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Abstract
Despite the pervasive nature of Internet censorship and

the continuous evolution of how and where censorship is
applied, measurements of censorship remain compara-
tively sparse. Understanding the scope, scale, and evo-
lution of Internet censorship requires global measure-
ments, performed at regular intervals. Unfortunately, the
state of the art relies on techniques that, by and large,
require users to directly participate in gathering these
measurements, drastically limiting their coverage and in-
hibiting regular data collection. To facilitate large-scale
measurements that can fill this gap in understanding, we
develop Iris, a scalable, accurate, and ethical method to
measure global manipulation of DNS resolutions. Iris
reveals widespread DNS manipulation of many domain
names; our findings both confirm anecdotal or limited re-
sults from previous work and reveal new patterns in DNS
manipulation.

1 Introduction

Anecdotes and reports indicate that Internet censorship
is widespread, affecting at least 60 countries [29, 39].
Despite its pervasive nature, empirical Internet measure-
ments revealing the scope and evolution of Internet cen-
sorship remain relatively sparse. A more complete un-
derstanding of Internet censorship around the world re-
quires diverse measurements from a wide range of geo-
graphic regions and ISPs, not only across countries but
also within regions of a single country. Diversity is im-
portant even within countries, because political dynam-
ics can vary internally, and because different ISPs may
implement filtering policies differently.

Unfortunately, most mechanisms for measuring In-
ternet censorship currently rely on volunteers who run
measurement software deployed on their own Internet-
connected devices (e.g., laptops, phones, tablets) [43,
49]. Because these tools rely on people to install soft-
ware and perform measurements, it is unlikely that they

can ever achieve the scale required to gather continu-
ous and diverse measurements about Internet censorship.
Performing measurements of the scale and frequency
necessary to understand the scope and evolution of In-
ternet censorship calls for fundamentally new techniques
that do not require human involvement or intervention.

We aim to develop techniques that can perform
widespread, longitudinal measurements of global Inter-
net manipulation without requiring the participation of
individual users in the countries of interest. Organiza-
tions may implement censorship at many layers of the In-
ternet protocol stack; they might, for example, block traf-
fic based on IP address, or they might block individual
web requests based on keywords. Recent work has de-
veloped techniques to continuously measure widespread
manipulation at the transport [23,42] and HTTP [45] lay-
ers, yet a significant gap remains in our understanding of
global information control concerning the manipulation
of the Internet’s Domain Name System (DNS). Towards
this goal, we develop and deploy a method and system
to detect, measure, and characterize the manipulation of
DNS responses in countries across the entire world.

Developing a technique to accurately detect DNS ma-
nipulation poses major challenges. Although previous
work has studied inconsistent or otherwise anomalous
DNS responses [32, 34], these methods have focused
mainly on identifying DNS responses that could reflect
a variety of underlying causes, including misconfigura-
tions. In contrast, our work aims to develop methods
for accurately identifying DNS manipulation indicative
of an intent to restrict user access to content. To achieve
high detection accuracy, we rely on a collection of met-
rics that we base on the underlying properties of DNS
domains, resolutions, and infrastructure.

One set of detection metrics focuses on consistency—
intuitively, when we query a domain from different lo-
cations, the IP addresses contained in DNS responses
should reflect hosting from either a common server (i.e.,
the same IP address) or the same autonomous system.
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Another set of detection metrics focuses on independent
verifiability, by comparison to independent information
such as the identity in the TLS certificate for the web-
site corresponding to the domain. Each of these metrics
naturally lends itself to exceptions: for example, queries
from different locations utilizing a content distribution
network (CDN) will often receive different IP addresses
(and sometimes even different CDNs). However, we can
use violations of all of the metrics as a strong indicator
of DNS manipulation.

In addition to achieving accurate results, another sig-
nificant design challenge concerns ethics. In contrast to
systems that explicitly involve volunteers in collecting
measurements, methods that send DNS queries through
open DNS resolvers deployed across the Internet raise
the issue of potentially implicating third parties who did
not in fact agree to participate in the measurement. Using
“open resolvers” is potentially problematic, as most of
these are not actual resolvers but instead DNS forwarders
in home routers and other devices [46]. A censor may
misattribute requests from these resources as individual
citizens attempting to access censored resources.

Reasoning about the risks of implicating individual
citizens requires detailed knowledge of how censors in
different countries monitor access to censored material
and how they penalize such actions. These policies and
behaviors may be complex, varying across time, region,
individuals involved, and the nature of the censored con-
tent; such risks are likely intractable to accurately de-
duce. To this end, our design takes steps to ensure that,
to the extent possible, we only query open DNS resolvers
hosted in Internet infrastructure (e.g., within Internet ser-
vice providers or cloud hosting providers), in an attempt
to eliminate any use of resolvers or forwarders in the
home networks of individual users. This step reduces
the set of DNS resolvers that we can use for our mea-
surements from tens of millions to only a few thousand.
However, we find that the resulting coverage still suffices
to achieve a global view of DNS manipulation, and—
importantly—in a safer way than previous studies that
exploit open DNS resolvers.

Our work makes the following contributions. First,
we design, implement, and deploy Iris, a scalable, eth-
ical system for measuring DNS manipulation. Second,
we develop analysis metrics for disambiguating natural
variation in DNS responses for a domain from nefarious
manipulation. Third, we perform a global measurement
study that highlights the heterogeneity of DNS manip-
ulation, across countries, resolvers, and domains. We
find that manipulation varies across DNS resolvers even
within a single country.

2 Related Work

Country-specific censorship studies. In recent years
many researchers have investigated the whats, hows, and
whys of censorship in particular countries. These stud-
ies often span a short period of time and reflect a single
vantage point within a target country, such as by renting
virtual private servers. For example, studies have specif-
ically focused on censorship practices in China [55],
Iran [7], Pakistan [38], Syria [12], and Egypt [8]. Stud-
ies have also explored the employment of various censor-
ship methods, e.g., injection of fake DNS replies [5, 36],
blocking of TCP/IP connections [54], and application-
level blocking [19, 33, 41]. A number of studies suggest
that countries sometimes change their blocking policies
and methods in times surrounding political events. For
example, Freedom House reports 15 instances of Inter-
net shutdowns—where the government cut off access to
Internet entirely—in 2016 alone [29]. Most of these were
apparently intended to prevent citizens from reaching so-
cial media to spread unwanted information.

Other studies have demonstrated that government cen-
sorship covers a broad variety of services and top-
ics, including video portals (e.g.,youtube.com) [51],
blogs (e.g., livejournal.com) [3], and news sites
(e.g., bbc.com) [9]. Censors also target circumvention
and anonymity tools; most famously, the Great Firewall
of China has engaged in a decade-long cat-and-mouse
game with Tor [24, 53]. Although these studies provide
important data points, each reflects a snapshot at a single
point in time and thus cannot capture ongoing trends and
variations in censorship practices.

Global censorship measurement tools. Several re-
search efforts developed platforms to measure censorship
by running experiments from diverse vantage points. For
instance, CensMon [48] used PlanetLab nodes in differ-
ent countries, and UBICA [1] aimed to increase vantage
points by running censorship measurement software on
home gateway devices and user desktops. In practice, as
far as we know, neither of these frameworks are still de-
ployed and collecting data. The OpenNet Initiative [39]
has used its public profile to recruit volunteers around
the world who have performed one-off measurements
from home networks each year for the past ten years.
OONI [49] and ICLab [30], two ongoing data collection
projects, use volunteers to run both custom software and
custom embedded devices (such as Raspberry Pis [26]).

Although each of these frameworks can perform a ex-
tensive set of tests, they rely on volunteers who run mea-
surement software on their Internet-connected devices.
These human involvements make it more challenging—
if not impossible—to gather continuous and diverse mea-
surements.
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Pearce et al. recently developed Augur, a method to
perform longitudinal global measurement using TCP/IP
side channels [42]. Although Augur examines a similar
set of domains and countries as Iris, it focuses on identi-
fying IP-based disruption rather than DNS-based manip-
ulation.

