Clang and sizes ≤ 25 bytes on GCC. Ad-
ditionally, for the “volatile data pointer” technique, un-
rolling occurs for sizes ≤ 26 bytes on Clang and sizes
≤ 22 bytes on GCC. Note that the performance of imple-
mentations’ unrolled loops are different because differ-
ent types of move instructions may be unrolled (such as
a movb versus a movq).

The large magnitude of spikes in the graph can be at-
tributed to the superscalar nature of the CPU it is run on,
which essentially gives it those instructions for free for
small block sizes. Both Clang and GCC-compiled “plain
memset” code see a major performance drop between
32- and 64-byte block sizes. Although for GCC, this is
the point at which unrolling no longer occurs—it is not
so for Clang, whose dropoff is less severe. We suspect
this is due to L1 caching of smaller size blocks. (The L1
cache line size is 64 bytes on our architecture.)
GCC’s builtin. Upon first examining our results, we
were surprised to find that the GCC-compiled “plain
memset” with -fno-builtin-memset did as well as
“plain memset” with the built-in intrinsic memset.
After examining the produced assembly code, we
found that the scrubbing function was not calling the
libc memset function as expected (and the Clang-
compiled version was). As a result, we found that
string.h (where memset is declared) changes its be-

1032 26th USENIX Security Symposium USENIX Association

havior based on the value of the _FORTIFY_SOURCE

macro, as described in Section 3.2. Thus, even with
the -fno-builtin-memset option, GCC generated its
built-in memset. Under normal circumstances, such code
would be subject to dead-store elimination, causing the
scrubbing operation to be removed.

4.3 Discussion
Our performance measurements found that techniques
vary drastically in performance. This may make some
techniques preferable to others.

5 Case Studies
To understand the use of memory scrubbing in practice,
we examined the eleven popular security libraries and ap-
plications listed in Table 1. Our choices were guided by
whether or not the code handled sensitive data (e.g. se-
cret keys), availability of the source code and our own
judgement of the project’s relevance. For each project,
we set out to determine whether a memory scrubbing
function is available, effective, and used consistently by
the projects’ developers. We used the latest stable version
of each project as of October 9, 2016.
Availability. To determine whether a scrubbing function
is available, we manually examined the program source
code. All eleven projects used one or more of the tech-
niques described in Section 3 to clear sensitive data, and
seven of them relied on a combination of at least two
techniques.

If a project relied on more than one technique, it
automatically chose and used the first technique avail-
able on the platform in order of preference specified
by the developer. Columns under the Preference head-
ing in Table 1 show the developer preference order
for each technique, with 1 being highest priority (first
chosen if available). The scrubbing techniques listed
under the Preference heading are: Win is Windows’
SecureZeroMemory, BSD is BSD’s explicit_bzero,
C11 is C11’s memset_s, Asm. is a custom assembly im-
plementation, Barrier is the memory barrier technique,
VDP is the volatile data pointer technique, VFP is the
volatile function pointer technique, Comp. is the com-
plicated computation technique, WL is the weak linkage
technique, and memset is a call to plain memset. If a
project used a function that can be one of many tech-
niques depending on the version of that function—for ex-
ample, projects that use OpenSSL’s OPENSSL_cleanse,
which may either be VFP or Comp. depending on if
OpenSSL version ≥1.0.2 or <1.0.2 is used—the newer
version is given a higher preference. An ∗ indicates an
incorrectly implemented technique.

For example, Tor uses Windows’ SecureZeroMemory
if available, then BSDs’ explicit_bzero if
available, and so on. Generally, for projects that

used them, all chose a platform-supplied function
(SecureZeroMemory, explicit_bzero, or memset_s)
first before falling back to other techniques. The most
popular of the do-it-yourself approaches are the volatile
data pointer (VDP) and volatile function pointer (VFP)
techniques, with the latter being more popular with
projects that attempt to use a platform-provided function
first.
Effectiveness. To answer the second question—whether
the scrubbing function is effective—we relied on the
manual analysis in Section 3. If a project used an un-
reliable or ineffective scrubbing technique in at least one
possible configuration, we considered its scrubbing func-
tion ineffective, and scored it flawed, denoted # in the
Score column. If the scrubbing function was effective
and used consistently, we scored it effective, denoted .
If it was effective but not used consistently, we scored it
inconsistent, denoted G#.
Consistency. To determine whether a function was used
consistently, we instrumented the Clang 3.9 compiler to
report instances of dead store elimination where a write
is eliminated because the memory location is not used
afterwards. We did not report writes that were eliminated
because they were followed by another write to the same
memory location, because in this case, the data would
be cleared by the second write. Additionally, if sensitive
data is small enough to be fit into registers, it may be
promoted to a register, which will lead to the removal
of the scrubbing store 1. Since the scrubbing store is not
removed in the dead store elimination pass, our tool does
not report it. We would argue such removals have less
impact on security since the sensitive data is in a register.
However, if that register spilled when the sensitive data
in it, it may still leave some sensitive data in memory.
Appendix A.1 provides additional details of our tool. We
compiled each project using this compiler with the same
optimization options as in the default build of the project.
Then we examined the report generated by our tool and
manually identified cases of dead store elimination that
removed scrubbing operations.

