
This paper is included in the Proceedings of the
26th USENIX Security Symposium
August 16–18, 2017 • Vancouver, BC, Canada

ISBN 978-1-931971-40-9

Open access to the Proceedings of the
26th USENIX Security Symposium

is sponsored by USENIX

Beauty and the Burst: Remote Identification of
Encrypted Video Streams

Roei Schuster, Tel Aviv University, Cornell Tech; Vitaly Shmatikov, Cornell Tech;
Eran Tromer, Tel Aviv University, Columbia University

https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/schuster

Beauty and the Burst:
Remote Identification of Encrypted Video Streams

Roei Schuster
Tel Aviv University, Cornell Tech

rs864@cornell.edu

Vitaly Shmatikov
Cornell Tech

shmat@cs.cornell.edu

Eran Tromer
Tel Aviv University, Columbia University

tromer@cs.tau.ac.il

Abstract
The MPEG-DASH streaming video standard contains an
information leak: even if the stream is encrypted, the
segmentation prescribed by the standard causes content-
dependent packet bursts. We show that many video
streams are uniquely characterized by their burst pat-
terns, and classifiers based on convolutional neural net-
works can accurately identify these patterns given very
coarse network measurements. We demonstrate that this
attack can be performed even by a Web attacker who
does not directly observe the stream, e.g., a JavaScript
ad confined in a Web browser on a nearby machine.

1 Introduction
Everything has a fingerprint, and so do encrypted video
streams. Transport-layer encryption hides the content but
not the network characteristics such as the number of bits
transmitted per second. Video streams are known to be
bursty [2, 32, 42]. If their traffic patterns are correlated
with content, an adversary who can measure them may
be able to identify the video being streamed.

There have been several attempts to use traffic analysis
to identify encrypted streamed content [1, 11, 43, 44, 46].
Existing techniques, however, generate many false posi-
tives, make “closed-world” assumptions (i.e., the adver-
sary must know in advance that the streamed video be-
longs to a small known set), or are not robust to noise in
the network or the adversary’s measurements.

Further, prior work assumes that the adversary can di-
rectly observe the encrypted video stream either at the
network layer (e.g., a malicious Wi-Fi access point) [11]
or physical layer (e.g., a Wi-Fi sniffer) [43, 46], or else
that the adversary’s virtual machine is co-located with
the user’s virtual machine [1]. These threat models do
not include Web and mobile attackers who can remotely
execute some confined code on the user’s machine (e.g.,
a malicious JavaScript ad within the browser) but cannot
directly observe the encrypted stream.

Our contributions. First, we analyze the root cause of
the bursty, on-off patterns exhibited by encrypted video
streams. The MPEG-DASH streaming standard (1) cre-
ates video segments whose size varies due to variable-
rate encoding, and (2) prescribes that clients request con-
tent at segment granularity. We demonstrate that packet
bursts in encrypted streams correspond to segment re-
quests from the client and that burst sizes are highly cor-
related with the sizes of the underlying segments.

Second, we demonstrate that this leak is a fingerprint
for about 20% of YouTube videos because their burst
patterns are highly distinct. The adversary can mea-
sure video fingerprints on his own network and then use
them to recognize videos streamed on the target network.
We also argue that if the streamed video does not be-
long to the set known to the adversary, it will not be
mistaken for one of the known videos. This ensures a
high Bayesian detection rate: if the adversary identifies a
streamed video, then this is likely not a false positive.

Third, we develop a new video identification method-
ology based on convolutional neural networks and evalu-
ate it on video titles streamed by YouTube, Netflix, Ama-
zon, and Vimeo. Our YouTube detector has 0 false pos-
itives with 0.988 recall, while the Netflix detector has a
false positive rate of 0.0005 with 0.93 recall. In concur-
rent independent work, Reed and Kranch achieved com-
parable results for identifying streamed Netflix videos
using direct network observations [44] (see Section 11).

Fourth, we demonstrate that video identification based
on burst patterns does not require direct access to the
stream. Our attack can be performed by a remote at-
tacker who serves JavaScript code (e.g., a malicious Web
ad) running under the confinement of the browser’s same
origin policy, possibly on a different device. For exam-
ple, if the user is watching Netflix on his TV using a
Roku streaming device, his content may be identified by
the JavaScript executing on a PC on the same local net-
work. The attack code saturates a shared network link
carrying the targeted video stream and uses the result-

USENIX Association 26th USENIX Security Symposium 1357

Figure 2.1: Features of a Wireshark capture of Episode
3 of Mad Men. The left-hand figure shows packet sizes
along the time axis (packet sizes may be larger than Eth-
ernet MTU because of TCP offloading [53])—observe
the pattern of buffering followed by the on/off steady
state. The right-hand figure shows the size of bursts; the
first, largest burst is the size of the buffer.

ing contention to obtain coarse estimates of the stream’s
traffic rates and identify the video. This attacker is much
weaker than malicious ISPs and Wi-Fi access points typ-
ically considered in the traffic analysis literature.

In summary, we (1) explain the root causes of burst
patterns in encrypted video streams, (2) show how to ex-
ploit these patterns for video identification in an “open-
world” setting, (3) develop and evaluate a noise-tolerant
identification methodology based on deep learning, and
(4) demonstrate how a remote attacker without direct ob-
servations of the network can identify streamed videos.

2 Information Leak in Video Streams

Video streams are bursty. Video streaming traffic
is characterized by an initial short period of buffering,
followed by the steady state of alternating “On” (short
bursts of packets) and “Off” periods—see Figure 2.1.
This pattern has been observed for a wide variety of ser-
vices, devices, clients, and locations [2, 32, 42].

To avoid creating unnecessary traffic, streaming
clients typically throttle their content downloads: after
the initial buffering, they download at between 1X and
2X the content presentation speed. Clients maintain a
target buffer size proportional to presentation time and
request downloads when the buffer is below this target.

Streamed video content is typically segmented at the
application layer. Even if packets are encrypted at the
transport layer (e.g., using TLS), their sizes and times of
arrival—and, consequently, the sizes of packet bursts and
inter-burst intervals—are visible to anyone watching the
network. This is a repeated theme in the traffic-analysis
literature [8, 12, 46]. If the observable traffic features are
correlated with application-layer segmentation, they can
leak information about the content of the stream.

MPEG-DASH standard. Modern video streaming ser-
vices have broadly adopted [34, 59] the MPEG-DASH

standard [49, 52] for Dynamic Adaptive Streaming over
HTTP (DASH, in short). DASH aims to maximize sev-
eral measures of quality of experience (QoE) while sup-
porting interoperability with popular streaming technolo-
gies. DASH specifies a client-server interface for stream
fetching that is independent of the content’s bitrate and
quality. It does not prescribe any particular fetching dis-
cipline, encoding of content, or its presentation. DASH
uses TLS for content confidentiality. Content may be ad-
ditionally encrypted for DRM purposes, but this does not
change its network characteristics.

Bursty, on/off behavior of video streams predates
DASH, but DASH has effectively standardized it. DASH
divides video content into segments based on presen-
tation time. The content is stored in segment-files on
the server. Each file contains a particular encoding of
one segment. When a streaming session is initiated, the
server sends to the client a manifest referencing the time
segments and the available encodings. To obtain the con-
tent, the client submits requests for individual segments.
The client may request segment-files of any available en-
coding depending on the presentation considerations and
dynamic evaluation of network conditions.

DASH standardizes a leak. Video compression and
encoding algorithms exploit the fact that different video
scenes contain different amounts of perceptually mean-
ingful information. All popular streaming services use
variable-bitrate (VBR) encoding, where the bitrate of
an encoded video varies with its content. Therefore,
DASH segments of roughly the same duration (in video-
presentation seconds) have very different sizes (in bytes).

DASH video is always streamed in segment-sized
chunks. Furthermore, a client requests a new segment
when its buffer is just below the target value, and the en-
tire segment finishes downloading long before the client
requests another one. Therefore, in a steady-state, on/off
stream, burst sizes are correlated with the on-disk seg-
ment sizes. The latter sizes, in turn, leak information
about the encoded content due to variable-rate encod-
ing. We conjecture that a suffix of the vector of segment
sizes, arranged in the order they are fetched from the
server (which corresponds to the order of presentation),
can be estimated from the observable characteristics of
encrypted streaming traffic, up to a small error induced
by the varying overheads of lower network layers.

Example. Action scenes, where a lot happens on the
screen, are typically encoded with a higher bitrate than
slower scenes. Figure 2.2 shows how the bitrate of an
excerpt from the “Iguana vs. Snakes” video [40] in the
“Planet Earth” series changes over time (based on an
MP4 file downloaded from YouTube). The video starts
with an intense chase scene as the iguana is escaping
from snakes. In the last 15 seconds, the iguana reaches

1358 26th USENIX Security Symposium USENIX Association

Figure 2.2: Bitrate of the “Iguana vs. Snakes” video.

higher ground and rests next to another friendly iguana.
To demonstrate this effect more systematically, we

created a 45-second “low action” scene by concatenat-
ing three copies of the 15-second footage of the resting
iguana, and a 45-second “high action” scene by concate-
nating 15-second footage from the height of the chase.
We then repeatedly alternated these scenes to craft an ar-
tificial 30-minute video, which we uploaded to YouTube
(as a private video). We played this video in a Chrome
browser configured with an HTTPS proxy. One of the
first HTTPS responses from the YouTube server is an
XML Media Presentation Description (MPD), which de-
scribes MPEG-DASH segmentation into 5-second seg-
ments. The MPD specifies the audio encoding (135 Kilo-
bits per second) and five video encoding options corre-
sponding to different resolutions: 144, 240, 360, 480,
and 720. Subsequent HTTPS responses contain audio
and 720p video for the requested segments. Audio and
video segment-files corresponding to a given time seg-
ment are fetched at roughly the same time, on two re-
spective HTTPS request-response pairs.

As this video is being streamed, we observe the ini-
tial buffering period of about 50 seconds, during which
segment-files are fetched at a rate higher than their pre-
sentation rate. Then the client reaches a steady state and
is fetching segment-files exactly every 5 seconds.

We used Wireshark to capture the same traffic en-
crypted under TLS. Figure 2.3 shows the buffer and burst
sizes of the “on” periods in the steady state. During
this steady state, when segments are fetched every 5 sec-
onds, burst sizes correspond to the sizes of segment-
files. When the segments with an escaping iguana are
being fetched, burst size increases. When the segments
with a resting iguana are being fetched, it decreases.
Because of the way this video was crafted, “low” and
“high” action—and the correspondingly high and low
burst sizes—alternate every 45 seconds (9 time seg-

Figure 2.3: Burst sizes when streaming a video with al-
ternating high- and low-bitrate periods. The first, largest
burst is the size of the client’s buffer.

ments). In a video stream with different content, the pat-
tern would have been different.