Measuring DNS manipulation. The DNS protocol’s
lack of authentication and integrity checking makes it
a prime target for attacks. Jones et al. presented tech-
niques for detecting unauthorized DNS root servers,
though found little such manipulation in practice [32].
Jiang et al. identified a vulnerability in DNS cache up-
date policies that allows malicious domains to stay in the
cache even if removed from the zone file [31].

Several projects have explored DNS manipulation us-
ing a limited number of vantage points. Weaver et al. ex-
plored DNS manipulation with respect to DNS redirec-
tion for advertisement purposes [52]. The authors also
observed incidents in which DNS resolvers redirected
end hosts to malware download pages. There are many
country-specific studies that show how different coun-
tries use a variety of DNS manipulation techniques to ex-
ercise Internet censorship. For example, in Iran the gov-
ernment expects ISPs to configure their DNS resolvers to
redirect contentious domains to a censorship page [7]. In
Pakistan, ISPs return NXDOMAIN responses [38]. In
China, the Great Firewall injects forged DNS packets
with seemingly arbitrary IP addresses [5]. These studies
however all drew upon a small or geographically limited
set of vantage points, and for short periods of time.

Using open resolvers. A number of studies have ex-
plored DNS manipulation at a larger scale by prob-
ing the IPv4 address space to find open resolvers. In
2008, Dagon et al. found corrupt DNS resolvers by run-
ning measurements using 200,000 open resolvers [18];
they do not analyze the results for potential censor-
ship. A similar scan by anonymous authors [4] in 2012
showed evidence of Chinese DNS censorship affecting
non-Chinese systems.

Follow-on work in 2015 by Kührer et al. tackled a
much larger scope: billions of lookups for 155 domain
names by millions of open resolvers [34]. The study
examined a broad range of potentially tampered results,
which in addition to censorship included malware, phish-
ing, domain parking, ad injection, captive portals, search
redirection, and email delivery. They detected DNS ma-
nipulation by comparing DNS responses from open re-
solvers with ground truth resolutions gathered by query-
ing control resolvers. They then identified legitimate un-
manipulated answers using a number of heuristic filter-
ing stages, such as treating a differing response as legit-
imate if its returned IP address lies within the same AS
the ground truth IP address.

We tried to use their method for conducting global
measurements specifically for detecting censorship.
However, censorship detection was not a focus of their
work, and the paper does not explicitly describe the de-
tails of its detection process. In particular, other than
examining HTTP pages for “blocked by the order of
. . . ” phrasing, the paper does not present a decision pro-
cess for determining whether a given instance of appar-
ent manipulation reflects censorship or some other phe-
nomenon. In addition, their measurements leverage open
resolvers en masse, which raises ethical concerns for end
users who may be wrongly implicated for attempting to
access banned content. In contrast, we frame an explicit,
reproducible method for globally measuring DNS-based
manipulation in an ethically responsible manner.

In 2016, Scott et al. introduced Satellite [47], a sys-
tem which leverages open resolvers to identify CDN
deployments and network interference using collected
resolutions. Given a bipartite graph linking domains
queried with IP address answers collected from the open
resolvers, Satellite identifies strongly connected com-
ponents, which represent domains hosted by the same
servers. Using metrics for domain similarity based on
the overlap in IP addresses observed for two domains,
Satellite distinguishes CDNs from network interference
as components with highly similar domains (addition-
ally, other heuristics help refine this classification).

3 Method

In this section we describe Iris, a scalable, lightweight
system to detect DNS manipulation. We begin by scop-
ing the problem space, identifying the capabilities and
limitations of various measurement building blocks, and
stating our assumptions about the threat model. We ex-
plain the process by which we select (1) which domain
names to measure, and (2) the vantage points to measure
them from, taking into consideration questions of ethics
and scalability. We then describe, given a set of mea-
surement vantage points and DNS domain names, how
we characterize the results of our measurements and use
them to draw conclusions about whether DNS manipu-
lation is taking place, based on either the consistency or
the independent verifiability of the responses that we re-
ceive. Next, we consider our technical approach in light
of existing ethical norms and guidelines, and explain how
various design decisions help us adhere to those princi-
ples as much as possible. Finally, we discuss the implicit
and technical limitations of Iris.

3.1 Overview
We aim to identify DNS manipulation, which we define
as the instance of a DNS response both (1) having at-
tributes (e.g., IP addresses, autonomous systems, web
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content) that are not consistent with respect to a well-
defined control set; and (2) returning information that is
demonstrably incorrect when compared against indepen-
dent information sources (e.g., TLS certificates).

Approach. Detecting DNS manipulation is conceptu-
ally simple: At a high-level, the idea entails performing
DNS queries through geographically distributed DNS re-
solvers and analyzing the responses for activity that sug-
gests that the responses for a DNS domain might be ma-
nipulated. Despite its apparent simplicity, however, real-
izing a system to scalably collect DNS data and analyze
it for manipulation poses both ethical and technical chal-
lenges. The ethical challenges concern selecting DNS
resolvers that do not implicate innocent citizens, as well
as ensuring that Iris does not induce undue load on the
DNS resolution infrastructure; §3.2 explains the ethical
guidelines we use to reason about design choices. §3.3
describes how Iris selects a “safe” set of open DNS re-
solvers; The technical challenges center around develop-
ing sound methods for detecting manipulation, which we
describe in §3.4 and §3.5.

Identifying DNS names to query. Iris queries a list of
sensitive URLs compiled by Citizen Lab [14]. We call
this list the Citizen Lab Block List (CLBL). This list of
URLs is compiled by experts based on known censor-
ship around the world, divided by category. We distill
the URLs down to domain names and use this list as
the basis of our dataset. We then supplement this list
by adding additional domain names selected at random
from the Alexa Top 10,000 [2]. These additional domain
names help address geographic or content biases in the
the CLBL while not drastically increasing the total num-
ber of queries.

Assumptions and focus. First, Iris aims to identify
widespread manipulation at the scale of Internet service
providers and countries. We cannot identify manipu-
lation that is targeted at specific individuals or popula-
tions or manipulation activities that exploit high-value
resources such as valid but stolen certificates. Second,
we focus on manipulation tactics that do not rely on
stealth; we assume that adversaries will use DNS re-
solvers to manipulate the responses to DNS queries. We
assume that adversaries do not return IP addresses that
are incorrect but within the same IP prefix as a correct
answer [5, 7, 38]. Finally, when attributing DNS ma-
nipulation to a particular country or dependent territory,
we rely on the country information available from Cen-
sys [21] supplemented with MaxMind’s [37] dataset to
map a resolver to a specific country (or dependent terri-
tory).

3.2 Ethics
The design of Iris incorporates many considerations re-
garding ethics. Our primary ethical concern is the risks
associated with the measurements that Iris conducts, as
issuing DNS queries for potentially censored or manipu-
lated DNS domains through resolvers that we do not own
could potentially implicate otherwise innocent users. A
second concern is whether the DNS queries that we gen-
erate introduce undue query load on authoritative DNS
nameservers for domains that we do not own. With these
concerns in mind, we consider the ethics of performing
measurements with Iris, using the ethical guidelines of
the Belmont Report [10] and Menlo Report [20] to frame
our discussion.

One important ethical principle is respect for persons;
essentially, this principle states that an experiment should
respect the rights of humans as autonomous decision-
makers. Sometimes this principle is misconstrued as a
requirement for informed consent for all experiments. In
many cases, however, informed consent is neither prac-
tical nor necessary; accordingly, Salganik [44] charac-
terizes this principle instead as “some consent for most
things”. In the case of Iris, obtaining the consent of all
open DNS resolver operators is impractical.