Of the eleven projects we examined, all of them sup-
ported Clang. We note, however, that our goal in this part
of our analysis is to identify sites where a compiler could
eliminate a scrubbing operation, and thus identify sites
where sensitive variables were not being cleared as in-
tended by the developer. We then examined each case to
determine whether the memory contained sensitive data,
and whether dead store elimination took place because
a project’s own scrubbing function was not used or be-
cause the function was ineffective. If cases of the latter,

1For example, at the end of OpenSSH’s SHA1Transform function,
“a=b=c=d=e=0;” is used to scrub sensitive data. Because all the five
variables are in virtual registers in the IR form, no store is eliminated
in the DSE pass.

USENIX Association 26th USENIX Security Symposium 1033

Removed ops. Preference Score

Project To
tal

Se
ns

itiv
e

Hea
p

Sta
ck

H/S Win BSD C11 Asm
.

Bar
rie

r

VDP
VFP

Com
p.

WL mem
set

NSS 15 9 3 12 0 - - - - - - - - - 1 #
OpenVPN 8 8 2 6 0 - - - - - - - - - 1 #
Kerberos 10 2 9 0 1 1 - - - 2* - - - - 3 #
Libsodium 0 0 0 0 0 1 3 2 - - 5 - - 4 - #
Tarsnap 11 10 10 1 0 - - - - - 1 - - - - G#
Libgcrypt 2 2 0 2 0 - - - - - 1 - - - - G#
Crypto++ 1 1 0 1 0 - - - 1 - 2 - - - - G#
Tor 4 0 4 0 0 1 2 3 4 - - 5 6 - - G#
Bitcoin 0 0 0 0 0 - - - 1 - - 2 3 - -
OpenSSH 0 0 0 0 0 - 1 2 - - - 3 - - -
OpenSSL 0 0 0 0 0 - - - 1 - - 2 3 - -

Table 1: Summary of open source projects’ removed scrubbing operations and the scrubbing techniques they use.
Removed ops. columns show the total number of removed scrubs, the number of removed scrubs dealing with sensitive
data, and the locations of memory that failed to be scrubbed. Preference columns show the developer preference order
for each technique, with 1 being highest priority (first chosen if available). The ∗ in the row for Kerberos indicates that
its barrier technique was not implemented correctly; see Section 3.4.3 for discussion. A project’s Score shows whether
its scrubbing implementation is flawed (#), inconsistent (G#), or effective ().

we determined why the function was not effective; these
findings are reflected in the results reported in Section 3.
Columns under the heading Removed ops. in Table 1
show the number of cases where a scrubbing operation
was removed. The Total column shows the total num-
ber of sites where an operation was removed. The Sensi-
tive column shows the number of such operations where
we considered the data to be indeed sensitive. (In some
cases, the scrubbing function was used to clear data that
we did not consider sensitive, such as pointer addresses.)
The Heap, Stack, and H/S columns indicate whether or
not the cleared memory was allocated on the heap, on
the stack stack, or potentially on either heap or stack.

Of the eleven projects examined, four had an effec-
tive scrubbing function but did not use it consistently,
resulting in a score of inconsistent, denotedG# in Table 1.
As the results in Table 1 show, only three of the eleven
projects had a scrubbing function that was effective
and used consistently.

We notified the developers of each project that we
scored flawed or inconsistent. For our report to the devel-
opers, we manually verified each instance where a scrub-
bing operation was removed, reporting only valid cases
to the developers. Generally, as described below, devel-
opers acknowledged our report and fixed the problem.
Note that none of the issues resulted in CVEs because
to exploit, they must be used in conjunction with a sepa-
rate memory disclosure bug and these types of bugs are
outside the scope of this work.

In the remainder of this section, we report on the open
source projects that we analyzed. Our goal is to iden-

tify common trends and understand how developers deal
with the problem of compilers removing scrubbing oper-
ations.