3 Attack Scenarios
3.1 Evaluated attack scenarios

On-path network attacker. If the attacker has passive
on-path access to the victim’s network traffic at the net-
work (IP) or transport (TCP/UDP) layers, he can directly
perform measurements needed for the attack. This in-
cludes malicious Wi-Fi access points, proxies, routers,
enterprise networks, ISPs, tapped network cables, etc.

Cross-site and cross-device attacker. Coarse measure-
ments of the victim’s stream can also be performed with-
out direct access. The attacker (1) saturates a network
link between the victim and the server, and (2) estimates
the fluctuations in the amount of congestion, which indi-
rectly reveal the victim’s traffic patterns. This is a special
case of timing side channels in schedulers [16, 25] that
can be exploited in a variety of attack scenarios.

We focus on remote attackers who can execute
JavaScript in the victim’s Web browser: rogue websites,
advertisers, analytics services, content distribution net-
works, etc. Their JavaScript is confined by the same ori-
gin policy [51], but it does not prevent the code from
using the above timing side channel to measure bursts in
a concurrent video stream as long as the stream and the
attacker’s own traffic share a network link. The client
receiving the stream may be running in a different tab
or browser instance on the same machine (a cross-site at-
tack) or on a different machine on the same local network
(a cross-device attack). For example, a smart TV may be
streaming a movie while the attacker’s JavaScript is run-
ning in a browser on a laptop on the same home network.

3.2 Other attack scenarios
There are several other scenarios where the attacker can
indirectly estimate the bitrate and other coarse features
of the victim’s video stream.

Wi-Fi sniffer. An attacker who is physically close to the
victim’s Wi-Fi network but not connected to it can set the
NIC of his PC or (rooted) smartphone to the promiscu-

USENIX Association 26th USENIX Security Symposium 1359

ous mode and estimate traffic rates by sniffing physical-
layer WLAN packets [3, 66]. If the connection is pro-
tected by 802.11, the attacker obtains frames in which
all data on top of the media access control (MAC) layer
(the lower sublayer of the link layer) is encrypted. This
attacker learns the direction of the frames (upstream or
downstream) and their sizes. He can also discard MAC-
layer management frames as identified by their headers.

Unlike an on-path attacker, a Wi-Fi sniffer cannot dis-
tinguish (1) session-layer packet retransmissions and the
original transmissions, nor (2) multiple TCP/IP flows on
the same link. Both factors introduce some noise into the
attacker’s observations. Under reasonable network con-
ditions, however, there will be few link-layer retransmis-
sions. We show that our JavaScript attack works even
with a noisy, flow-insensitive estimate of the burst size
(total number of bytes on the wire)—see Section 9.1. The
Wi-Fi sniffing attack should perform at least as well.

Fully remote attacker. A remote attacker who has no
foothold in the victim’s network can use the same net-
work congestion side channel as our JavaScript attack for
coarse-grained traffic measurement [15, 17, 23].

Shared-machine attacker. Our off-path attack is active:
it requires saturating the victim’s link in order to estimate
his traffic. If the attacker can execute code on the same
machine where the victim is streaming video (e.g., run
an app on the same smartphone or execute JavaScript in
a browser on the same PC), he may be able to estimate
traffic via other side channels, such as shared cache or
Linux virtual filesystems (sysfs and procfs) [41, 67].

4 Overview of the Attack

Create detectors. For every video file that the attacker
wants to identify, he constructs a detector algorithm that
determines, given measurements of a stream, whether the
stream is carrying this video file or not.

In this paper, we use machine-learning models as de-
tectors. To generate labeled training data, the attacker
streams the video of interest to his own computer and
captures the resulting traffic; he also streams other videos
as negative examples. This is repeated multiple times
(we used up to 100 samples of each video in our exper-
iments). The required capture length depends on the at-
tacker’s vantage point: we used 60 seconds per sample
for the Netflix on-path attacker, 5-6 minutes per sample
for the JavaScript attacker. In our experiments, we tar-
geted the first minutes of the stream, but this approach
works for any sufficiently long section of the video.

Critically, our detectors are network-agnostic, be-
cause the same segment-files streamed over different net-
works exhibit the same burst patterns. Therefore, the at-
tacker can train detectors using the data collected on his
own network, then use them to identify video streams on

another, target network (see Section 7.4).
Since our detectors identify a particular segmented file

and not the underlying content, the attacker needs a sepa-
rate detector for each segmented video he wants to iden-
tify. The same content served by different streaming ser-
vices or different CDN nodes of the same service could
have different encodings and segment-files. Moreover,
to maximize QoE under varying network conditions, the
same content usually has several encodings on the same
server (e.g., at different resolutions). YouTube and Net-
flix support a few dozen encodings [35, 65] but typically
no more than 10 per title and device type. The segment-
files streamed to the attacker when he is collecting train-
ing data must be identical to those streamed to the vic-
tim. In practice, we found that Netflix videos streamed
on Wi-Fi networks from different ISPs in the same city
have identical segmentation (see Section 7.4).

If the attacker’s client and network support the
highest-quality encoding, he can also get the service to
stream lower-quality encodings by downgrading through
the interface of the streaming application, or by imposing
traffic-shaping and policy limitations on his network.

Apply detectors. In the online phase of the attack, the
attacker measures the victim’s network traffic using one
of the methods from Section 3. Because video traffic
is very distinct and can be accurately recognized from
coarse-grained features [66], we assume that the attacker
can tell approximately when video playback begins.

He then applies his detectors to the collected measure-
ments to identify the streamed video or determine that it
is not one of the videos for which he has detectors.

5 Experimental Setup
5.1 Targets and attackers
As the streaming client, we used a Chrome browser run-
ning in an Ubuntu 14.04 VM on a Windows host with
an Intel i7-3720QM CPU. We also experimented with a
Roku Premiere streaming device (see Section 9.3).

The clients were connected to a university campus net-
work with over 105 Mbps upload and download band-
width (measured using [54]). We refer to it as the “train-
ing network.” For the cross-network experiments in
Section 7.4, we also used a campus Wi-Fi network (10
Mbps) and a home Wi-Fi network from a cable ISP (82
Mbps). We refer to them as “test networks.”

To evaluate on-path attacks, we assume that the at-
tacker directly observes the target stream as described in
Section 5.2. To evaluate off-path attacks, we assume that
the attacker executes his JavaScript client code either in
the same browser that is receiving the target stream (the
cross-site attack), or on a machine on the same local net-
work as the device that is receiving the target stream (the
cross-device attack). In both cases, the attacker’s client

1360 26th USENIX Security Symposium USENIX Association

is communicating with a colluding attack server.
In both the cross-site and cross-device scenarios, (1)

the attacker’s client and the recipient of the target stream
are behind a congested home router, while (2) the attack
server and the streaming server are outside this router,
in different Internet locations. Consequently, the target
stream and the attacker’s client-server communications
share a congested network link. In Section 9, we de-
scribed our setup for these experiments in more detail.

5.2 Data collection
We focused on four popular streaming services: Net-
flix, YouTube, Amazon, and Vimeo. For our proof-of-
concept experiments, we manually chose a few titles
from each service: 11 popular TV series, with up to 10
episodes per series, for a total of 100 titles from Netflix;
20 titles from YouTube; and 10 titles each from Amazon
and Vimeo. See Appendix C for the list of titles.

Additionally, we crawled YouTube starting from the
main page and the front pages of topical channels (e.g.,
sports and movies) and recursively following recommen-
dation links. The links on the channel front pages are
very popular, with over 100k views each. Our crawler
thus emulates user behavior: it starts with popular videos
and follows YouTube’s recommendations. This crawl
yielded links to 3,558 videos, to be used in Section 6.

Automated capture. For each title, we spawned a
Chrome browser instance and used a service-specific
“rewind” procedure so that playback commenced at the
beginning of the content. For videos with an initial title
sequence, this (non-unique) sequence is downloaded as
part of the initial buffering; the bursts in the on-off phase
correspond to the segments of unique content.

We captured the network traffic of each streaming ses-
sion for a certain duration (see below) using Wireshark’s
tshark [60]. For Amazon, Netflix, and Vimeo, the
application-layer protocol is TLS; for YouTube, it is ei-
ther QUIC, or TLS. We will refer to the collected data as
captures or captured sessions.

Occasionally, playback failed because of a Chrome
failure or network glitch. The resulting captures con-
tained very few bytes and we discarded them.

Feature extraction. From each capture, we kept only
the TCP flow with the greatest amount of bits and ex-
tracted the time series of the following flow attributes:
down/up/all bytes per second (BPS), down/up/all packet
per second (PPS), and down/up/all average packet length
(PLEN). To create uniformly sized vectors, we aggre-
gated the series into 0.25-second chunks by averaging
over 0.25-second intervals.

A burst is a sequence of points in a time series (ti,yi)
such that ti−ti−1 < I for some I (we used I = 0.5). When
the points correspond to arrival times and packet sizes,

bursts are presumably associated with the transmission
of higher-level elements such as HTTP responses (see
Section 2). A burst series is a series where every point
corresponds to a burst. The time of the burst is the mid-
point between the beginning and the end of the point se-
quence that forms the burst. The value of the burst is the
sum of the values of points in the sequence. We aggre-
gate bursts series by summing into 0.25-second chunks.

Netflix. We streamed each of the 100 titles one by one
and captured the first minute of network traffic for each
stream. This was repeated 100 times.

For the cross-network experiments, we chose a sub-
set consisting of 5 episodes of “Mad Men” and 5 other
titles. For each title in this subset, we captured 20 90-
second streaming sessions on the training network and
20 sessions on the test networks.

YouTube. We streamed and captured each of the 20
selected titles 100 times, and each of the 3,558 titles
from the automated crawl once. Encoding for YouTube
videos varies and bitrate can be less variable than for Net-
flix; also, the content is sometimes preceded by an ad.
Therefore, we took 4.5-minute Wireshark captures and
cropped the captured streaming flows to 3 minutes. For
2 of the 20 titles, the ad was so long that the capture of
the actual content was shorter than 3 minutes. We dis-
carded these and only used the remaining 18 titles, with
3-minute content captures for each.

We also downloaded actual 720p MP4 file video files
(as opposed to their network streams) for the 3,558 ti-
tles from the crawl, using the SAVEFROM.NET Web tool.
These files were used for measuring the uniqueness of
burst patterns, not for identification experiments.

Amazon and Vimeo. We streamed every title 100 times.
For Amazon, we captured 90 seconds of each stream. For
Vimeo, we noticed that burst patterns are very consistent
and strongly identifying, so we only needed to capture
60 seconds per stream.

Storage. After feature extraction, the data saved for our
attack experiments totals 1.2GB for Netflix, 2.3GB for
YouTube, and about 0.5GB each for Vimeo and Amazon.

6 From Leaks to Fingerprints
In Section 2, we explained how DASH leaks information
about the segment sizes of video files. We now show that
for 19% of YouTube files, this leak is actually a finger-
print: the sequence of segment sizes identifies the video
with virtually no false positives.

