
This paper is included in the Proceedings of the
26th USENIX Security Symposium
August 16–18, 2017 • Vancouver, BC, Canada

ISBN 978-1-931971-40-9

Open access to the Proceedings of the
26th USENIX Security Symposium

is sponsored by USENIX

Speeding up detection of SHA-1 collision attacks
using unavoidable attack conditions

Marc Stevens, CWI; Daniel Shumow, Microsoft Research

https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/stevens

Speeding up detection of SHA-1 collision attacks
using unavoidable attack conditions

Marc Stevens
CWI Amsterdam

Daniel Shumow
Microsoft Research

Abstract

Counter-cryptanalysis, the concept of using cryptana-
lytic techniques to detect cryptanalytic attacks, was in-
troduced at CRYPTO 2013 [23] with a hash collision
detection algorithm. That is, an algorithm that detects
whether a given single message is part of a colliding mes-
sage pair constructed using a cryptanalytic collision at-
tack on MD5 or SHA-1.

Unfortunately, the original collision detection algo-
rithm is not a low-cost solution as it costs 15 to 224 times
more than a single hash computation. In this paper we
present a significant performance improvement for colli-
sion detection based on the new concept of unavoidable
conditions. Unavoidable conditions are conditions that
are necessary for all feasible attacks in a certain attack
class. As such they can be used to quickly dismiss par-
ticular attack classes that may have been used in the con-
struction of the message. To determine an unavoidable
condition one must rule out any feasible variant attack
where this condition might not be necessary, otherwise
adversaries aware of counter-cryptanalysis could easily
bypass this improved collision detection with a carefully
chosen variant attack. Based on a conjecture solidly sup-
ported by the current state of the art, we show how we
can determine such unavoidable conditions for SHA-1.

We have implemented the improved SHA-1 collision
detection using such unavoidable conditions and which is
more than 20 times faster than without our unavoidable
condition improvements. We have measured that overall
our implemented SHA-1 with collision detection is only
a factor 1.60 slower, on average, than SHA-1. With the
demonstration of a SHA-1 collision, the algorithm pre-
sented here has been deployed by Git, GitHub, Google
Drive, Gmail, Microsoft OneDrive and others, showing
the effectiveness of this technique.

1 Introduction

Cryptographic hash functions, computing a small fixed-
size hash value for a given message of arbitrary length,
are a crucial cryptographic primitive that are used to se-
cure countless systems and applications. A key crypto-
graphic requirement is that it should be computationally
infeasible to find collisions: two distinct messages with
the same hash value. Industry’s previous de facto choices
MD5 and SHA-1 are both based on the Merkle-Damgård
construction [18, 6] that iterates a compression function
that updates a fixed-size internal state called the chaining
value (CV) with fixed-size pieces of the input message.

In 2004, MD5 was completely broken and real col-
lisions were presented by Wang et al.[33, 35]. Their
collision attack consisted of two so-called near-collision
attacks on MD5’s compression function where the first
introduces a difference in the chaining value and the
second eliminates this difference again. Hence, these
so-called identical-prefix collisions had a limitation that
the two colliding messages need to be identical before
and after these near-collision blocks. In 2007 Stevens
et al.[27] introduced chosen-prefix collisions for MD5
that allowed arbitrary different prefixes. Irrefutable proof
that hash function collisions indeed form a realistic and
significant threat to Internet security was presented at
CRYPTO 2009 by Stevens et al. [29] by demonstrating a
certificate authority that could issue two Certs with dif-
ferent keys that have the same hash value.

More proof of the threat posed by collision attacks ap-
peared in 2012 when it became clear that not only aca-
demic efforts have been spent on breaking hash func-
tions. Nation-state actors [20, 14, 13] have been linked
to the highly advanced espionage malware, so named
Flame, that was found targeting the Middle-East in May
2012. As it turned out, it used a forged signature to craft
malicious windows updates.

Despite the common knowledge that MD5 is insecure
for digital signatures effectively since 2004, even in 2017

USENIX Association 26th USENIX Security Symposium 881

there are still Industry issues in deprecating MD5 for sig-
natures [10]. SHA-1, designed by NSA and standardized
by NIST [19], is also weak and was theoretically broken
in 2005 with a collision attack with an estimated com-
plexity of 269 SHA-1 calls presented by Wang et al.[34].
With real collisions for full SHA-1 out of reach at that
time, there were efforts at producing collisions for re-
duced versions of SHA-1: 64 steps [3] (with a cost of 235

SHA-1 calls), 70 steps [2] (cost 244 SHA-1), 73 steps [8]
(cost 250.7 SHA-1), the last being 75 steps [9] (cost 257.7

SHA-1) in 2011. The cost of collisions for SHA-1 was
improved to 261 SHA-1 calls at EUROCRYPT 2013 [24],
together with a near-collision attack with cost 257.5 and
a chosen-prefix collision attack with cost 277.1 SHA-1
calls, which remains the current state-of-the-art. Other
recent efforts focused on finding freestart collisions for
SHA-1, i.e., collisions for its compression function, with
a 76-step freestart collision [12] (cost 250 SHA-1) and
more recently a freestart collision for full SHA-1 [26].
Despite various efforts, an actual collision for SHA-1 re-
mained out of reach for 11 years, but this year a SHA-1
collision was finally announced by Stevens et al.[25].
This shows that SHA-1 collision attacks have finally be-
come practical. Furthermore, they provided several ex-
amples of PDF file pairs that have the same SHA-1 hash,
yet show distinct visual contents.

At CRYPTO 2013 the novel concept counter-
cryptanalysis of using cryptanalytic techniques to detect
cryptanalytic attacks was introduced in the form of a hash
collision detection algorithm [23]. This hash collision
detection algorithm is able to expose cryptanalytic col-
lision attacks given only one message from a colliding
message pair. It’s utility was immediately proven by us-
ing it to uncover the yet unknown chosen-prefix collision
attack in Flame’s forged signature, regardless of the fact
that its sibling colliding file remains unknown. More-
over, it even enabled forensic analysis by recovering the
internal differential paths, which were used in a recon-
struction of the attack procedure and complexity [7].

In principle the collision attack detection provides
strong guarantees: it guarantees detection of any variant
collision attack in each tested attack class, whereas the
chance of false positives is as negligible as the chance of
finding a random second preimage. However, so far there
is a significant cost: to detect collision attacks against
SHA-1 (respectively MD5) costs the equivalent of hash-
ing the message 15 (respectively 224) times, detecting
the 15 (respectively 224) best attack classes.

1.1 Motivation

The main motivation of this paper is to provide an ef-
fective manner to reduce the potential harm of SHA-1
collision attacks for the near future as discussed below.

It is not the aim of SHA-1 collision detection to obviate
the need to move to newer hash functions with longer di-
gests. Rather, SHA-1 collision detection is meant to be a
mitigation used for deployed systems that are unable to
migrate to a new hash function. In these cases, an imple-
mentation of SHA-1 with collision detection may be used
as a drop in replacement. Such an update, that requires
only changing the module responsible for hashing, is sig-
nificantly easier than redeploying an entire distributed
system, including revising protocols that currently rely
on SHA-1. Collision detection for SHA-1 attacks is a
thorough stop-gap solution that will provide security to
systems and software that may not be able to migrate to
newer hash functions before SHA-1 collisions become a
viable security threat. The example of the well-known
version control system Git that relies very strongly on
SHA-1 for integrity and even security is very amenable
to such a solution. In fact at the time of writing, Git and
GitHub now use the improved SHA-1 collision detection
of this paper by default. Our improved implementation
is also being used by Google Drive, Gmail and Microsoft
OneDrive.

Based on the latest results for the complexity of find-
ing a SHA-1 collision, the projected cost of such an at-
tack ranges from US$ 75 K and US$ 120 K by renting
low-cost computing resources on Amazon EC2 [22, 26],
which is significantly lower than Schneier’s 2012 es-
timates. These projections resulted in the withdrawal
of CABForum Ballot 152 to extend issuance of SHA-1
based HTTPS certificates, and in the deprecation of
SHA-1 for digital signatures in the IETF’s TLS proto-
col specification version 1.3. The recent SHA-1 collision
paper further confirms these costs [25].

Unfortunately CABForum restrictions on the use of
SHA-1 do not apply on Certification Authority certifi-
cates currently outside their CA program. E.g., it ex-
cludes retracted CA certificates that are still supported
by older systems (and CA certificates have indeed been
retracted to circumvent CABForum regulations and con-
tinue to issue new SHA-1 certificates 1 to serve to these
older systems), and certificates for other TLS applica-
tions including up to 10% of credit card payment sys-
tems [31]. It thus remains in widespread use across the
software industry for, e.g., digital signatures on software,
documents, and many other applications, perhaps most
notably in the widely used Git versioning system.

It is very likely that SHA-1 is heading towards a simi-
lar fate as MD5, risking various security issues for many
years to come. Certainly, the spectacular end of life of
MD5, including a high profile cyberattack on the nation
state level, provided advanced warning of the end of life
of SHA-1. Indeed, the success of cryptanalytic attacks of

1E.g., SHA-1 certificates are still being sold by CloudFlare at the
time of writing: www.cloudflare.com/ssl/dedicated-certificates/.

882 26th USENIX Security Symposium USENIX Association

https://www.cloudflare.com/ssl/dedicated-certificates/

the Merkle-Damgard construction motivated the SHA-3
competition. Not to mention, inspired widespread ef-
forts to migrate deployed software to the longer length
digest hash functions of SHA-2 family. So, one may
challenge the utility of collision detection for the SHA-1
function, which has been known to have an impending
break for some time. However, the Flame attacks show
that long after newer versions of software have been de-
ployed, older versions that rely on older cryptography
may still be in use and provide a vulnerability for attack-
ers. Even with this cautionary tale, as noted above, vari-
ous software and services still issue SHA-1 certificates or
use SHA-1. So even though SHA-1 collisions have been
expected for some time, it has not been sufficient to moti-
vate a complete migration to newer hash functions. Even
if systems are moved from using SHA-1, verification of
signatures of SHA-1 digests may remain necessary for
existing signatures, such as deployed binaries or not yet
expired certificates.