5.1 OpenVPN
OpenVPN is an TLS/SSL-based user-space VPN [21].
We tested version 2.3.12. OpenVPN 2.3.12 does not have
a reliable memory scrubbing implementation since it
uses a CLEAR macro which expands to memset. We found
8 scrubbing operations that were removed, all of which
deal with sensitive data. Each of the removed operations
used CLEAR, which is not effective.
Sample case. Function key_method_1_read in Fig-
ure 2 is used in OpenVPN’s key exchange function to
process key material received from an OpenVPN peer.
However, the CLEAR macro fails to scrub the key on the
stack since it is a call to plain memset.
Developer response. The issues were reported, al-
though OpenVPN developers were already aware of the
problem and had a ticket on their issue tracker for it that
was opened 12 days prior to our notification [26]. The
patch does not change the CLEAR macro since it is used
extensively throughout the project, but it does replace
many CLEAR calls with our recommended fix discussed
in Section 6 [7].

5.2 Kerberos
Kerberos is a network authentication protocol that pro-
vides authentication for client/server applications by us-
ing secret-key cryptography [12]. We tested Kerberos re-
lease krb5-1.14.4. The Kerberos memory scrubbing im-

1034 26th USENIX Security Symposium USENIX Association

1 /* From openvpn-2.3.12/src/openvpn/basic.h */
2 #define CLEAR(x) memset(&(x), 0, sizeof(x))
3

4 /* From openvpn-2.3.12/src/openvpn/ssl.c */
5 static bool key_method_1_read (struct buffer *buf, struct
6 tls_session *session) {
7

8 struct key key;
9 /* key is allocated on stack to hold TLS session key */

10 ...
11 /* Clean up */
12 CLEAR (key);
13 ks->authenticated = true;
14 return true;
15 }

Figure 2: A removed scrubbing operation in OpenVPN
2.3.12.

plementation, zap, is unreliable. First, it defaults to Win-
dows’ SecureZeroMemory, which is effective. Other-
wise it uses a memory barrier that may not prevent the
scrubbing operation from being removed when the code
is compiled with Clang (see Section 3.4.3). Finally, if the
compiler is not GCC, it uses a function that calls memset.
While this is more reliable than a macro, memset may
be removed if LTO is enabled (see Section 3.3.1). Fur-
thermore, even though zap is available (and reliable on
Windows), plain memset is still used throughout the code
to perform scrubbing. We found 10 sites where scrubbing
was done using memset, which is not effective; 2 of these
sites deal with sensitive data.
Sample case. Function free_lucid_key_data in Fig-
ure 3 is used in Kerberos to free any storage associated
with a lucid key structure (which is typically on the heap)
and to scrub all of its sensitive information. However it
does so with a call to plain memset, which is then re-
moved by the optimizer.
Developer response. The issues have been patched with
calls to zap. In addition, zap has been patched according
to our recommended fix discussed in Section 6.

1 static void free_lucid_key_data(gss_krb5_lucid_key_t *key) {
2 if (key) {
3 if (key->data && key->length) {
4 memset(key->data,0,key->length);
5 xfree(key->data);
6 memset(key,0,sizeof(gss_krb5_lucid_key_t));
7 }
8 }
9 }

Figure 3: A removed scrubbing operation in Kerberos re-
lease krb5-1.14.4.

5.3 Tor
Tor provides anonymous communication via onion
routing [25]. We tested version 0.2.8.8. Tor de-
fines memwipe, which reliably scrubs memory:
it uses Windows’ SecureZeroMemory if avail-
able, then RtlSecureZeroMemory if available, then
BSD’s explicit_bzero, then memset_s, and then
OPENSSL_cleanse, which is described below. Despite

the availability of memwipe, Tor still uses memset to
scrub memory in several places. We found 4 scrubbing
operations that were removed, however none dealt with
sensitive data.
Sample case. Function MOCK_IMPL in Figure 4 is used
to destroy all resources allocated by a process han-
dle. However, it scrubs the process handle object with
memset, which is then removed by the optimizer.
Developer response. The bugs were reported and have
yet to be patched.

1 MOCK_IMPL(void, tor_process_handle_destroy,(process_handle_t
2 *process_handle, int also_terminate_process)) {
3

4 /* process_handle is passed in and allocated on heap to
5 * hold process handle resources */
6 ...
7 memset(process_handle, 0x0f, sizeof(process_handle_t));
8 tor_free(process_handle);
9 }

Figure 4: A removed scrubbing operation in Tor 0.2.2.8.

5.4 OpenSSL
OpenSSL is a popular TLS/SSL implementation as well
as a general-purpose cryptographic library [20]. We
tested version 1.1.0b. OpenSSL uses OPENSSL_cleanse
to reliably scrub memory. OPENSSL_cleanse defaults
to its own assembly implementations in various archi-
tectures unless specified otherwise by the no-asm flag
at configuration. Otherwise, starting with version 1.0.2,
it uses the volatile function pointer technique to call
memset. Prior to version 1.0.2, it used the complicated
computation technique. We found no removed scrubbing
operations in version 1.1.0b.

