
This paper is included in the Proceedings of the
26th USENIX Security Symposium
August 16–18, 2017 • Vancouver, BC, Canada

ISBN 978-1-931971-40-9

Open access to the Proceedings of the
26th USENIX Security Symposium

is sponsored by USENIX

Loophole: Timing Attacks on
Shared Event Loops in Chrome

Pepe Vila, IMDEA Software Institute & Technical University of Madrid (UPM);
Boris Köpf, IMDEA Software Institute

https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/vila

Loophole: Timing Attacks on Shared Event Loops in Chrome

Pepe Vila*,† and Boris Köpf*

*IMDEA Software Institute
†Technical University of Madrid (UPM)
{pepe.vila, boris.koepf}@imdea.org

Abstract
Event-driven programming (EDP) is the prevalent
paradigm for graphical user interfaces, web clients, and
it is rapidly gaining importance for server-side and net-
work programming. Central components of EDP are
event loops, which act as FIFO queues that are used by
processes to store and dispatch messages received from
other processes.

In this paper we demonstrate that shared event loops
are vulnerable to side-channel attacks, where a spy pro-
cess monitors the loop usage pattern of other processes
by enqueueing events and measuring the time it takes for
them to be dispatched. Specifically, we exhibit attacks
against the two central event loops in Google’s Chrome
web browser: that of the I/O thread of the host process,
which multiplexes all network events and user actions,
and that of the main thread of the renderer processes,
which handles rendering and Javascript tasks.

For each of these loops, we show how the usage pat-
tern can be monitored with high resolution and low over-
head, and how this can be abused for malicious purposes,
such as web page identification, user behavior detection,
and covert communication.

1 Introduction

Event-driven programming (EDP) consists of defining
responses to events such as user actions, I/O signals,
or messages from other programs. EDP is the preva-
lent programming paradigm for graphical user interfaces,
web clients, and it is rapidly gaining importance for
server-side and network programming. For instance, the
HTML5 standard [2] mandates that user agents be imple-
mented using EDP, similarly, Node.js, memcached, and
Nginx, also rely on EDP.

In EDP, each program has an event loop which con-
sists of a FIFO queue and a control process (or thread)
that listens to events. Events that arrive are pushed into

the queue and are sequentially dispatched by the con-
trol process according to a FIFO policy. A key fea-
ture of EDP is that high-latency (or blocking) opera-
tions, such as database or network requests, can be han-
dled asynchronously: They appear in the queue only as
events signaling start and completion, whereas the block-
ing operation itself is handled elsewhere. In this way
EDP achieves the responsiveness and fine-grained con-
currency required for modern user interfaces and net-
work servers, without burdening programmers with ex-
plicit concurrency control.

Figure 1: Shared event loop. A enqueues multiple short
tasks and records the time at which each of them is pro-
cessed. The time difference between two consecutive
tasks reveals whether V has posted tasks in-between, and
how long they took to execute.

In this paper we show that EDP-based systems are sus-
ceptible to side-channel attacks. The key observation is
that event loops form a resource that can be shared be-
tween mutually distrusting programs. Hence, contention
of this resource by one program can be observed by the
others through variations in the time the control process
takes for dispatching their events. Figure 1 illustrates
such a scenario for a loop that is shared between an at-
tacker A and a victim V .

Attacks based on observable contention of shared re-
sources have a long history [25] and an active present [8,
27, 37]; however, attacks against shared event loops have
so far only been considered from a theoretical point of
view [22]. Here, we perform the first attacks against real
EDP-based systems. Specifically, we target shared event
loops in the two central processes of Google’s Chrome

USENIX Association 26th USENIX Security Symposium 849

web browser: The host process, whose event loop is
shared between all requests for common resources, such
as network and user interface; and the renderer pro-
cesses, whose loops can be shared between Javascript
tasks of different tabs or iframes.

We build infrastructure that enables us to spy on both
loops from a malicious HTML page. This is facilitated
by the asynchronous programming model used in both
Chrome and Javascript. Asynchronous function calls
trigger new tasks that are appended to the same queue, in
contrast to synchronous calls which are simply pushed
onto the current task’s call stack and executed without
preemption, blocking the loop.

• For the event loop of the renderer we rely on the
postMessage API, which is a Javascript feature
for cross-window communication based on asyn-
chronous callbacks. By posting messages to our-
selves we can monitor the event loop with a resolu-
tion of 25 µs, with only one task in the loop at each
point in time.

• For the event loop of the host process we rely on
two different mechanisms: network requests to non-
routable IP addresses, which enter the loop and
abort very quickly, providing a resolution of 500 µs;
and SharedWorkers, whose messages pass through
the event loop of the host process, providing a reso-
lution of 100 µs.

We use the information obtained using these techniques
in three different attacks:

1. We show how event delays during the loading
phase, corresponding to resource requests, parsing,
rendering and Javascript execution, can be used to
uniquely identify a web page. Figure 2 visualizes this
effect using three representative web pages. While this
attack shares the goal with the Memento attack [21],
the channels are quite different: First, in contrast to
Memento, we find that the relative ordering of events is
necessary for successful classification, which motivates
the use of dynamic time warping as a distance measure.
Second, we show that page identification through the
event loop requires only minimal training: we achieve
recognition rates of up to 75% and 23% for the event
loops of the renderer and host processes, respectively,
for 500 main pages from Alexa’s Top sites. These rates
are obtained using only one sample of each page for the
training phase.

2. We illustrate how user actions in cross-origin pages
can be detected based on the delays they introduce in the
event loop. In particular, we mount an attack against
Google OAuth login forms, in which we measure the
time between keystrokes while the user is typing a pass-
word. The timing measurements we obtain from the

event loop are significantly less noisy or require less priv-
ileges than from other channels [20, 38, 18].

Figure 2: Delays observed while loading different web
pages, by an attacker tab sharing the renderer process.
Horizontal axis depicts elapsed real time, vertical axis
depicts time taken by the event loop for processing the
tasks inserted by the attacker. All pages are clearly dis-
tinguishable, both by the human eye and by classification
techniques.

3. We demonstrate that shared event loops can
be used to transmit information between cross-origin
pages.Specifically, we implement a covert channel with
a bandwidth of 200 bit/s through the renderer’s main
thread event loop, and another one working cross-
processes of 5 bit/s.

Our attacks show that event loops can be successfully
spied on even with simple means. They work under the
assumption that event loops behave as FIFO queues; in
reality, however, Chrome’s event loop has a more so-
phisticated structure, relying on multiple queues and a
policy-based scheduler. We believe that this structure can
be leveraged for much more powerful attacks in the fu-
ture.

2 Isolation Policies and Sharing of Event
Loops in Chrome

In this section we revisit the same origin policy and its
variants. We then discuss the relationship of these poli-
cies with the Chrome architecture, where we put a special
focus on the way in which event loops are shared.

2.1 Same Origin Policy
The Same-Origin Policy (SOP) is a central concept in
the web security model: The policy restricts scripts on a

850 26th USENIX Security Symposium USENIX Association

web page to access data from another page if their origins
differ. Two pages have the same origin if protocol, port
and host are equal.

The demand for flexible cross-origin communication
has triggered the introduction of features such as domain
relaxation, the postMessage API, Cross-origin Resource
Sharing (CORS), Channel Messaging, Suborigins, or the
Fetch API. This feature creep comes with an increase in
browser complexity and attack surface, which has mo-
tivated browser vendors to move towards more robust
multi-process architectures.

2.2 Overview of the Chrome Architecture

The Chrome architecture is segmented into different op-
erating system processes. The rationale for this seg-
mentation is twofold: to isolate web content from the
host [6], and to support the enforcement of origin poli-
cies by means of the OS [30]. For achieving this seg-
mentation, Chrome relies on two processes:

HOST PROCESS

Main Thread

I/O Thread

RENDERER A

MainThread

IOChildThread

CompositorThread

RENDERER B

MainThread

IOChildThread

CompositorThread

Figure 3: Overview of Chrome’s architecture.