In lieu of attempting to obtain informed consent, we
turn to the principle of beneficence, which weighs the
benefits of conducting an experiment against the risks
associated with the experiment. Note that the goal of
beneficence is not to eliminate risk, but merely to re-
duce it to the extent possible. Iris’s design relies heavily
on this principle: Specifically, we note that the benefit
of issuing DNS queries through tens of millions of re-
solvers has rapidly diminishing returns, and that using
only open resolvers that we can determine are unlikely
to correspond to individual users greatly reduces the risk
to any individual without dramatically reducing the ben-
efits of our experiment. We note that our consideration of
ethics in this regard is a significant departure from pre-
vious work that has issued queries through open DNS
resolver infrastructure but has not considered ethics.

The principle of justice states that the beneficiaries of
an experiment should be the same population that bears
the risk of that experiment. On this front, we envi-
sion that the beneficiaries of the kinds of measurements
that we collect using Iris will be wide-ranging: design-
ers of circumvention tools, as well as policymakers, re-
searchers, and activists who are improving communica-
tions and connectivity for citizens in oppressive regimes
all need better data about the extent and scope of Internet
censorship. In short, even in the event that some entity
in a country that hosts an open DNS resolver might bear
some risk as a result of the measurements we conduct, we
envision that those same entities may ultimately benefit
from the research, policy-making, and tool development
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that Iris facilitates.
A final guideline concerns respect for law and public

interest, which essentially extends the principle of benef-
icence to all relevant stakeholders, not only the experi-
ment participants. This principle is useful for reasoning
about the externalities that our DNS queries create by in-
creasing DNS query load on the nameservers for various
DNS domains. To abide by this principle, we rate-limit
our DNS queries for each DNS domain to ensure that the
owners of these domains do not face large expenses as
a result of the queries that we issue. This rate limit is
necessary because some DNS service providers charge
based on the peak or near peak query rate.

3.3 Open DNS Resolvers
To obtain a wide range of measurement vantage points,
we use open DNS resolvers deployed around the world;
such resolvers will resolve queries for any client.

Measurement using open DNS resolvers is an ethically
complex issue. Previous work has identified tens of mil-
lions of these resolvers around the world [34]. Given
their prevalence and global diversity, open resolvers are a
compelling resource, providing researchers with consid-
erable volume and reach. Unfortunately, open resolvers
also pose a risk not only to the Internet but to individual
users.

Open resolvers can be the result of configuration
errors, frequently on end-user devices such as home
routers [34]. Using these devices for measurement can
incur monetary cost, and if the measurement involves
sensitive content or hosts, can expose the owner to harm.
Furthermore, open resolvers are also a common tool
in various online attacks such as Distributed Denial-of-
Service (DDoS) amplification attacks [35]. Despite ef-
forts to reduce both the prevalence of open resolvers and
their potential impact [40], they remain commonplace.

Due to these and the ethics considerations that we dis-
cussed in §3.2, we restrict the set of open resolvers that
we use to the few thousand resolvers that we are reason-
ably certain are part of the Internet infrastructure (e.g.,
belonging to Internet service providers, online cloud
hosting providers), as opposed to attributable to any sin-
gle individual. Figure 1 illustrates the process by which
Iris finds safe open DNS resolvers. We now explain this
process in more detail. Conceptually, the process com-
prises two steps: (1) scanning the Internet for open DNS
resolvers; or (2) pruning the list of open DNS resolvers
that we identify to limit the resolvers to a set that we can
reasonably attribute to Internet infrastructure.

By using DNS resolvers we do not control, we cannot
differentiate between country-wide or state-mandated
censorship and localized manipulation (e.g., captive por-
tals, malware [34]) at individual resolvers. Therefore

Figure 1: Overview of Iris’s DNS resolver identification and
selection pipeline. Iris begins with a global scan of the entire
IPv4 address space, followed by reverse DNS PTR lookups for
all open resolvers, and finally filtering resolvers to only include
DNS infrastructure.

we must aggregate and analyze results at ISP or coun-
try scale.

Step 1: Scanning the Internet’s IPv4 space for open
DNS resolvers. Scanning the IPv4 address space pro-
vides us with a global perspective on all open resolvers.
To do so, we developed an extension to the ZMap [22]
network scanner to enable Internet-wide DNS resolu-
tions1. This module queries port 53 of all IPv4 addresses
with a recursive DNS A record query. We use a purpose-
registered domain name we control for these queries to
ensure there is a known correct answer. We conduct
measurements and scans from IP addresses having a PTR
record identifying the machine as a “research scanner.”
These IP addresses also host a webpage identifying our
academic institution and offering the ability to opt-out of
scans. From these scans, we select all IP addresses that
return the correct answer to this query and classify them
as open resolvers. In §4.1, we explore the population of
open DNS resolvers that we use for our study.

Step 2: Identifying Infrastructure DNS Resolvers.
Given a list of all open DNS resolvers on the Internet,
we prune this list to include only DNS resolvers that
can likely be attributed to Internet infrastructure. To
do so, we aim to identify open DNS resolvers that ap-
pear to be authoritative nameservers for a given DNS
domain. Iris performs reverse DNS PTR lookups for
all open resolvers and retains only the resolvers that
have a valid PTR record beginning with the subdomain
ns[0-9]+ or nameserver[0-9]*. This filtering step
reduces the number of usable open resolvers—from mil-
lions to thousands—yet even the remaining set of open
DNS resolvers provides broad country- and network-
level coverage (characterized further in §4.1).

Using PTR records to identify infrastructure can have

1Our extension has been accepted into the open source project and
the results of our scans are available as part of the Censys [21] system.
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both false negatives and false positives. Not all infras-
tructure resolvers will have a valid PTR record, nor will
they all be authoritative nameservers. These false nega-
tives limit the scope and scale of our measurement, but
are necessary to reduce risk. Similarly, if a user oper-
ated their own authoritative nameserver on their home IP
or if a PTR record matched our naming criteria but was
not authoritative, our method would identify that IP as
infrastructure (false positives).

3.4 Performing the Measurements
Given a list of DNS domain names to query and a global
set of open DNS resolvers from which we can issue
queries, we need a mechanism that issues queries for
these domains to the set of resolvers that we have at our
disposal. Figure 2 shows an overview of the measure-
ment process. At a high level, Iris resolves each DNS
domain using the global vantage points afforded by the
open DNS resolvers, annotates the response IP addresses
with information from both outside datasets as well as
additional active probing, and uses consistency and inde-
pendent verifiability metrics to identify manipulated re-
sponses. The rest of this section outlines this measure-
ment process in detail, while §3.5 describes how we use
the results of these measurements to ultimately identify
manipulation.

Step 1: Performing global DNS queries. Iris takes as
input a list of suitable open DNS resolvers, as well as
the combined CLBL and Alexa domain names. In addi-
tion to the DNS domains that we are interested in testing,
we include 3 DNS domains that are under our control to
help us compute our consistency metrics when identify-
ing manipulation.

Querying tens of thousands of domains across tens of
thousands of resolvers required the development of a new
DNS query tool, because no existing DNS measurement
tool supports this scale. We implemented this tool in
Go [27]. The tool takes as input a set of domains and
resolvers, and coordinates random querying of each do-
main across each resolver. The tool supports a variety of
query types, multiple of which can be specified per run,
including A, AAAA, MX, and ANY. For each (domain, re-
solver) pair, the tool crafts a recursive DNS request and
sends it to the resolver. The recursive query requests that
the resolver resolve the domain and return the ultimate
answer, logging all responses, including timeouts. The
tool follows the set of responses to resolve each domain
to an IP address. For example, if a resolver returns a
CNAME, the tool then queries the resolver for resolution
of that CNAME.