An example is GPG/PGP email and attachment sig-
natures where SHA-1-based signatures remain common.
E.g., Stevens et al.’s colliding PDF document technique
would allow an attacker to have someone sign and email
a carefully crafted benign PDF document with GPG/PGP
using a SHA-1-based signature. That signature would
then also be valid for a malicious PDF document that
was crafted together with the benign PDF document to
make them collide. Also, as previously mentioned, an-
other example of widely a deployed system that relies on
SHA-1 in a fundamental way is Git, which uses SHA-1
as an identifier for commits. It is infeasible that all de-
ployed Git repositories will be migrated off of SHA-1,
but since SHA-1 collisions are now feasible Git might be
at risk. As one potentially scenario, consider an attacker
that has committed one file of a colliding pair2 to a Git
repository under his control, in which case he could then
selectively deliver either contents to targeted users, with-
out the users noticing by looking at Git hashes or verify-
ing signatures on the repository. Although, Git now uses
this SHA-1 collision detection algorithm, so this risk has
been mitigated for updated clients.

1.2 Collision detection
Collision attack detection exploits two key facts-of-life
for feasible cryptanalytic collision attacks on MD5 and
SHA-1. The first is a requirement for a high-probability
differential path, which necessarily includes a section
with no differences (or MSB-differences for MD5) to
achieve the high-probability. The second is the direct
consequence that there only few message block differ-

2As Git adds a header before computing the SHA-1 hash of an ob-
ject, this header should be taken into account while constructing the
SHA-1 collision.

ences that admit such a high-probability differential path.
Extensive studies for message block differences that al-
low high-probability differential paths for both MD5 and
SHA-1 strongly confirm these properties.

Collision detection detects near-collision attacks
against MD5’s or SHA-1’s compression function for
a given message by ‘jumping’ from the current com-
pression function evaluation CVout =Compress(CVin,B)
to a presumed related compression function evaluation
CV ′out = Compress(CV ′in,B

′). If B (and B′) were con-
structed using a collision attack that uses message block
difference δB and trivial difference δWSi at step i then
the presumed related compression function evaluation
can be fully reconstructed. Namely, those differences
directly imply values for message block B′ = B + δB
and state WS′i = WSi + δWSi at step i, which are suffi-
cient to compute the related input chaining value CV ′in
and thereby also the related output chaining value CV ′out .
This reconstruction from the middle of the related com-
pression function evaluation is called a recompression. A
collision attack necessarily requires a final near-collision
attack with CV ′out = CVout , which can be detected in
this manner. If no collision attack was used to con-
struct B then finding CV ′out = CVout means that we have
found a second pre-image for the compression function
by chance. Therefore the chance of false positives is as
negligible as the chance of finding a random second pre-
image.

For MD5 and SHA-1 one thus distinguishes many at-
tack classes that each are described by the message block
difference δB, step i and intermediate state difference
δWSi. In the case of SHA-1 each attack class depends en-
tirely on the so-called disturbance vector (DV). In either
case, for every block of the given message, each attack
class requires another compression function evaluation.
With the 223 known attack classes for MD5, collision
detection costs a factor 224 more than MD5. SHA-1 col-
lision detection costs a factor 15 more than SHA-1 given
the original proposed list of 14 most threatening distur-
bance vectors.

2 Our contributions

In this paper we present a significant run-time perfor-
mance improvement to collision detection. This im-
provement is based on a new concept in cryptanalysis,
namely unavoidable conditions, which are conditions
that are necessary for all feasible attacks within a cer-
tain class of attacks. To determine an unavoidable condi-
tion one must rule out any feasible variant attack where
this condition might not be necessary. Otherwise, adver-
saries aware of counter-cryptanalysis could easily bypass
this improved collision detection with a carefully chosen
variant attack.

USENIX Association 26th USENIX Security Symposium 883

We provide a formal framework of unavoidable con-
ditions for collision attacks on MD5-like compression
functions that can be used to show that indeed conditions
are unavoidable, and we show how they can be used to
speed up collision detection.

Furthermore, we present a conjecture that SHA-1 col-
lision attacks based on a disturbance vector may not de-
viate from the prescribed local collisions for steps 35 up
to 65 to remain feasible. As the current state of art on
SHA-1 collision attacks is entirely based on disturbance
vectors for very compelling reasons, and published colli-
sion attacks only deviate from local collisions in the first
20 steps or the last 5 steps (75 up to 79), the current state
of art solidly supports this conjecture with a safe large
margin. Based on this conjecture, we show how we can
efficiently determine such unavoidable conditions for the
known cryptanalytic attack classes on SHA-1. Moreover,
we show how we can exploit a significant overlap of un-
avoidable conditions between DVs that allows a more ef-
ficient checking of unavoidable bit conditions for many
disturbance vectors simultaneously.

Collision detection uses recompressions, i.e., evalua-
tions of the compression function starting from an inter-
mediate state to uniquely determine the input and output
chaining value for a given message block. Collision de-
tection requires a recompression for each tested DV for
each message block of a given message. Unavoidable bit
conditions allow a significant improvement to collision
detection by very quickly checking the unavoidable bit
conditions per DV and only performing a recompression
when all unavoidable bit conditions for that DV are sat-
isfied.

We have implemented the improved SHA-1 collision
detection using unavoidable conditions which checks 32
DVs (twice as many as previous work). The improved
collision detection is 20 to 30 times faster than with-
out our unavoidable condition improvements. We have
measured that overall our improved SHA-1 collision de-
tection is only a factor 1.60 slower on average than
SHA-1. The correctness of our implementation follows
from easily verified attack-class independent code, au-
tomatically generated tables for each attack class from
a very short identification, and testing its correctness
against the known SHA-1 collision.

After the demonstration of a SHA-1 collision, the open
source implementation of our algorithms was included
in Git. As part of incorporating our implementation, it
was further optimized to meet Git’s performance require-
ments. These performance improvements were small in
comparison with the detection algorithm as it stood be-
fore our algorithmic optimizations, less than doubling
the speed. However, these improvements made the dif-
ference between the algorithm being adopted in Git or
not [32]. This shows that the more than 20 times im-

provement that unavoidable conditions introduce, in fact,
make this algorithm usable in practice.

The remainder of our paper is organized as follows. In
Sect. 3 we treat the formal concept of unavoidable con-
ditions and their practical applications. How to deter-
mine them for known attack classes against SHA-1 and
to maximize the overlap between the sets of unavoid-
able conditions between DVs is covered in Sect. 4. In
Sect. 5 we disclose more specific details about our open-
source implementation, in particular with regards how to
efficiently check unavoidable bit conditions. We discuss
performance aspects in Sect. 6.

3 Unavoidable conditions

3.1 Model

Necessary and/or sufficient bit conditions are a very use-
ful tool for hash function cryptanalysis as laid out by
Wang et al.[35]. In effect they reduce the problem of
finding a message block pair that conforms to a differ-
ential path to the problem of finding a message block
for which the bit conditions are satisfied. As well as
reducing cost from computations over two compression
function evaluations to only one compression function
evaluation, such conditions allows more effective use of
early stop techniques and advanced message modifica-
tion techniques.

We define unavoidable conditions as conditions that
are necessary for all feasible attacks in a certain attack
class. While necessary and sufficient conditions for an
attack can be easily and manually derived, determining
unavoidable conditions is significantly harder as it re-
quires the analysis of all feasible attacks in a certain
attack class. We more formally define attack classes
and such unavoidable conditions in a framework that we
use to actually find unavoidable conditions for SHA-1
by showing these are necessary for all feasible attacks
within an attack class.

Our attack class definition in Thm. 1 below is rather
general but captures the functionality of many colli-
sion attacks variants (collision attack, pseudo-collision
attack, near-collision attack) against compression func-
tions: i.e., algorithms that output a pair of compression
function inputs. Our general definition does not describe
what the input or output differences should look like or,
e.g., whether it requires specific values for CV1 and CV2.
Instead such details are abstracted away as properties of
specific attack classes.

Definition 1 (Compression function attack class). For
N,M ∈ N+, let H : {0,1}N × {0,1}M → {0,1}N be a
compression function, then a class of attacks C against
H is a set of (randomized) algorithms A that produce a

884 26th USENIX Security Symposium USENIX Association

tuple (CV1,B1,CV2,B2) ∈ {0,1}N ×{0,1}M×{0,1}N ×
{0,1}M as output.

We model an unavoidable condition for an attack class
as a predicate over pairs (CV,B) of a chaining value and
message block. Such a predicate is called an unavoidable
condition if and only if it holds for all possible (CV1,B1)
and (CV2,B2) that may be output by any attack in the
attack class.

Definition 2 (Unavoidable condition). For N,M ∈ N+,
let H : {0,1}N × {0,1}M → {0,1}N be a compression
function and C be an attack class against H. Let
u : {0,1}N × {0,1}M → { f alse, true} be a non-trivial
predicate over compression function inputs. Then u is
called an unavoidable condition for attack class C if
and only if for all A ∈ C and for all possible outputs
(CV1,B1,CV2,B2) ← A it holds that u(CV1,B1) = true
and u(CV2,B2) = true.

3.2 Speeding up collision detection
Let S be a set of attack classes. For each attack class C ∈
S let sC = (δB, i,δWSi) be the associated message block
difference, step i and difference for the intermediate state
after step i as given in [23]. Also, let UC be a set of
unavoidable conditions for each C ∈ S.

For each compression function evaluation during the
hashing of a given message, collision detection will per-
form a recompression for every attack class C ∈ S. Such
a recompression is rather costly as it results in that the
overall cost of collision detection is a factor |S| more
than only computing the hash.

If for compression function input (CV,B) and for a
given attack class C at least one unavoidable condition
u ∈ UC is not satisfied then by definition (CV,B) cannot
be output by any attack A ∈ C (i.e., (CV1,B1) = (CV,B)
or (CV2,B2)= (CV,B) as in Thm. 1). As an attack from C
has been ruled out, a recompression for C is unnecessary
and can be skipped. Alg. 1 is the improved collision de-
tection that uses unavoidable conditions as preconditions
before a performing a recompression. If the unavoidable
conditions can be evaluated very quickly in comparison
to the recompression, e.g., comparing whether two bits
are equal/unequal in the internal state of the compres-
sion function, then a significant speed improvement can
be achieved.

