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Abstract

Side-channel attacks recover secret information by an-
alyzing the physical implementation of cryptosystems
based on non-functional computational characteristics,
e.g. time, power, and memory usage. Among all well-
known side channels, cache-based timing channels are
notoriously severe, leading to practical attacks against
certain implementations of theoretically secure crypto al-
gorithms, such as RSA, ElGamal and AES. Such attacks
target the hierarchical design of the modern computer
memory system, where different memory access patterns
of a program can bring observable timing difference.

In this work, we propose a novel technique to help
software developers identify potential vulnerabilities that
can lead to cache-based timing attacks. Our technique
leverages symbolic execution and constraint solving to
detect potential cache differences at each program point.
We adopt a cache model that is general enough to cap-
ture various threat models that are employed in practi-
cal timing attacks. Our modeling and analysis are based
on the formulation of cache access at different program
locations along execution traces. We have implemented
the proposed technique as a practical tool named CacheD
(Cache Difference), and evaluated CacheD towards mul-
tiple real-world cryptosystems. CacheD takes less than
17 CPU hours to analyze 9 widely used cryptographic al-
gorithm implementations with over 120 million instruc-
tions in total. The evaluation results show that our tech-
nique can accurately identify vulnerabilities reported by
previous research. Moreover, we have successfully dis-
covered previously unknown issues in two widely used
cryptosystems, OpenSSL and Botan.

1 Introduction

Side-channel attacks recover secret information by ana-
lyzing the physical implementation of crypto and other
systems based on non-functional computational charac-

teristics. Typical attributes exploited in such attacks in-
clude time [30], power [37], memory consumption [28],
network traffic [16], and electromagnetic [46].

Among all side-channel attacks, cache-based timing
attacks steal confidential information based on the pro-
gram’s runtime cache behaviors. Cache-based timing at-
tacks are perhaps the most practical and important ones,
since those attacks does not require any physical access
to the confidential computation, yet the timing signal
carries enough information to break RSA [3, 45, 59],
AES [8, 11, 42, 53, 27] and ElGamal [63, 34]. Other
than cryptosystems, research has also shown that cache-
based timing channels may leak other confidential infor-
mation [47, 57, 62, 58].

The mitigation mechanisms towards cache-based tim-
ing channels can be categorized into hardware and soft-
ware based solutions. Hardware-based solutions focus
on new cache designs such as partitioned cache [43, 54,
31, 61], randomized/remapping cache [54, 55, 33], and
line-locking cache [54]. But such secure hardware as-
sumes that crucial memory accesses are identified (by
security experts) in the first place. Most software-based
solutions only consider cache-based timing channels due
to secret-dependent control flow [4, 25, 38, 7, 17, 44]
and hence, cannot prevent subtle leakage found in source
code without any secret-dependent control flow (see
§2.2.2). More advanced program analyses [6, 19, 20, 60]
can detect the subtle leakage missed by those solutions,
but they only provide an upper-bound on timing-based
information leakage; it is unclear what/where the vulner-
ability is when those tools report a non-zero upper bound.

We focus on cache-based timing analysis. Cache at-
tacks can be categorized into three models [51], time-
driven, access-driven, and trace-driven attacks, each of
which leverages a different approach to monitor the
cache behavior. Time-driven attacks [8] observe the
overall execution time of the cryptosystems and require
many measure samples. Existing work has demonstrated
the feasibility to launch the cache-based attack locally or

USENIX Association 26th USENIX Security Symposium    235



remotely towards the AES encryption algorithm [8, 42].
In contrast, access-driven attacks [24, 53] and trace-
driven attacks [2] exploit more fine-grained cache behav-
ior and require fewer measurement samples, but they are
based on more sophisticated threat models and require
deep knowledge about the hardware and software system
under attack [53, 39, 45].

Given the complexity of the memory hierarchy in
modern computer systems, it is difficult for developers
to reason about the cache access behavior of a program
or a particular memory access. For example, the Ap-
pendix A shows a large and complicated symbolic for-
mula of a memory access address found in our experi-
ment. It is quite obvious how complicated it is to reason
its cache behavior, let alone take the context into consid-
eration. Developers may be able to come up with better
abstractions and reasoning, but it is easy to miss nuances
and corner cases as demonstrated in our findings (see §7).
Thus it is of great practical value to develop an automated
tool that can help developers reason about the cache be-
havior of a memory access.

In this paper, we propose a general trace-based method
with symbolic execution and constraint solving to de-
tect potential cache variations at each program location.
Our theory and cache modeling are independent of threat
models that are employed in attacks to utilize the poten-
tial vulnerabilities detected. Our modeling and analy-
sis are based on formulations of cache access at differ-
ent program locations along the execution trace. More
specifically, we record the execution trace, and use sym-
bolic execution (with the secret as symbols) to formulate
the cache access variations at each memory access. In
other words, for each memory access in an execution
trace, we check whether it is possible that this mem-
ory access can touch different cache lines given differ-
ent secret inputs. Moreover, our method also provides
two values that will cause such cache access variations at
one memory access using a constraint solver. Once con-
firmed, such cache access variations can be leveraged,
with various threat models, for cache-based side-channel
attacks.

We have implemented the proposed technique as a
practical tool named CacheD (Cache Difference), and
evaluated CacheD towards multiple real-world cryp-
tosystems. The evaluation results show that our tech-
nique can accurately identify vulnerabilities reported by
previous research. Moreover, we have successfully dis-
covered previously unknown issues in two widely used
cryptosystems, OpenSSL (version 0.9.7c and 1.0.2f) and
Botan (version 1.10.13).

We make the following contributions.

• We propose a novel trace-based analysis method
that models the cache variations on every mem-
ory access. Our modeling is conceptually simple

yet general enough to capture most adopted threat
models. While existing research is designed to
infer an “upper-bound” on timing-based informa-
tion leakage, our technique can accurately point out
what/where the vulnerability is, and provide con-
crete examples to trigger the issue. It becomes much
simpler for developers to identify potential timing
channels in their code.
• We have developed a practical tool called CacheD,

which is precise and scalable enough to assist de-
velopers in identifying vulnerable program points
in production cryptosystems.
• We applied CacheD to a set of widely used cryp-

tosystems to search for timing channels in the im-
plementations of well-known cryptographic algo-
rithms. Within 17 CPU hours, CacheD identified
156 vulnerable program points along the analyzed
execution traces of over 120 million instructions.
• By monitoring cache traffic of the test cases using

a hardware simulator, we have confirmed the iden-
tified vulnerabilities as true positives: different se-
crets provided by CacheD lead to observable cache
behavior difference, which further reveals potential
timing channels.

2 Background

2.1 Memory Hierarchy and Set-
Associative Cache

The storage system of modern computers adopts a hi-
erarchical design. In the hierarchy, storage hardware in
higher layers has faster response time but lower capacity
due to hardware cost. When the CPU needs to retrieve
the data, it will access the layers from the top to the bot-
tom. In this way, the CPU can speed up data retrieval
with limited hardware resources, based on the observa-
tion that memory accesses in computer programs are usu-
ally temporarily and spatially coalesced.

The topmost three layers of the hierarchy are proces-
sor registers, caches, and the main memory, the latter two
of which share the same address space. Since caches are
built with costly and fast on-chip devices, their latency
is much lower than that of the main memory. When a
data read misses the cache, the CPU will have to retrieve
the data from the main memory, thus leading to a sig-
nificant delay up to hundreds of CPU cycles. Therefore,
minimizing cache misses is one of the most important
objectives in processor design.

The organization of a cache refers to the policy that
decides how the data are stored and replaced based on
their addresses in the memory space. Modern processors
usually have multiple levels of caches that form a struc-
ture isomorphic to the whole memory hierarchy. In most
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Figure 1: Cache indexing of S-way set-associative caches
with the line size of 2L bytes the capacity of 2C bytes for
a 2N-byte address space.

cases, regardless of the levels on which the caches serve
in the hierarchy, all of them are similarly organized, in a
way called set-associative organization.

The minimal storage unit of set-associative caches is
called a line and the cache is divided into sets consisting
of the same number of lines. For set-associative caches,
the organization is fully decided by three factors, i.e.,
the cache size, the line size, and the set size, where the
set size is usually referred to as the number of ways the
cache is associated in.

For a 2K-way associative cache with the line size of 2L

bytes and a total capacity of 2C bytes, it will be divided
into 2C−K sets. Bytes at each address can reside in any
of lines of one particular set. Given an N-bit memory
address, the cache looks up the data by dissecting the
address into three parts, as shown in Fig. 1. The set index
is used to locate the set in which the data may be stored,
and the tag is used to confirm that the data is currently
present in one of the lines in that set. If the tag matches,
the line offset is used to locate the data inside the cache
line; otherwise, accessing memory at that address leads
to a cache miss, and the processor will have to retrieve
the data from the lower layers of the memory hierarchy.