Modeling the server. We used the Bento4 MPEG-
DASH toolset [4] to process our 3,558 YouTube videos
(see Section 5.2) for standardized streaming, i.e., divide
them into time segments and create the manifests. We
opted for 5-second segments, which matches our obser-
vations of both Netflix and YouTube and is close to a

USENIX Association 26th USENIX Security Symposium 1361

recent recommendation [10]. We believe that the encod-
ing parameters of these videos are representative of other
YouTube videos. The MPEG-DASH client-server inter-
action induced by our simulated server is close to what
we empirically observed on YouTube (see Section 2).

Modeling the attacker. Let m be a video. When m is
streamed, let its trace t ∈ Rk be the sizes (in bytes) of
the first k bursts and let T m denote the probability distri-
bution of these traces. We assume that T m is the same
whether the video is streamed to the attacker’s client
(during training) or to the victim’s client (during iden-
tification). This is empirically justified in Section 7.4.

For the theoretical analysis in this section, we use
a very simple fingerprinting algorithm. For any v =
(v1, . . .vk) ∈Rk, define α(v)≡ (v1, . . .vk,v2−v1, . . .vk−
vk−1). Intuitively, α(v) accounts for both the absolute
magnitudes of segment sizes and their variability pattern.

During training, the attacker acquires n training traces
T S = {t1, . . . tn} drawn from T m. Let sm =mean(T S), the
element-wise average over T S. Training produces α(sm),
which is the attacker’s fingerprint of m.

During the attack, the attacker is given the victim’s
trace t ∈ Rk and computes its traceprint, α(t). The at-
tacker concludes that the victim is watching m if and only
if ‖α(t)−α(sm)‖1 ≤ B, where B = 3,500,000 bytes.

Attacker’s recall. To compute the recall, or true
positive rate, of this attack, we first estimate the error
α(t)−α(sm) by lower-bounding the probability that this
error is small: Prt←T m [‖α(t)−α(sm)‖1 < B].

We expect that the bigger the burst size, the bigger the
potential error. For example, the average size of bursts in
the “Iguana vs. Snakes” video is particularly high, over
1MB, vs. the average of 693K across the videos in our
set. We streamed this video 100 times, aggregated the
traces, and computed the 10-burst fingerprint. We then
computed the error for each trace (i.e., the discrepancy
between the attacker-measured traceprint and the finger-
print of the underlying video) and fitted a Gaussian dis-
tribution using SciPy’s Maximum Likelihood Estimator.
The expected value of the error is 41,643 bytes, standard
deviation is 24,970 bytes. Observe that B/7 is over 10
standard deviations away from the expectation of the er-
ror. Thus, Prt←T m [‖α(t)−α(sm)‖1 ≤ B/7]≥ 1−10−12,
for the aforementioned k = 10.

To estimate the error for k = 40 (as will be needed
later), we partition1 t ∈ R40 into 4 contiguous blocks
of length 10 and apply the union bound on the prob-
abilities of error in each block and the difference el-
ements in α , i.e.,

∣∣∣(ti− t j)− (sm
i − sm

j)
∣∣∣ for (i, j) ∈

(11,10),(21,20),(31,30). For each of the 7 elements
of α , the error is bounded by B/7 with probability
≥ 1− 10−12. Total error is thus bounded by B with

1With longer captures, we could have estimated this error directly.

very high probability, Prt←T m [‖α(t)−α(sm)‖1 ≤ B] ≥
1−7 ·

(
10−12

)
≥ 1−10−11, implying very high recall.

Attacker’s precision. Even if the distance between
the attacker-measured “traceprint” and the video’s finger-
print is small, the attacker may still misclassify the video
if its fingerprint is close to another one. We show that for
almost 20% of the videos in our YouTube dataset, such
mistake is unlikely (and indeed never occurs in practice).

Let D be the 3,558 videos in our YouTube dataset. For
m ∈ D, let zm ∈ Rk denote the series of sizes (in bytes)
of the first k segments of m, as produced by the server’s
segmentation of the corresponding MP4 files. We say
that a video has variable segment size if (1) the overall
bitrate is over 100 kBps, and (2) in zm, more than half of
the adjacent pairs differ by more than 110 kB. Let V be
the set of videos with variable segment sizes. We observe
that in our dataset, |V |= 671 (≈19% of D).

A collision is video pair m ∈ V,m′ ∈ D∪V such that
m 6= m′,

∥∥∥α(zm)−α(zm′)
∥∥∥

1
≤ 2B. Then our attacker

could mistake m for m′ even if m’s traceprint is B-close
to the fingerprint (as must be the case with high proba-
bility). There are no such collisions in our dataset.

To estimate the attacker’s precision, we need to as-
sume that sm, the series of average burst sizes used to
compute the fingerprint, is similar to the correspond-
ing series of segment sizes zm in the following sense: if∥∥∥α(zm)−α(zm′)

∥∥∥
1
≥ 2B, then

∥∥∥α(sm)−α(sm′)
∥∥∥

1
≥ 2B.

This assumption is empirically true. In general, we ex-
pect each burst size to be related to the corresponding
segment size by an affine function (accounting for the
constant and multiplicative overheads of the encoding
and headers added by each network layer).

It follows that no two fingerprints α(sm),α(sm′) are
2B-close in the L1 norm. Since with probability 10−11 a
traceprint α(t) (of a video m with variable segment size)
is B-close to the correct fingerprint α(sm) (by the recall
bound above), the probability that an attacker mistakes
t’s video for another one in our dataset is at most 10−11.

Discussion. This theoretical analysis demonstrates that
a significant fraction of YouTube videos are unique given
a rudimentary fingerprinting algorithm. This algorithm
yields a very strong detector for the videos that satisfy
the variable segment size criterion, which is 671 videos
out of 3,558 in our dataset. The attacker can easily check
whether a particular video satisfies this criterion.

While our dataset is small in comparison to the en-
tire YouTube, the extremely low error rate and complete
absence of collisions indicate that the attack should gen-
eralize. The false positive rate for the the videos satis-
fying the criterion is very low, which guarantees that the
Bayesian detection rate is high even if the base rate is
low (see Section 8).

1362 26th USENIX Security Symposium USENIX Association

In the following sections, we develop a more sophis-
ticated and accurate classification method based on ma-
chine learning, relax the simplifying assumptions made
in the theoretical analysis, and empirically evaluate our
method against popular streaming services.

7 Video Identification Using Neural Net-
works

Section 6 explains why DASH-based video streams are
fingerprintable, but the theoretical model underestimates
the capabilities of realistic attackers who can use traf-
fic features other than burst sizes (e.g., packet timing).
Moreover, the simple classifier based on L1 distance is
clearly suboptimal, e.g., it does not account for the asym-
metry of the error distribution. Also, the theoretical
model assumes that the attacker can reliably detect bursts
and is thus not robust to noisy network conditions.

A more sophisticated classifier would process more
and lower-level features and construct a more complex
model to characterize the network traces of a given video.
In this section, we use machine learning to construct such
classifiers. One plausible approach is to compute the
classifier of a video from its file, but we found it to be
relatively ineffective (see Appendix A). Instead, we use
multiple streams of the same content to train a classifier.

7.1 Background on CNNs
Deep learning [29] is a branch of machine learning based
on multi-layer artificial deep neural networks (DNNs).
DNNs have proved very effective for signal recognition
tasks such as speech transcription [19], image segmenta-
tion [14], image classification [28], and many others.

In a neural network, each layer of neurons does some
computation on its input and passes the output to the next
layer (or final output)—see Figure 7.1. The first, input
layer is a tensor representation of the input, e.g., pixels
in the case of image classification. The subsequent (low)
levels typically infer representations of the features of
the input, and the final (high) layers perform the learning
task (e.g., classification) given these features.

DNNs are good at capturing high-level concepts that
are easy for humans to agree on but hard to express for-
mally. In our case, we use DNNs to capture traffic-level
commonalities of the streaming sessions of a given ti-
tle, even in the presence of some traffic variations among
these sessions. Further, neural networks are flexible and
can leverage information from the low-level features,
such as packet lengths, as well as sequences of burst sizes
(as estimated from encrypted traffic). As input, they can
use any time series that characterizes the stream. We ex-
ploit this in both on-path and off-path attack scenarios.

Convolutional Neural Networks (CNNs) [9] are deep
neural networks whose lower layers apply the same lin-
ear transformation on many windows of the input data.

Figure 7.1: Our CNN architecture. k denotes the number
of feature types taken. n is the recording time in seconds
divided by the time-series sampling rate (0.25).

These layers are typically used to produce representa-
tions of local features (e.g., spatially local in an image,
or temporally local in a time series). These are suitable
for our setting, where the network events corresponding
to each DASH burst occur in close temporal proximity.

We use supervised training on a corpus that consists
of traffic measurements labeled with their correct class,
i.e., the identity of the corresponding video. Training
involves multiple epochs. During each epoch, an opti-
mization procedure processes a batch of training data and
adjusts the parameters in the functions computed by the
layers so as to minimize the error between the correct
classification and the output of the classifier. Learning is
successful only if (1) the classifier reduces the training
error, and (2) the reduced error rate generalizes to test
samples, i.e., inputs that the classifier was not trained on.

7.2 Our classifier

We use CNNs with three convolution layers, max pool-
ing, and two dense layers (see Figure 7.1). We train them
using an Adam [26] optimizer on batches of 64 samples,
with categorical cross-entropy as the error function.

The classifier is constructed using TensorFlow with
the Keras front end. For each task, we randomly shuffle
the samples, apply the 0.7-0.3 train-test split, and train
for a specified number of epochs. The dataset was nor-
malized on a per-feature basis: the time-series vector rep-
resenting a given feature in each sample was divided by
the maximum of the aggregated values of this feature.

Table 7.2 shows the training time, on a workstation
with Intel i7-5690X CPU and two NVidia Titan X GPUs.
For comparison, we also performed training in an Ubuntu
virtual machine on a commodity laptop with an i7-6600U
CPU (and no GPUs) running Windows 10; in this case
training was 35 times slower, but even so, the most
time-consuming training (that of the Netflix classifier for
1,400 epochs) took less than 10 hours.

USENIX Association 26th USENIX Security Symposium 1363

7.3 Classification results
We trained a separate classifier for each dataset and each
feature type listed in Section 5.2, as well as for each
traffic direction (inbound, outbound, or both). Table 7.2
shows the accuracy of these classifiers as the fraction of
correctly classified test samples.

The YouTube classifier is remarkably accurate. Not
only it achieves 99% accuracy, but it also distinguishes
20 known classes from a large “other” class (unknown
videos) with high probability. Furthermore, it works well
with any of the features. For example, it achieves 90%
accuracy given just the times of packet arrivals at a very
coarse granularity of 0.25-second intervals (i.e., the PPS
feature). This suggests that YouTube streams are partic-
ularly susceptible to adversarial identification.

Netflix 1/100 classifier. To gain some insight into how
accurate these classifiers are, consider the Netflix classi-
fier that was trained on the BPS feature for 1,400 epochs,
achieving 98% accuracy. Figure 7.3a shows the confu-
sion matrix. The classifier does not consistently mistake
any class for another. All mistakes but one happen just
once. This indicates that different classes do not collide
in the classifier’s internal representation.