The host process runs the top-level browser window.
It has access to system resources such as network, file
system, UI events, etc., which it manages on behalf of
the unprivileged renderer processes. The host process
runs several threads; the most relevant ones are:

• the CrBrowserMain thread, which handles, e.g.,
user interaction events, and

• the IOThread, which handles, e.g., IPC, network
stack, and file system.

The renderer processes are sandboxed processes re-
sponsible for parsing, rendering and Javascript execu-
tion. Communication with the host process is done via
an inter-process communication (IPC) system based on
message passing. Each renderer runs several threads; the
most relevant ones are:

• the MainThread where resource parsing, style cal-
culation, layout, painting and non-worker Javascript
runs,

• the IOChildThread, which handles IPC communi-
cation with the host process, and

• the CompositorThread, which improves respon-
siveness during the rendering phase by allowing the
user to scroll and see animations while the main
thread is busy, thanks to a snapshot of the page’s
state.

Each of the threads in the host and renderer processes
maintains at least one event loop that is largely a FIFO
queue. Inter-thread and inter-process communication are
carried out via message passing through these queues.
We next discuss scenarios where pages of different origin
can share the event loops of host and renderer processes.
In Section 3 we show how this sharing can be exploited
for eavesdropping.

2.3 Sharing in the Renderer Processes
Chrome supports different policies that govern how web
applications are mapped to renderer processes, and that
influence whether or not event loops are shared.

The default policy is called process-per-site-
instance. It requires using a dedicated renderer
process for each instance of a site. Here, a
site is defined as a registered domain plus a
scheme. For example, https://docs.google.com and
https://mail.google.com:8080 are from the same site –
but not from the same origin, as they differ in subdomain
and port. A site instance is a collection of pages from
the same site that can obtain references to each other
(e.g., one page opened the other in a new window using
Javascript).

The other supported policies are more permissive. For
example, the process-per-site policy groups all instances
of a site in the same renderer process, trading robust-
ness for a lower memory overhead. The process-per-tab
policy dedicates one renderer process to each group of
script-connected tabs. Finally, the single-process policy
lets both the host and renderer run within a single OS
process (only used for debugging purposes).

Even in the restrictive default process-per-site-
instance policy, there are some situations that force
Chrome to host documents from different sites in the
same renderer process, causing them to share the event
loop:

• Iframes are currently hosted in the same process as
their parent.

• Renderer-initiated navigations such as link clicks,
form submissions, and scripted redirections will
reuse the same renderer as the origin page.

• When the number of renderer processes exceeds a
certain threshold, Chrome starts to reuse existing
renderers instead of creating new ones.

On (64-bit) OSX and Linux, the threshold for reusing
renderers is calculated by splitting half of the physical

USENIX Association 26th USENIX Security Symposium 851

RAM among the renderers, under the assumption that
each consumes 60MB.1 In our experiments, on a ma-
chine with 4 GB of RAM we could spawn 31 new tabs
before any renderer was shared, whereas on a machine
with 8 GB of RAM we observed a threshold of approx-
imately 70 renderers. There is no apparent grouping
policy for the pages that can share a process when this
threshold is exceeded, except for tabs in Incognito mode
not being mixed up with “normal” tabs. In particular,
we do not observe any preference for similar origins,
same sites, or secure versus insecure pages. In fact, even
filesystem pages (loaded with file://) can co-reside
with an arbitrary HTTP site.

2.4 Sharing in the Host Process

The Chrome sandbox restricts access of renderers to
privileged actions. In particular, renderers have to com-
municate with the host process for network requests or
user input. The corresponding messages of all render-
ers pass through the event loop of the host process’ I/O
thread.

We illustrate this communication using two different
examples: how user actions flow from the host to the cor-
responding renderer process, and conversely, how net-
work requests flow from a renderer to the host process.

• UI flow: User actions such as mouse movements
or clicks enter the browser through the main thread
of the host process. The host main thread commu-
nicates the user event to the corresponding renderer
by message passing between their I/O event loops,
and the render acknowledges the receipt of this mes-
sage. Even events with no Javascript listeners oc-
cupy the event loop of the renderer’s main thread
for a measurable interval.

• Net stack: Chrome’s net stack is a complex cross-
platform network abstraction. Any network request
by a renderer is passed to the I/O thread of the host
process, which forwards it to a global resource dis-
patcher that will pass it to a worker to fulfill the
request. This worker will open a connection, if
necessary, and request the resource. After the re-
quest is done, the response headers are received and
sent back to the renderer process, which will re-
spond with an ACK after reading, Finally, the body
is received and the corresponding callbacks are trig-
gered.

1On Android there is no threshold since the OS suspends idle pro-
cesses.

3 Eavesdropping on Event Loops in
Chrome

In this section we describe how to violate the SOP by
eavesdropping on the event loops of Chrome’s host and
renderer processes. For each of these processes, we de-
scribe potential threat scenarios and present a simple
HTML page executing Javascript that can be used for
spying. We then present our monitoring tool to visual-
ize the event loops of the browser.

3.1 The Renderer Process Event Loop
3.1.1 Threat Scenarios

There are several scenarios in which an adversary site A
can share the event loop of the renderer’s main thread
with a victim site V . These scenarios are based on
Chrome’s policy for mapping sites to renderers, see Sec-
tion 2.3. We give two examples:

• Malicious advertisement. In this scenario, A runs
as an advertisement iframed in V . The SOP pro-
tects V’s privacy and itegrity by logically isolating
both execution environments. However, A’s iframe
is able to execute Javascript on V’s event loop, en-
abling it to gather information about the user behav-
ior in V .

• Keylogger. In this scenario, A pops up a login form
to authenticate its users via V’s OAuth. Because the
operation does not ask for special privileges and the
password is never sent to A, the victim could trust
it and fill the form. Meanwhile, A’s page monitors
keystroke timings (see Section 4.2), which can be
used for recovering user passwords [32].

3.1.2 Monitoring Techniques

To monitor the renderer’s event loop it is sufficient to
continuously post asynchronous tasks and measure the
time interval between subsequent pairs of events. We
measure the monitoring resolution in terms of the inter-
val between two subsequent measurement events on an
otherwise empty loop.

The most common way of posting asynchronous tasks
programmatically in Javascript is setTimeout. How-
ever, the resolution can be more than 1000 ms for inac-
tive tabs, rendering this approach useless for the purpose
of spying. To increase the resolution, we instead use the
postMessage API for sending asynchronous messages
to ourselves.

The code in Listing 1 shows how this is achieved.
The call to performance.now() in line 2 of the
function loop returns a high-resolution timestamp
that is saved as described below. The call to
self.postmessage(0,’*’) in line 3 posts message

852 26th USENIX Security Symposium USENIX Association

1 function loop() {

2 save(performance.now())

3 self.postMessage (0,'*')
4 }

5 self.onmessage = loop

6 loop()

Listing 1: Javascript code to monitor the main
thread’s event loop with the postMessage API.

“0” into the renderer’s event loop, where the second argu-
ment “*” indicates no restriction on the receiver’s origin.
Line 5 registers the function loop as an event listener,
which enables it to receive the messages it has posted.
This causes loop to recursively post tasks, while keep-
ing the render responsive since other events are still being
processed.

In order to minimize the noise introduced by the
measurement script itself, the function save in line 2
uses a pre-allocated typed array (Float64Array) to
store all the timing measurements. Contrary to normal
Javascript’s sparse arrays, typed arrays avoid memory re-
allocations and thus noisy garbage collection rounds, see
below. With that we achieve an average delay between
two consecutive tasks of around 25 µs on our target ma-
chine. This resolution is sufficient to identify even short
events. For example, a single mouse movement event
(without explicit event listener) consumes around 100 µs.

3.1.3 Interferences

In modern browsers there are several sources of noise
that affect measurement precision, beside the obvious ef-
fect of the underlying hardware platform and OS. They
include:

• Just-in-time compilation (JIT). JIT can trigger code
optimization or deoptimization, in the case of
Chrome by the CrankShaft and Turbofan compil-
ers, at points in time that are hard to predict. For
our measurements we rely on a warm-up phase of
about 150 ms to obtain fully optimized code.