To ensure resolvers are not overloaded, the tool in-
cludes a configurable rate-limit. For our experiments,
we limited queries to resolvers to an upper bound of 5

per second. In practice, this rate tends to be much lower
due to network latency in both reaching the resolver, as
well as the time it takes the resolver to perform the re-
cursive response. To cope with specific resolvers that are
unstable or timeout frequently, the tool provides a con-
figurable failure threshold that halts a specific resolver’s
set of measurements should too many queries fail.

To ensure the domains we query are not overloaded,
the tool randomizes the order of domains and limits the
number of resolvers queried in parallel such that in the
worst case no domain experiences more than 1 query per
second, in expectation.

Step 2: Annotating DNS responses with auxiliary in-
formation. Our analysis ultimately relies on character-
izing both the consistency and independent verifiability
of the DNS responses that we receive. To enable this
classification we first must gather additional details about
the IP addresses that are returned in each of the DNS re-
sponses. Iris annotates each IP address returned in the
set of DNS responses with additional information about
each IP address’s geolocation, autonomous system (AS),
port 80 HTTP responses, and port 443 HTTPS X.509 cer-
tificates. We rely on the Censys [21] dataset for this aux-
iliary information; Censys provides daily snapshots of
this information. This dataset does not contain every IP
address; for example, the dataset does not include IP ad-
dresses that have no open ports, or adversaries may in-
tentionally return IP addresses that return error pages or
are otherwise unresponsive. In these cases, we annotate
all IP addresses in our dataset with AS and geolocation
information from the Maxmind service [37].

Additional PTR and TLS scanning. For each IP ad-
dress, we perform a DNS PTR lookup to assist with some
of our subsequent consistency characterization (a process
we detail in §3.5). Another complication in the annota-
tion exercise relates to the fact that in practice a single
IP address might host many websites via HTTP or HTTPS
(i.e., virtual hosting). As a result, when Censys retrieves
certificates via port 443 (HTTPS) across the entire IPv4
address space, the certificate that Censys retrieves might
differ from the certificate that the server would return in
response to a query via TLS’s Server Name Indication
(SNI) extension. Such a discrepancy might lead Iris to
mischaracterize virtual hosting as DNS inconsistency. To
mitigate this effect, for each resulting IP address we per-
form an additional active HTTPS connection using SNI,
specifying the name originally queried. We annotate all
responses with this information, which we use for answer
classification (examined further in §5.1).

3.5 Identifying DNS Manipulation
To determine whether a DNS response is manipulated,
Iris relies on two types of metrics: consistency metrics
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Figure 2: Overview of DNS resolution, annotation, filtering, and classification. Iris inputs a set of domains and DNS resolvers and
outputs results indicating manipulated DNS responses.

and independent verifiability metrics. We say that a re-
sponse is correct if it satisfies any consistency or inde-
pendent verifiable metric; otherwise, we classify the re-
sponse as manipulated. In this section, we outline each
class of metrics as well as the specific features we de-
velop to classify answers. The rest of this section defines
these metrics; §5.1 explores the efficacy of each of them.

3.5.1 Consistency

Access to a domain should have some form of consis-
tency, even when accessed from various global vantage
points. This consistency may take the form of network
properties, infrastructure attributes, or even content. We
leverage these attributes, both in relation to control data
as well as across the dataset itself, to classify DNS re-
sponses.

Consistency Baseline: Control Domains and Re-
solvers. Central to our notion of consistency is having
a set of geographically diverse resolvers we control that
are (presumably) not subject to manipulation. These con-
trols give us a set of high-confidence correct answers we
can use to identify consistency across a range of IP ad-
dress properties. Geographic diversity helps ensure that
area-specific deployments do not cause false-positives.
For example, several domains in our dataset use differ-
ent content distribution network (CDN) hosting infras-
tructure outside North America. As part of our measure-
ments we insert domain names we control, with known
correct answers. We use these domains to ensure a re-
solver reliably returns unmanipulated results for non-
sensitive content (e.g., not a captive portal).

For each domain name, we create a set of con-
sistency metrics by taking the union of each metric
across all of our control resolvers. For example,
if Control A returns the answer 192.168.0.10

and 192.168.0.11 and Control B returns
192.168.0.12, we create a set of consistent IP set of

(192.168.0.10, 192.168.0.11, 192.168.0.12).
We say the answer is “correct” (i.e., not manip-
ulated) if, for each metric, the answer is a non-
empty subset of the controls. Returning to our IP
example, if a global resolver returns the answer
(192.168.0.10, 192.168.0.12), it is identified as
correct. When a request returns multiple records, we
check all records and consider the reply good if any
response passes the appropriate tests.

Additionally, unmanipulated passive DNS [6] data
collected simultaneously with our experiments across a
geographically diverse set of countries could enhance (or
replace) our consistency metrics. Unfortunately we are
not aware of such a dataset being available publicly.

IP Address. The simplest consistency metric is the IP
address or IP addresses that a DNS response contains.

Autonomous System / Organization. In the case of ge-
ographically distributed sites and services, such as those
hosted on CDNs, a single domain name may return dif-
ferent IP addresses as part of normal operation. To at-
tempt to account for these discrepancies, we also check
whether different IP addresses for a domain map to the
same AS we see when issuing queries for the domain
name through our control resolvers. Because a single AS
may have multiple AS numbers (ASNs), we consider two
IP addresses with either the same ASN or AS organiza-
tion name as being from the same AS. Although many
responses will exhibit AS consistency even if individual
IP addresses differ, even domains whose queries are not
manipulated will sometimes return inconsistent AS-level
and organizational information as well. This inconsis-
tency is especially common for large service providers
whose infrastructure spans multiple regions and conti-
nents and is often the result of acquisitions. To account
for these inconsistencies, we need additional consistency
metrics at higher layers of the protocol stack (specifically
HTTP and HTTPS), described next.
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HTTP Content. If an IP address is running a webserver
on port 80, we include a hash of the content returned as
an additional consistency metric. These content hashes
come from a port 80 IP address Censys crawl. This
metric effectively identifies sites with limited dynamic
content. As discussed in §5.1, this metric is also use-
ful in identifying sites with dynamic content but shared
infrastructure. For example, as these hashes are based
on HTTP GET fetches using an IP address as the Host

in the header, this fetch uniquely fingerprints and cate-
gorizes CDN failures or default host pages. In another
example, much of Google’s web hosting infrastructure
will return the byte-wise identical redirection page to
http://www.google.com/ for HTTP GETs without a
valid Google host header. These identical pages allow
us to identify Google resolutions as correct even for IP
addresses acting as a Point-of-Presence.

HTTPS Certificate. We label a response as correct if
the hash of the HTTPS certificate presented upon connec-
tion matches that of an IP returned via our controls. Note
this is not an independent verifiability metric, as the cer-
tificates may or may not be trusted, and may not even be
correct for the domain.

PTRs for CDNs. From our control data, we classify do-
mains as hosted on particular CDNs based on PTR, AS,
and certificate information. We consider a non-control
response as consistent if the PTR record for that response
points to the same CDN.

3.5.2 Independent Verifiability
In addition to consistency metrics, we also define a set of
metrics that we can independently verify using external
data sources, such as the HTTPS certificate infrastruc-
ture. We describe these methods below.

HTTPS Certificate. We consider a DNS response to
be correct, independent of controls, if the IP address
presents a valid, browser-trusted certificate for the cor-
rect domain name when queried without SNI. We further
extend this metric to allow for common configuration er-
rors, such as returning certificates for *.example.com
when requesting example.com.

HTTPS Certificate with SNI. We add an additional
metric that checks whether the certificate returned
from our follow-up SNI-enabled scans returns a valid,
browser-trusted certificate for the correct IP address.

3.6 Limitations
To facilitate global coverage in our measurements, our
method has limitations that impact our scope and limit
our results.