The low L bits of the address used to access the cache
is irrelevant to timing, since the CPU always retrieve a
whole cache line at a time. Only the high N − L bits
of the address indicate whether the memory access may
hit the cache or not, based on the status of the cache.
For most CPUs, one cache line holds 64 bytes of data,
meaning the value of L is 6. Without losing generality,
we will adopt this configuration in the rest of the paper
unless noted otherwise.

2.2 Cache-Based Timing Channels
The cache is highly optimized, sophisticated, and inher-
ently shared, in modern multicore and manycore archi-
tectures; even a small change in confidential data may
bring drastic and subtle changes to the traffic to the
cache. The consequence is that a dedicated attacker may
reveal confidential data by measuring the latency intro-
duce by the cache.

2.2.1 Leakage due to secret-dependent control flow

The confidential data may affect the traffic to the cache
when there is secret-dependent control flow in the source

code. Such leakage is best illustrated in the square-and-
multiply implementation (shown below) of modular ex-
ponentiation, the core computation of cyphers such as
RSA and ElGamal.

The pseudo-code computes be mod m, where we as-
sume the n-bit secret exponent e is in its binary represen-
tation and e[i] is the i-th bit of e. Note that in this imple-
mentation, the branch condition at line 4 depends on one
bit of e. Moreover, the real implementation of r = r ∗ b
mod m involves memory reads since b and e consist of
multiple words in RSA and ElGamal. Consequently, an
attacker that probes the cache usage of this victim pro-
gram can recover the exponent, and hence, reveals the
private key of RSA [1, 59] and ElGamal [63, 34].

1 r = 1;
2 for i from n−1 to 0 {
3 r = r∗r mod m;
4 if (e[i] == 1) {
5 r = r∗b mod m;
6 }
7 }

Previous work shows that
secret-dependent control flow
can be identified via infor-
mation flow analysis, and
be mitigated by removing
secret-dependent branches or
balancing branches condi-

tioned on confidential data [4, 25, 38, 7, 17]. But these
mechanisms cannot prevent leakages due to memory
traffic as we discuss next. In fact, some tricks of remov-
ing secret-dependent control flow may introduce those
new leakages in a program.

2.2.2 Leakage due to secret-dependent memory
traffic

Cache-based timing attacks also work on implementa-
tions without any secret-dependent control flow, as il-
lustrated in our running example (Fig. 2). This simple
program iteratively accesses a table of size 128 stored in
the memory. Note that the execution of this program fol-
lows the same control flow regardless of the secret since
the loop body is executed exactly 200 times. Neverthe-
less, the memory address accessed at line 9 is key depen-
dent, and hence, may result in memory requests to secret-
dependent cache lines. Hence, a cache-probing attack
(e.g., prime-and-probe attack [42, 53, 11, 63, 34]) may
peek which cache line is accessed, and consequently, in-
fer at least some bits of the secret in this example.

We emphasize that although we use this contrived run-
ning example in this paper for its simplicity, variants of
the vulnerability illustrated in this example are found
and exploited in real-world implementations of crypto
systems, such as the AES implementation in OpenSSL,
exploited in [24, 42, 53], the RSA and ElGamal im-
plementations in Libgcrypt, exploited in [59, 34]. For
example, the sliding-window-based modular exponential
implementation [12] is vulnerable to cache-based tim-
ing attacks. With a parameter L (window size), the
sliding-window implementation splits the secret expo-

USENIX Association 26th USENIX Security Symposium    237



1 void foo(int secret)
2 {
3 int table[128] = {0};
4 int i, t;
5 int index = 0;
6 for (i=0; i<200; i++)
7 {
8 index = (index+secret) % 128;
9 t = table[index];

10 t = table[(index) % 4];
11 }
12 }

Figure 2: CacheD running example.

nent e into a couple of windows, where each window
holds a value (with at most L-bits) that is either a se-
quence of 0’s, or bits that starts with a 1 and ends with
a 1 (hence, an odd number). Given a non-zero win-
dow value, say v, this implementation computes bv via
a table lookup: T [(v− 1)/2], where T is a precom-
puted table such that T [i] = bi∗2+1 mod N. Note com-
puting bv involves no secret-dependent branch, but dif-
ferent cache lines are accessed given different values of
v, hence, leading to practical cache-based timing attacks
(e.g., [34]). CacheD successfully detects such vulnera-
bilities in Libgcrypt (§7.3).

2.3 Threat Model

We consider an attacker who shares the same hardware
platform with the victim, a common scenario in the era
of cloud computing. Hence, the attacker may observe
cache accesses at different program locations along a
program execution trace. That is, we assume an at-
tacker can either directly or indirectly learn the trace
of cache lines being accessed during the execution of
the victim program. This strong threat model captures
most cache-based timing attacks in the literature, such
as an attacker who observes cache accesses by measur-
ing the latency of the victim program (e.g., cache reuse
attacks [43, 11, 10, 24] and evict-and-time attack [42]),
or the latency of the attacker’s program (e.g., prime-and-
probe attacks [42, 53, 11, 63, 34]).

Compared with previously categorized threat models
based on the abstraction of cache hit and miss (namely,
the time-based, trace-based and access-based models
[19, 51]), our more detailed model using the abstraction
of cache lines has a couple of benefits. Firstly, our threat
model is stronger than those based on cache hit/miss,
since in most architectures, a trace of cache lines being
accessed uniquely determines cache hit/miss at any pro-
gram point. Secondly, working on the cache line abstrac-
tion makes the vulnerability analysis more general, since
unlike cache hit/miss, the abstraction is independent of
cache implementation details, such as cache-replacement
policies, cache associativity and so on.

3 Method

3.1 Overview
In modern multicore and manycore architectures, the
cache behavior may bring drastic difference in the la-
tency of memory accesses (§2.1). Based on this observa-
tion, we propose a technique that detects potential timing
channels caused by variant cache behavior. More specif-
ically, we model cache lines being accessed as symbolic
formulas where sensitive program data are treated as free
variables during symbolic execution. In practice, sensi-
tive data are typically the private keys used in cryptosys-
tems and any data derived from those keys. With the help
of constraint solvers, we can logically deduce whether
sensitive data would affect the cache behavior of the pro-
gram and hence, reveal potential timing channels.

Operationally, given a program point where a memory
access occurs, we can model the memory address being
accessed as a symbolic formula F(~k), where ~k, as the
only free variables in F , stands for program secrets. By
substituting all occurrences of~k in F with new free vari-
ables ~k′, we can obtain another formula F(~k′). A satisfi-
able formula F(~k) 6= F(~k′) indicates that at this particu-
lar program point, the address used to access the memory
depends on the values of the secrets.

We further refine the formulation above regarding two
aspects. First, a difference in the memory address does
not imply a difference in the cache line being accessed.
That is, the low L bits (the line offset part in Fig. 1) of
the address are irrelevant to cache behavior. Therefore,
instead of trying to solve F(~k) 6=F(~k′), we construct F as
a bit vector and solve F(~k)� L 6= F(~k′)� L, where�
is the right shift operation on bit vectors. Second, a solu-
tion of the refined formula may not be feasible along the
trace under examination. For better precision, we aug-
ment the formula with the path condition (C) collected
along the already processed trace. The path condition
is the conjunction of all the branch conditions along the
trace before this memory access (assuming an SSA trans-
formation on the trace). The final formula for satisfiabil-
ity checking is then (F(~k)� L 6= F(~k′)� L) ∧ C.

3.2 Example
Consider the running example shown in Fig. 2, in which
the secret is used as the index of a table. By symbolizing
the secret as k, a memory access formula can be build
which presents the first table query (line 9) in the first
iteration of the loop as:1

F(k)≡ 10+4 · k mod 128

1Variable index is accumulated in the loop so further memory ac-
cess formulas are different.
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where 10 is assumed the base address of the table. This
formula can be further refined into a cache line access
formula as

F(k)� L≡ 10+4 · k mod 128� L

where L equals to 6 regarding the cache configuration of
most CPUs on the market (discussed in §2.1).

To find two secrets that result in different cache behav-
iors, we further replace symbol k in formula F(k) with a
fresh symbol, and check the satisfiability of F(k)� 6 6=
F(k′)� 6 using a theory prover; a reasonable solver will
answer yes, meaning the constraint is satisfiable, with a
solution such as

[k = 1,k′ = 30]

Hence, we have successfully identified that different se-
crets (e.g., 1 and 30) can lead to the access of different
cache lines at line 9 of the sample code. Actually, by
feeding different secrets (1 or 30) to this function, mem-
ory access in the above case hits cache line 0 or 1, which
enables attackers to launch cache probing attacks (e.g.,
prime-and-probe attacks [42, 53, 11, 63, 34]) to infer the
value of the secret.

