
This paper is included in the Proceedings of the 
26th USENIX Security Symposium
August 16–18, 2017 • Vancouver, BC, Canada

ISBN 978-1-931971-40-9

Open access to the Proceedings of the 
26th USENIX Security Symposium 

is sponsored by USENIX

Locally Differentially Private Protocols  
for Frequency Estimation

Tianhao Wang, Jeremiah Blocki, and Ninghui Li, Purdue University;  
Somesh Jha, University of Wisconsin Madison

https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/wang-tianhao



Locally Differentially Private Protocols for Frequency Estimation

Tianhao Wang, Jeremiah Blocki, Ninghui Li
Purdue University

Somesh Jha
University of Wisconsin-Madison

Abstract
Protocols satisfying Local Differential Privacy (LDP) en-
able parties to collect aggregate information about a pop-
ulation while protecting each user’s privacy, without re-
lying on a trusted third party. LDP protocols (such as
Google’s RAPPOR) have been deployed in real-world
scenarios. In these protocols, a user encodes his pri-
vate information and perturbs the encoded value locally
before sending it to an aggregator, who combines val-
ues that users contribute to infer statistics about the pop-
ulation. In this paper, we introduce a framework that
generalizes several LDP protocols proposed in the liter-
ature. Our framework yields a simple and fast aggre-
gation algorithm, whose accuracy can be precisely ana-
lyzed. Our in-depth analysis enables us to choose opti-
mal parameters, resulting in two new protocols (i.e., Op-
timized Unary Encoding and Optimized Local Hashing)
that provide better utility than protocols previously pro-
posed. We present precise conditions for when each pro-
posed protocol should be used, and perform experiments
that demonstrate the advantage of our proposed proto-
cols.

1 Introduction

Differential privacy [10, 11] has been increasingly ac-
cepted as the de facto standard for data privacy in the
research community. While many differentially private
algorithms have been developed for data publishing and
analysis [12, 19], there have been few deployments of
such techniques. Recently, techniques for satisfying dif-
ferential privacy (DP) in the local setting, which we
call LDP, have been deployed. Such techniques enable
gathering of statistics while preserving privacy of every
user, without relying on trust in a single data curator.
For example, researchers from Google developed RAP-
POR [13, 16], which is included as part of Chrome. It
enables Google to collect users’ answers to questions

such as the default homepage of the browser, the default
search engine, and so on, to understand the unwanted
or malicious hijacking of user settings. Apple [1] also
uses similar methods to help with predictions of spelling
and other things, but the details of the algorithm are not
public yet. Samsung proposed a similar system [21]
which enables collection of not only categorical answers
(e.g., screen resolution) but also numerical answers (e.g.,
time of usage, battery volume), although it is not clear
whether this has been deployed by Samsung.

A basic goal in the LDP setting is frequency estima-
tion. A protocol for doing this can be broken down
into following steps: For each question, each user en-
codes his or her answer (called input) into a specific for-
mat, randomizes the encoded value to get an output, and
then sends the output to the aggregator, who then aggre-
gates and decodes the reported values to obtain, for each
value of interest, an estimate of how many users have that
value. With improvement on the basic task of frequency
estimation, solutions to more complex problems that rely
on it, such as heavy hitter identification, frequent itemset
mining, can also be improved.

We introduce a framework for what we call “pure”
LDP protocols, which has a nice symmetric property.
We introduce a simple, generic aggregation and decod-
ing technique that works for all pure LDP protocols, and
prove that this technique results in an unbiased estimate.
We also present a formula for the variance of the esti-
mate. Most existing protocols fit our proposed frame-
work. The framework also enables us to precisely ana-
lyze and compare the accuracy of different protocols, and
generalize and optimize them. For example, we show
that the Basic RAPPOR protocol [13], which essentially
uses unary encoding of input, chooses sub-optimal pa-
rameters for the randomization step. Optimizing the pa-
rameters results in what we call the Optimized Unary
Encoding (OUE) protocol, which has significantly bet-
ter accuracy.

Protocols based on unary encoding require Θ(d) com-
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munication cost, where d is the number of possible in-
put values, and can be very large (or even unbounded)
for some applications. The RAPPOR protocol uses a
Bloom filter encoding to reduce the communication cost;
however, this comes with a cost of decreasing accuracy
as well as increasing computation cost for aggregation
and decoding. The random matrix projection-based ap-
proach introduced in [6] has Θ(logn) communication
cost (where n is the number of users); however, its accu-
racy is unsatisfactory. We observe that in our framework
this protocol can be interpreted as binary local hash-
ing. Generalizing this and optimizing the parameters re-
sults in a new Optimized Local Hashing (OLH) protocol,
which provides much better accuracy while still requir-
ing Θ(logn) communication cost. The variance of OLH
is orders of magnitude smaller than the previous meth-
ods, for ε values used in RAPPOR’s implementation. In-
terestingly, OLH has the same error variance as OUE;
thus it reduces communication cost at no cost of utility.

With LDP, it is possible to collect data that was in-
accessible because of privacy issues. Moreover, the in-
creased amount of data will significantly improve the
performance of some learning tasks. Understanding cus-
tomer statistics help cloud server and software platform
operators to better understand the needs of populations
and offer more effective and reliable services. Such
privacy-preserving crowd-sourced statistics are also use-
ful for providing better security while maintaining a level
of privacy. For example, in [13], it is demonstrated
that such techniques can be applied to collecting win-
dows process names and Chrome homepages to discover
malware processes and unexpected default homepages
(which could be malicious).

Our paper makes the following contributions:

• We introduce a framework for “pure” LDP proto-
cols, and develop a simple, generic aggregation and
decoding technique that works for all such proto-
cols. This framework enables us to analyze, gener-
alize, and optimize different LDP protocols.

• We introduce the Optimized Local Hashing (OLH)
protocol, which has low communication cost and
provides much better accuracy than existing proto-
cols. For ε ≈ 4, which was used in the RAPPOR
implementation, the variance of OLH’s estimation
is 1/2 that of RAPPOR, and close to 1/14 that of
Random Matrix Projection [6]. Systems using LDP
as a primitive could benefit significantly by adopt-
ing improved LDP protocols like OLH.

Roadmap. In Section 2, we describe existing proto-
cols from [13, 6]. We then present our framework for
pure LDP protocols in Section 3, apply it to study LDP
protocols in Section 4, and compare different LDP proto-
cols in Section 5. We show experimental results in Sec-

tion 6. We review related work in Section 7, discuss in
Section 8, and conclude in Section 9.

2 Background and Existing Protocols

The notion of differential privacy was originally intro-
duced for the setting where there is a trusted data cu-
rator, who gathers data from individual users, processes
the data in a way that satisfies DP, and then publishes the
results. Intuitively, the DP notion requires that any sin-
gle element in a dataset has only a limited impact on the
output.

Definition 1 (Differential Privacy) An algorithm A
satisfies ε-differential privacy (ε-DP), where ε ≥ 0, if
and only if for any datasets D and D′ that differ in one
element, we have

∀t∈Range(A) : Pr [A(D) = t]≤ eε Pr
[
A(D′) = t

]
,

where Range(A) denotes the set of all possible outputs
of the algorithm A.