• Garbage collection (GC). In the case of V8, GC in-
cludes small collections (so-called scavenges) and
major collections. Scavenges are periodical and fast
(< 1 ms); but major collections may take > 100 ms,
distributed into incremental steps. In our data, scav-
enges are easily identifiable due to their periodicity,
while major collections could be spotted due to their
characteristic size. On some browsers, such as Mi-
crosoft’s Internet Explorer, GC rounds can be trig-
gered programmatically, which helps to eliminate
noise from the measurements enabling more precise
attacks [11].

While all of these features reduce the effectiveness of our
attacks, it is interesting to think of them as potential side-
channels by themselves. For example, observable GC
and JIT events can reveal information about a program’s
memory and code usage patterns, respectively [29].

3.2 The Host Process Event Loop

3.2.1 Threat Scenarios

The Chrome sandbox ensures that all of the renderer’s
network and user interaction events pass through the host
process’ I/O event loop, see Section 2.4. We describe two
threat scenarios where this could be exploited.

• Covert channel. Pages of different origins running
in different (disconnected) tabs can use the shared
event loop to implement a covert channel, violat-
ing the browser’s isolation mechanisms. This will
work even if one (or both) pages run in incognito
mode. This channel can be used for tracking users
across sessions, or to exfiltrate information from
suspicious web pages without network traffic.

• Fingerprinting. A tab running a rogue page of A can
identify which pages are being visited by the user in
other tabs by spying on the shared event loop. De-
tecting the start of a navigation is facilitated by the
fact that the I/O thread blocks for a moment when
the user types in a URL and presses enter.

3.2.2 Monitoring Techniques

There are many ways to post asynchronous tasks into the
event loop of the host process; they differ in terms of the
resolution with which they enable monitoring the event
loop and the overhead they imply. Below we describe
two of the techniques we used.

Network Requests. The first technique is to use net-
work requests to systematically monitor the event loop
of the I/O thread of the host process. A valid network re-
quest may take seconds to complete, with only the start
and end operations visible in the loop, which provides
insufficient resolution for monitoring.

To increase the resolution, we make use of non-
routable IP addresses. The corresponding requests en-
ter the I/O thread’s event loop, are identified as invalid
within the browser, and trigger the callback without any
DNS resolution or socket creation. This mechanism pro-
vides a monitoring resolution of 500 µs and has the addi-
tional benefit of being independent from network noise.

Listing 2 shows the code of our monitoring proce-
dure. We rely on the Javascript Fetch API for posting the
network requests. The Fetch API provides an interface
for fetching resources using promises, which are ideal to

USENIX Association 26th USENIX Security Symposium 853

manage asynchronous computations thanks to their sim-
ple syntax for handling callbacks. In line 2 we request
and save a high-resolution timestamp. In line 3 we re-
quest a non-routable IP address, and set the rejection call-
back of the promise to self, to recursively run when the
request fails.

1 function loop() {

2 save(performance.now())

3 fetch(new Request('http ://0/ ')).
4 catch(loop)

5 }

6 loop()

Listing 2: Javascript code to monitor the host’s I/O
thread using network requests.

Shared Workers. The second technique relies on web
workers, which is a mechanism for executing Javascript
in the background. Web workers that are shared between
multiple pages are usually implemented in a dedicated
OS process; this means they communicate via IPC and,
therefore, can be used to spy on the I/O thread of the host
process. This mechanism provides a monitoring resolu-
tion of 100 µs. Listing 3 shows the code of our worker-

1 onconnect = function reply(e) {

2 let port = e.ports [0]

3 port.onmessage = function () {

4 port.postMessage (0)

5 }

6 }

1 const w = new SharedWorker('pong.js')
2 function loop() {

3 save(performance.now())

4 w.port.postMessage (0)

5 }

6 w.port.onmessage = loop

7 loop()

Listing 3: Javascript code to monitor the host’s
I/O thread using SharedWorkers. The first snippet
is the worker’s ‘pong.js’ file. Second snippet is
the Javascript code that monitors the I/O thread by
communicating with the worker.

based monitoring procedure. The first snippet defines the
worker’s job, which consists in replying to each received
message. In the second snippet, we register the worker in
line 1. In lines 2-7 we record a timestamp and recursively
send messages to the worker, analogous to Listing 1. As
a result, we measure the round-trip time from the page to
the worker, which reflects the congestion in the I/O event
loop. Note that one can further increase the measure-
ment resolution by recording the time in each endpoint
and merging the results.

3.2.3 Interferences

There are many different sources of noise and uncertainty
in the I/O thread of the host process. The most notable
ones include the interleaving with the host’s main thread
and the messages from other renderers, but also the GPU
process and browser plugins. While these interferences
could potentially be exploited as side channels, the noise
becomes quickly prohibitive as the loop gets crowded.

3.3 The LoopScan Tool
We implement the eavesdropping techniques described
in Sections 3.1 and 3.2 in a tool called LoopScan, which
enables us to explore the characteristics of the side chan-
nel caused by sharing event loops. LoopScan is based
on a simple HTML page that monitors the event loops
of the host and renderer processes. It relies on the D3.js
framework, and provides interactive visualizations with
minimap, zooming, and scrolling capabilities, which fa-
cilitates the inspection of traces. For example, Figure 8
is based on a screenshot from LoopScan.

LoopScan’s functionality is in principle covered
by the powerful Chrome Trace Event Profiling Tool
(about:tracing) [3], which provides detailed flame graphs
for all processes and threads. However, LoopScan
has the advantage of delivering more accurate timing
information about event-delay traces than the profiler,
since loading a page with the Trace Event Profiling tool
severely distorts the measurements. LoopScan source is
publicly available at https://github.com/cgvwzq/

loopscan.

4 Attacks

In this section we systematically analyze the side channel
caused by sharing event loops in three kinds of attacks: a
page identification attack, an attack where we eavesdrop
on user actions, and a covert channel attack. For all at-
tacks we spy on the event loops of the renderer and the
host processes, as described in Sections 3.1 and 3.2. We
performed these attacks over the course of a year, always
using the latest stable version of Chrome (ranging from
v52-v58). The results we obtain are largely stable across
the different versions.

4.1 Page identification
We describe how the event-delay trace obtained from
spying on event loops can be used for identifying web-
pages loaded in other tabs. We begin by explaining
our data selection and harvesting process and the cho-
sen analysis methods, then we describe our experimental
setup and the results we obtain.

854 26th USENIX Security Symposium USENIX Association

https://github.com/cgvwzq/loopscan
https://github.com/cgvwzq/loopscan

4.1.1 Sample Selection

We start with the list of Alexa Top 1000 sites, from
which we remove duplicates. Here, duplicates are sites
that share the subdomain but not the top-level domains
(e.g., “google.br” and “google.com”) and that are likely
to have similar event-delay traces. From the remaining
list, we randomly select 500 sites as our sample set. This
reduction facilitates a rigorous exploration of the data
and the parameter space.

4.1.2 Data Harvesting

We visit each page in the sample set 30 times for both the
renderer and the host process, to record traces of event-
delays during the loading phase.

The event-delay traces for the renderer process con-
sist of 200.000 data items each. On our testing machine,
the measurement resolution (i.e. the delay between two
subsequent measurement events on an otherwise empty
loop) lies at approximately 25 µs. That is, each trace
captures around 5 seconds (200.000·25 µs = 5 s) of the
loading process of a page in the sample set.

The event-delay traces for the host process consist of
100.000 data items each. The measurement resolution
lies in the range of 80− 100 µs, i.e. each trace captures
around 9s of the loading process of a page.

We automate the harvesting procedure for the renderer
process as follows:

1. Open a new tab via
target = window.open(URL, ’_blank’); 2

2. Monitor the event loop until the trace buffer is full
3. Close the tab
4. Send the trace to the server
5. Wait 5 seconds and go to 1 with next URL

The harvesting procedure for the host process differs
only in that we use the rel="noopener" attribute in or-
der to spawn a new renderer.