Localized Manipulation. Since Iris relies entirely on
open infrastructure resolvers that we do not control, in
regions with few resolvers, we cannot differentiate be-
tween localized manipulation by the resolver’s opera-
tor and ISP or country-wide manipulation. Analysis of
incorrect results focusing on consistency across ISP or
country, or examination of webpage content, could aid in
identifying localized manipulation.

Domain Bias. From our set of infrastructure resolvers,
we measure manipulation of the CLBL and a subset of
Alexa top sites. Although the CLBL is a community-
based effort to identify sensitive content globally, by its
very nature it is not complete. URLs and domains are
missing, and sensitive content may change faster than the
list is updated. Similarly, the list may exhibit geographic
bias based on the language of the project and who con-
tributes to it. This bias could affect the relative volume
and scope of manipulation that Iris can detect.

Evasion. Although we focus on manipulation at ISP or
country scale, an active adversary can still attempt to
evade our measurements. Upstream resolvers could use
EDNS Client Subnet [16] to only manipulate results for
certain target IP ranges, or ISP resolvers could choose
to manipulate only their own customers. Country-wide
firewalls that perform injection could identify our scan-
ning IP addresses and either not inject results or block
our communication entirely. An adversary could also
exploit our consistency metrics and inject incorrect IP
addresses within the same AS as the targets.

Geolocation Error. We rely on Censys [21] and Max-
mind [37] for geolocation and AS labeling of infras-
tructure resolvers to perform country or ISP-level aggre-
gation. Incorrect labeling would identify country-wide
manipulation as incomplete (false negatives), or identify
manipulation in countries where it is not present (false
positives).

4 Dataset
In this section, we characterize the data collected and
how we processed it to obtain the results used in our anal-
ysis.

4.1 Open Resolver Selection
We initially identified a large pool of open DNS resolvers
through an Internet-wide ZMap scan using our DNS ex-
tension to ZMap in January 2017. In total, 4.2 million
open resolvers responded with a correct answer to our
scan queries. This number excludes resolvers that replied
with valid DNS responses but had either a missing or in-
correct IP resolution for our scan’s query domain.
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Resolver
Datasets

Total
Resolvers

Number
Countries

Median /
Country

All Usable 4,197,543 232 659.5
Ethically Usable 6,564 157 6.0
Experiment Set 6,020 151 6.0

Table 1: DNS resolver datasets. We identify all correctly func-
tioning open resolvers are across the IPv4 address space. The
experiment set consists of resolvers that passed additional func-
tional tests beyond our basic scan. Note that the number of
countries includes dependent territories.

Resolver Dataset AF AS EU NA OC SA

All Usable 55 49 52 41 21 14
Ethically Usable 29 42 42 25 8 11
Experiment Set 26 41 41 24 8 11

Table 2: Number of countries (and dependent territories) con-
taining usable resolvers by continent. AF=Africa, AS=Asia,
EU=Europe, NA=North America, OC=Oceana/Australia,
SA=South America.

The degree to which we can investigate DNS ma-
nipulation across various countries depends on the ge-
ographic distribution of the selected DNS resolvers. By
geolocating this initial set of resolvers using Censys [21]
and MaxMind [37], we observed that these resolvers re-
side in 232 countries and dependent territories2, with a
median of 659 resolvers per country. Due to the ethi-
cal considerations we outlined in §3.2, we restrict this
set of resolvers to 6,564 infrastructure resolvers, in 157
countries, again with a median of 6 resolvers per country.
Finally, we remove unstable or otherwise anomalous re-
solvers; §4.3 describes this process in more detail. This
filtering reduces the set of usable resolvers to 6,020 in
151 countries, with a median of 6 resolvers in each. Ta-
ble 1 summarizes the resulting population of resolvers;
Table 2 shows the breakdown across continents. We also
use 4 geographically diverse resolvers for controlled ex-
periments; the 2 Google Public DNS servers [28], a Ger-
man open resolver hosted on Amazon AWS, and a re-
solver that we manage at the University of California,
Berkeley.

4.2 Domain Selection
We investigate DNS manipulation for both domains
known to be censored and domains for popular websites.
We began with the Citizen Lab Block List (CLBL) [14],
consisting of 1,376 sensitive domains. We augment
this list with 1,000 domains randomly selected from the
Alexa Top 10,000, as well as 3 control domains we man-

2Countries and dependent territories are defined by the ISO 3166-1
alpha-2 codes, the granularity of Maxmind’s country geolocation.

Response
Datasets

Total
Responses

Number
Resolvers

Number
Domains

All Responses 14,539,198 6,564 2,330
After Filtering 13,594,683 6,020 2,303

Table 3: DNS response dataset before and after filtering prob-
lematic resolvers, domains, and failed queries.

age that should not be manipulated. Due to overlap be-
tween the two domain sets, our combined dataset con-
sists of 2,330 domains. We excluded 27 problematic do-
mains that we identified through our data collection pro-
cess, resulting in our final population of 2,303 domains.

4.3 Response Filtering
We issued 14.5 million DNS A record queries for our
2,330 pre-filtered domains, across 6,564 infrastructure
and control open resolvers during a 2 day period in Jan-
uary 2017. We observed various erroneous behavior that
required further filtering. Excluding these degenerate
cases reduced our dataset collection to 13.5 million re-
sponses across 2,303 domains and 6,020 resolvers, as
summarized in Table 3. The rest of this section details
this filtering process.

Resolvers. We detected that 341 resolvers stopped re-
sponding to our queries during our experiment. An ad-
ditional 202 resolvers incorrectly resolved our control
domain names, despite previously answering correctly
during our Internet-wide scans. The common cause
of this behavior was rate limiting, as our Internet-wide
scans queried resolvers only once, whereas our experi-
ments necessitated repeated queries. We identified an-
other problematic resolver that exhibited a query fail-
ure rate above 70% due to aggressive rate limiting. We
eliminated these resolvers and their associated query re-
sponses from our dataset, reducing the number of valid
responses by 510K.

Domains. Our control DNS resolvers could not resolve
15 domain names. We excluded these and their asso-
ciated 90K query responses from our dataset. We re-
moved another 12 domains and their 72K corresponding
query responses as their DNS resolutions failed an auto-
mated sanity check; resolvers across numerous countries
provided the same incorrect DNS resolution for each of
these domains, and the IP address returned was unique
per domain (i.e., not a block page or filtering appliance).
We did not expect censors to exhibit this behavior; a sin-
gle censor is not likely to operate across multiple coun-
tries or geographic regions, and manipulations such as
block pages that use a single IP address across countries
should also be spread across multiple domains. These
domains do not support HTTPS, and exhibit geograph-
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ically specific deployments. With increased geographic
diversity of control resolvers or deployment of HTTPS
by these sites, our consistency or verifiability metrics
would account for these domains.

Queries. We filtered another 256K queries that returned
failure error codes; 93.7% of all errors were timeouts and
server failures. Timeouts denote connections where the
resolver did not respond to our query within 15 seconds.
Server failures indicate when a resolver could not recur-
sively resolve a domain within its own pre-configured
time allotment (10 seconds by default in BIND). Table 4
provides a detailed breakdown of error responses.

Failure Type Count % of Responses

Timeout 140,551 0.97%
Server Fail 107,826 0.74%
Conn Refused 7,823 0.05%
Conn Error 3,686 0.03%
Truncated 3,451 0.02%
NXDOMAIN 1,713 0.01%

Table 4: Breakdown of the 265,050 DNS responses that re-
turned a non-success error code.

Returning an NXDOMAIN response code [38], which
informs a client that a domain does not exist, is an ob-
vious potential DNS censorship mechanism. Unfortu-
nately, some CDNs return this error in normal opera-
tions, presumably due to rate limiting or client configu-
ration settings. We found that the most prevalent NX be-
havior occurred in the countries of Tonga and Pakistan;
both countries exhibited censorship of multiple content
types, including adult and LGBT. Previous studies have
observed NXDOMAIN blocking in Pakistan [38]. These
instances comprise a small percentage of overall NX-
DOMAIN responses. Given the many non-censorship
NXDOMAIN responses and the relative infrequency of
their use for censorship, we exclude these from our anal-
ysis. Another 72K responses had a SUCCESS response
code, but contained no IP address in the response. This
failure mode frequently coincide with CNAME responses
that could not be resolved further. We excluded these
queries. Table 5 provides a geographic breakdown of
NXDOMAIN responses.