Minimizing false positives. The output of the last, soft-
max layer of the neural network is traditionally inter-
preted as a vector of probabilities. The classifier’s pre-
diction is the class with the highest probability. We can
use this probability as a confidence measure.

Our goal is to ensure that the classifier produces no
false positives, at the cost of occasionally failing to detect
the match (false negatives). We set a confidence thresh-
old and only accept a match if the classifier’s confidence
is above the threshold. If confidence is below the thresh-
old, we intentionally classify the input as “other” regard-
less of the class chosen by the classifier.

Figure 7.3b shows the precision and recall of the clas-
sifier for various values of the confidence threshold. Pre-
cision and recall are calculated by aggregating the false
positives and false negatives of all classes except “other”.
Without any decrease in recall, we can achieve a false
positive rate of just 0.005 (precision of 0.995). By ac-
cepting a 0.07 false negative rate (0.93 recall), we obtain
a false positive rate of less than 0.0005, or precision of
0.9995, with just 1 false positive out of 2224 matches.

YouTube 1/18 classifier. Our YouTube classifier trained
for just 150 epochs on BURSTS achieves 0.994 accuracy.
Figure 7.4a shows the confusion matrix. Almost all mis-
classifications are for “other” (i.e., known titles not rec-
ognized), thus there are very few false positives.

Figure 7.4b shows the precision and recall of the
YouTube classifier as a function of the confidence thresh-
old. Even when the threshold is 0 (equivalent to simply
taking argmax of the classifier’s output), the false nega-

(a) Confusion matrix. The entries
off the diagonal are misclassifications.
Color in cell i, j denotes the number of
samples of class i classified as j.

(b) Precision vs. recall.

Figure 7.3: Netflix 1/100 classifier.

(a) Confusion matrix. The entries
off the diagonal are misclassifications.
The bottom row and rightmost column
are of the “other” class.

(b) Precision vs. recall.

Figure 7.4: YouTube 1/18 + “other” classifier.

tive rate is 0.01 (0.99 recall), and precision is better than
accuracy (0.995). By accepting a tiny, 0.002 drop in re-
call, we achieve zero false positives.

Using multiple feature types. The classifiers discussed
above use a single feature type and a one-dimensional in-
put layer (k = 1). We also tried more sophisticated clas-
sifiers that take in multiple features. In such an architec-
ture, we expect the same one-dimensional layer to pick
up localized attributes of different features. We used a
greedy search algorithm on the feature set space that be-
gins with an empty set of features and then adds the fea-
ture that maximizes test accuracy after training. Training
on multiple features was slower and did not produce sig-
nificantly more accurate classifiers in our experiments. It
is possible that a more elaborate neural network architec-
ture with k independent convolutional layers would work
better, albeit with slower training.

7.4 Cross-network training
To collect training data, the attacker must stream videos
and record traffic. He may be unable to do this on the
same local network as the victim, e.g., because that net-
work is secured, or because the attacker wants to identify
videos en masse for multiple users on different networks.

1364 26th USENIX Security Symposium USENIX Association

Dataset TIME EPOCHS PLENIN PLENOUT PLEN BPSIN BPSOUT BPS BURSTS BURSTSIN BURSTSOUT PPSIN PPSOUT PPS

Netflix 497 700 0.318 0.377 0.333 0.983 0.901 0.982 0.926 0.044 0.708 0.917 0.892 0.921
994 1400 0.301 0.474 0.340 0.983 0.895 0.985 0.959 0.949 0.757 0.918 0.881 0.931

YouTube 94 150 0.993 0.993 0.994 0.995 0.994 0.995 0.984 0.989 0.988 0.995 0.993 0.995
Amazon 88 700 0.895 0.925 0.917 0.899 0.891 0.905 0.790 0.879 0.712 0.792 0.835 0.790
Vimeo 80 500 0.755 0.624 0.741 0.980 0.938 0.984 0.984 0.986 0.916 0.958 0.924 0.940

Figure 7.2: Accuracy of our classifiers. TIME is the approximate total training time, in seconds. EPOCHS is the number
of epochs. The remaining columns show the test accuracy of the classifier when trained on a given feature. The
features are the time series of, respectively, packet length, Bps, bursts series, and packets per second (see Section 5.2),
measured in the up, down, and both directions.

Figure 7.5: Burst sizes of streamed “Reservoir Dogs”.
The two captures were made on a campus network (+)
and a home network (∗).

The attacker can still collect training data by streaming
on his own Internet connection. This connection, how-
ever, may have different network characteristics, such as
bandwidth, latency, congestions and packet drops, all of
which affect the collected traces.

We conjecture that our classifiers learn high-level fea-
tures of video streams, such as burst patterns, that are
robust to reasonable differences in network characteris-
tics and will therefore maintain high accuracy even when
trained on a different network (in the absence of patho-
logical conditions such as excessive packet loss or inad-
equate bandwidth for streaming).

To confirm this, we captured 90-second streaming ses-
sions of 10 Netflix titles on a campus Wi-Fi network and
on a home Wi-Fi network from a cable ISP. We trained
our classifier on the campus data and measured its ac-
curacy on the home-network data. Our classifier uses
only the down BURST series (see Section 5.2). Trained
on 50 campus captures per title, it reaches 98% accuracy
on the home-network data (20 captures per title). Fig-
ure 7.5 shows that the burst patterns on the two networks
are highly correlated and aligned in time.

7.5 Possible improvements
Our classifiers attain very high accuracy but can benefit
from some potential improvements.

First, our Netflix classifier was trained on just 60-
second captures, equivalent to only about 45 seconds of
steady-state bursts after the (less discriminative) buffer-
ing period. It may be possible to train an even more pow-
erful classifier using 90-second captures.

Second, our relatively simple classifiers are slightly
under-fitted. More expressive classifiers (e.g., with more
hidden layers) suffer from over-fitting, but it may be
solved with more data, e.g., 1000 captures per video.

Finally, the low base rate potentially motivates the use
of detection cascades [56] consisting of a series of clas-
sifiers, each of which is more complex (with a larger in-
put feature space and more hidden layer activations) than
the previous one. During training, the (i+ 1)th classi-
fier is trained using only the samples accepted (possibly
falsely) by the ith classifier. A cascade thus accepts only
the inputs that are accepted by all of its classifiers and
is efficient to train because most inputs are rejected by
the simple lower-level classifiers. Cascades have demon-
strated almost human-level accuracy for complex tasks
with low base rate such as face detection [64].

8 Bayesian Detection Rate
In Sections 6 and 7, we showed detectors with very low
false positive rates. However, the attacker’s false detec-
tion rate is not the detector’s raw false positive rate but
the Bayesian Detection Rate (BDR). The BDR of a detec-
tor for video m is the probability Pr(M|A), conditioned
on the detector declaring that the victim is streaming m
(event A), that the victim is indeed streaming m (event
M). This probability is taken over all videos that the vic-
tim could be streaming, as well as network conditions
and measurement noise.

Pr(M|A) = Pr(A|M)Pr(M)
Pr(A|M)Pr(M)+Pr(A|¬M)Pr(¬M) by Bayes’

Law. We can estimate Pr(A|M) by the detector’s recall,
and Pr(A|¬M) by its false positive rate.

“Open world,” when the attacker does not know a pri-
ori a relatively small set of possibilities for the video be-
ing streamed, is characterized by an extremely low base
rate, i.e., probability P(M) that the video actually cor-
responds to any of the attacker’s detectors. In this set-
ting, when the attacker’s recall is sufficiently high, BDR
is dominated by the false positive rate.2

2For example, suppose the recall is Pr(A|M) = 1, false positive rate
is Pr(A|¬M) = 1

1000 , and the victim streams 100,000 videos sequen-
tially. If the attacker has a detector for one of them (i.e., the base rate is

1
100000), he would get roughly 100 false matches before the true match.

USENIX Association 26th USENIX Security Symposium 1365

We now analyze the detectors from Sections 6 and 7
in the “open-world” setting.

8.1 Distance detector
We first analyze the BDR of the detector from Section 6.

Let D̂ be the world of videos, and let V̂ ⊆ D̂ be the
world of videos with variable segment size. ψ D̂ is the
distribution over D̂. Assume that the victim chooses
m′← ψ D̂, and that the videos in our set D were likewise
sampled from ψ D̂ (i.e., by sampling videos according to
their popularity on the service). Let V ⊆D the the videos
in D with variable segment size. Assume the attacker has
a detector for some m ∈V .

Let t ← T m′ be an observed trace. If the detector
matches but m′ 6= m, then either

∥∥∥α(sm′)−α(t)
∥∥∥

1
≥ B,

or
∥∥∥α(sm)−α(sm′)

∥∥∥
1
≤ 2B. The probability of the for-

mer is low because the recall is very high, > 1− 10−11.
Let pCOL denote the probability of the latter event, corre-
sponding to a collision between two videos.

If pCOL ≥ 2
106 , then we are likely to observe a collision

in our dataset D. Under the simplifying assumption that
collisions in D are independent events,3 with overwhelm-
ing probability 1− (1− pCOL)

(|D|−|V |)|V |+|V |2/2 > 0.986
there exist mV ∈ V,mD ∈ D such that mV 6= mD and
‖α(smD)−α(smV)‖1 ≤ 2B. Since we did not observe
any such collisions in 2,162,297 pairwise tests over D,
it is likely that pCOL ≤ 2

106 .
In this case, assuming the open-world base rate is 2

106 ,
BDR is very close to 0.5.

8.2 Neural-network detector

YouTube. With our YouTube classifier, when we pre-
ferred precision over recall, there were no false positives:
we never observed an “other” video that was misclassi-
fied as one of the known videos. We view this as an
indication that our results generalize.

Netflix. With our Netflix classifier, when we preferred
precision over recall, we observed 1 false positive (com-
pared to 2,240 true positives), corresponding to the false
positive rate of 0.00045. Our recall is still > 0.93.

At first glance, this result seems harder to general-
ize. We cannot simply plug Pr(A|¬M) and Pr(A|M)
into the BDR formula and expect to get a good estima-
tion, since the distribution that this classifier was trained
on—without samples from the catchall “other” class—is

3This assumption is an approximation. It could have been strongly
violated, e.g., if all collisions are due to a small set Z of videos, each of
which collides with many other videos: if we didn’t hit any of Z when
picking D, we would not observe any collisions. However, due to the
geometrical structure of video fingerprints, this seems unlikely. If the
fingerprints of videos in Z are close to those of many other videos, then
the latter videos also have fingerprints that are geometrically close to
each other and are thus likely to collide in D.

fundamentally different from the distribution of videos
that might be streamed by the victim.

Similarly to the previous section, there are two causes
of false positives: similarities in the videos’ burst
patterns (which is what the classifier learns), i.e., a
classifier-collision false positive, and noise in the mea-
surements, i.e., a network-noise false positive.