We conducted measurements on the following three
machines:

1. Debian 8.6 with kernel 3.16.0-4-amd64, running on
an Intel i5 @ 3.30GHz x 4 with 4 GB of RAM, and
Chromium v53;

2. Debian 8.7 with kernel 3.16.0-4-amd64, running on
an Intel i5-6500 @ 3.20GHz x 4 with 16 GB of
RAM, and Chromium v57; and

3. OSX running on a Macbook Pro 5.5 with In-
tel Core 2 Duo @ 2.53GHz with 4 GB of RAM,
and Chrome v54.

2Note that this requires disabling Chrome’s popup blocker from
“chrome://settings/content”.

We measure the timing on a Chrome instance with two
tabs, one for the spy process and the other for the target
page. For the renderer process, we gather data on all
machines; for the host process on (2) and (3). Overall,
we thus obtain five corpora of 15.000 traces each.

4.1.3 Classification

Event Delay Histograms. Our first approach is to
cluster the observed event delays around k centers, and
to transform each trace into a histogram that represents
the number of events that fall into each of the k classes.
We then use the Euclidean distance as a similarity mea-
sure on the k-dimensional signatures.

This approach is inspired by the notion of memprints
in [21]. It appears to be suitable for classifying event-
delay traces obtained from event loops because, for ex-
ample, static pages with few external resources are more
likely to produce long events at the beginning and stabi-
lize soon, whereas pages with Javascript resources and
animations are likely to lead to more irregular patterns
and produce a larger number of long delays. Unfortu-
nately, our experimental results were discouraging, with
less than a 15% of recognition rate in small datasets.

Dynamic Time Warping. Our second approach is
to maintain temporal information about the observed
events. However, the exact moments at which events
occur are prone to environmental noise. For example,
network delays will influence the duration of network
requests and therefore the arrival of events to the event
loop. Instead, we focus on the relative ordering of events
as a more robust feature for page identification.

This motivates the use of dynamic time warping
(DTW) [7] as a similarity measure on event-delay traces.
DTW is widely used for classifying time series, i.e. se-
quences of data points taken at successive and equally
spaced points in time. DTW represents a notion of dis-
tance that considers as “close” time-dependent data of
similar shape but different speed, i.e. DTW is robust to
horizontal compressions and stretches. This is useful,
for example, when one is willing to assign a low distance
score to the time series “abc“ and “abbbbc‘, insensitive
to the prolonged duration of “b“. Formally, DTW com-
pares two time series: a query, X = (x1, ...,xn), and a ref-
erence, Y = (y1, ...,ym). For that we use a non-negative
distance function f (xi,yi) defined between any pair of el-
ements xi and y j. The goal of DTW is to find a matching
of points in X with points in Y , such that (1) every point
is matched, (2) the relative ordering of points in each se-
quence is preserved (monotonicity), (3) and the cummu-
lative distance (i.e. the sum of the values of f) over all
matching points is minimized. This matching is called a

USENIX Association 26th USENIX Security Symposium 855

warping path, and the corresponding distance is the time
warping distance d(X ,Y).

Figure 4: The path in the upper right square represents
the optimal alignment between points in the time se-
ries corresponding to ’google.com’ (horizontal axis) with
points in the time series of ’youtube.com’ (vertical axis).

Figure 4 visualizes a warping path between the
time series corresponding to event-delay traces observed
while loading different webpages.

4.1.4 Speed-up Techniques

Unfortunately, the time required for computing d(X ,Y)
is quadratic in the length of the input sequences and does
not scale up to the raw data obtained in our measure-
ments. We rely on two kinds of speed-up techniques,
one at the level of the data and the other at the level of
the algorithm:

At the level of data, we reduce the dimension of our
data by applying a basic sampling algorithm: We split
the raw trace into groups of measurements corresponding
to time intervals of duration P, and replace each of those
groups by one representative. This representative can be
computed by summing over the group, or by taking its
average, maximum or minimum. The sum function gen-
erally yields the best results among different sampling
functions and is the one that we use onwards. Sampling
reduces the size of the traces by a factor of P/t, where t
is the average duration of an event delay. Figure 5 shows
two plots with the raw data taken from a renderer’s main
thread loop, and its corresponding time series obtained
after sampling.

At the algorithmic level, we use two sets of tech-
niques for pruning the search for the optimal warping
path, namely windowing and step patterns [15].

Figure 5: The top figure represents a raw trace of 200.000
time measurements from the renderer’s main thread ex-
tracted while loading “google.com”. The bottom figure
displays the same data after being converted into a time
series with P = 20 ms, i.e. using only 250 data points.
The difference in the height of the peaks is due to the ac-
cumulation of small events in the raw data, which are not
perceptible in the top figure.

• Windowing is a heuristic that enforces a global con-
straint on the envelope of the warping path. It speeds
up DTW but will not find optimal warping paths that lie
outside of the envelope. Two well-established constraint
regions are the Sakoe-Chiba band and the Itakura paral-
lelogram, see Figure 6.

(a) (b)

Figure 6: A global window constraint defines an enve-
lope limiting the search space for optimal warping paths:
(a) Itakura parallelogram, and (b) Sakoe-Chiba band.

• Step patterns are a heuristic that puts a local con-
straint on the search for a warping path, in terms of re-
strictions on its slope. In particular, we rely on three
well-known step patterns available in R. Intuitively, the
symmetric1 pattern favors progress close to the diagonal,
the symmetric2 pattern allows for arbitrary compressions
and expansions, and the asymmetric forces each point in
the reference to be used only once.

856 26th USENIX Security Symposium USENIX Association

0%

25%

50%

75%

100%

1 5 10 30 50 100
WindowSize

Sakoechiba - symmetric1

0%

25%

50%

75%

100%

1 5 10 30 50 100
WindowSize

Sakoechiba - asymmetric

0%

25%

50%

75%

100%

1

WindowSize

Itakura - symmetric1

5

10

20

50

4s

2s

1s

P

TraceDuration

Figure 7: Web page identification performance after tuning with traces from the renderer on Linux machine (1). Effect
of P, traceDuration, and windowSize, with three combinations of stepPattern and windowType.

4.1.5 Parameter tuning

The possible configurations of the techniques presented
in Section 4.1.4 create a large parameter space, see Ta-
ble 1 for a summary.

Parameter Values Description
traceDuration 1000,2000,4000 Trace duration (ms)
P 5,10,20,50 Sampling interval (ms)
windowType itakura, sakoechiba Window constraint
windowSize 1,5,10,30,50,100 Window size

stepPattern
symmetric1, symmetric2,

asymmetric Step pattern

Table 1: List of parameters tuned for optimizing web
page identification

We systematically identify the optimal parameter con-
figuration for each event loop on each machine. To avoid
overfitting, we divide our dataset of 30 traces (per page,
loop, and machine) into 15 traces for tuning and 15 for
cross-validation. For each parameter configuration we
perform a lightweight version (with 3 rounds) of the eval-
uation phase described in Section 4.1.6. Figure 7 visual-
izes an extract of the results we obtain for the renderer
process of the Linux (1) machine. The tuning phase
yields the following insights:

• The optimal parameters depend on the loop but ap-
pear to be stable across machines.

• Measuring the loading phase during 2 seconds is
sufficient for recognition of a webpage; the gain in recog-
nition from using longer traces is negligible.

• P and windowSize are the parameters with the
biggest impact on the recognition rate. However, they
also have the biggest impact on the computational cost
(the optimal choice being most expensive one).

• The combination of stepPattern = symmetric1 and
windowType = sakoechiba generally yields the best re-
sults.

4.1.6 Experimental Results

We evaluate the performance of page identification
through the shared event loops of host and renderer pro-

cesses on each individual machine, as well as through the
renderer process across two different machines.

To this end, we select the top configuration for each
corpus from the tuning phase and carry out a 10-fold
cross-validation. In each of the 10 rounds, we partition
the validation set into a training set that contains one
trace of each page, and a testing set that contains three
different (out of the 14 available) traces of each page.
For each of the traces in the testing set, we compute the
set of k closest matches in the training set according to
the time warping distance.