5.5 NSS
Network Security Services (NSS) is an TLS/SSL imple-
mentation that traces its origins to the original Netscape
implementation of SSL [18]. We tested version 3.27.1.
NSS does not have a reliable memory scrubbing imple-
mentation since it either calls memset or uses the macro
PORT_Memset, which expands to memset. We found 15
scrubbing operations that were removed, 9 of which deal
with sensitive data. Of the 15 removed operations, 6 were
calls to PORT_Memset and 9 were calls to plain memset.
Sample case. Function PORT_ZFree is used through-
out the NSS code for freeing sensitive data and is based
on function PORT_ZFree_stub in Figure 5. However
PORT_ZFree_stub’s call to memset fails to scrub the
pointer it is freeing.
Developer response. The bugs have been reported and
Mozilla Security forwarded them to the appropriate
team, however they have not yet been patched.

5.6 Libsodium
Libsodium is a cross-platform cryptographic li-
brary [15]. We tested version 1.0.11. Libsodium defines

USENIX Association 26th USENIX Security Symposium 1035

1 extern void PORT_ZFree_stub(void *ptr, size_t len) {
2 STUB_SAFE_CALL2(PORT_ZFree_Util, ptr, len);
3 memset(ptr, 0, len);
4 return free(ptr);
5 }

Figure 5: A removed scrubbing operation in NSS 3.27.1.

sodium_memzero, which does not reliably scrub mem-
ory. First, it defaults to Windows’ SecureZeroMemory,
then memset_s, and then BSD’s explicit_bzero if
available, which are all reliable. Then if weak symbols
are supported, it uses a technique based on weak
linkage, otherwise it uses the volatile data pointer
technique. Techniques based on weak linkage are not
reliable, because they can be removed during link-
time optimization. All memory scrubbing operations
used sodium_memzero, and since Libsodium is not
compiled with link-time optimization, no scrubbing
operations using sodium_memzero were removed.

5.7 Tarsnap
Tarsnap is a online encrypted backup service whose
client source code is available [24]. We tested
version 1.0.37. Tarsnap’s memory scrubbing im-
plementation, called insecure_memzero, uses the
volatile data pointer scrubbing technique. Although
insecure_memzero is an effective scrubbing function,
Tarsnap does not use it consistently. We found 10 cases
where memset was used to scrub memory instead of
insecure_memzero in its keyfile.c, which handles
sensitive data.
Sample case. Function read_encrypted in Figure 6
attempts to scrub a buffer on the heap containing a de-
crypted key. It is used throughout the project for reading
keys from a Tarsnap key file. However, instead of using
insecure_memzero, it uses plain memset, and is thus
removed by the optimizer.
Developer response. Out of the eleven reported issues,
the 10 in keyfile.c were already patched on July 2,
2016 but were not in the latest stable version. The one
non-security issue does not require a patch, since the re-
moved memset was redundant as insecure_memzero is
called right before it.

1 static int read_encrypted(const uint8_t * keybuf, size_t
2 keylen, uint64_t * machinenum, const char * filename,
3 int keys) {
4

5 uint8_t * deckeybuf;
6 /* deckeybuf is allocated on heap to hold decrypted key */
7 ...
8 /* Clean up */
9 memset(deckeybuf, 0, deckeylen);

10 free(deckeybuf);
11 free(passwd);
12 free(pwprompt);
13 return (0);
14 }

Figure 6: A removed scrubbing operation in Tarsnap
1.0.37.

5.8 Libgcrypt
Libgcrypt is a general purpose cryptographic library used
by GNU Privacy Guard, a GPL-licensed implementa-
tion of the PGP standards [13]. We tested version 1.7.3.
Libgcrypt defines wipememory, which is a reliable way
of scrubbing because it uses the volatile data pointer
technique. However, despite wipememory’s availability
and reliability, memset is still used to scrub memory in
several places. We found 2 cases where scrubs were re-
moved, and for both, memset is used to scrub sensitive
sensitive data instead of wipememory.
Sample case. Function invert_key in Figure 7 is used
in Libgcrypt’s IDEA implementation to invert a key for
its key setting and block decryption routines. However,
invert_key uses memset to scrub a copy of the IDEA
key on the stack, which is removed by the optimizer.
Developer response. The bugs have been patched with
calls to wipememory.

1 static void invert_key(u16 *ek, u16 dk[IDEA_KEYLEN]) {
2 u16 temp[IDEA_KEYLEN];
3 /* temp is allocated on stack to hold inverted key */
4 ...
5 memcpy(dk, temp, sizeof(temp));
6 memset(temp, 0, sizeof(temp));
7 }

Figure 7: A removed scrubbing operation in Libgcrypt
1.7.3.