Another obvious secret dependent memory access is
at line 10, which holds the memory access formula (also
for the first iteration of the loop) as:

G(k)≡ 10+4 · (k mod 128) mod 4

According to constraint solving, G(k)� 6 6= G(k′)� 6
is unsatisfiable at this time. That means, memory access
at line 10 always access the same cache line, and hence,
is immune to cache-probing attacks.

3.3 Scope and Limitations
Trace-based Analysis. CacheD is designed to analyze
execution traces of program executables. In general, low-
level analysis (such as analysis towards the execution
trace) is capable of capturing pitfalls or vulnerabilities
that are mostly ignored by analyzing the source code [5].
In addition, since the inputs to CacheD are execution
traces generated from program executables, CacheD is
also capable of identifying vulnerabilities introduced by
compiler optimizations or even commonly used obfusca-
tions without additional efforts. We take execution traces
as the input for CacheD because whole-binary symbolic
execution is mostly considered unscalable, even through
trace-based analysis loses some generality for only ana-
lyzing one or several execution paths. Moreover, since
we only keep symbols derived from the secret, pointers
which do not contain symbols can be updated with con-
crete values acquired from the execution trace.

Main Audiences. The main audiences of our work are
software developers: developers can use CacheD to “de-
bug” their software (through execution traces) and iden-
tify vulnerable program points that may lead to cache-
based timing attacks. Previously, finding such vul-
nerabilities are challenging—if possible at all—towards
industrial-strength cryptosystems.

The trace-based analysis is usually unable to cover
all program points; in other words, to produce execu-
tion traces that can cover the vulnerable code, it might
require deliberate selection of proper program inputs to
trigger the vulnerability. Although this coverage issue
is unavoidable in general, we assume developers them-
selves would be able to construct proper program inputs
and provide critical execution traces to CacheD. There
are also techniques, such as concolic testing [49, 22, 23],
developed in the software testing and verification com-
munity that can be leveraged.

On the other hand, considering the research objective
in this paper (i.e., cryptosystems), most critical proce-
dures (where vulnerabilities could exist) can indeed be
triggered by following the standard routines defined by
the cryptographic libraries. Evaluation details of our
work are presented in §7.

Adoption of Constraint Solver. In practice, searching
for different secret values that lead to different cache
behaviors is very complex and thus difficult for devel-
opers without resort to rigorous tools. For example,
the big and complex formula shown in Appendix A is
almost impossible for developers to deduce a solution.
Symbolic execution is considerably more precise than
traditional data-flow analysis, and when constraint
solver finds a solution for memory accessing formula,
it naturally provides counter examples that lead to the
variant cache accesses, making it easier for developers
to reveal underling issues in their software.

Soundness vs. Precision. CacheD is not sound in
the terminology of program analysis; that is, when
CacheD reports no vulnerability, it does not mean the
program under examination is free of cache-based
side-channel attacks. On the other hand, CacheD is
quite precise with few false positives. According to our
threat model, false positives only occur in scenarios
such as if the symbolic memory model is not precise
enough. Constraint solving will not introduce false
positives as a positive solution is really satisfiable for
the formula, but it might miss positives. In practice, our
evaluation also reports consistent findings that positive
cases studied in the hardware simulator can surely lead
to cache line access variance (details are given in §7.3).
We actually have not encountered any false positives
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Figure 3: The architecture of CacheD.

in our evaluation. As previously discussed, existing
research [19, 20] aims at reasoning the “upper-bound” of
information leakage through abstract interpretation, but
may not be precise enough due to over-approximation.
Moreover, CacheD distinguishes itself by being able to
point out where/what the vulnerability is, and provide
examples that are likely to trigger the issue. Considering
CacheD as a “debugging” or vulnerability detection tool,
it is equally important to adopt its precise and practical
techniques on side-channel detection.

4 Design

We present CacheD, a tool that delivers scalable detec-
tion of cache-based timing channels in real-world cryp-
tosystems. Fig. 3 shows the architecture of CacheD. In
general, given a binary executable with secrets as inputs,
we first get a concrete execution trace by monitoring its
execution (§4.1). The trace is then fed into CacheD to
perform taint analysis; we mark the secret as the taint
seed (§4.2) and propagate the taint information along the
trace to identify instructions related to the usage of the
secret.

CacheD then symbolizes the secret into one or sev-
eral symbols (each symbol represents one word), and
performs symbolic execution along the tainted instruc-
tions on the trace (§4.3). During the symbolic interpre-
tation, CacheD builds symbolic formulas for each mem-
ory access along the trace. Symbolic memory access for-
mulas are further analyzed using a constraint solver to
check whether cache behavior variations exist. As afore-
mentioned, we check the satisfiability of (F(~k)� L 6=
F(~k′) � L) ∧ C; if satisfiable, the solution to ~k and
~k′ represent different secret values that can lead to dif-
ferent cache behavior of this program point. The only
architecture-specific parameter to CacheD is the cache
line size. As discussed in §2.1, we set L to be 6 through-
out this paper since most CPUs on the market sets have
a cache-line size of 64. Next, we elaborate on challenges
and design of each step in the following sections.

4.1 Execution Trace Generation
CacheD takes a concrete program execution trace as its
input. In general, the execution trace can be generated by
employing dynamic instrumentation tools to monitor the
execution of the target program and dump the execution

trace. We assume the instrumentation tools also dump
the context information (including the value of every
register) of every executed instruction as well.

Locating Secrets in the Trace. Besides the dumped ex-
ecution trace and the context information, another input
of CacheD is the locations (e.g., a memory location or a
register) of the secrets in a program. This information
serves as the seed for the taint analysis and symbolic
execution in later stages.

While the secrets (e.g., the private key or a random
number) are usually obvious in the source code, it may
not be straightforward to identify the location of the se-
cret in an execution trace, since variable names are absent
in the assembly code. Treating this as a typical (man-
ual) reverse engineering task, our approach to searching
for the secrets in the assembly is to “correlate” mem-
ory reads with the usage of the key in the source code.
To do so, we identify the critical function in the source
code where the key is initialized and then search for the
function in the assembly code. The search space can be
further reduced by cutting the assembly code into small
regions according to the conditional jumps in the context.
With further reverse engineering effort in small regions,
we can eventually recognize the location of the secret in
the assembly code, as a register, or a sequence of mem-
ory cells in the memory.

Although currently this step is largely manual, it is
likely that it can be automated by a secret-aware com-
piler, which tracks the location of secrets throughout the
compilation; however, we leave this as future work.

4.2 Taint Analysis

CacheD leverages symbolic execution to interpret each
instruction along a trace to reason about memory ac-
cesses that are dependent on secrets. Our tentative tests
show that the symbolic-level interpretation is one perfor-
mance bottleneck of CacheD. However, we notice that
only a subset of instructions in a trace is dependent on
the secrets. Thus, a natural optimization in our context is
to leverage taint analysis to rule out instructions that are
irrelevant to the secret; the remaining instructions are the
focus of the more heavy-weight symbolic execution.

After reading the execution trace, CacheD first parses
the instructions into its internal representations. It then
starts the taint analysis from the first usage of the se-
cret. Following existing taint analyses (e.g., [48, 52]),
we propagate the taint information along the trace fol-
lowing pre-defined tainting rules that we discuss shortly.
After the taint analysis, we keep the instructions whose
operands are tainted.

Taint propagation rules define how tainted information
flows through instructions, memories and CPU flags, as
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well as what operations introduce new taint or remove
existing taint. Well-defined propagation rules should not
miss needed taint propagation, while keeping the set of
tainted memory cells as small as possible to reduce the
overhead of further heavy-weight analysis (i.e., symbolic
execution in our context). Considering the context of
cryptosystems, we now propose our taint propagation
rules as follows.

Taint Propagation for Registers. The propagation rules
for register-level operations are very straightforward. In
general, if a tainted variable flows to an untainted one,
then the latter will be tainted. On the other hand, we
delete the taint label on the information flow destination
if the source is not tainted.

Taint Propagation for Memory-related Opera-
tions. We now define the tainting rules for memory
operations. CacheD tracks the taint information for each
memory cell. More specifically, the taint module of
CacheD keeps a set, where each element is the address
of tainted memory cell. Taint operation inserts new
elements into this list, while untaint operation deletes the
corresponding element. Recall that we dump the context
information for each executed instruction (§4.1). For
each memory access, we compute the address through
the concrete register values recorded in the context
information. Hence, the memory address is always a
concrete value and memory-related taint propagation is
considered accurate.