4 Application to SHA-1

4.1 Notation
SHA-1 is defined using 32-bit words X = (xi)

31
i=0 ∈

{0,1}32 that are identified with elements X = ∑
31
i=0 xi2i

of Z/232Z (for addition and subtraction). A binary

signed digit representation (BSDR) for X ∈ Z/232Z
is a sequence Z = (zi)

31
i=0 ∈ {−1,0,1}32 for which

X = ∑
31
i=0 zi2i. We use the following notation: Z[i] =

zi, RL(Z,n) and RR(Z,n) (cyclic left and right rota-
tion), w(Z) (Hamming weight), σ(Z) = X = ∑

31
i=0 ki2i ∈

Z/232Z.
In collision attacks we consider two related messages

M and M′. For any variable X related to the SHA-1
calculation of M, we use X ′ to denote the correspond-
ing variable for M′. Furthermore, for such a ‘matched’
variable X ∈ Z/232Z we define δX = X ′−X and ∆X =
(X ′[i]−X [i])31

i=0.

4.2 SHA-1’s compression function

The input for SHA-1’s Compress consists of an interme-
diate hash value CVin = (a,b,c,d,e) of five 32-bit words
and a 512-bit message block B. The 512-bit message
block B is partitioned into 16 consecutive 32-bit strings
which are interpreted as 32-bit words W0, W1, . . . ,W15
(using big-endian), and expanded to W0, . . . ,W79 as fol-
lows:

Wt = RL(Wt−3⊕Wt−8⊕Wt−14⊕Wt−16,1),
for 16≤ t < 80.

(1)

We describe SHA-1’s compression function Compress in
an ‘unrolled’ version. For each step t = 0, . . . ,79 it uses
a working state consisting of five 32-bit words Qt , Qt−1,
Qt−2, Qt−3 and Qt−4 and calculates a new state word
Qt+1. The working state is initialized before the first step
as:

(Q0,Q−1,Q−2,Q−3,Q−4)

= (a,b,RR(c,30),RR(d,30),RR(e,30)).

For t = 0,1, . . . ,79 in succession, Qt+1 is calculated as
follows:

Ft = ft(Qt−1,RL(Qt−2,30),RL(Qt−3,30)),
Qt+1 = Ft +ACt +Wt +RL(Qt ,5)+RL(Qt−4,30).

(2)

These 80 steps are grouped in 4 rounds of 20 steps each.
Here, ACt is the constant 5a82799916, 6ed9eba116,
8f1bbcdc16 or ca62c1d616 for the 1st, 2nd, 3rd and 4th
round, respectively. The non-linear function ft(X ,Y,Z)
is defined as (X ∧Y)⊕ (X ∧Z), X ⊕Y ⊕Z, (X ∧Y)∨
(Z ∧ (X ∨Y)) or X ⊕Y ⊕Z for the 1st, 2nd, 3rd and 4th
round, respectively. Finally, the output intermediate hash
value CVout is determined as:

CVout = (a+Q80, b+Q79, c+RL(Q78,30),
d +RL(Q77,30), e+RL(Q76,30)).

USENIX Association 26th USENIX Security Symposium 885

Algorithm 1: Improved collision detection

Let H : {0,1}N×{0,1}M →{0,1}N , IV ∈ {0,1}N be an MD5-like compression function consisting of I
reversible steps and a Davies-Meyer feed-forward.

Let S be a set of attack classes s = (δB, i,δWSi) and Us a set of unavoidable conditions for each s ∈ S .
The algorithm below returns True when a near-collision attack was detected and False otherwise.
Given padded message P = P1|| . . . ||Pn consisting of n blocks Pj ∈ {0,1}M do:

1. Let CV0 = IV and do the following for j = 1, . . . ,n:

(a) Evaluate CVj = H(CVj−1,Pj) and store intermediate working states WSi after each step i = 0, . . . , I−1 of
H.

(b) For each s = (δB, i,δWSi) ∈ S do:

i. If u(CVj−1,Pj) = f alse for some u ∈ Us then skip steps ii.–vi.
ii. Determine P′j = Pj +δB, WS′i =WSi +δWSi

iii. Compute steps i, i−1, . . . ,0 of H backwards to determine CV ′j−1

iv. Compute steps i+1, . . . , I−1 forwards to determine WS′I−1
v. Determine CV ′j from CV ′j−1 and WS′I−1 (Davies-Meyer feed-forward)

vi. If CV ′j =CVj return True

2. Return False

4.3 Local collisions and the disturbance
vector

In 1998, Chabaud and Joux [4] constructed a collision at-
tack on SHA-0, SHA-1’s withdrawn predecessor, based
on local collisions. A local collision over 6 steps for
SHA-0 and SHA-1 consists of a disturbance δQt+1 = 2b

created in some step t by a message word bit difference
δWt = 2b. This disturbance is corrected over the next five
steps, so that after those five steps no differences occur
in the five working state words. They were able to inter-
leave many of these local collisions such that the mes-
sage word differences (∆Wt)

79
t=0 conform to the message

expansion (cf. Eq. 1). For more convenient analysis, they
consider the disturbance vector which is a non-zero vec-
tor (DVt)

79
t=0 conform to the message expansion where

every ‘1’-bit DVt [b] marks the start of a local collision
based on the disturbance δWt [b] = ±1. We denote by
(DWt)

79
t=0 the message word bit differences without sign

(i.e., DWt =W ′t ⊕Wt) for a disturbance vector (DVt)
79
t=0:

DWt :=
⊕

(i,r)∈R
RL(DVt−i,r),

where

R= {(0,0),(1,5),(2,0),(3,30),(4,30),(5,30)}.

Note that for each step one uses differences δWt instead
of DWt . We say that a message word difference δWt is
compatible with DWt if there are coefficients c0, . . . ,c31 ∈
{−1,1} such that δWt = ∑

31
j=0 c j ·DWt [j]. The setWt of

all compatible message word differences given DWt is
defined as:

Wt :=
{

σ(X)
∣∣∣ BSDR X ,

X [i]∈{−DWt [i],+DWt [i]}, i∈{0,...,31}

}
(3)

As for bit position 31 it holds that −231 ≡ 231 mod 232,
only the signing of bits 0, . . . ,30 affect the resulting δWt .
In fact for every δWt ∈ Wt it holds that the coefficient
ci ∈ {−1,1} for every bit position i ∈ {0, . . . ,30} with
DWt [i] = 1 is uniquely determined.

4.4 Disturbance vector classes
Manuel [15] has classified previously found interesting
disturbance vectors into two classes. A disturbance vec-
tor from the first class denoted by I(K,b) is defined by
DVK = . . . = DVK+14 = 0 and DVK+15 = 2b. Similarly,
a disturbance vector from the second class denoted by
II(K,b) is defined by DVK+1 = DVK+3 = RL(231,b) and
DVK+15 = 2b and DVK+i = 0 for i ∈ {0,2,4,5, . . . ,14}.
For both classes, the remaining DV0, . . . ,DVK−1 and
DVK+16, . . . ,DV79 are determined through the (reverse)
message expansion relation (Eq. 1).

4.5 Unavoidable conditions
The literature on collision attacks against SHA-1 (e.g.,
see [34, 21, 16, 11, 3, 17, 2, 37, 5, 36, 8, 15, 24]) con-
sists entirely of attacks based on combinations of local
collisions as prescribed by a disturbance vector. This is a
common property and for a very compelling reason: it is

886 26th USENIX Security Symposium USENIX Association

the only known way to construct differential paths with
message word differences compatible with the message
expansion relation. Even then it seems that out of 2512

possible disturbance vectors there are only a few tens of
disturbance vectors suitable for feasible cryptanalytic at-
tacks.

In the first number of steps and the last few steps at-
tacks can deviate from the DV-prescribed local collisions
without a significant impact in the overall attack com-
plexity. On the contrary, it is an important technique
to use a specially crafted so-called ’non-linear’ differ-
ential path for the first number of steps to allow arbi-
trary chaining value differences to be used in combina-
tion with the disturbance vector as introduced by Wang
et al.[34]. Also, for the last few steps there may be higher
probability differential steps as shown in [24]. How-
ever, deviating from DV-prescribed local collisions to-
wards the middle becomes very costly very quickly as
the resulting avalanche of perturbations directly leads to
significant increases of the attack complexity. Hence, for
the steps in the middle it remains unavoidable to use the
DV-prescribed local collisions, which has led us to the
following conjecture:

Conjecture 3. Over steps [35,65) it is unavoidable to
use the DV-prescribed local collisions: deviating from
the DV over these steps will result in an avalanche that
will significantly increase the attack complexity.

As published collision attacks only deviate from local
collisions in the first 20 steps or the last 5 steps (75 up
to 79) for reasons already mentioned, the current state of
art solidly supports our conjecture with a safe margin. In
fact we have considered taking a large range of steps in
Thm. 3, however the increase in number of unavoidable
conditions only results in a slight performance increase.
In the end we opted for a larger safety margin instead of
a slight performance increase.

Based on our Thm. 3, we propose to protect against
attack classes based on disturbance vectors that use the
prescribed local collisions over steps [35,65). This re-
striction allows us to determine unavoidable conditions
over all non-zero probability differential paths over steps
35 up to 65 that adhere to the disturbance vector. We pro-
pose to use unavoidable message bit relations that control
the signs of bits in the ∆Wt . These message bit relations
are used in attacks to ensure that, e.g., adjacent active bits
collapse to a single bit difference, or that two bits have
opposing sign to cancel differences (the perturbation of
each local collision). Looking at SHA-1 attacks, these
message bit relations are all of the form Wi[a]⊕Wj[b] = c
or Wi[a] = c, hence this specific form of unavoidable con-
ditions can be checked very efficiently. But as noted be-
fore, one cannot simply use the necessary conditions of
one attack, it is important to prove which of those mes-

sage bit relations are necessary for all feasible attacks.
We will refer to such unavoidable message bit relations
as unavoidable bit conditions or UBCs. The method we
can use to determine the UBCs for each disturbance vec-
tor is described below.