After removing problematic resolvers, domains, and
failed queries, the dataset comprises of 13,594,683 DNS
responses. By applying our consistency and indepen-
dent verifiability metrics, we identify 41,778 responses
(0.31%) as manipulated, spread across 58 countries (and
dependent territories) and 1,408 domains.

Country % NXDOMAIN

Tonga 2.93%
Pakistan 0.37%

Bosnia/Herzegovina 0.12%
Isle of Man 0.04%
Cape Verde 0.04%

Table 5: The top 5 countries / dependent territories by the per-
cent of queries that responded with NXDOMAIN.
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5 Results
We now evaluate the effectiveness of our DNS manipula-
tion metrics and explore manipulated DNS responses in
the context of Internet censorship.

5.1 Evaluating Manipulation Metrics
To assess the effectiveness of the consistency and inde-
pendent verifiability metrics, we quantify the ability of
each metric to identify unmanipulated responses (to ex-
clude from further investigation). Figure 3 shows each
metric’s efficacy. The horizontal axis represents the frac-
tion of responses from a particular resolver that are clas-
sified as correct by a given metric. The vertical axis indi-
cates the number of resolvers that exhibit that same frac-
tion of correct responses (again under the given metric).
For example, almost 6,000 resolvers had roughly 8%
of their responses identified as correct under the “Same
CDN” metric. A narrow band indicates that many re-
solvers exhibit similar fractions of correct responses un-
der that metric (i.e., it is more stable). The closer the cen-
ter mass of a histogram lies to 1.0, the more effective its
corresponding metric, since a larger fraction of responses
are classified as correct (i.e., not manipulation) using that
metric.
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Figure 4: The fraction of responses manipulated, per resolver.
For 89% of resolvers, we observed no manipulation.

The AS consistency metric (“Same AS”) is the most
effective: it classified 90% of the DNS responses as con-
sistent. Similarly, identifying matching IP addresses be-
tween responses from our control resolvers and our ex-
periment resolvers flagged about 80% of responses as
correct across most resolvers. “Same HTTP Page” is also
relatively effective, as many geographically distributed
deployments of the same site (such as with Points-of-
Presence) have either identical content or infrastructure
error characteristics (see §3.5.1). This figure also illus-
trates the importance of SNI, increasing the effective-
ness of correct and valid HTTPS certificates from 38% to
55%. The same HTTPS certificate (“Same Cert”) metric
turns out to be more effective than simply having a cor-
rect certificate (“Correct Cert”), because so many sites
incorrectly deploy HTTPS.

5.2 Manipulated DNS Responses
We detect nearly 42,000 manipulated DNS responses; we
now investigate the distribution of these responses across
resolvers, domains, and countries.

Manipulated responses by resolver. Figure 4 shows the
cumulative fraction of results that return at least a cer-
tain fraction of manipulated responses: 88% of resolvers
exhibited no manipulation; for 96% of resolvers, we ob-
serve manipulation for fewer than 5% of responses. The
modes in the CDF highlight differences between resolver
subpopulations, which upon further investigation we dis-
covered reflected differing manipulation practices across
countries. Additionally, 62% of domains are manipu-
lated by at least one resolver, which is expected given
that more than half of our selected domains are sensitive
sites on the CLBL. We explore these variations in more
detail later in this section.

Country (# Res.) Median Mean Max Min

Iran (122) 6.02% 5.99% 22.41% 0.00%
China (62) 5.22% 4.59% 8.40% 0.00%

Indonesia (80) 0.63% 2.81% 9.95% 0.00%
Greece (26) 0.28% 0.40% 0.83% 0.00%

Mongolia (6) 0.17% 0.18% 0.36% 0.00%
Iraq (7) 0.09% 1.67% 5.79% 0.00%

Bermuda (2) 0.04% 0.04% 0.09% 0.00%
Kazakhstan (14) 0.04% 0.30% 3.90% 0.00%

Belarus (18) 0.04% 0.07% 0.30% 0.00%

Table 6: Top 10 countries by median percent of manipulated
responses per resolver. We additionally provide the mean, max-
imum, and minimum percent for resolvers in each country. The
number of resolvers per country is listed with the country name.

Manipulated responses by country. Previous work has
observed that some countries deploy nation-wide DNS
censorship technology [5]; therefore, we expected to see
groups of resolvers in the same country, each manipu-
lating a similar set of domains. Table 6 lists the percent
of manipulated responses per resolver, aggregated across
resolvers in each country. Resolvers in Iran exhibited the
highest degree of manipulation, with a median of 6.02%
manipulated responses per Iranian resolver; China fol-
lows with a median value of 5.22%. These rankings de-
pend on the domains in our domain list, and may merely
reflect that the CLBL contained more domains that are
censored in these countries.

The top 10 countries shown in Table 6 all have at least
one resolver that does not manipulate any domains; IP
address geolocation inaccuracy may partially explain this
surprising finding. For example, uncensored resolvers in
Hong Kong may be incorrectly labeled as Chinese. Ad-
ditionally, for countries that do not directly implement
the technical manipulation mechanisms but rather rely on
individual ISPs to do so, the actual manifestation of ma-
nipulation may vary across ISPs within a single country.
Localized manipulation by resolver operators in coun-
tries with few resolvers could also influence these results.
§5.3 investigates these factors further.

Figure 5 shows the representation of responses in our
dataset by country. For example, the leftmost pair of bars
shows that, while less than 5% of all responses in our
dataset came from Iranian resolvers, the responses that
we received accounted for nearly 40% of manipulated re-
sponses in the dataset. Similarly, Chinese resolvers rep-
resented 1% of responses in the data but contributed to
15% of the manipulated responses. In contrast, 30% of
our DNS responses came from resolvers in the United
States, but accounted for only 5% of censored responses.

Table 7 shows the breakdown of the top manipulated
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Figure 5: The fraction of all responses in our dataset from each
country (blue), and the fraction of all manipulated responses in
our dataset from the corresponding country (red).

responses, by the IP address that appears in the manipu-
lated answer. The top two special-purpose (i.e., private)
IP addresses appear in the majority of responses within
Iran. The third most common response is an OpenDNS
(a DNS filtering and security product [13]) blockpage
indicating adult content. The fourth most frequent re-
sponse is an IP address hosting an HTTP error page
known to be used in Turkey DNS manipulation [11].

Private and special-purpose IPv4 addresses in ma-
nipulated DNS responses. Of the roughly 42,000 ma-
nipulated DNS responses, 17,806 correspond to special-
purpose IPv4 addresses as defined by RFC 6890 [17]; the
remaining 23,972 responses corresponded to addresses
in the public IP address space. Table 8 shows the ex-
tent to which countries return private IP addresses in
responses, for the top 10 countries ranked by the rela-
tive amount of DNS manipulation compared to the total
number of results from that country. For example, we
observed more manipulated responses from Turkey than
Iraq, but Iris used more open DNS resolvers in Turkey,
so observed frequencies require normalization. Here, we
notice that countries that manipulate DNS tend to either
return only special-purpose IP addresses in manipulated
responses (as in the case of Iran, Iraq, and Kuwait) or
only public IP addresses (China).

Figure 6 presents the distribution of observed pub-
lic IP addresses across manipulated responses in our
dataset. The most frequently returned public IP address,
an OpenDNS blockpage, constituted almost 15% of all
manipulated responses containing public IP addresses.
The top ten public IP addresses accounted for nearly 60%
of responses.