Memory addressing defined in the x86 instruction set
can be divided into the base address and the memory
offset, each of which is maintained by a register or a
concrete value. Our tainting rule defines that whenever
the registers representing either the base address or the
offset are tainted, we would propagate the taint to the
contents of the accessed memory cells. Our tainting
rules are reasonable and avoid under-tainting, since in
general the secret content can be used as memory point-
ers (representing base addresses) as well as memory
offsets.

Taint Propagation for CPU Flags. In x86 in-
struction set, CPU flags participant in the computation of
many instructions and are also used to select branches.
To precisely track the secret information flow, CacheD
record taint propagations towards CPU flags.

In general, CPU flags could be modified according to
the computation results of certain instructions, for exam-
ple, flag ZF will be set to one if the result of an SUB (sub-
traction) operation is zero. In case any operand of a given
instruction is tainted, we taint all CPU flags that can be
affected by the current computation. In addition, taint la-
bel can also be propagated from CPU flags to registers

or memory cells; we taint registers or memory cells that
hold the computation result of an instruction whenever
tainted CPU flags participant the computation.

4.3 Symbolic Execution

We now introduce how we build the symbolic execution
module of CacheD. As previously mentioned (§4.2),
tainted instructions (i.e., instructions whose operands are
tainted) are kept after taint analysis. These instructions,
together with their associated context information, are
passed to the symbolic execution module; the location
of the secret is another input of symbolic execution. The
symbolic execution engine starts the interpretation at the
beginning of the first tainted instruction (i.e., the first
usage of the secret) and interprets each instruction until
the trace end.

Symbolization of the Secret. In general, secrets
(e.g., private key) can be maintained as a variable (as
shown in Fig. 2), an array, or a compound data structure.
Note that only the content of the secret (e.g., the value
of a private key) is considered as “secret” in our context.

If the secret is maintained as one variable (e.g., one
register or a memory cell on the stack), it is straight-
forward for symbolization. On the other hand, if the
secret is stored in a sequence of memory cells (e.g.,
one array, structure, or class instance), CacheD assigns
the base address (provided by programmers in previous
stage §4.1) to a special symbol. Further memory reads
using this special symbol as the base address is con-
sidered to access the secret content. CacheD generates
a fresh symbol (for simplicity’s sake, we name such
symbol as key symbol) each time when the memory read
has a different offset (since it indicates a different part of
the secret memory region is visited).

Design of the Symbolic Execution Engine. As
aforementioned (§3.1), we collect all the conditions (i.e.,
some formulas evolving CPU flags) of the branches
along the trace and conjunct them into the path condition.
Since the program execution trace can be effectively
viewed as the static single assignment (SSA) format, the
path condition is accumulated along the trace and it must
be always true at any execution point (otherwise the
execution trace is invalid). Our side-channel checking
is performed at every memory access. When encoun-
tering a memory access, CacheD pauses the symbolic
execution engine and sends the memory access formula
as well as the currently-collected path condition to the
solver. Consistent with our taint propagation rules which
captures information flow through memory accesses
(§4.2), for a memory load operation whose addressing
formula containing key symbols (i.e., either the base
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address or the memory offset is computed from secrets),
we would symbolize the memory cell with a fresh key
symbol if it is visited for the first time.

Symbolic Execution Memory Model. Symbolic
execution interprets programs with logical formulas
instead of concrete values so that the semantics captured
are not specific to a single input. However, some
program semantics are difficult to analyze when the
information flow is encoded symbolically, such as
dereferencing a symbolic pointer. In general, when a
symbolically executed program reads from the memory
using an abstract (symbolized) address, the execution
engine needs to decide the content read from the ad-
dress. On the other hand, when the program writes to
the memory using an abstract address, the engine needs
to decide how to update the memory status. The policy
that specifies those aspects is called a memory model.

When designing a symbolic execution engine, the
trade-off between scalability and precision should be
carefully considered. That is, we cannot employ a full-
fledged memory model that features abstract memory
chunks, since our tentative test shows that such mem-
ory model does not scale for the real-world applications.
Instead, our current design develop a memory model that
reasons symbolic pointers with their concrete values on
the trace, which is conceptually the same as other com-
monly used binary analysis platforms (e.g., the trace-
based analysis of BAP [14]).

5 Optimization

While taint analysis is efficient, symbolic execution and
constraint solving are time consuming in general. Here
we discuss several optimizations in CacheD.

Identify Independent Vulnerabilities. To capture
information flow through memory operations in sym-
bolic execution, we create a fresh key symbol for a
memory load of unknown positions whenever the base
or memory offset is computed from key symbols. In
this section, we propose a finer-grained policy, which
reveals “independent” vulnerable program points. The
key motivation is that, by studying the underlying mem-
ory layout, attackers would be able to learn relations
between the newly-created key symbol and the memory
addressing formula (which contains one or several key
symbols). Hence, we assume further vulnerabilities
revealed through the usage of this new key symbol
would mostly leak the same piece (or a subset) of secret
information (we elaborate on this design choice shortly).

We now present an example to motivate this optimiza-
tion. In general, for a memory load operation

load reg, [F(~k)]

where F(~k) is the memory addressing formula through
the secret~k, and reg stores the loaded content from the
memory. There exist three different cases regarding the
solution of our constraint solver:

• To test whether the array index, and hence the
fetched content, may differ in two executions with
different keys, CacheD checks the formula (F(~k) 6=
F(~k′)) ∧ C. If there is no satisfiable solution for this
formula, we interpret this memory access is inde-
pendent of the key. Thus, there is no need to create
a fresh key symbol; we update the memory load out-
put (i.e., reg in the above case) with concrete value
from the trace.
• If there exist satisfiable solutions for (F(~k)� L 6=

F(~k′)� L) ∧ C, it means we find an independent
vulnerable program point. As discussed above, fur-
ther vulnerable program points discovered through
the newly created key symbol (stored in reg) would
likely leak the same piece of secret information as
this vulnerability, thus “depending” on this point.
• The remaining case is that there is no satisfiable so-

lution for (F(~k)� L 6= F(~k′)� L) ∧ C while there
exists solutions for (F(~k) 6= F(~k′)) ∧ C. In other
words, while the current memory access does not
reveal a vulnerability, still, different secrets would
lead to the access of different memory cells, which
constructs an information flow. Hence, we create a
fresh key symbol and use it to update the memory
load output.

In general, we consider independent vulnerabilities
are highly informative to attackers; independent vul-
nerabilities probably indicate the most-likely attack
surface of the victim, because stealing secret through
“dependent” vulnerabilities need additional efforts to
learn the program memory layout. On the other hand,
memory layouts are feasible and likely to be learned
as precomputed data structures are widely deployed in
real-world cryptosystems to speed up the computation.
Overall, “dependent” vulnerabilities reveal an additional
attack surface which are commonly ignored by previous
research.

Early Stop Criterion of Symbolic Execution.
One vulnerable program point (e.g., a table query)
can be executed for one or more times during the
runtime (thus appearing more than once on the execution
trace). On the other hand, a program point can be
considered as “vulnerable” as long as one of its usage is
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confirmed vulnerable. Hence, while in general CacheD
symbolically interpret all the tainted instructions, one
early stop criterion adopted in CacheD is that we have
already identified at least one vulnerable memory access
for any tainted access relating to the same program point.

Domain knowledge of RSA and ElGamal im-
plementation. As previously discussed, our taint
propagation rule would taint the visited memory cells
whenever registers hold the base address or memory
offset are tainted. While this rule reasonably captures
the information flow through memory accesses, we
terminate the taint propagation for one specific case,
given the domain knowledge of cryptosystems being
analyzed.

To speed up processing, the sliding-window based
modular exponentiation algorithm leverages a two-level
“precomputed table” to store the modular exponentiation
values of the base regarding some predefined window-
sized value. Additionally, a precomputed size table is
deployed to store the length of each precomputed mod-
ular exponentiation value. Hence, most of the compu-
tation are substituted into two table lookups towards the
precomputed table and the size table through the window
size key. Appendix B presents the structure of a two-
level precomputed table used in Libgcrypt 1.6.1. Each
element in the first-level array stores a pointer referring
to the second level, and each second level array stores a
big integer (bv for some window-sized value v).

Our study of such tables shows that for non-trivial
decryptions (e.g., decrypt an encrypted message of
one character), the lengths of all the second-level
arrays are equal to N (we observed that N is fixed to
32 for RSA while 64 for ElGamal implementations
evaluated in §7). Hence, elements in the precomputed
size table are identical and the attacker would observe
the same output regardless of the secret input. In other
words, it is reasonable to assume secrets can hardly
be leaked by observing the table query outputs. Given
such observation, CacheD is optimized to terminate
the taint propagation towards the precomputed size table.