2.1 Local Differential Privacy Protocols

In the local setting, there is no trusted third party. An ag-
gregator wants to gather information from users. Users
are willing to help the aggregator, but do not fully trust
the aggregator for privacy. For the sake of privacy, each
user perturbs her own data before sending it to the aggre-
gator (via a secure channel). For this paper, we consider
that each user has a single value v, which can be viewed
as the user’s answer to a given question. The aggrega-
tor aims to find out the frequencies of values among the
population. Such a data collection protocol consists of
the following algorithms:
• Encode is executed by each user. The algorithm

takes an input value v and outputs an encoded value
x.

• Perturb, which takes an encoded value x and out-
puts y. Each user with value v reports y =
Perturb(Encode(v)). For compactness, we use
PE(·) to denote the composition of the encod-
ing and perturbation algorithms, i.e., PE(·) =
Perturb(Encode(·)). PE(·) should satisfy ε-local
differential privacy, as defined below.

• Aggregate is executed by the aggregator; it takes all
the reported values, and outputs aggregated infor-
mation.

Definition 2 (Local Differential Privacy) An algo-
rithm A satisfies ε-local differential privacy (ε-LDP),
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where ε ≥ 0, if and only if for any input v1 and v2, we
have

∀y ∈ Range(A) : Pr [A(v1) = y]≤ eε Pr [A(v2) = y] ,

where Range(A) denotes the set of all possible outputs
of the algorithm A.

This notion is related to randomized response [24],
which is a decades-old technique in social science to col-
lect statistical information about embarrassing or illegal
behavior. To report a single bit by random response, one
reports the true value with probability p and the flip of the
true value with probability 1− p. This satisfies

(
ln p

1−p

)
-

LDP.
Comparing to the setting that requires a trusted data

curator, the local setting offers a stronger level of pro-
tection, because the aggregator sees only perturbed data.
Even if the aggregator is malicious and colludes with all
other participants, one individual’s private data is still
protected according to the guarantee of LDP.

Problem Definition and Notations. There are n users.
Each user j has one value v j and reports once. We use d
to denote the size of the domain of the values the users
have, and [d] to denote the set {1,2, . . . ,d}. Without loss
of generality, we assume the input domain is [d]. The
most basic goal of Aggregate is frequency estimation,
i.e., estimate, for a given value i ∈ [d], how many users
have the value i. Other goals have also been considered
in the literature. One goal is, when d is very large, iden-
tify values in [d] that are frequent, without going through
every value in [d] [16, 6]. In this paper, we focus on fre-
quency estimation. This is the most basic primitive and is
a necessary building block for all other goals. Improving
this will improve effectiveness of other protocols.

2.2 Basic RAPPOR

RAPPOR [13] is designed to enable longitudinal collec-
tions, where the collection happens multiple times. In-
deed, Chrome’s implementation of RAPPOR [3] collects
answers to some questions once every 30 minutes. Two
protocols, Basic RAPPOR and RAPPOR, are proposed
in [13]. We first describe Basic RAPPOR.

Encoding. Encode(v) = B0, where B0 is a length-d bi-
nary vector such that B0[v] = 1 and B0[i] = 0 for i ̸= v.
We call this Unary Encoding.

Perturbation. Perturb(B0) consists of two steps:
Step 1: Permanent randomized response: Generate B1
such that:

Pr [B1[i] = 1] =
{

1− 1
2 f , if B0[i] = 1,

1
2 f , if B0[i] = 0.

RAPPOR’s implementation uses f = 1/2 and f = 1/4.
Note that this randomization is symmetric in the sense
that Pr [B1[i] = 1|B0[i] = 1] = Pr [B1[i] = 0|B0[i] = 0] =
1− 1

2 f ; that is, the probability that a bit of 1 is preserved
equals the probability that a bit of 0 is preserved. This
step is carried out only once for each value v that the
user has.
Step 2: Instantaneous randomized response: Report B2
such that:

Pr [B2[i] = 1] =
{

p, if B1[i] = 1,
q, if B1[i] = 0.

This step is carried out each time a user reports the value.
That is, B1 will be perturbed to generate different B2’s for
each reporting. RAPPOR’s implementation [5] uses p =
0.75 and q = 0.25, and is hence also symmetric because
p+q = 1.

We note that as both steps are symmetric, their com-
bined effect can also be modeled by a symmetric ran-
domization. Moreover, we study the problem where each
user only reports once. Thus without loss of generality,
we ignore the instantaneous randomized response step
and consider only the permanent randomized response
when trying to identify effective protocols.

Aggregation. Let B j be the reported vector of the j-th
user. Ignoring the Instantaneous randomized response
step, to estimate the number of times i occurs, the aggre-
gator computes:

c̃(i) =
∑ j1{i|B j [i]=1}(i)− 1

2 f n

1− f

That is, the aggregator first counts how many time i is re-
ported by computing ∑ j1{i|B j [i]=1}(i), which counts how
many reported vectors have the i’th bit being 1, and then
corrects for the effect of randomization. We use 1X (i) to
denote the indicator function such that:

1X (i) =
{

1, if i ∈ X ,
0, if i /∈ X .

Cost. The communication and computing cost is Θ(d)
for each user, and Θ(nd) for the aggregator.

Privacy. Against an adversary who may observe
multiple transmissions, this achieves ε-LDP for ε =

ln

((
1− 1

2 f
1
2 f

)2
)

, which is ln9 for f = 1/2 and ln49 for

f = 1/4.

2.3 RAPPOR
Basic RAPPOR uses unary encoding, and does not scale
when d is large. To address this problem, RAPPOR uses
Bloom filters [7]. While Bloom filters are typically used
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to encode a set for membership testing, in RAPPOR it is
used to encode a single element.

Encoding. Encoding uses a set of m hash functions
H = {H1,H2, . . . ,Hm}, each of which outputs an integer
in [k] = {0,1, . . . ,k−1}. Encode(v) = B0, which is k-bit
binary vector such that

B0[i] =
{

1, if ∃H ∈H,s.t.,H(v) = i,
0, otherwise.

Perturbation. The perturbation process is identical to
that of Basic RAPPOR.

Aggregation. The use of shared hashing creates chal-
lenges due to potential collisions. If two values happen
to be hashed to the same set of indices, it becomes im-
possible to distinguish them. To deal with this problem,
RAPPOR introduces the concept of cohorts. The users
are divided into a number of cohorts. Each cohort uses a
different set of hash functions, so that the effect of col-
lisions is limited to within one cohort. However, par-
tial collisions, i.e., two values are hashed to overlapping
(though not identical) sets of indices, can still occur and
interfere with estimation. These complexities make the
aggregation algorithm more complicated. RAPPOR uses
LASSO and linear regression to estimate frequencies of
values.

Cost. The communication and computing cost is Θ(k)
for each user. The aggregator’s computation cost is
higher than Basic RAPPOR due to the usage of LASSO
and regression.

Privacy. RAPPOR achieves ε-LDP for ε =

ln

((
1− 1

2 f
1
2 f

)2m
)

. The RAPPOR implementation

uses m = 2; thus this is ln81 ≈ 4.39 for f = 1/2 and
ln74 ≈ 7.78 for f = 1/4.