4.6 Using Joint-Local Collision Analysis
Choose any disturbance vector that may lead to a feasible
collision attack. To determine the UBCs for this distur-
bance vector, we will need to work with the set of all pos-
sible DV-based differential paths over steps [35,65). Any
differential path uses fixed differences for each expanded
message word, these directly imply values for some bits
Wt [i]. The set of these bit positions Wt [i] is independent
of the differential path and is pre-determined by the DV.
We map each differential path to a vector containing the
values for these bit positions Wt [i]. Then we can look
at the smallest affine vector space that encompasses all
these vectors. This affine vector space can be repre-
sented by a system of linear equations over those mes-
sage bits, which will directly give the desired unavoid-
able bit conditions. By construction it follows that any
solution to any possible differential path based on this
DV satisfies these unavoidable bit conditions. Therefore
if an expanded message does not satisfy all UBCs then
this message cannot be a solution for any possible differ-
ential path over steps [35,65) based on this DV.

To efficiently compute UBCs we will use techniques
introduced in [24] that allow efficient computations on
large classes of differential paths that are otherwise not
possible. We will present our method at a higher level
using notation taken from [24]: Let Qt be the set of all
allowed state differences ∆Qt given (DVi)

79
i=0:

Qt :=
{

BSDR Y
∣∣∣ σ(Y)=σ(Z),

Z[i]∈{−DVt−1[i],DVt−1[i]}, i=0,...,31

}
.

A differential path P over steps t ∈ [35,65) is given as

P = ((∆Qt)
64+1
t=35−4,(∆Ft)

64
t=35,(δWt)

64
t=35),

with correct differential steps for t ∈ [35,65):

σ(∆Qt+1) = σ(RL(∆Qt ,5))+σ(RL(∆Qt−4,30))
+σ(∆Ft)+δWt .

(4)

The success probability Pr[P] of a differential path P is
defined as the probability that the given path P holds ex-
actly for uniformly-randomly chosen Q̂35−4, . . . , Q̂35 and
Ŵ35, . . . ,Ŵ64 and where the other variables are computed
as defined in SHA-1’s compression function. This can be
efficiently computed (cf. [24]).

The set of all possible DV-based differential paths over
steps [35,65) that we will actually use to determine un-
avoidable bit conditions is defined as:

D[35,65) :=
{
P̂
∣∣ ∆Q̂i ∈Qi, δŴj ∈W j, Pr[P̂]> 0

}

USENIX Association 26th USENIX Security Symposium 887

Let P ∈D[35,65) and let δW35, . . . ,δW64 be its message
word differences. Let t ∈ [35,65) and let It ⊆{0, . . . ,30}
be the set of bit positions 0≤ i≤ 30 such that DWt [i] = 1.
As δWt ∈ Wt , we have that δWt = ∑

31
i=0 ci ·DWt [i] with

c0, . . . ,c31 ∈ −1,1 (Eq. 3). We use the fact that the co-
efficients ci with i ∈ It are uniquely determined. This
implies values for the bits Wt [i] with i ∈ It as:

• if ci = 1 then ∆Wt [i] = 1 ·DWt = 1
thus Wt [i] = 0 and W ′t [i] = 1;

• if ci =−1 then ∆Wt [i] =−1 ·DWt =−1
thus Wt [i] = 1 and W ′t [i] = 0;

Hence, given P ∈ D[35,65) for t ∈ [35,65) and i ∈ It the
value of Wt [i] is known. Let X = ((t, i) | t ∈ [35,65)∧ i ∈
It) be a vector of all (t, i) for which the value of Wt [i] is
known given P ∈D[35,65) and let R = |X | be the length of
X . Then we can define a mapping that maps differential
paths to a vector over F2 of the message bits Wt [i] that
are known:

µ :D[35,65)→ FR
2 : P 7→ (Wt [i]|(t, i) = X [r])R

r=1

And we can look at the smallest affine vector space
V that encapsulates the image µ(D[35,65)) of D[35,65).
Although V is uniquely determined, its representation
V = o+ < v1, . . . ,vn > with an origin o and generating
vectors v1, . . . ,vn is not unique. Let Po ∈ D[35,65) be a
fixed differential path, then we compute V as:

o = µ(Po), ∀P ∈ D[35,65) : vP = µ(P)−o.

Using linear algebra we can determine an equivalent de-
scription of V as a system of equations over bits Wt [i]
with (t, i) ∈ X . This system of linear equations can be
further manipulated using linear operations, and thus can
be viewed as a linear space itself. So we use its ’row
reduced form’ which results entirely in equations over 2
message bits of the form Wi[a]⊕Wj[b] = c.

For our improved SHA-1 collision detection imple-
mentation we have selected the 32 disturbance vectors
with lowest estimated cost as in [24]. This is more
than the 14 disturbance vectors intially suggested in [23],
but using UBCs we could simply add protection against
more DVs with very low extra cost. We ended up at 32
DVs as our UBC checking algorithm uses a 32-bit in-
teger to hold a mask where each bit is associated with
a DV and represents whether the UBCs of that DV are
all fulfilled. The 32 disturbance vectors with number of
UBCs in parentheses are given in Tbl. 1. The full listing
of UBCs for these DVs is given in Appendix A.

4.7 Exploiting overlapping conditions be-
tween DVs

As disturbance vectors within each type I or II are all
shifted and rotated versions of each other, disturbance

vectors may have local collisions at the same positions
and therefore may have some overlap in unavoidable bit
conditions. In this section we try to maximize the num-
ber of UBCs shared between DVs by further manipulat-
ing the set of UBCs per DV. As each UBC is a linear
equation, the set of UBCs per DV can be further manip-
ulated for our purposes using simple linear operation.

In the previous section we analyzed 32 disturbance
vectors and found 7 to 15 UBCs per DV with a total of
373 UBCs. The UBCs for each DV were generated in a
‘row-reduced form’ and this already leads to a significant
overlap of UBCs: among the total of 373 UBCs there are
only 263 distinct UBCs. E.g., UBC W39[4]⊕W42[29] = 0
is shared among DVs I(45,0), I(49,0) and II(48,0). Using
the procedure below we are able to reduce the number of
distinct UBCs to 156. Note that for each DV the new set
of UBCs remains equivalent to the original set of UBCs.

To minimize the overall amount of distinct UBCs we
use a greedy selection algorithm to rebuild the set of
UBCs per DV. Starting at an empty set of UBCs for each
DV, our greedy algorithm in each step selects a new dis-
tinct UBC that is shared between as many DVs as pos-
sible and adds it to set of UBCs for the corresponding
DVs. More specifically, for each DV it first generates a
list of candidate UBCs by taking all linear combinations
of the original set of UBCs and removes all candidates
that are a linear combination of the current set of UBCs
and thus that are already covered so far. Then it selects
all UBCs that maximize the number of DVs it belongs
to but is not covered so far. It rates each of those UBCs
first based on weight (minimal weight prefered), second
based on number of active bit positions (fewer bit posi-
tions prefered) and finally on the gap j− i between the
first Wi and the last Wj in the UBC. It selects the best
rated UBC and adds that to UBC sets of the DVs it be-
longs to but is not covered so far. Finally, for each DV
it will output a new set of UBCs that is equivalent to the
original set of UBCs, but for which there are much fewer
distinct UBCs over all DVs.

The output of improved sets of UBCs of our greedy
selection algorithm for the 32 DVs and original 373
UBCs found in the previous section can be found in Ap-
pendix A. Using this approach we have further reduced
the number of unique UBCs from 263 to 156, where each
new UBC belongs up to 7 DVs.

In Sect. 5.1 we further comment on the implementa-
tion of this greedy algorithm that immediately outputs
optimized C code for verifying UBCs for all 32 DVs si-
multaneously. This optimized C code is verified against
a straightforward simple implementation using the origi-
nal sets of 373 UBCs as described in Sect. 5.2.

888 26th USENIX Security Symposium USENIX Association

Table 1: SHA-1 DV selection and number of UBCs
I(43,0) (11 UBCs) I(44,0) (12 UBCs) I(45,0) (12 UBCs) I(46,0) (11 UBCs)
I(46,2) (7 UBCs) I(47,0) (12 UBCs) I(47,2) (7 UBCs) I(48,0) (14 UBCs)
I(48,2) (7 UBCs) I(49,0) (13 UBCs) I(49,2) (8 UBCs) I(50,0) (14 UBCs)
I(50,2) (8 UBCs) I(51,0) (15 UBCs) I(51,2) (10 UBCs) I(52,0) (14 UBCs)

II(45,0) (11 UBCs) II(46,0) (11 UBCs) II(46,2) (7 UBCs) II(47,0) (14 UBCs)
II(48,0) (15 UBCs) II(49,0) (14 UBCs) II(49,2) (9 UBCs) II(50,0) (14 UBCs)
II(50,2) (9 UBCs) II(51,0) (14 UBCs) II(51,2) (9 UBCs) II(52,0) (15 UBCs)

II(53,0) (14 UBCs) II(54,0) (14 UBCs) II(55,0) (14 UBCs) II(56,0) (14 UBCs)

5 Implementation

This section describes the implementation of the UBC
check in the SHA-1 Collision detection library. The
source code for this library can be found at [28] This re-
lease contains the collision detection library that can be
used in other software in the directory ’lib’, the ‘src’ di-
rectory contains a modified sha1sum command line tool
that uses the library. Both can be built by calling ‘make’
in the parent directory, additionally a special version
‘sha1dcsum partialcoll’ is also included that specifically
detects example collisions against reduced-round SHA-1
(as no full round SHA-1 collisions have been found yet.)
Furthermore, in the directory ‘tools’ we provide the fol-
lowing:

• the original listing of UBCs per DV (directory
‘data/3565’);

• an example partial collision for SHA-1 (file
‘test/sha1 reducedsha coll.bin’);

• the greedy selection algorithm from Sect. 4.7 that
optimizes the UBC sets and outputs optimized code
(directory ‘parse bitrel’), see Sect. 5.1;

• a program that verifies the optimized C code with
optimized UBC sets against manually-verifiable C
code (directory ‘ubc check test’), see Sect. 5.2;

The collision detecting SHA-1 implementation, includ-
ing the SHA-1 compression function as well as the col-
lision detection logic and UBC checks, has been heavily
optimized to be competitive with the performance of the
prior implementation of SHA-1 in Git. This prior im-
plementation of SHA-1 had been optimized in order to
meet the performance requirements of the heavily uti-
lized software. As such, we are assured that our imple-
mentation of the core SHA-1 functionality has been op-
timized to the point of being competitive with deployed
and utilized implementations [32]. In Sect. 6 we discuss
expected and measured performance of our improved
SHA-1 collision detection.