We measure performance in terms of the k-match
rate, which is the percentage of pages in the testing set
for which the true match is within the set of k closest
matches. We abbreviate the 1-match rate by recognition
rate, i.e. the percentage of pages where the best match is
the correct one. The result of the cross-validation is the
average k-match rate over all 10 rounds.

Table 2 summarizes our experiments. We highlight the
following results:

k
1 3 5 10

(1
) Renderer 76.7 % 86.7 % 88.8 % 91.1 %

sym1,sakoe,P = 5,windowSize = 100

(2
)

Renderer 58.2 % 68.6 % 71.8 % 75.1 %
sym1,sakoe,P = 5,windowSize = 100

I/O host 16.2 % 23.2 % 27.9 % 36.1 %
sym1,sakoe,P = 20,windowSize = 30

(3
)

Renderer 61.8 % 74.5 % 78.4 % 83.1 %
sym1,sakoe,P = 5,windowSize = 100

I/O host 23.48 % 32.9 % 38.1 % 46.6 %
sym1,sakoe,P = 20,windowSize = 30

Table 2: 10-fold cross-validation results on different ma-
chines and different event loops, with the best config-
uration after tuning. Machines (1) and (2) refer to the
Linux desktops, (3) to the OSX laptop, as described in
Section 4.1.2.

• We can correctly identify a page by spying on the
renderer from (1) in up to 76.7% of the cases, and cor-

USENIX Association 26th USENIX Security Symposium 857

rectly narrow down to a set of 10 candidates in up to
91.1% of the cases.

• We can correctly identify a page though the host
process from (3) in up to 23.48% of the cases, and nar-
row down to a set of 10 candidates in up to 46.6% of the
cases.

• We stress that these recognition rates are obtained
using a single trace for training.

• Recognition is easier through the renderer than
through the host. This is explained by the difference
in noise and measurement resolution, see Section 3.2.3.
Furthermore, most operations on the host only block the
I/O thread while signaling their start and completion,
whereas the renderer is blocked during the entire exe-
cution of each Javascript task.

• We observe different recognition rates on different
machines. However the homogeneity in hardware and
software of Macbooks facilitate reuse of training data
across machines, which may make remote page identi-
fication more feasible.

• We obtain recognition rates below 5% for recog-
nition across machines (1) and (3). A reason for this
poor performance is that events on the OSX laptop of-
ten take 2x-5x more time than on the Linux desktop ma-
chine. This difference is reflected in the height of the
peaks (rather than in their position), which is penalized
by DTW. Normalizing the measurements could improve
cross-machine recognition.

The code and datasets used for tuning and cross-
validation are available as an R library at https://

github.com/cgvwzq/rlang-loophole.

4.1.7 Threats to Validity

We perform our experiments in a closed-world scenario
with only 2 tabs (the spy and the victim) sharing an event
loop. In real world scenarios there can be more pages
concurrently running the browser, which will make de-
tection harder. The worst case for monitoring the host
process occurs when a tab performs streaming, since the
loop gets completely flooded. The renderer’s loop, how-
ever, is in general more robust to noise caused by other
tabs in the browser.

On the other hand, our attacks do not make any use of
the pages’ source code or of details of Chrome’s schedul-
ing system with priority queues, the GC with periodic
scavenges, or the frame rendering tasks. We believe that
taking into account this information can significantly im-
prove an adversary’s eavesdropping capabilities and en-
able attacks even in noisy, open-world scenarios.

4.2 Detecting User Behavior

In this section we show that it is possible to detect user
actions performed in a cross-origin tab or iframe, when
the renderer process is shared. We first describe an attack
recovering the inter-keystroke timing information against
Google’s OAuth login forms, which provides higher pre-
cision than existing network-based attacks [32].

4.2.1 Inter-keystroke Timing Attack on Google’s
OAuth login form

Many web applications use the OAuth protocol for user
authentication. OAuth allows users to login using their
identity with trusted providers, such as Google, Face-
book, Twitter, or Github. On the browser, this process
is commonly implemented as follows:

1. A web application A pops up the login form of a
trusted provider T;

2. User V types their (name and) password and sub-
mits the form to T;

3. T generates an authorization token.
Because the window of the login form shares the event

loop with the opener’s renderer, a malicious A can eaves-
drop on the keystroke events issued by the login form.

19780.000 19785.000 19790.000 19795.000 19800.000 19805.000
0.02

0.04

0.06

0.10

0.20

0.40

1.00

2.00

4.00

10.00

Figure 8: Delay pattern generated by a keystroke in the
Google OAuth login form, measured across origins on
Chrome Canary v61 on OSX. The two consecutive de-
lays of approx. 2ms each, correspond to keydown and
keypress event listeners.

Figure 8 depicts the event-delay trace of a keystroke
as seen by an eavesdropper on the renderer’s event loop.
The trace contains two characteristic consecutive delays,
caused by the keydown and keypress event listeners. We
use this observation to identify keystrokes, by scanning
the event-delay trace for pairs of consecutive delays that
are within a pre-defined range, forgoing any training or
offline work. Listing 4 contains the script that performs
this operation. We define 0.4 ms as a lower bound, and
3.0 ms as an upper bound for the range. We chose this
threshold before gathering the data, by manual inspection
of a few keystroke events. Note that this calibration could
be done automatically, based on the victim’s interactions
with a page controlled by an attacker.

858 26th USENIX Security Symposium USENIX Association

https://github.com/cgvwzq/rlang-loophole
https://github.com/cgvwzq/rlang-loophole

1 const L = 0.4, U = 3.0, keys = []

2
3 for(let i=1; i<trace.length -1; i++){

4 let d1 = trace[i] - trace[i-1],

5 d2 = trace[i+1] - trace[i]

6
7 if (L<d1<U && L<d1<U){

8 keys.push(trace[i])

9 }

10 }

Listing 4: Pseudo-Javascript code to detect
keystrokes in a trace of timestamps gathered by
the code in Listing 1. We classify a timestamp as
a keystroke if the differences to the previous and
subsequent timestamps (d1 and d2) are both in a
predefined range.

4.2.2 Experimental Evaluation

To evaluate the effectiveness of this attack, we have
implemented a malicious application A that extracts
the inter-keystroke timing information from a user V
logging-in via Google’s OAuth. The focus of our evalu-
ation is to determine the accuracy with which keystroke
timings can be measured through the event loop. A full
keystroke recovery attack is out of scope of this paper;
for this refer to [32].

Figure 9: Experimental setup for evaluating effectiveness
of automatic, cross-renderer keystroke detection.

We simulate an inter-keystroke timing attack in 4
steps, which are described below and illustrated in Fig-
ure 9.

1. A Selenium3 script acting as V navigates to A, clicks
on the login button (which pops up Google’s OAuth
login form), types a password, and submits the
form.

2. Meanwhile, the attacker A monitors the main
thread’s event loop using the attack described in
Section 4.2.1.

3Selenium (http://www.seleniumhq.org/) is a cross-platform
testing framework for web applications that provides capabilities for
programmatically navigating to web pages and producing user input.

3. V and A send to the server the timestamps of the
real and the detected keystrokes, respectively.

4. We compute the accuracy of the detected
keystrokes, where we take the timestamps of
the real keystrokes as ground truth. Matching the
timestamps requires taking into account the delay
(6 − 12 ms on our machine) between Selenium
triggering an event, and Chrome receiving it.

We use as inter-keystroke timings random delays uni-
formly drawn from 100−300 ms. This choice is inspired
by [20], who report on an average inter-keystroke delay
of 208 ms. Using random delays is sufficient for evalu-
ating the accuracy of eavesdropping on keystrokes, but
it obviously does not reveal any information about the
password besides its length.