Many IP answers have been observed in previous stud-
ies on Chinese DNS censorship [5, 25]. These addresses

Answer Results Names Category

10.10.34.36 12,144 140 Private
10.10.34.34 4,566 776 Private

146.112.61.106 3,495 801 OpenDNS Adult
195.175.254.2 3,137 129 HTTP Error Page

93.46.8.89 1,571 88 China*
118.97.116.27 1,212 155 Safe / Filtering

243.185.187.39 1,167 88 China*
127.0.0.1 876 267 Private

95.53.248.254 566 566 Resolver’s Own IP
95.53.248.254 565 565 Resolver’s Own IP

8.7.198.45 411 75 China*
202.169.44.80 379 113 Safe / Filtering

212.47.252.200 371 371 Resolver’s Own IP
212.47.254.200 370 370 Resolver’s Own IP

213.177.28.90 352 22 Gambling Blockpg
208.91.112.55 349 320 Blockpg
180.131.146.7 312 145 Safe / Filtering

203.98.7.65 303 78 China*
202.182.48.245 302 100 Adult Blockpg
93.158.134.250 258 86 Safe / Filtering

Table 7: Most common manipulated responses by volume, with
manual classification for public, non-resolver IP addresses.
The category “China*” are IP addresses previously observed
by Farnan et al. in 2016 [25].

are seemingly arbitrary; they host no services, not even
a fundamental webpage. The 10 most frequent Chinese
responses constituted almost 75% of Chinese responses.
The remaining 25% are spread over a long tail of nearly
1,000 seemingly arbitrary non-Chinese IP addresses.

5.3 Manipulation Within Countries
Figure 7 shows the DNS manipulation of each domain by
the fraction of resolvers within a country, for the 10 coun-
tries with the most normalized amount of manipulation.
Each point represents a domain; the vertical axis repre-
sents the fraction of resolvers in that country that manip-
ulate it. Shading shows the density of points for that part
of the distribution. The plot reveals several interesting
phenomena. One group of domains is manipulated by
about 80% of resolvers in Iran, and another group is ma-
nipulated by fewer than 10% of resolvers. This second
group of domains is manipulated by a smaller fraction of
resolvers, also returning non-public IP addresses. These
effects are consistent with previously noted blackholing
employed by DNS manipulation infrastructure [7]; this
phenomenon deserves further investigation.

Similarly, one set of domains in China experiences
manipulation by approximately 80% of resolvers, and
another set experiences manipulation only half the time.
In contrast, manipulation in Greece and Kuwait is more
homogeneous across resolvers.
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Country (# Res.) % Incor. % Pub.

Iran (122) 6.02% 0.01%
China (62) 4.52% 99.46%

Indonesia (80) 2.74% 95.08%
Iraq (7) 1.68% 1.49%

New Zealand (16) 1.59% 100.00%
Turkey (192) 0.84% 99.81%

Romania (45) 0.77% 100.00%
Kuwait (10) 0.61% 0.00%
Greece (26) 0.41% 100.00%
Cyprus (5) 0.40% 100.00%

Table 8: Percent of public IP addresses in manipulated re-
sponses, by country. Countries are sorted by overall frequency
of manipulation.
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Figure 6: Manipulated but public IP addresses in our dataset.
The horizontal axis is sorted by the most common IP.

Heterogeneity across a country may suggest a situa-
tion where different ISPs implement filtering with differ-
ent block lists; it might also indicate variability across
geographic region within a country. The fact that ma-
nipulation rates vary even among resolvers in a certain
group within a country may indicate either probabilistic
manipulation, or the injection of manipulated responses
(a phenomenon that has been documented before [5]).
Other more benign explanations exist, such as corporate
firewalls (which are common in the United States), or lo-
calized manipulation by resolver operators.

Ceilings on the percent of resolvers within a country
performing manipulation, such as no domain in China
experiencing manipulation across more than approxi-
mately 85% of resolvers, suggest IP geolocation errors
are common.
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nipulate each domain.
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Figure 8: The number of countries (or dependent territories)
that block each domain with observed manipulated responses,
sorted by manipulation prevalence.

5.4 Commonly Manipulated Domains

Commonly manipulated domains across countries.
Many domains experienced manipulation across a range
of countries. Figure 8 shows a CDF of the number of
countries (or dependent territories) for which at least
one resolver manipulated each domain. 30% of domains
were manipulated in only a single country, while 70%
were manipulated in 5 or fewer countries. No domain
was manipulated in more than 19 countries.

Table 9 highlights domains that experience manipula-
tion in many countries (or dependent territories). The 2
most manipulated domains are both gambling websites,
each experiencing censorship across 19 different coun-
tries. DNS resolutions for pornographic websites are
similarly manipulated, accounting for the next 3 most
commonly affected domains. Peer-to-peer file sharing
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Rank Domain Name Category # Cn # Res

1 *pokerstars.com Gambling 19 251
2 betway.com Gambling 19 234
3 pornhub.com Pornography 19 222
4 youporn.com Pornography 19 192
5 xvideos.com Pornography 19 174
6 thepiratebay.org P2P sharing 18 236
7 thepiratebay.se P2P sharing 18 217
8 xhamster.com Pornography 18 200
9 *partypoker.com Gambling 17 226

10 beeg.com Pornography 17 183

80 torproject.org Anon. & cen. 12 159
181 twitter.com Twitter 9 160
250 *youtube.com Google 8 165
495 *citizenlab.org Freedom expr. 4 148
606 www.google.com Google 3 56

1086 google.com Google 1 5

Table 9: Domain names manipulated in the most countries
(or dependent territories), ordered by number of countries with
manipulated responses. Domains beginning with * begin with
“www.”.

sites are also commonly targeted, particularly The Pi-
rate Bay. The Tor Project [50] DNS domain is the most
widely interfered with domain amongst anonymity and
censorship tools, manipulated across 12 countries. Cit-
izen Lab [15] also experienced manipulation across 4
countries. We note that www.google.com is impacted
across more countries than google.com, unsurprising
since all HTTP and HTTPS queries to google.com im-
mediately redirect to www.google.com; for example,
China manipulates www.google.com queries but disre-
gards those for google.com. This result underscores
the need for domain datasets that contain complete do-
mains and subdomains, rather than simply second-level
domains.

We also note that commonly measured sites such as
The Tor Project, Google, and Twitter, experience ma-
nipulation across significantly fewer countries than some
sites. Such disparity points to the need for a diverse do-
main dataset.

China focuses its DNS manipulation not just on adult
content but also major English news outlets, such as
nytimes.com, online.wsj.com, and www.reuters.

com. China is the only country observed to manipulate
the DNS responses for these domains; it also censored
the Chinese language Wikipedia domain.

Commonly manipulated categories. Table 10 shows
the prevalence of manipulation by CLBL categories. We
consider a category as manipulated within a country if
any resolver within that country manipulates a domain
of that category. Domains in the Alexa Top 10K expe-

Rank Domain Category # Cn. # Resolv.

1 Alexa Top 10k 36 442
2 Freedom of expr. 35 384
3 P2P file sharing 34 394
4 Human rights 31 288
5 Gambling 29 377
6 Pornography 29 342
7 Alcohol and drugs 28 274
8 Anon. & censor. 24 303
9 Hate speech 22 158

10 Multimedia sharing 21 293

20 Google 16 234
34 Facebook 10 175
38 Twitter 9 160

Table 10: Top 10 domain categories, ordered by number of
countries (or dependent territories) with manipulated answers.

rienced the most manipulation; these domains did not
appear in the CLBL, which highlights the importance
of measuring both curated lists from domain experts as
well as broad samples of popular websites. Although no
single domain experiences manipulation in more than 19
countries, several categories experience manipulation in
more than 30 countries, indicating that while broad cat-
egories appear to be commonly targeted, the specific do-
mains may vary country to country.