The confusion matrix (Figure 7.3b) shows no pairwise
classifier collisions for the 100 titles. The classifier does
not consistently confuse any particular title for another
(even though many are episodes in the same TV series
with presumably similar visual attributes). This indicates
that classifier collisions are uncommon.

When collisions do not occur, our classifier, tuned for
precision over recall, performs very well and misclassi-
fies only 1 out of 2,224 test samples. No other sample
was close enough, in the classifier’s eyes, to any of the
99 classes. This means that the classifier made one “con-
fident” mistake out of 220,176 possibilities.

9 Off-path Attacks

9.1 Measurement with JavaScript
Consider a remote attacker who has a restricted foothold
in the victim’s network. For example, he controls an ad
embedded in some webpage visited by the victim. An
ad may include JavaScript code executing in the victim’s
browser, but because this code may come from a ques-
tionable source with strong commercial interest in users’
data (including their viewing habits), it is confined—both
by the main browser sandbox, which prevents it from is-
suing arbitrary requests to the OS, and by the same origin
policy [51], which prevents it from accessing the content
that belongs to other Web origins. In particular, even if
the victim is streaming a video in another tab of the same
browser, confined JavaScript code cannot directly access
the URL or content displayed in that tab.

The same origin policy does permit the attacker’s
JavaScript code to communicate with its own origin (e.g.,
the Web server that served the ad). This communica-
tion is carried over the same Internet connection as the
video being streamed by the victim. Since Internet links
usually have bounded bandwidth, this means that the
attacker’s JavaScript and the video stream share a lim-
ited resource. JavaScript can send and receive arbitrary
amounts of data to and from its colluding server to create
artificial congestion on the shared link.

When the shared link is congested, any attempt to use
it can create observable delays in the communication be-
tween the attacker’s JavaScript code and its own server.
The attacker can then estimate how much traffic is flow-
ing over the link by measuring these delays. This leaks
information about the content streamed from a different
origin by the same browser (a cross-site attack, see Fig-

1366 26th USENIX Security Symposium USENIX Association

Figure 9.1: Cross-site attack.

Figure 9.2: Cross-device attack.

ure 9.1), or even by a different device on the same local
network (a cross-device attack, see Figure 9.2).

9.2 Simulating the attack
We implemented a malicious NODE.JS Web server
which, when accessed by the victim’s browser, serves
detector code written in JavaScript. This code, running
unprivileged within the browser sandbox, talks back to
the server via the SOCKET.IO API. The server sends a
stream of messages, causing congestion. The detector
code measures the arrival time of these messages, using
window.performance.now(), to estimate contention
from other traffic on the shared link.

Network. To simulate cross-site and cross-device at-
tacks, we run two browser windows concurrently, one
streaming the selected video, the other executing a
JavaScript attack client. In the cross-site setup, they run
on the same virtual machine. In the cross-device setup,
they run on different machines. Both machines are on
a home network, victim-LAN, behind a traffic-throttling
router that simulates a bandwidth-limited connection. In
the cross-site setup, we simulate victim-LAN and the
router with VMware Workstation. In the cross-device
setup, we use an actual home router. In both cases, the
router is connected to the Internet via a university LAN.
The attack server is on the same LAN. All traffic be-
tween victim-LAN (which includes the streaming client
and the attack JavaScript client) and the Internet (which
includes the streaming server and the attack server) thus
flows through a bandwidth-constrained router.

Data. We used 10 Netflix titles: 5 episodes from the
first season of “Mad Men” and 5 arbitrary other titles.
We streamed each title 100 times and used a JavaScript
client to indirectly measure the traffic as described above.
We used 5-minute captures in the cross-site experiment
and 6-minute captures in the cross-device experiment.

Cross-site attack. The attacked machine was an Ubuntu
14.04 VM, with a simulated 45 Mbps (5.625 MBps)
down/upstream bandwidth (capped by VMware Work-
station). The attack server’s messages contain 6 KB of
random data, sent at the rate of 1 per 0.001 seconds and
an overall transmission rate of 6 MBps. This is more than
enough to saturate the simulated link.4

From the {Xn} vector of message arrival times mea-
sured by the attacker’s client, we compute the vector
of message delays Y = (0)‖((X2, . . .Xn)− (X1, . . .Xn−1))
and filter the X ,Y time series for delays that exceed 8ms.
We then compute the burst series as in Section 5.2 with
0.25-second intervals and filter out the bursts whose sizes
are below 80, producing a delay bursts time series. To
create uniformly sized vectors, we aggregate this series
by averaging into 0.25-second chunks.

Cross-device attack. As the viewer device, we used a
laptop (Intel i7-5600U CPU) running Ubuntu 16.04. As
the neighbor device, we used a laptop (Intel i7-3720QM
CPU) running an Ubuntu 14.04 VM guest in a Windows
host. Both were connected over Wi-Fi to an Asus RT-
AC66U wireless router, connected to a university net-
work. The router was configured to cap its total down-
link speed at 45 Mbit, using the “Max Bandwidth Limit”
setting of the Tomato Advanced firmware. The attack
server was sending an 8KB message every 1.5ms, about
300 KBps short of saturating the network link.

In this experiment, we smoothed the time series of the
delay measurements by averaging over 0.1-second inter-
vals, filtered it for delays y > 2.1ms, computed the burst
series with 0.5-second intervals, and filtered out all bursts
whose sizes were below 10. To create uniformly sized
vectors, we chunked it into 0.1-second intervals.

Classifier. We used a variant of the classifier from Sec-
tion 7.2 that we found less prone to overfitting on the
noisier, longer samples in this attack. Between the last
max-pooling layer and the first fully-connected layer, we
added another convolution layer, with kernel size 7, fol-
lowed by a max pooling layer (both with ReLU activa-
tions). We applied 0.7 dropout after every hidden layer.
All other convolution-layer dimensions were changed to
1x12 and pooling-layer dimensions to 1x2. We used 16
filters for all hidden layers instead of 32. Finally, we used
Adadelta instead of the Adam optimizer.

4A portion of messages is queued at the server, taking up to 500MB
of memory. In the cross-device attack, we calibrated the transmission
rate in a different way, alleviating this.

USENIX Association 26th USENIX Security Symposium 1367

Figure 9.5: Cross-device attack on a Roku streamer. On
the left is the global view, including initial buffering. On
the right is the local view during steady-state streaming.
Bursts cause a visible increase in delays observed on the
neighbor machine.

9.3 Results
In all of our experiments, attacks were imperceptible to
the user and did not affect the viewing quality.

Cross-site attack. Figure 9.3a shows that bursts in the
video stream are very visible in the measurements per-
formed by the JavaScript client. Fig. 9.3b shows that the
delay bursts series is strongly correlated with the bursts
of the actual stream. Our 1/10 Netflix classifier attains
0.937 accuracy. As in Section 7, we can adjust our con-
fidence threshold to reduce false positives at the cost of
reducing recall (see Fig. 9.3c). By accepting 0.793 recall,
we obtain precision of 1.

Cross-device attack. The timing of the messages ob-
served by the detector code on the neighbor device ex-
hibits clear patterns corresponding to the stream received
by the viewer device. Figure 9.4a shows that bursts in the
stream during the steady state cause delays in the mes-
sages received by the neighbor. Figure 9.4b shows that
delay bursts are correlated with the size of bursts in the
stream (which, in turn, reflect segment sizes). Our clas-
sifier performs well, with 0.965 accuracy. By accepting
0.933 recall, we obtain precision of 0.997.

Cross-device attack on a Roku streamer. Many users
watch streaming video content on a smart TV or a dedi-
cated streaming device connected to a TV. To investigate
the feasibility of our attack in this scenario, we used the
cross-device attack setup from Section 9.2 except that the
viewer was a Roku Premiere streaming device (a very
popular brand), connected to the Internet via Wi-Fi.

The bursts corresponding to video segments are
clearly observable from a neighbor machine. Fig-
ure 9.5 shows the attacker-measured delays while Roku
is streaming Episode 1 of “Mad Men.” They exhibit the
expected pattern of a large burst followed by smaller ones
in steady intervals, each lasting a few seconds.

10 Limitations
Our attack relies on two assumptions: (1) the attacker
can measure traffic bursts in the victim’s video stream,
and (2) the pattern of these bursts is similar to what the
attacker observed when streaming the same title.

The attack works well using only very coarse traffic
features (see Section 7.3) and is therefore robust to minor
noise in the stream or in the attacker’s measurements.
If the noise is so significant as to dramatically change
the traffic characteristics of the stream (e.g., if the same
network connection is used to watch multiple concurrent
videos, upload media files, or for some other bandwidth-
intensive activity), the attack may not succeed.

In the off-path attack, the attacker’s server sends large
amounts of traffic to congest a shared network link and
his JavaScript client measures arrival times in the vic-
tim’s browser. To create congestion, the server needs
a high-bandwidth connection to the victim’s network.
Therefore, success of the off-path attack using a specific
server may depend on the victim’s location and ISP.

If the client code does not have access to precise time,
the roles must be reversed (see Section 12). The ability
of malicious JavaScript in the victim’s browser to con-
gest the network may be limited by resource-intensive
processes executing on the same machine.

As explained in Section 4, different encodings of the
same content create different burst patterns. The attack
will not succeed if the encoding of the streams used to
train the attacker’s detector is different from the encoding
of the victim’s stream. Specifically, in adaptive stream-
ing, encoding quality can be dynamically downgraded or
upgraded in response to changing network conditions. In
this paper, we did not evaluate a scenario where the vic-
tim is experiencing erratic network conditions causing
frequent switches between encodings.

Our techniques aim to identify standard, unmodified
streaming video (e.g., Netflix movies). They are not de-
signed to resist evasion. If the user or service re-encodes
the video (e.g., at a different resolution), the attacker’s
previously trained detectors will no longer work.

Our techniques can be automated and deployed on a
reasonably large scale to detect hundreds or thousands
of titles in an “open-world” setting, without assuming a
priori that the video belongs to small known set. Scaling
beyond that is likely to be expensive. Data collection is
the main bottleneck because training detectors requires
the attacker to stream the same title multiple times.

11 Related Work
11.1 Exploiting VBR leaks

Fine-grained video. Saponas et al. [46] observed that
encrypted, VBR-encoded videos leak information about
their content. To create a “signature” of a video, they

1368 26th USENIX Security Symposium USENIX Association

(a) Actual bursts size vs. measurements from
JavaScript in a different origin.

(b) Delay bursts vs. actual traffic bursts (traffic
bursts are in units of 104 bytes).

(c) Precision vs. recall of our classifier

Figure 9.3: Cross-site attack.

(a) Raw attack measurements, showing delays at
roughly steady intervals.

(b) Delay bursts vs. actual traffic bursts. Traffic
bursts are divided by 100,000 for presentation.

(c) Precision vs. recall of our classifier

Figure 9.4: Cross-device attack.

take its traffic trace as a bits-per-second time series at
the granularity of 100 milliseconds, average, and apply a
sliding-window DFT. Their detector applies DFT to traf-
fic traces and matches to the closest signature.