5.1 Parse Bit Relations
This section describes the parse_bitrel program that
implements the greedy selection algorithm described in
Sect. 4.7 and generates source code for an optimized
UBC check.

The greedy algorithm using the input UBC sets in di-
rectory ‘data/3565’ outputs improved UBC-sets for the
DVs that have significant overlap. Another equivalent
perspective is looking at the unique UBCs and the set
of DVs each unique UBC belongs to, Appendix A lists
the improved UBCs in this manner. The program -

parse bitrel uses this perspective to generate opti-
mized source code for a function ubc_check which
given an expanded message will return a mask of which
DVs had all their UBCs satisfied.

As noted in Sect. 4.6 we have selected 32 disturbance
vectors. Thus keeping track for which disturbance vec-
tors a recompression is necessary conveniently fits in a
32 bit integer mask C. Each bit position in C will be as-
sociated with a particular DV T(k,b), where T represents
the type I or II, and we have a named constant of the form
DV_T_K_B_bit that will have only that bit set. Initially
C will have all bits set and for each UBC that is not sat-
isfied we will set bits to 0 at the bit positions of the DVs
the UBC belongs to.

The UBCs for SHA-1 are of the form Wi[a]⊕Wj[b] = c
as described in Sect. 4.6. The outcome of this condition
is translated into a mask with all bits set or all bits cleared
using the following C-code:

M=0-(((W[i]>>a)^(W[j]>>b))&1) if c = 1
M=(((W[i]>>a)^(W[j]>>b))&1)-1 if c = 0

Note that in both of these cases, if UBC is satisfied then M
results in a value with all bits set (−1 in 2’s complement)
and 0 otherwise.

Say the UBC belongs to multiple disturbance
vectors DV_T1_K1_B1_bit, DV_T2_K2_B2_bit, . . .,
DV_TN_KN_BN_bit, then a mask is formed that has all
other bits belonging to other DVs set to 0. This mask
will be OR’ed into the mask M above to force bits to the
value 1 for all bit positions associated with DVs not be-
longing to this unique UBC:

M | ~(DV_T1_K1_B1_bit | DV_T2_K2_B2_bit | ...

| DV_TN_KN_BN_bit).

USENIX Association 26th USENIX Security Symposium 889

In effect, only the bit positions for DVs the unique
UBC belongs to can be 0 which they will be if and only
if the unique UBC is not satisfied. Hence, this last mask
will be AND’ed into the variable C to conditionally clear
the bits associated with these DVs if the UBC is not sat-
isfied. For example, the following clause is one of the
clauses generated by the parse_bitrel:

C &= ((((W[46]>>4)^(W[49]>>29))&1)-1) |

~(DV_I_46_0_bit | DV_I_48_0_bit | DV_I_50_0_bit |

DV_I_52_0_bit | DV_II_50_0_bit | DV_II_55_0_bit);

The ubc_check function thus consists of initializing
the variable C and statements for each unique UBC to up-
date C as described above. The parse bitrel program
combines these clauses into a bit-wise AND of all the in-
dividual statements and generates the ubc check func-
tion. The above example works for all cases. However,
we can produce slightly better statements with fewer op-
erations in certain cases which are omitted here, but can
be found in the public source code.

5.2 UBCCheckTest: Correctness testing

This section describes the program ubc check test for
correctness testing. The above program parse bitrel

will output optimized C-code for ubc check that will
verify all UBCs and output a mask whose bits mark
whether a recompression for a particular DV is needed.
For testing purposes one would like to have many test
cases to run it on, however there are no SHA-1 exam-
ple collisions at all. Hence, great care must be taken
to ensure code correctness of the collision detection li-
brary. For this purpose we let parse_bitrel also out-
put C-code for a function ubc_check_verify that will
be equivalent to ubc_check but will be based on the
original non-improved UBC-sets and use straightforward
code that can be manually verified for correctness. After
manual verification we know ubc_check_verify to be
correct.

To ensure that ubc_check is correct we test its func-
tional equivalence to the correct ubc_check_verify.
As each individual UBC statement depends on only 2
expanded message bits Wi[a] and Wi[b], if an error exists
it will trigger with probability at least 0.25 for random
values. Unfortunately, such an error may be masked by
other UBCs not being satisfied and forcing the bit posi-
tions in C with possible errors to 0 anyway. To ensure
any error will reveal itself, we feed 224 random inputs
to both ubc_check and ubc_check_verify and verify
whether their outputs are identical. As the highest num-
ber of UBCs of a DV is 15, if an error is located in the
code of one of these UBCs we can still expect that out
of the 224 samples we will have approximately 210 cases
where all other UBCs for this DV are satisfied. In these

cases the output bit for this DV of ubc check and ubc-

check verify equals the output for the target UBC and
the error will be exposed with probability at least 0.25
for each of these 210 cases. The probability that an error
with probability at least 0.25 will not occur in 210 ran-
dom inputs is at most 0.751024 ≈ 2−425. This, as well
as a few other basic tests, ensures that our greedy selec-
tion algorithm for improved UBC-sets and the produced
optimized C-code ubc_check contains no errors.

6 Performance

In this section we discuss the expected performance in-
crease and we compare some measured speeds. We have
compiled and tested the code on different compiler and
processor technologies. The performance of the imple-
mentation was tested with several compilers, platforms
and processors. For x86 performance the code was run
on Linux, Windows and macOS. On Linux, the code was
compiled for x86-64 with GCC 5.4.0 (gcc) and run on
Ubuntu 16.04. The code was compiled for both x86-32
and x86-64 with the Microsoft Visual Studio 2015 C++
compiler (msvc) and run on Windows 10. In both of
these cases, the code was run on an Intel Xeon L5520
running at 2.26GHz. For macOS, the code was compiled
with Clang 4.2.1 (clang) targeting x86-64 macOS Sierra
and run on an Intel Core i7 3615QM running at 2.30Ghz.
To measure performance on ARM architecture, the code
was compiled with GCC 4.9.2 (gcc arm) and run on a
Raspberry Pi 3 running Raspbian Jessie with a quad-core
Broadcom BCM2837, which is an ARM Cortex-A53,
running at 1.2Ghz. Note that at the time of these ex-
periments Raspbian Jessie runs in 32 bit mode only, even
though this particular processor model can run in both 32
and 64 bit modes.

The performance numbers below vary a bit between
different compiler and processor technologies due to dif-
ferent available processor instructions and different com-
piler optimizations. Such variances for a given platform
could be eliminated using assembly code, however such
code is very difficult to maintain and therefore not con-
sidered for our project, which intends to show the fea-
sibility of these algorithms and techniques. Rather, as-
sembler implementations of these algorithms can be con-
sidered by projects that require these collision detection
and high performance implementations. Due to these
variances the shown results should be taken as indicative
speed improvements for other compilers and/or compiler
optimization flags and/or processors.

Using UBCs, we will only do a recompress for a given
DV if all its UBCs are satisfied. Let S be the set of
DVs and Udv be the set of UBCs for dv ∈ S. Then
the probability pdv that a random message block satis-
fies all UBCs associated with dv ∈ S is pdv = 2−|Udv|.

890 26th USENIX Security Symposium USENIX Association

Table 2: Comparison of the performance of SHA-1’s
compression function and our ubc check function.
Units given in number of single message block opera-
tions per millisecond. ubc check takes 46% to 76% of
the time of SHA1Compress.

SHA1Compress ubc_check

gcc x86-64 4236.38 8359.01(0.51×)
clang x86-64 5192.51 11363.47(0.46×)
msvc x86-64 2618.30 4445.76(0.59×)
msvc x86-32 2712.14 4663.56(0.58×)
gcc arm 815.26 1074.47(0.76×)

Hence, the expected cost of the recompressions for dv ∈
S is pdv × n× SHA1Compress, where n is the number
of message blocks for a given message, or equivalently
pdv×SHA-1.

The expected total cost of all recompressions for
a given message of n message blocks is therefore
(∑dv∈S pdv)× SHA-1. For the 32 selected disturbance
vectors given in Tbl. 1 together with their number of
UBCs, we found that ∑dv∈S pdv ≈ 0.0495.

Therefore using UBCs we have reduced the cost of re-
compressions from 32×SHA-1 to ≈ 0.0495×SHA-1, a
speed improvement of a factor of about 646. Also, this
implies that on average we can expect to do one recom-
pression about every 20.2 message blocks. However,
the total cost of collision detection includes the cost of
SHA-1 as well as the cost of verifying the UBCs.

We have measured the cost of ubc_check in compar-
ison to SHA1Compress in function calls per millisecond
in Tbl. 2. These figures were determined by measuring
the time of 226 function calls on already prepared ran-
dom inputs. The relative performance ratio ubc check/
SHA1Compress is given in parentheses. We have mea-
sured that ubc check takes about 46% to 76% of the
time of SHA1Compress depending on the platform. De-
note this ratio as u then we can expect that the total
cost of collision detection using UBCs is approximately
(1+ u+ 0.0495)× SHA-1. Hence, this leads to an esti-
mated cost factor of about 1.51 to 1.81 of collision de-
tection relative to the original SHA-1. Note that we ex-
pect the actual figures to be slightly lower as both the
cost of the recompressions and the cost of ubc check

are expressed relatively to SHA1Compress and not to
SHA-1 which actually includes some more overhead.
This shows that the UBC check almost completely elim-
inates the amount of time doing full disturbance vector
checks and the performance loss is purely spent by time
in the ubc check function itself. Thus using UBCs we
expect collision detection to be possible in around three
halves the time it takes to compute a single hash digest.
Overall the relative timings of ubc check shows that we

can expect drastic speedups from using unavoidable con-
ditions.

The analysis of the internal operations of the SHA-1
hash and collision detection ignores a great deal of over-
head that the algorithm may incur. So it is necessary
to do a more detailed performance analysis of the full
collision detection algorithm. The scaling of this algo-
rithm does not depend on the length of the input vary-
ing. So a reference timing for hashing random 2 kilobyte
messages was used. This number was chosen because it
is representative of the order of magnitude of bytes that
must be hashed while verifying a single RSA certificate.
Tbl. 3 shows the overall function calls per millisecond
count for random 2KiB messages. We timed the origi-
nal SHA-1 without collision detection, SHA-1 with col-
lision detection with the UBC optimizations, and finally
SHA-1 with collision detection but without using UBCs.
The presented timings were determined by running the
measured function on an already prepared random input
in a loop with 512 iterations, and averaging these tim-
ings for 128 different random inputs. Note that these are
preliminary performance numbers and have limited pre-
cision and more accurate numbers will be provided in
later drafts of this paper.