Trace Cut. CacheD is designed to analyze any
fragment of program execution trace, with a tradeoff of
performance and coverage. Ideally, we would like to
analyze the entire trace from the program entry point
until the end. With taint analysis (§4.2), the analysis
effectively starts from the beginning of the function
where the key is used for the first time. Besides, for
the RSA and ElGamal decryption, where the secret key
is used for multiple operations, we choose only critical
procedures (i.e., functions implemented the modular
exponentiation operation and their callees) that have
been the target for various timing attacks. Analyzing

Table 1: Cryptosystems analyzed by CacheD.
Algorithm Implementation Versions

RSA
Libgcrypt [32] 1.6.1, 1.7.3
OpenSSL [40] 0.9.7c, 1.0.2f

Botan [35] 1.10.13
ElGamal Libgcrypt [32] 1.6.1, 1.7.3

AES OpenSSL [40] 0.9.7c, 1.0.2f

the same procedure which has been well-studied from
different angles in the literature makes it easier to
compare our experiment results (in terms of re-discover
existing issue and identify unknown issue) with existing
work. On the other hand, there is no issue for CacheD to
analyze other standard computation procedures.

6 Implementation

CacheD is implemented in Scala, with over 4,800 lines
of code. The program execution trace is generated by
Pin [36], a widely-used dynamic binary instrumentation
tool. Pin provides infrastructures to intercept and instru-
ment the execution of a binary. During execution, Pin in-
serts the instrumentation code into the original code and
recompiles the output leveraging a Just-In-Time (JIT)
compiler. We develop a plugin of Pin (162 lines of C++
code) to log the executed instructions as well as the con-
text information during the execution. While our current
implementation (including CacheD and the Pin plugin)
analyzes binaries on the 32-bit Linux platforms (i.e., bi-
naries with the ELF format), we emphasize that the pro-
posed technique is mostly independent with the underly-
ing architecture details, and hence not difficult to port to
other platforms (e.g., Windows or 64-bit Linux).

CacheD leverages the widely-used constraint solver
Z3 [18] for constraint solving (Z3 provides Java API,
which bridges Z3 solver to our Scala code). In addi-
tion, we leverage bit vectors provided by Z3 to represent
the taint label of each general-purpose register as well as
symbols used in symbolic execution. Note that x86 in-
structions can manipulate the subset of each register, and
benefit from bit vectors, arbitrary operations on the sub-
set of each general-purpose register are supported with-
out additional effort. As aforementioned, we track the
taint towards CPU flags; a vector of one bit is created to
represent each CPU flag.

7 Evaluation

We evaluate CacheD on several real-world cryptographic
libraries. The cryptosystems used in our evaluation are
listed in Table 1. In sum, we evaluated CacheD on five
real-world cryptosystems in total, including nine differ-
ent implementations of three cryptographic algorithms,
RSA, AES, and ElGamal.
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Table 2: Evaluation results of different cryptographic algorithm implementations.
Algorithm Implementation Adopt the “Domain Knowledge Vulnerable Program Independent Vulnerable # of Instructions Processing Time

of RSA and Elgamal” Optimization (§6) Points (known/unknown) Points (known/unknown) on the Traces (CPU Seconds)
RSA Libgcrypt 1.6.1 2/20 2/0 26,848,103 11542.3
RSA Libgcrypt 1.7.3 0/0 NA 27,775,053 10788.9

ElGamal Libgcrypt 1.6.1 2/19 2/0 31,077,760 17044.8
ElGamal Libgcrypt 1.7.3 0/0 NA 31,407,882 12463.1

RSA OpenSSL 0.9.7c 5 0/2 0/1 674,797 199.3
RSA OpenSSL 1.0.2f 5 0/2 0/1 473,392 165.6
AES OpenSSL 0.9.7c 5 48/0 48/0 791 43.4
AES OpenSSL 1.0.2f 5 32/0 32/0 2,410 48.5
RSA Botan 1.10.13 0/29 0/2 2,005,124 7527.0
Total 84/72 84/4 120,265,312 59822.9

Experiment setup. All the cryptosystems are C/C++ li-
braries. We write simple programs to invoke the test li-
braries for key generation, encryption as well as decryp-
tion. We generate keys of 128 bits for AES experiments,
and keys of 2048 bits for other experiments. After gener-
ating the keys, for all test cryptographic algorithms, we
first use their encryption routines to encrypt a plain text
“hello world”. The encrypted message is then fed into
the decryption procedures. As previously introduced,
the execution traces of those decryption procedures are
logged for analysis. The programs are compiled into bi-
nary code on 32-bit Ubuntu 12.04, with gcc/g++ com-
piler (version 4.6.3).

7.1 Evaluation Result Overview
Vulnerability Identification. We present the breakdown
of the positives reported by CacheD in Table 2. As shown
in the table, most of the evaluated implementations are
reported to contain vulnerabilities that can lead to cache-
based side-channel attacks. Overall, CacheD reveal 156
(84 known and 72 unknown) vulnerable program points,
among which 88 (84 known and 4 unknown) program
points are independent. Considering the large number of
issues discovered by CacheD, we interpret the evaluation
result as promising.

In general, existing research has pointed out poten-
tial issues that can lead to the cache based side-channel
attacks on the implementation of sliding-window based
modular exponentiation [20], and such implementation
is leveraged by both RSA and ElGamal decryption pro-
cedures. In this research CacheD has successfully con-
firmed such already-reported issues. We present a de-
tailed study of two independent vulnerable program
points found in RSA implementation of Libgcrypt 1.6.1
in §7.3, and also compare our findings of RSA and ElGa-
mal with existing literatures in §7.4.1. Besides, consid-
ering its multiple rounds of table lookup, AES has also
been pointed out as vulnerable in terms of cache-based
side channel attacks by previous work [15]. CacheD re-
ports consistent findings in §7.4.2.

Moreover, CacheD has also successfully identified a
number of vulnerable program points in two widely-used

cryptosystems (Botan and OpenSSL). Those vulnerabil-
ities, to the best of our knowledge, are unknown to ex-
isting research (the “unknown” issues). We elaborate on
these identified issues in §7.5.

We also evaluate CacheD towards the RSA and
ElGamal implementations of Libgcrypt 1.7.3, which are
considered as safe from information leakage since there
is no secret-dependent memory access. CacheD reports
no vulnerable program point in both the ElGamal and
RSA implementations. Indeed, taint analysis of CacheD
identifies zero secret-dependent memory access in both
implementations. Although trace-based analysis is in
general not sufficient to “prove” a cryptosystem as free
of information leakage, considering related research as
less scalable ([19]), CacheD presents a scalable and prac-
tical way to study such industrial strength cryptosystems.

Processing Time. We also report the processing
time of CacheD in Table 2. The experiments use a
machine with a 2.90GHz Intel Xeon(R) E5-2690 CPU
and 128GB memory. Table 2 presents the number of
processed instructions and the processing time for each
experiment. In general, we evaluate CacheD regarding
five industrial-strength cryptosystems, with over 120
million instructions in total. Table 2 shows that all
the experiments can be finished within 5 CPU hours.
We interpret the processing time of CacheD as very
promising, and this evaluation faithfully demonstrates
the high scalability of CacheD in terms of real-world
cryptosystems.

Our evaluation also shows the proposed optimizations
(§5) are effective, which surely improve the overall scal-
ability of CacheD. Indeed tentative implementation of
CacheD (without optimizations) times out after 20 hours
to process the ElGamal Libgcrypt 1.6.1 test case. On the
other hand, we observed that CacheD becomes slower
largely due to the nature of symbolic execution; with
more symbolic variables and formulas carried on, every
further reasoning can take more time. In addition, since
symbolic formulas can grow larger during interpretation
(e.g., variables are manipulated for iterations in a loop),
solver could probably encounter more challenging prob-
lems during further constraint solving. Also, branch con-
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Table 3: Gem5 configurations.
ISA x86

Processor type single core, out-of-order
L1 Cache 4-way, 32KB, 2-cycle latency
L2 Cache 8-way, 1MB, 50-cycle latency

Cache line size 64 Bytes
Cache replacement policy LRU

Table 4: Results of executing test cases under gem5.
Algorithm Implementation Observe the Access of Observe Different Cache

Different Cache Lines Status (hit vs. miss)
RSA Libgcrypt 1.6.1

ElGamal Libgcrypt 1.6.1
RSA OpenSSL 0.9.7c
RSA OpenSSL 1.0.2f
AES OpenSSL 0.9.7c
AES OpenSSL 1.0.2f
RSA Botan 1.10.13

ditions are accumulated along the trace; more constraints
need to be solved, which leads to performance penalties
as well.