2.4 Random Matrix Projection

Bassily and Smith [6] proposed a protocol that uses ran-
dom matrix projection. This protocol has an additional
Setup step.

Setup. The aggregator generates a public matrix Φ ∈
{− 1√

m ,
1√
m}

m×d uniformly at random. Here m is a pa-
rameter determined by the error bound, where the “error”
is defined as the maximal distance between the estima-
tion and true frequency of any domain.

Encoding. Encode(v) = ⟨r,x⟩, where r is selected uni-
formly at random from [m], and x is the v’s element of

the r’s row of Φ, i.e., x = Φ[r,v].

Perturbation. Perturb(⟨r,x⟩) = ⟨r, b · c ·m · x⟩, where

b =

{
1 with probability p = eε

eε+1 ,

−1 with probability q = 1
eε+1 ,

c = (eε +1)/(eε −1).

Aggregation. Given reports ⟨r j,y j⟩’s, the estimate for
i ∈ [d] is given by

c̃(i) = ∑
j

y j ·Φ[r j, i].

The effect is that each user with input value i contributes
c to c̃(i) with probability p, and −c with probability q;
thus the expected contribution is

(p−q) · c =
(

eε

eε +1
− 1

eε +1

)
· e

ε +1
eε −1

= 1.

Because of the randomness in Φ, each user with value ̸= i
contributes to c̃(i) either c or −c, each with probability
1/2; thus the expected contribution from all such users
is 0. Note that each row in the matrix is essentially a
random hashing function mapping each value in [d] to a
single bit. Each user selects such a hash function, uses it
to hash her value into one bit, and then perturbs this bit
using random response.

Cost. A straightforward implementation of the protocol
is expensive. However, the public random matrix Φ does
not need to be explicitly computed. For example, using
a common pseudo-random number generator, each user
can randomly choose a seed to generate a row in the ma-
trix and send the seed in her report. With this technique,
the communication cost is Θ(logm) for each user, and
the computation cost is O(d) for computing one row of
the Φ. The aggregator needs Θ(dm) to generate Φ, and
Θ(md) to compute the estimations.

3 A Framework for LDP Protocols

Multiple protocols have been proposed for estimating
frequencies under LDP, and one can envision other pro-
tocols. A natural research question is how do they com-
pare with each other? Under the same level of privacy,
which protocol provides better accuracy in aggregation,
with lower cost? Can we come up with even better ones?
To answer these questions, we define a class of LDP pro-
tocols that we call “pure”.

For a protocol to be pure, we require the specifica-
tion of an additional function Support, which maps each
possible output y to a set of input values that y “sup-
ports”. For example, in the basic RAPPOR protocol, an
output binary vector B is interpreted as supporting each
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input whose corresponding bit is 1, i.e., Support(B) =
{i | B[i] = 1}.

Definition 3 (Pure LDP Protocols) A protocol given by
PE and Support is pure if and only if there exist two prob-
ability values p∗ > q∗ such that for all v1,

Pr [PE(v1) ∈ {y | v1 ∈ Support(y)}] = p∗,

∀v2 ̸=v1Pr [PE(v2) ∈ {y | v1 ∈ Support(y)}] = q∗.

A pure protocol is in some sense “pure and simple”. For
each input v1, the set {y | v1 ∈ Support(y)} identifies all
outputs y that “support” v1, and can be called the support
set of v1. A pure protocol requires the probability that
any value v1 is mapped to its own support set be the same
for all values. We use p∗ to denote this probability. In
order to satisfy LDP, it must be possible for a value v2 ̸=
v1 to be mapped to v1’s support set. It is required that
this probability, which we use q∗ to denote, must be the
same for all pairs of v1 and v2. Intuitively, we want p∗ to
be as large as possible, and q∗ to be as small as possible.
However, satisfying ε-LDP requires that p∗

q∗ ≤ eε .

Basic RAPPOR is pure with p∗ = 1− f
2 and q∗ = f

2 .
RAPPOR is not pure because there does not exist a suit-
able q∗ due to collisions in mapping values to bit vec-
tors. Assuming the use of two hash functions, if v1 is
mapped to [1,1,0,0], v2 is mapped to [1,0,1,0], and v3 is
mapped to [0,0,1,1], then because [1,1,0,0] differs from
[1,0,1,0] by only two bits, and from [0,0,1,1] by four
bits, the probability that v2 is mapped to v1’s support set
is higher than that of v3 being mapped to v1’s support set.

For a pure protocol, let y j denote the submitted value
by user j, a simple aggregation technique to estimate the
number of times that i occurs is as follows:

c̃(i) =
∑ j1Support(y j)(i)−nq∗

p∗−q∗
(1)

The intuition is that each output that supports i gives an
count of 1 for i. However, this needs to be normalized,
because even if every input is i, we only expect to see
n · p∗ outputs that support i, and even if input i never
occurs, we expect to see n · q∗ supports for it. Thus the
original range of 0 to n is “compressed” into an expected
range of nq∗ to np∗. The linear transformation in (1)
corrects this effect.

Theorem 1 For a pure LDP protocol PE and Support,
(1) is unbiased, i.e., ∀iE [ c̃(i) ] = n fi, where fi is the frac-
tion of times that the value i occurs.

Proof 1

E [ c̃(i) ] =E

⎡⎣
(

∑ j1Support(y j)(i)
)
−nq∗

p∗−q∗

⎤⎦

=
n fi p∗+n(1− fi)q∗−nq∗

p∗−q∗

=n · fi p∗+q∗− fiq∗−q∗

p∗−q∗

=n fi

The variance of the estimator in 1 is a valuable indi-
cator of an LDP protocol’s accuracy:

Theorem 2 For a pure LDP protocol PE and Support,
the variance of the estimation c̃(i) in (1) is:

Var[c̃(i)] =
nq∗(1−q∗)
(p∗−q∗)2 +

n fi(1− p∗−q∗)
p∗−q∗

(2)

Proof 2 The random variable c̃(i) is the (scaled) sum-
mation of n independent random variables drawn from
the Bernoulli distribution. More specifically, n fi (resp.
(1− fi)n) of these random variables are drawn from
the Bernoulli distribution with parameter p∗ (resp. q∗).
Thus,

Var[c̃(i)] = Var

⎡⎣
(

∑ j 1Support(y j)(i)
)
−nq∗

p∗−q∗

⎤⎦
=

∑ j Var[1Support(y j)(i)]

(p∗−q∗)2

=
n fi p∗(1− p∗)+n(1− fi)q∗(1−q∗)

(p∗−q∗)2

=
nq∗(1−q∗)
(p∗−q∗)2 +

n fi(1− p∗−q∗)
p∗−q∗

(3)

In many application domains, the vast majority of val-
ues appear very infrequently, and one wants to identify
the more frequent ones. The key to avoid having lots of
false positives is to have low estimation variances for the
infrequent values. When fi is small, the variance in (2) is
dominated by the first term. We use Var∗ to denote this
approximation of the variance, that is:

Var∗[c̃(i)] =
nq∗(1−q∗)
(p∗−q∗)2 (4)

We also note that some protocols have the property that
p∗+q∗ = 1, in which case Var∗ = Var.