5.9 Crypto++
Crypto++ is a C++ class library implementing sev-
eral cryptographic algorithms [8]. We tested version
5.6.4. Crypto++ defines SecureWipeBuffer, which re-
liably scrubs memory by using custom assembly if the
buffer contains values of type byte, word16, word32, or
word64; otherwise it uses the volatile data pointer tech-
nique. Despite the availability of SecureWipeBuffer,
we found one scrubbing operation dealing with sensi-
tive data that was removed because it used plain memset

rather than its own SecureWipeBuffer.
Sample case. The UncheckedSetKey function, shown
in Figure 8, sets the key for a CAST256 object.
UncheckedSetKey uses plain memset to scrub the user
key on the stack, which is removed by the optimizer.
Developer response. The bug was patched with a call to
SecureWipeBuffer.

1 void CAST256::Base::UncheckedSetKey(const byte *userKey,
2 unsigned int keylength, const NameValuePairs &) {
3

4 AssertValidKeyLength(keylength);
5 word32 kappa[8];
6 /* kappa is allocated on stack to hold user key */
7 ...
8 memset(kappa, 0, sizeof(kappa));
9 }

Figure 8: A removed scrubbing operation in Crypto++
5.6.4.

1036 26th USENIX Security Symposium USENIX Association

5.10 Bitcoin
Bitcoin is a cryptocurrency and payment system [5]. We
tested version 0.13.0 of the Bitcoin client. The project
defines memory_cleanse, which reliably scrubs mem-
ory by using OPENSSL_cleanse, described below. The
source code uses memory_cleanse consistently; we
found no removed scrubbing operations.

5.11 OpenSSH
OpenSSH is a popular implementation of the SSH pro-
tocol [19]. We tested version 7.3. OpenSSH defines its
own explicit_bzero, which is a reliable way of scrub-
bing memory: it uses BSD’s explicit_bzero if avail-
able, then memset_s if available. If neither are avail-
able, it uses the volatile function pointer technique to call
bzero. We found no removed scrubbing operations.

5.12 Discussion
Our case studies lead us to two observations. First, there
is no single accepted scrubbing function. Each project
mixes its own cocktail using existing scrubbing tech-
niques, and there is no consensus on which ones to use.
Unfortunately, as we discussed in Section 3, some of the
scrubbing techniques are flawed or unreliable, making
scrubbing functions that rely on such techniques poten-
tially ineffective. To remedy this state of affairs, we de-
veloped a single memory scrubbing technique that com-
bines the best techniques into a single function, described
in Section 6.

Second, even when the project has reliable scrubbing
function, developers do not use their scrubbing func-
tion consistently. In four of the eleven projects we exam-
ined, we found cases where developers called memset in-
stead of their own scrubbing function. To address this, we
developed a scrubbing-safe dead-store elimination pass
that defensively compile bodies of code, as discussed in
Section 7.

6 Universal Scrubbing Function
As we saw in Section 3, there is no single memory
scrubbing technique that is both universal and guaran-
teed. In the next section, we propose a compiler-based
solution based on Clang, that protects scrubbing opera-
tions from dead-store elimination. In many cases, how-
ever, the developer can’t mandate a specific compiler
and must resort to imperfect techniques to protect scrub-
bing operations from the optimizer. To aid developers in
this position, we developed our own scrubbing function,
called secure_memzero, that combines the best effec-
tive scrubbing techniques in a simple implementation.
Specifically, our implementation supports:

v Platform-provided scrubbing functions
(SecureZeroMemory and memset_s) if available,

v The memory barrier technique if GCC or Clang
are used to compile the source, and

v The volatile data pointer technique and the
volatile function pointer technique.

Our secure_memzero function is implemented in a
single header file secure_memzero.h that can be in-
cluded in a C/C++ source file. The developer can spec-
ify an order of preference in which an implementa-
tion will be chosen by defining macros before including
secure_memzero.h. If the developer does not express
a preference, we choose the first available implementa-
tion in the order given above: platform-provided function
if available, then memory barrier on GCC and Clang,
then then volatile data pointer technique. Our defaults
reflect what we believe are the best memory scrubbing
approaches available today.

We have released our implementation into the pub-
lic domain, allowing developers to use our function re-
gardless of their own project license. We plan to keep
our implementation updated to ensure it remains ef-
fective as compilers evolve. The current version of
secure_memzero.h is available at

https://compsec.sysnet.ucsd.edu/secure_memzero.h.

7 Scrubbing-Safe DSE
While we have tested our secure_memzero function
with GCC, Clang, and Microsoft Visual C, by its very na-
ture it cannot guarantee that a standard-conforming com-
piler will not remove our scrubbing operation. To address
these cases, we implemented a scrubbing-safe dead store
elimination option in Clang 3.9.0.