As in the previous table the relative performance to
SHA-1 is given in parentheses. For example, when com-
piled with gcc x86-64 the SHA-1 digest algorithm with
hash collision detection but without the UBC check opti-
mizations takes over 39 times the amount of time it takes
to run the original digest algorithm. While adding the
UBC check allows the collision detection code to run in
well under double the time. This table shows that while
adding the straight forward collision detection code in-
creases the time of a SHA-1 computation by around 30
to 40 times, using the UBC check optimizations allows a
SHA-1 computation with collision detection to be run in
about 1.6× the time.

7 Future directions

From our results it is clear unavoidable conditions can
be used for a significant speed up for collision detection
resulting in only a small performance loss compared to
the performance of the original cryptographic primitive
SHA-1.

We intend to supply additional reference code to ease
use of our SHA-1 collision detection library in all appli-
cation that use OpenSSL [30] in future work. This should
make collision detection significantly easier to apply in
applications even for developers with limited experience
with OpenSSL and cryptographic libraries.

Another future research direction is how to deter-
mine unavoidable conditions for MD5. MD5 is signif-
icantly weaker than SHA-1 and there are 223 known at-

USENIX Association 26th USENIX Security Symposium 891

Table 3: Performance numbers for message block computations of the SHA-1 Message Digest algorithm, units given
in number of 2KiB messages hashed per millisecond. Collision detection using UBCs is 1.43 to 1.66 times slower
than SHA-1, however without using UBCs collision detection is 30 to 43 times slower than SHA-1.

SHA1 SHA1DC no UBC Check SHA1DC UBC Check
gcc x86-64 148.14 3.75(39.50×) 92.82(1.60×)
clang x86-64 226.60 7.58(29.88×) 136.33(1.66×)
msvc x86-64 115.80 2.69(42.98×) 72.23(1.60×)
msvc x86-32 83.42 2.06(40.58×) 58.14(1.43×)
gcc arm 26.11 0.81(32.04×) 16.30(1.60×)

tack classes that are based on a number of different ap-
proaches to construct a high probability differential path
over the most important steps that contribute to the com-
plexity. It is thus significantly more challenging to find
UBCs for these classes and will require a more close
study of the different main approaches. Nevertheless, as
MD5 collision detection is 224 times slower than MD5,
there is ample room and demand for speed improve-
ments.

8 Conclusion

In this paper we have presented a significant perfor-
mance improvement for collision detection, which is
very timely due to the recently announced first collision
for SHA-1. We have formally treated a new concept of
unavoidable conditions that the output of any feasible at-
tack in an attack class must satisfy. Furthermore, based
on a conjecture solidly supported by the current state of
the art, we have shown how we can determine unavoid-
able bit conditions (UBC) for SHA-1 and how to maxi-
mize the overlap between the UBC sets of different DVs.
We have implemented the improved SHA-1 collision de-
tection using such unavoidable conditions and which is
about 20 to 30 times faster than without our unavoidable
condition improvements. We have measured that overall
our implementation of SHA-1 with collision detection is
only a factor 1.60 slower on average than the original
SHA-1.

That collisions attacks are a realistic and significant
threat is very clear given the rogue Certification Author-
ity publication [29] and the exposed Windows Update
signature forgery in the supermalware Flame [23]. This
shows that nation states have the resources to carry out
such attacks and exploit them in the real world. Further-
more SHA-1-based signatures are still used at large and
are also supported for verification almost ubiquitously.
More protection against signature forgeries is greatly
warranted and our improved SHA-1 collision detection
enables protection against digital signature forgeries at a
very low cost.

As SHA-1 is practically broken, yet SHA-1-based sig-

natures are still used at large and are also widely sup-
ported (at least for verification), our improved SHA-1
collision detection enables protection against digital sig-
nature forgeries at a very low cost. Our improved imple-
mentation was deemed effective enough for Git, GitHub,
Google Drive, Gmail and others to already deploy it in
practice.

Acknowledgments

The authors would like to acknowledge the code review
feedback given by the developers in the Git community,
which has greatly improved the quality of our imple-
mentation. The optimization suggestions given by Li-
nus Torvalds and Jeff King (peff) especially significantly
improved performance. The authors would also like to
thank the anonymous reviewers who took time to give
detailed feedback and suggestions for improving this pa-
per.

References

[1] Gilles Brassard (ed.), Advances in Cryptology -
CRYPTO ’89, 9th Annual International Cryptology
Conference, Santa Barbara, California, USA, Au-
gust 20-24, 1989, Proceedings, Lecture Notes in
Computer Science, vol. 435, Springer, 1990.

[2] Christophe De Cannière, Florian Mendel, and
Christian Rechberger, Collisions for 70-Step SHA-
1: On the Full Cost of Collision Search, Selected
Areas in Cryptography (Carlisle M. Adams, Ali
Miri, and Michael J. Wiener, eds.), Lecture Notes
in Computer Science, vol. 4876, Springer, 2007,
pp. 56–73.

[3] Christophe De Cannière and Christian Rechberger,
Finding SHA-1 Characteristics: General Results
and Applications, ASIACRYPT (Xuejia Lai and
Kefei Chen, eds.), Lecture Notes in Computer Sci-
ence, vol. 4284, Springer, 2006, pp. 1–20.

892 26th USENIX Security Symposium USENIX Association

http://dx.doi.org/10.1007/978-3-540-77360-3_4
http://dx.doi.org/10.1007/978-3-540-77360-3_4
http://dx.doi.org/10.1007/11935230_1
http://dx.doi.org/10.1007/11935230_1

[4] Florent Chabaud and Antoine Joux, Differential
Collisions in SHA-0, CRYPTO (Hugo Krawczyk,
ed.), Lecture Notes in Computer Science, vol. 1462,
Springer, 1998, pp. 56–71.

[5] Martin Cochran, Notes on the Wang et al. 263 SHA-
1 Differential Path, Cryptology ePrint Archive, Re-
port 2007/474, 2007.

[6] Ivan Damgård, A Design Principle for Hash Func-
tions, in Brassard [1], pp. 416–427.

[7] Max Fillinger and Marc Stevens, Reverse-
Engineering of the Cryptanalytic Attack Used in
the Flame Super-Malware, ASIACRYPT (Tetsu
Iwata and Jung Hee Cheon, eds.), Lecture Notes
in Computer Science, vol. 9453, Springer, 2015,
pp. 586–611.

[8] E.A. Grechnikov, Collisions for 72-step and 73-
step SHA-1: Improvements in the Method of
Characteristics, Cryptology ePrint Archive, Report
2010/413, 2010.

[9] E.A. Grechnikov and A.V. Adinetz, Collision for
75-step SHA-1: Intensive Parallelization with
GPU, Cryptology ePrint Archive, Report 2011/641,
2011, http://eprint.iacr.org/2011/641.

[10] InfoWorld, Oracle to Java devs: Stop signing JAR
files with MD5, January 2017.

[11] Charanjit S. Jutla and Anindya C. Patthak, A
Matching Lower Bound on the Minimum Weight
of SHA-1 Expansion Code, Cryptology ePrint
Archive, Report 2005/266, 2005.

[12] Pierre Karpman, Thomas Peyrin, and Marc
Stevens, Practical Free-Start Collision Attacks on
76-step SHA-1, CRYPTO (Rosario Gennaro and
Matthew Robshaw, eds.), Lecture Notes in Com-
puter Science, vol. 9215, Springer, 2015, pp. 623–
642.

[13] CrySyS Lab, sKyWIper (a.k.a. Flame a.k.a.
Flamer): A complex malware for targeted attacks,
Laboratory of Cryptography and System Secu-
rity, Budapest University of Technology and Eco-
nomics, May 31, 2012.

[14] Kaspersky Lab, The Flame: Questions and An-
swers, Securelist blog, May 28, 2012.

[15] Stéphane Manuel, Classification and generation of
disturbance vectors for collision attacks against
SHA-1, Des. Codes Cryptography 59 (2011), no. 1-
3, 247–263.

[16] Krystian Matusiewicz and Josef Pieprzyk, Find-
ing Good Differential Patterns for Attacks on SHA-
1, WCC (Øyvind Ytrehus, ed.), Lecture Notes
in Computer Science, vol. 3969, Springer, 2005,
pp. 164–177.

[17] Florian Mendel, Norbert Pramstaller, Christian
Rechberger, and Vincent Rijmen, The Impact of
Carries on the Complexity of Collision Attacks on
SHA-1, FSE (Matthew J. B. Robshaw, ed.), Lecture
Notes in Computer Science, vol. 4047, Springer,
2006, pp. 278–292.

[18] Ralph C. Merkle, One Way Hash Functions and
DES, in Brassard [1], pp. 428–446.

[19] National Institute of Standards and Technology
NIST, FIPS PUB 180-1: Secure Hash Standard,
1995.

[20] The Washington Post, U.S., Israel developed Flame
computer virus to slow Iranian nuclear efforts, of-
ficials say, Ellen Nakashima, Greg Miller and Julie
Tate, June 2012.

[21] Norbert Pramstaller, Christian Rechberger, and
Vincent Rijmen, Exploiting Coding Theory for Col-
lision Attacks on SHA-1, IMA Int. Conf. (Nigel P.
Smart, ed.), Lecture Notes in Computer Science,
vol. 3796, Springer, 2005, pp. 78–95.

[22] Amazon Web Services, Amazon EC2 – Virtual
Server Hosting, aws.amazon.com, Retrieved Jan.
2016.

[23] Marc Stevens, Counter-Cryptanalysis, CRYPTO
(Ran Canetti and Juan A. Garay, eds.), Lecture
Notes in Computer Science, vol. 8042-I, Springer,
2013, pp. 129–146.

[24] Marc Stevens, New Collision Attacks on SHA-1
Based on Optimal Joint Local-Collision Analysis,
EUROCRYPT (Thomas Johansson and Phong Q.
Nguyen, eds.), Lecture Notes in Computer Science,
vol. 7881, Springer, 2013, pp. 245–261.