As the estimation c̃(i) is the sum of many independent
random variables, its distribution is very close to a nor-
mal distribution. Thus, the mean and variance of c̃(i)
fully characterizes the distribution of c̃(i) for all prac-
tical purposes. When comparing different methods, we
observe that fixing ε , the differences are reflected in the
constants for the variance, which is where we focus our
attention.
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4 Optimizing LDP Protocols

We now cast many protocols that have been proposed
into our framework of “pure” LDP protocols. Casting
these protocols into the framework of pure protocols en-
ables us to derive their variances and understand how
each method’s accuracy is affected by parameters such
as domain size, ε , etc. This also enables us to general-
ize and optimize these protocols and propose two new
protocols that improve upon existing ones. More specifi-
cally, we will consider the following protocols, which we
organize by their encoding methods.

• Direct Encoding (DE). There is no encoding. It is a
generalization of the Random Response technique.

• Histogram Encoding (HE). An input v is encoded
as a histogram for the d possible values. The pertur-
bation step adds noise from the Laplace distribution
to each number in the histogram. We consider two
aggregation techniques, SHE and THE.

– Summation with Histogram Encoding
(SHE) simply sums up the reported noisy
histograms from all users.

– Thresholding with Histogram Encoding
(THE) is parameterized by a value θ ; it inter-
prets each noisy count above a threshold θ as
a 1, and each count below θ as a 0.

• Unary Encoding (UE). An input v is encoded as a
length-d bit vector, with only the bit corresponding
to v set to 1. Here two key parameters in perturba-
tion are p, the probability that 1 remains 1 after per-
turbation, and q, the probability that 0 is perturbed
into 1. Depending on their choices, we have two
protocols, SUE and OUE.

– Symmetric Unary Encoding (SUE) uses p+
q = 1; this is the Basic RAPPOR proto-
col [13].

– Optimized Unary Encoding (OUE) uses op-
timized choices of p and q; this is newly pro-
posed in this paper.

• Local Hashing (LH). An input v is encoded by
choosing at random H from a universal hash func-
tion family H, and then outputting (H,H(v)). This
is called Local Hashing because each user chooses
independently the hash function to use. Here a key
parameter is the range of these hash functions. De-
pending on this range, we have two protocols, BLH
and OLH.

– Binary Local Hashing (BLH) uses hash func-
tions that outputs a single bit. This is equiva-
lent to the random matrix projection technique
in [6].

– Optimized Local Hashing (OLH) uses opti-
mized choices for the range of hash functions;
this is newly proposed in this paper.

4.1 Direct Encoding (DE)
One natural method is to extend the binary response
method to the case where the number of input values is
more than 2. This is used in [23].

Encoding and Perturbing. EncodeDE(v) = v, and
Perturb is defined as follows.

Pr [PerturbDE(x) = i] =

{
p = eε

eε+d−1 , if i = x
q = 1−p

d−1 = 1
eε+d−1 , if i ̸= x

Theorem 3 (Privacy of DE) The Direct Encoding (DE)
Protocol satisfies ε-LDP.

Proof 3 For any inputs v1,v2 and output y, we have:

Pr [PEDE(v1) = y]
Pr [PEDE(v2) = y]

≤ p
q
=

eε/(eε +d−1)
1/(eε +d−1)

= eε

Aggregation. Let the Support function for DE be
SupportDE(i) = {i}, i.e., each output value i supports
the input i. Then this protocol is pure, with p∗ = p and
q∗ = q. Plugging these values into (4), we have

Var∗[c̃DE(i)] = n · d−2+ eε

(eε −1)2

Note that the variance given above is linear in nd. As d
increases, the accuracy of DE suffers. This is because,
as d increases, p = eε

eε+d−1 , the probability that a value
is transmitted correctly, becomes smaller. For example,
when eε = 49 and d = 216, we have p= 49

65584 ≈ 0.00075.

4.2 Histogram Encoding (HE)
In Histogram Encoding (HE), an input x ∈ [d] is encoded
using a length-d histogram.

Encoding. EncodeHE(v) = [0.0,0.0, · · · ,1.0, · · · ,0.0],
where only the v-th component is 1.0. Two different in-
put v values will result in two vectors that have L1 dis-
tance of 2.0.

Perturbing. PerturbHE(B) outputs B′ such that B′[i] =
B[i]+Lap

( 2
ε

)
, where Lap(β ) is the Laplace distribution

where Pr [Lap(β ) = x] = 1
2β

e−|x|/β .

Theorem 4 (Privacy of HE) The Histogram Encoding
protocol satisfies ε-LDP.

Proof 4 For any inputs v1,v2, and output B, we have

Pr[B|v1]
Pr[B|v2]

=
∏i∈[d]Pr[B[i]|v1]

∏i∈[d]Pr[B[i]|v2]
= Pr[B[v1]|v1]Pr[B[v2]|v1]

Pr[B[v1]|v2]Pr[B[v2]|v2]

≤ eε/2 · eε/2 = eε
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Aggregation: Summation with Histogram Encoding
(SHE) works as follows: For each value, sum the noisy
counts for that value reported by all users. That is,
c̃SHE(i) = ∑ j B j[i], where B j is the noisy histogram re-
ceived from user j. This aggregation method does not
provide a Support function and is not pure. We prove its
property as follows.

Theorem 5 In SHE, the estimation c̃SHE is unbiased.
Furthermore, the variance is

Var [ c̃SHE(i) ] = n
8
ε2

Proof 5 Since the added noise is 0-mean; the expected
value of the sum of all noisy counts is the true count.

The Lap(β ) distribution has variance 2
β 2 , since β = ε

2

for each B j[i], then the variance of each such variable
is 8

ε2 , and the sum of n such independent variables have
variance n 8

ε2 .

Aggregation: Thresholding with Histogram Encod-
ing (THE) interprets a vector of noisy counts discretely
by defining

SupportTHE(B) = {v | B[v]> θ}

That is, each noise count that is > θ supports the corre-
sponding value. This thresholding step can be performed
either by the user or by the aggregator. It does not ac-
cess the original value, and thus does not affect the pri-
vacy guarantee. Using thresholding to provide a Support
function makes the protocol pure. The probability p∗ and
q∗ are given by

p∗ = 1−F(θ −1); q∗ = 1−F(θ),

where F(x) =
{ 1

2 e
ε
2 x, if x < 0

1− 1
2 e−

ε
2 x, if x≥ 0

Here, F(·) is the cumulative distribution function of
Laplace distribution. If 0≤ θ ≤ 1, then we have

p∗ = 1− 1
2

e
ε
2 (θ−1); q∗ =

1
2

e−
ε
2 θ .

Plugging these values into (4), we have

Var∗[c̃HET(i)] = n · 2eεθ/2−1
(1+ eε(θ−1/2)−2eεθ/2)2

Comparing SHE and THE. Fixing ε , one can choose
a θ value to minimize the variance. Numerical analy-
sis shows that the optimal θ is in ( 1

2 ,1), and depends on
ε . When ε is large, θ → 1. Furthermore, Var[c̃THE] <
Var[c̃SHE] is always true. This means that by thresh-
olding, one improves upon directly summing up noisy
counts, likely because thresholding limits the impact of
noises of large magnitude. In Section 5, we illustrate the
differences between them using actual numbers.