7.1 Inhibiting Scrubbing DSE
Our implementation works by identifying all stores that
may be explicit scrubbing operations and preventing the
dead store elimination pass from eliminating them. We
consider a store, either a store IR instruction, or a call
to LLVM’s memset intrinsic, to be a potential scrubbing
operation if

v The stored value is a constant,
v The number of bytes stored is a constant, and
v The store is subject to elimination because the

variable is going be out of scope without being
read.

The first two conditions are based on our observation
how scrubbing operations are performed in the real code.
The third allows a store that is overwritten by a later one
to the same location before being read to be eliminated,
which improves the performance. We note that our tech-
niques preserves all dead stores satisfying the conditions
above, regardless of whether the variables are considered
sensitive or not. This may introduce false positives, dead

USENIX Association 26th USENIX Security Symposium 1037

stores to non-sensitive variables in memory that are pre-
served because they were considered potential scrubbing
operations by our current implementation. We discuss
the performance impact of our approach in Section 7.2.

It is worth considering an alternative approach to en-
suring that sensitive data is scrubbed: The developer
could explicitly annotate certain variables as secret, and
have the compiler ensure that these variables are zeroed
before going out of scope. This would automatically pro-
tect sensitive variables without requiring the developer
to zero them explicitly. It would also eliminate poten-
tial false positives introduced by our approach, because
only sensitive data would be scrubbed. Finally, it could
also ensure that spilled registers containing sensitive data
are zeroed, something our scrubbing-safe DSE approach
does not do (see Section 8 for a discussion of this issue).

We chose our approach because it does not require any
changes to the source code. Since developers are already
aware of the need to clear memory, we rely on scrubbing
operations already present in the code and simply ensure
that they are not removed during optimization. Thus, our
current approach is compatible with legacy code and can
protect even projects that do not use a secure scrubbing
function, provided the sensitive data is zeroed after use.

7.2 Performance
Dead store elimination is a compiler optimization in-
tended to reduce code size and improve performance. By
preserving certain dead stores, we are potentially pre-
venting a useful optimization from improving the qual-
ity emitted code and improving performance. To de-
termine whether or not this the case, we evaluated the
performance of our code using the SPEC 2006 bench-
mark. We compiled and ran the SPEC 2006 bench-
mark under four compiler configurations: -O2 only, -O2
and -fno-builtin-memset, -O2 with DSE disabled,
and -O2 with our scrubbing-safe DSE. In each case,
we used Clang 3.9.0, modified to allow us to disable
DSE completely or to selectively disable DSE as de-
scribed above. Note that -fno-builtin-memset is not
a reliable means of protecting scrubbing operations, as
discussed in Section 3.2. The benchmark was run on
a Ubuntu 16.04.1 server with an Intel Xeon Processor
X3210 and 4GB memory.

Our results indicate that the performance of our
scrubbing-safe DSE option is within 1% of the base case
(-O2 only). This difference is well within the variation
of the benchmark; re-running the same tests yielded dif-
ferences of the same order. Disabling DSE completely
also did not affect performance by more than 1% over
base in all but one case (483.xalancbmk) where it was
within 2%. Finally, with the exception of the 403.gcc

benchmark, disabling built-in memset function also does
not have a significant adverse effect on performance. For

the 403.gcc benchmark, the difference was within 5%
of base.

8 Discussion
It is clear that, while the C standard tries to help by defin-
ing memset_s, in practice the C standard does not help.
In particular, memset_s is defined in the optional Annex
K, which is rarely implemented. Developers are then left
on their own to implement versions of secure memset,
and the most direct solution uses the volatile quantifier.
But here again, the C standard does not help, because
the corner cases of the C standard actually give the im-
plementation a surprising amount of leeway in defining
what constitutes a volatile access. As a result, any im-
plementation of a secure memset based on the volatile
qualifier is not guaranteed to work with every standard-
compliant compiler.

Second, it’s very tricky in practice to make sure that
a secure scrubbing function works well. Because an in-
correct implementation does not break any functionality,
it cannot be caught by automatic regression tests. The
only reliable way to test whether an implentation is cor-
rect or not is to manually check the generated binary,
which can be time-consuming. What’s worse, a seem-
ingly working solution may turn out to be insecure under
a different combination of platform, compiler and opti-
mization level, which further increases the cost to test
an implementation. In fact, as we showed in Section 5.2,
developers did make mistakes in the implementing of se-
cure scrubbing functions. This is why we implemented
secure_memzero and tested it on Ubuntu, OpenBSD
and Windows with GCC and Clang. We released it into
the public domain so that developers can use it freely and
collaborate to adapt it to future changes to the C standard,
platforms or compilers.

Third, even if a well-implemented secure scrubbing
function is available, developers may forget to use it,
instead using the standard memset which is removed
by the compiler. For example, we found this hap-
pened in Crypto++ (Section 5.9). This observation makes
compiler-based solutions, for example the secure DSE,
more attractive because they do not depend on develop-
ers correctly calling the right scrubbing function.