[25] Marc Stevens, Elie Bursztein, Pierre Karpman,
Ange Albertini, and Yarik Markov, SHAttered,
February 2017, http://shattered.io.

[26] Marc Stevens, Pierre Karpman, and Thomas
Peyrin, Freestart Collision for Full SHA-1, EURO-
CRYPT (Marc Fischlin and Jean-Sébastien Coron,
eds.), Lecture Notes in Computer Science, vol.
9665, Springer, 2016, pp. 459–483.

[27] Marc Stevens, Arjen K. Lenstra, and Benne
de Weger, Chosen-Prefix Collisions for MD5 and

USENIX Association 26th USENIX Security Symposium 893

http://dx.doi.org/10.1007/BFb0055720
http://dx.doi.org/10.1007/BFb0055720
http://eprint.iacr.org/2007/474
http://eprint.iacr.org/2007/474
http://dx.doi.org/10.1007/0-387-34805-0_39
http://dx.doi.org/10.1007/0-387-34805-0_39
http://dx.doi.org/10.1007/978-3-662-48800-3_24
http://dx.doi.org/10.1007/978-3-662-48800-3_24
http://dx.doi.org/10.1007/978-3-662-48800-3_24
http://eprint.iacr.org/2010/413
http://eprint.iacr.org/2010/413
http://eprint.iacr.org/2010/413
http://eprint.iacr.org/2011/641
http://www.infoworld.com/article/3159186/security/oracle-to-java-devs-stop-signing-jar-files-with-md5.html
http://www.infoworld.com/article/3159186/security/oracle-to-java-devs-stop-signing-jar-files-with-md5.html
http://eprint.iacr.org/2005/266
http://eprint.iacr.org/2005/266
http://eprint.iacr.org/2005/266
http://dx.doi.org/10.1007/978-3-662-47989-6_30
http://dx.doi.org/10.1007/978-3-662-47989-6_30
http://www.crysys.hu/skywiper/skywiper.pdf
http://www.crysys.hu/skywiper/skywiper.pdf
https://www.securelist.com/en/blog/208193522/The_Flame_Questions_and_Answers
https://www.securelist.com/en/blog/208193522/The_Flame_Questions_and_Answers
http://dx.doi.org/10.1007/s10623-010-9458-9
http://dx.doi.org/10.1007/s10623-010-9458-9
http://dx.doi.org/10.1007/s10623-010-9458-9
http://dx.doi.org/10.1007/11779360_14
http://dx.doi.org/10.1007/11779360_14
http://dx.doi.org/10.1007/11779360_14
http://dx.doi.org/10.1007/11799313_18
http://dx.doi.org/10.1007/11799313_18
http://dx.doi.org/10.1007/11799313_18
http://dx.doi.org/10.1007/0-387-34805-0_40
http://dx.doi.org/10.1007/0-387-34805-0_40
http://articles.washingtonpost.com/2012-06-19/world/35460741_1_stuxnet-computer-virus-malware
http://articles.washingtonpost.com/2012-06-19/world/35460741_1_stuxnet-computer-virus-malware
http://articles.washingtonpost.com/2012-06-19/world/35460741_1_stuxnet-computer-virus-malware
http://dx.doi.org/10.1007/11586821_7
http://dx.doi.org/10.1007/11586821_7
https://aws.amazon.com/ec2/
https://aws.amazon.com/ec2/
http://dx.doi.org/10.1007/978-3-642-40041-4_8
http://dx.doi.org/10.1007/978-3-642-38348-9_15
http://dx.doi.org/10.1007/978-3-642-38348-9_15
http://shattered.io
http://shattered.io
http://dx.doi.org/10.1007/978-3-662-49890-3_18
http://dx.doi.org/10.1007/978-3-540-72540-4_1

Colliding X.509 Certificates for Different Identities,
EUROCRYPT (Moni Naor, ed.), Lecture Notes
in Computer Science, vol. 4515, Springer, 2007,
pp. 1–22.

[28] Marc Stevens and Dan Shumow,
sha1collisiondetection, GitHub, 2017.

[29] Marc Stevens, Alexander Sotirov, Jacob Appel-
baum, Arjen K. Lenstra, David Molnar, Dag Arne
Osvik, and Benne de Weger, Short Chosen-Prefix
Collisions for MD5 and the Creation of a Rogue CA
Certificate, CRYPTO (Shai Halevi, ed.), Lecture
Notes in Computer Science, vol. 5677, Springer,
2009, pp. 55–69.

[30] The OpenSSL Project, OpenSSL: The Open Source
toolkit for SSL/TLS, 1998, www.openssl.org.

[31] ThreadPost, SHA-1 end times have arrived, January
2017.

[32] Linus Torvalds, Put sha1dc on a diet, Mar 2017.

[33] Xiaoyun Wang, Dengguo Feng, Xuejia Lai, and
Hongbo Yu, Collisions for Hash Functions MD4,
MD5, HAVAL-128 and RIPEMD, Cryptology
ePrint Archive, Report 2004/199, 2004.

[34] Xiaoyun Wang, Yiqun Lisa Yin, and Hongbo Yu,
Finding Collisions in the Full SHA-1, CRYPTO
(Victor Shoup, ed.), Lecture Notes in Computer
Science, vol. 3621, Springer, 2005, pp. 17–36.

[35] Xiaoyun Wang and Hongbo Yu, How to Break MD5
and Other Hash Functions, EUROCRYPT (Ronald
Cramer, ed.), Lecture Notes in Computer Science,
vol. 3494, Springer, 2005, pp. 19–35.

[36] Jun Yajima, Terutoshi Iwasaki, Yusuke Naito,
Yu Sasaki, Takeshi Shimoyama, Noboru Kunihiro,
and Kazuo Ohta, A strict evaluation method on
the number of conditions for the SHA-1 collision
search, ASIACCS (Masayuki Abe and Virgil D.
Gligor, eds.), ACM, 2008, pp. 10–20.

[37] Jun Yajima, Yu Sasaki, Yusuke Naito, Terutoshi
Iwasaki, Takeshi Shimoyama, Noboru Kunihiro,
and Kazuo Ohta, A New Strategy for Finding a Dif-
ferential Path of SHA-1, ACISP (Josef Pieprzyk,
Hossein Ghodosi, and Ed Dawson, eds.), Lecture
Notes in Computer Science, vol. 4586, Springer,
2007, pp. 45–58.

894 26th USENIX Security Symposium USENIX Association

http://dx.doi.org/10.1007/978-3-540-72540-4_1
https://github.com/cr-marcstevens/sha1collisiondetection
http://dx.doi.org/10.1007/978-3-642-03356-8_4
http://dx.doi.org/10.1007/978-3-642-03356-8_4
http://dx.doi.org/10.1007/978-3-642-03356-8_4
http://www.openssl.org
http://www.openssl.org
www.openssl.org
https://threatpost.com/sha-1-end-times-have-arrived/123061/
https://marc.info/?t=148832873200004&r=1&w=2
http://eprint.iacr.org/2004/199
http://eprint.iacr.org/2004/199
http://dx.doi.org/10.1007/11535218_2
http://dx.doi.org/10.1007/11426639_2
http://dx.doi.org/10.1007/11426639_2
http://doi.acm.org/10.1145/1368310.1368316
http://doi.acm.org/10.1145/1368310.1368316
http://doi.acm.org/10.1145/1368310.1368316
http://dx.doi.org/10.1007/978-3-540-73458-1_4
http://dx.doi.org/10.1007/978-3-540-73458-1_4

A Unavoidable bit conditions

The tables below list the UBCs we have found in Sect. 4.6 and after processing to exploit their overlap as in Sect. 4.7.
Instead of listing DVs with their UBCs, we list the UBCs together with the list of DVs they belong to.

Table 4: Overlapping unavoidable bit conditions

UBC List of DVs the UBC belongs to
W44[29]⊕W45[29] = 0 I(48,0) I(51,0) I(52,0) II(45,0) II(46,0) II(50,0) II(51,0)
W49[29]⊕W50[29] = 0 I(46,0) II(45,0) II(50,0) II(51,0) II(55,0) II(56,0)
W48[29]⊕W49[29] = 0 I(45,0) I(52,0) II(49,0) II(50,0) II(54,0) II(55,0)
W47[29]⊕W48[29] = 0 I(44,0) I(51,0) II(48,0) II(49,0) II(53,0) II(54,0)
W46[29]⊕W47[29] = 0 I(43,0) I(50,0) II(47,0) II(48,0) II(52,0) II(53,0)
W45[29]⊕W46[29] = 0 I(49,0) I(52,0) II(46,0) II(47,0) II(51,0) II(52,0)
W43[29]⊕W44[29] = 0 I(47,0) I(50,0) I(51,0) II(45,0) II(49,0) II(50,0)
W40[29]⊕W41[29] = 0 I(44,0) I(47,0) I(48,0) II(46,0) II(47,0) II(56,0)
W47[4]⊕W50[29] = 0 I(47,0) I(49,0) I(51,0) II(45,0) II(51,0) II(56,0)
W46[4]⊕W49[29] = 0 I(46,0) I(48,0) I(50,0) I(52,0) II(50,0) II(55,0)
W45[4]⊕W48[29] = 0 I(45,0) I(47,0) I(49,0) I(51,0) II(49,0) II(54,0)
W44[4]⊕W47[29] = 0 I(44,0) I(46,0) I(48,0) I(50,0) II(48,0) II(53,0)
W43[4]⊕W46[29] = 0 I(43,0) I(45,0) I(47,0) I(49,0) II(47,0) II(52,0)
W42[4]⊕W45[29] = 0 I(44,0) I(46,0) I(48,0) I(52,0) II(46,0) II(51,0)
W41[4]⊕W44[29] = 0 I(43,0) I(45,0) I(47,0) I(51,0) II(45,0) II(50,0)
W54[29]⊕W55[29] = 0 I(51,0) II(47,0) II(50,0) II(55,0) II(56,0)
W53[29]⊕W54[29] = 0 I(50,0) II(46,0) II(49,0) II(54,0) II(55,0)
W52[29]⊕W53[29] = 0 I(49,0) II(45,0) II(48,0) II(53,0) II(54,0)
W50[29]⊕W51[29] = 0 I(47,0) II(46,0) II(51,0) II(52,0) II(56,0)
W42[29]⊕W43[29] = 0 I(46,0) I(49,0) I(50,0) II(48,0) II(49,0)
W41[29]⊕W42[29] = 0 I(45,0) I(48,0) I(49,0) II(47,0) II(48,0)
W50[4]⊕W53[29] = 0 I(50,0) I(52,0) II(46,0) II(48,0) II(54,0)
W49[4]⊕W52[29] = 0 I(49,0) I(51,0) II(45,0) II(47,0) II(53,0)
W48[4]⊕W51[29] = 0 I(48,0) I(50,0) I(52,0) II(46,0) II(52,0)
W40[4]⊕W43[29] = 0 I(44,0) I(46,0) I(50,0) II(49,0) II(56,0)
W39[4]⊕W42[29] = 0 I(43,0) I(45,0) I(49,0) II(48,0) II(55,0)
W38[4]⊕W41[29] = 0 I(44,0) I(48,0) II(47,0) II(54,0) II(56,0)
W37[4]⊕W40[29] = 0 I(43,0) I(47,0) II(46,0) II(53,0) II(55,0)
W55[29]⊕W56[29] = 0 I(52,0) II(48,0) II(51,0) II(56,0)
W51[29]⊕W52[29] = 0 I(48,0) II(47,0) II(52,0) II(53,0)
W52[4]⊕W55[29] = 0 I(52,0) II(48,0) II(50,0) II(56,0)
W51[4]⊕W54[29] = 0 I(51,0) II(47,0) II(49,0) II(55,0)
W36[4]⊕W40[29] = 0 I(46,0) I(49,0) II(45,0) II(48,0)
W45[6]⊕W47[6] = 0 I(47,2) I(49,2) I(51,2)
W44[6]⊕W46[6] = 0 I(46,2) I(48,2) I(50,2)