4.3 Unary Encoding (UE)
Basic RAPPOR, which we described in Section 2.2,
takes the approach of directly perturbing a bit vector. We
now explore this method further.

Encoding. Encode(v) = [0, · · · ,0,1,0, · · · ,0], a length-d
binary vector where only the v-th position is 1.

Perturbing. Perturb(B) outputs B′ as follows:

Pr
[
B′[i] = 1

]
=

{
p, if B[i] = 1
q, if B[i] = 0

Theorem 6 (Privacy of UE) The Unary Encoding pro-
tocol satisfies ε-LDP for

ε = ln
(

p(1−q)
(1− p)q

)
(5)

Proof 6 For any inputs v1,v2, and output B, we have

Pr [B|v1]

Pr [B|v2]
=

∏i∈[d]Pr [B[i]|v1]

∏i∈[d]Pr [B[i]|v2]
(6)

≤Pr [B[v1] = 1|v1]Pr [B[v2] = 0|v1]

Pr [B[v1] = 1|v2]Pr [B[v2] = 0|v2]
(7)

=
p
q
· 1−q

1− p
= eε

(6) is because each bit is flipped independently, and (7) is
because v1 and v2 result in bit vectors that differ only in
locations v1 and v2, and a vector with position v1 being
1 and position v2 being 0 maximizes the ratio.

Aggregation. A reported bit vector is viewed as support-
ing an input i if B[i] = 1, i.e., SupportUE(B) = {i | B[i] =
1}. This yields p∗ = p and q∗ = q. Interestingly, (5)
does not fully determine the values of p and q for a fixed
ε . Plugging (5) into (4), we have

Var∗[c̃UE(i)] =
nq(1−q)
(p−q)2 =

nq(1−q)

( eε q
1−q+eε q −q)2

= n · ((e
ε −1)q+1)2

(eε −1)2(1−q)q
. (8)

Symmetric UE (SUE). RAPPOR’s implementation
chooses p and q such that p+ q = 1; making the treat-
ment of 1 and 0 symmetric. Combining this with (5), we
have

p =
eε/2

eε/2 +1
, q =

1
eε/2 +1

Plugging these into (8), we have

Var∗[c̃SUE(i)] = n · eε/2

(eε/2−1)2
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Optimized UE (OUE). Instead of making p and q sym-
metric, we can choose them to minimize (8). Take the
partial derivative of (8) with respect to q, and solving q
to make the result 0, we get:

∂

[
((eε−1)q+1)2

(eε−1)2(1−q)q

]
∂q

=
∂

[
1

(eε−1)2 ·
(
(eε−1)2q

1−q +
2(eε−1)

1−q + 1
q(1−q)

)]
∂q

=
∂

[
1

(eε−1)2 ·
(
−(eε −1)2 + e2ε

1−q +
1
q

)]
∂q

=
1

(eε −1)2

(
e2ε

(1−q)2 −
1
q2

)
= 0

=⇒ 1−q
q

= eε , i.e.,q =
1

eε +1
and p =

1
2

Plugging p = 1
2 and q = 1

eε+1 into (8), we get

Var∗[c̃OUE(i)] = n
4eε

(eε −1)2 (9)

The reason why setting p = 1
2 and q = 1

eε+1 is opti-
mal when the true frequencies are small may be unclear
at first glance; however, there is an intuition behind it.
When the true frequencies are small, d is large. Recall
that eε = p

1−p
1−q

q . Setting p and q can be viewed as

splitting ε into ε1+ε2 such that p
1−p = eε1 and 1−q

q = eε2 .
That is, ε1 is the privacy budget for transmitting the 1 bit,
and ε2 is the privacy budget for transmitting each 0 bit.
Since there are many 0 bits and a single 1 bit, it is better
to allocate as much privacy budget for transmitting the 0
bits as possible. In the extreme, setting ε1 = 0 and ε2 = ε

means that setting p = 1
2 .

4.4 Binary Local Hashing (BLH)
Both HE and UE use unary encoding and have Θ(d)
communication cost, which is too large for some appli-
cations. To reduce the communication cost, a natural
idea is to first hash the input value into a domain of size
k < d, and then apply the UE method to the hashed value.
This is the basic idea underlying the RAPPOR method.
However, a problem with this approach is that two val-
ues may be hashed to the same output, making them in-
distinguishable from each other during decoding. RAP-
POR tries to address this in several ways. One is to use
more than one hash functions; this reduces the chance of
a collision. The other is to use cohorts, so that differ-
ent cohorts use different sets of hash functions. These
remedies, however, do not fully eliminate the potential
effect of collisions. Using more than one hash functions
also means that every individual bit needs to be perturbed
more to satisfy ε-LDP for the same ε .

A better approach is to make each user belong to a co-
hort by herself. We call this the local hashing approach.

The random matrix-base protocol in [6] (described in
Section 2.4), in its very essence, uses a local hashing en-
coding that maps an input value to a single bit, which is
then transmitted using randomized response. Below is
the Binary Local Hashing (BLH) protocol, which is log-
ically equivalent to the one in Section 2.4, but is simpler
and, we hope, better illustrates the essence of the idea.

Let H be a universal hash function family, such that
each hash function H ∈H hashes an input in [d] into one
bit. The universal property requires that

∀x,y ∈ [d],x ̸= y : Pr
H∈H

[H(x) = H(y)]≤ 1
2
.

Encoding. EncodeBLH(v) = ⟨H,b⟩, where H ←R H is
chosen uniformly at random from H, and b=H(v). Note
that the hash function H can be encoded using an index
for the family H and takes only O(logn) bits.

Perturbing. PerturbBLH(⟨H,b⟩) = ⟨H,b′⟩ such that

Pr
[
b′ = 1

]
=

{
p = eε

eε+1 , if b = 1
q = 1

eε+1 , if b = 0

Aggregation. SupportBLH(⟨H,b⟩) = {v | H(v) = b},
that is, each reported ⟨H,b⟩ supports all values that are
hashed by H to b, which are half of the input values. Us-
ing this Support function makes the protocol pure, with
p∗ = p and q∗ = 1

2 p+ 1
2 q = 1

2 . Plugging the values of p∗

and q∗ into (4), we have

Var∗[c̃BLH(i)] = n · (e
ε +1)2

(eε −1)2 .

4.5 Optimal Local Hashing (OLH)

Once the random matrix projection protocol is cast as
binary local hashing, we can clearly see that the encoding
step loses information because the output is just one bit.
Even if that bit is transmitted correctly, we can get only
one bit of information about the input, i.e., to which half
of the input domain does the value belong. When ε is
large, the amount of information loss in the encoding step
dominates that of the random response step. Based on
this insight, we generalize Binary Local Hashing so that
each input value is hashed into a value in [g], where g≥
2. A larger g value means that more information is being
preserved in the encoding step. This is done, however, at
a cost of more information loss in the random response
step. As in our analysis of the Direct Encoding method,
a large domain results in more information loss.

Let H be a universal hash function family such that
each H ∈H outputs a value in [g].

Encoding. Encode(v) = ⟨H,x⟩, where H ∈ H is chosen
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uniformly at random, and x = H(v).