Finally, it’s important to note that sensitive data may
still remain in on the stack even after its primary storage
location when it is passed as argument or spilled (in reg-
isters) onto the stack. Addressing this type of data leak
requires more extensive support from the compiler.

9 Conclusion
Developers have known that compiler optimizations may
remove scrubbing operations for some time. To combat
this problem, many implementations of secure memset
have been created. In this paper, we surveyed the ex-

1038 26th USENIX Security Symposium USENIX Association

isting solutions, analyzing the assumptions, advantages
and disadvantages of them. Also, our case studies have
shown that real world programs still have unscrubbed
sensitive data, due to incorrect implementation of se-
cure scrubbing function as well as from developers sim-
ply forgetting to use the secure scrubbing function. To
solve the problem, we implemented the secure DSE, a
compiler-based solution that keeps scrubbing operations
while remove dead stores that have no security impli-
cations, and secure_memzero, a C implementation that
have been tested on various platforms and with different
compilers.

Acknowledgments
This work was funded in part by the National Sci-
ence Foundation through grants NSF-1646493, NSF-
1228967, and NSF-1237264.

References
[1] 6.45.2 Extended Asm - Assembler Instructions with

C Expression Operands. https://gcc.gnu.org/
onlinedocs/gcc/Extended-Asm.html.

[2] #7419 (Choose a faster memwipe imple-
mentation) - Tor Bug Tracker & Wiki.
https://trac.torproject.org/projects/

tor/ticket/7419.
[3] 8537 – Optimizer Removes Code Necessary for

Security. https://gcc.gnu.org/bugzilla/

show_bug.cgi?id=8537.
[4] A glance at compiler internals: Keep my memset.

http://blog.quarkslab.com/a-glance-at-

compiler-internals-keep-my-memset.html.
[5] Bitcoin: Open source P2P money. https://

bitcoin.org/.
[6] Bug 15495 - dead store pass ignores memory clob-

bering asm statement. https://bugs.llvm.org/
show_bug.cgi?id=15495.

[7] Changeset 009521a. https://community.

openvpn.net/openvpn/changeset/

009521ac8ae613084b23b9e3e5dc4ebeccd4c6c8/.
[8] Crypto++ library. https://www.cryptopp.

com/.
[9] Cryptographic coding standard - coding rules.

https://cryptocoding.net/index.php/

Coding_rules#Clean_memory_of_secret_

data.
[10] CVE-2016-0777. https://cve.mitre.org/cgi-

bin/cvename.cgi?name=CVE-2016-0777.
[11] GCC Bugzilla - Bug 26587. https://gcc.gnu.

org/bugzilla/show_bug.cgi?id=26587.
[12] Kerberos - The Network Authentication Protocol.

https://web.mit.edu/kerberos/.
[13] Libgcrypt. https://www.gnu.org/software/

libgcrypt/.

[14] Libressl. https://www.libressl.org/.
[15] libsodium - A modern and easy-to-use crypto

library. https://github.com/jedisct1/

libsodium.
[16] The linux kernel archives. https://www.kernel.

org/.
[17] musl libc. https://www.musl-libc.org/.
[18] Network Security Services - Mozilla.

https://developer.mozilla.org/en-

US/docs/Mozilla/Projects/NSS.
[19] OpenSSH. http://www.openssh.com/.
[20] OpenSSL: Cryptography and SSL/TLS Toolkit.

https://www.openssl.org/.
[21] OpenVPN - Open Source VPN. https://

openvpn.net/.
[22] Reimplement non-asm OPENSSL_cleanse().

https://github.com/openssl/openssl/

pull/455.
[23] Sudo. https://www.sudo.ws/.
[24] Tarsnap - Online backups for the truly paranoid.

http://www.tarsnap.com/.
[25] Tor Project: Anonymity Online. https://www.

torproject.org.
[26] When erasing secrets, use a memset() that’s not op-

timized away. https://community.openvpn.

net/openvpn/ticket/751.
[27] WolfSSL - Embedded SSL Library for Applica-

tions, Devices, IoT, and the Cloud. https://www.
wolfssl.com.

[28] N. Benton. Simple relational correctness proofs
for static analyses and program transformations. In
ACM SIGPLAN Notices, volume 39, pages 14–25,
2004.

[29] C. Deng and K. S. Namjoshi. Securing a com-
piler transformation. In Proceedings of the 23rd
Static Analysis Symposium, SAS ’16, pages 170–
188, 2016.

[30] V. D’Silva, M. Payer, and D. Song. The
correctness-security gap in compiler optimization.
In Security and Privacy Workshops, SPW ’15,
pages 73–87, 2015.