4.2.3 Experimental Results

We perform experiments with 10.000 passwords ex-
tracted from the RockYou dataset, where we obtain the
following results:

• In 91.5% of the cases, our attack correctly identifies
the length of a password. 4 In 2.2% of the cases, the
attack misses one or more characters, and in 6.3%
of the cases it reports spurious characters.

• For the passwords whose length was correctly iden-
tified, the average time difference between a true
keystroke and a detected keystroke event is 6.3ms,
which we attribute mostly to the influence of Se-
lenium. This influence cancels out when we com-
pute the average difference between a true inter-
keystroke delay and a detected inter-keystroke de-
lay, which amounts to 1.4 ms. The noise of these
measurements is low: We observe a standard devia-
tion of 6.1 ms, whereas the authors of [20] report on
48.1 ms for their network based measurements.

Overall, our results demonstrate that shared event
loops in Chrome enable much more precise recovery of
keystroke timings than network-based attacks. More-
over, this scenario facilitates to identify the time when
keystroke events enter the loop (from popping-up to form
submission), which is considered to be a major obstacle
for inter-keystroke timing attacks on network traffic [20].

Keystroke timing attacks based on monitoring
procfs [38] or CPU caches [18] can extract more fine-
grained information about keystrokes, such as contain-
ment in a specific subsets of keys. However, they require
filesystem access or are more susceptible to noise, due
to the resource being shared among all processes in the
system. In contrast, our attack enables targeted eaves-
dropping without specific privileges.

4We configured Selenium to atomically inject characters that would
require multiple keys to be pressed.

USENIX Association 26th USENIX Security Symposium 859

http://www.seleniumhq.org/

4.2.4 Open Challenges for Recognizing User Events

We conclude by discussing two open challenges for
recognizing user events, namely the detection of user
events beyond keystrokes and the detection of events in
the browser’s host process.

Detecting User Events beyond Keystrokes A contin-
uous mouse movement results in a sequence of events,
each of which carrying information about the coordinates
of the cursor’s trajectory. These events are issued with an
inter-event delay of 8 ms, and the (empty) event listener
operation blocks the loop for approx 0.1 ms. The partic-
ular frequency and duration of these events makes mouse
movements (or similar actions, like scrolling) easy to
spot with LoopScan, as seen in Figure 10.

Figure 10: Mouse movement captured by LoopScan tool.
The graph shows 3 delays of 0.1 ms duration (at t equals
3350, 3358 and 3366), with an inter-event delay of 8 ms.

Likewise, mouse click events, corresponding to “up”
or “down”, can be identified using LoopScan. Their
shape depends on the specific event listener of the spied
web page and the HTML element being clicked. We ex-
pect that events with specific listeners are more easily
detectable than events without registered event listeners,
that is, user actions that do not trigger Javascript exe-
cution. However, we can use the context in which the
event occurs to reduce the search space. For instance,
most mouse clicks only appear between two sequences
of mouse movement events.

We are currently investigating techniques that enable
the automatic identification of such patterns in event-
delay streams. A promising starting point for this are
existing on-line variants of dynamic time-warping [31].

Detecting User Events in the Host Process Our dis-
cussion so far has centered on detecting user events in
the event loop of the renderer process. However, all user
events originate in the main thread of the host process
and are sent towards a specific renderer through the event
loop of the host’s I/O thread. Hence, any user action can
in principle be detected by spying on the host.

Unfortunately, our current methods are not precise
enough for this task, since the host’s I/O thread is more
noisy than the renderer’s main thread and the effect of a
user action on the host process is limited to a short sig-
naling message, whereas the renderer’s main thread is

affected by the execution of the corresponding Javascript
event listener.

4.3 Covert Channel
In this section we show how shared event loops in
Chrome can be abused for implementing covert chan-
nels, i.e. channels for illicit communication across ori-
gins. We first consider the case of cross-origin pages
sharing the event loop of a renderer’s main thread be-
fore we turn to the case of cross-origin pages sharing the
event loop of the host processes’ I/O thread.

4.3.1 Renderer Process

We implement a communication channel to transmit
messages from a sender page S to a cross-origin receiver
page R running in the same renderer process.

For this, we use a simple, unidirectional transmission
scheme without error correction. Specifically, we encode
each bit using a time interval of fixed duration tb. The op-
timal configuration of tb depends on the system. In our
experiments we tried different values, with tb = 5 ms giv-
ing good results on different platforms: Chromium 52.0
on Debian 64-bit and Chrome 53 on OSX.

In each of those intervals we do the following:
• the sender S idles for transmitting a 0; it executes a

blocking task of duration t̂ < tb for transmitting a 1.
• the receiver R monitors the event loop of the ren-

derer’s main thread using the techniques described
in Section 3.1; it decodes a 0 if the length of the ob-
served tasks is below a threshold (related to t̂), and
a 1 otherwise.

Transmission starts with S sending a 1, which is used by
the agents to synchronize their clocks and start count-
ing time intervals. Transmission ends with S sending a
null byte. With this basic scheme we achieve rates of
200 bit/s. These numbers can likely be significantly
improved by using more sophisticated coding schemes
with error correction mechanisms; here, we are only in-
terested in the proof-of-concept.

We note that there are a number of alternative
covert channels for transmitting information between
pages running in the same renderer [1], e.g., us-
ing window.name, location.hash, history.length,
scrollbar’s position or window.frames.length. What
distinguishes the event-loop based channel is that it does
not require the sender and receiver to be connected, i.e.
they do not need to hold references to each other in order
to communicate.

4.3.2 Host Process

We also implement a communication channel to transmit
messages between two cooperative renderer processes

860 26th USENIX Security Symposium USENIX Association

sharing the host process. Transmission is unidirectional
from sender S to receiver R. Figure 11 visualizes how this
channel can be used, even if one of the parties browses
in Incognito mode.

Figure 11: Covert channel through the I/O event loop
of the Chrome’s host process. Tabs in different renderer
processes (one of them navigating in Incognito mode)
communicate.

As before, we encode each bit using a time intervals
of fixed duration tb. During each intervals we do the fol-
lowing:

• the sender S idles for transmitting a 0; it posts N
fetch requests into the I/O thread’s queue for send-
ing a 1.

• the receiver R monitors the event loop of the I/O
thread of the host process using the techniques de-
scribed in Section 3.2. It decodes a 0 if the number
of observed events during time interval tb is below
a threshold, and 1 otherwise.

The optimal values of N and tb highly depend on the ma-
chine. In our experiments we achieve good results, work-
ing on different systems, with a tb = 200 ms and N = 350,
which give us a 5 bit/s transmission rate. This rate is sig-
nificantly lower than for communication using the ren-
derer event loop, which is explained by the difference in
noise and monitoring resolution of both channels, as dis-
cussed in Section 3.2.3.

The threat scenario of this covert channel is more
relevant than the previous one for the renderer loop.
For example it could be used for exfiltrating informa-
tion from an attacked domain (on a tab executing mali-
cious Javascript). Using Workers (which are background
threads that run independently of the user interface) we
can transfer information across origins, without affect-
ing the user experience and without generating network
traffic.

5 Discussion

We have shown how sharing event loops leads to timing
side-channels and presented different attacks on Chrome.
We communicated our findings to the Chromium security
team, who decided not to take action for the time being.
Nevertheless, our results point to fundamental security
issues in the event-driven architecture of browsers that
eventually need to be addressed in a fundamental man-
ner. Below, we discuss how other platforms are affected
and present possible countermeasures.

5.1 Beyond Chrome
We focus on Chrome in our analysis because it is the
most widely used browser, and because it was the first
one to implement a multi-process architecture. However,
there are good reasons to expect similar side channels in
other browsers, as they all follow the same event-driven
paradigm and rely on similar architectures.

For instance, recent Firefox versions with multi-
process support5 also rely on a privileged browser pro-
cess and multiple content processes that, unlike render-
ers in Chrome, act as a pool of threads for each different
origin (each with its own message queue). Despite this
difference, tests with LoopScan on Firefox version 55
show that congestion on both event loops is observable
across origins and tabs.