Perturbing. Perturb(⟨H,x⟩) = (⟨H,y⟩), where

∀i∈[g] Pr [y = i] =

{
p = eε

eε+g−1 , if x = i
q = 1

eε+g−1 , if x ̸= i

Theorem 7 (Privacy of LH) The Local Hashing (LH)
Protocol satisfies ε-LDP

Proof 7 For any two possible input values v1,v2 and any
output ⟨H,y⟩, we have,

Pr [⟨H,y⟩|v1]

Pr [⟨H,y⟩|v2]
=

Pr [Perturb(H(v1)) = y]
Pr [Perturb(H(v2)) = y]

≤ p
q
= eε

Aggregation. Let SupportLH(⟨H,y⟩) = {i | H(i) = y},
i.e., the set of values that are hashed into the reported
value. This gives rise to a pure protocol with

p∗ = p and q∗ =
1
g

p+
g−1

g
q =

1
g
.

Plugging these values into (4), we have the

Var∗[c̃LP(i)] = n · (eε −1+g)2

(eε −1)2(g−1)
. (10)

Optimized LH (OLH) Now we find the optimal g
value, by taking the partial derivative of (10) with respect
to g.

∂

[
(eε−1+g)2

(eε−1)2(g−1)

]
∂g

=
∂

[
g−1

(eε−1)2 +
1

g−1 ·
e2ε

(eε−1)2 +
2eε

(eε−1)2

]
∂g

=
1

(eε −1)2 −
1

(g−1)2 ·
e2ε

(eε −1)2 = 0

=⇒ g = eε +1

When g = eε + 1, we have p∗ = eε

eε+g−1 = 1
2 , q∗ = 1

g =
1

eε+1 into (8), and

Var∗[c̃OLH(i)] = n · 4eε

(eε −1)2 . (11)

Comparing OLH with OUE. It is interesting to observe
that the variance we derived for optimized local hashing
(OLH), i.e., (11) is exactly that we have for optimized
unary encoding (OUE), i.e., (9). Furthermore, the proba-
bility values p∗ and q∗ are also exactly the same. This il-
lustrates that OLH and OUE are in fact deeply connected.
OLH can be viewed as a compact way of implementing
OUE. Compared with OUE, OLH has communication
cost O(logn) instead of O(d).

The fact that optimizing two apparently different en-
coding approaches, namely, unary encoding and lo-
cal hashing, results in conceptually equivalent protocol,
seems to suggest that this may be optimal (at least when
d is large). However, whether this is the best possible
protocol remains an interesting open question.

5 Which Protocol to Use

We have cast most of the LDP protocols proposed in the
literature into our framework of pure LDP protocols. Do-
ing so also enables us to generalize and optimize exist-
ing protocols. Now we are able to answer the question:
Which LDP protocol should one use in a given setting?

Guideline. Table 1 lists the major parameters for the dif-
ferent protocols. Histogram encoding and unary encod-
ing requires Θ(d) communication cost, and is expensive
when d is large. Direct encoding and local hashing re-
quire Θ(logd) or Θ(logn) communication cost, which
amounts to a constant in practice. All protocols other
than DE have O(n · d) computation cost to estimate fre-
quency of all values.

Numerical values of the approximate variances using
(4) for all protocols are given in Table 2 and Figure 1 (n=
10,000). Our analysis gives the following guidelines for
choosing protocols.
• When d is small, more precisely, when d < 3eε +2,

DE is the best among all approaches.

• When d > 3eε + 2, and the communication cost
Θ(d) is acceptable, one should use OUE. (OUE has
the same variance as OLH, but is easier to imple-
ment and faster because no hash functions is used.)

• When d is so large that the communication cost
Θ(d) is too large, we should use OLH. It offers
the same accuracy as OUE, but has communication
cost O(logd) instead of O(d).

Discussion. In addition to the guidelines, we make the
following observations. Adding Laplacian noises to a
histogram is typically used in a setting with a trusted
data curator, who first computes the histogram from all
users’ data and then adds the noise. SHE applies it to
each user’s data. Intuitively, this should perform poorly
relative to other protocols specifically designed for the
local setting. However, SHE performs very similarly to
BLH, which was specifically designed for the local set-
ting. In fact, when ε > 2.5, SHE performs better than
BLH.

While all protocols’ variances depend on ε , the rela-
tionships are different. BLH is least sensitive to change
in ε because binary hashing loses too much information.
Indeed, while all other protocols have variance goes to
0 when ε goes to infinity, BLH has variance goes to n.
SHE is slightly more sensitive to change in ε . DE is
most sensitive to change in ε; however, when d is large,
its variance is very high. OLH and OUE are able to better
benefit from an increase in ε , without suffering the poor
performance for small ε values.

Another interesting finding is that when d = 2, the
variance of DE is eε

(eε−1)2 , which is exactly 1
4 of that of
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DE SHE THE (θ = 1) SUE OUE BLH OLH
Communication Cost O(logd) O(d) O(d) O(d) O(d) O(logn) O(logn)

Var[c̃(i)]/n d−2+eε

(eε−1)2
8
ε2

2eε/2−1
(eε/2−1)2

eε/2

(eε/2−1)2
4eε

(eε−1)2
(eε+1)2

(eε−1)2
4eε

(eε−1)2

Table 1: Comparison of communication cost and variances for different methods.

DE (d = 2) DE (d = 32) DE (d = 210) SHE THE (θ = 1) SUE OUE BLH OLH
ε = 0.5 3.92 75.20 2432.40 32.00 19.44 15.92 15.67 16.67 15.67
ε = 1.0 0.92 11.08 347.07 8.00 5.46 3.92 3.68 4.68 3.68
ε = 2.0 0.18 0.92 25.22 2.00 1.50 0.92 0.72 1.72 0.72
ε = 4.0 0.02 0.03 0.37 0.50 0.34 0.18 0.08 1.08 0.08

Table 2: Numerical values of Var[c̃(i)]/n for different methods.
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Figure 1: Numerical values of Var[c̃(i)] for different methods.

OUE and OLH, whose variances do not depend on d. In-
tuitively, it is easier to transmit a piece of information
when it is binary, i.e., d = 2. As d increases, one needs
to “pay” for this increase in source entropy by having
higher variance. However, it seems that there is a cap on
the “price” one must pay no matter how large d is, i.e.,
OLH’s variance does not depend on d and is always 4
times that of DE with d = 2. There may exist a deeper
reason for this rooted in information theory. Exploring
these questions is beyond the scope of this paper.

6 Experimental Evaluation

We empirically evaluate these protocols on both syn-
thetic and real-world datasets. All experiments are per-
formed ten times and we plot the mean and standard de-
viation.

6.1 Verifying Correctness of Analysis

The conclusions we drew above are based on analyti-
cal variances. We now show that our analytical results

of variances match the empirically measured squared er-
rors. For the empirical data, we issue queries using the
protocols and measure the average of the squared errors,
namely, 1

d ∑i∈[d] [c̃(i)−n fi]
2, where fi is the fraction of

users taking value i. We run queries for all i values and
repeat for ten times. We then plot the average and stan-
dard deviation of the squared error. We use synthetic data
generated by following the Zipf’s distribution (with dis-
tribution parameter s = 1.1 and n = 10,000 users), simi-
lar to experiments in [13].