7.2 Exploring the Positives

To study whether the positives can lead to real cache dif-
ference during execution, we employ a commonly-used
computer architecture simulator—gem5 [9]—to check
the identified vulnerable program points. As previ-
ously discussed (§5), independent vulnerable program
points (88 in total) are considered as mostly informative;
“dependent” vulnerable program points would mostly
leak the same piece of information as independent ones.
Hence in this step, we focus on the check of indepen-
dent vulnerable program points. While CacheD identi-
fies 8 independent vulnerabilities in the RSA and ElGa-
mal implementations, 80 program points are reported as
vulnerable in two AES implementations. Without losing
generality, we check all the independent vulnerabilities
for RSA and ElGamal, while only checking the first four
vulnerabilities for these two AES implementations.

As aforementioned, for each vulnerable program
point, the constraint solver provides at least one satis-
fiable solution (i.e., a pair of~k and~k′) that leads to the
access to different cache lines. Hence, for each vulnera-
ble program point, we instrument the source code of the
corresponding test program to modify secrets with~k and
~k′; we then compile the source code into two binaries.
We monitor the execution of instrumented binaries
using the full-system simulation mode of gem5, and
intercept cache access from CPU to L1 Data Cache. The
full-system simulation uses Ubuntu 12.04 with kernel
version 3.2.1.2 Table 3 presents the configurations.

2The full-system simulation mode of gem5 only supports 64-bit ker-
nels. Also, we compiled the instrumented source code into 64-bit bi-
naries since the simulated OS threw some TLB translation exceptions
when executing 32-bit binaries.

Results. When executing each vulnerable program
point (i.e., a memory access), we record the visited
cache line as well as the cache status of this cache
line. Table 4 present the results. By comparing cache
traffic of executing binaries with secret ~k or ~k′, we
have confirmed that memory accesses at all vulnerable
program points indeed visited different cache lines. We
have also confirmed that cache statuses are different at
the vulnerable program points for most of the test cases.

There are two test cases (row 5 and 7 in Table 4)
that show identical cache status at the vulnerable pro-
gram points. Note that we only record cache status at the
memory access of these vulnerable points (some exam-
ples are given shortly in Fig. 4c); it is likely that the ac-
cesses to different cache lines actually lead to cache be-
havior variations during further program execution. On
the other hand, given our current conservative observa-
tion, still, most of the test cases reveal noticeable cache
difference. We will present detailed study of the RSA
Libgcrypt 1.6.1 (row 2 in Table 4) in §7.3.

In general, we consider the evaluation results as quite
promising; while previous work (e.g., [19]) performs
overall reasoning of the program information leakage up-
per bound and lack of information on what/where the
vulnerability is, CacheD fills the gap by providing con-
crete examples to trigger cache behavior variations at its
discovered program points.

7.3 Case Study of RSA Vulnerabilities

In this section, we present a case study of two identified
vulnerable program points, with detailed explanation in
terms of the source code patterns as well as hardware
simulation results.

As presented in Table 2, we identified two independent
vulnerable program points in the RSA implementation of
Libgcrypt 1.6.1. Source code shown in Fig. 4a is found in
the sliding-window implementation of the modular expo-
nentiation algorithm; we have confirmed that two iden-
tified independent vulnerable program points represent
table queries at line 13 and 14. Indeed, e is an element
of the secret array (line 5; thus e is secret), and e0 is a
sliding window of e (line 9). e0 is used to access the first
level of the precomputed table (line 13) and precomputed
size table (line 14). Intuitively, different e0 accesses dif-
ferent table entries, which potentially leads to different
cache line and eventually leaks the secret (i.e., e).

When analyzing the execution trace, CacheD success-
fully identified two secret-dependent memory accesses
(line 4-5 in Fig. 4b), and by inquiring the constraint
solver, CacheD finds two pairs of e that can lead to
the access of different cache lines for the first and sec-
ond memory accesses, respectively (the “solutions” in
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1 void gcry mpi powm (gcry mpi t res,
2 gcry mpi t base,
3 gcry mpi t expo, gcry mpi t mod) {
4 ...
5 e = ep[i];
6 count leading zeros (c, e);
7 e = (e << c) << 1;
8 ...
9 e0 = (e >> (BITS PER MPI LIMB − W));

10 count trailing zeros (c0, e0);
11 e0 = (e0 >> c0) >> 1;
12 ...
13 base u = b 2i3[e0 - 1];
14 base u size = b 2i3size[e0 - 1];
15 ...
16 }

(a) Source code.

1 ...
2 mov edx, [esp+0x38]
3 sub edx, 0x1
4 mov ecx, [esp+edx*4+0xb8]
5 mov edx, [esp+edx*4+0xf4]
6 mov esi, [esp+0x24]
7 ...

1 Solution of the first mem access (line 4):
2 e = 0x10000016
3 e’= 0x1000003e
4
5 Solution of the second mem access (line 5):
6 e = 0x400500d
7 e’= 0x1007c

(b) Instructions on the dumped trace and solutions
provided by the solver.

1 0x44156a: 0x7fffffffe440 hit
2 0x441572: 0x7fffffffe3c8 hit
3 0x44156a: 0x7fffffffe438 hit
4 0x441572: 0x7fffffffe3c4 hit
5 0x44156a: 0x7fffffffe3d8 hit
6 0x441572: 0x7fffffffe394 hit
7 0x44156a: 0x7fffffffe408 hit
8 0x441572: 0x7fffffffe3ac hit

1 0x44156a: 0x7fffffffe3f0 hit
2 0x441572: 0x7fffffffe3a0 hit
3 0x44156a: 0x7fffffffe438 hit
4 0x441572: 0x7fffffffe3c4 hit
5 0x44156a: 0x7fffffffe3d8 miss
6 0x441572: 0x7fffffffe394 miss
7 0x44156a: 0x7fffffffe408 miss
8 0x441572: 0x7fffffffe3ac hit

(c) Hardware simulation results for the first mem-
ory access (e is 0x10000016 and e’ is 0x1000003e).

Figure 4: Case study of two independent RSA vulnerable program points in Libgcrypt 1.6.1. The vulnerable program
points and the corresponding memory access instructions on the trace are bold. The tainted variable in source code
and trace are red, and e is secret (line 5 in Fig. 4a). Note that base u size is not tainted regarding the optimization
of RSA precomputed size table (§5).

Fig. 4b). To confirm the findings, we compile four pro-
gram binaries with modified e regarding the solutions.

Fig. 4c shows the simulation outputs using gem5. Due
to the limited space, we only provide the first eight
records for the first vulnerable program point (there are
604 records in total). The first column of each output rep-
resents the program counters; the second column shows
the accessed memory addresses and the last column is
the cache statuses of the accessed cache lines. Note that
program counter 0x44156a and 0x441572 represent the
first and second vulnerable program points, respectively.
Comparing these two results, we can observe that dif-
ferent cache lines are accessed (corresponding memory
addresses are marked as red at line 1-2), which further
leads to timing difference of three cache hit vs. miss
(corresponding cache statuses are marked as red at line
5-7). Simulation results for the second memory access
are omitted due to the limited space. We report to have
similar observations.

Consistent with the existing findings, these two ta-
ble queries are also reported as vulnerable by previous
work [20]. According to our taint policy, the table query
output (base u) would be tainted since e0 is tainted. Our
study also shows that memory access through base u

would reveal another twenty vulnerable program points
(row 2 in Table 2). Moreover, this modular exponentia-
tion function is used by both RSA and ElGamal decryp-
tion procedures; two independent vulnerable program
points found in the ElGamal implementation (row 4 in
Table 2) are also due to these table queries.

7.4 Known Vulnerabilities

We also evaluate CacheD by confirming known side-
channel vulnerabilities.

7.4.1 RSA and ElGamal in Libgcrypt

Function gcry mpi powm (Fig. 4a) found in the
Libgcrypt (1.6.1) sliding-window implementation of the
modular exponentiation algorithm is vulnerable. Note
that such implementation indeed is used by both RSA
and ElGamal decryption procedures. We have already
presented results and a case study in §7.3. Besides those
two independent program points, CacheD finds 19 vul-
nerable program points in the ElGamal implementation
and 20 points in the RSA implementation Table 2.

Consistent with previous work [20], CacheD confirms
two vulnerable program points in the Libgcrypt (1.6.1)
that can lead to cache-based timing attacks. On the other
hand, while previous work [20] only reports potential
timing channels through these two direct usage of se-
crets, CacheD can actually detect further unknown (to
the best of our knowledge) pitfalls (around 20 unknown
points for each). The results show that CacheD can pro-
vide developers with more comprehensive information
regarding side-channel issues.

7.4.2 AES in OpenSSL

We also analyzed the positive results identified in
AES implementations of OpenSSL (version 0.9.7c and
1.0.2f). In general, standard AES decryption undertakes
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a three-step approach for decryption, in which the sec-
ond and third steps consist of (multiple rounds) lookup
table queries through blocks of secrets. Intuitively, such
secret-dependent table queries could reveal considerable
amount of timing-channel vulnerabilities.