[31] X. Leroy. Formal certification of a compiler back-
end or: programming a compiler with a proof assis-
tant. In ACM SIGPLAN Notices, volume 41, pages
42–54, 2006.

[32] K. Lu, C. Song, T. Kim, and W. Lee. Unisan: Proac-
tive kernel memory initialization to eliminate data
leakages. In Proceedings of the 2016 ACM SIGSAC
Conference on Computer and Communications Se-
curity, CCS ’16, pages 920–932, New York, NY,
2016.

[33] C. O’Donell and M. Sebor. Updated Field Ex-
perience With Annex K — Bounds Checking
Interfaces. http://www.open-std.org/jtc1/

USENIX Association 26th USENIX Security Symposium 1039

sc22/wg14/www/docs/n1969.htm, Sept. 2015.
[34] G. Paoloni. How to benchmark code execution

times on intel ia-32 and ia-64 instruction set archi-
tectures. Intel Corporation, 2010.

[35] C. Percival. Erratum. http://www.

daemonology.net/blog/2014-09-05-

erratum.html.
[36] C. Percival. How to zero a buffer.

http://www.daemonology.net/blog/2014-

09-04-how-to-zero-a-buffer.html.
[37] R. Seacord. The CERT C Secure Coding Standard.

Addison Wesley, 2009.
[38] X. Wang, N. Zeldovich, M. F. Kaashoek, and

A. Solar-Lezama. Towards optimization-safe sys-
tems: Analyzing the impact of undefined behavior.
In Proceedings of the Twenty-Fourth ACM Sympo-
sium on Operating Systems Principles, SOSP ’13,
pages 260–275, New York, NY, 2013.

[39] D. Wheeler. Specially protect secrets (passwords
and keys) in user memory. https://www.

dwheeler.com/secure-programs/Secure-

Programs-HOWTO/protect-secrets.html.

A Appendix
A.1 Instrumenting Clang to Report DSE
To investigate how common it is for scrubbing operations
to be removed by the compiler in open source projects,
we developed a tool called Scrubbing Finder. Our case
studies in Section 5 were performed with this tool.

Since scrubbing operations are removed in a com-
piler’s dead store elimination optimization pass, we in-
strumented the DSE pass in LLVM/Clang 3.9.0 to re-
port these instances. In order to differentiate removed
scrubs from other dead stores, it is necessary to differ-
entiate the different kinds of dead stores: (1) a store
that is overwritten by another store with no read in be-
tween; (2) a store to an object that is about to be out
of scope (a dead store to a stack object); (3) a store
to an object that is about to be freed (a dead store

to a heap object). There is no need to report the first
case because even though the earlier store is indeed a
scrubbing operation, it is safe to remove it. In addi-
tion, we noticed that all but one secure scrubbing im-
plementation store a constant value to the buffer (typi-
cally zero). The only exception is the complicated com-
putation technique of OpenSSL’s OPENSSL_cleanse

(see Section 3.4.1), which stores non-constants values—
however, those stores are not dead stores. Thus the scrub-
bing finder only reports dead stores of (2) and (3) where
a constant is stored.

Thus, when dead store belonging to one of the two
categories described above is removed, Scrubbing Finder
reports: (1) the Location of the removed scrub, including
file and line number; (2) the Removed IR Instruction; and
(3) Additional Info describing any instances where the
removed scrub was inlined. Figure 9 is an example we
found in Kerberos, which has since been fixed.

1 Location: src/lib/gssapi/krb5/lucid_context.c:269:13
2 Removed IR Instruction: call void @llvm.memset.p0i8.i64
3 (i8* nonnull %call.i9.i, i8 0, i64 %conv.i8.i,
4 i32 1, i1 false)
5 Additional Info:
6 src/lib/gssapi/krb5/lucid_context.c:269:13 inlined at
7 [src/lib/gssapi/krb5/lucid_context.c:285:13 inlined at
8 [src/lib/gssapi/krb5/lucid_context.c:233:9 inlined at
9 [src/lib/gssapi/krb5/lucid_context.c:94:16]]]

Figure 9: Example of a removed scrub in Kerberos re-
ported by Scrubbing Finder.

In this example, the removed scrub is on line 269,
column 13 of krb5-1.14.4/src/lib/gssapi/

krb5/lucid_context.c. Furthermore, the enclos-
ing function of the removed operation is inlined
at krb5-1.14.4/src/lib/gssapi/krb5/lucid_

context.c:285:13. The function containing line 285
of lucid_context.c is inlined at krb5-1.14.4/src/
lib/gssapi/krb5/lucid_context.c:233:9. The
function containing line 233 of lucid_context.c is
inlined at krb5-1.14.4/src/lib/gssapi/krb5/

lucid_context.c:94:16.

1040 26th USENIX Security Symposium USENIX Association