Figure 2 gives the empirical and analytical results for
all methods. In Figures 2(a) and 2(b), we fix ε = 4
and vary the domain size. For sufficiently large d (e.g.,
d ≥ 26), the empirical results match very well with the
analytical results. When d < 26, the analytical variance
tends to underestimate the variance, because in (4) we
ignore the fi terms. Standard deviation of the measured
squared error from different runs also decreases when the
domain size increases. In Figures 2(c) and 2(d), we fix
the domain size to d = 210 and vary the privacy budget.
We can see that the analytical results match the empirical
results for all ε values and all methods.

In practice, since the group size g of OLH can only be
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Figure 2: Comparing empirical and analytical variance.

integers, we round g = eε +1 to the nearest integer.

6.2 Towards Real-world Estimation

We run OLH, BLH, together with RAPPOR, on real
datasets. The goal is to understand how does each pro-
tocol perform in real world scenarios and how to inter-
pret the result. Note that RAPPOR does not fall into
the pure framework of LDP protocols so we cannot use
Theorem 2 to obtain the variance analytically. Instead,
we run experiments to examine its performance empiri-
cally. Following the setting of Erlingsson et al. [13], we
use a 128-bit Bloom filter, 2 hash functions and 8/16 co-
horts in RAPPOR. In order to vary ε , we tweak the f
value. The instantaneous randomization process is omit-
ted. We implement RAPPOR in Python. The regression
part, which RAPPOR introduces to handle the collisions
in the Bloom filter, is implemented using Scikit-learn li-
brary [4].

Datasets. We use the Kosarak dataset [2], which con-
tains the click stream of a Hungarian news website.
There are around 8 million click events for 41,270 dif-
ferent pages. The goal is to estimate the popularity of
each page, assuming all events are reported.

6.2.1 Accuracy on Frequent Values

One goal of estimating a distribution is to find out the fre-
quent values and accurately estimate them. We run dif-
ferent methods to estimate the distribution of the Kosarak
dataset. After the estimation, we issue queries for the
30 most frequent values in the original dataset. We then
calculate the average squared error of the 30 estimations
produced by different methods. Figure 3 shows the re-
sult. We try RAPPOR with both 8 cohorts (RAP(8)) and
16 cohorts (RAP(16)). It can be seen that when ε > 1,
OLH starts to show its advantage. Moreover, variance
of OLH decreases fastest among the four. Due to the
internal collision caused by Bloom filters, the accuracy
of RAPPOR does not benefit from larger ε . We also per-
form this experiment on different datasets, and the results
are similar.

6.2.2 Distinguish True Counts from Noise

Although there are noises, infrequent values are still un-
likely to be estimated to be frequent. Statistically, the fre-
quent estimates are more reliable, because the probabil-
ity it is generated from an infrequent value is quite low.
However, for the infrequent estimates, we don’t know
whether it comes from an originally infrequent value or
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Figure 3: Average squared error, varying ε .
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Figure 4: Number of true positives, varying ε , using
significance threshold. The dashed line corresponds to
the average number of items identified.

a zero-count value. Therefore, after getting the estima-
tion, we need to choose which estimate to use, and which
to discard.

Significance Threshold. In [13], the authors propose
to use the significance threshold. After the estimation,
all estimations above the threshold are kept, and those
below the threshold Ts are discarded.

Ts = Φ
−1
(

1− α

d

)√
Var∗,

where d is the domain size, Φ−1 is the inverse of the
cumulative density function of standard normal distri-
bution, and the term inside the square root is the vari-
ance of the protocol. Roughly speaking, the parame-
ter α controls the number of values that originally have
low frequencies but estimated to have frequencies above
the threshold (also known as false positives). We use
α = 0.05 in our experiment.

For the values whose estimations are discarded, we
don’t know for sure whether they have low or zero fre-
quencies. Thus, a common approach is to assign the re-
maining probability to each of them uniformly.

Recall Var∗ is the term we are trying to minimize. So a
protocol with a smaller variance will have a lower thresh-

old; thus more values can be detected reliably.

Number of Reliable Estimation. We run different pro-
tocols using the significance threshold Ts on the Kosarak
dataset. Note that Ts will change as ε changes. We define
a true (false) positive as a value that has frequency above
(below) the threshold, and is estimated to have frequency
above the threshold. In Figure 4, we show the number of
true positives versus ε . As ε increases, the number of
true positives increases. When ε = 4, RAPPOR can out-
put 75 true positives, BLH can only output 36 true posi-
tives, but OLH can output nearly 200 true positives. We
also notice that the output sizes are similar for RAPPOR
and OLH, which indicates that OLH gives out very few
false positives compared to RAPPOR. The cohort size
does not affect much in this setting.

6.2.3 On Information Quality

Now we test both the number of true positives and false
positives, varying the threshold. We run OLH, BLH and
RAPPOR on the Kosarak dataset.

As we can see in Figure 5(a), fixing a threshold, OLH
and BLH performs similarly in identifying true positives,
which is as expected, because frequent values are rare,
and variance does not change much the probability it is
identified. RAPPOR performs slightly worse because of
the Bloom filter collision.

As for the false positives, as shown in Figure 5(b), dif-
ferent protocols perform quite differently in eliminating
false positives. When fixing Ts to be 5,000, OLH pro-
duces tens of false positives, but BLH will produce thou-
sands of false positives. The reason behind this is that,
for the majority of infrequent values, their estimations
are directly related to the variance of the protocol. A
protocol with a high variance means that more infrequent
values will become frequent during estimation. As a re-
sult, because of its smallest Var∗, OLH produces the least
false positives while generating the most true positives.

7 Related Work

The notion of differential privacy and the technique of
adding noises sampled from the Laplace distribution
were introduced in [11]. Many algorithms for the central-
ized setting have been proposed. See [12] for a theoreti-
cal treatment of these techniques, and [19] for a treatment
from a more practical perspective. It appears that only
algorithms for the LDP settings have seen real world de-
ployment. Google deployed RAPPOR [13] in Chrome,
and Apple [1] also uses similar methods to help with pre-
dictions of spelling and other things.

State of the art protocols for frequency estimation un-
der LDP are RAPPOR by Erlingsson et al. [13] and Ran-
dom Matrix Projection (BLH) by Bassily and Smith [6],
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Figure 5: Results on Kosarak dataset. The y axes are the number of identified hash values that is true/false positive.
The x axes are the threshold. We assume ε = 4.

which we have presented in Section 2 and compared with
in detail in the paper. These protocols use ideas from
earlier work [20, 9]. Our proposed Optimized Unary
Encoding (OUE) protocol builds upon the Basic RAP-
POR protocol in [13]; and our proposed Optimized Lo-
cal Hashing (OLH) protocol is inspired by BLH in [6].
Wang et al. [23] uses both generalized random response
(Section 4.1) and Basic RAPPOR for learning weighted
histogram. Some researchers use existing frequency esti-
mation protocols as primitives to solve other problems in
LDP setting. For example, Chen et al. [8] uses BLH [6]
to learn location information about users. Qin et al. [22]
use RAPPOR [13] and BLH [6] to estimate frequent
items where each user has a set of items to report. These
can benefit from the introduction of OUE and OLH in
this paper.