Li et al. [30] focus on detecting re-encoded content.
They apply a wavelet transform to the time series of
frame sizes and cross-correlate the wavelet coefficient
series of the observed traffic with those of a reference
content file. In [31], Liu et al. use aggregated traffic
throughput traces (as opposed to frame-size time series)
and report 1% false positive rate and 90% recall rate.

These methods operate on time series resembling, and
close to the granularity of, the sizes of individual frames.
DFTs and wavelet transforms capture short-term varia-
tions due to changes of picture and long-term variations
due to changes of scene. In our setting, the observable
features are bursts 4–6 seconds (120–180 frames) apart.

Even though these methods rely on fine-grained mea-
surements, their false positive rates are prohibitively high
for “open-world” identification (with a low base rate,
even 1% false positive rate implies an extremely low
Bayesian Detection Rate). None of them would work
if the measurements of the attacker (e.g., performed by
sandboxed JavaScript) are noisy and coarse-grained.

Dubin et al. [11] suggest using the (unordered) set
of segment sizes as a title fingerprint. This detector is
far less accurate than our classifiers and vulnerable to
noise, and consequently cannot be used by a JavaScript
attacker. See Appendix B for the detailed analysis.

Reed and Klimovski [43] implement a Wi-Fi sniffing
attack and suggest an approach based on Pearson corre-
lation for identifying Netflix streams. In a preliminary
evaluation, they report correctly identifying, given 50
possible titles, 24 out of 25 streaming sessions. Con-

USENIX Association 26th USENIX Security Symposium 1369

currently and independently from our work, Reed and
Kranch [44] scale this approach by fingerprinting the en-
tire Netflix title selection. They assume an on-path at-
tacker who can observe TCP-layer traffic. This approach
has not been evaluated in an off-path setting, where the
attacker has only noisy side-channel measurements, nor
for any streaming services other than Netflix.

Mass fingerprinting in [44] relies on the metadata sent
by Netflix to the client at an early stage of the streaming
process, namely the .ismv file headers that contain all
segment sizes for all possible encodings of the title. They
are sent in the clear, while the video content is DRM-
encrypted. It is not clear how the approach of [44] would
work if these headers were DRM-protected, too.

VoIP. Wright et al. showed that VBR leakage in en-
crypted VoIP communication can be used to identify the
speaker’s language [62] and detect phrases [61]. Their
detector is a Hidden Markov Model trained to identify a
specific phrase. White et al. [58] extended this approach
to extract conversation transcripts.

11.2 Congestion and timing attacks
The general approach of creating congestion on a shared
resource (network, in our case) and using it to measure
a concurrent process’s consumption of that resource is
used, for example, in shared-cache attacks on crypto-
graphic computations [21, 37, 45].

Our network congestion attack works because traffic-
flow scheduling policies for a shared internet link are
leaky. Kadloor, Gong, et al. [16, 24, 25] studied
the tradeoffs between delays, fairness, and privacy in
scheduling policies on shared resources. Kadloor et
al. [23] also showed how to exploit the queueing policy in
DSL routers: by sending a series of ICMP echo requests
(pings) and timing RTTs, they infer the traffic patterns of
a remote user. This attack can also help infer the website
being visited [15, 17]. This attack is powerful because
the attacker only needs to know the user’s IP address, but
it cannot be deployed if the user is behind a firewall or
router that discards unsolicited packets from outside the
network (as many modern routers do by default).

Agarwal et al. [1] show how a VM can use link con-
gestion to infer the traffic patterns of a co-located VM.

To the best of our knowledge, the ability of confined
JavaScript to perform network measurements at suffi-
cient granularity to identify concurrent video streams
has never been empirically demonstrated before. This
is a particularly dangerous scenario because untrusted
JavaScript code from sources who have commercial in-
terest in users’ viewing habits is ubiquitous on the Web.

Timing attacks have a long history in computer se-
curity [6, 50]. Felten and Schneider [13] observed
that JavaScript can infer information from the timing
of cross-origin requests; Bortz and Boneh [5] demon-

strated several timing-related Web attacks; Van Goethem
et al. [55] proposed timing techniques that tolerate net-
work noise and server-side mitigations. Oren et al. [36]
used JavaScript timing mechanisms for a cache attack.
Kohlbrenner and Shacham [27] showed that existing
browser-based mitigations are insufficient and proposed
a new browser-based defense.

11.3 Fingerprinting and traffic analysis
There is a large body of research on identifying websites
in encrypted network traffic [7, 8, 15, 18, 20, 39, 48, 57].
Juarez et al. [22] argue that most of these efforts make
unrealistic assumptions and fail to cope with the base rate
fallacy. Panchenko et al. [38] evaluate a state-of-the-art
method for website detection and conclude that webpage
detection is infeasible. Traffic analysis was used to infer
application-specific sensitive information, such as health
conditions [8, 33], as well as Web sources of video traf-
fic [47]. Prior work also includes mitigations [63] and
counter-mitigations [12].

12 Mitigations

Segment size leak. The root cause of information leaks
in video streams is that, for any sufficiently long video,
the encoding bitrate changes over the presentation time
in a unique, identifying way. Segmenting video files and
transmitting them in bursts (which is primarily done to
maximize quality of experience) reduces the granularity
of the leak but does not prevent video fingerprinting.

Decreasing granularity further, to minutes, will not en-
tirely prevent the leak in longer videos, but will degrade
QoE and network efficiency. Segmenting VBR video
into uniformly sized segments is futile because then their
duration will differ, thus the timing of client requests will
still leak similar information.

Constant-rate encoding with tight rate control and
large segments will eliminate the leak, at the cost of a
very inefficient encoding. Similarly, padding bursts to
the maximum segment size would require transmitting
much more traffic than the actual file size.

The VBR pattern is inherently observable in traffic if
the duration of the client’s buffered video is close to con-
stant (or, in general, an affine function of presentation
time). Solving the problem requires a different buffer-
ing regime. Client-side-only changes are easier to deploy
than changes to segmentation on the server, but devising
such a regime is non-trivial even if we allow changes to
both client side and server side.

For example, consider a variable-size buffer that
fetches equally-sized segments every X seconds (where
X is fixed). This requires a balance between increas-
ing the fetching rate (lest the buffer runs out in the mid-
dle of long high-action scenes) and increasing the ini-
tial buffering time (for robustness to network conditions

1370 26th USENIX Security Symposium USENIX Association

while also accounting for sudden buffer depletion due
to high-bitrate content). Both factors would directly de-
grade user experience and network efficiency.

Network congestion side channel. The congestion at-
tack requires big, frequent server-to-client messages that
may appear anomalous and thus recognizable at the net-
work level. Detection and prevention mechanisms can
be placed at the router, network, OS, or browser. A more
sophisticated attack implementation may be able to use
benign-looking traffic to circumvent such mechanisms.
Fuzzy-time sandbox solutions such as [27] would not en-
tirely prevent our attack: the JavaScript client can still
send packets to congest the uplink, yet timing measure-
ments can be performed by a colluding server.

13 Conclusions
Leakage of information about video content via network
traffic patterns is prevalent in modern streaming proto-
cols and popular services. We implemented and evalu-
ated a novel method based on deep learning that exploits
this leak for video identification.

Our method is tuned for high precision and effective
in an “open-world” setting. It can be used by on-path
adversaries such as ISPs and enterprise networks to spy
on their users. Furthermore, it exposes sensitive infor-
mation of the streaming service itself. For example, ISPs
can use it to construct a popularity histogram of Netflix
videos (Netflix does not release this information). We
also show how an off-path adversary who merely serves
a Web page or ad to a user can, via the network conges-
tion side channel, perform the measurements needed for
the attack and identify videos being streamed by the user
on the same or different device.

Acknowledgements. Roei Schuster and Eran Tromer
are members of the Check Point Institute for Information
Security. This work was supported by the Blavatnik In-
terdisciplinary Cyber Research Center (ICRC); Defense
Advanced Research Project Agency (DARPA) and Army
Research Office (ARO) under Contract W911NF-15-C-
0236; Google Faculty Research Awards; Israeli Ministry
of Science and Technology; Israeli Centers of Research
Excellence I-CORE program (center 4/11); Leona M. &
Harry B. Helmsley Charitable Trust; and National Sci-
ence Foundation awards CCF-1423306, CNS-1445424
and CNS-1612872. Any opinions, findings, and conclu-
sions or recommendations expressed are those of the au-
thors and do not necessarily reflect the views of ARO,
DARPA, NSF, the U.S. Government or other sponsors.

References
[1] Yatharth Agarwal, Vishnu Murale, Jason Hen-

nessey, Kyle Hogan, and Mayank Varia. Moving
in next door: Network flooding as a side channel in
cloud environments. In CANS 2016.

[2] Pablo Ameigeiras, Juan J Ramos-Munoz, Jorge
Navarro-Ortiz, and Juan M Lopez-Soler. Analysis
and modelling of YouTube traffic. ETT 2012.

[3] John S Atkinson, O Adetoye, Miguel Rio, John E
Mitchell, and George Matich. Your WiFi is leaking:
Inferring user behaviour, encryption irrelevant. In
WCNC 2013.

[4] Bento4 MPEG-DASH tool set. https://www.be
nto4.com/developers/dash/. Accessed: 2017-
01-16.

[5] Andrew Bortz and Dan Boneh. Exposing private
information by timing web applications. In WWW
2007.

[6] David Brumley and Dan Boneh. Remote timing
attacks are practical. Computer Networks, 2005.

[7] Xiang Cai, Xin Cheng Zhang, Brijesh Joshi, and
Rob Johnson. Touching from a distance: Website
fingerprinting attacks and defenses. In CCS 2012.

[8] Shuo Chen, Rui Wang, XiaoFeng Wang, and Ke-
huan Zhang. Side-channel leaks in Web applica-
tions: A reality today, a challenge tomorrow. In
S&P 2010.

[9] Convolutional neural networks. https:
//en.wikipedia.org/wiki/Convolutiona
l_neural_network. Accessed: 2017-01-16.

[10] Bitmovin. https://bitmovin.com/mpeg-das
h-hls-segment-length. Accessed: 2017-01-16.

[11] Ran Dubin, Amit Dvir, Ofer Hadar, and Ofir Pele.
I know what you saw last minute — the Chrome
browser case. In Black Hat Europe 2016.

[12] Kevin P Dyer, Scott E Coull, Thomas Ristenpart,
and Thomas Shrimpton. Peek-a-boo, I still see you:
Why efficient traffic analysis countermeasures fail.
In S&P 2012.

[13] Edward W Felten and Michael A Schneider. Tim-
ing attacks on Web privacy. In CCS 2000.

[14] Ross Girshick, Jeff Donahue, Trevor Darrell, and
Jitendra Malik. Rich feature hierarchies for accu-
rate object detection and semantic segmentation. In
CVPR 2014.