Our evaluation has confirmed this intuition. CacheD
successfully identifies 48 vulnerable program points
for OpenSSL (0.9.7c). Indeed all of the identified
program points are lookup table queries through se-
crets, which is consistent with previous research [15].
Analysis of another OpenSSL (1.0.2f) gave similar re-
sults: CacheD identifies 32 vulnerable program points of
secret-dependent lookup table queries (Table 2).

7.5 Unknown Vulnerabilities

CacheD also successfully identifies several potential vul-
nerabilities that have not been reported in public, to the
best of our knowledge.

7.5.1 RSA in OpenSSL

CacheD reported two positive results in each OpenSSL
implementation (version 0.9.7c and version 1.0.2f) of the
RSA decryption procedure. CacheD further identified
one independent vulnerable point for each implementa-
tion. Appendix C presents the source code in which the
independent positive is discovered. Before performing
the modular exponentiation, function BN num bits cal-
culates the length of the secret key by bit. The secret key
information is represented by a BIGNUM structure pointed
by a, with the key value stored in a byte buffer a->d

and the length of the buffer stored in a->top, respec-
tively. Since the key length by bit may not be a mul-
tiple of the key length by byte, the code uses a lookup
table in BN num bits word to determine the exact num-
ber of bits in the last entry of a->d. CacheD points out
that accessing this lookup table will lead to a cache dif-
ference, thus leaking information about the most signif-
icant several bits of the secrete key which are stored in
a->d[a->top - 1]. Results in §7.2 also support our
finding. In addition, CacheD also identified another vul-
nerable program point which is derived from the output
of this table query (row 6-7 in Table 2).

We also find the same implementation that could lead
to timing channels in its most recent releases (released
in late Sep. 2016): version 1.0.2j, version 1.1.0b, and
version 1.0.1u.

7.5.2 RSA Implementation in Botan

Another vulnerability found by CacheD is in the Botan
(1.10.13) implementation of RSA, whose source code is
shown in Appendix D. The Montgomery exponentiator

is an algorithm for modular exponentiation. Similar to
the Libgcrypt (1.6.1) implementation of RSA (Fig. 4a), a
precomputed table is employed to cache some intermedi-
ate results and a sliding window of the secret key is used
to query the table (line 9). The queried output is main-
tained as a BigInt class instance and it is represented as
a symbol of the key according to our taint propagation
rules (§4.3). Later, when the class method sig words

is invoked (line 13), two memory accesses (line 19-20)
through the key symbol are captured by CacheD (note
that reg at line 19 is a private variable of class BigInt).

Our constraint solver has proved that there are multi-
ple satisfiable solutions for both the first and the second
memory access (line 19-20). Moreover, by employing
different secrets provided by the solver, we report to ob-
serve cache behavior variations in the hardware simula-
tor (§7.2). In addition, the memory query output (x at
line 19) is used to access memories later, which results
into 27 “dependent” vulnerable program points (row 10
in Table 2).

Besides the implementations evaluated in this work
(version 1.10.13), we notice that this vulnerability af-
fects several other versions of Botan, including 1.10.12,
1.10.11, and 1.11.33.

8 Related Work

8.1 Timing attacks

One major motivation for controlling timing channels
is the protection of cryptographic keys against side-
channels arising from timing attacks. Since the seminal
paper of Kocher [30], attacks that exploit timing chan-
nels have been demonstrated on RSA [13, 30, 3, 45, 59],
AES [24, 42, 53] and ElGamal [63].

Shared data cache is shown to be a rich source of
timing channels. The potential risk of cache-based tim-
ing channels was first identified by Hu [26]. Around
2005, real cache-based timing attacks are demonstrated
on AES [8, 42], and RSA [45]. Since then, more practi-
cal timing attacks are emerging. Previous work shows
the practicality of various timing attacks utilizing the
shared data: among VMs in multi-tenant cloud [50].
Timing attacks are shown to be a potential risk across
VMs [57, 56, 47], and more evidence is emerging show-
ing practical timing attacks that break crypto systems
[63, 59, 34]. Recent work [41] presents a successful
cache attack where the victim merely has to access a
website owned by the attacker.
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8.2 Mitigation of cache-based timing chan-
nels

Much prior application-level mitigation only handles
timing leakage due to secret-dependent control flows [4,
25, 38, 7, 17, 44]. However, as shown in recent cache-
based timing attacks [24, 42, 53, 59, 34], subtle tim-
ing leakage survives even with the absence of secret-
dependent control flows. Recently, advanced program
analyses are proposed to identify those subtle cache-
based timing channels [6, 19, 20, 60], but they only pro-
vide an upper-bound on timing-based information leak-
age; it is unclear what/where the vulnerability is when
those tools report a non-zero upper bound.

At the system level, Düppel [64] clears L1 and L2
cache before context switching; but it cannot mitigate
the last-level cache-based attack, such as [34]. Stealth-
Mem [21, 29] manages a set of locked cache lines per
core, which are never evicted from the cache. But its
security relies on the assumption that “crucial” data was
identified in the first place. But doing so nontrivial. For
instance, the crucial data in AES is the lookup table,
which only stores public data.

At the hardware level, one direction of mitigating
cache-based timing channels is to either physically or
logically partition the data cache [43, 54, 31, 61]. Line-
locking cache was also implemented in hardware [54].
New hardware designs, such as RPCache [54], New-
Cache [55], and random fill cache [33], inject random
noises to cache delay to confuse attackers. Common to
those hardware-based mitigation mechanisms is the as-
sumption that “crucial” data was identified by the soft-
ware, where CacheD can be helpful.

9 Conclusion

To help developers improve the implementations of soft-
ware that is sensitive to information leakage, we have
developed a tool called CacheD to detect potential tim-
ing channels caused by the differences of cache behav-
ior. With the help of symbolic execution techniques,
CacheD models the memory addresses at each program
point as logical formulas so that constraint solvers can
check whether sensitive program data affects cache be-
havior, thus revealing potential timing channels. CacheD
is scalable enough for analyzing real-world cryptosys-
tems with decent accuracy. We have evaluated a proto-
type of CacheD with a set of widely used cryptographic
algorithm implementations. CacheD is able to detect
a considerable number of side-channel vulnerabilities,
some of which are previously unknown to the public.
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A A Symbolic Memory Address Example

134526912+Concat(0,Extract(15,8,key22)^Conc

at(0,Extract(4,3,Concat(Extract(31,31,2*(Co

ncat(0,Extract(28,27,Concat(Extract(7,7,key

9),0,Extract(7,7,key8),0,Extract(7,7,key7),

0,Extract(7,7,key6),0)+4294967295*Concat(0,

Extract(7,7,key9),0,Extract(7,7,key8),0,Ext

ract(7,7,key7),0,Extract(7,7,key6))),0,Extr

act(25,24,Concat(Extract(7,7,key9),0,Extrac

t(7,7,key8),0,Extract(7,7,key7),0,Extract(7

,7,key6),0)+4294967295*Concat(0,Extract(7,7

,key9),0,Extract(7,7,key8),0,Extract(7,7,ke

y7),0,Extract(7,7,key6))),0,Extract(20,19,C

oncat(Extract(7,7,key9),0,Extract(7,7,key8)

,0,Extract(7,7,key7),0,Extract(7,7,key6),0)

+4294967295*Concat(0,Extract(7,7,key9),0,Ex

tract(7,7,key8),0,Extract(7,7,key7),0,Extra

ct(7,7,key6))),0,Extract(17,16,Concat(Extra

ct(7,7,key9),0,Extract(7,7,key8),0,Extract(

7,7,key7),0,Extract(7,7,key6),0)+4294967295

*Concat(0,Extract(7,7,key9),0,Extract(7,7,k

ey8),0,Extract(7,7,key7),0,Extract(7,7,key6
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*(Concat(key9,0)^Concat(0,key8,0)^Concat(0,

key7,0)^Concat(0,key6))),0,Extract(7,1,2*(C

oncat(key9,0)^Concat(0,key8,0)^Concat(0,key

7,0)^Concat(0,key6))),0))),0,Extract(15,15,

2*(Concat(0,Extract(28,27,Concat(Extract(7,

7,key9),0,Extract(7,7,key8),0,Extract(7,7,k

ey7),0,Extract(7,7,key6),0)+4294967295*Conc

at(0,Extract(7,7,key9),0,Extract(7,7,key8),

0,Extract(7,7,key7),0,Extract(7,7,key6))),0

,Extract(25,24,Concat(Extract(7,7,key9),0,E

xtract(7,7,key8),0,Extract(7,7,key7),0,Extr

act(7,7,key6),0)+4294967295*Concat(0,Extrac

t(7,7,key9),0,Extract(7,7,key8),0,Extract(7

,7,key7),0,Extract(7,7,key6))),0,Extract(20

,19,Concat(Extract(7,7,key9),0,Extract(7,7,

key8),0,Extract(7,7,key7),0,Extract(7,7,key

6),0)+4294967295*Concat(0,Extract(7,7,key9)