There are other interesting problems in the LDP set-
ting beyond frequency estimation. In this paper we do
not study them. One problem is to identify frequent val-
ues when the domain of possible input values is very
large or even unbounded, so that one cannot simply ob-
tain estimations for all values to identify which ones are
frequent. This problem is studied in [17, 6, 16]. Another
problem is estimating frequencies of itemsets [14, 15].
Nguyên et al. [21] studied how to report numerical an-
swers (e.g., time of usage, battery volume) under LDP.
When these protocols use frequency estimation as a
building block (such as in [16]), they can directly ben-
efit from results in this paper. Applying insights gained
in our paper to better solve these problems is interesting
future work.

Kairouz et al. [18] study the problem of finding the
optimal LDP protocol for two goals: (1) hypothesis test-
ing, i.e., telling whether the users’ inputs are drawn from
distribution P0 or P1, and (2) maximize mutual informa-
tion between input and output. We note that these goals
are different from ours. Hypothesis testing does not re-

flect dependency on d. Mutual information considers
only a single user’s encoding, and not aggregation ac-
curacy. For example, both global and local hashing have
exactly the same mutual information characteristics, but
they have very different accuracy for frequency estima-
tion, because of collisions in global hashing. Neverthe-
less, it is found that for very large ε’s, Direct Encoding
is optimal, and for very small ε’s, BLH is optimal. This
is consistent with our findings. However, analysis in [18]
did not lead to generalization and optimization of binary
local hashing, nor does it provide concrete suggestion on
which method to use for a given ε and d value.

8 Discussion

On answering multiple questions. In the setting of tra-
ditional DP, the privacy budget is split when answering
multiple queries. In the local setting, previous work fol-
low this tradition and let the users split privacy budget
evenly and report on multiple questions. Instead, we sug-
gest partitioning the users randomly into groups, and let-
ting each group of users answer a separate question. Now
we compare the utilities by these approaches.

Suppose there are Q≥ 2 questions. We calculate vari-
ances on one question. Since there are different number
of users in the two cases (n versus n/Q), we normalize
the estimations into the range from 0 to 1. In OLH, the
variance is σ2 = Var∗[c̃OLH(i)/n] = 4eε

(eε−1)2·n
.

When partitioning the users, n/Q users answer one
question, rendering σ2

1 = 4Qeε

(eε−1)2·n
; when privacy bud-

get is split, ε/Q is used for one question, we have σ2
2 =

4eε/Q

(eε/Q−1)
2·n

. We want to show σ2
1 < σ2

2 :

σ
2
2 −σ

2
1

USENIX Association 26th USENIX Security Symposium    741



=
4
n

(
eε/Q(

eε/Q−1
)2 −

Qeε

(eε −1)2

)

=
4eε/Q

n
(
eε/Q−1

)2
(eε −1)2

·
[
(eε −1)2−Qeε−ε/Q

(
eε/Q−1

)2
]

The first term is always greater than zero since ε > 0. For
the second term, we define eε/Q = z, and write it as:

(zQ−1)2−QzQ−1(z−1)2

=(z−1)2 ·
[
(zQ−1 + zQ−2 + . . .+1)2−QzQ−1]> 0

Therefore, σ2
1 is always smaller than σ2

2 . Thus utility
of partitioning users is better than splitting privacy bud-
get.

Limitations. The current work only considers the frame-
work of pure LDP protocols. It is not known whether a
protocol that is not pure will produce more accurate re-
sult or not. Moreover, current protocols can only handle
the case where the domain is limited, or a dictionary is
available. Other techniques are needed when the domain
size is very big.

9 Conclusion

In this paper, we study frequency estimation in the Local
Differential Privacy (LDP) setting. We have introduced a
framework of pure LDP protocols together with a simple
and generic aggregation and decoding technique. This
framework enables us to analyze, compare, generalize,
and optimize different protocols, significantly improving
our understanding of LDP protocols. More concretely,
we have introduced the Optimized Local Hashing (OLH)
protocol, which has much better accuracy than previous
frequency estimation protocols satisfying LDP. We pro-
vide a guideline as to which protocol to choose in differ-
ent scenarios. Finally we demonstrate the advantage of
the OLH in both synthetic and real-world datasets.
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A Additional Evaluation

This section provides additional experimental evaluation
results. We first try to measure average squared variance
on other datasets. Although RAPPOR did not specify a
particular optimal setting, we vary the number of cohorts
and find differences. In the end, we evaluate different
methods on the Rockyou dataset.

A.1 Effect of Cohort Size
In [13], the authors did not identify the best cohort size
to use. Intuitively, if there are too few cohorts, many val-
ues will be hashed to be the same in the Bloom filter,
making it difficult to distinguish these values. If there
are more cohorts, each cohort cannot convey enough use-
ful information. Here we try to test what cohort size we
should use. We generate 10 million values following the
Zipf’s distribution (with parameter 1.5), but only use the
first 128 most frequent values because of memory limita-
tion caused by regression part of RAPPOR. We then run
RAPPOR using 8, 16, 32, and 64, and 128 cohorts. We
measure the average squared errors of queries about the
top 10 values, and the results are shown in Figure 7. As
we can see, more cohorts does not necessarily help lower
the squared error because the reduced probability of col-
lision within each cohort. But it also has the disadvan-
tage that each cohort may have insufficient information.
It can be seen OLH still performs best.

A.2 Performance on Synthetic Datasets
In Figure 6, we test performance of different methods on
synthetic datasets. We generate 10 million points follow-
ing a normal distribution (rounded to integers, with mean
500 and standard deviation 10) and a Zipf’s distribution
(with parameter 1.5). The values range from 0 to 1000.
We then test the average squared errors on the most fre-
quent 100 values. It can be seen that different methods
perform similarly in different distributions. RAPPOR us-
ing 16 cohorts performs better than BLH. This is be-
cause when the number of cohort is enough, each user in
a sense has his own hash functions. This can be viewed
as a kind of local hashing function. When we only test
the top 10 values instead of top 50, RAP(16) and BLH
perform similarly. Note that OLH performs best among
all distributions.

A.3 Performance on Rockyou Dataset
We run experiments on the Rockyou dataset, which con-
tains 21 million users’ password in plaintext. We first
hash the plaintext into 20 bits, and use OLH, BLH, and
Basic RAPPOR (also known as SUE in our framework)
to test all hashed values. It can be seen that OLH per-
forms best in all settings, and basic RAPPOR outper-
forms BLH consistently. When ε = 4, and threshold is
6000, OLH can recover around 50 true frequent hashes
and 10 of false positives, which is 4 and 2 magnitudes
smaller than BLH and basic RAPPOR, respectively. The
advantage is not significant when ε is small, since the
variance difference is small.
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Figure 6: Average squared errors on estimating a distribution of 10 million points. RAPPOR is used with 128-bit
long Bloom filter and 2 hash functions.
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Figure 8: Results on Rockyou dataset for ε = 4,2 and 1. The y axes are the number of identified hash values that is
true/false positive. The x axes are the threshold.
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