W35[4]⊕W39[29] = 0 I(45,0) I(48,0) II(47,0)
W53[29]⊕W56[29] = 1 I(52,0) II(48,0) II(49,0)
W51[29]⊕W54[29] = 1 I(50,0) II(46,0) II(47,0)
W50[29]⊕W52[29] = 1 I(49,0) I(51,0) II(45,0)
W49[29]⊕W51[29] = 1 I(48,0) I(50,0) I(52,0)
W48[29]⊕W50[29] = 1 I(47,0) I(49,0) I(51,0)
W47[29]⊕W49[29] = 1 I(46,0) I(48,0) I(50,0)
W46[29]⊕W48[29] = 1 I(45,0) I(47,0) I(49,0)
W45[29]⊕W47[29] = 1 I(44,0) I(46,0) I(48,0)
W44[29]⊕W46[29] = 1 I(43,0) I(45,0) I(47,0)

W40[4]⊕W42[4] = 1 I(44,0) I(46,0) II(56,0)
W39[4]⊕W41[4] = 1 I(43,0) I(45,0) II(55,0)

USENIX Association 26th USENIX Security Symposium 895

W38[4]⊕W40[4] = 1 I(44,0) II(54,0) II(56,0)
W37[4]⊕W39[4] = 1 I(43,0) II(53,0) II(55,0)
W41[1]⊕W42[6] = 1 I(48,2) II(46,2) II(51,2)
W40[1]⊕W41[6] = 1 I(47,2) I(51,2) II(50,2)
W39[1]⊕W40[6] = 1 I(46,2) I(50,2) II(49,2)
W36[1]⊕W37[6] = 1 I(47,2) I(50,2) II(46,2)

W58[29]⊕W59[29] = 0 II(51,0) II(54,0)
W57[29]⊕W58[29] = 0 II(50,0) II(53,0)
W56[29]⊕W57[29] = 0 II(49,0) II(52,0)

W48[6]⊕W50[6] = 0 I(50,2) II(46,2)
W47[6]⊕W49[6] = 0 I(49,2) I(51,2)
W46[6]⊕W48[6] = 0 I(48,2) I(50,2)
W43[6]⊕W45[6] = 0 I(47,2) I(49,2)
W42[6]⊕W44[6] = 0 I(46,2) I(48,2)
W50[6]⊕W51[1] = 0 I(50,2) II(46,2)
W47[6]⊕W48[1] = 0 I(47,2) II(51,2)
W46[6]⊕W47[1] = 0 I(46,2) II(50,2)
W42[6]⊕W43[1] = 0 II(46,2) II(51,2)
W41[6]⊕W42[1] = 0 I(51,2) II(50,2)
W40[6]⊕W41[1] = 0 I(50,2) II(49,2)

W56[4]⊕W59[29] = 0 II(52,0) II(54,0)
W55[4]⊕W58[29] = 0 II(51,0) II(53,0)
W54[4]⊕W57[29] = 0 II(50,0) II(52,0)
W53[4]⊕W56[29] = 0 II(49,0) II(51,0)
W39[4]⊕W43[29] = 0 I(52,0) II(51,0)
W38[4]⊕W42[29] = 0 I(51,0) II(50,0)
W37[4]⊕W41[29] = 0 I(50,0) II(49,0)
W35[3]⊕W39[28] = 0 I(51,0) II(47,0)
W63[0]⊕W64[5] = 1 I(48,0) II(48,0)
W62[0]⊕W63[5] = 1 I(47,0) II(47,0)
W61[0]⊕W62[5] = 1 I(46,0) II(46,0)
W60[0]⊕W61[5] = 1 I(45,0) II(45,0)

W56[29]⊕W59[29] = 1 II(51,0) II(52,0)
W48[29]⊕W55[29] = 1 I(51,0) I(52,0)

W36[4]⊕W38[4] = 1 II(52,0) II(54,0)
W63[1]⊕W64[6] = 1 I(45,0) II(45,0)
W61[2]⊕W62[7] = 1 I(46,2) II(46,2)
W44[1]⊕W45[6] = 1 I(51,2) II(49,2)
W37[1]⊕W38[6] = 1 I(48,2) I(51,2)
W35[1]⊕W36[6] = 1 I(46,2) I(49,2)

Table 5: Remaining unavoidable bit conditions

UBC DV of UBC UBC DV of UBC
W59[29]⊕W60[29] = 0 II(52,0) W53[6]⊕W55[6] = 0 II(51,2)

W52[6]⊕W54[6] = 0 II(50,2) W51[6]⊕W53[6] = 0 II(49,2)
W49[6]⊕W51[6] = 0 I(51,2) W41[6]⊕W43[6] = 0 I(47,2)
W40[6]⊕W42[6] = 0 I(46,2) W37[1]⊕W37[6] = 0 I(51,2)
W55[6]⊕W56[1] = 0 II(51,2) W54[6]⊕W55[1] = 0 II(50,2)
W53[6]⊕W54[1] = 0 II(49,2) W51[6]⊕W52[1] = 0 I(51,2)
W49[6]⊕W50[1] = 0 I(49,2) W48[6]⊕W49[1] = 0 I(48,2)
W45[6]⊕W46[1] = 0 II(49,2) W39[6]⊕W40[1] = 0 I(49,2)

W57[4]⊕W59[29] = 0 II(55,0) W60[4]⊕W64[29] = 0 II(56,0)

896 26th USENIX Security Symposium USENIX Association

W60[5]⊕W64[30] = 0 I(44,0) W59[4]⊕W63[29] = 0 II(55,0)
W59[5]⊕W63[30] = 0 I(43,0) W58[4]⊕W62[29] = 0 II(54,0)
W57[4]⊕W61[29] = 0 II(53,0) W44[3]⊕W48[28] = 0 II(56,0)
W44[4]⊕W48[29] = 0 II(56,0) W43[3]⊕W47[28] = 0 II(55,0)
W43[4]⊕W47[29] = 0 II(55,0) W42[3]⊕W46[28] = 0 II(54,0)
W42[4]⊕W46[29] = 0 II(54,0) W41[3]⊕W45[28] = 0 II(53,0)
W41[4]⊕W45[29] = 0 II(53,0) W40[3]⊕W44[28] = 0 II(52,0)
W40[4]⊕W44[29] = 0 II(52,0) W39[3]⊕W43[28] = 0 II(51,0)
W39[5]⊕W43[30] = 0 II(51,2) W38[3]⊕W42[28] = 0 II(50,0)
W38[5]⊕W42[30] = 0 II(50,2) W37[3]⊕W41[28] = 0 II(49,0)
W37[5]⊕W41[30] = 0 II(49,2) W36[3]⊕W40[28] = 0 II(48,0)
W35[5]⊕W39[30] = 0 I(51,2) W59[0]⊕W64[30] = 1 I(44,0)
W58[0]⊕W63[30] = 1 I(43,0) W58[29]⊕W61[29] = 1 II(53,0)

W55[29]⊕W58[29] = 1 II(50,0) W52[1]⊕W56[1] = 1 II(51,2)
W51[1]⊕W55[1] = 1 II(50,2) W50[1]⊕W54[1] = 1 II(49,2)
W47[1]⊕W51[1] = 1 II(46,2) W46[1]⊕W48[1] = 1 II(51,2)
W45[1]⊕W47[1] = 1 II(50,2) W43[1]⊕W51[1] = 1 I(50,2)
W42[1]⊕W50[1] = 1 I(49,2) W38[0]⊕W43[30] = 1 II(51,2)
W38[1]⊕W40[1] = 1 I(49,2) W38[4]⊕W39[4] = 1 I(52,0)

W37[0]⊕W42[30] = 1 II(50,2) W37[4]⊕W38[4] = 1 I(51,0)
W36[0]⊕W41[30] = 1 II(49,2) W36[4]⊕W37[4] = 1 I(50,0)
W63[2]⊕W64[7] = 1 I(48,2) W62[1]⊕W63[6] = 1 I(44,0)
W62[2]⊕W63[7] = 1 I(47,2) W61[1]⊕W62[6] = 1 I(43,0)

W39[30]⊕W44[28] = 1 II(52,0) W38[30]⊕W43[28] = 1 II(51,0)
W37[30]⊕W42[28] = 1 II(50,0) W36[30]⊕W41[28] = 1 II(49,0)
W35[30]⊕W40[28] = 1 II(48,0)

USENIX Association 26th USENIX Security Symposium 897