,0,Extract(7,7,key8),0,Extract(7,7,key7),0,

Extract(7,7,key6))),0,Extract(17,16,Concat(

Extract(7,7,key9),0,Extract(7,7,key8),0,Ext

ract(7,7,key7),0,Extract(7,7,key6),0)+42949

67295*Concat(0,Extract(7,7,key9),0,Extract(

7,7,key8),0,Extract(7,7,key7),0,Extract(7,7

,key6))),0,Extract(12,11,Concat(Extract(7,7

,key9),0,Extract(7,7,key8),0,Extract(7,7,ke

y7),0,Extract(7,7,key6),0)+4294967295*Conca

t(0,Extract(7,7,key9),0,Extract(7,7,key8),0

,Extract(7,7,key7),0,Extract(7,7,key6))),0,

Extract(9,8,Concat(Extract(7,7,key9),0,Extr

act(7,7,key8),0,Extract(7,7,key7),0,Extract

(7,7,key6),0)+4294967295*Concat(0,Extract(7

,7,key9),0,Extract(7,7,key8),0,Extract(7,7,

key7),0,Extract(7,7,key6))),0,Extract(4,3,C

oncat(Extract(7,7,key9),0,Extract(7,7,key8)

,0,Extract(7,7,key7),0,Extract(7,7,key6),0)

+4294967295*Concat(0,Extract(7,7,key9),0,Ex

tract(7,7,key8),0,Extract(7,7,key7),0,Extra

ct(7,7,key6))),0,3*Concat(0,Extract(7,7,key

6)))^Concat(Extract(31,25,2*(Concat(key9,0)

^Concat(0,key8,0)^Concat(0,key7,0)^Concat(0

,key6))),0,Extract(23,17,2*(Concat(key9,0)^

Concat(0,key8,0)^Concat(0,key7,0)^Concat(0,

key6))),0,Extract(15,9,2*(Concat(key9,0)^Co

ncat(0,key8,0)^Concat(0,key7,0)^Concat(0,ke

y6))),0,Extract(7,1,2*(Concat(key9,0)^Conca

t(0,key8,0)^Concat(0,key7,0)^Concat(0,key6)

)),0))),0,Extract(7,7,2*(Concat(0,Extract(2

8,27,Concat(Extract(7,7,key9),0,Extract(7,7

,key8),0,Extract(7,7,key7),0,Extract(7,7,ke

y6),0)+4294967295*Concat(0,Extract(7,7,key9

),0,Extract(7,7,key8),0,Extract(7,7,key7),0

,Extract(7,7,key6))),0,Extract(25,24,Concat

(Extract(7,7,key9),0,Extract(7,7,key8),0,Ex

tract(7,7,key7),0,Extract(7,7,key6),0)+4294

967295*Concat(0,Extract(7,7,key9),0,Extract

(7,7,key8),0,Extract(7,7,key7),0,Extract(7,

7,key6))),0,Extract(20,19,Concat(Extract(7,

7,key9),0,Extract(7,7,key8),0,Extract(7,7,k

ey7),0,Extract(7,7,key6),0)+4294967295*Conc

at(0,Extract(7,7,key9),0,Extract(7,7,key8),

0,Extract(7,7,key7),0,Extract(7,7,key6))),0

,Extract(17,16,Concat(Extract(7,7,key9),0,E

xtract(7,7,key8),0,Extract(7,7,key7),0,Extr

act(7,7,key6),0)+4294967295*Concat(0,Extrac

t(7,7,key9),0,Extract(7,7,key8),0,Extract(7

,7,key7),0,Extract(7,7,key6))),0,Extract(12

,11,Concat(Extract(7,7,key9),0,Extract(7,7,

key8),0,Extract(7,7,key7),0,Extract(7,7,key

6),0)+4294967295*Concat(0,Extract(7,7,key9)
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,0,Extract(7,7,key8),0,Extract(7,7,key7),0,

Extract(7,7,key6))),0,Extract(9,8,Concat(Ex

tract(7,7,key9),0,Extract(7,7,key8),0,Extra

ct(7,7,key7),0,Extract(7,7,key6),0)+4294967

295*Concat(0,Extract(7,7,key9),0,Extract(7,

7,key8),0,Extract(7,7,key7),0,Extract(7,7,k

ey6))),0,Extract(4,3,Concat(Extract(7,7,key

9),0,Extract(7,7,key8),0,Extract(7,7,key7),

0,Extract(7,7,key6),0)+4294967295*Concat(0,

Extract(7,7,key9),0,Extract(7,7,key8),0,Ext

ract(7,7,key7),0,Extract(7,7,key6))),0,3*Co

ncat(0,Extract(7,7,key6)))^Concat(Extract(3

1,25,2*(Concat(key9,0)^Concat(0,key8,0)^Con

cat(0,key7,0)^Concat(0,key6))),0,Extract(23

,17,2*(Concat(key9,0)^Concat(0,key8,0)^Conc

at(0,key7,0)^Concat(0,key6))),0,Extract(15,

9,2*(Concat(key9,0)^Concat(0,key8,0)^Concat

(0,key7,0)^Concat(0,key6))),0,Extract(7,1,2

*(Concat(key9,0)^Concat(0,key8,0)^Concat(0,

key7,0)^Concat(0,key6))),0))),0)+4294967295

*Concat(0,Extract(31,31,2*(Concat(0,Extract

(28,27,Concat(Extract(7,7,key9),0,Extract(7

,7,key8),0,Extract(7,7,key7),0,Extract(7,7,

key6),0)+4294967295*Concat(0,Extract(7,7,ke

y9),0,Extract(7,7,key8),0,Extract(7,7,key7)

,0,Extract(7,7,key6))),0,Extract(25,24,Conc

at(Extract(7,7,key9),0,...

B Structure of Two-level Precomputed Ta-
ble and Precomputed Size Table

Level 1 B1

Level 2

Level 1 B3

Level 2

Level 1 B5

Level 2

Level 1 B7

Level 2

Level 1 . . .

Level 2

Level 1 BN

Level 2

k0 (k0 is a window size of key)

NN NN NN NN . . .. . . NN

tw
o-levelprecom

puted
table

precomputed size table

length
ofallsecond-leveltables

are
equalto

N

Figure 5: Two-level precomputed table and precomputed
size table used in RSA and ElGamal. Our observation
shows that the length of all the second-level precomputed
tables are equal in non-trivial decryption processes of
RSA and ElGamal. In other words, attackers can hardly
infer k0 by observing query outputs of the precomputed
size table.

C Unknown RSA Vulnerabilities in
OpenSSL

1 int BN num bits(const BIGNUM ∗a) {
2 BN ULONG l;
3 int i;
4
5 bn check top(a);
6
7 if (a−>top == 0) return(0);
8 l=a−>d[a−>top−1];
9 assert(l != 0);

10 i=(a−>top−1)∗BN BITS2;
11 return(i+BN num bits word(l));
12 }
13
14 int BN num bits word(BN ULONG l) {
15 static const char bits[256]={
16 0,1,2,2,3,3,3,3,4,4,4,4,4,4,4,4,
17 5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,
18 ...
19 8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,
20 8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,
21 };
22 ....
23 return bits[l];
24 }

Figure 6: Unknown RSA vulnerabilities found in
OpenSSL (version 0.9.7c and 1.0.2f). The tainted vari-
able (i.e., secret) l is red and the vulnerable program
point is bold.

D Unknown RSA Vulnerabilities in Botan

1 BigInt Montgomery Exponentiator::execute() const {
2 ...
3 for(size t i = exp nibbles; i > 0; −−i) {
4 ...
5 const u32bit nibble = exp.get substring(
6 window bits∗(i−1), window bits);
7
8 //note that the following code is not a mem access
9 const BigInt& y = g[nibble];

10
11 bigint monty mul(&z[0], z.size(),
12 x.data(), x.size(), x.sig words(),
13 y.data(), y.size(), y.sig words(),
14 ...
15 }
16 }
17
18 size t sig words() const {
19 const word* x = &reg[0];
20 size t sig = reg.size();
21 ...
22 }

Figure 7: Unknown RSA vulnerabilities found in the
Montgomery exponentiator of Botan (version 1.10.13).
Tainted variables are marked as red and the vulnerable
program points are bold. sig is not tainted according to
the optimization of RSA precomputed size table (§5).
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