Specifically, we applied the monitoring technique for
the renderers described in Section 3.1.2 on a micro-
benchmark with a set of 30 pages with 15 traces each.
We achieved a recognition rate of 49%, which is be-
low the recognition rate achieved on Chrome for a set of
500 pages. A fair comparison between both architectures
will require a better understanding of Firefox’s policy for
mapping sites to threads and events to loops.

5.2 Countermeasures
The attacks presented in this paper rely on two capabili-
ties of the adversary: (1) the ability to post tasks into the
loop’s queue with high frequency, and (2) the ability to
accurately measure the corresponding time differences.

Rate Limiting. An obvious approach to counter (1)
is to impose a limit on the rate at which tasks can be
posted into an event loop. Unfortunately, rate limiting
implies penalties on performance, which is especially
problematic for asynchronous code.

At the level of the renderer, one possibility is to rely
on an accumulate and serve policy [22]. With this pol-
icy, the event loop accumulates all the incoming jobs

5Firefox’s Electrolysis (or e10s) project

USENIX Association 26th USENIX Security Symposium 861

in a buffer for a period T , and then process and serves
all the accumulated jobs from party A, followed by all
the jobs from V . This has the advantage of limiting the
amount of information leaked while retaining high amor-
tized throughput.

At the level of the host process, where resource fetch-
ing is one of the main performance concerns, setting any
bound on the processing rate is not acceptable. Here, it
seems more reasonable to monitor the IPC activity of all
renderers and penalize or flag those who exhibit a bad or
anomalous behavior, e.g., along the lines of [39].

Reduce Clock Resolution. An obvious approach to
counter (2) is to limit the resolution of available clocks.
This has already been applied by browser vendors for
mitigating other kinds timing channels, but these ef-
forts are unlikely to succeed, as shown in [23]: Modern
browsers have a considerable number of methods to mea-
sure time without any explicit clock. For instance, some
recent exploits [16] use high-resolution timers build on
top of SharedArrayBuffers. The current resolution of
performance.now is limited to 5 µs, which makes mi-
croarchitectural timing attacks difficult, but does not pre-
clude the detection of Javascript events.

Full Isolation. As discussed in Section 2.2, Chrome’s
multi-process architecture tries to use a different ren-
derer for different origins, except for some corner
cases. The “Site Isolation Project” is an ongoing ef-
fort to ensure a complete process-per-site-instance pol-
icy, that means: providing cross-process navigations,
cross-process Javascript interactions and out-of-process
iframes. All this without inducing too much overhead.

One open question is how to handle the system’s pro-
cess limit, namely which sites should have isolation pref-
erence, or which heuristic for process reuse should be
used. A recent proposal, “IsolateMe” [4], puts the devel-
opers in charge of requesting to be isolated from other
web content (even if it does not provide a firm guaran-
tee).

CPU Throttling. Chrome v55 introduces an API that
allows to limit how much CPU a background page is
allowed to use, and to throttle tasks when they exceed
this limit. This affects background tabs trying to spy
on the renderer’s main thread, but still allows spying
on (and from) any iframe and popup, as well as on the
I/O thread of the host process through shared Workers.
Moreover, background tabs with audio activity are not
affected, as they are always marked as foreground. Since
Chrome v57 pages (or tabs) are only subjected to throt-
tling after 10 seconds in the background, which is too
long to prevent the attacks in this paper.

6 Related Work

Timing attacks on web browsers date back to Felten and
Schneider [13], who use the browser cache to obtain in-
formation about a user’s browsing history.

More recently, so-called cross-site timing attacks [10,
35] have exploited the fact that the browser attaches
cookies to all requests, even when they are performed
across origins. The presence or absence of these cookies
can be determined by timing measurements, which re-
veals information about the user’s state on arbitrary sites.
A special case are cross-site search attacks [14], which
circumvent the same-origin policy to extract sensitive in-
formation, by measuring the time it takes for the browser
to receive responses to search queries.

Other classes of browser-based timing attacks exploit
timing differences in rendering operations [24, 33, 5], or
simply use the browser as an entry point for Javascript
that exploits timing channels of underlying hardware, for
example caches [26, 16], DRAM buffers [17], or CPU
contention [9].

Of those approaches, [9] is related to our work in
that it identifies web pages across browser tabs, based on
timing of Javascript and a classifier using dynamic time
warping. However, because the attack relies on CPU
contention as a channel, it requires putting heavy load on
all cores for monitoring. In contrast, our attack exploits
the browser’s event loop as a channel, which can be mon-
itored by enqueing one event at a time. This makes our
attack stealthy and more independent of the execution
platform.

To the best of our knowledge, we are first to mount
side-channel attacks that exploit the event-driven archi-
tecture of web browsers. Our work is inspired by a proof-
of-concept attack [36] that steals a secret from a cross-
origin web application by using the single-threadedness
of Javascript. We identify Chrome’s event-driven archi-
tecture as the root cause of this attack, and we show
how this observation generalizes, in three different at-
tacks against two different event loops in Chrome.

Finally, a central difference between classical site fin-
gerprinting [28, 19, 34, 12] approaches and our page
identification attack is the adversary model: First, our ad-
versary only requires its page to be opened in the victim’s
browser. Second, instead of traffic patterns in the vic-
tim’s network, our adversary observes only time delays
in the event queues of the victim’s browser. We believe
that our preliminary results, with up to 76% of recogni-
tion rate using one single sample for training in a closed-
world with 500 pages, can be significantly improved by
developing domain-specific classification techniques.

862 26th USENIX Security Symposium USENIX Association

7 Conclusions

In this paper we demonstrate that shared event loops in
Chrome are vulnerable to side-channel attacks, where a
spy process monitors the loop usage pattern of other pro-
cesses by enqueueing tasks and measuring the time it
takes for them to be dispatched. We systematically study
how this channel can be used for different purposes, such
as web page identification, user behavior detection, and
covert communication.

Acknowledgments We thank Thorsten Holz, Andreas
Rossberg, Carmela Troncoso, and the anonymous re-
viewers for their helpful comments. We thank Javier Pri-
eto for his help with the data analysis. This work was
supported by Ramón y Cajal grant RYC-2014-16766,
Spanish projects TIN2012-39391-C04-01 StrongSoft
and TIN2015-70713-R DEDETIS, and Madrid regional
project S2013/ICE-2731 N-GREENS.

References
[1] Covert channels in the sop. https://github.com/cgvwzq/

sop-covert-channels. Accessed: 2017-02-16.

[2] HTML Living Standard. https://html.spec.whatwg.org/.
Accessed: 2017-05-24.

[3] Understanding about:tracing results. https:

//www.chromium.org/developers/how-tos/

trace-event-profiling-tool/trace-event-reading.
Accessed: 2017-02-16.

[4] Isolation explainer. https://wicg.github.io/isolation/

explainer.html, 2016. Accessed: 2017-05-24.

[5] ANDRYSCO, M., KOHLBRENNER, D., MOWERY, K., JHALA,
R., LERNER, S., AND SHACHAM, H. On subnormal floating
point and abnormal timing. In SSP (2015), IEEE.

[6] BARTH, A., JACKSON, C., REIS, C., TEAM, T., ET AL. The
security architecture of the chromium browser. http://www.

adambarth.com/papers/2008/barthjackson-reis.pdf,
2008.

[7] BERNDT, D. J., AND CLIFFORD, J. Using dynamic time warping
to find patterns in time series. In KDD workshop (1994), AAAI
Press.

[8] BERNSTEIN, D. Cache-timing attacks on AES. https://cr.

yp.to/antiforgery/cachetiming-20050414.pdf, 2005.

[9] BOOTH, J. M. Not so incognito: Exploiting resource-based side
channels in javascript engines. http://nrs.harvard.edu/

urn-3:HUL.InstRepos:17417578, 2015.

[10] BORTZ, A., AND BONEH, D. Exposing private information by
timing web applications. In WWW (2007), ACM.

[11] BOSMAN, E., RAZAVI, K., BOS, H., AND GIUFFRIDA, C.
Dedup Est Machina: Memory Deduplication as an Advanced Ex-
ploitation Vector. In SSP (2016), IEEE.