[15] Xun Gong, Nikita Borisov, Negar Kiyavash, and
Nabil Schear. Website detection using remote traf-
fic analysis. In PETS 2012.

[16] Xun Gong and Negar Kiyavash. Quantifying the
information leakage in timing side channels in de-
terministic work-conserving schedulers. Biological
Cybernetics, 2016.

[17] Xun Gong, Negar Kiyavash, and Nikita Borisov.
Fingerprinting websites using remote traffic anal-
ysis. In CCS 2010.

[18] Dominik Herrmann, Rolf Wendolsky, and Hannes
Federrath. Website fingerprinting: Attacking popu-
lar privacy enhancing technologies with the multi-
nomial Naïve-Bayes classifier. In CCSW 2009.

USENIX Association 26th USENIX Security Symposium 1371

https://www.bento4.com/developers/dash/
https://www.bento4.com/developers/dash/
https://en.wikipedia.org/wiki/Convolutional_neural_network
https://en.wikipedia.org/wiki/Convolutional_neural_network
https://en.wikipedia.org/wiki/Convolutional_neural_network
https://bitmovin.com/mpeg-dash-hls-segment-length
https://bitmovin.com/mpeg-dash-hls-segment-length

[19] Geoffrey Hinton, Li Deng, Dong Yu, George E
Dahl, Abdel-Rahman Mohamed, Navdeep Jaitly,
Andrew Senior, Vincent Vanhoucke, Patrick
Nguyen, and Tara N Sainath. Deep neural networks
for acoustic modeling in speech recognition: The
shared views of four research groups. IEEE Signal
Processing Magazine 2012.

[20] Andrew Hintz. Fingerprinting websites using traffic
analysis. In PETS 2002.

[21] Wei-Ming Hu. Reducing timing channels with
fuzzy time. Journal of Computer Security, 1992.

[22] Marc Juarez, Sadia Afroz, Gunes Acar, Claudia
Diaz, and Rachel Greenstadt. A critical evaluation
of website fingerprinting attacks. In CCS 2014.

[23] Sachin Kadloor, Xun Gong, Negar Kiyavash, Tolga
Tezcan, and Nikita Borisov. Low-cost side channel
remote traffic analysis attack in packet networks. In
ICC 2010.

[24] Sachin Kadloor and Negar Kiyavash. Delay opti-
mal policies offer very little privacy. In INFOCOM
2013.

[25] Sachin Kadloor, Negar Kiyavash, and Parv Venki-
tasubramaniam. Mitigating timing side channel in
shared schedulers. Biological Cybernetics, 2016.

[26] Diederik Kingma and Jimmy Ba. Adam: A
method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

[27] David Kohlbrenner and Hovav Shacham. Trusted
browsers for uncertain times. In USENIX Security
2016.

[28] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E
Hinton. ImageNet classification with deep convo-
lutional neural networks. In NIPS 2012.

[29] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton.
Deep learning. Nature, 2015.

[30] Yali Liu, Canhui Ou, Zhi Li, Cherita Corbett,
Biswanath Mukherjee, and Dipak Ghosal. Wavelet-
based traffic analysis for identifying video streams
over broadband networks. In GLOBECOM 2008.

[31] Yali Liu, Ahmad-Reza Sadeghi, Dipak Ghosal, and
Biswanath Mukherjee. Video streaming forensic–
content identification with traffic snooping. In ISC
2010.

[32] Jim Martin, Yunhui Fu, Nicholas Wourms, and
Terry Shaw. Characterizing Netflix bandwidth con-
sumption. In CCNC 2013.

[33] Brad Miller, Ling Huang, Anthony D Joseph, and
J Doug Tygar. I know why you went to the clinic:
Risks and realization of HTTPS traffic analysis. In
PETS 2014.

[34] The state of MPEG-DASH deployment. http:
//www.streamingmediaglobal.com/Article
s/Editorial/Featured-Articles/The-Sta

te-of-MPEG-DASH-Deployment-96144.aspx.
Accessed: 2017-01-16.

[35] Netflix tech blog: Per-title encode optimization.
http://techblog.netflix.com/2015/12/
per-title-encode-optimization.html.
Accessed: 2017-01-16.

[36] Yossef Oren, Vasileios P Kemerlis, Simha Sethu-
madhavan, and Angelos D Keromytis. The spy in
the sandbox: Practical cache attacks in JavaScript
and their implications. In CCS 2015.

[37] Dag Arne Osvik, Adi Shamir, and Eran Tromer.
Cache attacks and countermeasures: The case of
AES. In CT-RSA 2006.

[38] Andriy Panchenko, Fabian Lanze, Andreas Zinnen,
Martin Henze, Jan Pennekamp, Klaus Wehrle, and
Thomas Engel. Website fingerprinting at Internet
scale. In NDSS 2016.

[39] Andriy Panchenko, Lukas Niessen, Andreas Zin-
nen, and Thomas Engel. Website fingerprinting in
onion routing based anonymization networks. In
WPES 2011.

[40] Planet Earth II: Iguana vs Snakes. https://
www.youtube.com/watch?v=Rv9hn4IGofM. Ac-
cessed: 2017-01-16.

[41] Zhiyun Qian, Z Morley Mao, and Yinglian Xie.
Collaborative TCP sequence number inference at-
tack: How to crack sequence number under a sec-
ond. In CCS 2012.

[42] Ashwin Rao, Arnaud Legout, Yeon-sup Lim, Don
Towsley, Chadi Barakat, and Walid Dabbous. Net-
work characteristics of video streaming traffic. In
CONEXT 2011.

[43] Andrew Reed and Benjamin Klimkowski. Leaky
streams: Identifying variable bitrate DASH videos
streamed over encrypted 802.11n connections. In
CCNC 2016.

[44] Andrew Reed and Michael Kranch. Identifying
HTTPS-protected Netflix videos in real-time. In
CODASPY 2017.

[45] Thomas Ristenpart, Eran Tromer, Hovav Shacham,
and Stefan Savage. Hey, you, get off of my cloud:
Exploring information leakage in third-party com-
pute clouds. In CCS 2009.

[46] T Scott Saponas, Jonathan Lester, Carl Hartung,
Sameer Agarwal, and Tadayoshi Kohno. Devices
that tell on you: Privacy trends in consumer ubiqui-
tous computing. In USENIX Security 2007.

[47] Yan Shi and Subir Biswas. Protocol-independent
identification of encrypted video traffic sources us-
ing traffic analysis. In ICC 2016.

[48] Yi Shi and Kanta Matsuura. Fingerprinting attack
on the Tor anonymity system. In ICICS 2009.

[49] Iraj Sodagar. The MPEG-DASH standard for mul-

1372 26th USENIX Security Symposium USENIX Association

http://www.streamingmediaglobal.com/Articles/Editorial/Featured-Articles/The-State-of-MPEG-DASH-Deployment-96144.aspx
http://www.streamingmediaglobal.com/Articles/Editorial/Featured-Articles/The-State-of-MPEG-DASH-Deployment-96144.aspx
http://www.streamingmediaglobal.com/Articles/Editorial/Featured-Articles/The-State-of-MPEG-DASH-Deployment-96144.aspx
http://www.streamingmediaglobal.com/Articles/Editorial/Featured-Articles/The-State-of-MPEG-DASH-Deployment-96144.aspx
http://techblog.netflix.com/2015/12/per-title-encode-optimization.html
http://techblog.netflix.com/2015/12/per-title-encode-optimization.html
https://www.youtube.com/watch?v=Rv9hn4IGofM
https://www.youtube.com/watch?v=Rv9hn4IGofM

timedia streaming over the Internet. IEEE Multi-
Media, 2011.

[50] Dawn Xiaodong Song, David Wagner, and Xuqing
Tian. Timing analysis of keystrokes and timing at-
tacks on SSH. In USENIX Security 2001.

[51] Same origin policy. https://developer.mozi
lla.org/en-US/docs/Web/Security/Same-o
rigin_policy. Accessed: 2017-01-16.

[52] Thomas Stockhammer. Dynamic adaptive stream-
ing over HTTP: Standards and design principles. In
Multimedia Systems 2011.

[53] Wikipedia: TCP offload engine. https://en.wik
ipedia.org/wiki/TCP_offload_engine. Ac-
cessed: 2017-01-16.

[54] Testmy: Web-based bandwidth test. http://test
my.net/. Accessed: 2017-01-16.

[55] Tom Van Goethem, Wouter Joosen, and Nick Niki-
forakis. The clock is still ticking: Timing attacks in
the modern Web. In CCS 2015.

[56] Paul Viola and Michael Jones. Rapid object detec-
tion using a boosted cascade of simple features. In
CVPR 2001.

[57] Tao Wang and Ian Goldberg. Improved website fin-
gerprinting on Tor. In WPES 2013.

[58] Andrew M White, Austin R Matthews, Kevin Z
Snow, and Fabian Monrose. Phonotactic recon-
struction of encrypted VoIP conversations: Hookt
on fon-iks. In S&P 2011.

[59] Why YouTube and Netflix use MPEG-DASH in
HTML5. https://bitmovin.com/status-m
peg-dash-today-youtube-netflix-use-htm
l5-beyond/. Accessed: 2017-01-16.

[60] Wireshark. https://www.wireshark.org/. Ac-
cessed: 2017-01-16.

[61] Charles V Wright, Lucas Ballard, Scott E Coull,
Fabian Monrose, and Gerald M Masson. Spot me if
you can: Uncovering spoken phrases in encrypted
VoIP conversations. In S&P 2008.

[62] Charles V Wright, Lucas Ballard, Fabian Monrose,
and Gerald M Masson. Language identification of
encrypted VoIP traffic: Alejandra y Roberto or Al-
ice and Bob? In USENIX Security 2007.

[63] Charles V Wright, Scott E Coull, and Fabian Mon-
rose. Traffic morphing: An efficient defense against
statistical traffic analysis. In NDSS 2009.

[64] Shuo Yang, Ping Luo, Chen-Change Loy, and Xi-
aoou Tang. WIDER FACE: A face detection bench-
mark. In CVPR 2016.

[65] StackOverflow: Youtube encoding. http://vi
deo.stackexchange.com/questions/5318/
how-does-youtube-encode-my-uploads-a
nd-what-codec-should-i-use-to-upload.
Accessed: 2017-01-16.

[66] Fan Zhang, Wenbo He, Xue Liu, and Patrick G
Bridges. Inferring users’ online activities through
traffic analysis. In WiSec 2011.

[67] Xiaoyong Zhou, Soteris Demetriou, Dongjing He,
Muhammad Naveed, Xiaorui Pan, XiaoFeng Wang,
Carl A Gunter, and Klara Nahrstedt. Identity, loca-
tion, disease and more: Inferring your secrets from
Android public resources. In CCS 2013.

A Streams vs. MP4 Files
Since the cause of the leak is the DASH standard, it
would be nice to compute detectors directly from video
files5 instead of streaming each video multiple times.