To study how manipulated categories vary across
countries, we analyzed the fraction of resolvers within
each country that manipulate a particular category. The
top categories vary extensively across countries. Ta-
ble 11 shows the most frequently manipulated categories
for the top 10 countries by normalized amounts of ma-
nipulation. The top category of manipulated content
in Iran, “provocative attire,” is not a category across
any of the other top 10 countries. Manipulation of do-
mains randomly selected from Alexa but not in the CLBL
(“Alexa Top 10k”) is prevalent across numerous coun-
tries, again reinforcing the need for diverse domain
datasets. Anonymity and censorship tools are manipu-
lated extensively across 85% of resolvers in China, but
not across the rest of the top 10. Pornography and gam-
bling sites are manipulated throughout.

6 Summary

Internet censorship is widespread, dynamic, and contin-
ually evolving; understanding the nature of censorship
thus requires techniques to perform continuous, large-
scale measurement. Unfortunately, the state-of-the-art
techniques for measuring manipulation—a common cen-
sorship technique—rely on human volunteers, limiting
the scale and frequency of measurements. This work in-
troduces a method for measuring DNS manipulation on
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Country Domain Category % of Resolv.

IR Provocative attire 90.98%
Alexa Top 10k 90.16%

Freedom of expr. 90.16%

CN Alexa Top 10k 85.48%
Freedom of expr. 85.48%
Anon. & censor. 85.48%

ID Pornography 57.50%
Alexa Top 10k 56.25%

P2P file sharing 52.50%

IQ Political Blog 57.14%
Alexa Top 10k 28.57%

Freedom of expr. 28.57%

NZ Alexa Top 10k 12.50%
Freedom of expr. 12.50%

P2P file sharing 12.50%

TR Alexa Top 10k 18.23%
Freedom of expr. 17.71%

Pornography 16.67%

RO Alexa Top 10k 37.78%
Gambling 37.78%

Freedom of expr. 2.22%

KW Alexa Top 10k 10.00%
Freedom of expr. 10.00%

P2P file sharing 10.00%

GR Gambling 50.00%
Alexa Top 10k 46.15%

CY Alexa Top 10k 40.00%
Gambling 40.00%

Table 11: Breakdown of the top 3 domain categories experi-
encing manipulation, per country. Countries are ordered by
the relative amount of manipulated responses for that country.
Both Greece (GR) and Cyprus (CY) only experience manipu-
lated responses across 2 categories.

a global scale by using as vantage points open DNS re-
solvers that form part of the Internet’s infrastructure.

The major contributions of our work are: (1) Iris: a
scalable, ethical system for measuring DNS manipula-
tion; (2) an analysis technique for disambiguating natu-
ral variation in DNS responses (e.g., due to CDNs) from
more nefarious types of manipulation; and (3) a large-
scale measurement study that highlights the heterogene-
ity of DNS manipulation, across countries, resolvers, and
domains. Notably, we find that manipulation is het-
erogeneous across DNS resolvers even within a single
country. Iris supports regular, continuous measurement,
which will ultimately facilitate tracking DNS manipula-
tion trends as they evolve over time; our next step is to
operationalize such measurements to facilitate longitudi-
nal analysis.
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M. F. Awan, T. Ahmad, and S. Qaisar. Monitor-
ing Internet Censorship with UBICA. In Interna-
tional Workshop on Traffic Monitoring and Analy-
sis (TMA), 2015.

[2] Alexa Top Sites. http://www.alexa.com/

topsites.

[3] C. Anderson, P. Winter, and Roya. Global Net-
work Interference Detection Over the RIPE Atlas
Network. In USENIX Workshop on Free and Open
Communications on the Internet (FOCI), 2014.

[4] Anonymous. The Collateral Damage of Internet
Censorship by DNS Injection. SIGCOMM Com-
puter Communication Review, 42(3):21–27, June
2012.

[5] Anonymous. Towards a Comprehensive Picture of
the Great Firewall’s DNS Censorship. In USENIX
Workshop on Free and Open Communications on
the Internet (FOCI), 2014.

[6] M. Antonakakis, R. Perdisci, D. Dagon, W. Lee,
and N. Feamster. Building a Dynamic Reputation
System for DNS. In USENIX Security Symposium,
2010.

[7] S. Aryan, H. Aryan, and J. A. Halderman. Inter-
net Censorship in Iran: A First Look. In USENIX
Workshop on Free and Open Communications on
the Internet (FOCI), 2013.

[8] M. Bailey and C. Labovitz. Censorship and Co-
option of the Internet Infrastructure. Technical Re-
port CSE-TR-572-11, University of Michigan, Ann
Arbor, MI, USA, July 2011.

[9] BBC. BBC’s Website is being Blocked
across China. http://www.bbc.com/news/

world-asia-china-29628356, October 2014.

[10] The Belmont Report - Ethical Principles and
Guidelines for the Protection of Human Sub-
jects of Research. http://ohsr.od.nih.gov/

guidelines/belmont.html.

USENIX Association 26th USENIX Security Symposium    321



[11] S. Bortzmeyer. Hijacking through routing in turkey.
https://ripe68.ripe.net/presentations/

158-bortzmeyer-google-dns-turkey.pdf.

[12] A. Chaabane, T. Chen, M. Cunche, E. D. Cristo-
faro, A. Friedman, and M. A. Kaafar. Censorship
in the Wild: Analyzing Internet Filtering in Syria.
In ACM Internet Measurement Conference (IMC),
2014.

[13] Cisco OpenDNS. https://www.opendns.com/.

[14] Citizen Lab. Block Test List. https://github.

com/citizenlab/test-lists.

[15] Citizen Lab. https://citizenlab.org.

[16] C. Contavalli, W. van der Gaast, D. C. Lawrence,
and W. Kumari. Client Subnet in DNS Queries.
RFC 7871.

[17] M. Cotton, L. Vegoda, R. Bonica, and B. Haber-
man. Special-Purpose IP Address Registries. RFC
6890.

[18] D. Dagon, N. Provos, C. P. Lee, and W. Lee. Cor-
rupted DNS Resolution Paths: The Rise of a Ma-
licious Resolution Authority. In Network & Dis-
tributed System Security Symposium (NDSS), 2008.

[19] J. Dalek, B. Haselton, H. Noman, A. Senft,
M. Crete-Nishihata, P. Gill, and R. J. Deibert. A
Method for Identifying and Confirming the Use of
URL Filtering Products for Censorship. In ACM
Internet Measurement Conference (IMC), 2013.

[20] D. Dittrich and E. Kenneally. The Menlo Report:
Ethical Principles Guiding Information and Com-
munication Technology Research. Technical re-
port, U.S. Department of Homeland Security, Aug
2012.

[21] Z. Durumeric, D. Adrian, A. Mirian, M. Bailey,
and J. A. Halderman. A Search Engine Backed
by Internet-Wide Scanning. In ACM Conference
on Computer and Communications Security (CCS),
2015.

[22] Z. Durumeric, E. Wustrow, and J. A. Halderman.
ZMap: Fast Internet-Wide Scanning and its Secu-
rity Applications. In USENIX Security Symposium,
2013.

[23] R. Ensafi, J. Knockel, G. Alexander, and J. R. Cran-
dall. Detecting Intentional Packet Drops on the In-
ternet via TCP/IP Side Channels. In Passive and
Active Measurements Conference (PAM), 2014.

[24] R. Ensafi, P. Winter, A. Mueen, and J. R. Crandall.
Analyzing the Great Firewall of China Over Space
and Time. Privacy Enhancing Technologies Sym-
posium (PETS), 1(1), 2015.

[25] O. Farnan, A. Darer, and J. Wright. Poisoning
the Well – Exploring the Great Firewall’s Poisoned
DNS Responses. In ACM Workshop on Privacy in
the Electronic Society (WPES), 2016.
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