[12] DYER, K. P., COULL, S. E., RISTENPART, T., AND SHRIMP-
TON, T. Peek-a-Boo, I Still See You: Why Efficient Traffic Anal-
ysis Countermeasures Fail. In SSP (2012), IEEE.

[13] FELTEN, E. W., AND SCHNEIDER, M. A. Timing attacks on
web privacy. In CCS (2000), ACM.

[14] GELERNTER, N., AND HERZBERG, A. Cross-Site Search At-
tacks. In CCS (2015), ACM.

[15] GIORGINO, T. Computing and visualizing dynamic time warping
alignments in r: The dtw package. JSS 31, 7 (2009), 1–24.

[16] GRAS, B., RAZAVI, K., BOSMAN, E., BOS, H., AND GIUF-
FRIDA, C. ASLR on the Line: Practical Cache Attacks on the
MMU. In NDSS (2017), The Internet Society.

[17] GRUSS, D., MAURICE, C., AND MANGARD, S. Rowhammer.js:
A remote software-induced fault attack in javascript. In DIMVA
(2016), Springer.

[18] GRUSS, D., SPREITZER, R., AND MANGARD, S. Cache tem-
plate attacks: Automating attacks on inclusive last-level caches.
In USENIX Security (2015), USENIX Association.

[19] HAYES, J., AND DANEZIS, G. k-fingerprinting: A Robust Scal-
able Website Fingerprinting Technique. In USENIX Security
(2016), USENIX Association.

[20] HOGYE, M. A., HUGHES, C. T., SARFATY, J. M., AND WOLF,
J. D. Analysis of the feasibility of keystroke timing attacks over
ssh connections. http://www.cs.virginia.edu/~evans/

cs588-fall2001/projects/reports/team4.pdf, 2001.

[21] JANA, S., AND SHMATIKOV, V. Memento: Learning secrets
from process footprints. In SSP (2012), IEEE.

[22] KADLOOR, S., KIYAVASH, N., AND VENKITASUBRAMA-
NIAM, P. Mitigating timing side channel in shared schedulers.
IEEE/ACM Trans. Netw. 24, 3 (2016), 1562–1573.

[23] KOHLBRENNER, D., AND SHACHAM, H. Trusted Browsers for
Uncertain Times. In USENIX Security (2016), USENIX Associ-
ation.

[24] KOTCHER, R., PEI, Y., JUMDE, P., AND JACKSON, C. Cross-
origin pixel stealing: timing attacks using CSS filters. In CCS
(2013), ACM.

[25] LAMPSON, B. W. A note on the confinement problem. Commu-
nications of the ACM 16, 10 (1973), 613–615.

[26] OREN, Y., KEMERLIS, V. P., SETHUMADHAVAN, S., AND
KEROMYTIS, A. D. The Spy in the Sandbox: Practical Cache
Attacks in JavaScript and Their Implications. In CCS (2015),
ACM.

[27] OSVIK, D. A., SHAMIR, A., AND TROMER, E. Cache at-
tacks and countermeasures: the case of AES. In CT-RSA (2006),
Springer.

[28] PANCHENKO, A., LANZE, F., PENNEKAMP, J., ENGEL, T.,
ZINNEN, A., HENZE, M., AND WEHRLE, K. Website finger-
printing at internet scale. In NDSS (2016), The Internet Society.

[29] PEDERSEN, M. V., AND ASKAROV, A. From Trash to Treasure:
Timing-sensitive Garbage Collection. In SSP (2017), IEEE.

[30] REIS, C., AND GRIBBLE, S. D. Isolating web programs in mod-
ern browser architectures. In EuroSys (2009), ACM.

[31] SAKURAI, Y., FALOUTSOS, C., AND YAMAMURO, M. Stream
monitoring under the time warping distance. In ICDE (2007),
IEEE.

[32] SONG, D. X., WAGNER, D., AND TIAN, X. Timing Analysis
of Keystrokes and Timing Attacks on SSH. In USENIX Security
(2001), USENIX Association.

[33] STONE, P. Pixel perfect timing attacks with html5
(white paper). https://www.contextis.com/documents/

2/Browser_Timing_Attacks.pdf, 2013.

[34] SUN, Q., SIMON, D. R., WANG, Y.-M., RUSSELL, W., PAD-
MANABHAN, V. N., AND QIU, L. Statistical identification of
encrypted web browsing traffic. In SSP (2002), IEEE.

[35] VAN GOETHEM, T., JOOSEN, W., AND NIKIFORAKIS, N. The
Clock is Still Ticking: Timing Attacks in the Modern Web. In
CCS (2015), ACM.

USENIX Association 26th USENIX Security Symposium 863

https://github.com/cgvwzq/sop-covert-channels
https://github.com/cgvwzq/sop-covert-channels
https://html.spec.whatwg.org/
https://www.chromium.org/developers/how-tos/trace-event-profiling-tool/trace-event-reading
https://www.chromium.org/developers/how-tos/trace-event-profiling-tool/trace-event-reading
https://www.chromium.org/developers/how-tos/trace-event-profiling-tool/trace-event-reading
https://wicg.github.io/isolation/explainer.html
https://wicg.github.io/isolation/explainer.html
http://www.adambarth.com/papers/2008/barthjackson-reis.pdf
http://www.adambarth.com/papers/2008/barthjackson-reis.pdf
https://cr.yp.to/antiforgery/cachetiming-20050414.pdf
https://cr.yp.to/antiforgery/cachetiming-20050414.pdf
http://nrs.harvard.edu/urn-3:HUL.InstRepos:17417578
http://nrs.harvard.edu/urn-3:HUL.InstRepos:17417578
http://www.cs.virginia.edu/~evans/cs588-fall2001/projects/reports/team4.pdf
http://www.cs.virginia.edu/~evans/cs588-fall2001/projects/reports/team4.pdf
https://www.contextis.com/documents/2/Browser_Timing_Attacks.pdf
https://www.contextis.com/documents/2/Browser_Timing_Attacks.pdf

[36] VELA, E. Matryoshka: Timing attacks against javascript applica-
tions in browsers. http://sirdarckcat.blogspot.com.es/
2014/05/matryoshka-web-application-timing.html,
2013.

[37] YAROM, Y., AND FALKNER, K. FLUSH+RELOAD: A high
resolution, low noise, L3 cache side-channel attack. In USENIX
Security Symposium (2014).

[38] ZHANG, K., AND WANG, X. Peeping tom in the neighborhood:
Keystroke eavesdropping on multi-user systems. In USENIX Se-
curity (2009), USENIX Association.

[39] ZHANG, T., ZHANG, Y., AND LEE, R. B. CloudRadar: A Real-
Time Side-Channel Attack Detection System in Clouds. In RAID
(2016), Springer.

864 26th USENIX Security Symposium USENIX Association

http://sirdarckcat.blogspot.com.es/2014/05/matryoshka-web-application-timing.html
http://sirdarckcat.blogspot.com.es/2014/05/matryoshka-web-application-timing.html

	Introduction
	Isolation Policies and Sharing of Event Loops in Chrome
	Same Origin Policy
	Overview of the Chrome Architecture
	Sharing in the Renderer Processes
	Sharing in the Host Process

	Eavesdropping on Event Loops in Chrome
	The Renderer Process Event Loop
	Threat Scenarios
	Monitoring Techniques
	Interferences

	The Host Process Event Loop
	Threat Scenarios
	Monitoring Techniques
	Interferences

	The LoopScan Tool

	Attacks
	Page identification
	Sample Selection
	Data Harvesting
	Classification
	Speed-up Techniques
	Parameter tuning
	Experimental Results
	Threats to Validity

	Detecting User Behavior
	Inter-keystroke Timing Attack on Google's OAuth login form
	Experimental Evaluation
	Experimental Results
	Open Challenges for Recognizing User Events

	Covert Channel
	Renderer Process
	Host Process

	Discussion
	Beyond Chrome
	Countermeasures

	Related Work
	Conclusions