This approach faces several challenges. First, the
attacker must infer the exact segmentation parameters,
such as segment duration and minimal buffer time, and
how they change with respect to file encoding, size, bi-
trate, view count, etc. Each service has many combina-
tions of these parameters. Furthermore, they change over
time but changes may not apply to the already-segmented
files. Second, this approach does not work at all if the at-
tacker does not have the file (as in the case of Netflix).

To learn the relationship between MP4 files and
streams, we would like to train a classifier that takes in
an MP4 file and a traffic capture, and outputs whether
the latter is a stream of the former. We used our dataset
of 3,558 YouTube videos for which we have both the
files and the captures. First, we have to align the stream
with the file, i.e., match traffic bursts corresponding
to segment-files to the segment-files’ presentation time.
Then we train a binary classifier on the extracted VBR
pattern of an MP4 file and the (aligned) burst series to
tell if the former was generated by the latter.

Alignment is a difficult problem because the extracted
720p MP4 files may not be identical to the actual files
used by the streaming service (which may not even be
in 720p). We heuristically tried several values to align
each MP4-capture pair and used neural networks to train
a classifier. Our classifier achieved 74% accuracy. This
indicates a strong correlation between the files and the
streams of the same video, but it is not sufficient for
“open-world” identification. Our main approach of using
multiple streams of the same video to train the detector
achieves much higher accuracy in practice.

B Comparison with Nearest Neighbor
Dubin et al. [11] represent the attacker’s measurements
of a stream as a set of bursts and use a classifier that
maps each such set to the closest training example. If the
size of the set intersection is smaller than a threshold for
all examples, the stream is classified as “unknown.”

5There exist tools for downloading MP4 files of content from ser-
vices such as YouTube and Vimeo.

USENIX Association 26th USENIX Security Symposium 1373

https://developer.mozilla.org/en-US/docs/Web/Security/Same-origin_policy
https://developer.mozilla.org/en-US/docs/Web/Security/Same-origin_policy
https://developer.mozilla.org/en-US/docs/Web/Security/Same-origin_policy
https://en.wikipedia.org/wiki/TCP_offload_engine
https://en.wikipedia.org/wiki/TCP_offload_engine
http://testmy.net/
http://testmy.net/
https://bitmovin.com/status-mpeg-dash-today-youtube-netflix-use-html5-beyond/
https://bitmovin.com/status-mpeg-dash-today-youtube-netflix-use-html5-beyond/
https://bitmovin.com/status-mpeg-dash-today-youtube-netflix-use-html5-beyond/
https://www.wireshark.org/
http://video.stackexchange.com/questions/5318/how-does-youtube-encode-my-uploads-and-what-codec-should-i-use-to-upload
http://video.stackexchange.com/questions/5318/how-does-youtube-encode-my-uploads-and-what-codec-should-i-use-to-upload
http://video.stackexchange.com/questions/5318/how-does-youtube-encode-my-uploads-and-what-codec-should-i-use-to-upload
http://video.stackexchange.com/questions/5318/how-does-youtube-encode-my-uploads-and-what-codec-should-i-use-to-upload

Dataset
Added
noise? 0B 1B 5B 10B CNN

Netflix No 0.871 X X X 0.959
Yes 0.220 X X X 0.909

YouTube No X 0.962 0.967 0.832 0.991
Yes X 0.851 0.790 0.379 0.989

Table 1: T B (bucketed nearest neighbor classifier with
threshold T) vs. CNN (our neural network).

We implemented and tried this approach for the Net-
flix dataset (which does not contain the “other” class, so
we used a threshold of 0, i.e., a match is always accepted)
and the YouTube dataset, with thresholds of 1, 5, and 10.
The test-train split was 0.9-0.1.

The nearest-neighbor classifier performs very poorly
on both datasets. For Netflix, it attained accuracy of
0.393. For YouTube, it attained accuracy of 0.624 with
threshold 1, 0.05 with threshold 5, and even less with
threshold 10. These results show that exact matches in
burst sizes are simply too rare. Even when the nearest
neighbor of a capture is actually found in its correct class,
there are fewer than 5 matches with it.

To further assess this approach, we “bucketed” all
burst sizes by rounding them to a multiple of 10, 100,
1000, and 10000. Rounding to a multiple of 1000 is ef-
fective, yielding 0.871 and 0.967 accuracy for the Netflix
and YouTube datasets, respectively. We call this classi-
fier the Bucket classifier (B).

This classifier is still very sensitive to noise and will
perform poorly if the attacker’s measurements are noisy
or if the streaming service deliberately pads bursts with a
few random bytes. We added a random number of bytes
between 0 and 2% to each burst size in the dataset and
measured the accuracy of the B classifier vs. our CNN-
based classifiers, which use the total burst series (see
Section 5.2) and are trained for 1,400 and 700 epochs
on the Netflix and YouTube data, respectively. We used
the 0.7-0.3 train-test split for the CNNs (vs. 0.9-0.1 split
for the B classifiers). Table 1 summarizes the results.

The KNN classifier of [11] is designed for direct ob-
servations of the streaming traffic. We attempted to ap-
ply it to the burst estimates as measured from JavaScript.
Because these estimates are sums of values returned
by window.performance.now(), they are measured in
milliseconds and in a floating-point representation that
captures time at an even finer granularity. Therefore,
to make it easier to recognize a (coarse) fingerprint, we
used the same approach as above and divided bursts into
coarse-grained buckets. We tried 100-second buckets, 10
seconds, seconds, deciseconds, centiseconds, millisec-
onds, decimilliseconds, centimilliseconds, and microsec-
onds. The KNN classifier of [11] works best at the granu-
larity of 10 seconds, and even then it only attains 0.22 ac-

curacy. We conclude that the approach proposed in [11]
does not work for an off-path attack.

C Titles Used in Experiments

Netflix:

• “Mad Men” Season 1, episodes 1-10
• “Arrested Development” Season 1, episodes 1-10
• “Narcos” Season 1, episodes 1-10
• “BoJACK Horseman” Season 1, episodes 1-10
• “The Office” Season 1, episodes 1-6; Season 2,

episodes 1-4
• “Luke Cage” Season 1, episodes 1-10
• “Louie” Season 3, episodes 1-10
• “Making a Murderer” Season 1, episodes 1-10
• “Stranger Things” Season 1, episodes 1-8
• “Master of None” Season 1, episodes 1-10
• “Parks and Recreation” Season 1, episodes 2-3

YouTube:

• https://www.youtube.com/watch?v=lc8804tkoaM
• https://www.youtube.com/watch?v=RDfjXj5EGqI
• https://www.youtube.com/watch?v=iW-y0Ci5nTI
• https://www.youtube.com/watch?v=_clqcSj2rKM
• https://www.youtube.com/watch?v=31784aZeJcc
• https://www.youtube.com/watch?v=DcJGalE3vn0
• https://www.youtube.com/watch?v=uINi-b5Fi1o
• https://www.youtube.com/watch?v=bFjrmATIUYU
• https://www.youtube.com/watch?v=fIOBSUSAikY
• https://www.youtube.com/watch?v=DpdJJN9OYMg
• https://www.youtube.com/watch?v=eyU3bRy2x44
• https://www.youtube.com/watch?v=0fYL_qiDYf0
• https://www.youtube.com/watch?v=Dgwyo6JNTDA
• https://www.youtube.com/watch?v=Z4uN9kh-gdE
• https://www.youtube.com/watch?v=DPeRRWSqPFY
• https://www.youtube.com/watch?v=Th9mfs5eobw
• https://www.youtube.com/watch?v=dUoC-GJ0FQY
• https://www.youtube.com/watch?v=tjhrNKQX29U
• https://www.youtube.com/watch?v=8YkLS95qDjI
• https://www.youtube.com/watch?v=BxKLpArDrC8

Vimeo:

• https://vimeo.com/110217114
• https://vimeo.com/111281488
• https://vimeo.com/11671747
• https://vimeo.com/116764246
• https://vimeo.com/120842635
• https://vimeo.com/126371564
• https://vimeo.com/130612876
• https://vimeo.com/138816246
• https://vimeo.com/146489061
• https://vimeo.com/153418170

Amazon: 10 episodes chosen arbitrarily from Season 1
of “The Wire”: 3, 4, 5, 6, 7, 8, 9, 11, 12, and 13.

1374 26th USENIX Security Symposium USENIX Association

https://www.youtube.com/watch?v=lc8804tkoaM
https://www.youtube.com/watch?v=RDfjXj5EGqI
https://www.youtube.com/watch?v=iW-y0Ci5nTI
https://www.youtube.com/watch?v=_clqcSj2rKM
https://www.youtube.com/watch?v=31784aZeJcc
https://www.youtube.com/watch?v=DcJGalE3vn0
https://www.youtube.com/watch?v=uINi-b5Fi1o
https://www.youtube.com/watch?v=bFjrmATIUYU
https://www.youtube.com/watch?v=fIOBSUSAikY
https://www.youtube.com/watch?v=DpdJJN9OYMg
https://www.youtube.com/watch?v=eyU3bRy2x44
https://www.youtube.com/watch?v=0fYL_qiDYf0
https://www.youtube.com/watch?v=Dgwyo6JNTDA
https://www.youtube.com/watch?v=Z4uN9kh-gdE
https://www.youtube.com/watch?v=DPeRRWSqPFY
https://www.youtube.com/watch?v=Th9mfs5eobw
https://www.youtube.com/watch?v=dUoC-GJ0FQY
https://www.youtube.com/watch?v=tjhrNKQX29U
https://www.youtube.com/watch?v=8YkLS95qDjI
https://www.youtube.com/watch?v=BxKLpArDrC8
https://vimeo.com/110217114
https://vimeo.com/111281488
https://vimeo.com/11671747
https://vimeo.com/116764246
https://vimeo.com/120842635
https://vimeo.com/126371564
https://vimeo.com/130612876
https://vimeo.com/138816246
https://vimeo.com/146489061
https://vimeo.com/153418170

	Abstract
	1 Introduction
	2 Information Leak in Video Streams
	3 Attack Scenarios
	3.1 Evaluated attack scenarios
	3.2 Other attack scenarios

	4 Overview of the Attack
	5 Experimental Setup
	5.1 Targets and attackers
	5.2 Data collection

	6 From Leaks to Fingerprints
	7 Video Identification Using Neural Networks
	7.1 Background on CNNs
	7.2 Our classifier
	7.3 Classification results
	7.4 Cross-network training
	7.5 Possible improvements

	8 Bayesian Detection Rate
	8.1 Distance detector
	8.2 Neural-network detector

	9 Off-path Attacks
	9.1 Measurement with JavaScript
	9.2 Simulating the attack
	9.3 Results

	10 Limitations
	11 Related Work
	11.1 Exploiting VBR leaks
	11.2 Congestion and timing attacks
	11.3 Fingerprinting and traffic analysis

	12 Mitigations
	13 Conclusions
	A Streams vs. MP4 Files
	B Comparison with Nearest Neighbor
	C Titles Used in Experiments

